
 
 

Delft University of Technology

State estimation in water distribution system via diffusion on the edge space

Kerimov, Bulat; Yang, Maosheng; Taormina, Riccardo; Tscheikner-Gratl, Franz

DOI
10.1016/j.watres.2024.122980
Publication date
2025
Document Version
Final published version
Published in
Water Research

Citation (APA)
Kerimov, B., Yang, M., Taormina, R., & Tscheikner-Gratl, F. (2025). State estimation in water distribution
system via diffusion on the edge space. Water Research, 274, Article 122980.
https://doi.org/10.1016/j.watres.2024.122980

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.watres.2024.122980
https://doi.org/10.1016/j.watres.2024.122980


State estimation in water distribution system via diffusion on the 
edge space

Bulat Kerimov a,* , Maosheng Yang c , Riccardo Taormina b,1 , Franz Tscheikner-Gratl a,1

a Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway
b Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
c Department of Intelligent Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands

A R T I C L E  I N F O

Keywords:
Water Distribution Networks
Hydraulic Simulators
Parallelization GPU

A B S T R A C T

The steady state of a water distribution system abides by the laws of mass and energy conservation. Hydraulic 
solvers, such as the one used by EPANET approach the simulation for a given topology with a Newton-Raphson 
algorithm. However, iterative approximation involves a matrix inversion which acts as a computational 
bottleneck and may significantly slow down the process. In this work, we propose to rethink the current approach 
for steady state estimation to leverage the recent advancements in Graphics Processing Unit (GPU) hardware. 
Modern GPUs enhance matrix multiplication and enable memory-efficient sparse matrix operations, allowing for 
massive parallelization. Such features are particularly beneficial for state estimation in infrastructure networks, 
which are characterized by sparse connectivity between system elements. To realize this approach and tap into 
the potential of GPU-enhanced parallelization, we reformulate the problem as a diffusion process on the edges of 
a graph. Edge-based diffusion is inherently related to conservation laws governing a water distribution system. 
Using a numerical approximation scheme, the diffusion leads to a state of the system that satisfies mass and 
energy conservation principles. Using existing benchmark water distribution systems, we show that the proposed 
method allows parallelizing thousands of hydraulic simulations simultaneously with very high accuracy.

1. Introduction

Hydraulic simulations are an important tool for designing, man-
aging, and controlling of water distribution systems (WDSs). Typical 
challenges that are approached by applying hydraulic simulations 
include real-time control (Mala- Jetmarova et al., 2017), district 
metered area (DMA) sectorization (Burrows et al., 2000), and vulnera-
bility assessment (Klise et al., 2017). Frequently the output of a hy-
draulic simulator is coupled with an optimization algorithm to obtain 
the best solution among a multitude of alternative scenarios (Bello et al., 
2019). Scenarios are evaluated via steady state simulations (or extended 
period simulations of steady states), yielding pressures at nodes, and 
flow rates in pipes based on known hydraulic head boundary conditions 
and expected water demands. Producing these steady states one by one, 
however, can be computationally costly (Garzón et al., 2022).

The estimation of a steady state is conventionally approached using 
linear theory (Todini and Rossman, 2013) or the well-established Global 

Gradient Algorithms (GGA) based on the Newton-Rhapson method 
(Todini and Pilati, 1988). To be physically plausible, the solution of the 
simulator must satisfy both, mass and energy conservation laws. How-
ever, the computational bottleneck arises from the costly matrix in-
versions employed by these solvers. Some of the previous works propose 
to approximate the matrix inversion, for example with an artificial 
neural network via algorithm unrolling (Solà Roca, 2023). Other ap-
proaches use simplified models, either by replicating the response of a 
hydraulic simulator (Kerimov et al., 2023; Xing and Sela, 2022) or using 
reduced models (Shamir and Salomons, 2008). An alternative algorithm 
based on cellular automata showed significant speed-ups of the GGA 
algorithm on field-programmable gate arrays (FPGAs) (Suvizi et al., 
2023). However, FPGAs are not widely adopted due to power and 
hardware cost.

The key advantage of computational circuits like FPGAs and GPUs 
stems from the ability to efficiently parallelize vectorized operations and 
matrix multiplications. Parallelizing computation within a single 
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simulation is often referred to as fine-grained parallelization, and more 
details about it can be found in Burger et al. (2016). By identifying and 
parallelizing the computational bottlenecks, i.e. linear solvers and 
exponentiation in the pipe headloss calculation, they achieved a roughly 
30% more speed increase (Guidolin et al., 2012). Although GPUs 
showed a potential for computational gains for very large networks 
(Crous et al., 2012), the speed-up of a single simulation is still limited.

Instead, we propose to focus on achieving speed-ups through coarse- 
grained parallelization, which inherently involves executing multiple 
simulation tasks in parallel. Unlike fine-grained parallelization, which 
optimizes the performance of individual computations, coarse-grained 
parallelization addresses the simultaneous evaluation of multiple 
steady states. The key advantage of this approach lies in the computa-
tional savings obtained by avoiding the sequential execution of simu-
lations. One effective strategy for coarse-grained parallelization is 
leveraging multiple CPU cores to perform concurrent simulations, 
particularly during calibration tasks in urban water systems (Mair et al., 
2014). However, the scalability of CPU-based parallelization is inher-
ently limited by the number of available cores. Tasks such as quantifying 
uncertainty using Monte Carlo sampling methods (Pérez et al., 2015; 
Steffelbauer and Fuchs-Hanusch, 2016) or evaluating the fitness of a 
population in optimization problems (Dragan A. Savic and Jonkergouw, 
2009) often require thousands of simulations to be performed simulta-
neously. In such scenarios, coarse- grained parallelization can signifi-
cantly reduce computational time, making it a practical and efficient 
solution for circumventing computational load.

Further computational gains can be achieved by leveraging a sparse 
topology of WDSs. As WDSs can be represented as graphs, where every 
junction is a node and every pipe is an edge of the graph, one can 
represent their connectivity with sparsely connected matrices (e.g. ad-
jacency or Laplacian). These matrices can be represented in a condensed 
form, such as compressed sparse columns, coordinate lists, and others. 
Modern GPUs can perform a multitude of parallel sparse matrix multi-
plications, offering significant potential for faster computation (Yang 
et al., 2018; Yan et al., 2017). Accordingly, WDSs’ topologies expressed 
in sparse matrix form via adjacency or Laplacian matrices enable GPU 
acceleration for Graph Signal Processing (GSP) to perform state esti-
mation (Shi et al., 2018; Zhou et al., 2022).

GSP is a framework for processing data defined on graphs, where 
signals are associated with the nodes or edges of a graph. By multiplying 
a Laplacian matrix with a vector of node signals (for example, pressure 
on nodes), the signal is diffused, and values from neighboring nodes are 
mixed, similar to heat diffusion in Euclidean space (Bai and Hancock, 
2004). The signal on the edges can be of similar or even greater 
importance. Recent applications, for example, leveraged the diffusion of 
the edge signal to classify graphs (Aktas and Akbas, 2021), synchronize a 
dynamical system (Gambuzza et al., 2021), and identify consensus on a 
networking structure (DeVille, 2021; Ziegler et al., 2022). Previous 
works clearly showed the benefits of edge-centered representation in 
metamodeling of the hydraulic simulator using GNNs, as such formu-
lation inherently incorporates mass conservation (Kerimov et al., 2024).

Based on these premises, we propose a novel GPU-accelerated al-
gorithm for state estimation in WDS based on edge-based diffusion with 
boundary conditions of demands and reservoir heads. We formulate the 
problem in the edge space as this inherently incorporates the principles 
of mass conservation governing WDSs. By including the loop connec-
tivity in the formulation we similarly integrate energy conservation law. 
The iterative algorithm adjusts the flowrates at each step according to 
the errors in mass and energy conservation, until it converges. After 
convergence, pressures are reconstructed from headlosses by traversing 
the network’s spanning tree from multiple nodes with fixed head (e.g., 
reservoirs). By leveraging efficient sparse matrix multiplication and 
aggregation on GPUs, the proposed approach allows the concurrent and 
highly accurate estimation of a multitude of steady states with different 
boundary conditions at a fraction of the computational costs.

The rest of the paper is organized as follows: in the method section, 

we first introduce the diffusion process, adapt it to the edge space of a 
graph, and show how to rephrase a problem of steady-state estimation as 
a diffusion equation. We support the findings by showcasing the 
convergence patterns on different available benchmarking networks in 
the open literature and evaluate the speed-ups due to parallelizations. 
Subsequently, we highlight the main findings and hint at possible di-
rections for future work.

2. Method

The section starts with the mathematical formalization of steady 
state estimation in WDS derived from key physical laws (Section 2.1) 
and describes input parameters. It then outlines three main steps of the 
state estimation method.

The overview of the method is presented in Fig. 1. As we base the 
state estimation on the edge space, we first define the connectivity of the 
edges via common nodes and loops and show the relationship of the 
connectivity with conservation laws. To incorporate the nodal input 
values, such as demands and reservoir heads, we augment the WDSs 
with virtual edges (Section 2.2) that are incidental to real nodes. These 
edges are assigned with the values of corresponding real nodes and are 
involved in the diffusion process as boundary conditions (BCs). Using the 
edge-based representation and BCs, the second step estimates the 
flowrates and headlosses with a diffusion on the edge space (Section 
2.3). After a description of the method, the theoretical conditions for 
stability are presented (Section 2.4). Finally, the pressures on the nodes 
are derived based on the calculated headlosses, (Section 2.5).

2.1. Problem statement

We start with an oriented graph representation of a WDS, G = G(V ,

E ). The graph consists of a vertex set V with the subset V c ⊆ V of Nc 
consumption nodes and the subset V r ⊆ V of Nr reservoirs, and the set 
of edges E with total E edges. Within graph G we additionally highlight 
the set of cells C which are also named loops within the WDS research 
community. An example of a cell is depicted in Fig. 2. These are different 
from the self-loops in graph theory, which refer to the connections of 
nodes to themselves. There are in total C cells that are oriented e.g. 
clockwise or anticlockwise. For a given oriented cell c, we can denote the 
set of edges it comprises as E c . Thus, E c ⊆ E , and each edge e ∈ E c 

belongs to the oriented cell c. Tanks are not considered in this 
representation.

Next, we define the incidence matrices as portrayed in Fig. 2 The 
incidence between the nodes and edges of a graph can be packed in a 
matrix of lower incidence B1 ∈ RN×E, where bij = 1 if an edge j is pointed 
towards the node i. If the edge is leaving the node i then bij = − 1. Finally, 
if the edge is not incident to the node the bij is zero. Similarly, we can 
define connectivity between edges and cells with a matrix of upper 
incidence B2 ∈ RE×C . Here, bij= 1 if the orientation of an edge i and a 
corresponding cell c coincide and bij = − 1 if their orientations are 
opposite, and bij = 0 otherwise. The example is presented in Fig. 2.

We define as nodal inputs (or nodal signal) as known demands q ∈
RNc and known heads pr ∈ RNr . The vector pc ∈ RNc represents the 
desired heads on consumption nodes. Together they comprise the vector 
of heads p.

The desired output f ∈ RE represents the vector of flowrates. Negative 
values in the vector indicate that the true direction of the flow is 
opposite to the selected orientation. The orientation of edges and cells is 
chosen arbitrarily. We do not consider valves in this representation.

2.1.1. Mass conservation
Mass conservation on the node u simply states that the flow of 

incoming water equals to the sum flow of the outflowing water (i.e. the 
demand q(u)). In matrix form, it is characterized as follows 

B1f = q (1) 
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Conceptually B1 is a linear operator that measures the divergence of 
the edge flow on nodes. Divergence of an arbitrary edge signal on the 
node u is the summation of edge values on the incidental edges with 
their corresponding orientations (Lim, 2020) This translates the edge 
signal to node space 

(divf)(u) =
∑

e≡(v,u)∈E

f(e) −
∑

e≡(u,v)∈E

f(e) (2) 

Subsequently, B1f=0 the edge flow is divergence-free, which hap-
pens when the inflow to the node is equal to the outflow while demands 
or reservoir inflows are equal to zero. By principle, divergence-free flow 
is mass conservative.

The divergence-free condition can be reformulated with a lower 
Laplacian (or down-Laplacian) Ldown into 

B⊤
1 B1f = Ldownf = 0 (3) 

The lower Laplacian is a result of a matrix multiplication of a 
transposed lower incidence with itself. It denotes the the connectivity of 
the edges via common nodes. The diagonal entries of Ldown indicate the 

total number of nodes that an edge is incidental to which is always 2. If 
two edges are directed towards the same node (both "heads" converge on 
the node) or if their "tails" originate from the same node, the entry is +1, 
otherwise, the entry is − 1. The example of Ldown can be found in Figure, 
along with the lower incidence matrix. Lower Laplacian is widely to-
pological data analysis and signal processing, particularly when dealing 
with data defined on the elements of graphs and higher-order structures 
(Schaub et al., 2020; Yang et al., 2022). Likewise, the matrix can be used 
as a measure of the divergence.

2.1.2. Energy conservation
The energy balance states that the difference in heads on adjacent 

nodes is a function of flowrates 

h = B⊤
1 p = Φ(f) (4) 

where h ∈ RE is the energy loss in the pipe, and Φ is the empirical 
relationship between flowrates and headlosses. Within a pipe e the 
relationship takes the following form 

Fig. 1. Main steps of the steady state estimation via edge diffusion.

Fig. 2. An example of lower- and upper incidence matrices, Laplacian matrices, and connectivities via common nodes and common cells.
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h(e) = κe⋅ |f (e)|a ⋅ sign(f (e)) (5) 

where κ ∈ RE is the resistance coefficient, and a is a flow exponent (e.g. a 
equals 2 for Darcy-Weisbach and 1.852 for Hazen-Williams). The 
resistance coefficient of a pipe e in Hazen-Williams formulation is 
calculated as follows 

κe =
10.67⋅le

r1.852
e d4.870

e
(6) 

Here, l, d, and r refer to pipe lengths, diameters, and roughnesses, 
respectively. A reverse relationship is denoted with Φ− 1 and takes the 
following form 

f(e) =
(
(κe)

− 1⋅|h(e)|
)1

a⋅sign(h(e)) (7) 

The law of energy conservation states that the sum of energy losses 
within a loop c (with respect to their orientation) is equal to 0. The 
operation of aggregation of the edge signal around the edges that forms a 
cell is denoted as curl 

(curlh)(c) =
∑

e⊂c
h(e) = 0 (8) 

In fact, the upper incidence BT can act as a curl operator. Using 
matrix notation, the relationship takes the following form 

B⊤
2 h = 0 (9) 

Analogously to Equation 3 The energy conservation can be expressed 
with an upper Laplacian (or up-Laplacian matrix, i.e. 

Luph = B2B⊤
2 h = 0 (10) 

The upper Laplacian denotes the connectivity between edges via 
common cells. The diagonal entries of Lup indicate the number of cells to 
which a given edge belongs. The off-diagonal entries indicate whether 
two edges are part of the same cell. If two edges share a cell and have 
aligned orientations (both contributing consistently to the boundary of 
the cell), the entry is +1. If their orientations oppose each other within 
the shared cell, the entry is − 1.

2.2. Network augmentation

In WDS topology, the input parameters, such as heads and demands, 
are defined on the nodal space. These values act as BCs and drive the 
steady state estimation, so they must be transposed to the edge space. 
For that reason, we augment the network with virtual sinks incidental to 
consumption nodes and incorporate nodal demands. Similarly, we 
connect reservoirs with virtual reservoir connectors to account for dif-
ferences in reservoir piezometric heads. After the augmentation, known 
demands and head differences can be represented as a known part of f 
and h correspondingly.

2.2.1. Virtual sinks
As illustrated in Equation 1, one must consider nodal water con-

sumption for mass conservative flow. To translate them to the edge 
space we create a set V v of N virtual nodes and couple every real node 
with the corresponding virtual node, as visualized in Fig. 1a. Thus the 
edges are augmented with a set E s, where E s= {(u, uv) | u ∈ V and uv ∈

V v}. The demands on the corresponding real node u are assigned to a 
flowrate on the edge e = {u, uv}. 

f (e) = q(u), e ≡ (u, uv) ∈ E s (BC) (11) 

If we consider a demand-driven simulation, the flowrate on virtual 
sink values becomes a boundary condition for the state estimation on the 
edge space. Here we assume that all consumed water flows through 
those sinks.

2.2.2. Virtual reservoir connectors
In a demand-driven simulation in a network with a single reservoir, 

reservoir heads affect pressures but do not influence flowrates or 
headlosses. As our method derives pressures based on the headlosses, 
this step is not required for singe-reservoir networks. However, in sce-
narios involving multiple reservoirs, the heads of the reservoirs (spe-
cifically, the differences in heads) impact the pressures, flowrates, and 
headlosses altogether.

Similarly to demands, reservoir heads are nodal signals and must be 
translated into edge signals. We introduce a boundary condition for 
energy conservation (e.g. known reservoir heads) with virtual reservoir 
connectors for water networks with multiple reservoirs. We identify 
pairs of reservoirs with the shortest graph distance and connect them 
with a set of edges E r, with Nr − 1 virtual connectors in total. Each new 
edge will now be considered as a boundary condition to the energy 
balance. Essentially, it encodes the difference in the heads between 
virtually connected reservoirs, i.e. 

h(e) = p(v) − p(u), e ≡ (u, v) ∈ E r(BC) (12) 

The same relationship in vector format takes the form 

h(r) =
(
B(r)

1
)⊤

pr (13) 

where 
(
B(r)

1
)⊤

∈ RNr − 1× Nr is the lower incidence matrix between res-
ervoirs and the virtual reservoir connector. Vector h(r) is now a part of h 
defined on virtual reservoir connectors. Schematic depiction can be 
found in Fig. 1a, where the connectors are denoted with a dashed line.

Since each reservoir is connected to the rest of the system via a single 
pipe, it is usually not incident to any cell. Thus the projection B⊤

2 h would 
not include the reservoir heads and their difference. It becomes possible, 
once we introduce a virtual connection. Each virtual connection in-
troduces an additional cell to the WDS. In a scenario with a single 
reservoir network, this step can be omitted as the reservoir inflow can be 
assumed to be the sum of demands and act as a BC for mass conservation.

2.3. State estimation as a diffusion on the edge space

Following up, this section describes the second step of the method. It 
begins with a general description of the diffusion equation on the 
euclidean space and continues with the formulation of state estimation 
of WDS as a diffusion on the edge space.

2.3.1. Diffusion recap
Let us consider a diffusion process of a certain function u(x,t) on a 

one-dimensional Euclidean space x. There, the temporal change of u 
within some medium is proportional to the spatial variability, defined 
with a Laplacian Δ. 

∂u(x, t)
∂t

= − Δu(x, t) (14) 

Eventually, this process reaches a steady state, which is character-
ized by 

∂u(x, t)
∂t

= 0 (15) 

The solution to PDEs is often approximated by numerical procedures. 
The most straightforward approach is the forward Euler discretization: 

ut+1←ut − τΔut (16) 

where τ is a selected timestamp. In such a setting the diffusion process 
describes a minimization of a Dirichlet energy with a gradient descent (for 
more details refer to Calder (2020)). From now on, we refer to the dis-
cretization of the diffusion process as gradient descent. That allows to 
accelerate convergence by augmenting Equation 16 with the momentum 
term (Polyak, 1964; Calder and Yezzi, 2019): 
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ut+1←ut − τΔut + β(ut − ut− 1) (17) 

Here, the second term adds the difference from a previous step with a 
weighting coefficient β, usually taken between 0 and 1, and averages the 
gradients over time.

2.3.2. Flowrate and headloss reconstruction as diffusion on the edge space
Both Ldown and Lup serve as discrete equivalent of the Laplacian 

operator. This analogy led to the construction of the diffusion process in 
the edge space (Schaub et al., 2020; DeVille, 2021). The steady-state 
condition defined in Equation 15 thus can be expressed with discrete 
laplacians. Moreover, they are directly associated with the conservation 
laws, as we show in Sections 2.1.1 and 2.1.2. The connection between 
the diffusion process and the conservation laws thus provides a 
physically-based way to estimate the steady state of a WDS.

We can now formulate the system of differential equations that 
describe the state estimation of a Water Distribution System (WDS). 

∂f(e, t)
∂t

= − Ldownf(e, t)

∂h(e, t)
∂t

= − Luph(e, t)

h(e, t) = κe⋅|f(e, t)|a⋅sign(f(e, t)) e ∈ E (18) 

f(e, t) = qe e ∈ E s 

h(e, t) = p(v) − p(u) e ≡ (u, v) ∈ E r 

These equations describe the evolution of the steady state. The vec-
tors f(t) and h(t) are adjusted according to the errors in mass and energy 
conservation and gradually move to the desired state. The third equation 
ensures that the vectors adhere to the Hazen-Williams relationship. The 
desired solution can be expressed as 

f∞
= lim

t→∞
f (t), h∞

= lim
t→∞

h (t)

Similar to the condition defined in Equation 15, the steady state of 
such diffusion is characterized by the conditions Luph∞

= 0 and LdownF∞ 

= 0.
The last two equations are the BC of the diffusion. When WDS is 

equipped with a single source, the reservoir outflow can be calculated as 
a sum of demands and used as a BC. However, in multiple reservoir 
scenarios, the outflow is unknown and must be estimated as a part of the 
diffusion. The divergency-free condition on virtual nodes that are 
coupled with the reservoirs will thus enforce a zero flow. To generalize 
the approach beyond a single source, the Ldown is constructed from the 
modified incidence B1. There, the corresponding entries bij where i ∈ V r 

and j ∈ E s are equal to zero. This adjustment releases the divergence- 
free condition from the ends of the virtual sinks that correspond to the 
reservoir nodes and allows for estimating the inflows. As a result, the 
inflow is calculated based on the mass balance and the energy balance.

2.3.3. Iterative algorithm
Similarly to a one-dimensional case in Equation 17, the edge-based 

diffusion can be approximated with a numerical scheme. Thus, we 
perform the state estimation with two simultaneous gradient descents: 
the first one using the lower and the other with the upper Laplacian. We 
denote these iterative approximations as lower and upper gradient de-
scents correspondingly. Each step of gradient descent includes mo-
mentum, similar to Equation 17 and enforces a BC from Equations 11 
and 12. The BCs are ensured before every gradient step by substituting 
the values with q and h(r) at virtual sinks and headlosses on reservoir 
connectors, denoted with f(v) and h(v) respectively. The gradient descents 
are connected with each other with frictional head loss relationship Φ 
and its reverse Φ− 1. That is, the flowrates are transformed into head-
losses after lower gradient descent. Vice-versa, the headlosses are 

transformed into flowrates after upper gradient descent. The algorithm 
is parameterized by timestep sizes (τdown and τup) and momentum co-
efficients (βdown and βup) for lower and upper gradient descents corre-
spondingly, as well as the number of lower gradient steps K.

First, the vector of flowrates f0 is initialized with zeros. The main 
loop of the algorithm begins with K steps of lower gradient descent to-
wards mass conservative flow. After that, the resulting flowrates are 
transformed into headlosses hi via Equation 5. The algorithm follows up 
with a step of upper gradient descent towards energy-conservative flow. 
The headlosses are then transformed back to flowrates, and new flow-
rates will be used as an initial condition for the next iteration. The 
pseudocode is presented in Algorithm 1. The schematic depiction and 
more information can be found in Appendix A

In the iterative algorithm described above, one of the most compu-
tationally demanding operations is the repeated multiplication of the 
sparse Laplacian matrices (Ldown and Lup) by the dense vectors of flow-
rates f or headlosses h.

These Laplacian matrices are inherently sparse, as they are derived 
from network connectivity domains where each node (or element) is 
typically connected to only a few neighbors. Such sparsity patterns 
significantly reduce the number of non-zero elements, allowing for more 
efficient memory storage and computation (see Appendix B)

2.4. Convergence and stability

The convergence and stability of the gradient descent with a constant 
timestep is dependent on the value of τ (Portaet al., 2017). The 
convergence of the discretization scheme without momentum stems 
from the condition that every iteration of Equation 16 magnifies f and by 
h less than 1, i. e. 

|I − τdownLdown| < 1 

⃒
⃒I − τupLup

⃒
⃒ < 1 (19) 

If 0 < λ1 < λ2 < ... < λmax are the eigenvalues of a Laplacian L, it is 
necessary to select the timestamp s.t. |1 – τλmax|< 1. This condition 
guarantees that iterative amplification with the Laplacian matrix will 
not lead to instability in the numerical solution process. Momentum 
introduces additional complexity to the stability and the bound must 
adhere to the following relationship (Qian, 1999) 

0 < τ <
2(1 + β)

λmax
(20) 

For a general gradient descent, a larger timestep means faster 
convergence but can lead to overshooting. The optimal timesteps, as 
well as momentum coefficients, can be identified with an optimization 
procedure.

The iterative scheme can be run infinitely, however, one can estab-
lish a stop condition based on the errors in mass and energy conserva-
tion. Ultimately, with a suitable set of parameters, it converges towards 
both mass and conservative solutions on the limit. Therefore, it is 
possible to measure convergence of the diffusion when the mean abso-
lute errors (MAE) in mass conservation over all junctions and MAE over 
all loops reaches a certain threshold, i.e. 

ϵmass =
1
Nc

⃒
⃒
⃒
⃒B(c)

1 D− 1
0 f − q

⃒
⃒
⃒
⃒ (21) 

ϵenergy =
1
C
⃒
⃒
⃒
⃒B⊤

2 D− 1
2 h

⃒
⃒
⃒
⃒

where B(c)
1 ∈ RNc×E denotes incidence matrix only for consumption 

nodes. Both mass and energy conservation laws are now normalized 
with diagonal matrices of node and cell degrees, D0 ∈ RNc×Nc and 
D2 ∈ RC×C respectively, to obtain the mean errors. We chose thresholds 
for εmass as 10− 2 L/s and for εenergy as 10− 1 m to balance between stability, 
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speed of the convergence, and the precision. Depending on the required 
accuracy, the error threshold can be adjusted.

2.5. Hydraulic head reconstruction

Finally, the obtained h∞ is used to derive the heads on the nodes of 
the system. Once the approximated values of head losses at each pipe are 
known, the nodal heads are simply extracted by traversing the network 
from the source nodes (i.e. reservoirs) to the consumption nodes. This is 
analogous to the calculation of the shortest path from multiple sources 
on the graph via Dijkstra algorithm (Todini and Rossman, 2013; Dijk-
stra, 2022). The distance on each edge is defined by the value of head-
losses h∞. The traversal can similarly implemented within a sparse 
aggregation framework and requires up to D steps, where D is the to-
pological diameter of a network. Thus, it is performed at a fraction of the 
time of the main algorithm.

3. Experiments

3.1. Case studies

The evaluation of the method is based on several benchmark 

networks of different configurations and sizes. The main information 
about those networks can be found in Table 1. They range from small to 
large benchmarks, according to the work of Wang et al. (2015). The 
number of pipes in the WDS range from 34 (JILIN and APULIA) to 1274 
(KL) with corresponding network diameters, that is the longest shortest 
path between any two nodes in the WDS, ranging from 10 to 53. Three 
WDS feature multiple reservoirs (PES, NET-3, and MOD). The case 
studies employ the original demands and pipe parametrization from the 
.inp files. All .inp files present snapshot simulations, with the exception 
the L-Town network (Area C from Vrachimis et al. (2022)) which fea-
tures an extended period simulation of 168 hours (10000 hydraulic 
timesteps). The layout of the WDSs is displayed in Appendix C.

3.2. Parameter study

As was already stated in Section 2.4, suitable timesteps and mo-
mentum values lead to faster convergence. As the theoretical identifi-
cation of the optimal parameters is not straightforward, it is essential to 
understand the influence of the parameters on the convergence. Thus, 
we first introduce an optimization procedure for defining the optimal 
parameters. Further on, we delve deeper into the impact of timestep size. 
Lastly, we investigate the sensitivity of the optimal parameters to the 

Algorithm 1 
Iterative approximation

Table 1 
Description of water networks used in the experiments ordered by the number of pipes.

Name Network Pipes Reservoirs Cells Reference
diameter D

JILIN 10 34 1 7 Bi and Dandy (2014)
APULIA 10 34 1 11 Hall (2021)
BAK 14 58 1 16 Lee and Lee (2001)
ASnet2 14 65 1 15 Xing and Sela (2022)
PES 22 99 3 28 Bragalli et al. (2012)
L-TOWN 22 109 1 17 Vrachimis et al. (2022)
NET-3 30 119 3 23 Rossman (2016)
ZJ 26 164 1 51 Dandy (2016)
MOD 38 317 4 46 Bragalli et al. (2012)
KL 53 1274 1 334 Kang and Lansey (2012)
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change in demand inputs.

3.2.1. Parameter optimization
The optimal parameters depend on network topology. To maximize 

the benefit from the parallelization the most, one could determine the 
optimal parameters based on one or a small set of simulations. Suitable 
parameters can then be used for model-based applications that require 
evaluation of multiple simulations. Theoretically, Equation 19 de-
termines the timestep bounds for a single, uncoupled gradient descent. 
As our method involves two simultaneous gradient descents, they might 
influence or disrupt the convergence of each other. The parameter set 
consists of timestep sizes (τup and τdown), momentum coefficients (βup 
and βdown), and the number of lower gradient steps K (1,3, or 5) within 
each iteration. We propose to perform a two-stage search for the optimal 
set of parameters. During the first stage, we separately identify the real 
range of τdown and τup where the corresponding gradient descents do not 
diverge within 2000 iterations. The momentum coefficients are fixed at 
0. Once the timestep size bounds are identified, the Bayesian Optimi-
zation procedure (Nguyen, 2019) defines the best set of parameters. The 
optimization criteria evaluate the number of iterations n until 
convergence.

We selected as a convergence criterion R2 between the reconstructed 
flowrates and the one obtained from EPANET reaches 0.999. In reality, 
one would not need to run EPANET simulation and the convergence 
could be based on the conservation error conditions in Equation 21. 
However, the absolute values of errors can be specific to each network, 
thus we chose R2 in flowrates as a stop criterion in favor of simplicity 
and universality across networks.

In the edge-based formulation, the influence of friction energy losses 
on the steady state is an influential factor defining the convergence and 
speed of the edge-based algorithms (Kerimov et al., 2024). When energy 
conservation doesn’t affect the distribution of flowrates in the pipes, the 
steady state can be estimated to a large extent with lower gradient 
descent, with the upper gradient descent acting as a correction term. On 
the flip side, when the influence of energy losses is high, the flowrates 
require more correction. Pipes with high κ may indicate those cases. To 
quantify the influence, one can run the steady algorithm without the 
correction of upper gradient descent, i.e. selecting τup = 0 The energy 
losses ϵenergy|τup=0 when t → ∞ indicate the amount of influence of energy 
conservation on the solution.

3.2.2. Stability regions
It is important to understand how these parameters influence the 

convergence of the method. Thus, we visually examine the stability re-
gions for gradient descent without momentum to study parameter space. 
Specifically, we evaluate the number of steps to reach convergence (n) at 
varying τup and τdown. The analysis excludes the momentum to facilitate 
visualization in two dimensions. Furthermore, we visualize convergence 
dynamics using a selected set of sampled parameters from the stability 
regions plot to assess convergence dynamics in detail.

3.2.3. Robustness of optimal parameters under changing demands
In practical applications, water demands in WDS change continu-

ously. Ensuring that the algorithm maintains consistent performance 
across these variations is essential for its practical utility. Several 
problems of interest require finding solutions across varying demand 
conditions to tackle uncertainty, leakage detection, and sensor place-
ment (Steffelbauer et al., 2014). The next study evaluates the influence 
of varying demand patterns on the behavior of the algorithm with the 
optimal set of parameters. By investigating the convergence time in the 
context of different demand scenarios, we thus assess the robustness of 
identified optimal parameters. In the example of a week of an extended 
period simulation (EPS) of the area C of L-Town network, we identify 
optimal parameters using a single demand pattern at tH = 0, denoted as 
q0. Following up, we measure the convergence time for each hydraulic 
timestep tH with the same parameter set and visualize the results.

These dynamics are compared with the cosine similarity of the vec-
tors of q at each timestep to q0. We then select demands that correspond 
to peaks of the largest deviation in terms of n. The experiment concludes 
with the visualization of the stability regions of the pair (τdown, τup) at 
the peaks with fixed βup and βdown.

3.3. Evaluation of speed-up

This part of the experiments assesses the performance of the diffusion 
approach by measuring the clock time T needed to solve M simulations 
in a parallel batch. The result is then compared with the non-parallelized 
EPA counterpart TEPA, quantifying the speed-up S through the 
relationship: 

S =
T

TEPA 

The speedup was evaluated separately for every WDS in the case 
study. An additional measure of the batch size EM, is determined by the 
total pipes (E) multiplied by M, directly related to sparse aggregation 
performance (Yang et al., 2018). Other overhead costs related to the 
preprocessing, identification of loops, and startup are not considered in 
the scope of this work. These operations can be performed in advance 
and don’t depend on the number of simultaneous, while the constant 
overhead is not significant. For example, it is sufficient to find any cycle 
basis rather than enumerating all possible loops and computing a mini-
mum cycle basis (Alvarruiz et al., 2015). In the example of KL and 
employing implementation with networkx (Hagberg et al., 2008) the 
identification of a cycle basis takes 2⋅10− 2 seconds. We conduct two 
evaluations of parallelization capabilities. In the first setting, we sys-
tematically increase the batch size from a single network until visual 
memory usage reaches 24 GB. Throughout this increment, we record 
corresponding speed-ups S with the accuracy of R2 of 0.99 in flowrates 
and visualize them against M and EM. The parallelization is evaluated on 
a computational cluster node with 24 GB virtual memory (NVIDIA RTX 
A5000, CUDA version 12.2). The second setting involves a standard 
workstation with 2 GB of visual memory (NVIDIA T500, CUDA version 
11.4). For each network, we select M simulations compatible with the 
visual memory capacity. The algorithm runs in parallel until achieving 
convergence, indicated by R2 of 0.99 and additionally by R2 of 0.999 in 
flowrates. The implementation is coded in Python with PyTorch sparse 
matrix multiplication.

4. Results and Discussion

The section presents the results of the listed experiments and dis-
cusses the interpretations and limitations of our approach. First, we 
provide an overview of the optimal parameters for each WDS to illus-
trate their dependence on the case study. Further on, delve into the 
stability of the algorithm and discuss the robustness of the suitable 
hyperparameters to changing demands. Next, we present the results of 
the evaluation of speed-ups. Lastly, we evaluate the potential compu-
tational gains obtained from parallelization with the edge diffusion.

4.1. Parameter study

4.1.1. Parameter optimization
Table 2 showcases the obtained optimal parameters alongside the 

number of iterations n required for convergence.
The column λmax

down in Table 1 displays that the largest eigenvalues of 
Ldown are similar. At the same time, λmax

up shows a larger variety of values. 
The optimal timesteps are largely defined by eigenvalues of the Lap-
lacian. Naturally, one can observe that τup varies to a more extent than 
τdown. Traditionally, the convergence of a linear system of a form Ax =

b, such as GGA, can be gauged by the condition number. A high con-
dition number indicates sensitivity to numerical errors and potential 
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difficulties in achieving fast convergence (Burger et al., 2016). However, 
for the Laplacian matrices used here— being singular and thus having at 
least one zero eigenvalue — the condition number is effectively infinite, 
rendering it an unsuitable stability measure. Instead, we focus on the 
distribution of eigenvalues. The spacing and magnitude of these eigen-
values, particularly the largest ones, fundamentally influence how 
quickly gradient-based methods converge. Larger eigenvalues often 
necessitate smaller timesteps to maintain numerical stability, which in 
turn affects the number of iterations required for convergence (Qian, 
1999).

For all networks, the momentum term seems to benefit the conver-
gence, which agrees with the theoretical findings of Polyak (1964). 
Further comparison of minimum n without momentum is attached to 
Appendix E.1. In general, a higher K is preferable and tends to decrease 
the total number of iterations n. More examples of the influence of K are 
included in Appendix E.2.

Expectedly, smaller networks converge faster. Due to the local nature 
of matrix multiplication, the solution propagates from edge to edge, thus 
smaller networks inherently require fewer iterations to achieve 
convergence. This is consistent with the analogy of a heat diffusion 
process and its numerical approximation. Within this perspective, the 
size of a network can be perceived as the granularity of discretization of 
a non-euclidean space. As such, a grid with finer resolution inherently 
requires a higher number of iterations. This hints at the equivalences 
between different water networks and steady states from the perspective 

of topology (Levie et al., 2019).
Although smaller networks typically take fewer steps for conver-

gence, the same doesn’t hold for BAK. It stands as an outlier and requires 
significantly more steps. This network is equipped with a pipe with a 
very small diameter (and, correspondingly, high κ). The influence of the 
friction to the convergence, measured with ϵenergy|τup=0, could explain the 
slower convergence. Notably, the previous work on surrogate modeling 
with edge-based graph neural networks similarly showed lower accu-
racy on BAK network (Kerimov et al., 2024).

4.1.2. Stability regions
Following up, Figs. 3a and 3b illustrate the stability regions for 

timestep values in the example of BAK and KL respectively with zero 
momenta. BAK network presents an outlier in terms of convergence 
rates, while KL is the largest network of the case study. The area of 
divergence is denoted with grey. For a single, uncoupled gradient 
descent, a larger timestep size typically results in faster convergence, 
given the condition outlined in Section 2.4 is satisfied. However, in a 
case with two coupled gradient descent, the process becomes susceptible 
to the combination of τdown and τup. As a result, we observe a complex 
picture of stability regions in both figures. This sensitivity emerges 
because the steps of lower and upper gradient descents can be strong 
enough to disrupt the convergence of each other. The border between 
the convergence and divergence shows a non-linear shape. In the 
example of BAK, the border appears to be concave towards higher τup. 

Table 2 
Optimal timesteps, momenta, largest eigenvalues, number of lower gradient descents K, and the total number of iterations n required for convergence obtained from 
the Bayesian optimization.

Name τup τdown βup βdown λmax
up λmax

down K ϵenergy|τup= 0=0 n

APULIA 5.6 ⋅ 10− 3 0.14 0.53 0.29 2.5 ⋅ 101 7.2 5 9.0 ⋅ 100 30
JILIN 3.0 ⋅ 10− 2 0.20 0.44 0.77 7.6 ⋅ 100 7.3 5 8.1 ⋅ 100 10
BAK 5.4 ⋅ 10− 4 0.04 0.18 0.10 5.1 ⋅ 101 7.7 3 5.2 ⋅ 102 160
ASnet2 2.0 ⋅ 10− 2 0.27 0.62 0.48 8.7 ⋅ 101 7.5 3 5.1 ⋅ 10− 3 20
PES 1.7 ⋅ 10− 3 0.27 0.69 0.24 9.3 ⋅ 101 7.8 5 2.6 ⋅ 101 110
L-TOWN 9.1 ⋅ 10− 3 0.44 0.44 0.74 1.4 ⋅ 102 7.2 3 1.0 ⋅ 10− 3 20
NET-3 1.5 ⋅ 10− 3 0.20 0.47 0.51 4.3 ⋅ 101 7.3 5 5.2 ⋅ 10− 2 300
ZJ 1.8 ⋅ 10− 2 0.28 0.87 0.81 8.5 ⋅ 101 8.0 5 8.0 ⋅ 10− 2 15
MOD 7.9 ⋅ 10− 4 0.24 0.40 0.10 1.1 ⋅ 103 7.7 5 1.0 ⋅ 100 430
KL 5.9 ⋅ 10− 4 0.28 0.79 0.69 1.7 ⋅ 103 7.7 5 1.1 ⋅ 10− 1 200

Fig. 3. Stability regions. Convergence is denoted with MAE in mass conservation of 10− 2 L/s and MAE in energy conservation of 10− 3 m.
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The same border in the example of KL is predominantly convex, with the 
exception of the upper right corner. The parameter space holds a “sweet 
spot” with the fastest convergence near the divergence areas. Notably, 
the shape, size, and curvature of the area of the fastest convergence 
varies across WDSs. In Appendix D we include a heuristic procedure to 
identify the area of the fastest convergence without running Bayesian 
optimization.

For a better understanding of the algorithm and the influence of τ, we 
visualized the convergence dynamics on the example of BAK in terms of 
errors of mass and energy conservation. Based on the stability regions, 
we sampled the several pairs of timestep sizes by firstly varying τdown 
and fixing τup. The visualization in Figs 4a and 4b shows that changes in 
the τdown noticeably affect the dynamics of both gradient descents. Vice 
versa, we illustrated the change in the dynamics when varying only τup 
and fixing τdown in Figs. 4c and 4d. The figures show that increasing the 
upper timestep size mainly impacts the dynamics of the upper descent, 
while mass conservation dynamics are barely affected. This suggests that 
the lower gradient descent plays a larger role in the convergence of the 
overall algorithm.

In the first 150 iterations, both conservation errors show relatively 
volatile behavior. Notably, all figures show an exponential decrease in 
conservation errors after stabilizing, indicating effective convergence. 
However, as the convergence progresses, a diminishing return on the 
accuracy becomes more visible. Achieving very small errors in mass and 
energy conservation may incur higher computational costs and vice 
versa. Thus, the proposed algorithm provides a flexible framework to 
control the trade-off between accuracy and speed.

4.1.3. Robustness of optimal parameters under changing demands
The previous experiments demonstrated the effect of the selected 

parameters on the convergence of the algorithm based on fixed and 
snapshot simulations. However, real applications often consider alter-
native demand patterns evaluated in parallel. The varying demand can 
affect the optimal set of parameters and the number of steps until 
convergence n. This section explores the stability of optimal parameters 
amid these changes. We selected the demand patterns from EPS of area C 
of L-Town as an example and illustrated the convergence dynamics with 
fixed selected parameters. By examining n one-by-one, we are able to 
study the robustness in detail. The optimal parameter set was identified 
based on the demand pattern at the beginning of hydraulic time q0. 
Consecutive q are compared with q0 with a cosine similarity: 

COS similarity(q,q0) =
q⋅q0

||q|| |
⃒
⃒
⃒q0|

⃒
⃒
⃒

(22) 

Despite minor deviations, primarily occurring during periods of low 
cosine similarity with the q0 (Fig. 5a), the n remains within the bounds 
of 23 iterations. Fig. 5b shows additional visualizations of stability re-
gions that correspond to hydraulic timestamps with the largest deviation 
in convergence time n. The stability regions are visualized similarly to 
the setting in Section 4.1.2 within bounds τdown = [0.25, 0.60] and τup =

[0.005, 0.013], while the momentum coefficients are the same as 
identified at q0. The figures illustrate that the stability regions change 
shape with changing demands, along with the position of respective 
optimal pairs (τdown, τup). The momentum seems to add further 
complexity to the shapes and border of the stability regions. The visu-
alization of the stability regions without momentum can be found in 
Appendix E.2. These findings suggest, that the optimal parameters may 
depend on the demand patterns. One may consider this influence during 
the optimization procedure, for example, by employing several data 
points for finding balanced optimum. The data points can be selected 
based on the least cosine similarity. The number of recommended points 
depends on the application. For example, during the uncertainty esti-
mation, the optimal points can be identified on a single simulation. If the 
task assumes large deviations in demand patterns, or the steady state is 
influenced by pipe friction, it is recommended to optimize based on a 
larger number of simulations. Based on the example in Fig. 5a, one may 
select simulations with the least similar demand patterns. The optimi-
zation can be likewise performed in parallel.

4.2. Evaluation of speed-up

Figs. 6a and 6b illustrate computational gains against the number of 
simultaneously evaluated simulations in a batch (M) and the total 
number of pipes in a batch (EM), respectively. These experiments were 
carried out on a computational cluster node with 24 GB visual memory. 
Until a certain point number of pipes in a batch, the depicted relation-
ship is largely linear and the clock time T for running thousands of 
parallel simulations remains constant.

Therefore the algorithm provides a linear speedup, however, this 
behavior changes as EM reaches 105 (see Fig. 6a) for every case study. 
Beyond this threshold, the average time per additional simulation equals 
that of EPANET, indicating a diminishing return with an increasing 
number of EM. The core limitation is attributed to the performance of 
sparse aggregation, as detailed in Yang et al. (2018). The break-even 
point between EPANET and the diffusion method is determined where 
the speed-up intersects the horizontal line of speed-up S = 1. For ZJ, 
L-TOWN, ASNET2, KL, and APULIA, our method achieves convergence 
at a similar or faster pace than EPANET. Benefits for the remaining cases 

Fig. 4. Convergence dynamics at sampled timesteps without momentum on the example of BAK. Top figure shows dynamics at increasing τdown with fixed τup =
2.90 ⋅ 10− 2. Bottom figure shows dynamics at increasing τup with fixed τdown = 2.13 ⋅ 10− 3.

B. Kerimov et al.                                                                                                                                                                                                                                Water Research 274 (2025) 122980 

9 



become evident in problems that need at least 10-20 parallel 
steady-state evaluations.

In the second set of findings, we visualize the speed-ups achievable 
on a typical PC with 2 GB of GPU memory for single and multiple 
reservoir networks. The relationship between pipe count and speed-up S 
= 1 is further analyzed in Fig. 7. We witness a strong correlation be-
tween pipe count and S in single-reservoir networks. Smaller networks 
exhibit the most significant gains, achieving speeds several thousand 
times faster. In contrast, the parallelization on multi-core CPUs tends to 
yield more substantial speedups as network size increases, at least in the 
case of artificial networks (Burger et al., 2016). This commonly occurs 
because fine-grained parallelization on CPUs amortizes the overhead of 
synchronizing numerous small work units more effectively when those 
units are part of a larger, more computationally intensive network. 
Unlike the works on CPU parallelization, our approach focuses on 

coarse-grained parallelization. The benefits of our approach are corre-
lated with the number of simulations that can be evaluated simulta-
neously in the batch of simulations.

Notably, attaining a marginally higher accuracy of 0.999 in R2 for 
flowrates takes at least twice as long as achieving an accuracy of 0.99. 
Reaching the same accuracy in terms of headlosses requires comparable 
time for most networks. However, in the case of KL, the accuracy of 
headlosses is limited to R2 of 0.995, possibly due to the larger size of the 
network. Multiple-reservoir networks experience less parallelization 
benefit, as the reservoir outflows are not considered known and are not 
used as boundary conditions (see Section 2.2.1). It is also important to 
acknowledge that EPANET iterates using GGA until very tight tolerances 
in mass and energy errors are met, ensuring highly accurate solutions 
but increasing computation time. If one is willing to accept slightly 
larger errors (e.g., by halting at an R2 of about 0.999 instead of an even 

Fig. 5. Robustness of optimal parameters under changing demand patterns. Fig. 5a compares the number of steps until convergence (t) with the cosine similarity 
between q and q0. Figure 5b depicts stability regions in terms of n (capped at 25) and within bounds τdown = [0.25, 0.60] and τup = [0.005, 0.013]. The momentum 
values are equal to the ones identified at q0.

Fig. 6. Analysis of speed-ups with respect to batch size in terms of EM (left) and M (right). The evaluation is performed on the computational cluster node with 24 GB 
GPU memory.
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more stringent value), this can reduce the number of GGA iterations 
needed. In our tests, such a reduction in required iterations generally 
resulted in about a twofold increase in speed for most networks. For the 
ZJ network, speedups of around 30% were observed. Nonetheless, edge- 
based diffusion still delivers substantial parallelization capabilities, 
resulting in a minimum tenfold acceleration of calculations.

4.3. Limitations

In comparison to GGA, our method presents a marginally lower ac-
curacy, as GGA converges towards an energy- conservative solution 
while preserving mass conservation at each iteration. Thus, the GGA 
provides a more precise solution. Additionally, it must be noted that the 
speed-ups present a best-case scenario. The optimal parameters were 
selected based on the demands from .inp file. However, the model-based 
application may require state estimation with adjusted demands. As 
visible from the experiment on robustness, the change in demands can 
slightly affect the minimal n and, therefore, the convergence speed. Still, 
parallelization via diffusion allows the evaluation of thousands of sim-
ulations in parallel. Our algorithm presents a further potential for faster 
estimation by using a faster sparse aggregation frameworks, e.g. JAX 
(Bradbury et al., 2018).

In this work, the method did not include additional hydraulic com-
ponents, e.g. tanks, valves and pumps. Since the flowrates are estimated 
at each hydraulic timestep, the representation of tanks can be included 
similarly to the implementation in EPANET. While flowrate is a key 
characteristic in determining the operating efficiency of the pumps, 
edge-based diffusion may then be more accurate in identifying the 
operational point of a pump. Mechanical energy, contributed into the 
system via the pump can be incorporated into the energy balance.. It is 
additionally possible to incorporate some of the flow-dependent valves 
e.g. check-valves or flow-control valves the same way as in EPANET. In 
our model, they will operate as a boundary condition, similar to the 
demand values. Implementing pressure-dependent valves (e.g. PRV, 
PSV, and others) can be done with additional virtual connections or 
intermediate pressure reconstruction.

The first option is to build additional virtual connectors between PRV 
or PSV and the node with a known head (e.g. reservoir), similar to how 
virtual reservoir connectors link 2 known heads. The pressure at the 
valves can be calculated based on the difference between the known 
head and the predicted h. (Alvarruiz et al., 2015)

The second option assumes intermediate pressure reconstruction in 
the whole network (or at nodes of interest), by traversing a path of the 
shortest distance or minimal spanning tree (Todini and Rossman, 2013) 
with predicted h. A similar strategy was employed in the work on sur-
rogate models for WDSs (Ashraf et al., 2024). The intermediate calcu-
lation of pressures on every junction will allow for modeling 
pressure-driven analysis, pressure-dependent valves, and emitters.

5. Conclusion

The work posed the steady state estimation as a diffusion process on 
the edge space of a graph. Approximation of the diffusion process with 
an iterative scheme with momentum leads to both mass and energy- 
conservative steady state, presenting a novel approach to hydraulic 
solving. Parallelizable on GPU, the method drastically decreases the 
required time for evaluation, as was shown in a multiple case studies. 
Thousands of hydraulic simulations can be evaluated with nearly con-
stant time. With the continuous development of graphical hardware and 
corresponding computational frameworks (e.g. JAX), we anticipate that 
our method will achieve further computational gains. The study addi-
tionally offers an optimization procedure for determining the optimal 
set of parameters that lead to the fastest convergence. The set is mostly 
defined by the topology and pipe parameterization, to a much lesser 
extent, by the demand values.

Current applications include evaluation of the model response to the 
uncertainty of demands, model-based leakage detection, sensor place-
ment, and the analysis of sensitivity to demands. Ensuring the robust-
ness of the optimal parameters to the changes in pipe parameterization 
will enable the majority of model-based design, optimization, and cali-
bration problems.

Reformulating state estimation as a diffusion process presents several 
opportunities. Firstly, it allows studying the problem from the 
perspective of convex optimization and differential equations. As such, 
it opens the way for applying multi-step methods (e.g. Runge-Kutta) and 
implicit iterative methods to provide an additional speed-up. These 
iterative schemes are known to be more stable than the forward Euler 
scheme and require fewer iterations to reach convergence, benefiting 
cases like BAK. Moreover, a study on different initial conditions and loop 
identification methods is a promising direction for further improvement. 
Secondly, our framework can aid in studying the analogy between the 
size of WDS and the discretization of theoretical topological space that 
underlies the water networks and be used in skeletonization. A skele-
tonized version requires fewer steps for convergence because of the 
smaller network size. One may leverage the solution for a skeletonized 
version and link it to the coarser version as an initial condition to ach-
ieve further speed-ups.

Future avenues can address the mentioned issues with accuracy and 
study the stability regions and their robustness to the change in demands 
in more depth. Exploring the interplay between the lower and upper 
steps could be a promising direction for future research. Lastly, this work 
posed the steady state estimation with boundary conditions of demands. 
Real-life applications often assume pressure-driven dynamics. Formu-
lating the boundary condition as a function of pressures (Wagner et al., 
1988) could be a step towards modeling the pressure-driven dynamics.

Fig. 7. Speed-up obtained with 2 GB of graphical memory.
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Appendix A. Schematic depiction of the iterative algorithm

This section provides a schematic overview of the iterative algorithm described in Section 2.3.3. Fig. 8a illustrates the main loop of the procedure, 
showing how the algorithm alternates between mass-conserving and energy- conserving steps.

The algorithm begins by initializing the flow rate vector f(0) to zero. It then enters the main loop, which consists of two phases: K iterations of a 
lower gradient descent and an upper gradient descent. Fig. 8b provides a general depiction of the gradient step. In this figure, any vector (f or h) can 
replace the generic vector u. The associated matrices and parameters (such as the upper- or lower-Laplacians, τup or τdown, and βup or βdown) are 
substituted as needed, depending on whether a mass-conserving or energy-conserving step is being performed. Each gradient descent step involves a 
BC, multiplication with the Laplacian matrix, and addition of the momentum term. The momentum term is stored to be retrieved in the next iteration 
for that vector.

Fig. 8. Schematic depiction of the main iterative algorithm
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Appendix B. Parallelization with sparse aggregation

Sparsity is the key property of both lower- and upper-Laplacians. This means that most of the entries in those matrices are zeros, which allows for 
representing those matrices in compressed format (Buluç et al., 2009). This enables the creation of a very large graph with multiple connected 
components.

Specifically, when multiple simulations are considered, their Laplacian matrices are stacked as a block diagonal matrix. A combined matrix Lcomb 
represents the edge connectivity of a large graph network with M connected components, where M is the batch size. Flowrates are concatenated in the 
first dimension, i.e. 

Lcomb =

⎡

⎣
L(1)

⋱
L(M)

⎤

⎦ fcomb
=

⎡

⎣
f(1)

⋮
f(M)

⎤

⎦

As a result, a large matrix Lcomb is sparse. Sparse aggregation techniques allow the construction of a very large combined matrix (Yang et al., 
2018). In the context of simultaneous simulation, parallel multiplication of thousands of WDSs becomes possible and is used as a basis for edge-based 
diffusion.

B.1. Visualization of Sparse Matrix Representation

Sparse matrices can be stored using various formats, such as COO (Coordinate Format). This format is straight- forward and stores the row indices, 
column indices, and values of the non-zero entries in the matrix.

For example, consider the sparse matrix:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 0 0 0 0 0 12
0 0 0 0 7 0 0
0 0 0 0 0 0 0
0 0 0 5 0 0 0
0 0 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 0 0 4 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The COO representation of this matrix is as follows:

Row Index Column Index Value

0 0 10
0 6 12
1 4 7
3 3 5
5 2 3
6 5 4

This format requires storing only 18 entries (i.e. 8 values, their columns, and rows) instead of 49. In a block-diagonal structure, the number of zero 
entries drastically increases.

B.2. Sparse matrix multiplication

Sparse matrix multiplication is a computationally intensive operation but can be significantly accelerated using parallelization techniques, 
particularly on GPUs. In GPUs, matrix operations are divided into multiple threads, each responsible for computing a subset of the output matrix. For 
sparse matrices, each thread can independently compute a single row of the output vector by iterating over the non-zero elements of that row.

Consider a sparse matrix A stored in CSR format: 

A =

⎡

⎣
1 0 0 2
0 0 3 0
4 0 0 5

⎤

⎦x =

⎡

⎢
⎢
⎣

x1
x2
x3
x4

⎤

⎥
⎥
⎦

The computation of y = A x proceeds as follows: 

• Thread 0 computes y [0] = x1 + 2x4.
• Thread 1 computes y [1] = 3x3
• Thread 2 computes y [2] = 4x1 + 5x4.

and so on. Each thread operates independently, storing the result in the 
corresponding entry of y.
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Fig. 9. Water distribution networks used in the experiments.

Appendix C Layout of the case studies

The case studies are visualized in Fig. 9.

Appendix D. Heuristic for identification of optimal parameters

The common pattern in the stability regions is the region with the fastest convergence which is usually located near the border between the 
divergence and convergence. As a rule of thumb, the engineers could employ the following procedure: Select 0.8 for both β, and iteratively increase 
τdown with a large step, e.g. 0.1, until the algorithm starts to diverge. Once the lower border is identified, iteratively increase τup with some selected 
small step size, until the algorithm diverges. Decrease τdown until the algorithm converges again, now with a smaller stop size, e.g. 0.3. Next increase 
τup again with a smaller step size, until the algorithm diverges. An example of the search is presented Fig. 10.

Appendix E Additional experiments

E.1 Influence of momenta

In this study, we conducted an ablation by removing the momentum component from our model. We compared the number of steps required for 
convergence n without momentum to those observed in Experiment 3.2.1, where momentum was present. This comparison helps us understand the 
significance of the momentum component in accelerating convergence. Similarly to the baseline experiment, we identified the optimal parameters 
timestep sizes, while momentum coefficients were set to zero. The number of lower iterations K is selected according to Table 2. 
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Fig. 10. Example of the heuristic search of optima

The comparison is visualized in Fig. 11. For each case, the inclusion of momentum resulted in significantly faster convergence. Specifically, for the 
PES, ZJ, and KL models, the presence of momentum led to roughly five times fewer steps needed for convergence.

Fig. 11. Comparison of identified minimum n with and without momenta

E.2 Influence of number of lower gradients steps K

This section presents analysis of the influence of Kon stability regions in the example of APULIA, PES, and L-TOWN networks. The momentums are 
selected as 0.

The Fig. 12 displays the results. As K increases, the border of divergence seems to gradually move towards smaller values of τdown. This behavior is 
expected, as the algorithm becomes more sensitive to the lower timestep size. We additionally observe that the area of fastest convergence is larger for 
K greater than 1. It becomes especially visible in the example of L-TOWN in Fig. 12c. For k = 9, however, the area seems to decrease in size. 
Furthermore, larger K will induce additional computational costs. Thus, selected K must take into consideration both the number of iterations until 
convergence and the final clocktime of the algorithm. In our experiments, the optimal K lies in the range between 3 and 5 iterations. 
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Fig. 12. Stability regions with the increasing number of steps of lower gradient descent K.

E.3 Robustness of optimal parameters under changing demands

This section includes additional experiments on visualization of the robustness of optimal parameters to changing demands. We selected 2 case 
studies: MOD as an example of a large network with multiple reservoirs, and APULIA as an example of a network with high κ. A higher κ usually leads 
to a higher influence of lower and upper gradient steps on the convergence of each other. It is visible through Hazen-Williams relationship in Equation 
5 and Lines 12 of the main algorithm.

As the original .inp file contains a single set of demand patterns, we generated 10 additional simulations by uniformly sampling demands on every 
node as q ~ Uniform(0, 1) L/s. The stability regions are visualized similarly to the ones in Fig. 5b. Fig. 13 displays that the regions of highest 
convergence remain relatively stable to the change in demands. Thus, an optimal parameter can be selected based on multiple simulations at once. For 
some simulations, the minimum n is higher than the value achieved based on the demands from the original .inp, see Table 2. This confirms the finding 
that the minimum n depends on the demands. 
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Fig. 13. Robustness of optimal parameters to sampled demand patterns. The figure depicts stability regions in terms of n. The white dots are an optima defined based 
on these simulations.
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