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Abstract. What variables should be used to get explanations (of AI
systems) that are easily interpretable? The challenge to find the right
degree of abstraction in explanations, also called the ‘variables prob-
lem’, has been actively discussed in the philosophy of science. The chal-
lenge is striking the right balance between specificity and generality.
Concepts such as proportionality and exhaustivity are investigated and
discussed. We propose a new and formal definition based on Kolmogorov
complexity and argue that this corresponds to our intuitions about the
right level of abstraction. First, we require that variables are uniform,
so that they cannot be decomposed into less abstract variables with-
out increasing the Kolmogorov complexity. Next, uniform variables are
optimal for an explanation if they can compose the explanation with-
out increasing its Kolmogorov complexity. For this, the concepts K-
decomposability and K-composability of sets are defined. Explanations
of a certain instance should encompass a maximal set of instances with-
out being K-decomposable. Although Kolmogorov complexity is uncom-
putable and depends on the choice of programming language, we show
that it can be used effectively to evaluate and reason about explana-
tions, such as in the evaluation of XAI methods.

Keywords: Explainability · Explainable AI · Kolmogorov
complexity · Abstraction

1 Introduction

How do we best explain a particular outcome of a binary function in terms of
the properties of the input? One of the challenges in answering this question is
finding the right variables to use in these explanations. Intuitively, we prefer an
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Fig. 1. Images of coffee that are correctly identified by a trained Convolutional Neural
Network.

explanation that is not too specific, nor too abstract. Consider a Convolutional
Neural Network (CNN) that is trained to recognize coffee in images and assume
the network successfully recognizes coffee in all the images shown in Fig. 1. An
explanation for the identification of coffee in image (a) is the dark brown color
and the foam. But if image (b) also leads to a positive identification, the property
‘dark brown’ is too specific; ‘brown’ is sufficient and seems to better capture the
behaviour of the network. Similarly, image (c) is linked to coffee by the shape
of the cup and the steam, but a very specific description of the cup may lead
us to believe that the system generalizes less than it does if the more abstract
cup in image (d) is also classified as a coffee cup. This can be observed again
in image (e) where the ‘flower pattern’ in the foam may not be necessary for
identification if image (f) is also classified correctly. Vice versa, ‘rounded shapes’
may be too general a variable for the explanation, even if it matches these
examples. The final image (g) illustrates this again, where one may use ‘food’
or ‘medium-sized objects’ to describe what is on the image, but these are likely
too abstract compared to options such as ‘croissant’ and ‘coffee cup’.

However, it is a challenge to specify formally what an optimal degree of
abstraction is and on which concepts, called variables in the philosophical liter-
ature, an explanation should be based. This is a general problem for theories of
explanation [5,8], but one that reasserts itself in the field of XAI [6]. Especially in
the philosophy of science there has been earlier work on precisely this question,
which we survey in Sect. 2. In Sect. 3 we show that current definitions for the
upper bound of the level of abstraction are falling short. Our aim in this paper
is to build upon this work by giving a formal definition of this degree of abstrac-
tion using descriptive complexity. We therefore first introduce Kolmogorov com-
plexity theory in Sect. 4. In Sect. 5 we provide an alternative formal specification
for optimal degrees of abstraction of variables in an explanation. We then show in
Sect. 6 how this definition applies and resolves the current problems. In the final
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section we illustrate how this theoretical discussion applies to XAI methods for
explanations.

2 Related Work

There is a wide-ranging literature on explanations of AI systems [1]. Methods
showing how important different features were for the output [17,19] are one
option, as are methods extracting rules (e.g. decision trees) to describe the
(local) behaviour of the AI system and counterfactuals showing what should
be changed to the input to achieve the desired output [14]. And while there is
still disagreement about how we should define explanations, both in the com-
puter science literature [11] and in the philosophical literature on explanation
[3], the overall goal on all of these definitions is to let recipients of explanations
better understand the AI system.

In all of these cases, too, explanations require the use of variables: either the
input variables of the system, or a set of (often more abstract) variables that
are closer to the variables humans are used to working with. Examples of XAI
methods doing the latter are so-called concept-based explainability methods,
such as Concept Activation Vectors [10,24] which attempt to extract (some of)
the patterns that a convolutional neural network uses to arrive at the output
classification. Alternative methods use crowd workers to attribute concepts to
highlighted regions in images [2,4], thus abstracting from highlighted individual
pixels to more abstract concepts. This makes explanations not only more inter-
pretable, as humans are more used to reasoning with concepts such as chairs and
tables than we are with sets of pixel values. It also makes explanations more gen-
eral, as more abstract variables typically cover a wider set of cases.

This is important, as a common standard for the quality of an explanation
is how general the explanation is [6]. In other words, “powerful explanations
should, just like any predictor, generalize as much as possible” [14, p.36]. How-
ever, finding the point where an explanation has generalized as much as possible
is difficult. The ‘variables problem’ [8,21] in the philosophy of explanation shows
the challenge of identifying optimal degrees of abstraction for explanations. To
illustrate with an example commonly used in philosophical literature, there is an
intuitive sense that of the following three factually correct explanations the sec-
ond is the best, being neither too specific nor too general:

(1) The pigeon pecked because it was presented with a scarlet stimulus
(2) The pigeon pecked because it was presented with a red stimulus
(3) The pigeon pecked because it was presented with something stimulating

Specifying why this is so is non-trivial, but by now two approaches can be
found. Blanchard [5] suggests that we opt for the most abstract variables that
are still specific when compared to even less abstract variables, where abstrac-
tion and specificity are defined as follows:

An explanation with explanans variable(s) e1 is more abstract than an
explanation with explanans variable(s) e2 when the actual value of e1 is
implied by the actual value of e2, but not vice versa
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An explanation with explanans variable(s) e1 is more specific than an
explanation with explanans variable(s) e2 when e2 is a function f of
e1 and other variables e3, . . . en such that . . . neither e1 nor G(e2) =
G(f(e1, e3 . . . en)) change value if the variables e3, . . . en are varied. G
refers to the explanation provided by the variables.

The proposed definitions apply as follows: using red leads to a better expla-
nation than using scarlet because it is more abstract (if scarlet = 1 then red =
1, but not vice versa) without being more specific. On the other hand, using red
leads to a better explanation than using something stimulating because it is more
specific (something stimulating can be seen as a function f(red, food, tickle) =
red ∨ food ∨ tickle where the value of f remains the same as long as red = 1).

Woodward [23] takes a slightly different approach to the same problem, stat-
ing that a requirement of proportionality instead motivates the choice of vari-
able. This principle of proportionality states that “other things being equal,
we should prefer those causal claims/explanations that more fully represent or
exhibit those patterns of dependence that hold” [23, p. 247]. It then functions
as follows: using scarlet suggests the following relation: if scarlet is set to 1 then
peck = 1, if scarlet is set to 0 then peck = 0 (all other things being equal, so
without the presentation of other kinds of stimuli that will make the bird peck)
The latter part is false, because we can change the colour of the stimulus to
other shades of red (meeting the requirements of setting scarlet to 0) while the
bird will still peck. Hence, the explanation that if red is set to 1 then peck = 1,
if red is set to 0 then peck = 0 (all other things being equal) is better because
it better represents how the pecking depends on the colour; changing the colour
to anything other than red will, all else being equal, entail that the bird stops
pecking at it.

Our approach instead links the choice of degree of abstraction to descriptive
complexity, based on the intuitive idea that we should choose variables in our
explanations that minimize the complexity of these explanations (given equal
accuracy). This may be linked to philosophical discussions on effective conversa-
tional communication in common social situations. Grice’s four maxims of con-
versation [12]1 describe the rationality behind what people expect from effective
communication, and stress conveying as much as possible while as relevant and
brief as possible. One way to comply with these norms of communication is to
minimize descriptive complexity through variable choice.

To make this idea of using the descriptive complexity of an explanation more
precise we need an objective complexity measure. Although it has its limitations
(discussed in Sect. 4.2) we will use Kolmogorov complexity in this paper. Alter-
natives are of course available, such as Minimum Description Length (MDL)
[13], but Kolmogorov complexity is well-suited due to its generality as MDL
is mainly used for finding the optimal model within an a priori chosen model
class. That being said, our approach will also work with other approaches to

1 https://www.sas.upenn.edu/∼haroldfs/dravling/grice.html for a summary of the 4
principles.

https://www.sas.upenn.edu/~haroldfs/dravling/grice.html
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descriptive complexity, as one can simply replace the Kolmogorov measure in
our definitions with another way to formalize descriptive complexity. In order to
utilize the formal precision that Kolmogorov complexity brings we now need to
further formalize the problem of variable choice.

3 Formalization of the Challenge

With the context of XAI as part of the motivation for formalizing the discussion
on abstraction, we will consider a binary classifier b which outputs 0 or 1 for
each input x ∈ X. x is a multi-dimensional feature vector. The set of all inputs
for which b outputs 1 is called the positive subset, which we denote with Sb. b
is also called the indicator function for set Sb. An explanation of an instance
b(x) for a particular x is then based on the properties of the input that ensured
the outcome. For this paper, we assume that an explanation defines a sufficient
condition for b, in line with definitions of explanations from [22] and [6] that see
them as generalizations describing a set of outputs. Zooming in on a particular
instance, this points us to the idea that an explanation G for x ∈ Sb corresponds
to a description of a subset SG of the positive subset Sb; it defines a set with
elements that are all identified by the classifier. The question we address in this
paper is then (1) the optimal choice of subset SG, how large the subset SG should
be, and (2) which features to use to define the subset.

To illustrate these two points, consider a scenario where a pigeon pecks at
both red and yellow stimuli inspired by the work in the philosophical literature.
Here, the choice will be formalized based on what we consider to be the relevant
SG to describe this behaviour. We can opt for one explanation per colour, sepa-
rating the behaviour into two possible scenario’s and arriving at the explanation:

(4) The pigeon pecked because it was presented with a red stimulus OR The
pigeon pecked because it was presented with a yellow stimulus

Or we could use a broader subset SG along with a single composed variable
redow = red ∨ yellow to generate the following explanation:

(5) The pigeon pecked because it was presented with a redow stimulus

If we compare these two explanations there seems to be a clear preference for
(4), where no new abstract variable is introduced to cover the two cases in one go.
However, judging by the criteria of [5] we should in fact prefer (5). The variable
is more abstract (yellow = 1 implies redow = 1 and red = 1 implies redow = 1)
but not more specific (red changes values if the value of yellow is changed and
vice versa). We will propose a definition that makes a clear distinction between
(4) and (5), and gives a preference for (4).

This definition is based on the idea that the crucial difference between (4)
and (5) is the uniformity of the explanatory domain SG, as red is a uniform
set (informally, one can test membership directly, for the formal definition see
Definition 5) whereas redow is not (one needs to look whether the stimulus is
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either red, or yellow to determine its value). To further illustrate this idea con-
sider a second variation on the same example. Here, there is a range of different
colours that a pigeon responds to. What they all have in common is that they
are bright colours, such as red, orange and yellow. So, we again have two options
for an explanation (assuming here that in this case we decide to opt for a domain
SG that covers all these colour shades in a single explanation). Either we use a
disjunction of less abstract variables or we use the more abstract variable bright
colour :

(6) The pigeon pecked because it was presented with a bright red or a bright
orange or a bright yellow stimulus

(7) The pigeon pecked because it was presented with a bright coloured stimulus

Here, it seems that the abstract variable in (7) is preferable whereas the
abstract variable redow in (5) is not. As both are specifiable as disjunctions
of incompatible colour concepts this raises the question: what is the differ-
ence? In our view, it is that there is a separate, undecomposable way to define
bright colour. Specifically, colours can be defined using the HSV colour space
(https://en.wikipedia.org/wiki/HSL and HSV), where the V-component defines
the brightness using a single numerical value. There is no such unifying measure
for redow, which could be why we find this a less illuminating concept to use.
This brings us back to the descriptive complexity of the explanation.

The underlying idea behind the formal definitions that we introduce below is
that variables should be both general and, at the same time, undecomposable.
In other words, the variable should track a single property that can be tested for
in a canonical manner. Explanation should moreover only contain the relevant
information that makes the instance positive, prompting our choice for SG. An
explanation that is too specific contains information about the properties that
are not essential for the classifier. On the other hand, an explanation that is too
general contains information that is not essential for the classification of the given
instance. Descriptive complexity, formalized here using Kolmogorov complexity,
can help to make these ideas more precise.

4 The Kolmogorov Complexity of Functions and Sets

To introduce Kolmogorov complexity, we consider first how we can describe an
indicator function of a set. Most arbitrary sets (e.g. by randomly picking ele-
ments) can only be described by an enumeration of its elements because the
elements have no properties in common. In most cases, however, we are inter-
ested in sets that mean something, of which the elements have properties in
common on which the indicator function can be built. Then, the implementa-
tion of the indicator function will become shorter than a literal enumeration.
This can be formalized by algorithmic information or ‘Kolmogorov complexity’,
a concept put forward as an objective measure of complexity.

https://en.wikipedia.org/wiki/HSL_and_HSV
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4.1 Definition of Kolmogorov Complexity

First we define the Kolmogorov complexity (KC) of a single object:

Definition 1. For a binary sequence x ∈ {0, 1}∗, the algorithmic information
K(x) (or ‘Kolmogorov complexity’) is defined as the length of the shortest pro-
gram on a universal Turing machine that generates x and then stops:

K(x) = min
p:U(p)=x

l(p) (1)

with U a universal computer, and l(·) the length in bits of a binary sequence.

The shortest program is denoted with p∗
x.

To illustrate this definition, consider the following two sequences of 1000 bits:

– 01111000011001100111 . . . 00001111100100011101
– 00010001000100010001 . . . 00010001000100010001

The first string is arbitrary without any patterns, while the second repeats
“0001”. K(x) is maximal for the random string, namely around 1000 bits. The
shortest program literally encodes the string. The second string can be described
by program REPEAT 250 TIMES"0001"+ and needs far fewer bits. The program
exploits the ‘regularities’ (patterns) of the string to compress its description. It
is these regularities that make up the meaningful information we are interested
in. This same idea can then be applied to indicator functions:

Definition 2. The Kolmogorov complexity of a binary function b that
takes as argument x ∈ X and returns 0 or 1, is defined as the length of the
shortest program p∗ that when executed by a universal Turing machine together
with any argument x ∈ X returns the same output as b(x): U(p∗, x) = b(x). The
shortest program is denoted as p∗

b ,

Definition 3. The Kolmogorov complexity of a set S ⊆ X is defined as
the Kolmogorov complexity of the indicator function of S.

4.2 Limitations and Practical Use of Kolmogorov Complexity

There are two problems to apply Kolmogorov complexity to practical prob-
lems [13]. First, Kolmogorov complexity is not computable. It is proven that
there is no algorithm that given a bitstring will output the length of the short-
est program and halts [7]. For a lot of cases, however, the shortest program is
indisputable, as will be shown in the discussed examples. Still, for more intri-
cate programs it is not trivial, as for example in the case of neural networks
trained to detect objects – which quickly use millions of parameters. Instead of
trying to identify the absolute shortest implementation (and with that the abso-
lute best concept to use in the explanation), we will therefore use the definitions
to compare and validate implementations in the same way as explanations are
compared in philosophical literature.
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Second, Kolmogorov complexity depends on the choice of programming lan-
guage (or Turing machine) up to a constant. Since one programming language
can be translated into another one with a program of length C, the difference
of describing x in both languages, can be maximally be C, a constant which
does not dependent on x. Therefore, theorems often have to incorporate this
constant [15]. This can be seen in the additivity rule (which we need later) for
the joint Kolmogorov complexity, which has the following formulation:

K(x, y) += K(x) + K(y|p∗
x), (2)

where K(y|p∗
x) denotes the conditional Kolmogorov complexity of y, given the

shortest program p∗
x of x. As usual in algorithmic information theory, += denotes

equality up to a constant that is independent of the string x, but does depend
on the chosen Turing machine. Since information is symmetric [9], see also [16,
Eq. 2.1]:

K(x) + K(y|p∗
x) += K(y) + K(x|p∗

y), (3)

we can write that:

K(x, y) += K(y, x) += K(y) + K(x|p∗
y). (4)

5 Abstraction and Undecomposable Concepts

We will now formalize our proposed definitions.

5.1 Formal Definition of Uniformity

Formalizing this idea of having a unifying measure and undecomposable def-
inition available for a concept we can appeal to Kolmogorov complexity to
define when a concept meets this requirement. To make this translation we have
to interpret concepts as sets, where the set has as members every element to
which the concept applies. The question of whether the corresponding concept
is appropriately uniform can then be approached in terms of the Kolmogorov
complexity of the description of the set:

Definition 4. A set S is K-decomposable if there exist different and non-empty
subsets S1 and S2 such that:

– S = S1 ∪ S2, and
– K(S) += K(S1) + K(S2|p∗

S1
).

The conditional in the second term of the last equation indicates that the iden-
tification of the S1 by p∗

S1
can be reused for describing S2. If the description of

both sets is nevertheless of equal complexity as S, it signifies that S1 and S2

contain no additional information that is not already required to describe S. K-
decomposability thus refers to the possibility of decomposing a set into multiple
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sets keeping the descriptive complexity invariant. The description of the total set
can be decomposed into a separate description of subsets. Note that this defini-
tion has the same form as the additivity rule (Eq. (2) in Sect. 4.2), which always
holds for Kolmogorov complexities. In the case of K-decomposability, however,
we only get additivity if the set decomposition does not bring in new information
on the right side of the equation that is not present on the left side: information
that is required to identify S1 and S2 but which is not required for identifying
S. Moreover, by Eq. (3), the definition is symmetric, the roles of S1 and S2 can
be swapped.

Applied to the example of something stimulating we can see that it is
in fact K-decomposable. The three variables red, food, and tickle are identi-
fied with three separate functions and so K(S) += K(red) + K(food |p∗

red) +
K(tickle|p∗

red , p
∗
food ). The Kolmogorov complexity of the set S is the sum of the

KCs of the three subsets. On the other hand, a concept that is appropriately
uniform cannot be decomposed. Consider the set of all squares. To decompose
this set, we would have to segregate the squares according to a certain criterion.
For example, we could apply a threshold on their size to distinguish small from
large squares. But then we have to include this criterion in the indicator func-
tions of both subsets, which makes the total description larger than the original
one and invalidates the decomposition. Thus, we can plausibly say that ‘square’
is not K-decomposable.

Using the notion of K-decomposable sets we can then define when a variable
V is uniform, in accordance with the informal characterization above:

Definition 5. V is a uniform variable if the set SV that corresponds to V is
not K-decomposable

In other words, the variables that we are looking for are those that attach to
a unified characteristic, such as red or brightness, guaranteed by the fact that
the concepts used are not K-decomposable. Importantly, for any explanation
and element x there is a wide range of uniform variables that can be used. A
specific x could be both red (one uniform variable), and a rectangle (a second
uniform variable) and a large object (a third uniform variable) at the same
time. Furthermore, variables at various levels of abstraction can be uniform:
scarlet is uniform, as is red and colour. Which uniform variables one chooses
then depends on the specific explanation (and to be more precise the domain of
that explanation), to which we turn next.

Here, we will say that an explanation G(x) of b(x) regarding element x aims
to cover as large a set as possible while still using only patterns (of dependence)
relevant to x.

Definition 6. An explanation G(x) is called optimal if it has domain SG ⊆ Sb,
where SG is a maximal non-K-decomposable set which contains x

For optimal explanations of x there is then a guarantee that SG contains as
many inputs as possible, while it does not include irrelevant information for x
(as in this case it would be possible to K-decompose SG). Note that there is
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always a non-K-decomposable set that contains x, namely the trivial set, which
only contains x.

5.2 Formal Definition of Optimal Variable in an Explanation

To arrive at our final definition of optimal variables for an explanation we then
also need the notion of K-composability. The idea here is that in explanations we
often use more than one variable to capture the set of inputs X for whose outputs
Y the explanation is supposed to provide additional insight. The interaction of
these different variables needs to be accounted for, as they should be comple-
mentary. To capture this aspect we therefore define K-composability as follows:

Definition 7. A set S is K-composable if there exist different and non-empty
subsets S1 and S2 such that:

– S1 \ S2 �= ∅,
– S2 \ S1 �= ∅,
– S = S1 ∩ S2, and
– K(S) += K(S1) + K(S2|p∗

S1
).

Using both K-decomposability (based on the union of sets) and K-
composability (based on the intersection of sets) we can then define when vari-
ables are of an optimal degree of abstraction for an explanation of an input x.
Our definition states that these optimal variables together identify this subset
SG of inputs in a complementary fashion, building on the definition of a uniform
variable.

Definition 8. Uniform variables V1, . . . Vn, associated with set SV1 , . . . SVn
, are

optimal variables in explanation G(x) of input x for b(x) if the set SG

associated with the explanation is such that the sets SV1 , . . . SVn
corresponding

to uniform V1, . . . Vn K-compose SG.

Figure 2 helps to visualize what this definition states. Our choice of SG as the
maximal subset of Sb that is non-K-decomposable and contains x is illustrated
on the left. On the right we see how an explanation of x is then built up using
optimal variables. The composability requirement states that if we use different
variables in an explanation then they have to overlap, to together characterize
SG. However, they have to do so in complementary fashion (and with a minimal
number of variables). So, these sets will be similar to those seen on the right-
hand side in the image. For example, if SG is the set of all big, red rectangles
then it is K-composed of the sets SV1 : ‘rectangles’, SV2 : ‘big objects’ and SV3 :
‘red objects’. The requirement that the difference sets are non-empty helps to
exclude the possibility to further compose the set of rectangles based on the set
of ‘quadrilaterals’ or ‘polygons’. This is not a valid composition of ‘rectangles’
by our definition since ‘rectangles’ minus ‘quadrilaterals’ is the empty set. This,
together with the requirement that the Kolmogorov complexity does not increase
through K-composition, helps prevent the move to more abstract concepts.



50 J. Lemeire and S. Buijsman

Fig. 2. An explanation G for X explains inputs in subset SG of the positive subset Sb

(left), and does so using the intersection of global variables SV 1, SV 2 and SV 3 (right).

6 Application of the Definition to the Pigeon Case

If we apply this proposed definition to the examples depicted in Sect. 3, we see
that it tracks exactly the judgements we are inclined to make. According to our
definition, we should prefer red over scarlet because the resulting explanation
covers a larger subset (namely all red stimuli rather than only the scarlet stimuli),
while red can be defined in simpler (i.e. shorter) terms than as a disjunction
of the different shades of red. The subset SG is in this case the set of all red
stimuli, assuming that x is a specific red stimulus. While we could describe
this with variables of different shades of red (which are uniform variables), this
increases the Kolmogorov complexity of the set as red is not K-decomposable.
Hence, we should prefer red over a disjunction of shades of red. We should also
prefer it over scarlet, as scarlet does not K-compose SG on its own. Finally, more
abstract variables such as colour are ruled out as composition of more abstract
variables is more complex than simply using red (violating the last condition
of K-composition). However, had the bird pecked only at scarlet stimuli, our
definition would state that scarlet is an optimal variable to use. In that case,
Sb would not have contained other shades of red and so likewise SG ⊆ Sb would
have been restricted to the specific set of scarlet stimuli, which are then captured
by the uniform variable scarlet.

Furthermore, we should prefer red over something stimulating in the situa-
tion where the bird pecks at a wider range of stimuli. Despite the broader reach
of something stimulating it is K-decomposable in terms of red, food and tickle.
As a result, we first fix SG as one of the maximal non-K-decomposable subsets,
in the case of a red stimulus this will be red. This means that something stimu-
lating, the variable that covers all Sb, is ruled as being too abstract. Instead, we
should look at the minimal number of non-K-decomposable sets that together
K-compose the smaller set SG, which is simply red again. Should we want a more
general explanation of the behaviour of the pigeon then we can simply go for the
disjunction of the explanations corresponding to our K-decomposed subsets: red
∨ food ∨ tickle. For the follow-up examples we get again the desired results: red is
preferable to redow because redow is K-decomposable in terms of red and yellow
(which affects the choice of SG), whereas bright coloured is preferable because it
is not K-decomposable, again assuming that the set of positive instances that we
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aim to explain is in the first case that of red and yellow stimuli and in the second
case that of bright coloured stimuli.

To consider this in the pigeon example just discussed, we can imagine a
setting in which the brain of the pigeon is studied and neural signals are mea-
sured. Based on these measurements it is observed that when a particular part
of the brain gets stimulated it cause the pecking. In such a context, with the
knowledge of what’s going on in the brain, ‘something stimulating’ can provide
a good (uniform) explanation for the pecking. For each of the different stimuli
(a bright color, food or tickle), a similar process in the brain can be observed.
This shows that an explanation might depend on the features available to the
binary classifier b.

7 Explanations in AI

A popular option in XAI for explaining black-box algorithms is to fit decision
trees to them, which aim to approximate the input-output relation of b [14,20].
They offer a human-understandable description, thanks to the explicit variables
and clear decision paths (for trees that are not too large). Can they repre-
sent/describe the level of abstraction we defined in this paper? Decision trees
are based on clauses that form conditions on the input variables by conjunctions,
negations, and disjunctions. Also rule-based systems are based on such clauses.

Figure 3 shows the decision tree for the Pigeon example (4) in which the color
might be red or yellow. The decision tree provides an explanation for all positive
instances, where each node is an optimal variable for an explanation and each
leaf represents the right level of abstraction for an explanation of an individual
outcome (an SG-set).

Fig. 3. Decision tree for the Pigeon2 example (Red or Yellow). (Color figure online)

In this example, the decision tree is the shortest description of the partition-
ing. But this is not always true: for more regular structures, a shorter description
is possible. Consider the partitioning of a chessboard into 64 squares. Describing
all black squares separately results in a large tree. An algorithm can do this in
a more succinct way by exploiting the regularities of a chessboard. The KC of
the black squares is smaller than a literal enumeration of all squares.
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Likewise, the set of images containing a pattern, such as a rectangle which
is recognized by a NN, cannot be explained succinctly by a decision tree. The
NN employs multiple layers of various operations applied to the image pixels
to achieve the recognition. This cannot be described by simple clauses. Pat-
terns are the regularities that reduce the KC, while constraints on parameters
do not reduce the KC. Consider the set Sb of the rectangles of a certain size
and color. An explanation for Sb is K-composed of 3 optimal variables: the rect-
angular shape, the size and the color. The variables can be extracted without
increasing the KC. The first one describes the pattern. The second and third are
constraints. Such constraints can be formed by conditions on the input vari-
ables, but also conditions on the parameters of the patterns. Conditions can
be described succinctly by a decision tree or rules. Patterns, however, cannot.
To overcome this challenge, [18] propose to use decision trees containing proto-
types that are representative for a set of similar instances. By checking against
the prototype in the node it is possible to classify a case using more abstract
concepts.

8 Conclusion

How abstract should variables in explanations be? We have proposed an account
based on Kolmogorov complexity which, although not computable, gives us a
formal definition of optimal degrees of abstraction. As shown in Sect. 5, our
formal definition handles the examples in the philosophical literature well. We
have done so by first defining the notion of a uniform, i.e. undecomposable,
variable. Which of these uniform variables is optimal for a given explanation
is then based on what variables can be combined to characterize the patterns
of dependence captured by the explanation with minimal Kolmogorov complex-
ity. Ultimately, therefore, we approach the problem of abstraction by arguing
that optimal degrees of abstraction are those which lead to the least complex
description of the patterns and constraints in the explanation. As abstraction is
precisely meant to simplify description, we consider it a natural link to say that
optimal degrees of abstraction are those which optimally reduce the complexity
of descriptions.
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