
Delft Center for Systems and Control

Integrating MPC and RL for Efficient
Control of Autonomous Vehicles

Qizhang Dong

M
as

te
ro

fS
cie

nc
e

Th
es

is





Integrating MPC and RL for Efficient
Control of Autonomous Vehicles

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Qizhang Dong

January 9, 2025

Faculty of Mechanical Engineering · Delft University of Technology



Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical Engineering for acceptance a thesis entitled

Integrating MPC and RL for
Efficient Control of Autonomous

Vehicles
by

Qizhang Dong
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: January 9, 2025

Supervisor(s):
prof.dr.ir. Bart de Schutter

dr.ir. Sam Mallick

dr.ir. Gianpietro Battocletti

Reader(s):
dr.ir. Luca Laurenti





Abstract

Autonomous vehicles offer significant potential for improving traffic efficiency and reducing
fuel consumption, with Model Predictive Control (MPC) being widely used due to its ability
to guarantee constraint satisfaction and safety while providing optimal control performance.
However, car models traditionally used in MPC approaches for vehicle control often overlooks
discrete dynamics like gear changes, which are critical for optimizing vehicle fuel consump-
tion. Advancements have incorporated these discrete dynamics into MPC, resulting in a
hybrid model that considers both continuous and discrete dynamics. The incorporation of
the fuel model, along with these discrete dynamics, significantly increases the computational
complexity of the MPC problem, making real-time implementation challenging. To address
this issue, Reinforcement Learning (RL) can be leveraged to simplify the optimization prob-
lem by learning policies that determine key discrete components, such as gear selection. This
allows the MPC controller to handle a simpler optimization problem, thereby reducing the
computational burden and enabling real-time control. This research aims to propose a new
approach to integrate RL and MPC for vehicle control, where RL is used to manage gear
transitions and MPC controls the overall vehicle dynamics, offering a computationally ef-
ficient solution, while achieving near optimal performance comparable to the conventional
MPC approach.

Master of Science Thesis Qizhang Dong



ii

Qizhang Dong Master of Science Thesis



Table of Contents

Acknowledgements v

1 Introduction 1

2 Background and Relevant Literature 3
2-1 Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2-1-1 PWA gear approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2-1-2 Discrete input gear approximation . . . . . . . . . . . . . . . . . . . . . 5

2-2 Current Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-2-1 Linear Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-2-2 Sliding Mode Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2-2-3 H∞ Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2-2-4 DMPC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2-2-5 RL Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2-2-6 Composite Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2-3 Reinforcement Learning Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-3-1 Key Elements of RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-3-2 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2-3-3 Deep Q-Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Proposed MPC-RL Approach 15
3-1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3-1-1 Vehicle States and Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3-1-2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3-1-3 Performance Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-1-4 Challenges of Standard MPC Approach . . . . . . . . . . . . . . . . . . 16

Master of Science Thesis Qizhang Dong



iv Table of Contents

3-1-5 Objective of This Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3-2-1 Vehicle Throttle MPC Controller Design . . . . . . . . . . . . . . . . . . 17
3-2-2 Vehicle Gear RL Controller Design . . . . . . . . . . . . . . . . . . . . . 18
3-2-3 Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3-3 RL Training Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3-3-1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3-3-2 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Training and Evaluation Results 33
4-1 Training Setup & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4-1-1 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4-1-2 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4-2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4-2-1 Individual Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4-2-2 Large Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-3 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4-3-1 Standard MPC Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4-3-2 PID Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4-3-3 Comparison & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Discussion 47
5-1 Key Findings of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5-1-1 Integration of RL and MPC . . . . . . . . . . . . . . . . . . . . . . . . . 47
5-1-2 Addressing the Prediction Horizon Challenge . . . . . . . . . . . . . . . . 47
5-1-3 Scalability to Vehicle Platooning . . . . . . . . . . . . . . . . . . . . . . 48

5-2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5-2-1 Limited Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . 48
5-2-2 Limited Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5-2-3 Residual Discrete Components . . . . . . . . . . . . . . . . . . . . . . . 49

5-3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5-3-1 More Advanced RL Controller Design . . . . . . . . . . . . . . . . . . . 49
5-3-2 Extend to Distributed MPC and Vehicle Platoons . . . . . . . . . . . . . 49
5-3-3 Incorporating Advanced Simulations for Validation . . . . . . . . . . . . 49

5-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusion 51

Bibliography 53

Qizhang Dong Master of Science Thesis



Acknowledgements

I would like to express my heartfelt gratitude to my supervisor, prod.dr.ir. Bart de Schutter,
for his guidance and support throughout my research journey. Special thanks go to Sam
Mallick and Gianpietro Battocletti, whose help and advice in my daily research and thesis
writing have been truly invaluable. Their patience and encouragement made this process
much smoother and more enjoyable.

I am also deeply thankful to my classmates and friends, whose support and companionship
have meant so much to me during this journey.

Delft, University of Technology Qizhang Dong
January 9, 2025

Master of Science Thesis Qizhang Dong



vi Acknowledgements

Qizhang Dong Master of Science Thesis



Chapter 1

Introduction

Autonomous driving technology has garnered significant attention due to its potential to
enhance traffic flow, reduce congestion, and optimize energy consumption. As society in-
creasingly demands safer and more sustainable modes of transportation, autonomous driving
solutions are being rigorously researched and developed. Key elements of autonomous driving,
including vehicle control, inter-vehicle spacing, and energy consumption, have been exten-
sively studied. Traditional control methods such as Proportional-Integral-Derivative (PID)
control and sliding mode control are often employed to ensure stable vehicle performance
across varying conditions.
Early research on autonomous driving often utilized simplified vehicle models that focused
exclusively on continuous dynamics, overlooking discrete factors such as gear shifts. In these
approaches, gear control was typically delegated to low-level controllers, such as rule-based
systems, which limited opportunities for optimizing driving performance and fuel efficiency.
Recent studies, however, have demonstrated that explicitly incorporating gear dynamics and
optimizing gear selection can enhance vehicle driving performance and fuel efficiency, enabling
the development of more effective and realistic control strategies.
Model Predictive Control (MPC) is a efficient approach capable of managing both continuous
and discrete variables, as discussed earlier. In addition, it can simultaneously address multiple
objectives while incorporating system constraints, such as safety limits and physical bound-
aries, directly into its optimization process. By predicting future system behavior, MPC
optimizes control actions in real time, making it particularly effective for complex driving
tasks such as car-following and trajectory planning. Its adaptability to changing conditions
offers a significant advantage over traditional controllers, ensuring stable and reliable perfor-
mance in dynamic environments. This versatility makes MPC a powerful tool for achieving
efficient and safe autonomous driving in diverse scenarios.
The inclusion of gear dynamics introduces multiple discrete variables into the optimization
problem, resulting in a hybrid MPC formulation. When combined with the fuel consumption
model, which is nonlinear and non-convex, the problem becomes a mixed-integer nonlinear
optimization problem. A key challenge associated with this problem is the resulting compu-
tational complexity. In practice, its complexity can grow exponentially with the problem size

Master of Science Thesis Qizhang Dong



2 Introduction

due to the interplay of continuous and discrete variables. This growth in complexity leads to
prolonged solution times, making it difficult for standard MPC methods to achieve real-time
performance. This challenge is particularly critical in dynamic driving environments, where
rapid responses are essential for maintaining safety and achieving effective control.

Reinforcement learning (RL) presents a promising solution to mitigate this challenge. RL
enables systems to learn a policy through direct interaction with the environment, making
it well-suited for complex, real-time decision-making tasks. In this study, we use RL to de-
termine the vehicle’s gear choice, replacing most of the discrete components in the hybrid
MPC optimization problem. Besides, by addressing the fuel consumption cost within the RL
framework, we remove the fuel consumption model in MPC optimization problem, further
reducing the problem’s complexity. This decomposition significantly reduces the computa-
tional complexity of the MPC optimization problem, enabling a real-time implementation
while achieving near-optimality compared to the original formulation.

The remainder of this thesis is organized as follows: Chapter 2 reviews the relevant literature
and introduces foundational concepts in reinforcement learning and vehicle modeling. Chapter
3 details the implementation of the proposed control methodology. Chapter 4 presents the
evaluation of the proposed method, comparing its performance with existing approaches.
Chapter 5 discusses broader implications of the results and outlines directions for future
research. Finally, Chapter 6 concludes the study.

Qizhang Dong Master of Science Thesis



Chapter 2

Background and Relevant Literature

This chapter provides the background of the study and reviews relevant literature. It includes
an overview of the vehicle model used in this work, a review of existing control methods, and
an explanation of the reinforcement learning technique utilized in this work.

2-1 Vehicle Model

In this study, we employ a point mass vehicle model that explicitly accounts for gear dynamics[9].
The model used is described here. The dynamics of a forward-moving vehicle are represented
by:

mp̈(t) + cṗ(t)2 + µmg = b(j, ṗ)u(t), (2-1)

where p(t) represents the position at time t, c is the aerodynamic drag coefficient, µ is the
friction coefficient, j ∈ 1, . . . , 6 indicates the selected gear, and b(j, ṗ)u(t) represents the
traction force, which is proportional to the normalized throttle input u(t). The parameters
used are listed in Table 4-1.

Defining the state vector as position and velocity, i.e., x =
[

p ṗ
]⊤

, the state-space repre-
sentation can be expressed as:

ẋ = A(x) + B(j, x)u, (2-2)

where:

A(x) =
[

x2
−(c/m)x2

2 − µg

]
, B(j, x) =

[
0

b(j,x2)
m

]
(2-3)

The system dynamics is nonlinear due to the quadratic term in the friction component of A(x),
and the dynamics is hybrid owing to the discrete gear selection j, which affects B(j, x2).

Master of Science Thesis Qizhang Dong



4 Background and Relevant Literature

A common approach to managing the nonlinear characteristics of the model is to use a piece-
wise affine (PWA) approximation. This method divides the nonlinear state space into multiple
regions, each represented by an affine segment, simplifying the system’s representation. For
the quadratic friction term in A(x), we approximate the nonlinear friction using two PWA
regions. The decision to use two PWA regions strikes a balance between model complexity
and accuracy. Defining the quadratic friction term as f(x2) = cx2

2, the PWA approximation
f̂ is represented as:

f̂ (x2) =
{

a1x2 + c1 x2 ≤ α
a2x2 + c2 x2 > α

, (2-4)

where a = ṡMAX/2, and ṡMAX denotes the maximum vehicle velocity. Using this PWA
approximation, A(x) becomes:

APWA(x) =
[

x2
−f̂ (x2) /m− µg

]
. (2-5)

Figure 2-1 illustrates the friction approximation in A(x).

0 α = ṡMAX/2 ṡMAX

3cṡ2
MAX
16

cṡ2
MAX

f(x)
f̂(x)

Figure 2-1: PWA friction approximation. The solid line represents the true dynamics and the
dashed line represents the piecewise approximation.

Figure 2-2a illustrates the complete gear model, while Table 4-2 presents the maximum trac-
tion force for each gear along with the velocity ranges within which the maximum traction
remains constant. For the hybrid gear dynamics B(j, x), we consider two approaches for
approximation. In the first approach, gears correspond one-to-one with the vehicle velocity,
resulting in a PWA approximation for B(j, x) (Figure 2-2b). In the second approach, the gear
choice is treated as a discrete decision variable, formulated using a mixed-logical-dynamical
(MLD) representation (Figure 2-2c).

2-1-1 PWA gear approximation

To approximate the gear dynamics with a PWA approach, we focus on the regions of the
traction curves where traction remains constant. The velocity range is divided into segments,
and a specific gear is assigned to each segment, creating a one-to-one mapping between velocity

Qizhang Dong Master of Science Thesis



2-1 Vehicle Model 5

0 20 40 60
0

2,000

4,000
I

II
III

IV
V VI

velocity m/s

Tr
ac

tio
n

fo
rc

e
(N

)

(a) Full

0 20 40 60

I

II
III

IV
V VI

velocity m/s

(b) PWA

0 20 40 60

I

II
III

IV
V VI

velocity m/s

(c) Discrete input

Figure 2-2: Gear Approximations

segments and gear selection. The mid-point of each velocity range is used as the lower bound
for the corresponding PWA region associated with that gear. The PWA gear approximation
is then BPWA(x) =

[
0 b̂ (x2) /m

]⊤
where

b̂ (x2) =


b1,H v1, L ≤ x2 <

v2,H+v2, L
2

b2,H
v2, L+v2, L

2 ≤ x2 <
v3,H+v3, L

2...
b6,H

v6,H+v6,H
2 ≤ x2 < v6,H

, (2-6)

and bj,H, vj, L, and vj,H, are the maximum traction, minimum velocity, and maximum velocity
bounds for gear j, as given in Table 4-2. The PWA gear approximation no longer includes
a discrete decision variable j, and is a function only of the state x. Figure 2-2b depicts the
PWA gear approximation. Combining BPWA (x) with APWA (x) gives the PWA model

ẋ = APWA(x) + BPWA(x)u. (2-7)

2-1-2 Discrete input gear approximation

The second gear model treats gear selection as a discrete input. Similar to the PWA approach,
the traction curves are restricted to regions of constant traction for each gear, and each
gear is limited to operate only within its defined region. However, unlike the PWA model,
the mapping between velocity and gear is not one-to-one. Figure 2-2c depicts this gear
approximation.

To represent gear selection, we introduce six binary variables, δ1, δ2, . . . , δ6, with each variable
corresponding to a specific gear. When δj = 1, gear j is selected. The following constraint
ensures that only one gear is active at any given time:

6∑
j=1

δj = 1. (2-8)

Master of Science Thesis Qizhang Dong



6 Background and Relevant Literature

The discrete input approximation is then expressed as

b (δ1, . . . , δ6) =
6∑

j=1
δjbj,H, (2-9)

where bj,H is the maximum traction for gear j. The B matrix is then approximated with

BDISC (δ1, . . . , δ6) =
[

0
b (δ1, . . . , δ6) /m

]
. (2-10)

The nonlinearity arising from the multiplication of binary and continuous decision variables in
BDISC(δ1, . . . , δ6)u can be reformulated into a linear expression, BMLD(δ1, . . . , δ6, u), by intro-
ducing auxiliary variables and mixed-integer linear constraints [1]. To ensure that each gear
operates only within its constant traction velocity region, additional mixed-integer constraints
are added to encode the necessary logical conditions, such as:

(δj = 1 =⇒ x2 ≤ vj,H)⇐⇒ x2 − vj,H ≤MH (1− δj) , (2-11)

where MH = maxx2 (x2 − v1,H), and

(δj = 1 =⇒ x2 ≥ vj, L)⇐⇒ vj, L − x2 ≤ML (1− δj) , (2-12)

where ML = maxx2 (v1, L − x2, u).

Converting APWA(x) into MLD form [1] and combining it with BMLD (δ1, . . . , δ6) results in
the MLD model

ẋ = AMLD(x) + BMLD (δ1, . . . , δ6, u) . (2-13)

2-2 Current Methods

In this chapter we review the current methods for the autonomous vehicle control problem,
which are categorized by controller type, including linear control, sliding mode control (SMC),
H∞ control, distributed MPC (DMPC), RL, and composite control which combines multiple
control methods.

2-2-1 Linear Controller

Shaw et al. [14] conducted a comprehensive study on string stability in heterogeneous vehicle
strings, utilizing a leader-predecessor following control strategy with a constant spacing policy.
Their analysis highlighted the challenges posed by heterogeneity in vehicle dynamics and
demonstrated that stability can be achieved without requiring system reconfiguration. This
work advanced the understanding of multi-vehicle control strategies under diverse dynamics,
with implications for more efficient and reliable transportation systems.

Qizhang Dong Master of Science Thesis



2-2 Current Methods 7

Naus et al. [12] proposed a decentralized Cooperative Adaptive Cruise Control (CACC)
framework combining feedforward and feedback control mechanisms. The design ensures ro-
bust string stability and smooth operation even under communication failures, emphasizing
adaptability through frequency-domain analysis. Their work validated the system’s effective-
ness in mitigating disruptions and maintaining safe inter-vehicle spacing.

2-2-2 Sliding Mode Controller

Wu et al. [17] developed a distributed SMC framework for vehicular platoons with nonlinear
node dynamics and positive definite topologies. Their approach is notable for addressing
topological diversity using a two-phase design: topological sliding surface design and topo-
logically structured reaching law design. The control method ensures stability through local
feedback and information from neighboring nodes, leveraging the Lyapunov method for sta-
bility proofs. This work highlights the importance of topology matrices in influencing stability
and convergence rates, validated through numerical simulations.

2-2-3 H∞ Controller

Zheng et al. [20] analyzed the robustness and developed a scalable distributed H∞ con-
troller synthesis for homogeneous platoons under undirected communication topologies. This
approach utilizes spectral decomposition to decouple the collective dynamics of the platoon
into simpler subsystems, significantly reducing computational complexity. Additionally, they
highlighted the impact of communication topology on robustness performance, introducing
scalable optimization techniques for topology selection.

Similarly, Ploeg et al. [13] proposed a frequency-domain-based H∞ controller to ensure
string stability in vehicle platoons with linear dynamics. By solving linear matrix inequal-
ities (LMIs), they derived stabilizing controller parameters to explicitly maintain the string
stability condition under various spacing policies and topological constraints.

These methods emphasize robustness to disturbances and scalability to large platoon sizes,
aligning well with theoretical guarantees. Their contributions lie in the ability to address
external disturbances and system uncertainties while ensuring system stability.

2-2-4 DMPC Controller

He et al. [5] proposed a DMPC framework aimed at improving fuel efficiency in vehicle
platoons. Their methodology integrates an energy-based control strategy while leveraging
vehicle-to-vehicle (V2V) communication to ensure coordination among platoon members. A
key aspect of their work is the incorporation of stability and string stability, which are essential
for safe and efficient platooning. By embedding fuel consumption optimization directly into
the control framework, their approach achieves significant fuel savings while maintaining
robust control performance under dynamic conditions.

Zheng et al. [19] addressed the challenge of coordinating heterogeneous vehicle platoons under
unidirectional communication constraints. They proposed a DMPC algorithm, modeling the
communication network as a directed graph to ensure scalability and practicality in real-world

Master of Science Thesis Qizhang Dong



8 Background and Relevant Literature

scenarios. The use of a coupled cost function enables effective local optimization while main-
taining global coordination objectives, such as desired inter-vehicle spacing and tracking the
leader’s trajectory. Their work demonstrates the feasibility of achieving robust coordination
even with limited communication, highlighting its potential for scalable implementation in
autonomous driving systems.

Hu et al. [6] developed a distributed economic model predictive control (DEMPC) framework
that integrates switching feedback control to optimize fuel consumption in vehicle platoons.
Their method combines economic MPC with switching control, introducing a lower bound on
the dwell time of the switched system to ensure asymptotic stability and string stability. This
approach reduces computational complexity compared to traditional economic MPC meth-
ods while achieving robust performance and significant fuel savings. Numerical simulations
validate their framework, demonstrating its effectiveness in managing fuel efficiency without
compromising system stability.

2-2-5 RL Controller

Li and Cao [8] introduce Communication Proximal Policy Optimization (CommPPO), a re-
inforcement learning approach for optimizing vehicle platoon control. The method enhances
inter-vehicle communication by improving the exchange of state and reward information,
addressing issues like redundant data and spurious rewards in traditional multi-agent frame-
works. A curriculum learning strategy further improves training efficiency, enabling the model
to handle complex scenarios such as vehicle merging and splitting. CommPPO demonstrates
improved coordination and operational efficiency, making it a promising method for managing
dynamic platoon operations.

Li and Görges [7] propose an ecological adaptive cruise control strategy for vehicles with step-
gear transmissions, based on a novel actor-gear-critic reinforcement learning framework. This
approach integrates continuous traction force control with discrete gear shift optimization,
ensuring safe inter-vehicle distances while improving fuel efficiency. The method is model-
free and considers nonlinear vehicle dynamics and transmission efficiency, making it robust
to diverse driving scenarios. Simulations validate its adaptability and effectiveness, offering a
significant advancement in ecological and adaptive vehicle technologies.

2-2-6 Composite Controllers

Yin et al. [18] propose a hierarchical model predictive control (HMPC) strategy for man-
aging platoons of hybrid electric vehicles (HEVs) to improve energy efficiency and safety.
The upper-level control employs MPC to optimize longitudinal movements, leveraging V2V
communication for maintaining spacing and synchronized speeds. The lower-level Q-Learning
controller optimizes energy distribution based on power demands and battery states, with PID
control ensuring accurate tracking of vehicle speed. This framework balances computational
efficiency and robust performance, making it practical for dynamic real-world platooning
scenarios.

Turri et al. [15] address fuel efficiency in heavy-duty vehicle platooning by integrating gear
management into a layered control architecture. The high-level platoon coordinator generates

Qizhang Dong Master of Science Thesis



2-3 Reinforcement Learning Basics 9

fuel-optimal speed trajectories, while the lower-level vehicle controllers ensure adherence to
these trajectories. A key contribution is the gear management layer, which uses dynamic
programming to optimize gear shifts, minimizing fuel consumption and ensuring smooth op-
eration without disrupting platoon coherence. This approach effectively handles the dynamic
impacts of gear shifts, enhancing platoon efficiency and stability under varying road condi-
tions.

2-3 Reinforcement Learning Basics

In this chapter we review the relevant RL theory needed in this research, including key
elements of RL, Q-learning, and deep Q-learning (DQN).

2-3-1 Key Elements of RL

RL is a branch of machine learning where an agent learns to make decisions by interacting
with its environment. The agent aims to maximize cumulative rewards over time by exploring
various actions to understand their outcomes and exploiting the most rewarding strategies it
discovers. Understanding RL requires familiarity with several key concepts:

Agent and Environment RL operates through the interaction between two key entities: the
agent and the environment. The definitions are listed below:

• Agent: The decision-maker that interacts with the environment.

• Environment: The system with which the agent interacts, comprising everything out-
side the agent.

States, Actions, and Rewards These elements define the interaction between the agent and
the environment, forming the basis for the agent’s learning process:

• State (s): Representation of the environment at a particular time.

• Action (a): A decision or move taken by the agent that affects the environment.

• Reward (r): A scalar feedback signal received by the agent after taking an action in
a state.

Policy (π) A policy is a strategy used by the agent to decide which action to take in a given
state. It can be deterministic or stochastic:

• Deterministic Policy: Maps states to actions directly, π(s) = a.

• Stochastic Policy: Maps states to probabilities of actions, π(a|s) = P (a|s).

Master of Science Thesis Qizhang Dong



10 Background and Relevant Literature

The goal of the agent is to find a policy to maximize the total reward over time:

π∗ = arg max
π

E
[ ∞∑

k=0
γkrt+k+1 | π

]
(2-14)

where γ is the discount factor controling the importance of future rewards.

Value Functions Value functions estimate the expected return (cumulative reward) of states
or state-action pairs under a specific policy:

• State Value Function V π(s): The expected return when starting in state s and
following policy π:

V π(s) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s

]
(2-15)

• Action Value Function Qπ(s, a): The expected return when starting in state s, taking
action a, and thereafter following policy π:

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s, at = a

]
(2-16)

Figure 2-3: Markov Decision Process

Markov Decision Process (MDP) Represented schematically in Figure 2-3, an MDP is a
mathematical framework that provides a formalization for the RL problem. It is defined by:

• A set of states S that satisfy the Markov property, that is, the future state of the process
depends only on the present state.

• A set of actions, A

• A transition function, P (s′|s, a), which defines the probability of moving from state s
to state s′ under action a.

• A reward function, R(s, a), which specifies the immediate reward received after transi-
tioning from state s to state s′ due to action a.

Qizhang Dong Master of Science Thesis



2-3 Reinforcement Learning Basics 11

2-3-2 Q-Learning

Q-learning [16] is a model-free reinforcement learning algorithm that learns the optimal action-
value function Q∗(s, a) through direct interaction with the environment, without requiring
prior knowledge of its dynamics. It is an off-policy method, meaning the target Q-value
is determined by taking the maximum action-value, which differs from the actual behavior
policy followed by the agent during exploration.

The Q-value is updated iteratively using the rule:

Q(st, at)← Q(st, at) + α
[
rt+1 + γ max

a
Q(st+1, a)−Q(st, at)

]
, (2-17)

where α is the learning rate and γ is the discount factor.

This approach ensures convergence to the optimal policy under appropriate conditions, even
while exploring the environment. It is well-suited for discrete state and action spaces and
serves as the foundation for deep Q-networks.

2-3-3 Deep Q-Networks

Deep Q-Networks (DQN), proposed by Mnih et al. [10, 11], combine Q-learning with deep
neural networks to handle high-dimensional state spaces. Below is a detailed introduction to
its key components.

Q-Network In DQN, the Q-function is approximated using a neural network, referred to as
the Q-network. The Q-network can be structured in two ways, depending on the nature of
the action space:

1. For continuous or discrete action spaces, the input to the network is a state-action pair,
and the output is a scalar value representing the Q-value for that pair.

2. For discrete action spaces, the input is a state, and the outputs are Q-values for all
possible actions.

The policy is implicitly derived from the Q-network by selecting the action with the highest
Q-value for a given state:

π(s) = arg max
a

Q(s, a). (2-18)

This setup allows the Q-network to approximate the optimal Q-function, enabling the agent
to make decisions effectively in complex environments.

Note that when the action space is continuous, performing the arg max operation becomes
computationally expensive and challenging.

Master of Science Thesis Qizhang Dong



12 Background and Relevant Literature

Target Network The target network is a separate neural network used to compute stable
target Q-values during training. The target value is defined as:

yt = rt + γQtarget(st+1, π(st+1); θtarget), (2-19)

where Qtarget is the Q-value predicted by the target network, and θtarget represents the pa-
rameters of the target network.

To train the Q-network, the following loss function is minimized:

L = E
[
(yt −Q(st, at; θ))2

]
, (2-20)

where θ represents the parameters of the Q-network.

During training, the target network parameters are fixed to stabilize the targets. After a
certain number of updates, the target network parameters are synchronized with the Q-
network parameters:

θtarget ← θ. (2-21)

This approach reduces instability caused by constantly changing targets.

Exploration To balance exploitation (choosing actions that maximize Q-values) and explo-
ration (trying new actions), DQN uses strategies such as:

• ϵ-greedy: The agent selects a random action with probability ϵ and the action that
maximizes the Q-value with probability 1− ϵ. The value of ϵ typically decays over time.

• Boltzmann exploration: The agent selects an action based on a probability distri-
bution derived from Q-values, ensuring a higher probability for actions with higher
Q-values.

Experience Replay DQN employs a replay buffer to store experiences (st, at, rt, st+1) gath-
ered during training. For each update, a random batch of experiences is sampled from the
buffer. This mechanism provides the following advantages:

• Reduced Sample Correlation: Random sampling breaks the temporal correlation
between consecutive experiences, leading to more stable training.

• Increased Data Efficiency: By reusing past experiences, the agent learns more ef-
fectively from the data, reducing the need for continuous environment interaction.

• Batch Learning: Using batches for training leverages the computational efficiency of
modern deep learning frameworks, enabling faster and more stable optimization.

Qizhang Dong Master of Science Thesis



2-4 Summary 13

2-4 Summary

In this chapter, we provided a comprehensive review on background and relevant literature
essential for understanding our work on autonomous vehicle control. This chapter is organized
into three main sections.

First, we presented the vehicle model employed in our research, outlining its nonlinear and
hybrid dynamics and how these dynamics are approximated using PWA and MLD represen-
tations. The use of these approximations aims to simplify the complex vehicle dynamics while
retaining a reasonable level of accuracy, thus facilitating effective control approaches.

Second, we reviewed current methods and approaches for autonomous vehicle control, catego-
rized by control approach type. This included discussions on various controllers such as linear,
sliding mode, H∞, DMPC, reinforcement learning, and composite controllers that integrate
multiple control methods. Each of these approaches was explored in the context of their
applications to vehicle platooning and energy management, highlighting their advantages,
limitations, and scenarios in which they are most effective.

Finally, we provided an overview of fundamental reinforcement learning concepts relevant
to our work, including key elements of RL and DQN. The discussion also covered practical
aspects of RL training such as exploration strategies and experience replay, which are critical
for developing effective RL-based control strategies.

In the next chapter, we will address the problem formulation in detail, analyze the challenge
associated with the traditional standard MPC approach, and then then propose our integrated
MPC-RL solution, which aims to overcome this challenge by leveraging reinforcement learning
for efficient gear selection in hybrid vehicle dynamics.

Master of Science Thesis Qizhang Dong



14 Background and Relevant Literature

Qizhang Dong Master of Science Thesis



Chapter 3

Proposed MPC-RL Approach

In this chapter, we present the control methodology proposed in this research. The chapter
is organized into sections detailing the problem formulation, the design of the controller, and
the training framework for the RL agent.

3-1 Problem Formulation

This work addresses the control of a single vehicle tasked with following a given reference
trajectory, denoted as ξ. The objective is to minimize a cost that considers tracking accuracy
and fuel consumption, while satisfying constraints related to vehicle dynamics and safety
requirements. This strategy is particularly suited for highway scenarios, including applications
such as car-following and vehicle platooning.

3-1-1 Vehicle States and Inputs

The vehicle’s states, denoted as x, include position (x1) and velocity (x2). The control inputs
comprise the throttle input (u) and gear choice (j).

3-1-2 Constraints

To ensure safety and comfort, the states and inputs of the vehicle are subject to the following
constraints:

Velocity and Acceleration Constraints The vehicle’s velocity and acceleration are con-
strained as:

vMIN ≤ x2(k) ≤ vMAX,

aMINT ≤ x2(k + 1)− x2(k) ≤ aMAXT,
(3-1)

Master of Science Thesis Qizhang Dong



16 Proposed MPC-RL Approach

where vMIN, vMAX, aMIN, and aMAX are the bounds on velocity and acceleration. The mini-
mum velocity constraint ensures the validity of constant traction approximations and applies
to highway scenarios like car-following or platooning, where forward motion is continuous.

Throttle Input Constraints The normalized throttle input is constrained as:

uMIN ≤ u(k) ≤ uMAX (3-2)

3-1-3 Performance Cost

The performance cost, Jtotal, is defined as a weighted sum of two components:

Jtotal = w1 · Jtracking + w2 · Jfuel (3-3)

The weights w1 and w2 balance the importance of tracking accuracy (Jtracking) and fuel
efficiency (Jfuel) in the overall cost.
Jtracking quantifies tracking accuracy:

Jtracking = ∥x(k)− ξ(k)∥Qx
(3-4)

where ∥·∥Qx
denotes the 2-norm weighted by the matrix Qx, which emphasizes the importance

of each state variable.
Jfuel represents the fuel consumption cost, calculated using a polynomial fuel consumption
model that depends on the vehicle velocity [5]. Specifically, the fuel consumption model is
expressed as:

Jfuel = Qf

( 3∑
m=0

bmxm
2 (k) + x2(k + 1)− x2(k)

T

2∑
l=0

clx
l
2(k)

)
(3-5)

Here Qf is a scaling factor for fuel cost, T is the sampling time, bm and cl are coefficients
derived from experimental data to model fuel consumption. Note that during braking when
u ≤ 0, it is assumed that no fuel is consumed due to the energy recycle technique.

3-1-4 Challenges of Standard MPC Approach

Currently, a standard MPC approach (see later Section 4-3-1) can solve the optimization
problem using mixed-integer nonlinear optimization [9]. However, the inclusion of integer
variables and the fuel consumption model make the problem non-convex and hybrid, thereby
significantly increasing the complexity of the problem. This heightened complexity results in
long solution times, making real-time implementation infeasible for practical applications.

3-1-5 Objective of This Study

This study aims to develop a control strategy that simplifies the standard hybrid MPC prob-
lem, addresses its computational challenges, and enables real-time implementation while main-
taining performance comparable to the original formulation.

Qizhang Dong Master of Science Thesis



3-2 Controller Design 17

3-2 Controller Design

To overcome the challenges outlined in section 3-1-4, we employ an RL-based approach to
handle most of the discrete components, such as gear selection, and to directly manage the
fuel consumption cost. This allows the MPC to focus solely on computing the continuous
throttle input and optimizing the tracking cost, significantly simplifying the optimization
problem. As a result, the computational time can be significantly reduced, enabling real-time
implementation.

Illustrated as figure 3-1, in this study we propose that an RL agent determines the gear
selection, thereby simplifying the original mixed-integer optimization problem. Although
some discrete variables remain, the reduction achieved enables a much faster and more efficient
MPC solution for the remaining control problem.

Figure 3-1: Controller Design. The left panel depicts the standard MPC approach, where the
controller determines both the discrete gear selection and continuous throttle input. The right
panel illustrates the proposed MPC-RL approach, where MPC determines the throttle input and
RL handles the gear selection.

The integration of RL for discrete decision-making (gear selection) and MPC for continuous
control (throttle management) leverages the strengths of each approach: RL brings adaptabil-
ity and efficiency to gear selection, while MPC ensures optimal and safe control actions. The
subsequent sections will detail the design of the gear controller, the vehicle throttle controller,
and the structure of the overall control loop.

3-2-1 Vehicle Throttle MPC Controller Design

In the MPC controller of our approach, the discrete input gear approximation, as described
in Section 2-1-2, is utilized to represent the gear model. The states and input constraints, as
outlined in Section 3-1, define the operational limits of the system. The MPC optimization
objective includes both tracking and control costs, evaluated using norm penalties. The

Master of Science Thesis Qizhang Dong



18 Proposed MPC-RL Approach

optimization problem is formulated as follows:

J(x, j) = min
u,x

N+1∑
k=0
∥x(k)− ξ(k)∥Qx︸ ︷︷ ︸
Tracking Cost

+
N∑

k=0
∥u(k)∥Qu︸ ︷︷ ︸

Control Cost

s.t. (3-1) - (3-2)
vehicle model (2-13)
x(0) = x

(3-6)

where the decision variables u and x represent the control and state trajectories over the
prediction horizon. Notably, the gear selection sequence j is not included as a decision variable
in the optimization problem but is instead treated as an input. It is determined by the RL
controller and fixed for the vehicle model during the optimization process.

At each time step, the MPC generates a control sequence u = (u(0), · · · , u(N − 1)) by
solving the optimization problem defined over the prediction horizon N , adhering to the
given constraints and vehicle model. The initial element of this control sequence, u(0), is
then applied to the system, and the optimization process is repeated at the next time step in
a receding horizon manner.

3-2-2 Vehicle Gear RL Controller Design

State and Action Space

State Space At each time step, the MPC controller provides the RL controller with the
predicted states and control sequences over a horizon of length N . Consequently, the raw
outputs from the MPC controller consists of the vehicle states—position (x1) and velocity
(x2)—as well as the control inputs—throttle input (u) and gear choice (j). Denoted as s, the
predicted state and control sequences are structured as follows:

s(k) =


x1(k) x1(k + 1) . . . x1(k + N − 1)
x2(k) x2(k + 1) . . . x2(k + N − 1)
u(k) u(k + 1) . . . u(k + N − 1)
j(k) j(k + 1) . . . j(k + N − 1)

 (3-7)

Note that the original length of the predicted state sequence is N + 1, while the control input
sequence has a length of N . To maintain consistency between the state and control sequences,
only the first N terms of the predicted state sequence are used.

The RL controller does not directly utilize the raw outputs from the MPC controller. Instead,
pre-processing is applied to the state sequences to make them more suitable for decision-
making. Specifically, the absolute position of the vehicle does not provide meaningful in-
formation for the RL controller. Therefore, the position tracking error between the current

Qizhang Dong Master of Science Thesis



3-2 Controller Design 19

position x1k
and the reference position rk is computed and used as input. This is expressed

as:
e(k)) = x1(k)− ξ(k) (3-8)

For the velocity state x2, normalization is applied to scale the values into a standardized
range. This ensures consistent scaling of input features, which enhances the stability and
efficiency of the RL training process. The normalized velocity is calculated as:

vnorm(k) = x2(k)− vMIN
vMAX − vMIN

(3-9)

As a result, the states utilized by the RL controller is structured as follows:

s′(k) =


e(k) e(k + 1) . . . e(k + N − 1)

vnorm(k) vnorm(k + 1) . . . vnorm(k + N − 1)
u(k) u(k + 1) . . . u(k + N − 1)
j(k) j(k + 1) . . . j(k + N − 1)

 (3-10)

Action Space The action set consists of three possible gear operations: up-shift, down-shift,
and no shift. This formulation simplifies the decision-making process for the RL controller
by focusing on relative gear changes rather than explicit gear choices. When considering a
prediction horizon N , the action space expands to include all possible sequences of actions
over the horizon, represented as the Cartesian product

AN = A×A× · · · × A︸ ︷︷ ︸
N times

(3-11)

where
A = {upshift, downshift, no shift} (3-12)

Using gear operations instead of explicit gear levels offers several advantages. First, it reduces
the size of the action space, which is particularly beneficial for reinforcement learning, as
smaller action spaces typically lead to faster convergence and more stable learning. Second,
this approach inherently accounts for sequential dependencies in gear changes, ensuring that
transitions occur only between adjacent gears.

Reward Function

The reward function should be designed to prioritize ensuring that the gear sequence selected
by the RL controller is feasible for the MPC controller. Once feasibility is guaranteed, it
should further guide the agent to select gears that minimize fuel consumption cost and tracking
error. During training, there are two scenarios where the selected gear choices may result in
infeasibility:

1. Exceeding Gear Limits: The RL controller selects a gear shift that exceeds the defined
limits of the gear range. For instance, it suggests an upshift when the current gear is
already at the maximum (e.g., gear 6) or a downshift when the current gear is at the
minimum (e.g., gear 1).

Master of Science Thesis Qizhang Dong



20 Proposed MPC-RL Approach

2. Velocity-Gear Mismatch: While the gear choice stays within the allowable range (e.g.,
between 1 and 6), it may still be infeasible if the MPC controller cannot adjust the
vehicle dynamics to achieve a velocity compatible with the selected gear (Figure 2-2c).
This constraint forces the MPC to keep the velocity within the range corresponding to
the chosen gear, and any mismatch can result in an unsolvable optimization problem.

Therefore, a penalty for infeasibility must be incorporated into the reward function and
assigned the highest priority. Feasibility is foundational, as it ensures the solvability of the
MPC problem and the stability of the training process. Without feasible gear choices, the
MPC cannot operate effectively, undermining the entire control framework.

Since gear selection can impact fuel consumption, and the RL controller is responsible for
managing it, the fuel consumption cost is included in the reward function. Additionally, while
gear selection also affects tracking performance, its influence is less pronounced compared to
the MPC controller. Therefore, the tracking cost is included in the reward function but
assigned a relatively smaller weight.

This weighting strategy ensures that the RL controller focuses primarily on feasibility, while
still contributing to tracking and fuel optimization. By maintaining this balance, the RL
controller supports the MPC, ensuring stable training and desirable performance of the hybrid
control system.

RL Algorithm Selection

Given the discrete nature of the action space, DQN was selected for its efficiency, stability,
and suitability for this application. DQN is specifically designed for discrete action spaces
by learning a Q-value function Q(s, a), which estimates the expected cumulative reward for
each action given a state. This makes DQN an ideal choice for the gear shift problem,
where the set of actions is fixed and finite. Furthermore, DQN includes mechanisms such as
experience replay and target networks that enhance sample efficiency and stabilize training.
Experience replay allows DQN to reuse past transitions, improving training efficiency and
stability by breaking the correlation between consecutive samples. Target networks prevent
large fluctuations in Q-value updates, ensuring stable training.

Network Architecture

Since the input states s′ of the RL controller are sequences over a horizon of N , the RL
controller must provide a corresponding sequence of gear choices j, one for each predicted
state. The predicted states from the MPC controller exhibit strong temporal relationships
that inherently capture information about the vehicle’s dynamics. Therefore, it is crucial for
the RL controller to account for these temporal dependencies to ensure more accurate and
effective gear selection.

To model these temporal dependencies effectively, a recurrent neural network (RNN) is inte-
grated into the network architecture of the DQN. RNNs are well-suited for sequential data,
allowing the RL controller to capture dependencies across time steps and make more informed
gear selection decisions. In this setup, the RNN follows a many-to-many architecture, mean-
ing it takes a sequence of inputs (predicted states over multiple time steps) and generates a

Qizhang Dong Master of Science Thesis



3-2 Controller Design 21

Figure 3-2: BiRNN Diagram

corresponding sequence of outputs. This ensures that the RNN provides a gear shift decision
for every time step in the sequence of predicted states.

At each time step k, the RNN takes the current input s(k) and the hidden state h(k−1) from
the previous step to compute the current hidden state h(k). The hidden state is then used to
produce the output y(k), which corresponds to the gear shift at that time step. This process
is repeated across all N time steps, allowing the network to model temporal dependencies in
the sequence of predicted states effectively.

Additionally, the gear selection problem in this context requires that each gear choice not
only depends on the predicted states preceding it but also on the predicted states following it
within the horizon N. To address this, a bidirectional RNN (BiRNN) is used, which processes
the sequence in both forward and backward directions. Figure 3-2 illustrates the BiRNN
architecture, where the network’s outputs are derived by combining the hidden states from
both directions. This architecture allows the RL controller to simultaneously consider both
earlier and later predicted states within the horizon, leading to better-informed gear choices
that can potentially enhance their feasibility and optimality. By capturing temporal patterns
in both directions, the BiRNN enables the RL controller to optimize gear selection for both
immediate feasibility and overall system performance objectives, such as tracking accuracy
and fuel efficiency. This combination of DQN with BiRNN provides a efficient framework for
handling the complexities of sequential decision-making in hybrid control systems.

As shown in Figure 3-3, the network architecture in our approach takes an input vector of
dimension 4 (3-10), which is fed into the Bi-RNN layer. The outputs from the Bi-RNN layer
(represented by black arrows) are processed by a fully connected layer, which maps them to an
output size of 3 corresponding to the action set defined in Equation (3-12). Simultaneously,
the hidden states are updated through time, as indicated by the red arrows. The specific
sizes of the hidden layers will be introduced in the next chapter. The network processes a
sequence of predicted states at each time step and outputs a corresponding gear choice for
each predicted state, operating in a many-to-many configuration.

Master of Science Thesis Qizhang Dong



22 Proposed MPC-RL Approach

Figure 3-3: Network architecture. The Bi-RNN layer includes propagation of hidden states
through time, represented by the red arrows.

3-2-3 Control Loop

Figure 3-4 illustrates the control loop of the proposed method. At each time step k, the
predicted sequences s(k−1) from the MPC controller at the previous time step is preprocessed
by the preprocessing block to generate the input s′(k − 1) for the RL controller. The RL
controller takes s′(k − 1) as input and outputs a sequence of gear shift decisions ∆j(k).

The postprocessing block converts ∆j(k) into a specific gear sequence j(k), which serves as
an input to the MPC controller. At the same time, the MPC controller receives the current
observation x(k) from the environment along with the reference input. Using j(k) and x(k),
the MPC controller computes the optimal throttle input u(k).

Finally, the first elements of the predicted control sequences, u(k) and j(k), are applied to
the plant. The updated prediction sequences s(k) from the MPC controller is then used as
input for the next time step, ensuring the closed-loop control operation.

Figure 3-4: Control loop at time step k, illustrating the interaction between the RL and MPC
controllers for gear shift decision-making and throttle optimization.

Qizhang Dong Master of Science Thesis



3-3 RL Training Scheme 23

3-3 RL Training Scheme

3-3-1 Environment Setup

We developed a simulation environment that simulates vehicle movement based on its true
dynamics. It is important to note that the vehicle model used here is the ’true’ nonlinear
model (2-1), rather than the approximated model used by the MPC controller.
To simulate multiple scenarios, we randomized the reference trajectory for each episode, which
helps improve the robustness and adaptability of the RL agent by training it with diverse
driving conditions. The total length of the reference trajectory is NT time steps. The initial
position of the reference trajectory is given by:

ξ1(0) = ξ1,0 (3-13)

and the initial reference velocity is randomized as

ξ2(0) = rand(ξ2,min, ξ2,max) (3-14)

We divided the velocity profile into NR piecewise regions, with switching moments determined
by fixed time steps combined with random offset values. These offset values are denoted as:

oi = rand(omin, omax), i = 1, 2, . . . , NR − 1 (3-15)

In the first and last piecewise regions, the velocity remains constant. For the remaining
regions, the velocity changes at a certain rate in each region. The rates of change are also
random, expressed as:

λi = rand(λmin, λmax), i = 1, 2, . . . , NR − 2 (3-16)

Thus, the reference velocity can be described as the following piecewise function:

ξ2(k + 1) =



ξ2(k), k ∈ [0, t1 + o1)
max(min(vmax, ξ2(k) + λ1), vmin), k ∈ [t1 + o1, t2 + o2)
...
ξ2(k), k ∈ [tNR−1 + oNR−1, NT)

(3-17)

The reference position is then given by

ξ1(k + 1) = ξ1(k) + T · ξ2(k), k ∈ [0, NT) (3-18)

Figure 3-5 shows two examples of randomly generated reference trajectories used for training,
which highlights the variations in reference trajectories used to train the RL agent under
different conditions.
The initial position of the vehicle is randomized as:

x1(0) = rand(x1,min, x1,max) (3-19)

and the initial vehicle velocity is given by:

x2(0) = rand(x2,min, x2,max) (3-20)

Master of Science Thesis Qizhang Dong



24 Proposed MPC-RL Approach

(a) Example 1 (b) Example 2

Figure 3-5: Two Examples of Reference Trajectories

3-3-2 Training Procedure

The training is performed episode by episode, where each episode contains NE time steps.
The detailed training loop within an episode will be introduced in the following.

Step 0: Initialization At the beginning of each training episode, the reference trajectory
and vehicle states are initialized as outlined in Section 3-3-1. At the first time step, the MPC
controller is tasked with solving the optimization problem using the gear sequence provided
by the RL controller. However, the RL controller relies on the predicted states generated by
the MPC, which are unavailable at the initial time step due to the lack of prior predictions.
To address this issue, the initial gear is determined using the PWA approximation based on
the initial velocity. This initial gear, denoted as j(0), is then uniformly applied across the
entire prediction horizon. The gear sequence for time step 0 is defined as:

j(0) =
[
j(0) j(0) · · · j(0)

]
1×N

(3-21)

This gear sequence is fed into the MPC controller to solve the optimization problem J(x, j),
resulting in the predicted state sequence x̂(0) and control sequence û(0). Subsequently, the
environment is stepped forward using the first element of the control sequence, yielding the
new observation x(1).

While the initial gear sequence may not be optimal, it facilitates the MPC controller generates
the necessary predicted sequences for the RL controller. This facilitates a smooth start to
the training process and ensures consistent interaction between the MPC and RL controllers
from the beginning.

Step 1: Gear Selection With the predicted states and control sequence at time step k − 1,
the RL controller determines the gear sequence for time step k. The network outputs Q-values

Qizhang Dong Master of Science Thesis



3-3 RL Training Scheme 25

for the three possible gear shifts, and the gear shift is selected based on the index with the
highest Q-value. The selected gear shift as ∆j is calculated as:

∆j(k) = arg max
i∈{0,1,2}

Q(s′(k − 1), i)− 1 (3-22)

where Qi(s
′(k − 1)) represents the Q-value corresponding to gear shift option i, as predicted

by the Q-network. The selected gear shift ∆j is determined by finding the index i that yields
the maximum Q-value and then subtracting 1 to map it to the appropriate gear shift value.
The gear shift is defined as follows:

∆j =


−1, downshift
0, no shift
1, upshift

(3-23)

This formulation ensures that the selected gear shift accurately reflects the intended action:
downshift, no shift, or upshift, providing a clear and consistent mapping between the Q-
network outputs and the actual gear control decisions. The gear shift sequence ∆ĵ at time
step k is defined as:

∆ĵ(k) =
[
∆ĵ(k) ∆ĵ(k + 1) · · · ∆ĵ(k + N − 1)

]
(3-24)

Then, we calculated the explicit gear sequence ĵ(k) using the gear shift sequence ∆ĵ(k).
Within the prediction horizon, each future gear is determined sequentially based on the pre-
vious gear value and the corresponding gear shift at that time step. The predicted gear
sequence is then expressed as

ĵ(k) =
[
ĵ(k) ĵ(k + 1) · · · ĵ(k + N − 1)

]
(3-25)

The individual gears in the sequence are calculated iteratively as follows:

ĵ(k + i) =
{

j(k − 1) + ∆ĵ(k + i), i = 0
ĵ(k + i− 1) + ∆ĵ(k + i), i = 1, · · · , N − 1 (3-26)

To incorporate exploration in the decision-making process, an ϵ-greedy exploration mecha-
nism is applied during training. The exploration probability ϵ decays over time to balance
exploration and exploitation. The exploration decay is defined as:

ϵ = ϵend + (ϵstart − ϵend) · exp
(
−nsteps

ϵdecay

)
(3-27)

where:

• ϵstart: Initial exploration rate.

• ϵend: Minimum exploration rate.

• nsteps: Number of training steps completed.

Master of Science Thesis Qizhang Dong



26 Proposed MPC-RL Approach

• ϵdecay: Decay factor controlling the speed of decay.

At each time step, a random number ζ ∈ [0, 1] is sampled. If ζ < ϵ, a random gear shift
sequence is selected for exploration. Otherwise, the gear shift is selected greedily based on
the Q-values:

∆j(k) =
{

random gear shift, ζ < ϵ

arg maxi∈{0,1,2} Qi(s
′(k − 1))− 1, ζ ≥ ϵ

(3-28)

This exploration mechanism ensures a trade-off between exploring new actions and exploiting
the learned policy, enabling the RL controller to efficiently learn gear control decisions.

Figure 3-6: Detailed Flowchart of Step 2

Step 2: Feasibility Check & Solving MPC Problem After calculating the predicted gear
sequence, we check if the sequence is feasible for the vehicle dynamics. As discussed in 3-2-2,
the gear sequence may be infeasible due to exceeding gear limits or velocity-gear mismatch,
causing the failure of solving the MPC problem.

We first check if some gear choices in the sequence exceed the gear limits. Since the vehicle
has 6 gears, we set the gear choice to 6 when it exceeds 6, and to 1 when its lower than 1.

Qizhang Dong Master of Science Thesis



3-3 RL Training Scheme 27

Specifically, it is expressed as:

ĵ(k + i) =


6, ĵ(k + i) > 6
1, ĵ(k + i) < 1
ĵ(k + i), else

i ∈ [0, N − 1] (3-29)

The adjusted gear sequence is provided to the MPC solver to solve the MPC problem. If the
solver returns an infeasibility result, we revert to the feasible gear sequence from previous
time step. Specifically, we use the gear sequence at time step k − 1 to replace the infeasible
gear sequence at time step k.
At time step k, the previously predicted gear sequence from time step k − 1, denoted as
ĵold(k − 1), is expressed as:

ĵold(k − 1) =
[
ĵold(k − 1) ĵold(k) · · · ĵold(k + N − 2)

]
(3-30)

To generate the new predicted gear sequence ĵ(k) at time step k, we take the second to the N -
th elements of ĵold(k−1) and assign them as the first N−1 elements of ĵ(k). The last element
of ĵ(k) is set as the final gear choice from ĵold(k − 1). Mathematically, ĵ(k) is represented as:

ĵ(k) =
[
ĵold(k) · · · ĵold(k + N − 2) ĵold(k + N − 2)

]
(3-31)

This approach provides a backup solution for the gear sequence when the original gear se-
quence is infeasible, which is refereed to Backup solution 1. The predicted sequence ĵ(k)
is then fed again to the MPC solver. However, this backup solution is not always feasible
because the last gear choice of ĵ(k) is simply replicated from the last gear choice of ĵold(k−1).
If the solver returns an infeasibility result again, a second backup solution is required.
In the second backup solution, the gear sequence is determined in the same way as during
initialization. First, the gear corresponding to the current velocity v(k) is obtained using the
PWA gear approximation. Then, this gear is applied uniformly across the entire prediction
horizon. Denoting the gear determined by the PWA model as ĵpwa(k), the second backup
gear sequence is expressed as:

ĵ(k) =
[
ĵpwa(k) ĵpwa(k) · · · ĵpwa(k)

]
1×N

(3-32)

This second backup solution, referred to as Backup Solution 2, is the most conservative
yet effective approach, although it does not ensure the feasibility of the MPC problem.
Figure 3-6 provides a detailed flowchart of Step 2, showing how the feasibility check of the
gear interacts with the MPC controller.
The adjusted gear sequence is then provided to the MPC controller, which solves the opti-
mization problem to generate the predicted state sequence x̂(k) and control sequence û(k).
These predictions are subsequently used for the next steps in the decision-making process.

Step 3: Interaction with Environment After the MPC controller solves the optimization
problem, the first throttle input u(k) of the predicted control sequence u(k), combined with
the first gear choice j(k) of the gear sequence j(k), is applied to control the vehicle in the
environment.
The environment then transitions to a new state x(k+1) based on this control input, following
the system dynamics introduced in (2-2).

Master of Science Thesis Qizhang Dong



28 Proposed MPC-RL Approach

Step 4: Reward Calculation As discussed in Section 3-2-2, the reward function is composed
of three components: the tracking cost, the fuel cost, and the penalty cost associated with
gear infeasibility. At time step k, these components are calculated as follows:

1. Tracking Cost (Jtracking): The tracking cost quantifies the deviation of the current state
x(k) from the reference trajectory ξ(k), which is calculated as (3-4).

2. Fuel Cost (Jfuel): The fuel cost is computed based on the vehicle’s velocity x2(k). It is
given by (3-5).

3. Penalty Cost (Jpenalty): The penalty cost accounts for violations in the gear sequence
and MPC infeasibility. At each time step, the number of gear limit violations is denoted
as npenalty, with each violation penalized by ϕ1. Additionally, a binary variable λpenalty
indicates whether the MPC problem is infeasible, incurring a penalty of ϕ2 if set to 1.
The variable λpenalty is defined as:

λpenalty =
{

1, if MPC is infeasible
0, if MPC is feasible

(3-33)

The total penalty P is then calculated as:

Jpenalty = ϕ1 · npenalty + ϕ2 · λpenalty (3-34)

Finally, the reward at time step k is computed as:

R(k) = −
(
l1 · Jtracking(k) + l2 · Jfuel(k) + l3 · Jpenalty(k)

)
, (3-35)

where l1, l2, and l3 are weights used to balance the contributions of tracking cost, fuel cost,
and penalty cost in the reward function. Note that the negative sign in the reward function
is used because DQN aims to maximize the reward. By negating the costs, minimizing the
costs becomes equivalent to maximizing the reward, aligning with the DQN optimization
framework.

Step 5: Experience Storage At the end of each time step, the experience tuple is stored in
the replay buffer. The experience is expressed as:(

ŝ(k − 1), ∆ĵ(k), ŝ(k), R(k)
)

(3-36)

Since the RL agent generates a gear sequence at each time step, the transitions are stored
in the replay buffer as time sequences. Given that the network architecture is an RNN, this
storage method allows the RL network to effectively capture temporal dependencies across
multiple time steps, thereby learning the system dynamics and improving the gear selection
process.
During training, we perform a feasibility check on the selected actions, introduced in Step
2, to ensure that the MPC problem can be solved efficiently, thereby facilitating the training
process. However, when storing transitions in the replay buffer, the action sequences are the
original outputs of the network, not the adjusted ones. This approach is taken because the
penalty costs are calculated based on the original network outputs, which accurately reflect
the agent’s decision-making.

Qizhang Dong Master of Science Thesis



3-3 RL Training Scheme 29

Step 6: Batch Training and Network Update

Batch Sampling During training, a batch of transitions is randomly sampled from the replay
buffer at each time step. This random sampling ensures that the experiences used for training
come from different episodes, which helps to break correlations between consecutive samples.
By training on diverse experiences, the RL agent is better able to generalize its policy across
a variety of situations.

In our training, the states and actions are sequences, while the reward is a scalar, as the
sequences are generated by the MPC controller rather than through direct interaction with
the environment. At each time step, only the first control input from the MPC sequence is
applied to the environment, resulting in a single scalar reward.

To align this scalar reward with the sequence data, we expand the reward to a sequence to
facilitate training. We broadcast it across the entire prediction horizon, giving same reward
for each time step. This ensures consistency in training by associating the reward with the
entire sequence.

R(k) =
[
R(k) R(k) · · · R(k)

]
1×N

(3-37)

Network Update With the sampled batch, the target Q-value is computed as follows:

Qtarget = R(k) + γ ·max
∆j

Q
′(ŝ(k)), (3-38)

where Q
′ represents the target network, γ is the discount factor, the current Q-value is given

by:
Qcurrent = Q(ŝ(k − 1)), (3-39)

where Q represents the policy network. Huber loss is used as the loss function, defined as:

Lδ(Qtarget, Qcurrent) =
{1

2(Qtarget −Qcurrent)2, if |Qtarget −Qcurrent| ≤ δ,

δ · (|Qtarget −Qcurrent| − 1
2δ), otherwise.

(3-40)

Here, δ is a threshold parameter that determines the transition between the squared loss
and absolute loss regions. This ensures robustness against outliers in the value difference
|Qtarget −Qcurrent|. The Adam optimizer is used to minimize the loss function.

Target Network Update The target network is updated to stabilize the training process by
providing a more consistent target for the Q-value estimation. Instead of directly copying the
weights of the policy network to the target network at every update, a soft update is applied.
The soft update is performed as follows:

θ
′ ← τθ + (1− τ)θ′

, (3-41)

where θ represents the parameters of the policy network, θ
′ represents the parameters of the

target network, and τ ∈ [0, 1] is a hyperparameter that controls the update rate.

The use of soft updates ensures that the target network evolves slowly over time, which re-
duces the risk of divergence and helps maintain the stability of Q-value updates. By gradually

Master of Science Thesis Qizhang Dong



30 Proposed MPC-RL Approach

blending the weights of the policy network into the target network, the training process ben-
efits from both consistent targets and the ability to adapt to the latest policy improvements.

For each episode, after initialization, the training process iterates from Step 1 to Step 6
until the episode concludes. A new episode then begins from Step 0. Figure 3-7 illustrates
the overall training process in the form of a flowchart.

Figure 3-7: Training Flowchart Diagram

Qizhang Dong Master of Science Thesis



3-4 Summary 31

3-4 Summary

In this chapter, we presented the control methodology proposed in this research, focusing on
integrating RL with MPC for vehicle control. The chapter began by formulating the problem
of a single vehicle tasked with following a trajectory while minimizing a performance cost
that considers both tracking accuracy and fuel consumption. We introduced the state and
input definitions, along with the relevant constraints, ensuring safety and vehicle dynamics
adherence.

We then discussed the challenges associated with the mixed-integer nature of the standard
MPC approach, highlighting the increased computational complexity due to discrete com-
ponents like gear choice. To address these challenges, we proposed an RL-based strategy to
manage the gear transitions, which effectively reduces the complexity of the remaining MPC
optimization problem to only a few discrete variables, thereby making real-time implementa-
tion feasible.

The design of the RL and MPC controllers was elaborated, showcasing the hybrid control
architecture that divides decision-making between RL (for gear selection) and MPC (for
throttle control and trajectory tracking). Finally, the RL training scheme, including the
environment setup, training procedure, and network architecture, was detailed.

This chapter sets the foundation for the proposed integrated control solution, demonstrating
how the combined RL and MPC approach addresses computational complexity challenges in
vehicle control. The subsequent chapters will provide an evaluation of the proposed method,
detailing simulation results and performance analyses to validate its effectiveness.

Master of Science Thesis Qizhang Dong



32 Proposed MPC-RL Approach

Qizhang Dong Master of Science Thesis



Chapter 4

Training and Evaluation Results

In this chapter, we present the results of our research, including the training outcomes and
evaluation results for both individual episodes and a large-scale test. Additionally, we compare
our approach with the standard MPC and PID approaches, focusing on performance and
runtime.

4-1 Training Setup & Results

The training comprises 50,000 episodes, each lasting 60 time steps. This setting was chosen
based on observed convergence after multiple tests. A new reference trajectory is generated
for every episode, with the vehicle starting from randomized states. The specific training
parameters are presented below, followed by the corresponding training results.

4-1-1 Training Setup

The parameters of the vehicle model are provided in Table 4-1, while the maximum traction
force and velocity range for each gear are presented in Table 4-2. The details of the network
is outlined in Table 4-3, while Table 4-4 specifies the parameters for the reference trajectories.
Additionally, Table 4-5 summarizes the parameters employed by the MPC controller in our
approach (3-6), and Table 4-6 lists the parameters used to train the RL agent.

Table 4-1: Parameter values used in 2-1

Parameter Value Units
m 800 kg
c 0.5 kg/m
µ 0.01 -
g 9.8 m/s2

Master of Science Thesis Qizhang Dong



34 Training and Evaluation Results

Table 4-2: Maximum Traction Force and Velocity Range for Each Gear.

Gear j Traction force b(j) (N) Min. vel. (m/s) Max. vel. (m/s)
I 4057 3.94 9.46
II 2945 5.43 13.04
III 2116 7.56 18.15
IV 1607 9.96 23.90
V 1166 13.70 32.93
VI 838 19.10 45.84

Table 4-3: Network Architecture Details

Layer Number of Nodes
Input Layer 4

Bi-RNN Layer 2 × 64
Fully Connected Layer 128

Output Layer 3

Table 4-4: Parameters for Reference Trajectory and Initial Vehicle States

Parameter Value Description
ξ1,0 3000 Initial reference position

ξ2,min, ξ2,max 15, 25 Range for initial reference velocity
NR 5 Number of piecewise affine region
NT 80 Total time steps for the reference trajectory

t1, t2, t3, t4 20, 35, 50, 70 Fixed time steps for switching regions
omin, omax -5, 5 Range for random offsets
λmin, λmax -0.6, 0.6 Range for velocity change rates

x1,min, x1,max 2900, 3100 Range for initial vehicle position
x2,min, x2,max 5, 25 Range for initial vehicle velocity

Table 4-5: MPC Controller Parameters

Parameter Value
Prediction Horizon (N) 5
Sampling Time (T ) 1 s
State Weight Matrix (Qx) diag(1, 0.1)
Control Weight Matrix (Qu) 1
Throttle Bounds (uMIN, uMAX) [-1, 1]
Velocity Limits (vMIN, vMAX) [3.94, 45.84]
Acceleration Limits (aMIN, aMAX) [-2, 2.5]

4-1-2 Training Results

Several key metrics are tracked over 50,000 training episodes, as depicted in Figure 4-1,
including total cost Jtotal (3-3), tracking cost Jtracking (3-4), fuel consumption cost Jfuel (3-5),
penalty cost Jpenalty (3-34), and the counts of gear limit violations and MPC infeasibilities.

Qizhang Dong Master of Science Thesis



4-1 Training Setup & Results 35

Table 4-6: RL Training Parameters

Parameter Value
Learning Rate 0.001
Discount Factor (γ) 0.9
Batch Size 128
Number of Episodes 50000
Steps per Episode (NE) 60
Starting Exploration Rate (ϵstart) 0.999
Ending Exploration Rate (ϵend) 0
Exploration Decay Factor (ϵdecay) 70000
Replay Buffer Size 100000
Target Network Soft Update Rate (τ) 0.001
Threshold of Huber Loss Function (δ) 1
Optimizer Adam
Tracking Cost Weight (l1) 0.001
Fuel Cost Weight (l2) 1
Penalty Cost Weight (l3) 1
Weights for Performance Cost (w1, w2) 0.0025, 1
Penalties for Gear Infeasibilities (ϕ1, ϕ2) 100, 50

Figure 4-1a displays the total cost during training. In the early stages, the average cost is
high and exhibits significant variability due to the agent’s exploration of different actions to
discover an effective policy. As training progresses, the average cost decreases and begins to
stabilize around 40,000 episodes, with fluctuations diminishing in magnitude. These residual
fluctuations are expected and are primarily caused by variations in initial conditions at the
start of each episode. Although some high-cost spikes persist after 40,000 episodes, their
frequency is notably reduced, indicating that the agent is effectively generalizing to most
scenarios while occasionally encountering challenging conditions that result in higher costs.

A similar trend is observed in Figure 4-1d, which illustrates the penalty cost. Since the penalty
cost constitutes a major portion of the total cost, reductions in the penalty cost closely align
with improvements in the total cost metric. Figures 4-1e and 4-1f show the counts of gear
limit violations and MPC infeasibilities, respectively. Both metrics decrease alongside the
penalty cost. Their running averages approach zero, indicating that the agent is increasingly
learning to select feasible gear shifts for the given prediction horizon.

Figure 4-1b illustrates the tracking cost during training. The running average remains consis-
tently low, with occasional outliers. Unlike the penalty cost, the tracking cost does not show
a significant declining trend. The gear selections have a limited direct influence on vehicle
tracking performance because the MPC controller exhibits a degree of robustness to adjust
vehicle dynamics effectively with feasible gear sequences. Even with infeasible gear sequences,
the backup solutions enables the MPC controller to minimize the tracking cost as much as
possible.

Finally, Figure 4-1c depicts the fuel cost during training. The plot shows a slight declining
trend with fluctuations of consistent magnitudes. These fluctuations arise from the varying ve-
locity profiles of different reference trajectories, which influences fuel consumption. Although

Master of Science Thesis Qizhang Dong



36 Training and Evaluation Results

better gear selections can improve fuel efficiency, their impact in our approach is limited due
to the characteristics of the selected fuel model. In this model, fuel consumption is primarily
governed by vehicle velocity, which is largely controlled by the throttle input rather than gear
selections.

(a) Total Cost (b) Tracking Cost

(c) Fuel Cost (d) Penalty Cost

(e) Gear Limit Violations (f) MPC Infeasibility

Figure 4-1: Training results. In each plot, the blue line represents the metric’s value for each
individual episode, while the red line shows its 100-episode running average.

Qizhang Dong Master of Science Thesis



4-2 Evaluation Results 37

4-2 Evaluation Results

To evaluate our approach, we first conducted two individual simulations with different refer-
ence trajectories to demonstrate the RL’s capability in managing gear selections across varying
scenarios. Following this, we performed a larger test consisting of 100 episodes to analyze the
performance metrics comprehensively. For each episode, the length of the simulation is 60
time steps.

4-2-1 Individual Tests

(a) Test 1: Tracking Results (b) Test 1: Control Inputs

Figure 4-2: Test 1 Results

(a) Test 2: Tracking Results (b) Test 2: Control Inputs

Figure 4-3: Test 2 Results

The results for the tests are presented in Figures 4-2 and 4-3, with the left panels illustrating
the tracking results. The upper subplots represent the position, and the lower subplots
represent the velocity. The dotted blue line indicates the reference trajectory, while the
solid red line shows the vehicle’s actual trajectory. In both tests, the vehicle begins with
initial states that deviate from the reference trajectory. However, it quickly converges to the
reference within a few steps, demonstrating the effectiveness of the MPC-RL controller in
achieving accurate tracking.

Master of Science Thesis Qizhang Dong



38 Training and Evaluation Results

The right panels illustrate the control inputs during the tests. The red line represents the
gear selected by the RL controller, while the blue line shows the throttle input provided by
the MPC controller. Analyzing the control inputs alongside the tracking results reveals that
the RL agent effectively selects appropriate gears to align with the vehicle’s velocity, ensuring
smooth transitions and maintaining tracking accuracy. In Test 1, where the reference velocity
ranges between 5-15 m/s, the RL controller predominantly operates in lower gears (1 to 3).
Conversely, in Test 2, where the reference velocity starts around 20 m/s and increases to
approximately 25 m/s, the RL controller selects higher gears (4 and 5), showcasing its ability
to return appropriate gear choices for different velocity profiles effectively.
Table 4-7 summarizes the performance metrics for both tests. Notably, there are no gear
limit violations or MPC infeasibilities, indicating that the RL controller respects the defined
constraints and provides feasible and optimal gear selections. Test 1 achieves a significantly
lower tracking cost compared to Test 2, primarily due to the initial states being closer to
the reference trajectory. Furthermore, the higher velocities in Test 2 lead to increased fuel
consumption, as expected.
The runtime of both tests validates the real-time feasibility of the proposed MPC-RL con-
troller. Test 1 achieves a total runtime of 0.38 seconds, while Test 2 takes 0.47 seconds. For
Test 1, the average runtime per time step is approximately 0.0063 seconds, corresponding to
a control frequency of around 159 Hz. This high control frequency is more than sufficient for
high-precision autonomous vehicle control, ensuring responsive and stable operation even in
dynamic environments.

Table 4-7: Performance metrics for Test 1 and Test 2

Metric Test 1 Test 2
Runtime (s) 0.38 0.47

Performance Cost 41.57 153.35
Tracking Cost 1121.75 34269.11

Fuel Cost 38.77 67.68
Gear Limit Violations 0 0

MPC Infeasibilities 0 0

4-2-2 Large Test

We conducted a large-scale test consisting of 100 episodes, and the average performance
metrics are summarized in Table 4-8.

Table 4-8: Average Performance Metrics Over 100 Test Episodes

Metric Value
Average Runtime 0.35
Average Performance 99.62
Average Tracking Cost 19764.77
Average Fuel Cost 50.20

We analyzed the occurrence of gear limit violations and MPC infeasibilities across 100 test
episodes, recording the number of such events per episode. A single gear limit violation was

Qizhang Dong Master of Science Thesis



4-3 Comparative Analysis 39

observed in episode 85, and one MPC infeasibility occurred in episode 23. These isolated
events demonstrate that the RL controller effectively learned and applied a policy that gen-
eralizes well to diverse scenarios, providing feasible gear selections for the MPC controller
in nearly all episodes. Furthermore, in the rare episodes where infeasibilities occurred, the
backup solution successfully addressed the issues, ensuring the solvability of the MPC problem
and maintaining the continuity of the control process.

4-3 Comparative Analysis

In this section, we compare our approach with the standard MPC and PID methods by
performing the same individual and large-scale tests.

4-3-1 Standard MPC Approach

The standard MPC approach optimizes all objectives simultaneously by solving for all decision
variables within the model. For this comparison, we utilized the PWA model for the gear
model (2-1-1). As demonstrated in [9], it shows that while the PWA model’s performance is
only slightly worse compared to the discrete input model, it significantly reduces computation
time.

Optimization Problem

The standard MPC optimization objective consists of three components: tracking cost, fuel
cost, and control cost. The decision variables include both the vehicle’s throttle input u and
gear selection j, with the gear selection implicitly incorporated into the optimization problem
through the vehicle model, which includes the gear model. The MPC optimization problem
is formulated as:

J(x) = min
u,j,x

N+1∑
k=0
∥x(k)− r(k)∥Qx︸ ︷︷ ︸
Tracking Cost

+ Qf

N∑
k=0

( 3∑
m=0

bmxm
2 (k) + x2(k + 1)− x2(k)

T

2∑
l=0

clx
l
2(k)

)
︸ ︷︷ ︸

Fuel Cost

+
N∑

k=0
∥u(k)∥Qu︸ ︷︷ ︸

Control Cost

s.t. (3-1) - (3-2)
vehicle model (2-7)
x(0) = x

(4-1)

The parameters for standard MPC approach are the same as Table 4-5, with an additional
fuel cost weight Qf due to the inclusion of fuel consumption cost into the MPC problem. The
coefficients of the polynomial in fuel consumption are listed in Table 4-9.

Master of Science Thesis Qizhang Dong



40 Training and Evaluation Results

Table 4-9: Coefficients for Fuel Consumption

Parameter Value
b0, b1, b2, b3 0.1569, 2.450 · 10−2, −7.415 · 10−4, 5.975 · 10−5

c0, c1, c2 0.0724, 9.681 · 10−2, 1.075 · 10−3

Individual Tests

(a) Test 1 Tracking Results (b) Test 1: Control Inputs

Figure 4-4: Standard MPC Test 1 Results (N = 2)

(a) Test 1: Tracking Results (b) Test 1: Control Inputs

Figure 4-5: Standard MPC Test 1 Results (N = 5)

We conducted Test 1 using the standard MPC approach with prediction horizons N = 2 and
N = 5, setting the fuel cost weight Qf = 1. The tracking results and control inputs are shown
in Figures 4-4 and 4-5.

In both tests with different prediction horizons, jagged shapes are observed in the throttle
input u and velocity x2. This behavior arises from the MPC’s attempt to balance tracking
accuracy and fuel cost, as the fuel model assumes no fuel is consumed when u ≤ 0. Figure 4-5,
with a prediction horizon of 5, shows fewer jagged shapes because the extended prediction
horizon enables the MPC to anticipate future states more effectively. This allows for smoother

Qizhang Dong Master of Science Thesis



4-3 Comparative Analysis 41

transitions of the control inputs over time, reducing abrupt changes in both throttle input
and velocity.
As shown in Table 4-10, for N = 2, the performance cost is higher than that of our approach,
with a runtime of 165.33 seconds to complete the test, which is significantly longer than the
runtime of our method. For N = 5, the performance cost is slightly lower than our approach,
but the runtime increases dramatically, requiring approximately 27.81 seconds to solve a single
time step. This highlights the computational inefficiency of the standard MPC approach.

Table 4-10: Standard MPC Performance Metrics for Test 1 with Different Prediction Horizons
(N = 2 and N = 5)

Metric N = 2 N = 5
Runtime (s) 165.33 1668.88
Performance 43.79 40.99

Tracking Cost 1107.95 1120.115
Fuel Cost 41.02 38.19

Large Test

Large-scale test was conducted similar to those described in Section 4-2-2. To achieve the
lowest average performance cost, the standard MPC was optimized by exploring various
combinations of prediction horizon (N) and fuel cost weight (Qf ), with N ranging from 2 to
5 and Qf ranging from 1 to 5. Each combination was evaluated over 100 episodes.

Table 4-11: Standard MPC Large Tests (N = 2)

Qf 1 2 3
Average Runtime 356.29 373.62 382.03

Average Performance 101.85 101.43 101.31
Average Tracking Cost 18867.31 18945.19 19093.79

Average Fuel Cost 54.68 54.07 53.57

Table 4-12: Standard MPC Large Tests (N = 3)

Qf 1 2 3
Average Runtime 744.03 775.04 783.17

Average Performance 98.53 98.36 98.22
Average Tracking Cost 18353.05 18354.14 18364.11

Average Fuel Cost 52.65 52.48 52.31

Tables 4-11, 4-12, and 4-13 present the results for different N and Qf combinations. However,
due to the increasing complexity of the optimization problem with larger N and Qf values,
the MPC solver failed to converge for certain configurations. Consequently, results are only
available for a subset of the tested combinations. Table 4-14 lists the specific configurations
that led to MPC solver failures. This includes the parameter combinations (N and Qf ), the
episode and time step number at which the failure occurred, and the total runtime of the test.

Master of Science Thesis Qizhang Dong



42 Training and Evaluation Results

Table 4-13: Standard MPC Large Tests (N = 4)

Qf 1
Average Runtime 1926.66

Average Performance 97.28
Average Tracking Cost 18238.11

Average Fuel Cost 51.68

From the results in Tables 4-11, 4-12, and 4-13, it is evident that increasing the prediction
horizon N results in a noticeable reduction in the performance cost. However, this improve-
ment comes at the cost of significantly higher average runtimes per episode. Furthermore,
increasing the fuel cost weight Qf slightly reduces the performance cost across all prediction
horizons but also leads to a minor increase in runtime, likely due to the added complexity of
the optimization problem.

Table 4-14: Records of Standard MPC Failures

Prediction Horizon N 2 3 4 5
Qf Number 4 4 2 1

Episode Number 8 81 53 84
Time Step Number 2 2 27 37
Test Total Runtime 2843.45 63163.45 106240.21 315835.19

4-3-2 PID Approach

The PID approach uses proportional, integral, and derivative components to compute control
outputs based on the current error, the accumulated error over time, and the rate of change
of error, respectively. Its simplicity and ability to enable fast control make it an effective
baseline for comparison.

Controller Design

The control strategy employs two separate PID controllers to regulate the vehicle’s accelera-
tion based on position and velocity errors. The desired acceleration is computed by combining
the outputs of these controllers.

• Position PID Controller: The position error is calculated as the difference between
the actual and desired positions. The controller output, ades,pos, is determined as:

ades,pos = kpos
p epos + kpos

i

∫
eposdt + kpos

d

depos
dt

, (4-2)

where epos is the position error, and kpos
p , kpos

i , and kpos
d are the proportional, integral,

and derivative gains for position control.

Qizhang Dong Master of Science Thesis



4-3 Comparative Analysis 43

• Velocity PID Controller: The velocity error is calculated as the difference between
the desired velocity and the actual velocity. The controller output, ades,vel, is given by:

ades,vel = kvel
p evel + kvel

i

∫
eveldt + kvel

d

devel
dt

, (4-3)

where evel is the velocity error, and kvel
p , kvel

i , and kvel
d are the proportional, integral,

and derivative gains for velocity control.

The outputs of the two controllers are combined to compute the desired acceleration, ades,
using a weighted sum:

ades = clip (wpos · ades,pos + wvel · ades,vel, aMIN, aMAX) , (4-4)

where wpos and wvel are the weights assigned to the position and velocity controller outputs,
respectively.

The clip function restricts the value of the computed desired acceleration ades to fall within a
specific range, bounded by aMIN and aMAX. It ensures that the resulting value remains within
these predefined limits, regardless of the weighted sum of the acceleration components.

Mathematically, the clip function operates as:

clip(x, xmin, xmax) =


xmin, if x < xmin

x, if xmin ≤ x ≤ xmax

xmax, if x > xmax

(4-5)

Finally, the gear choice is decided by the PWA gear model (Figure 2-2b), and the desired
throttle input is determined using vehicle dynamics, which is calculated as:

u = clip
( 1

b(j, x2)(mades + cx2
2 + µmg), uMIN, uMAX

)
(4-6)

The specific values of the parameters used in the following tests are listed in Table 4-15.
Notably, during the tuning process, certain parameter values resulted in violations of the
vehicle velocity limit.

Table 4-15: PID Controller Parameters

Parameter Value
kpos

p 0.05
kpos

i 0.01
kpos

d 0.0
kvel

p 0.7
kvel

i 0.1
kvel

d 0.0
wpos 0.55
wvel 0.45

Master of Science Thesis Qizhang Dong



44 Training and Evaluation Results

Individual Test

We conducted Test 1 using the PID control approach, with the results presented in Figure 4-6
and Table 4-16. We prioritize position tracking so it is assigned to a higher weight when cal-
culating tracking cost, so the PID approach exhibits less strict reference tracking for velocity
compared to both our proposed method and the standard MPC approach. This trade-off is
evident in the velocity profile, where the deviation from the reference is more noticeable. The
PID controller has a minimal runtime as it avoids solving optimization problems. Despite
this advantage, it shows the highest performance cost among all approaches, as reflected in
the metrics.

(a) Test 1: Tracking Results (b) Test 1: Control Inputs

Figure 4-6: PID Test 1 Results

Table 4-16: PID Performance metrics for Test 1

Runtime Performance Tracking Cost Fuel Cost
0.02 46.53 3745.52 37.16

Large Test

The large-scale test using the PID controller were conducted, with the results presented in Ta-
ble 4-17. It is worth noting that the PID approach demonstrates a favorable trade-off between
runtime and performance cost, with an average runtime of only 0.02 seconds per episode and
a slightly worse performance cost compared to standard MPC and our MPC-RL approach.
The average fuel cost is notably lower compared to the standard MPC and our MPC-RL ap-
proaches. This is likely attributed to the PID controller’s lower emphasis on velocity control,
resulting in reduced vehicle velocities and consequently lower fuel consumption.

Although the PID approach demonstrates reasonable performance, its limitations in flexibility
and handling constraints restrict its applicability. These limitations will be further discussed
in the next section.

Qizhang Dong Master of Science Thesis



4-3 Comparative Analysis 45

Table 4-17: PID Controller Large Tests

Metric Value
Average Runtime 0.02
Average Performance 100.46
Average Tracking Cost 21456.30
Average Fuel Cost 46.82

4-3-3 Comparison & Discussion

We compared the MPC-RL approach, the standard MPC approach with N = 4 and Qf = 1,
and the PID approach under large-scale testing. The results are summarized in Table 4-18.

The standard MPC approach achieves the lowest performance cost, showcasing its strong
optimization capability by explicitly incorporating all decision variables within a single op-
timization problem. However, this comes at the expense of an extremely high runtime, av-
eraging 1926.66 seconds per episode, making it impractical for real-time applications. The
excessive computational demand severely limits its feasibility in dynamic scenarios requiring
rapid decision making.

In contrast, the PID controller achieves the fastest runtime, averaging just 0.02 seconds per
episode. While this makes it computationally efficient, its performance is slightly worse than
both MPC-RL and standard MPC approaches. Additionally, the parameters may need to be
retuned to achieve optimal performance when encountering different reference trajectories,
highlighting the lack of flexibility in the PID approach compared to our method. Moreover,
the PID controller lacks the capability to handle constraints effectively, which can result in
unsafe or suboptimal behavior. While input constraints can be managed through clipping,
state constraints, such as the vehicle velocity limit, are not inherently guaranteed. In more
complex scenarios, such as vehicle platooning, hard constraints like maintaining a safe inter-
vehicle distance cannot be reliably enforced using the PID approach. This limitation in
flexibility and constraint management restricts its applicability.

The MPC-RL approach effectively overcomes the drawbacks of both PID and standard MPC
approaches. It provides a near-optimal solution while achieving a fast average runtime of 0.35
seconds per episode, making it highly suitable for real-time control applications. Unlike PID,
which lacks the ability to handle constraints, MPC-RL incorporates constraint-handling ca-
pabilities, ensuring safe and feasible control actions. At the same time, it avoids the excessive
computational burden of standard MPC by excluding gear selection and fuel optimization
from the optimization problem, offering a practical balance between performance and effi-
ciency for autonomous vehicles in dynamic environments.

Table 4-18: Comparison of MPC-RL, Standard MPC, and PID Approaches

Metric MPC-RL Standard MPC (N = 4, Qf = 1) PID
Average Runtime (s) 0.35 1926.66 0.02
Average Performance 99.62 97.28 100.46
Average Tracking Cost 19764.77 18238.11 21456.30
Average Fuel Cost 50.20 51.68 46.82

Master of Science Thesis Qizhang Dong



46 Training and Evaluation Results

4-4 Summary

This chapter presented the training and evaluation results for the proposed MPC-RL approach
and compared it with the standard MPC and PID controllers. During training, the MPC-
RL approach demonstrated consistent improvements, with total and penalty costs converging
over 50,000 episodes. Gear limit violations and MPC infeasibilities were effectively minimized,
demonstrating the reliability of the learned policy. The results highlighted the MPC-RL
controller’s ability to optimize performance cost while maintaining good generalizability across
varying scenarios.

In the evaluation phase, MPC-RL was tested under individual scenarios with different ref-
erence trajectories and in a large-scale test of 100 episodes. The individual tests revealed
that MPC-RL achieved near-optimal performance, accurately managing gear selections while
adhering to system constraints. Furthermore, the low runtime in these tests validated the
real-time feasibility of the MPC-RL approach. In the large-scale tests, MPC-RL maintained
strong performance, achieving an average runtime of 0.35 seconds per episode and an aver-
age performance score of 99.62. The MPC-RL policy generalized effectively across diverse
scenarios, with only one gear limit violation and one MPC infeasibility recorded across all
episodes.

The comparative analysis highlighted the strengths and limitations of each approach. The
standard MPC method achieved the lowest performance cost due to its strong optimization
capabilities. However, its prohibitively high runtime, such as 1926.66 seconds per episode
for N = 4, rendered it unsuitable for real-time applications. The PID controller offered the
fastest runtime of just 0.02 seconds per episode but exhibited the highest performance cost
and lacked robust constraint-handling capabilities. In contrast, MPC-RL effectively balanced
the strengths of both methods, achieving real-time feasibility, robust constraint handling, and
near-optimal performance. While its performance cost was slightly higher than that of the
standard MPC approach, the significant reduction in runtime makes MPC-RL a practical
choice for real-world implementations.

In conclusion, MPC-RL provides a practical solution for autonomous vehicle control. It
efficiently balances performance, constraint adherence, and computational demands, making
it highly suitable for dynamic, real-time environments.

Qizhang Dong Master of Science Thesis



Chapter 5

Discussion

In this chapter we present and discuss the key findings of our research, examine its limitations,
and provide recommendations for future work.

5-1 Key Findings of the Research

5-1-1 Integration of RL and MPC

In this research, we propose a combined RL and MPC framework to manage the high complex-
ity of the mixed-integer optimization problem in autonomous vehicle control. By employing
RL to handle the discrete components that make the optimization problem more complex,
we significantly reduce computational demands, while MPC ensures overall performance and
safety by governing the key control inputs and enforcing constraints. Similar to existing
works [3] [2] [4], this approach leverages the complementary strengths of learning-based and
model-based techniques: the learning-based controller (e.g., RL) addresses the more com-
plex components of the optimization problem, while the model-based controller (e.g., MPC)
ensures performance and enforces constraint satisfaction.

5-1-2 Addressing the Prediction Horizon Challenge

A key challenge in integrating RL and MPC lies in handling the prediction horizon. Typi-
cally, an RL controller produces a single action at each time step, but in our framework, it
is designed to generate a sequence of actions that align with the MPC controller’s prediction
horizon. To achieve this, we incorporate an RNN into the RL controller’s architecture. A
variation of DQN known as Deep Recurrent Q-Network (DRQN) is often employed for envi-
ronments modeled as partially observable Markov decision processes (POMDPs). DRQN uses
an RNN to encode sequential observations, allowing it to infer hidden states and make better
decisions in cases where the agent has limited access to the complete state of the environment.
These implementations often follow a many-to-one pattern, where a sequence of past states

Master of Science Thesis Qizhang Dong



48 Discussion

yields a single action. In contrast, our research adopts a many-to-many scheme, enabling
the RL controller to produce an entire action sequence at once. Moreover, unlike traditional
applications, in this study, the input sequence represents future predicted states rather than
historical data. This novel adaptation ensures a seamless integration between the RL and
MPC frameworks, offering an effective method for coordinating multi-step decision-making
in complex optimization scenarios.

5-1-3 Scalability to Vehicle Platooning

Vehicle platooning refers to the coordinated control of multiple autonomous vehicles, leverag-
ing precise measurements and vehicle-to-vehicle communication to maintain tight formations,
enhance efficiency, and improve traffic flow. Although our research focuses on a single ve-
hicle, the approach is readily scalable to platoon scenarios. This scalability arises from the
RL contoller’s ability to operate independently without requiring coordination at the RL
level, treating the preceding vehicle as a dynamic reference. In the meantime, the MPC con-
troller can be extended to a distributed MPC (DMPC) framework, leveraging inter-vehicle
communication for improved coordination. For example, the Alternating Direction Method
of Multipliers (ADMM) is an efficient DMPC algorithm that iteratively exchanges plans to
enhance performance. While standard MPC combined with ADMM may be computation-
ally intensive due to the problem’s complexity and iterative nature, our integrated MPC-RL
approach creates new opportunities for real-time DMPC implementation. When discrete
components are present in the MPC problem, the optimization becomes non-convex, and
ADMM provides no guarantees of convergence to the global optimum. However, if all dis-
crete components are fixed—such as through the use of a more capable RL agent to determine
these components—the remaining MPC formulation becomes convex. In this convex setting,
ADMM can reliably converge to the global optimum, enabling its effective application in
vehicle platooning scenarios.

5-2 Limitations

5-2-1 Limited Theoretical Guarantees

Although the RL controller can converge during training, it does not inherently ensure that
the learned policy always produces feasible gear selections, in contrast to a standard MPC
framework that is explicitly designed to respect constraints. While backup solutions have
been devised to handle gear infeasibility most of the time, there remains a risk that these
remedies might fail under certain conditions. In such cases, the vehicle’s ability to maintain
desirable or even acceptable performance can be compromised. This lack of formal feasibility
guarantees not only introduces operational uncertainties but also poses challenges for safety-
critical applications where reliability and adherence to constraints are crucial.

5-2-2 Limited Generalizability

The RL controller, during training, becomes closely tailored to the specific vehicle and gear
dynamics it encounters. Consequently, any significant change in the underlying dynam-

Qizhang Dong Master of Science Thesis



5-3 Recommendations 49

ics—such as variations in vehicle mass, powertrain characteristics, or environmental con-
ditions—necessitates retraining the RL controller. This retraining process is likely to be
resource-intensive, time-consuming, and may require extensive hyperparameter tuning to
achieve acceptable performance. As a result, the current approach lacks robust generaliz-
ability, limiting its adaptability to new scenarios or altered system configurations without
substantial additional effort.

5-2-3 Residual Discrete Components

While the RL controller effectively manages the critical discrete element—gear selection—from
the original optimization problem, residual discrete components may still pose risks. In sce-
narios demanding improved performance, extending the prediction horizon could be necessary,
which in turn increases the computational complexity. As the dimension of discrete variables
grows, the computation time can once again become infeasible for real-time implementation.

5-3 Recommendations

5-3-1 More Advanced RL Controller Design

While the current study employs a relatively straightforward RL controller, future work could
improve its design in several key areas. First, more sophisticated techniques in DQN such
as Double DQN, or other algorithms such as Proximal Policy Optimization (PPO) may yield
more stable learning and better sample efficiency. Second, the network architecture could
be enhanced beyond a basic recurrent structure, for instance by integrating LSTM or other
advanced recurrent units that capture longer-term dependencies and improve decision-making
under uncertainty. Finally, although current hyperparameter selection relies on empirical
trials, a more systematic approach such as grid search could further refine model performance.

5-3-2 Extend to Distributed MPC and Vehicle Platoons

While the proposed MPC-RL framework was developed and tested on a single-vehicle scenario,
the same principles can be applied to more complex setups involving multiple vehicles oper-
ating cooperatively. Future work could integrate DMPC scheme that leverages inter-vehicle
communication to coordinate actions and improve overall traffic flow, safety, and efficiency.
By combining RL controllers that handle discrete gear decisions with DMPC methods de-
signed to enforce constraints and optimize global objectives, it may be possible to achieve
real-time performance even in large-scale platoons.

5-3-3 Incorporating Advanced Simulations for Validation

The current framework was validated using a simplified simulation environment. To enhance
the applicability of the proposed methods, future work should leverage more advanced simu-
lation platforms, such as CARLA, or conduct real-world testing. Advanced simulations can
provide a more realistic representation of vehicle dynamics, complex traffic scenarios, and

Master of Science Thesis Qizhang Dong



50 Discussion

environmental factors. These improvements would help bridge the gap between simulation-
based results and real-world deployment, ensuring that the framework performs reliably under
practical conditions.

5-4 Summary

This chapter discussed the key findings, limitations, and recommendations of the proposed
MPC-RL framework. By integrating RL to handle discrete components and MPC to ensure
performance and constraint satisfaction, the framework effectively reduces computational
complexity and enables multi-step decision-making. The use of a recurrent RL approach
allows the generation of entire gear sequences, addressing the prediction horizon challenge in
the combination of MPC and RL.

However, limitations include a lack of theoretical guarantees for constraint satisfaction, limited
generalizability to new system dynamics, and challenges with residual discrete components
under extended prediction horizons. Recommendations for future work include adopting
advanced RL techniques like Double DQN or PPO, extending the framework to distributed
MPC for vehicle platooning, and validating it through advanced simulations or real-world
testing.

Qizhang Dong Master of Science Thesis



Chapter 6

Conclusion

This research presents a novel control framework that integrates RL with MPC to address the
computational challenges in vehicle control for autonomous driving. The proposed approach
decomposes the hybrid control problem by assigning discrete decision-making, specifically the
gear selection, to the RL controller, while MPC focuses on optimizing continuous throttle con-
trol. By doing so, the computational complexity of solving mixed-integer nonlinear optimiza-
tion problems is significantly reduced, enabling real-time implementation while maintaining
near-optimal performance.

The RL controller leverages a DQN integrated with a bidirectional RNN to process tempo-
ral sequences from MPC predictions and generate optimal gear selections. This innovative
architecture allows the RL controller to capture temporal dependencies and produce gear
decisions that align with the predicted states over the MPC horizon. Meanwhile, the MPC
controller ensures accurate trajectory tracking, and constraint satisfaction. Extensive training
and evaluation demonstrated the effectiveness of the proposed MPC-RL framework, achieving
real-time feasibility with an average runtime of 0.35 seconds per episode.

Compared to the standard MPC approach, the MPC-RL method achieves significantly better
computational efficiency. While the standard MPC delivers slightly better performance, its
prohibitive runtime limits its practical applicability for real-time systems. In contrast, the
MPC-RL framework balances computational efficiency and performance, making it suitable
for real-world dynamic environments. Additionally, when compared to the PID controller,
MPC-RL demonstrates stronger flexibility and constraints handling.

Although the proposed method achieves strong performance, certain limitations remain. The
RL controller does not provide formal guarantees of feasibility, and occasional retraining may
be required for significant changes in vehicle dynamics or environmental conditions. Future
work can address these challenges by exploring more advanced RL algorithms and simulation
scenarios. Moreover, the control framework can also be extended to vehicle platoons through
DMPC.

In conclusion, this research successfully demonstrates that the integration of RL and MPC
provides an effective and practical solution to the challenges of vehicle control in autonomous

Master of Science Thesis Qizhang Dong



52 Conclusion

driving. The MPC-RL framework achieves real-time feasibility, reliable constraint handling,
and near-optimal performance, offering a promising direction for future developments in hy-
brid control strategies for autonomous vehicles.

Qizhang Dong Master of Science Thesis



Bibliography

[1] Alberto Bemporad and Manfred Morari. Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427, 1999.

[2] Abhishek Cauligi, Ankush Chakrabarty, Stefano Di Cairano, and Rien Quirynen. Prism:
Recurrent neural networks and presolve methods for fast mixed-integer optimal control.
In Learning for Dynamics and Control Conference, pages 34–46. PMLR, 2022.

[3] Abhishek Cauligi, Preston Culbertson, Edward Schmerling, Mac Schwager, Bartolomeo
Stellato, and Marco Pavone. Coco: Online mixed-integer control via supervised learning.
IEEE Robotics and Automation Letters, 7(2):1447–1454, 2021.

[4] Caio Fabio Oliveira da Silva, Azita Dabiri, and Bart De Schutter. Integrating rein-
forcement learning and model predictive control with applications to microgrids. arXiv
preprint arXiv:2409.11267, 2024.

[5] Defeng He, Tianxiang Qiu, and Renshi Luo. Fuel efficiency-oriented platooning control
of connected nonlinear vehicles: a distributed economic MPC approach. Asian Journal
of Control, 22(4):1628–1638, 2020.

[6] Manjiang Hu, Chongkang Li, Yougang Bian, Hui Zhang, Zhaobo Qin, and Biao Xu. Fuel
economy-oriented vehicle platoon control using economic model predictive control. IEEE
Transactions on Intelligent Transportation Systems, 23(11):20836–20849, 2022.

[7] Guoqiang Li and Daniel Görges. Ecological adaptive cruise control for vehicles with step-
gear transmission based on reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 21(11):4895–4905, 2019.

[8] Meng Li, Zehong Cao, and Zhibin Li. A reinforcement learning-based vehicle platoon
control strategy for reducing energy consumption in traffic oscillations. IEEE Transac-
tions on Neural Networks and Learning Systems, 32(12):5309–5322, 2021.

[9] Samuel Mallick, Azita Dabiri, and Bart De Schutter. A comparison benchmark for
distributed hybrid MPC control methods: Distributed vehicle platooning. arXiv preprint
arXiv:2401.09878, 2024.

Master of Science Thesis Qizhang Dong



54 Bibliography

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness, Marc
Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518:529–33, 02 2015.

[12] Gerrit JL Naus, Rene PA Vugts, Jeroen Ploeg, Marinus JG van De Molengraft,
and Maarten Steinbuch. String-stable CACC design and experimental validation: A
frequency-domain approach. IEEE Transactions on Vehicular Technology, 59(9):4268–
4279, 2010.

[13] Jeroen Ploeg, Dipan P Shukla, Nathan Van De Wouw, and Henk Nijmeijer. Controller
synthesis for string stability of vehicle platoons. IEEE Transactions on Intelligent Trans-
portation Systems, 15(2):854–865, 2013.

[14] Elaine Shaw and J Karl Hedrick. String stability analysis for heterogeneous vehicle
strings. In 2007 American Control Conference, pages 3118–3125. IEEE, 2007.

[15] Valerio Turri, Bart Besselink, and Karl H Johansson. Gear management for fuel-efficient
heavy-duty vehicle platooning. In 2016 IEEE 55th Conference on Decision and Control
(CDC), pages 1687–1694. IEEE, 2016.

[16] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292,
1992.

[17] Yujia Wu, Shengbo Eben Li, Yang Zheng, and J Karl Hedrick. Distributed sliding mode
control for multi-vehicle systems with positive definite topologies. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 5213–5219. IEEE, 2016.

[18] Yanli Yin, Xuejiang Huang, Sen Zhan, Xinxin Zhang, and Fuzhen Wang. Hierarchical
model predictive control strategy based on Q-learning algorithm for hybrid electric vehicle
platoon. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, 238(2-3):385–402, 2024.

[19] Yang Zheng, Shengbo Eben Li, Keqiang Li, Francesco Borrelli, and J Karl Hedrick. Dis-
tributed model predictive control for heterogeneous vehicle platoons under unidirectional
topologies. IEEE Transactions on Control Systems Technology, 25(3):899–910, 2016.

[20] Yang Zheng, Shengbo Eben Li, Keqiang Li, and Wei Ren. Platooning of connected vehi-
cles with undirected topologies: Robustness analysis and distributed H-infinity controller
synthesis. IEEE Transactions on Intelligent Transportation Systems, 19(5):1353–1364,
2017.

Qizhang Dong Master of Science Thesis



Integrating MPC and RL for Efficient Control of
Autonomous Vehicles

1st Qizhang Dong
Faculty of Mechanical Engineering

Delft University of Technology
Delft, the Netherlands

Abstract—Autonomous vehicles have great potential to improve
traffic efficiency and reduce fuel consumption. Model Predictive
Control (MPC) is widely used for its ability to ensure constraint
satisfaction and optimal control. However, incorporating discrete
dynamics like gear changes into MPC increases the computa-
tional complexity of the optimization problem, which makes a
real-time implementation of the control algorithm challenging.
A possible approach to address this issue is to leverage rein-
forcement learning (RL) to manage discrete decisions such as
gear selection, simplifying the MPC optimization problem. This
research integrates RL and MPC for vehicle control, where RL
handles gear transitions, and MPC focuses on overall vehicle
dynamics, achieving computational efficiency and near-optimal
performance comparable to conventional MPC approaches.

Index Terms—Autonomous vehicles, model predictive control,
reinforcement learning, hybrid control systems, gear selection
optimization

I. INTRODUCTION

Autonomous driving technology has attracted significant
attention for its potential to improve traffic flow, reduce
congestion, and optimize energy consumption. As the de-
mand for safer and more sustainable transportation grows,
autonomous driving solutions are being rigorously researched
and developed. Core aspects of autonomous driving, such as
vehicle control, inter-vehicle spacing, and energy optimization,
have been extensively studied. Traditional control methods,
including linear control [1] [2], sliding mode control [3] and
H∞ control [4] [5] are commonly used to ensure stable vehicle
performance under varying conditions.

Early research in this field often relied on simplified vehicle
models focusing solely on continuous dynamics, neglecting
discrete components like gear shifts. In these approaches,
gear control was typically handled by low-level rule-based
systems, limiting optimization of driving performance and fuel
efficiency. While these models facilitated theoretical analysis,
they failed to capture the complexities of real-world vehicle
dynamics involving both continuous and discrete actions.
Recent studies have shown that explicitly optimizing gear
selection can enhance driving performance and fuel efficiency,
enabling more realistic and effective control strategies [6] [7].

Model Predictive Control (MPC) is an effective approach for
managing both continuous and discrete variables, optimizing
control actions in real time while addressing multiple objec-
tives and system constraints. This makes it particularly suitable

for complex tasks like car-following and trajectory planning,
offering stable and reliable performance in dynamic condi-
tions [6] [8] [9] [10]. However, incorporating gear dynamics
introduces discrete variables, resulting in a hybrid MPC for-
mulation. When combined with the nonlinear and non-convex
fuel consumption model, this creates a mixed-integer nonlinear
optimization problem. The high computational complexity of
such problems makes real-time performance a significant chal-
lenge in dynamic driving environments where rapid responses
are critical for safety and control.

Reinforcement learning (RL) offers a promising solution to
address this challenge. By learning policies through interaction
with the environment, RL excels at real-time decision-making
tasks [11] [12]. In this work, RL is used to determine the
vehicle’s gear choice, replacing most discrete components in
the hybrid MPC optimization problem. Additionally, incorpo-
rating the fuel consumption cost into the RL framework allows
to remove the fuel consumption model from the MPC, further
reducing complexity and enabling real-time implementation.

The remainder of this paper is organized as follows: Section
II introduces the vehicle model and the problem formulation.
Section III details the proposed control methodology. Section
IV introduces the training scheme of RL controller. Section
V presents the training and evaluation results. Section VI
compares our approach against other methods. Finally, Section
VII concludes the study. Appendix A provides the numerical
values of the parameters used for the controller design and
simulation.

II. MODEL AND PROBLEM FORMULATION

This section presents an overview of the vehicle model and
outlines the problem formulation.

A. Vehicle Model

In this study, we employ a point mass vehicle model that
explicitly accounts for gear dynamics. The dynamics of a
forward-moving vehicle are represented by:

mp̈(t) + cṗ(t)2 + µmg = b(j, ṗ)u(t), (1)

where p(t) represents the position at time t, c is the aero-
dynamic drag coefficient, µ is the friction coefficient, j ∈
1, . . . , 6 indicates the selected gear, and b(j, ṗ)u(t) represents
the traction force, which is proportional to the normalized



throttle input u(t). The parameters used are listed in Table
VIII.

Defining the state vector as position and velocity, i.e., x =[
p ṗ

]⊤
, the state-space representation can be expressed as:

ẋ = A(x) +B(j, x)u, (2)

where:

A(x) =

[
x2

−(c/m)x2
2 − µg

]
, B(j, x) =

[
0

b(j,x2)
m

]
(3)

The system dynamics is nonlinear due to the quadratic term
in the friction component of A(x), and it is hybrid owing to
the discrete gear selection j, which affects B(j, x2).

A common approach to managing the nonlinear charac-
teristics of the model is to use a piecewise affine (PWA)
approximation. This method divides the nonlinear state space
into multiple regions, each represented by an affine segment,
simplifying the system’s representation. For the quadratic
friction term in A(x), we approximate the nonlinear friction
using two PWA regions as shown in Figure 1.

0 α = ṡMAX/2 ṡMAX

3cṡ2MAX
16

cṡ2MAX

f(x)

f̂(x)

Fig. 1: PWA friction approximation. The solid line represents
the true dynamics and the dashed line represents the piecewise
approximation.

For the hybrid gear dynamics B(j, x), we consider two
approaches to approximation. In the first approach, gears are
modeled as a function of vehicle velocity, resulting in a PWA
approximation for B(j, x). In the second approach, the gear
choice is treated as a discrete decision variable, formulated us-
ing a mixed-logical-dynamical (MLD) representation. Figure
2a illustrates the complete gear model, while Table IX lists the
maximum traction force for each gear along with the velocity
ranges within which the maximum traction remains constant.

1) PWA gear approximation: To approximate the gear
dynamics with a PWA approach, the velocity range is divided
into segments, with each segment assigned a specific gear.
This creates a one-to-one mapping between velocity segments
and gear selection. The PWA gear approximation eliminates
the discrete decision variable j, making it a function of the
state x. Figure 2b dipicts this gear approximation.

2) Discrete input gear approximation: The second gear
model treats gear selection as a discrete input. Similar to the
PWA approach, the traction curves are restricted to regions
of constant traction for each gear, and each gear is limited
to operate only within its defined region. However, unlike the
PWA model, the mapping between velocity segments and gear
is not one-to-one. Figure 2c depicts this gear approximation.

A detailed representation of the approximations is explained
in [6].

B. Problem Formulation

This work addresses the control of a single vehicle tasked
with following a given reference trajectory, denoted as r. The
objective is to minimize a cost that considers tracking accuracy
and fuel consumption while satisfying constraints related to
vehicle dynamics and safety requirements. The vehicle’s states,
denoted as x, include position x1 and velocity x2. The control
inputs comprise the throttle input u and gear choice j.

To ensure safety and comfort, the states and inputs of the
vehicle are subject to the following constraints. The velocity
and acceleration are constrained as:

vMIN ≤ x2(k) ≤ vMAX,

aMINT ≤ x2(k + 1)− x2(k) ≤ aMAXT,
(4)

where vMIN, vMAX, aMIN, and aMAX are the bounds on velocity
and acceleration. The normalized throttle input is constrained
as:

uMIN ≤ u(k) ≤ uMAX. (5)

The performance cost, Jtotal, is defined as a weighted sum
of tracking accuracy and fuel consumption:

Jtotal = w1 · Jtracking + w2 · Jfuel, (6)

where Jtracking quantifies tracking accuracy as:

Jtracking = ∥x(k)− r(k)∥Qx
, (7)

and Jfuel represents fuel consumption, calculated using a
polynomial fuel consumption model:

Jfuel = Qf

(
3∑

m=0

bmxm
2 (k) +

x2(k + 1)− x2(k)

T

2∑
l=0

clx
l
2(k)

)
,

(8)
where bm and cl are coefficients derived from experimental
data. Note that during braking (u < 0), it is assumed that no
fuel is consumed due to energy recycling.

While standard MPC can solve this optimization problem
using mixed-integer nonlinear optimization, the inclusion of
integer variables and the fuel consumption model makes
the problem non-convex and hybrid, significantly increasing
computational complexity. This study aims to simplify the
hybrid MPC problem and enable real-time implementation
while maintaining performance comparable to the original
formulation.



0 20 40 60
0

2,000

4,000

I

II
III

IV
V VI

velocity m/s

Tr
ac

tio
n

fo
rc

e
(N

)

(a) Full

0 20 40 60

I

II

III
IV

V
VI

velocity m/s

(b) PWA

0 20 40 60

I

II

III
IV

V
VI

velocity m/s

(c) Discrete input

Fig. 2: Gear Approximations

III. PROPOSED MPC-RL APPROACH

To overcome the challenges outlined in section II-B, we
employ an RL-based approach to handle most of the discrete
components, such as gear selection, and to directly manage the
fuel consumption cost. This allows the MPC to focus solely
on computing the continuous throttle input and optimizing the
tracking cost, significantly simplifying the optimization prob-
lem. As a result, the computational time can be significantly
reduced, enabling real-time implementation.

Illustrated as Figure 3, in this study we propose a composite
control framework where an RL agent determines the gear
of the vehicle, thereby simplifying the original mixed-integer
optimization problem. Although some discrete variables re-
main, the reduction achieved enables a much faster and more
efficient MPC solution for the remaining control problem.

Fig. 3: Controller Design. The left panel depicts the standard
MPC approach, where the controller determines both the
discrete gear selection and continuous throttle input. The right
panel illustrates the proposed MPC-RL approach, where MPC
determines the throttle input and RL handles the gear selection.

The integration of RL for discrete decision-making (gear
selection) and MPC for continuous control (throttle manage-
ment) leverages the strengths of each approach: RL brings fast
inference and efficiency to gear selection, while MPC ensures
optimal and safe control actions. The subsequent sections will
detail the design of the gear controller, the vehicle throttle
controller, and the structure of the overall control loop.

A. Vehicle Throttle MPC Controller Design

In the MPC controller of our approach, the discrete input
gear approximation, as described in Section II-A2, is utilized
to represent the gear model. The states and input constraints,
as outlined in Section II-B, define the operational limits of
the system. The MPC optimization objective includes both
tracking and control costs, evaluated using norm penalties. The
optimization problem is formulated as follows:

J(x, j) =min
u,x

N+1∑
k=0

∥x(k)− r(k)∥Qx︸ ︷︷ ︸
Tracking Cost

+

N∑
k=0

∥u(k)∥Qu︸ ︷︷ ︸
Control Cost

s.t. (4) - (5)
vehicle model
x(0) = x

(9)

where the decision variables u and x represent the control and
state trajectories over the prediction horizon. Notably, the gear
selection sequence j is not included as a decision variable in
the optimization problem but is instead treated as an input. It
is determined by the RL controller and fixed for the vehicle
model during the optimization process.

At each time step, the MPC generates a control sequence
u = (u(0), · · · , u(N − 1)) by solving the optimization
problem defined over the prediction horizon N , adhering to
the given constraints and vehicle model. The initial element
of this control sequence, u(0), is then applied to the system,
and the optimization process is repeated at the next time step
in a receding horizon manner.

B. Vehicle Gear RL Controller Design

1) State and Action Space:
a) State Space: At each time step, the MPC controller

provides the RL controller with predicted states and control
inputs over a horizon of length N , including position x1,



velocity x2, throttle input u, and gear choice j. To enhance
decision-making, the absolute position is replaced with the
tracking error:

e(k) = x1(k)− r(k), (10)

while the velocity x2 is normalized to:

vnorm(k) =
x2(k)− vMIN

vMAX − vMIN
. (11)

The pre-processed state matrix utilized by the RL controller
is:

s′(k) =


e(k) . . . e(k +N − 1)

vnorm(k) . . . vnorm(k +N − 1)
u(k) . . . u(k +N − 1)
j(k) . . . j(k +N − 1)

 . (12)

b) Action Space: The action space consists of three
possible gear operations: up-shift, down-shift, and no shift:

A = {upshift, downshift, no shift}. (13)

This formulation reduces the size of the action space, im-
proving learning efficiency and ensuring smoother transitions
between gears. By focusing on relative gear changes, the RL
controller handles sequential dependencies more effectively.

2) Reward Function: The reward function is designed to
prioritize feasibility of the gear sequence selected by the RL
controller, ensuring compatibility with the MPC controller.
Feasibility is critical for maintaining MPC solvability and
system stability. Two scenarios can lead to infeasibility:

1) Exceeding Gear Limits: The RL controller selects a
gear shift beyond the allowable range (e.g., upshift at
maximum gear or downshift at minimum gear).

2) Velocity-Gear Mismatch: The selected gear choice
results in a velocity incompatible with the chosen gear,
making the MPC optimization unsolvable (Figure 2c).

To address these issues, infeasible gear choices are penal-
ized heavily in the reward function. In addition to feasibility,
the reward function incorporates fuel consumption cost and
tracking error. Fuel consumption is impacted by gear selection,
while tracking error plays a secondary role, given its stronger
dependence on the MPC.

The weighting strategy ensures that feasibility is the highest
priority, followed by fuel optimization and tracking perfor-
mance. This balance enables the RL controller to support
the MPC effectively, achieving stable training and desirable
system performance.

3) RL Algorithm and Network Architecture: To handle the
discrete nature of the action space, DQN is selected for
its efficiency and stability in discrete decision-making. DQN
learns a Q-value function Q(s, a) that estimates the expected
cumulative reward for each action given a state, making it
ideal for the gear shift problem with a fixed and finite action
set. Mechanisms like experience replay and target networks
enhance sample efficiency and stabilize training by reducing
correlations in updates and preventing large fluctuations in Q-
values.

Given that the input states s′ are sequential data over
a horizon N , capturing temporal dependencies is essential
for accurate gear selection. To achieve this, a bidirectional
recurrent neural network (BiRNN) is integrated into the DQN
architecture. BiRNN processes predicted states in both for-
ward and backward directions, enabling the RL controller
to consider both preceding and subsequent states within the
horizon simultaneously. This is particularly important for the
gear shift problem, where decisions depend on both immediate
and future system dynamics.

Fig. 4: Network Architecture

As illustrated in Figure 4, the network architecture consists
of:

• Input Layer: Takes a vector of dimension 4 (tracking
error, normalized velocity, throttle, and gear) as input.

• BiRNN Layer: Captures temporal dependencies in the
input sequence over horizon N . The red arrows in the
diagram indicate the recurrent connections within the Bi-
RNN layer, which propagate the hidden states through
time.

• Fully Connected Layer: Maps hidden states from the
BiRNN to discrete action outputs (up-shift, down-shift,
no shift) for each time step.

The BiRNN operates in a many-to-many configuration,
generating a sequence of gear shift decisions j corresponding
to the MPC-predicted states. By capturing temporal patterns in
both directions, the architecture ensures informed and efficient
gear selection, optimizing for feasibility, tracking accuracy,
and fuel efficiency. This combination of DQN with BiRNN
provides a efficient framework for sequential decision-making
in hybrid control systems.

C. Control Loop

Figure 5 illustrates the control loop of the proposed method.
At each time step k, the predicted sequences s(k − 1) from
the MPC controller at the previous time step is preprocessed
by the preprocessing block to generate the input s′(k− 1) for
the RL controller. The RL controller takes s′(k − 1) as input
and outputs a sequence of gear shift decisions ∆j(k).

The postprocessing block converts ∆j(k) into a specific
gear sequence j(k), which serves as an input to the MPC
controller. At the same time, the MPC controller receives the
current observation x(k) from the environment along with



the reference input. Using j(k) and x(k), the MPC controller
computes the optimal throttle input u(k).

Finally, the first elements of the predicted control sequences,
u(k) and j(k), are applied to the plant. The updated prediction
sequences s(k) from the MPC controller is then used as
input for the next time step, ensuring the closed-loop control
operation.

Fig. 5: Control loop at time step k, illustrating the interaction
between the RL and MPC controllers for gear shift decision-
making and throttle optimization.

IV. RL TRAINING SCHEME

The training is performed episode by episode, where each
episode contains NE time steps. The detailed training loop
within an episode will be introduced in the following.

A. Step 0: Initialization

At the start of each training episode, the reference trajectory
and vehicle states are initialized. Since the RL controller relies
on predicted states from the MPC, which are unavailable at
the initial time step, the initial gear is determined using a PWA
approximation based on the initial velocity. This gear, denoted
as j(0), is uniformly applied across the prediction horizon:

j(0) =
[
j(0) j(0) · · · j(0)

]
1×N

. (14)

The gear sequence is used by the MPC to solve the
optimization problem J(x, j), producing the predicted state
sequence x̂(0) and control sequence û(0). The environment
then steps forward using the first control input, yielding the
new observation x(1).

This initialization ensures that the RL controller has the
necessary predicted sequences to interact effectively with the
MPC from the beginning, facilitating a smooth start to the
training process.

B. Step 1: Gear Selection

With the predicted states and control sequence at time step
k−1, the RL controller determines the gear sequence for time
step k. The network outputs Q-values for the three possible
gear shifts, and the gear shift is selected based on the index
with the highest Q-value. The selected gear shift as ∆j is
calculated as:

∆j(k) = arg max
i∈{0,1,2}

Q(s
′
(k − 1), i)− 1 (15)

where Qi(s
′
(k − 1)) represents the Q-value corresponding to

gear shift option i, as predicted by the Q-network. The selected

gear shift ∆j is determined by finding the index i that yields
the maximum Q-value and then subtracting 1 to map it to
the appropriate gear shift value. The gear shift is defined as
follows:

∆j =

 −1, downshift
0, no shift
1, upshift

(16)

This formulation ensures that the selected gear shift ac-
curately reflects the intended action: downshift, no shift, or
upshift, providing a clear and consistent mapping between the
Q-network outputs and the actual gear control decisions. The
gear shift sequence ∆ĵ at time step k is defined as:

∆ĵ(k) =
[
∆ĵ(k) ∆ĵ(k + 1) · · · ∆ĵ(k +N − 1)

]
(17)

Then, we calculated the explicit gear sequence ĵ(k) using
the gear shift sequence ∆ĵ(k). Within the prediction horizon,
each future gear is determined sequentially based on the
previous gear value and the corresponding gear shift at that
time step. The predicted gear sequence is then expressed as

ĵ(k) =
[
ĵ(k) ĵ(k + 1) · · · ĵ(k +N − 1)

]
(18)

The individual gears in the sequence are calculated iteratively
as follows:

ĵ(k+i) =

{
j(k − 1) + ∆ĵ(k + i), i = 0

ĵ(k + i− 1) + ∆ĵ(k + i), i = 1, · · · , N − 1
(19)

To balance exploration and exploitation during training,
an ϵ-greedy exploration mechanism is used. The exploration
probability ϵ starts high and gradually decays over time, allow-
ing the RL controller to explore random actions initially and
increasingly rely on the learned policy as training progresses.
At each time step, the controller explores by selecting a
random gear sequence with probability ϵ. Otherwise, it exploits
by choosing the gear sequence that maximizes the Q-value
with probability 1− ϵ.

C. Step 2: Feasibility Check & Solving MPC Problem

After generating the predicted gear sequence, its feasibility
is verified to ensure compatibility with vehicle dynamics. As
discussed in Section III-B2, infeasibility may occur due to
exceeding gear limits or a mismatch between velocity and gear.

The first step is to adjust any gear values that exceed the
allowable range (1 to 6) by clipping them to the nearest limit.
This adjusted sequence is then provided to the MPC solver.
If the solver identifies the sequence as infeasible, Backup
Solution 1 is applied: the gear sequence from the previous
time step is shifted forward, with the last gear value repeated
to complete the horizon. This provides a simple and efficient
fallback mechanism but may not always guarantee feasibility.

If Backup Solution 1 also fails, Backup Solution 2 is
used. In this approach, the gear corresponding to the current
velocity is determined using the PWA gear approximation and
applied uniformly across the entire prediction horizon. While
this conservative solution sacrifices optimality, it ensures that
a valid gear sequence is available for the MPC to proceed.



The adjusted gear sequence is then provided to the MPC
controller, which solves the optimization problem to generate
the predicted state sequence x̂(k) and control sequence û(k).
These predictions are subsequently used for the next steps in
the decision-making process.

D. Step 3: Interaction with Environment

After the MPC controller solves the optimization problem,
the first throttle input u(k) of the predicted control sequence
u(k), combined with the first gear choice j(k) of the gear
sequence j(k), is applied to control the vehicle in the environ-
ment.

The environment then transitions to a new state x(k + 1)
based on this control input, following the system dynamics
introduced in (2).

E. Step 4: Reward Calculation

As discussed in Section III-B2, the reward function is
composed of three components: the tracking cost, the fuel cost,
and the penalty cost associated with gear infeasibility. At time
step k, these components are calculated as follows:

1) Tracking Cost (Jtracking): The tracking cost quantifies the
deviation of the current state x(k) from the reference
trajectory r(k), which is calculated as (7).

2) Fuel Cost (Jfuel): The fuel cost is computed based on
the vehicle’s velocity x2(k). It is given by Equation 8.

3) Penalty Cost (Jpenalty): The penalty cost accounts for
violations in the gear sequence and MPC infeasibility.
At each time step, the number of gear limit violations is
denoted as npenalty, with each violation penalized by ϕ1.
Additionally, a binary variable λpenalty indicates whether
the MPC problem is infeasible, incurring a penalty of
ϕ2 if set to 1. The variable λpenalty is defined as:

λpenalty =

{
1, if MPC is infeasible
0, if MPC is feasible

(20)

The total penalty P is then calculated as:

Jpenalty = ϕ1 · npenalty + ϕ2 · λpenalty (21)

Finally, the reward at time step k is computed as:

R(k) = −
(
l1 ·Jtracking(k)+ l2 ·Jfuel(k)+ l3 ·Jpenalty(k)

)
, (22)

where l1, l2, and l3 are weights used to balance the contribu-
tions of tracking cost, fuel cost, and penalty cost in the reward
function. Note that the negative sign in the reward function is
used because DQN aims to maximize the reward.

F. Step 5: Experience Storage

At the end of each time step, the experience tuple(
ŝ(k − 1),∆ĵ(k), ŝ(k), R(k)

)
is stored in the replay buffer.

To facilitate training, feasibility checks on actions (intro-
duced in Step 2) are performed to ensure the MPC problem
can be solved. However, only the original network outputs are
stored in the replay buffer, as penalty costs are computed based
on these outputs, reflecting the agent’s true decision-making
process.

G. Step 6: Batch Training and Network Update

During training, a batch of transitions is randomly sampled
from the replay buffer to break correlations between consec-
utive samples, enhancing the RL agent’s ability to generalize.
Since the states and actions are sequences while the reward is
scalar, the reward is broadcast across the prediction horizon to
ensure consistency in training and alignment with the sequence
data.

The target Q-value is computed using the reward and the
discounted maximum Q-value of the next state, while the
current Q-value is updated using Huber loss to handle outliers.
The Adam optimizer minimizes the loss for stable training.
Additionally, the target network is updated through a soft
update mechanism, gradually blending the policy network
parameters into the target network based on a predefined rate
τ , ensuring training stability.

V. TRAINING AND EVALUATION RESULTS

In this section, we present the results of our research,
including the training outcomes and evaluation results for both
individual episodes and a large-scale test.

A. Training Results

The training comprises 50,000 episodes, each lasting 60
time steps. A new reference trajectory is generated for every
episode, with the vehicle starting from randomized states. The
specific training parameters are presented below, followed by
the corresponding training results.

The details of the network is outlined in Table X. Addition-
ally, Table XI summarizes the parameters employed by the
MPC controller in our approach (9), and Table XII lists the
parameters used to train the RL agent.

Several key metrics are tracked over 50,000 training
episodes, as shown in Figure 6, including total cost, tracking
cost, fuel cost, and penalty cost.

The total cost (Figure 6a) starts high due to the agent’s ex-
ploration phase and gradually stabilizes after 40,000 episodes,
with fluctuations diminishing as the agent learns an effective
policy. Penalty cost (Figure 6d), a major contributor to the total
cost, follows a similar trend, reflecting the agent’s improved
ability to avoid gear limit violations and MPC infeasibilities.

Tracking cost (Figure 6b) remains consistently low through-
out training, with minimal variability. This stability highlights
the robustness of the MPC controller in maintaining tracking
performance, even when gear selections are suboptimal.

Fuel cost (Figure 6c) shows a slight declining trend during
training, but it fluctuates due to variations in the velocity
profiles across different episodes. Since the chosen fuel model
primarily depends on vehicle velocity rather than gear se-
lection, optimizing gear shifts has a minor impact on fuel
efficiency. As a result, fuel cost contributes relatively little
to the overall cost metric during training.

These results demonstrate the RL agent’s effectiveness
in reducing overall cost metrics, particularly by minimizing
penalties and improving gear feasibility.



(a) Total Cost

(b) Tracking Cost

(c) Fuel Cost

(d) Penalty Cost

Fig. 6: Training results. In each plot, the blue line represents
the metric’s value for each individual episode, while the red
line shows its 100-episode running average.

B. Evaluation Results

To evaluate our approach, we conducted a simulation with a
single reference trajectory to demonstrate the RL’s capability
in managing gear selections. Following this, we performed
a larger test consisting of 100 episodes to comprehensively
analyze performance metrics. Each episode in the larger test
consists of 60 time steps.

(a) Tracking Results

(b) Control Inputs

Fig. 7: Individual Test Results

1) Individual Test: The simulation results are shown in
Figure 7. In Figure 7a, the upper panel depicts the position,
and the lower panel shows the velocity. The dotted blue
line represents the reference trajectory, while the solid red
line indicates the vehicle’s actual trajectory. Starting from
initial states deviating from the reference, the vehicle quickly
converges to the trajectory within a few steps, highlighting the
effectiveness of the MPC-RL controller in achieving accurate
tracking.

Figure 7b presents the control inputs during the simulation.
The red line represents the gear selected by the RL controller,
and the blue line shows the throttle input from the MPC
controller. The RL agent efficiently selects gears to match the
vehicle’s velocity, ensuring smooth transitions and accurate
tracking. For this trajectory, with reference velocities between
5-15 m/s, the RL controller primarily operates in lower gears
(1 to 3), aligning well with the velocity profile and system
constraints.



Table I summarizes the performance metrics for this test.
Notably, there are no gear limit violations or MPC infeasibil-
ities, indicating that the RL controller adheres to the defined
constraints and provides feasible gear selections.

The runtime of the simulation validates the real-time feasi-
bility of the proposed MPC-RL controller. The total runtime
is 0.38 seconds, with an average runtime per time step of
approximately 0.0063 seconds, corresponding to a control
frequency of around 159 Hz. This high control frequency
is suitable for high-precision autonomous vehicle control in
dynamic environments.

TABLE I: Performance Metrics for Individual Test

Metric value
Runtime (s) 0.38

Performance Cost 41.57
Tracking Cost 1121.75

Fuel Cost 38.77
Gear Limit Violations 0

MPC Infeasibilities 0

2) Large Tests: We conducted a large-scale test consisting
of 100 episodes, and the average performance metrics are
summarized in Table II.

TABLE II: Average Performance Metrics Over 100 Test
Episodes

Metric Value
Average Runtime 0.35
Average Performance 99.62
Average Tracking Cost 19764.77
Average Fuel Cost 50.20

We analyzed the occurrence of gear limit violations and
MPC infeasibilities across 100 test episodes, recording the
number of such events per episode. A single gear limit viola-
tion was observed, and only one MPC infeasibility occurred.
These isolated events demonstrate that the RL controller
effectively learned and applied a policy that generalizes well
to diverse scenarios, providing feasible gear selections for the
MPC controller in nearly all episodes. Furthermore, in the rare
episodes where infeasibilities occurred, the backup solution
successfully addressed the issues, ensuring the solvability of
the MPC problem and maintaining the continuity of the control
process.

VI. COMPARATIVE ANALYSIS

In this section, we compare our approach with the standard
MPC and PID methods by performing large-scale test.

A. Standard MPC Approach

The standard MPC approach optimizes all objectives si-
multaneously by solving for all decision variables within the
model. For this comparison, we utilized the PWA model for
the gear model (II-A1). As demonstrated in [6], this test shows
that while the PWA model’s performance is only slightly worse
compared to the discrete input model, it significantly reduces
computation time.

1) Optimization Problem: The standard MPC optimization
objective consists of three components: tracking cost, fuel
cost, and control cost. The decision variables include both the
vehicle’s throttle input u and gear selection j, with the gear
selection implicitly incorporated into the optimization problem
through the vehicle model, which includes the gear model. The
MPC optimization problem is formulated as:

J(x) =min
u,j,x

N+1∑
k=0

∥x(k)− r(k)∥Qx︸ ︷︷ ︸
Tracking Cost

+Qf

N∑
k=0

(
3∑

m=0

bmxm
2 (k) +

x2(k + 1)− x2(k)

T

2∑
l=0

clx
l
2(k)

)
︸ ︷︷ ︸

Fuel Cost

+

N∑
k=0

∥u(k)∥Qu︸ ︷︷ ︸
Control Cost

s.t. (4) - (5)
vehicle model
x(0) = x

(23)
The parameters for standard MPC approach are the same as

Table XI, with an additional fuel cost weight Qf due to the
inclusion of fuel consumption cost into the MPC problem. The
coefficients of the polynomial in fuel consumption are listed
in Table XIII.

2) Large Tests: Large-scale tests were conducted similar
to those described in Section V-B2. To achieve the lowest
average performance cost, the standard MPC was optimized
by exploring various combinations of prediction horizon N
and fuel cost weight Qf , with N ranging from 2 to 5 and Qf

ranging from 1 to 5. Each combination was evaluated over
100 episodes.

TABLE III: Standard MPC Large Tests (N = 2)

Qf 1 2 3
Average Runtime 356.29 373.62 382.03

Average Performance 101.85 101.43 101.31
Average Tracking Cost 18867.31 18945.19 19093.79

Average Fuel Cost 54.68 54.07 53.57

TABLE IV: Standard MPC Large Tests (N = 3)

Qf 1 2 3
Average Runtime 744.03 775.04 783.17

Average Performance 98.53 98.36 98.22
Average Tracking Cost 18353.05 18354.14 18364.11

Average Fuel Cost 52.65 52.48 52.31

Tables III, IV, and V present the results for different N and
Qf combinations. However, due to the increasing complexity
of the optimization problem with larger N and Qf values,
the MPC solver failed to converge for certain configurations.



TABLE V: Standard MPC Large Tests (N = 4)

Qf 1
Average Runtime 1926.66

Average Performance 97.28
Average Tracking Cost 18238.11

Average Fuel Cost 51.68

Consequently, results are only available for a subset of the
tested combinations.

From the results in Tables III, IV, and V, it is evident that
increasing the prediction horizon N results in a reduction in
the performance cost. However, this improvement comes at
the cost of significantly higher average runtimes per episode.
Furthermore, increasing the fuel cost weight Qf slightly
reduces the performance cost across all prediction horizons
but also leads to a minor increase in runtime, likely due to the
added complexity of the optimization problem.

B. PID Approach
The PID approach uses proportional, integral, and derivative

components to compute control outputs based on the current
error, the accumulated error over time, and the rate of change
of error, respectively. This mechanism highlights simplicity
and enables fast control.

1) Controller Design: The control strategy employs two
separate PID controllers to regulate the vehicle’s acceleration
based on position and velocity errors. The desired acceleration
is calculated by combining the outputs of these controllers.

The position PID controller computes acceleration based on
the position error epos as:

ades,pos = kpos
p epos + kpos

i

∫
eposdt+ kpos

d

depos

dt
, (24)

where kpos
p , kpos

i , kpos
d are the proportional, integral, and deriva-

tive gains.
The velocity PID controller computes acceleration based on

the velocity error evel as:

ades,vel = kvel
p evel + kvel

i

∫
eveldt+ kvel

d

devel

dt
, (25)

where kvel
p , kvel

i , kvel
d are the corresponding gains for velocity

control.
The outputs of the two controllers are combined to compute

the desired acceleration ades as:

ades = clip (wpos · ades,pos + wvel · ades,vel, aMIN, aMAX) , (26)

where wpos and wvel are the weights for position and velocity
controller outputs, respectively. The clip function ensures
ades remains within the range [aMIN, aMAX].

Finally, the desired throttle input is determined using vehicle
dynamics:

u = clip
(

1

b(j, x2)
(mades + cx2

2 + µmg), uMIN, uMAX

)
,

(27)
where uMIN and uMAX are the throttle input bounds.

The parameter values used in the tests are listed in Table
XIV.

2) Large Tests: The large-scale tests using the PID con-
troller were conducted, with the results presented in Table
VI. It is worth noting that the PID approach demonstrates
a favorable trade-off between runtime and performance cost,
with an average runtime of only 0.02 seconds per episode
and a slightly worse performance cost compared to standard
MPC and our MPC-RL approaches. The average fuel cost is
notably lower compared to the standard MPC and our MPC-
RL approaches. This is likely attributed to the PID controller’s
lower emphasis on velocity control, resulting in reduced vehi-
cle velocities and consequently lower fuel consumption.

Although the PID approach demonstrates reasonable perfor-
mance, its limitations in flexibility and handling constraints
restrict its applicability. These limitations will be further
discussed in the next section.

TABLE VI: PID Controller Large Tests

Metric Value
Average Runtime 0.02
Average Performance 100.46
Average Tracking Cost 21456.30
Average Fuel Cost 46.82

C. Comparison & Discussion

We compared the MPC-RL approach, the standard MPC
approach with N = 4 and Qf = 1, and the PID approach
under large-scale testing. The results are summarized in Table
VII.

The standard MPC approach achieves the lowest perfor-
mance cost, showcasing its strong optimization capability by
explicitly incorporating all decision variables within a single
optimization problem. However, this comes at the expense of
an extremely high runtime, averaging 1926.66 seconds per
episode, making it impractical for real-time applications. The
excessive computational demand severely limits its feasibility
in dynamic scenarios requiring rapid decision making.

In contrast, the PID controller achieves the fastest runtime,
averaging just 0.02 seconds per episode. While this makes it
computationally efficient, its performance is inferior to both
MPC-RL and standard MPC. Additionally, the parameters
may need to be retuned to achieve optimal performance when
encountering different reference trajectories because the PID
controller relies on fixed gain values which are calibrated
for specific conditions, highlighting the lack of flexibility
in the PID approach compared to our method. Moreover,
the PID controller lacks the capability to handle constraints
effectively, which can result in unsafe or suboptimal behavior.
While input constraints can be managed through clipping,
state constraints, such as the vehicle velocity limit, are not
inherently guaranteed. In more complex scenarios, such as
vehicle platooning, hard constraints like maintaining a safe
inter-vehicle distance cannot be reliably enforced using the
PID approach. This limitation in flexibility and constraint
management restricts its applicability.

The MPC-RL approach effectively overcomes the draw-
backs of both PID and standard MPC approaches. It provides a



near-optimal solution while achieving a fast average runtime
of 0.35 seconds per episode, making it highly suitable for
real-time control applications. Unlike PID, which lacks the
ability to handle constraints, MPC-RL incorporates constraint-
handling capabilities, ensuring safe and feasible control ac-
tions. At the same time, it avoids the excessive computational
burden of standard MPC by excluding gear selection and
fuel optimization from the optimization problem, offering
a practical balance between performance and efficiency for
autonomous vehicles in dynamic environments.

TABLE VII: Comparison of MPC-RL, Standard MPC, and
PID Approaches

Metric MPC-RL Standard MPC PID
Average Runtime (s) 0.35 1926.66 0.02
Average Performance 99.62 97.28 100.46
Average Tracking Cost 19764.77 18238.11 21456.30
Average Fuel Cost 50.20 51.68 46.82

VII. CONCLUSION

This research introduces a novel MPC-RL framework that
integrates RL with MPC to address computational challenges
in autonomous vehicle control. By delegating discrete gear
selection to the RL controller and continuous throttle opti-
mization to MPC, the framework significantly reduces com-
putational complexity, enabling real-time implementation with
near-optimal performance.

Leveraging a DQN with a bidirectional RNN, the RL
controller effectively captures temporal dependencies to gen-
erate feasible gear decisions, while MPC ensures trajectory
tracking and constraint satisfaction. The framework achieves
a low average runtime, balancing computational efficiency
and performance. Compared to standard MPC, the MPC-RL
framework offers better efficiency with minimal performance
trade-offs, and it outperforms PID controllers in flexibility and
constraint handling.

Future work can explore advanced RL methods and extend
the framework to vehicle platoons using Distributed MPC.
This research demonstrates the potential of MPC-RL integra-
tion as a promising approach to hybrid control in autonomous
driving.

REFERENCES

[1] E. Shaw and J. K. Hedrick, “String stability analysis for heterogeneous
vehicle strings,” in 2007 American Control Conference, IEEE, 2007, pp.
3118–3125.

[2] G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. van De Molengraft,
and M. Steinbuch, “String-stable CACC design and experimental vali-
dation: A frequency-domain approach,” IEEE Transactions on Vehicular
Technology, vol. 59, no. 9, pp. 4268–4279, 2010.

[3] Y. Wu, S. E. Li, Y. Zheng, and J. K. Hedrick, “Distributed sliding mode
control for multi-vehicle systems with positive definite topologies,” in
Proc. 2016 IEEE 55th Conference on Decision and Control (CDC),
2016, pp. 5213–5219.

[4] Y. Zheng, S. E. Li, K. Li, and W. Ren, “Platooning of connected
vehicles with undirected topologies: Robustness analysis and distributed
H-infinity controller synthesis,” IEEE Trans. Intell. Transp. Syst., vol.
19, no. 5, pp. 1353–1364, 2017.

[5] J. Ploeg, D. P. Shukla, N. Van De Wouw, and H. Nijmeijer, “Controller
synthesis for string stability of vehicle platoons,” IEEE Trans. Intell.
Transp. Syst., vol. 15, no. 2, pp. 854–865, 2013.

[6] S. Mallick, A. Dabiri, and B. De Schutter, “A comparison benchmark
for distributed hybrid MPC control methods: Distributed vehicle pla-
tooning,” arXiv preprint arXiv:2401.09878, 2024.

[7] V. Turri, B. Besselink, and K. H. Johansson, “Gear management for
fuel-efficient heavy-duty vehicle platooning,” in Proc. 55th IEEE Conf.
Decision Control (CDC), 2016, pp. 1687–1694.

[8] D. He, T. Qiu, and R. Luo, “Fuel efficiency-oriented platooning control
of connected nonlinear vehicles: a distributed economic MPC approach,”
Asian Journal of Control, vol. 22, no. 4, pp. 1628–1638, 2020.

[9] Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Dis-
tributed model predictive control for heterogeneous vehicle platoons
under unidirectional topologies,” IEEE Transactions on Control Systems
Technology, vol. 25, no. 3, pp. 899–910, 2016.

[10] M. Hu et al., “Fuel economy-oriented vehicle platoon control using
economic model predictive control,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 11, pp. 20836–20849, 2022.

[11] M. Li, Z. Cao, and Z. Li, “A reinforcement learning-based vehicle
platoon control strategy for reducing energy consumption in traffic
oscillations,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 12, pp. 5309–5322, 2021.

[12] G. Li and D. Görges, “Ecological adaptive cruise control for vehicles
with step-gear transmission based on reinforcement learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 11, pp.
4895–4905, 2019.

APPENDIX A
PARAMETER TABLES

In this appendix we list the tables with the parameters used
in the paper.

TABLE VIII: Parameter values used in 1

Parameter Value Units
m 800 kg
c 0.5 kg/m
µ 0.01 -
g 9.8 m/s2

TABLE IX: Maximum Traction Force and Velocity Range for
Each Gear.

Gear j Traction force b(j) (N) Min. vel. (m/s) Max. vel. (m/s)
I 4057 3.94 9.46
II 2945 5.43 13.04
III 2116 7.56 18.15
IV 1607 9.96 23.90
V 1166 13.70 32.93
VI 838 19.10 45.84

TABLE X: Network Architecture Details

Layer Number of Nodes
Input Layer 4

Bi-RNN Layer 2 × 64
Fully Connected Layer 128

Output Layer 3

TABLE XI: MPC Controller Parameters

Parameter Value
Prediction Horizon (N ) 5
Sampling Time (T ) 1 s
State Weight Matrix (Qx) diag(1, 0.1)
Control Weight Matrix (Qu) 1
Throttle Bounds (uMIN, uMAX) [-1, 1]
Velocity Limits (vMIN, vMAX) [3.94, 45.84]
Acceleration Limits (aMIN, aMAX) [-2, 2.5]



TABLE XII: RL Training Parameters

Parameter Value
Learning Rate 0.001
Discount Factor (γ) 0.9
Batch Size 128
Number of Episodes 50000
Steps per Episode (NE ) 60
Starting Exploration Rate (ϵstart) 0.999
Ending Exploration Rate (ϵend) 0
Exploration Decay Factor (ϵdecay) 70000
Replay Buffer Size 100000
Target Network Soft Update Rate (τ ) 0.001
Threshold of Huber Loss Function (δ) 1
Optimizer Adam
Tracking Cost Weight (l1) 0.001
Fuel Cost Weight (l2) 1
Penalty Cost Weight (l3) 1
Weights for Performance Cost (w1, w2) 0.0025, 1
Penalties for Gear Infeasibilities (ϕ1, ϕ2) 100, 50

TABLE XIII: Coefficients for Fuel Consumption

Parameter Value
b0, b1, b2, b3 0.1569, 2.450 · 10−2, −7.415 · 10−4, 5.975 · 10−5

c0, c1, c2 0.0724, 9.681 · 10−2, 1.075 · 10−3

TABLE XIV: PID Controller Parameters

Parameter Value
k

pos
p 0.05

k
pos
i 0.01

k
pos
d 0.0

kvel
p 0.7

kvel
i 0.1

kvel
d 0.0

wpos 0.55
wvel 0.45


	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Background and Relevant Literature
	Vehicle Model
	PWA gear approximation
	Discrete input gear approximation

	Current Methods
	Linear Controller
	Sliding Mode Controller
	H Controller
	DMPC Controller
	RL Controller
	Composite Controllers

	Reinforcement Learning Basics
	Key Elements of RL
	Q-Learning
	Deep Q-Networks

	Summary

	Proposed MPC-RL Approach
	Problem Formulation
	Vehicle States and Inputs
	Constraints
	Performance Cost
	Challenges of Standard MPC Approach
	Objective of This Study

	Controller Design
	Vehicle Throttle MPC Controller Design
	Vehicle Gear RL Controller Design
	Control Loop

	RL Training Scheme
	Environment Setup
	Training Procedure

	Summary

	Training and Evaluation Results
	Training Setup & Results
	Training Setup
	Training Results

	Evaluation Results
	Individual Tests
	Large Test

	Comparative Analysis
	Standard MPC Approach
	PID Approach
	Comparison & Discussion

	Summary

	Discussion
	Key Findings of the Research
	Integration of RL and MPC
	Addressing the Prediction Horizon Challenge
	Scalability to Vehicle Platooning

	Limitations
	Limited Theoretical Guarantees
	Limited Generalizability
	Residual Discrete Components

	Recommendations
	More Advanced RL Controller Design
	Extend to Distributed MPC and Vehicle Platoons
	Incorporating Advanced Simulations for Validation

	Summary

	Conclusion

	Back Matter
	Bibliography


