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Abstract

We show weighted non-autonomous Lq(Lp) maximal regularity for families of complex second-order 
systems in divergence form under a mixed regularity condition in space and time. To be more precise, we let 
p, q ∈ (1, ∞) and we consider coefficient functions in Cβ+ε

t with values in Cα+ε
x subject to the parabolic 

relation 2β +α = 1. If p < d/α, we can likewise deal with spatial Hα+ε,d/α

x regularity. The starting point for 
this result is a weak (p, q)-solution theory with uniform constants. Further key ingredients are a commutator 
argument that allows us to establish higher a priori spatial regularity, operator-valued pseudo differential 
operators in weighted spaces, and a representation formula due to Acquistapace and Terreni. Furthermore, 
we show p-bounds for semigroups and square roots generated by complex elliptic systems under a minimal 
regularity assumption for the coefficients.
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1. Introduction

Fix a finite time T > 0 and a dimension d ≥ 1. Dong and Kim studied in a series of arti-
cles [14–17] solvability of the parabolic system in divergence form

∂tu − divx A(t, x)∇xu + κu = f + divx F in (−∞, T ) ×Rd .

Here, κ > 0 is sufficiently large and A : (−∞, T ) × Rd → Cdm×dm satisfies ‖A‖∞ ≤ � and is 
elliptic in the following sense: there exists λ > 0 such that

m∑
k,	=1

Re(A(t, x)k	ξk | ξ	) ≥ λ|ξ |2 (ξ ∈Cdm).

The number m is the size of the system. It turns out that a VMO condition for A (made precise 
in Lemma 4.2) is sufficient to guarantee unique solvability in the class Lq

t (W
1,p
x ) for right-hand 

sides f, F ∈ Lq
t (Lp

x ) with p, q ∈ (1, ∞). Given a parabolic Muckenhoupt weight, they also treat 
weighted estimates. We restrict our attention to temporal Muckenhoupt weights w ∈ Aq in the 
sequel.

On the finite time interval (0, T ) their result implies well-posedness of the problem

∂tu − divx A(t, x)∇xu = f + divx F in (0, T ) ×Rd,

u(0) = 0.
(1)

Observe that the right-hand side is in the class Lq
t (w; W−1,p

x ). It follows from the equation that 
∂tu ∈ Lq

t (w; W−1,p
x ) likewise. In other words, (1) has maximal regularity over Lq

t (w; W−1,p
x ). 

If f = 0, then the right-hand side is from the class Lq
t (w; Ẇ−1,p

x ) and it follows again from 
the equation that ∂tu ∈ Lq

t (w; Ẇ−1,p
x ). However, if F = 0, then the right-hand side belongs to 

Lq
t (w; Lp

x ), but the higher regularity ∂tu ∈ Lq
t (w; Lp

x ) of the time derivative is not known. It is 
the purpose of this article to investigate under which additional conditions one can show the 
improved regularity ∂tu ∈ Lq

t (w; Lp
x ) for the problem

∂tu − divx A(t, x)∇xu = f, in (0, T ) ×Rd ,

u(0) = 0.
(P)

To make the notation more precise, we define for each fixed t∗ ∈ (0, T ) an elliptic operator in 
divergence form in the following way: consider the bounded sesquilinear form1

at∗ : W1,2
x × W1,2

x →C, at∗(u, v) =
ˆ

Rd

A(t∗, x)∇xu(x) · ∇xv(x)dx.

1 Here, ∇x denotes the gradient in the variable x. For the sake of readability, let us agree to omit the underlying sets 
(0, T ) and Rd in the notation of function space; instead, we will indicate the underlying set by the indices t and x. For 
instance, we will simply write W1,2

x instead of W1,2
x (Rd ) and so on.
50
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Using the form at∗ , we define the operator

Lt∗ : W1,2
x → W−1,2

x via 〈Lt∗u,v〉W−1,2
x ,W1,2

x
= at∗(u, v) (u, v ∈ W1,2

x ).

Here, W−1,2
x is the space of conjugate-linear functionals on W1,2

x . Eventually, the operators 
− divx A(t, x)∇x in (P) are defined by Lt .

In the case p = q = 2 and with w = 1 this question is known as Lions’ maximal regularity 
problem and was investigated by many authors [1,6,13,19,25,33], see also the survey article [4]. 
For counterexamples that highlight the need of a certain regularity we refer to [10,20]. Our main 
result reads as follows.

Theorem 1.1. Let p, q ∈ (1, ∞), w ∈ Aq , α, β, ε > 0 such that 2β + α = 1. For the coefficient 
function A, assume that

A ∈
{

Cβ+ε
t (Hα+ε,d/α

x ), if p < d/α,

Cβ+ε
t (Cα+ε

x ), else.

Then, given f ∈ Lq
t (w; Lp

x ), the unique weak (p, q)-solution u of (P) satisfies ∂tu ∈ Lq
t (w; Lp

x )

in conjunction with the estimate

‖∂tu‖Lq
t (w;Lp

x ) � ‖f ‖Lq
t (w;Lp

x ),

that is to say, problem (P) admits weighted maximal regularity. Implicit constants only depend 
on the parameters fixed in Agreement 1 below.

Agreement 1. Throughout this article, we consider the numbers � and λ, as well as the num-
bers α, β , and ε from Theorem 1.1, as fixed. Moreover, we reserve the symbol M for the 
Cβ+ε

t (Hα+ε,d/α

x ) respectively Cβ+ε
t (Cα+ε

x )-norm of A. We refer to the numbers d and m as di-
mensions, and they are also considered fixed, likewise the integrability parameters p, q , and the 
Aq -weight w. Estimates do not depend on w itself but only on an upper bound of its Aq charac-
teristic [w]Aq , see Definition 2.3.

Before we come to a comparison of our main result with the literature, we would like to 
comment on non-trivial initial values in the following remark first.

Remark 1.2. By linearity, a non-trivial initial value u0 can be included if we solve the initial 
value problem

∂tu − divx A(t, x)∇xu = 0, in (0, T ) ×Rd,

u(0) = u0.

When w = 1, then by the perturbation argument presented in [1], which is applicable only 
using the regularity condition A ∈ Cε

t (L
∞
x ), the above initial value problem is solvable pro-

vided u0 ∈ (Lp
x , D(L0))1− 1

q
,q

, where (·, ·)θ,r denotes the (θ, r)-real interpolation space and 

L0 := − divx A(0, ·)∇x . If w is a power weight, see Example 2.4, a similar statement can be 
51
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formulated. We refrain from giving more details on this matter since it is not related to our mixed 
regularity condition in space and time.

In the unweighted case, Fackler [21] has shown maximal regularity if A is uniformly in VMOx

and satisfies in addition the regularity condition

A ∈
{

W
1/2+ε,2
t (L∞

x ), if p ≤ 2,

W
1/2+ε,p
t (L∞

x ), else.

His condition is essentially the borderline case α = 0 and β = 1/2 of the parabolic relation in 
Theorem 1.1 when p ≤ 2. The reason why – in contrast to Fackler – we have to work with a 
Hölder condition in time will be the presence of the weight (see for instance Lemma 2.5). In 
the other borderline case α = 1 and β = 0 the domains of the elliptic operators are independent 
of time. Consequently, maximal regularity follows from perturbation techniques [35]. In this 
sense, our regularity condition interpolates between previously known sufficient conditions, and 
extends these results to the time-weighted setting. Weights in time are interesting for non-linear 
equations with rough initial values [36].

With the same parabolic relation, the unweighted and Hilbertian case on Rd was treated by 
Dier and Zacher [13]. Our spatial regularity condition always coincides with their hypothesis. 
Using Fackler’s bootstrapping argument from [21, Thm. 6.4 & Prop. 5.1] we should be able 
to match their temporal regularity hypothesis. Consequently, our approach would recover their 
unweighted result and extend it to the non-Hilbertian setting.

1.1. Roadmap

In this roadmap, we intend to give the reader an extensive overview of our strategy. Our 
proof follows a classical approach due to Acquistapace and Terreni, but incorporates an a priori 
improvement of weak solutions in the spatial variable using a commutator argument.

The starting point is a weak solution theory for the generalized problem (P’). This generaliza-
tion permits us to use an approximation argument later on. Classically, this is due to Lions in the 
Hilbertian situation. Fackler used the result of Prüss and Schnaubelt [35] to have a (p, q)-version 
of Lions’ result at hand. We cannot do this, as [35] does not yield implied constants that are uni-
form in the coefficients. However, we will need such a control for the a priori improvement of 
weak solutions in the spatial variable. We will come back to this at the very end of this roadmap. 
Hence, instead, we employ a framework of Dong and Kim [17] to treat complex systems in di-
vergence form over spaces of the type Lq

t (w; W−1,p
x ). Another advantage of the result of Dong 

and Kim are weighted estimates in time for weak solutions. This will be done in Section 4, and 
consists of relating their notions with ours, as well as verifying an oscillation condition.

As is classical in the Acquistapace–Terreni approach, we derive a representation formula for 
weak (p, q)-solution in Section 5.1. Fix t∗ ∈ (0, T ). The formula reads

u(t∗) =
t∗ˆ

0

e−(t∗−s)(Bt∗+κ)
(
Bt∗ −Bs

)
u(s)ds +

t∗ˆ

0

e−(t∗−s)(Bt∗+κ)f (s)ds,
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where the operator Bt∗ + κ replaces the operator Lt∗ when passing from (P) to (P’) with regular-
ized coefficients. For maximal regularity, we have to estimate the term (Bt∗ + κ)u(t∗). Formally, 
this leads to the operators

S1(u)(t∗) �→
t∗ˆ

0

(Bt∗ + κ)e−(t∗−s)(Bt∗+κ)(Bt∗ −Bs)u(s)ds,

S2(f )(t∗) �→(Bt∗ + κ)

t∗ˆ

0

e−(t∗−s)(Bt∗+κ)f (s)ds.

The commutation between (Bt∗ +κ) and the integral in S1 will be justified during the proof of our 
main result. Consequently, to establish maximal regularity, we have to bound the operators S1 and 
S2. This is the topic of Section 5. Observe, however, that the operator S2 acts on the data f , but S1

acts on the weak (p, q)-solution u. This has the following effect: for S2, we plainly desire to show 
Lq

t (w; Lp
x )-bounds. These will follow from a weighted and operator-valued pseudo-differential 

operator result. For S1, however, the target space is still Lq
t (w; Lp

x ), but higher regularity of weak 
solutions lets us vary the norm of the data space. To be more precise, in the classical approach as 
employed by Fackler [21], the data space is Lq

t (w; W1,p
x ). The fundamental gain in our approach 

is that we will replace that data space by the space Lq
t (w; W1+α,p

x ). This has the effect that 
less restrictive kernel bounds for S1 compared to [21] suffice. We give more details on this in a 
moment.

Let us come back to the operator S2. The classical approach is to rewrite this operator as a 
pseudo-differential operator. This will be presented in Section 5.3. To do so, we have to restrict 
to a class of more regular right-hand sides f . This is, however, not a restriction, since we can 
use a standard approximation argument for the equation. This will be explained in Step 1 in the 
proof of Theorem 1.1 in Section 7. We emphasize that this approximation argument does not 
rely, yet, on the explicit control of implicit constants for weak (p, q)-solutions. Eventually, [34]
leads to boundedness of S2 provided we can verify that (τ, s) �→ 2πiτ(2πiτ + (Bs + κ))−1 sat-
isfies some R-boundedness and regularity conditions. The precise assumption and its verification 
are presented in Lemma 5.5. This uses two ingredients. First, that the coefficients are Cε

t (L
∞
x ). 

Second, that the operators (Bt∗ + κ) are jointly R-sectorial. Let us remark that the results in [34]
are not weighted, but we will explain the necessary changes.

Uniform R-sectoriality is treated in Section 3.5. On the one hand, we have to carefully trace 
the constants in well-known results on R-boundedness (more precisely, the approach based on 
off-diagonal bounds from [31]). On the other hand, we combine the elliptic solvability theory 
of Dong and Kim (see Proposition 3.6) with recent advances around the Kato square root prop-
erty [9] to eventually prove Lp

x -boundedness for the semigroup generated by −(Bt∗ + κ) with 
uniform constants in Theorem 3.9. This result is complemented by further insights on elliptic 
operators with minimal spatial regularity in Section 3. In contrast to [21], we are able to also 
treat complex systems. This is because we do not rely on the Gaussian bounds from [8] anymore.

We come back to the operator S1. As already mentioned, the plan is to show the boundedness

S1 : Lq
t (w;W1+α,p

x ) → Lq
t (w;Lp

x ).
53
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This will turn out to be sufficient owing to the a priori estimate ‖u‖
Lq

t (w;W1+α,p
x )

� ‖f ‖Lq
t (w;Lp

x )

for weak solutions – this is the higher spatial regularity that was already alluded before. The 
(weighted) boundedness for S1 follows from a good bound of convolution type for its integral 
kernel (this is the reason for the Hölder condition in time), and Lemma 2.5. The kernel bound is 
established in Lemmas 5.2 and 5.3. Lemma 5.2 is in some sense the central ingredient of this pa-
per, as it is the only result that uses the full mixed regularity in time and space. There, we use the 
spatial regularity of our coefficients to have Wα,p

x -multipliers at our disposal (Lemma 2.1), which 
eventually leads to estimates against W1+α,p

x . The spatial Sobolev condition for the coefficients 
is optimal (up to an ε) for this multiplier result.

The missing piece is the higher spatial regularity of weak solutions, the subject of Section 6. 
Recall for this that the W1+α,p

x -norm can be given by ‖ · ‖Lp
x

+ ‖∂α
x · ‖

W1,p
x

, where ∂α
x is the 

fractional derivative of order α. Our plan is to control the latter term by showing that ∂α
x u(t, x)

is a weak (p, q)-solution for some admissible right-hand side. Formally, one has

∂t (∂
α
x u) − divx B(t, x)∇x(∂

α
x u) + κ(∂α

x u) = ∂α
x f − divx[B(t, ·), ∂α

x ]∇xu. (2)

Then, the right-hand side is in Lq
t (w; W−1,p

x ) if the commutator

[B(t, ·), ∂α
x ] := B(t, ·)∂α

x − ∂α
x B(t, ·)

is Lq
t (w; Lp

x )-bounded (up to some absorption term in the case of Hα+ε,d/α

x coefficients). Owing 
to the spatial regularity of the coefficients, the latter fact is true according to Lemma 6.1. Nev-
ertheless, there remain some technical difficulties. In the first place, u is only in Lq

t (w; W1,p
x ), 

so neither can we plug ∂α
x u into the equation, nor can we justify the necessary calculations to 

show (2). The way out are an approximation argument in which we use regularized coefficients 
in conjunction with the difference quotient method (see Steps 1 and 2 in the proof of Propo-
sition 6.2), and the fact that on the whole space ∂α

x and ∇ commute. Note that this step also 
excludes spatial weights, since then the norm would not be translation invariant anymore. After-
wards, when we want to take the limit in order to get back to our original equation, it is crucial 
to have control over the implied constants in the weak (p, q)-solution theory from Theorem 4.1
in terms of the coefficients.

Notation. The finite time T > 0 and dimension d ≥ 1 as well as system size m were already 
fixed in the introduction. The variables x and t are supposed to be quantified over Rd and (0, T ), 
respectively. By t∗ we indicate a fixed (but arbitrary) number in (0, T ). For ϕ ∈ (0, π) write 
Sϕ := {z ∈ C \ {0} : | arg(z)| < ϕ} for the open sector of opening angle ϕ around the positive 
real axis; also put S0 := (0, ∞). Write z : z �→ z for the identity map. It will be clear from the 
context on which set z is defined, usually on an open sector. If T is an operator admitting a 
functional calculus, we write f (T ) or [f ](T ) for the operator T plugged into the function f
via its functional calculus. Often, f is defined by an expression that involves the function z, for 
instance f = z(1 + z)−1.
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2. Function spaces and weights

In this section, we review some facts from function space theory and Muckenhoupt weights, 
thereby introducing also our notation and some further conventions. However, we assume that 
the reader is familiar with standard function space and weighted theory. For further background, 
the reader can, for instance, consult the monographs [40] for function spaces and [24] for Muck-
enhoupt weights.

2.1. Spatial smoothness spaces

For s ∈R and p ∈ (1, ∞), write Hs,p
x for the Bessel potential space of order s and integrability 

p. For a positive integer k one has Hk,p
x = Wk,p

x . We also put Ws,p
x := Hs,p

x . Our convention is 
that we use the Wx -scale to denote regularity of solutions, and the Hx-scale to measure regularity 
of coefficients. The fractional Sobolev spaces respect the usual lifting property [40, Sec. 2.3.4]. 
Also, the L2

x inner product extends to a duality pairing between the spaces Hs,p
x and H−s,p′

x . 
Moreover, the Hs,p

x spaces interpolate naturally by means of the complex interpolation method 
due to Calderón–Lions.

Introduce the functional

Sαf (x) :=
( ∞̂

0

( ˆ

|y|≤1

|f (x + ry) − f (x)|dy
)2 dr

r1+2α

) 1
2
.

If 0 < α < 1, then the space Hα,p
x consists of all f ∈ Lp

x such that Sαf ∈ Lp
x , and f �→ ‖f ‖Lp

x
+

‖Sαf ‖Lp
x

defines an equivalent norm on Hα,p
x , see [39, Thm. 2.3]. This leads to the following 

multiplier result.

Lemma 2.1 (Multiplier on fractional Sobolev spaces). Let p ∈ (1, ∞), 0 < α < 1, and ε > 0. Let 
X = Hα+ε,d/α

x if p < d/α and X = Cα+ε
x otherwise. Then functions in X are multipliers on Wα,p

x

and one has the estimate

‖mf ‖Wα,p
x

� ‖m‖X‖f ‖Wα,p
x

,

where the implicit constant depends on α, p, ε, and dimension.

Proof. We appeal to the aforementioned characterization. First, ‖mf ‖Lp
x

≤ ‖m‖L∞
x

‖f ‖Lp
x
, and 

‖m‖L∞
x
� ‖m‖X is clear when X is a Hölder space, and follows from the (fractional) Sobolev 

embedding theorem when X is a Sobolev space.
Next, an expansion of Sα(mf )(x) and the triangle inequality show

Sα(mf )(x) ≤ ‖m‖L∞Sαf (x) + |f (x)|Sαm(x),

x
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compare with [39, Thm. 2.1]. The first term can be estimated with the arguments from the be-
ginning of the proof, this time using Sαf ∈ Lp

x . For the second term, we distinguish cases for 
X.

Case 1: X = Cα+ε
x . In the definition of Sαm(x), we split the integral in r at height 1. If r ≤ 1, we 

use the Hölder regularity of m, to estimate this part by a constant (independent of x). Similarly, 
when r ≥ 1, we use boundedness of m. In summary, Sαm(x) is bounded by a constant depending 
linearly on ‖m‖Cα+ε

x
, which concludes this case.

Case 2: X = Hα+ε,d/α

x . With the relation 1/p − α/d =: 1/q (observe that q is finite by hypothesis 
on p), we use Hölder’s inequality to give ‖fSαm‖Lp

x
≤ ‖f ‖Lq

x
‖Sαm‖

L
d/α
x

. By choice of q , one 

has the Sobolev embedding ‖f ‖Lq
x
� ‖f ‖Hα,p

x
, which concludes the proof. �

Definition 2.2. The operator ∂α
x is defined as the (unbounded) Fourier multiplication operator on 

L2
x with symbol |ξ |α . It extrapolates2 to a bounded operator Wα,p

x → Lp
x and we keep writing 

∂α
x .

The mapping f �→ ‖f ‖Lp
x
+‖∂α

x ‖Lp
x

yields another equivalent norm on Wα,p
x , see [38, p. 133].

Sometimes, we also use the Besov spaces Bs
p,p with s ≥ 0. They consist of all functions f in 

Lp such that the norm

‖f ‖Bs
p,p

:= ‖f ‖Lp
x

+
(ˆ
Rd

ˆ

Rd

∣∣∣∣f (y) − f (x)

|y − x|s
∣∣∣∣
p dy dx

|y − x|d
) 1

p

is finite. By real interpolation, one has for t > s ≥ 0 the continuous inclusion Ht,p
x ⊆ Bs

p,p .

2.2. Muckenhoupt weights and parabolic spaces

Definition 2.3 (Muckenhoupt weights). Let q ∈ (1, ∞). A locally integrable function w : R →
[0, ∞) is a Muckenhoupt weight for q , write w ∈ Aq , if the quantity

[w]Aq
:= sup

I

⎛
⎝ 1

|I |
ˆ

I

w dx

⎞
⎠

⎛
⎝ 1

|I |
ˆ

I

w
− 1

q−1 dx

⎞
⎠

q−1

is finite, where the supremum is taken over all intervals I ⊆ R. If q is clear from the context, 

define the dual weight to w by w′ := w
− 1

q−1 .

Example 2.4 (Power weights). Let q ∈ (1, ∞) and −1 < κ < q − 1. Consider the weight w(t) =
tκ . Then w ∈ Aq . Weights of this type are called power weights. Such weights are prototypical 
for the application of our theory in non-linear problems.

2 Here, this means that ∂α
x extends from Wα,p

x ∩ Wα,2
x to a bounded operator Wα,p

x → Lp
x by continuity.
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Let X be a spatial smoothness space, q ∈ (1, ∞) and w ∈ Aq . We consider the weighted 
parabolic spaces Lq

t (w; X) := Lq(0, T , w; X) and W1,q
t (w; X), where the latter space consists 

of all u ∈ Lq
t (w; X) with ∂tu again in Lq

t (w; X). Note that functions in Lq
t (w; X) are locally 

integrable by the Aq -condition, hence the distributional derivative is well-defined.
If Y ⊆ X is dense, then C∞

0 (R; Y) is dense in Lq(R, w; X). One has the usual duality relation 

(Lq ′
t (w′; X∗))∗ = Lq

t (w; X), which extends the pairing between unweighted spaces. The follow-
ing well-known lemma is a handy substitute for Young’s convolution inequality in the context of 
weighted spaces (here, X = C).

Lemma 2.5. Let k : R → [0, ∞) be measurable, radial, decreasing and integrable. Then

|(k ∗ f )(x)| � ‖k‖1Mf (x) (f ∈ L1
loc),

where M is the maximal operator. In particular, if q ∈ (1, ∞) and w ∈ Aq , one has the weighted 
estimate

‖k ∗ f ‖Lq
t (R,w) � ‖k‖1‖f ‖Lq

t (R,w) (f ∈ Lq
t (R,w)).

3. Uniform estimates for elliptic operators

In Section 1 we have introduced the elliptic operators {Lt}0<t<T . We will associate parts in 
L2

x with these operators, and show uniform bounds for their associated semigroups and square 
roots. We will also transfer semigroup bounds to the space W−1,p

x . The cornerstone for the results 
in this section is the well-posedness result for parabolic systems in divergence form due to Dong 
and Kim [17].

3.1. Elliptic coefficients

We stay slightly more general here, which will become handy for technical reasons later on, 
for instance in Section 6. That being said, we introduce the following class of regular elliptic 
coefficients, which includes the coefficients of the non-autonomous problems studied in this 
article.

Definition 3.1. Let γ > 0 and N ≥ 0. Denote by E(�, λ, γ, N) the class of elliptic coefficients
with coefficient bounds � and λ that are Cγ with norm at most N . More precisely, this class 
consists of all functions B : Rd → Cdm×dm which satisfy

|B(x)| ≤ � &
m∑

k,	=1

Re(B(x)k	ξk | ξ	) ≥ λ|ξ |2 (ξ ∈Cdm),

and the regularity condition

|B(x + h) − B(x)|
|h|γ ≤ N (h ∈Rd \ {0}).

Remark 3.2. Note that A(t∗, ·) ∈ E(�, λ, ε, M). In the case p < d/α, this follows from embed-
ding results for smoothness spaces, see [40, Thm. 2.8.1. (e)].
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3.2. Elliptic systems and weak (p, q)-solutions

We associate with a coefficient function B a form and an operator W1,2
x → W−1,2

x .

Definition 3.3. Let B ∈ E(�, λ, γ, N). Define the form

b : W1,2
x × W1,2

x →C, b(u, v) =
ˆ

Rd

B(x)∇xu(x) · ∇xv(x)dx,

and associate with it the operator

B : W1,2
x → W−1,2

x via 〈Bu,v〉W−1,2
x ,W1,2

x
= b(u, v) (u, v ∈ W1,2

x ).

The form b is likewise bounded on W1,p
x × W1,p′

x , so that B is also a bounded operator W1,p
x →

W−1,p
x . We do not distinguish these objects notation-wise.

Given a family {Bt }0<t<T induced by coefficients B(t, ·) ∈ E(�, λ, γ, N) and a parameter 
κ ∈R, associate with them the non-autonomous evolution problem

∂tu(t) +Bt u(t) + κu(t) = f (t), u(0) = 0. (P’)

The following definition makes precise what we understand under a solution to (P’). With the 
choices Bt = Lt and κ = 0, this clarifies in particular the solution concept for the problem (P)
from the introduction.

Definition 3.4. Given f ∈ Lq
t (w; W−1,p

x ), p, q ∈ (1, ∞), and κ ∈ R, call a function u ∈
Lq

t (w; W1,p
x ) a weak (p, q)-solution of (P’), if u(0) = 0, and if the integral equation

T̂

0

−ϕ′(s)(u(s) |g) + ϕ(s)bs(u(s), g) + κϕ(s)(u(s) |g)ds

=
T̂

0

ϕ(s)〈f (s), g〉
W−1,p

x ,W1,p′
x

ds

(IE)

holds for all ϕ ∈ C∞
0 (0, T ; C) and g ∈ C∞

0 (Rd ; C).

Remark 3.5. We give some more clarifying comments regarding Definition 3.4.

(i) Functions in Lq
t (w) with w ∈ Aq are locally integrable, hence the pairings in (IE) are well-

defined.
(ii) It follows from duality that a weak (p, q)-solution u of (P’) has a weak derivative ∂tu in 

Lq
t (w; W−1,p

x ) that coincides with f (t) −B(t)u(t) − κu(t) for almost all t .
(iii) A weak (p, q)-solution is continuous at 0 with values in W−1,p

x , which renders the initial 
condition meaningful. For the weighted case, this is presented in [23, Lem. 4.1].
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(iv) Existence and uniqueness of weak (p, q)-solutions are independent of the parameter κ . 
Indeed, if u is a weak (p, q)-solution to the parameter κ , then v(t) = eκtu(t) is a weak 
(p, q)-solution to the right-hand side eκsf with κ = 0, and vice versa. Note that this imports 
a dependence on T for the implicit constants.

(v) The integral equation (IE) extends to g ∈ W1,p′
x by continuity.

The parameter κ is supposed to be taken sufficiently large (in particular, we tacitly assume 
κ ≥ 1). This is quantified by the results in [17]. In particular, we can ensure ellipticity in this 
way. We emphasize that the choice of κ can be made uniform in the quantities mentioned in 
Agreement 1.

Let us agree for the rest of this section that B denotes any fixed coefficient function from the 
class E(�, λ, ε, M). Implicit constants are allowed to depend on p, �, λ, ε, M , and dimensions.

As a consequence of ellipticity, there is some ω ∈ [0, π/2) depending on �, λ, and κ such that 
the numerical range of b + κ(· | ·)2 is contained in the closed sector Sω of opening angle 2ω. 
Furthermore, using Definition 3.1 and the Lax–Milgram lemma, B + κ + ρ is invertible for all 
ρ ≥ 0. In particular, B + κ is itself invertible as an operator W1,2

x → W−1,2
x .

As a consequence of the Hölder regularity of the coefficients, B + κ extrapolates moreover 
to an isomorphism W1,p

x → W−1,p
x for all p ∈ (1, ∞). The argument divides into two steps. 

First, the autonomous problem associated with B + κ is well-posed according to [17]. We will 
give further information on that result and its applicability in our context in Section 4, see in 
particular Lemma 4.2. Second, the well-posedness of the original elliptic problem together with 
an estimate for its solutions follow by applying a cutoff argument to a stationary solution [16, 
Proof of Thm. 2.2]. The result can then be summarized as follows.

Proposition 3.6. Let p ∈ (1, ∞). The operator B + κ extrapolates to an invertible operator 
W1,p

x → W−1,p
x . Given f ∈ W−1,p

x , write u ∈ W1,p
x for the unique solution to the equation 

(B + κ)u = f . Then, one has the estimate ‖u‖
W1,p

x
� ‖f ‖

W−1,p
x

.

Remark 3.7. The solutions provided by Proposition 3.6 are compatible to Lax–Milgram solu-
tions in the following sense. Given f ∈ W−1,p

x ∩ W−1,2
x , let u be the solution in W1,p

x provided 
by Proposition 3.6, and v be the solution in W1,2

x provided by the Lax–Milgram lemma. Then 
u and v coincide. Indeed, this is a consequence of local compatibility in complex interpolation 
scales [30, Thm. 8.1] and the fact that Proposition 3.6 provides a solution for all p ∈ (1, ∞).

Remark 3.8. The result in [17] only requires that κ is larger than a certain threshold quantified 
by the parameters fixed in Agreement 1. Hence, to ensure that all results in Section 3 remain 
true when κ is replaced by κ/2, we pick κ a bit larger for good measure. We will exploit this 
observation in Section 5.

3.3. The elliptic operator on L2
x and mapping properties

In virtue of the embedding L2
x ⊆ W−1,2

x , define the part of B in L2
x and denote it as an abuse of 

notation also by the symbol B (it will be clear from the context if B denotes the coefficient func-
tion or the part in L2

x ). Of course, the part of B+κ in L2
x coincides with B +κ . One has that B +κ

is a densely defined, invertible, and m-ω-sectorial operator in L2
x with domain D(B+κ) = D(B). 

In particular, −(B + κ) generates a holomorphic semigroup of contractions {e−z(B+κ)}z∈Sπ
/2−ω
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on L2
x . We will tacitly employ some properties of the sectorial functional calculus of B + κ . The 

reader can consult [26, Chap. 7] for further background.
Owing to [9, Lem. 7.3], we deduce Lp

x -bounds for the semigroup generated by −(B + κ) as a 
consequence of Proposition 3.6 and Remark 3.7.

Theorem 3.9. Let p ∈ (1, ∞) and ϕ ∈ [0, π/2 − ω). One has the estimate

‖e−z(B+κ)f ‖Lp
x
� ‖f ‖Lp

x
(z ∈ Sϕ, f ∈ Lp

x ∩ L2
x).

Remark 3.10. In [9, Lem. 7.3], only the case p ≥ 2 is presented. The case p ≤ 2 either follows 
by a duality argument with B∗ + κ , or by repeating the calculation in [9], but changing the order 
in which H∞-calculus and (B + κ)−1 are applied.

3.4. Square roots and bounds on W−1,p
x

As an m-ω-sectorial operator, B + κ possesses a square root (B + κ)
1
2 . It acts as an iso-

morphism W1,2
x → L2

x according to the solution of the Kato square root problem [7]. As a 

consequence of coefficient regularity, (B + κ)
1
2 extrapolates to an isomorphism W1,p

x → Lp
x for 

all p ∈ (1, ∞). Similar ideas were already employed in [21], but relying on the Gaussian prop-
erty, which was only established in the scalar case m = 1 and is notably more technical. Instead, 
we use recent results established by the author in [9, Thm. 1.1]. Indeed, in the case p ≤ 2, its 
application is justified by Theorem 3.9, whereas in the case p ≥ 2, we appeal to Proposition 3.6
in conjunction with Remark 3.7.

Theorem 3.11. Let p ∈ (1, ∞). Then (B + κ)
1
2 extrapolates to a (compatible) isomorphism 

W1,p
x → Lp

x .

Theorem 3.11 allows us to translate the Lp
x -bounds for {e−z(B+κ)}z∈Sϕ from Theorem 3.9 to 

W−1,p
x -bounds.

Proposition 3.12. Let p ∈ (1, ∞) and ϕ ∈ [0, π/2 − ω). One has the estimate

‖e−z(B+κ)f ‖
W−1,p

x
� ‖f ‖

W−1,p
x

(z ∈ Sϕ, f ∈ W−1,p
x ∩ L2

x).

In particular, {e−z(B+κ)}z∈Sϕ extrapolates to a semigroup on W−1,p
x with generator −(B + κ).

Proof. Let z ∈ Sϕ and f ∈ W−1,p
x ∩ L2

x . As a primer, let us show

‖(B + κ)−
1
2 f ‖p � ‖f ‖

W−1,p
x

. (3)

We employ a duality argument. To this end, let h ∈ Lp′
x ∩ L2

x . Note that the coefficient class 
E(�, λ, ε, M) is invariant under taking adjoints. Calculate using Kato’s square root property and 
Theorem 3.11 (applied with B∗ and p′ instead of B and p) that
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|((B + κ)−
1
2 f |h)| = |(f | (B∗ + κ)−

1
2 h)|

≤ ‖f ‖
W−1,p

x
‖(B∗ + κ)−

1
2 h‖

W1,p′
x

� ‖f ‖
W−1,p

x
‖h‖p′ .

Duality lets us conclude this first claim.
Next, write

e−z(B+κ)f = e−z(B+κ)(B + κ)
1
2 (B + κ)−

1
2 f = (B + κ)

1
2 e−z(B+κ)(B + κ)−

1
2 f.

Let g ∈ W1,p′
x ∩ L2

x , and calculate similarly as above, but using furthermore Theorem 3.9, that

|〈e−z(B+κ)f, g〉| = |(e−z(B+κ)(B + κ)−
1
2 f | (B∗ + κ)

1
2 g)|

≤ ‖e−z(B+κ)(B + κ)−
1
2 f ‖p‖(B∗ + κ)

1
2 g‖p′

� ‖(B + κ)−
1
2 f ‖p‖g‖

W1,p′
x

.

Duality and (3) lead to ‖e−z(B+κ)f ‖
W−1,p

x
� ‖(B + κ)− 1

2 f ‖p � ‖f ‖
W−1,p

x
. �

3.5. Uniform R-sectoriality

As a preparation for Section 5.3, we show R-sectoriality for the set of operators {B + κ ; B ∈
C}, where C consists of all operators associated with coefficients in E(�, λ, ε, M), and where the 
R-bound only depends on the quantified parameters from Agreement 1. For further background 
on R-boundedness and R-sectoriality, the reader can consult [31].

Proposition 3.13 (R-sectoriality of C). Let p ∈ (1, ∞) and ϕ ∈ [0, π/2 − ω). Then, the set 
{e−z(B+κ) ; z ∈ Sϕ, B ∈ C} satisfies the square function estimate

∥∥∥( k∑
j=1

|e−zj (Bj +κ)fj |2
) 1

2
∥∥∥

p
�

∥∥∥( k∑
j=1

|fj |2
) 1

2
∥∥∥

p

(
zj ∈ Sϕ,Bj ∈ C, fj ∈ Lp

x ∩ L2
x

)
.

In particular, for z ∈ Sϕ and B ∈ C fixed, the operator e−z(B+κ) extends from Lp
x ∩ L2

x to a 
bounded operator SB(z) on Lp

x , {SB(z)}z∈Sϕ is a strongly continuous and analytic semigroup 
on Lp

x , and the set {SB(z) ; z ∈ Sϕ, B ∈ C} is R-bounded with R-bound depending only on the 
parameters fixed in Agreement 1.

Remark 3.14. Proposition 3.13 shows in particular that the semigroup in Lp
x is R-sectorial of the 

same angle as the semigroup on L2
x . Hence, we keep writing ω instead of, say, ωR .

Before we come to the justification of Proposition 3.13, let us record an important conse-
quence that we will need later on in Section 5.3.
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Corollary 3.15. Let p ∈ (1, ∞) and ψ ∈ [π/2, π −ω). Let −Bκ
p denote the generator of the semi-

group {SB(t)}t>0 from Proposition 3.13. Then the set {z(z+Bκ
p)−1 ; z ∈ Sψ, B ∈ C} of operators 

on Lp
x is R-bounded, and the R-bound depends only on the quantities fixed in Agreement 1.

Proof. Fix z ∈ Sψ and B ∈ C. Split arg(z) = ϕ + ϕ̃, where |ϕ| ∈ [0, ψ − π/2) and |ϕ̃| ∈ [0, π/2). 
The operator (z + Bκ

p)−1 can be represented using the Laplace transform [26, Prop. 3.4.1 d)] via

(z + Bκ
p)−1 = e−iϕ

∞̂

0

e−t |z|eiϕ̃

SB(te−iϕ)dt.

Then, the claim follows from [31, Ex. 2.15]. Indeed, they show that z(z + Bκ
p)−1 is contained 

in the strong closure of the absolute convex hull of the semigroup generated by −Bκ
p. Hence, 

{z(z + Bκ
p)−1 ; z ∈ Sψ, B ∈ C} is contained in the strong closure of the absolute convex hull of 

{SB(z) ; z ∈ Sψ−π/2, B ∈ C}. But taking the strong closure of the absolute convex hull of a set 
of operators preserves R-boundedness with the same R-bound, so we conclude using Proposi-
tion 3.13. �

Given 1 ≤ r < 2 < s ≤ ∞ such that p ∈ (r, s), and B ∈ C, Proposition 3.13 is a consequence 
of so-called Lr

x → Ls
x off-diagonal estimates for {e−z(B+κ)}z∈Sϕ . The general approach in the 

context of homogeneous spaces was presented in [31], and for dependence of the implied con-
stants see [11, Sec. 5]. To be more precise, we suppose that, for some c > 0 and for all measurable 
sets E, F ⊆ Rd and z ∈ Sϕ , one has the bound

‖1F e−z(B+κ)1Ef ‖s � |z|d/2s−d/2re−c
d(E,F )2

|z| ‖1Ef ‖r (f ∈ Lr
x ∩ L2

x). (4)

Inequality (4) for r = s = 2 is known under the name Gaffney estimates and is well-known 
in the literature. A version of this result that carefully keeps track of the implicit constants can 
be found in [9, Prop. 3.2]. Likewise, (4) is known for r = 2, s ∈ (2, ∞), and with c = 0, as a 
consequence of the Lp

x -bounds for the semigroup provided by Theorem 3.9 and [5, Prop. 3.2 (1)]. 
In this case, we speak of hypercontractivity of the semigroup. Finally, (4) is then a consequence 
of interpolation of Gaffney estimates with hypercontractivity, taking duality and composition 
into account.

4. Existence and uniqueness of weak (p, q)-solutions

In this section, we consider a family of operators {Bt }0<t<T associated with coefficients 
B(t, ·) ∈ E(�, λ, ε, M) that depend Cε

x on t .3 The prototype for such a family of operators is 
the family {Lt }0<t<T from Section 1 (keep Remark 3.2 in mind). We aim to prove the existence 
and uniqueness of solutions to the associated problem (P’) in the sense of Definition 3.4. To do 
so, we recast our original problem in the framework originating from the works of Dong and Kim 
[14–17]. This includes the introduction of a global extension in time of our original problem on 

3 Say that a family {Bt }0<t<T ⊆ E(�, λ, α, M) depends Cβ
x on t if Bt ∈ E(�, λ, α, M) and the mapping t �→ Bt is 

β-Hölder continuous with values in Cα
x , that is, the scalar-valued function t �→ ‖Bt‖Cα lies in the class Cβ

t .

x

62



S. Bechtel Journal of Differential Equations 409 (2024) 49–82
R as outlined in [14, Rem. 1]. Implicit constants in this section are allowed to depend on p, q , 
[w]Aq , �, λ, α, β , Hölder regularity, and dimensions.

We begin by extending our coefficient family {Bt}0<t<T to all of R. We extend constantly at 
the endpoints, that is, we set Bt := B0 for all t < 0 and Bt := BT for all t > T . For such t , we 
associate of course also a form bt with Bt . Note that this extension does not affect the assumed 
Hölder regularity of the coefficients. Furthermore, we isometrically extend the right-hand side 
f ∈ Lq

t (w; W−1,p
x ) outside of (0, T ) by zero to arrive at a function in Lq(R, w; W−1,p

x ), which 
we denote by F . Also in the sequel, we will systematically denote functions on R by capital 
letters to better distinguish them from their local analogs. Given the extensions of {Bt}0<t<T and 
f , we look for solutions U ∈ Lq(R, w; W1,p

x ) fulfilling the extended integral equation

ˆ

R

−�′(s)(U(s) |g) + �(s)bs(U(s), g) + κ�(s)(U(s) |g)ds

=
ˆ

R

�(s)〈F(s), g〉
W−1,p

x ,W1,p′
x

ds,

(EIE)

where we use test functions � ∈ C∞
0 (R) and g ∈ C∞

0 (Rd). Dong and Kim solved a similar 
problem in [17]. They show that, for a given F ∈ H−1

p,q,w(R × Rd) with F = F0 + ∑d
i=1 ∂iFi , 

Fj ∈ Lq(R, w; Lp
x ), there exists a solution U ∈ H̊1

p,q,w(R ×Rd) satisfying the integral equation

ˆ

R

−(U(s) |�′(s)) + bs(U(s),�(s)) + κ(U(s) |�(s))ds =
ˆ

R

〈F(s),�(s)〉ds (DKIE)

for all test functions � ∈ C∞
0 (R ×Rd). We explain and compare the used function spaces in the 

sequel of this section. For the notion of weak solutions employed by Dong and Kim, see also [14, 
p. 896] and [15, p. 3286]. Furthermore, solutions to (DKIE) are subject to the a priori estimate

κ‖U‖Lq (R,w;Lp
x ) +

d∑
i=1

κ
1/2‖∂iU‖Lq (R,w;Lp

x ) � ‖F0‖Lq (R,w;Lp
x ) +

d∑
i=1

κ
1/2‖Fi‖Lq (R,w;Lp

x ) (5)

according to [17, Thm. 7.2], where the implicit constant depends on p, q , [w]Aq , �, λ, dimen-
sion, and the parameters γ and R0 appearing in Lemma 4.2. In particular, choosing F = 0 in (5)
shows the uniqueness of solutions to (DKIE).

The rest of this section is divided into two steps: First, we will relate the solution concepts of 
(DKIE) and (EIE) and show that the former implies the latter. Eventually, this leads to a solution 
for the original problem (P’). Second, we will check the validity of the regularity assumptions 
on {Bt } from [17, Thm. 7.2] to harvest the results of the first step. At the end of the day, this will 
prove the following theorem.

Theorem 4.1. Given f ∈ Lq
t (w; W−1,p

x ), there exists a unique weak (p, q)-solution u to (P’), 
and one has the estimate

‖∂tu‖ q −1,p + ‖∇xu‖Lq
(w;Lp

) + κ‖u‖Lq
(w;Lp

) � ‖f ‖ q −1,p .

Lt (w;Wx ) t x t x Lt (w;Wx )
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Step 1: Compatibility with Dong and Kim. In order to solve (DKIE), Dong and Kim consider 
right-hand sides F in the spaces H−1

p,q,w(R × Rd). These spaces are isomorphic to the spaces 

Lq(R, w; W−1,p
x ) as can bee seen from a parabolic variant of [3, Thm. 3.9]. This means that the 

admissible right-hand sides for (DKIE) and (EIE) coincide. Now, [17, Sec. 8] gives the existence 
of a solution U to (DKIE) in the regularity class H̊1

p,q,w(R × Rd), which denotes the closure 

of C∞
0 (R × Rd) in the space H1

p,q,w(R × Rd). Since we work spatially in Rd , H̊1
p,q,w(R ×

Rd) = H1
p,q,w(R × Rd). A function U ∈ H1

p,q,w(R × Rd) is by its very definition an element 

of Lq(R, w; W1,p
x ). Conversely a function in Lq(R, w; W1,p

x ) that satisfies (EIE) is a member of 
H1

p,q,w(R × Rd). For complete definitions of the above function spaces, the reader can consult 
[15, p. 3284] and [17, Sec. 4].

Comparing the classes of test functions employed in (EIE) and (DKIE) reveals that Dong and 
Kim use a larger class of test functions in their integral formulation. In particular, this shows 
that a solution to (DKIE) is also a solution to (EIE). On the other hand, recall that a function 
U ∈ Lq(R, w; W1,p

x ) solving (EIE) is also an admissible function for (DKIE). Using the fact that 

the tensors �(t)g(x) with � ∈ C∞
0 (R) and g ∈ C∞

0 (Rd) are dense in Lq ′
(R, w′; W−1,p′

x ), we 
deduce by continuity (compare with Remark 3.5 (v)) that (EIE) in particular remains to hold for 
test functions in C∞

0 (R ×Rd). Hence, we get that U is also a solution for (DKIE), and is as such 
again unique.

Next, we focus on the a priori estimate (5) and its relation to the maximal regularity estimate 
in Theorem 4.1. Recall κ ≥ 1. Then, we have

‖U‖
Lq (R,w;W1,p

x )
� κ‖U‖Lq (R,w;Lp

x ) +
d∑

i=1

κ1/2‖∂iU‖Lq (R,w;Lp
x ) � κ‖F‖

Lq (R,w;W−1,p
x )

.

Up to now, we have only worked out the existence and uniqueness of solutions to the extended 
integral equation (EIE). Hence, it remains to get back to (P’). Recall that F = 0 outside of the 
interval (0, T ) by construction. Consequently, U = 0 on (−∞, 0) by uniqueness, hence U(0) = 0
by continuity (see Remark 3.5 (iii)). Additionally, the solution U ∈ Lq(R, w; W1,p

x ) that has been 
constructed via the method above gives rise to a restriction u = U |(0,T ) ∈ Lq

t (w; W1,p
x ). Then u

satisfies u(0) = U(0) = 0 by continuity and solves (IE). This shows that u is the unique (p, q)-
solution of (P’).

Step 2: Verification of the assumptions of Dong and Kim. The following lemma shows that the 
mean oscillation condition in Assumption [17, Asm. 7.1] is fulfilled. Hence, [17, Thm. 7.2 & 
Sec. 8] is applicable in our setting.

Lemma 4.2. Let γ ∈ (0, 1/4). Then there exists R0 ∈ (0, 1] depending only on γ and the Hölder 
regularity of {Bt }t∈R such that, for any (t, x) ∈Rd+1 and r ∈ (0, R0], we have

−
ˆ

Qr (t,x)

∣∣∣Bk	
s (y1, ŷ) − −

ˆ

Q′
r (t,x̂)

Bk	
τ (y1, ẑ)dẑ dτ

∣∣∣dy ds ≤ γ (k, 	 = 1, . . . ,m),

where Qr and Q′ denote the parabolic cylinders given by
r
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Qr (t, x) := (t − r2, t) × Br (x) and Q′
r (t, x̂) := (t − r2, t) × B′

r (x̂),

respectively, and x = (x1, x̂) with x1 ∈R and x̂ ∈ Rd−1.

Proof. Let r > 0 and (t, x) ∈Rd+1. Fix (s, y) ∈ Rd+1. We decompose the integrand as

∣∣∣Bk	
s (y1, ŷ) − −

ˆ

Q′
r (t,x̂)

Bk	
τ (y1, ẑ)dẑ dτ

∣∣∣

≤ −
ˆ

Q′
r (t,x̂)

∣∣∣Bk	
s (y) − Bk	

τ (y)

∣∣∣ +
∣∣∣Bk	

τ (y1, ŷ) − Bk	
τ (y1, ẑ)

∣∣∣ dẑdτ.

Now, for the first term, we have using regularity of B that

∣∣∣Bk	
s (y) − Bk	

τ (y)

∣∣∣ ≤ ‖Bk	
s − Bk	

τ ‖∞ � |s − τ |ε � |s − t |ε + |t − τ |ε � r2ε (6)

and, for the second term,

∣∣∣Bk	
τ (y1, ŷ) − Bk	

τ (y1, ẑ)

∣∣∣� |ŷ − ẑ|ε‖Bk	
τ ‖Cε

x
� (2r)ε. (7)

Observe that both estimates are uniform in s and y, to calculate the average over Qr(t, x) as

−
ˆ

Qr (t,x)

∣∣∣Bk	
s (y1, ŷ) − −

ˆ

Q′
r (t,x̂)

Bk	
τ (y1, ẑ)dẑdτ

∣∣∣dy ds � r2ε + (2r)ε,

where the implicit constant depends on the Hölder regularity of B and ε. Now, given γ ∈ (0, 1/4), 
choose R0 ∈ (0, 1] small enough (depending on the implicit constant) to conclude. �
Remark 4.3. Note that the proof of Lemma 4.2 did not need the full mixed Hölder regularity of 
{Bt }t∈R. Indeed, the calculations in the proof show that estimates (6) and (7) both only rely on 
Hölder regularity in one of the two variables, uniformly with respect to the other variable.

5. Estimates for the solution formula

In this section, we consider a family of operators {Bt }0<t<T associated with coefficients 
B(t, ·) ∈ E(�, λ, ε, M). Moreover, B ∈ Cβ+ε

t (Hα+ε,d/α

x ) if p < d/α and B ∈ Cβ+ε
t (Cα+ε

x ) oth-
erwise. The prototype for such a family of operators is the family {Lt}0<t<T from Section 1. 
First, we derive a solution formula for weak (p, q)-solutions to the associated non-autonomous 
problem. Second, we derive suitable estimates for it, which depend heavily on the regularity as-
sumption for the coefficients. Implicit constants are throughout this section allowed to depend on 
p, q , [w]Aq , �, λ, α, β , ε, Hölder regularity, and dimensions.
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5.1. Representation formula by Acquistapace and Terreni

For a weak (p, q)-solution u of (P’), we rely on a well-known representation formula due to 
Acquistapace and Terreni in W−1,p

x given pointwise by

u(t∗) =
t∗ˆ

0

e−(t∗−s)(Bt∗+κ)
(
Bt∗ −Bs

)
u(s)ds +

t∗ˆ

0

e−(t∗−s)(Bt∗+κ)f (s)ds. (♥)

In the unweighted situation, the proof is well-known in the literature [2,12,21,25], but we give a 
streamlined version that directly works with absolute continuity.

Proof of (♥). Consider on [0, t∗] the function v(s) = e−(t∗−s)(Bt∗+κ)u(s). Moreover, let 0 ≤ τ <

t∗. We claim the identity

v(τ) = v(0) +
τˆ

0

(Bt∗ + κ)e−(t∗−s)(Bt∗+κ)u(s) + e−(t∗−s)(Bt∗+κ)u′(s)ds. (8)

Before we turn to the proof of (8), we show how it implies (♥). Note that the function 
(Bt∗ +κ)e−(t∗−s)(Bt∗+κ)u(s) +e−(t∗−s)(Bt∗+κ)u′(s) is in Lq

t (w; W−1,p
x ), since u is a weak (p, q)-

solution (keep Remark 3.5 (ii) in mind) and the semigroup is bounded on W−1,p
x owing to 

Proposition 3.12. Hence, by Lebesgue’s theorem, we can take the limit τ → t∗ on the right-
hand side of (8). Equally, we can take this limit on the left-hand side, owing to the facts that u is 
uniformly continuous over [0, t∗] with values in W−1,p

x , and the family {e−(t∗−s)(Bt∗+κ)}0≤s≤t∗

is strongly continuous and bounded as a family of operators on W−1,p
x . Then, plugging in the 

actual definition of v and using Remark 3.5 (ii) yield (♥).
Let us come back to the proof of (8). On the interval [0, τ ], s �→ e−(t∗−s)(Bt∗+κ), considered 

as a family of operators on W−1,p
x , has a bounded derivative due to Proposition 3.12 and an-

alyticity. As u is a weak (p, q)-solution, u : [0, τ ] → W−1,p
x is likewise absolutely continuous 

(see [23, Lem. 4.1] for the time-weighted argument). Hence, observing u(0) = 0, deduce (8)
from Lemma 5.1 below. �
Lemma 5.1. Let X, Y be Banach spaces, τ > 0, {T (s)}0≤s≤τ be a differentiable family of op-
erators X → Y with bounded derivative, and g : [0, τ ] → X be absolutely continuous. Then 
s �→ T (s)g(s) ∈ Y is an absolutely continuous function on [0, τ ] with derivative T ′(s)g(s) +
T (s)g′(s).

Proof. The assumption on T implies in particular that s �→ T (s) is absolutely continuous on 
[0, τ ]. Now, use absolute continuity of both T and g, and the Fubini–Tonelli theorem, to give

τˆ
T ′(s)g(s) + T (s)g′(s)ds
0
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=
τˆ

0

T ′(s)
(
g(0) +

sˆ

0

g′(u)du
)

ds +
τˆ

0

(
T (0) +

sˆ

0

T ′(u)du
)
g′(s)ds

=
τˆ

0

T ′(s)ds g(0) + T (0)

τˆ

0

g′(s)ds +
τˆ

0

τˆ

0

T ′(s)g′(u)duds.

All remaining integrals can now be evaluated using absolute continuity, and we only remain with 
T (τ)g(τ ) − T (0)g(0) after having canceled all superfluous terms. Rearranging terms gives the 
claim. �

Motivated by (♥), we are going to consider the operators

S1(u)(t∗) �→
t∗ˆ

0

(Bt∗ + κ)e−(t∗−s)(Bt∗+κ)(Bt∗ −Bs)u(s)ds,

S2(f )(t∗) �→(Bt∗ + κ)

t∗ˆ

0

e−(t∗−s)(Bt∗+κ)f (s)ds.

(9)

Up to some technicalities, boundedness of S1 and S2 will lead to the maximal regularity estimate 
for u later on in Section 7.

5.2. Estimates for the kernel of S1

The following lemma is simple, but central in our argument, as it is the only result that uses 
the full simultaneous regularity in the spatial and temporal variables.

Lemma 5.2. Let s ∈ (0, t∗). The operator Bt∗ − Bs acts as a bounded operator W1+α,p
x →

W−1+α,p
x along with the estimate

‖Bt∗ −Bs‖W1+α,p
x →W−1+α,p

x
� |t∗ − s|β+ε.

Proof. Let s ∈ (0, t∗) and f ∈ W1+α,p
x ∩ W1,2

x . Put X = Hα+ε,d/α

x if p < d/α and X = Cα+ε
x

otherwise, and recall from Lemma 2.1 that an X-function is a multiplier on the space Wα,p
x , and 

that its operator norm can be controlled by its X-norm. Hence, for g ∈ W1−α,p′
x ∩ W1,2

x , estimate

|〈(Bt∗ −Bs)f, g〉| = ∣∣ˆ
Rd

(B(t∗, x) − B(s, x))∇f (x) · ∇g(x)dx
∣∣

≤ ‖(B(t∗, ·) − B(s, ·))∇f ‖Wα,p
x

‖∇g‖
W−α,p′

x

� ‖B(t∗, ·) − B(s, ·)‖X‖∇f ‖Wα,p
x

‖g‖
W1−α,p′

x

.
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Using the regularity of A and duality, we deduce

‖(Bt∗ −Bs)f ‖
W−1+α,p

x
� |t∗ − s|β+ε‖∇f ‖Wα,p

x
≤ |t∗ − s|β+ε‖f ‖

W1+α,p
x

. �
Lemma 5.3. Let s ∈ (0, t∗). The operator (Bt∗ + κ)e−(t∗−s)(Bt∗+κ) acts as a bounded operator 
W−1+α,p

x → Lp
x , and satisfies the estimate

‖(Bt∗ + κ)e−(t∗−s)(Bt∗+κ)‖
W−1+α,p

x →Lp
x
� |t∗ − s|−β−1.

Proof. By duality, it suffices to show that ((Bt∗)∗ + κ)e−(t∗−s)((Bt∗ )∗+κ) maps Lp′
x → W1−α,p′

x

with norm controlled by |t∗ − s|−β−1. We are going to show that ((Bt∗)∗ + κ)e−(t∗−s)((Bt∗ )∗+κ)

maps Lp′
x → Lp′

x with estimate against |t∗ − s|−1 and Lp′
x → W1,p′

x with norm controlled by 
|t∗ − s|−3/2. Then the claim is a consequence of complex interpolation, keeping the relation 
(α−3)/2 = −β − 1 in mind.

Note that as a consequence of Theorem 3.9, the H∞-calculus of (Bt∗)∗ is bounded on Lp′
x

with control of the implicit constants. Hence, in conjunction with Theorem 3.11, calculate

‖((Bt∗)
∗ + κ)e−(t∗−s)((Bt∗ )∗+κ)f ‖

W1,p′
x

� ‖((Bt∗)
∗ + κ)

3
2 e−(t∗−s)((Bt∗ )∗+κ)f ‖

Lp′
x

= (t∗ − s)−3/2‖[z3/2e−z]((t∗ − s)((Bt∗)
∗ + κ))f ‖

Lp′
x

� (t∗ − s)−3/2‖f ‖
Lp′

x

.

The calculation for Lp′
x → Lp′

x is similar. This completes the proof. �
5.3. Boundedness of S2

Recall the operator S2 from (9). The aim of this subsection is to show the following.

Proposition 5.4. Let p, q ∈ (1, ∞), w ∈ Aq , then one has the estimate

‖S2f ‖Lq
t (w;Lp

x ) � ‖f ‖Lq
t (w;Lp

x ) (f ∈ C∞
0 (Lp

x ∩ L2
x)).

Implicit constants only depend on the quantities from Agreement 1.

In the unweighted case, it is well-known in the literature [21,27,34] that such bounds for S2
follow from the boundedness of some pseudo-differential operator with operator-valued kernel. 
For the reader’s convenience, we include a proof. For further background on such pseudo-
differential operators, the reader may consult [29,34] and the references therein. In Remark 5.6, 
we will comment on the extension to the weighted setting.

For technical reasons, we extend f by 0 outside of (0, T ), and we extend the operator fam-
ily {Bt }0<t<T to R constantly at the endpoints (we performed the same extension already in 
Section 4). Using the vector-valued Fourier transform F (see [28, Sec. 2.4.c] for further infor-
mation) and the Fubini–Tonelli theorem (its application is justified by integrability of Ff and 
exponential decay of the semigroup), calculate
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t∗ˆ

0

e−(t∗−s)(Bt∗+κ)f (s)ds =
∞̂

−∞
e−(t∗−s)(Bt∗+κ)1[0,∞)(t

∗ − s)f (s)ds

=
∞̂

−∞
e−(t∗−s)(Bt∗+κ)1[0,∞)(t

∗ − s)

∞̂

−∞
Ff (τ)e2πisτ dτ ds

=
∞̂

−∞

∞̂

−∞
e−(t∗−s)(Bt∗+κ)1[0,∞)(t

∗ − s)e2πisτ dsFf (τ)dτ

=
∞̂

−∞
I(τ, t∗)Ff (τ)dτ,

(10)

where I(τ, t∗) is implicitly defined by the latest identity. Using the transformation u = t∗ − s and 
the relationship between a semigroup and its generator in virtue of the Laplace transform (apply 
for instance [26, Prop. 3.4.1 d)] to Bt∗ + κ/2), deduce

I(τ, t∗) = e2πiτ t∗
∞̂

0

e−u(Bt∗+κ)e−2πiuτ du = e2πiτ t∗(2πiτ + (Bt∗ + κ))−1.

Plug this back into (10) to conclude with the definition of S2 that

S2(f )(t∗) = (Bt∗ + κ)

∞̂

−∞
(2πiτ + (Bt∗ + κ))−1Ff (τ)e2πiτ t∗ dτ. (11)

The integral 
´∞
−∞ ‖(Bt∗ + κ)(2πiτ + (Bt∗ + κ))−1Ff (τ)e2πiτ t∗‖L2

x
dτ is finite, so we can com-

mute (Bt∗ + κ) with the integral in (11) owing to Hille’s theorem. This means that S2(f ) can be 
represented as the pseudo-differential operator with symbol

(τ, s) �→ (Bs + κ)(2πiτ + (Bs + κ))−1.

Of course, by expansion, we can equally study boundedness of the pseudo-differential operator 
associated with the symbol (τ, s) �→ 2πiτ(2πiτ + (Bs + κ))−1. In the following lemma, we 
study this symbol thoroughly.

Lemma 5.5. For all 	 ≥ 0, the symbol a(τ, s) = 2πiτ(2πiτ + (Bs + κ))−1 is in S0
1,0(ε, 	, L

p
x ), 

that is to say, there is some constant C > 0 such that, for k = 0, . . . , 	, one has the R-bound

R
{
(1 + |τ |)k∂k

τ a(τ, s) ; s, τ ∈R
} ≤ C,

and for s, h, τ ∈ R one has the regularity condition

∥∥∂k
τ

[
a(τ, s) − a(τ, s + h)

]∥∥ p p ≤ C|h|ε(1 + |τ |)−k.
Lx →Lx
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Proof. For brevity, we rescale 2πτ to τ in the definition of the symbol a. Fix ϕ ∈ (ω, π/2)

and ψ ∈ (π/2, π) such that ϕ + ψ < π , and let s, h ∈ R. Define on Sψ ∪ B(0, κ/2) the function 
A(λ) = (1 + λ)

[
(λ + (Bs + κ))−1 − (λ + (Bs+h + κ))−1

]
.

Step 1: Reduction to the case k = 0. Since the function A is holomorphic in λ and defined on a 
sector that strictly includes the half-plane as well as a ball around the origin of fixed radius, the 
regularity condition reduces, as a consequence of Cauchy’s formula for derivatives, to bounded-
ness of A, which is the case k = 0 (but in a larger region). With a similar auxiliary function, the 
same is true for the R-boundedness condition, see [31, Ex. 2.16].

Step 2: Verification of the case k = 0. The R-boundedness condition follows directly from Corol-
lary 3.15. Hence, it only remains to show that the function A is bounded in operator norm with 
control against |h|ε . For λ ∈ Sψ ∪ B(0, κ/2), expand A(λ) using the functional calculus as

(1 + λ)
1
2

[
z

1
2

λ + z + κ/2

]
(Bs + κ/2) (F1)

×(Bs + κ/2)−
1
2
[
Bs+h −Bs

]
(Bs+h + κ/2)−

1
2 (F2)

×(1 + λ)
1
2

[
z

1
2

λ + z + κ/2

]
(Bs+h + κ/2). (F3)

Using composition, we can treat all three factors separately. The decay in |h| comes from (F2), 
whereas the other two are merely bounded. Moreover, (F1) and (F3) have the same structure, 
so we only present the estimate for (F1). Recall that, according to Remark 3.8, all results from 
Section 3 can be applied to Bs + κ/2.

Define on Sϕ the function gλ = z
1
2 (λ +z + κ/2)−1. As a consequence of Theorem 3.9, the H∞-

calculus of Bs + κ/2 is bounded on Lp
x , compare with the proof of Lemma 5.3. This means that 

we have to bound ‖gλ‖∞ in an appropriate way. Using the reverse triangle inequality on sectors 
and the case distinction |z| ≥ |λ| + κ/2 and |z| ≤ |λ| + κ/2, we indeed find readily ‖gλ‖∞ �
(κ/2 + |λ|)−1/2. Using (κ/2 + |λ|)−1/2 ≈ (1 + |λ|)−1/2, the factor in front of gλ(Bs + κ/2) cancels 
out, which completes the treatment of (F1).

It remains to treat (F2). The crucial ingredient is the estimate

‖Bs −Bs+h‖W1,p
x →W−1,p

x
� |h|ε, (12)

whose proof follows the lines of Lemma 5.2, but it suffices to have coefficients in Cε(R; L∞
x ). 

Recall from Theorem 3.11 the estimate ‖(Bs + κ/2)− 1
2 f ‖

W1,p
x

� ‖f ‖Lp
x

for f ∈ Lp
x ∩ L2

x . The 

same estimate holds of course if Bs and p are replaced by (Bs)
∗ and p′. Hence, we can estimate 

by duality and using (12) that, for g ∈ Lp′
x ,

|((Bs + κ/2)−
1
2 (Bs+h −Bs)(Bs+h + κ/2)−

1
2 f |g)|

= |((Bs+h −Bs)(Bs+h + κ/2)−
1
2 f | ((Bs)

∗ + κ/2)−
1
2 g)|

≤ ‖(Bs+h −Bs)(Bs+h + κ/2)−
1
2 f ‖ −1,p‖((Bs)

∗ + κ/2)−
1
2 g‖ 1,p′
Wx Wx
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� |h|ε‖(Bs+h + κ/2)−
1
2 f ‖

W1,p
x

‖g‖
Lp′

x

� |h|ε‖f ‖Lp
x
‖g‖

Lp′
x

.

Consequently,

‖(Bs + κ/2)−
1
2 (Bs+h −Bs)(Bs+h + κ/2)−

1
2 ‖Lp

x →Lp
x
� |h|ε. �

Proof of Proposition 5.4. We have already seen that the bound for S2 follows from the bound 
for the pseudo-differential operator associated with the symbol a(τ, t) = 2πiτ(2πiτ + (Bt +
κ))−1. It was shown in [34, Thm. 5] that boundedness for such a pseudo-differential operator 
follows if the symbol a is in S0

1,0(ε, 6, Lp
x ) and w = 1. The condition on a was just verified in 

Lemma 5.5. Dependence of implicit constants becomes apparent from an inspection of the proof. 
Moreover, the result in [34] extends to w ∈ Aq , see Remark 5.6. �
Remark 5.6 (Weighted operator-valued pseudo-differential operators). The proof of [34, 
Thm. 5] consists of 4 steps: 1) Decomposition of a general symbol into an “error symbol” 
and a symbol that is smooth in s. 2) Representation of smooth symbols by elementary sym-
bols. 3) Estimate for pseudo-differential operators associated with an error symbol. 4) Estimate 
for pseudo-differential operators associated with an elementary symbol. Steps 1) and 2) stay, 
of course, valid. In Step 3), Schur’s test is used, but the kernel estimate directly falls under 
the scope of Lemma 2.5. Finally, in Step 4), a vector-valued Littlewood–Paley decomposition, 
a vector-valued Mikhlin theorem and R-boundedness of Littlewood–Paley operators are used. 
These ingredients remain true in the weighted setting, see [32] or [22]. Finally, Schur’s test is 
used once again, this time with a more complicated kernel bound, which nevertheless can be 
captured by Lemma 2.5.

6. Higher regularity of weak solutions

In this section, we consider a family of operators {Bt }0<t<T associated with coefficients 
B(t, ·) ∈ E(�, λ, ε, M). If p < d/α, we assume in addition that B ∈ L∞

t (Hα+ε,d/α

x ), otherwise 
we require B ∈ L∞

t (Cα+ε
x ). Note that we do not require any regularity in time in this section. 

Provided that the associated problem (P’) admits a solution, we show higher spatial regularity 
for this solution in Proposition 6.2. This is based on a commutator argument that already ap-
peared in [6]. Implicit constants are allowed to depend on p, q , [w]Aq , �, λ, α, ε, κ , Hölder 
constants, and dimensions.

Recall the fractional derivative ∂α
x from Section 2. We use the representation of ∂α

x as a hy-
persingular integral to show the following commutator estimates.

Lemma 6.1 (Commutator estimates). Let p ∈ (1, ∞). Assume that b is a smooth and bounded 
scalar function on Rd . Then the commutator [∂α

x , b] := ∂α
x b − b∂α

x , initially defined on Wα,p
x , 

extends to a bounded operator on Lp
x , and satisfies the estimate

‖[∂α
x , b]f ‖Lp

x
� ‖b‖Cα+ε

x
‖f ‖Lp

x
(f ∈ Wα,p

x ). (13)

Moreover, if p < d/α, then, for all ε > 0, there exists a constant Cε > 0 such that
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‖[∂α
x , b]f ‖Lp

x
≤ Cε‖b‖L∞

x
‖f ‖Lp

x
+ ε‖b‖

Hα+ε,d/α
x

‖∂α
x f ‖Lp

x
(f ∈ Wα,p

x ).

Proof. Observe that, since [∂α
x , b] : Wα,p

x → Lp
x is bounded, it suffices, in virtue of density and 

Fatou’s lemma, to establish (13) for f smooth and bounded.
According to [37, Sec. 25.4], the fractional derivative ∂α

x acts on bounded and smooth func-
tions g as the hypersingular integral given for x ∈Rd by

∂α
x g(x) = c

ˆ

Rd

g(y) − g(x)

|y − x|d+α
dy.

We can apply this identity to f and bf in virtue of the assumption on b and the reduction at the 
beginning of this proof. Consequently, the commutator can be written as

[∂α
x , b]f (x) = c

(ˆ
Rd

b(y)f (y) − b(x)f (x)

|y − x|d+α
dy − b(x)

ˆ

Rd

f (y) − f (x)

|y − x|d+α
dy

)

= c

ˆ

Rd

(b(y) − b(x))f (y)

|y − x|d+α
dy.

Let h ≤ 1 and split the integral into the regions |y − x| ≤ h and |y − x| ≥ h to rewrite the latest 
expression as

c

ˆ

|y−x|≥h

(b(y) − b(x))f (y)

|y − x|d+α
dy + c

ˆ

|y−x|≤h

(b(y) − b(x))f (y)

|y − x|d+α
dy =: I + II.

Use boundedness of b for term I to estimate |I| � ‖b‖L∞
x

(
1|·|≥h| · |−d−α ∗ |f |)(x). Note that 

‖1|·|≥h| · |−d−α‖1 = h−α‖1|·|≥1| · |−d−α‖1 � h−α by scaling.

Part 1: Hölder coefficients. We specify h = 1. Use Hölder-regularity of b to bound |II| �
[b]Cα+ε

x

(
1|·|≤1| · |−d+ε ∗ |f |)(x). The convolution kernel 1|y|≤1|y|−d+ε is likewise integrable. 

In summary, Young’s convolution inequality yields the claim.

Part 2: Sobolev coefficients. Write |y−x|α = |y−x|−ε/4|y−x|α+ε/4, and use Hölder’s inequality 
to estimate

|II| ≤
( ˆ

|y−x|≤1

|y − x|−d+εp′/4 dy
) 1

p′ ( ˆ

|y−x|≤h

∣∣∣∣ |b(y) − b(x)||f (y)|
|y − x|α+ε/4

∣∣∣∣
p dy

|y − x|d
) 1

p
.

The first factor is bounded by a constant depending on d , p, and ε. Using this estimate and the 
bound for I in conjunction with Young’s convolution inequality yields

‖[∂α
x , b]f ‖Lp

x
� h−α‖b‖L∞

x
‖f ‖Lp

x
+

(ˆ
d

ˆ ∣∣∣∣ (b(y) − b(x))f (y)

|y − x|α+ε/4

∣∣∣∣
p dy dx

|y − x|d
) 1

p
. (14)
R |y−x|≤h
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Now use Hölder’s inequality with 1/p − α/d =: 1/q (observe that q is finite by the assumption 
p < d/α) to bound the second term in (14) by

(ˆ
Rd

ˆ

|y−x|≤h

∣∣∣∣b(y) − b(x)

|y − x|α+ε/2

∣∣∣∣
d
α dy dx

|y − x|d
) α

d ×
(ˆ
Rd

ˆ

|y−x|≤h

|f (y)|q |y − x|qε/4 dy dx

|y − x|d
) 1

q
.

The first factor is dominated by the Bα+ε/2
d/α,d/α

norm of b, which in turn is under control by the 

Hα+ε,d/α

x norm of b. Furthermore, the second factor is controlled by hε/4‖f ‖Lq
x

in virtue of 
Fubini’s theorem. Finally, we bound ‖f ‖Lq

x
� ‖∂α

x f ‖Lp
x

using boundedness of the fractional 
integral, see for instance [37, Thm. 2.5.2], where we use again the restriction on p.

Plugging everything back into (14) gives

‖[∂α
x , b]f ‖Lp

x
� h−α‖b‖L∞

x
‖f ‖Lp

x
+ h

ε/4‖b‖
Hα+ε,d/α

x

‖∂α
x f ‖Lp

x
.

Choosing h sufficiently small gives the claim. �
Proposition 6.2. Given a weak (p, q)-solution u of (P’) for some right-hand side f ∈ Lq

t (w; Lp
x ), 

one has higher spatial regularity in the sense u ∈ Lq
t (w; W1+α,p

x ) together with the estimate

‖u‖
Lq

t (w;W1+α,p
x )

� ‖f ‖Lq
t (w;Lp

x ).

Proof. The proof divides into four steps.

Step 1: Regularization of the equation. Let ρ ∈ C∞
0 (Rd) be positive with integral one and define 

the usual mollifier sequence ρn(x) := ndρ(nx). Put Bn := ρn ∗x B , where ∗x denotes convolution 
in the x-variable. One has

Bn(t, x)ξ · η =
ˆ

Rd

ρn(y)B(t, x − y)ξ · η dy (ξ, η ∈Cdm),

hence Bn is elliptic with the same bounds as B . In conjunction with the calculation

‖Bn(t, x) − Bn(t, y)‖ ≤
ˆ

Rd

ρn(z)‖B(t, x − z) − B(t, y − z)‖dz (15)

≤ M|x − y|ε,

this shows that Bn is again in the class E(�, λ, ε, M). If p ≥ d/α, the calculation in (15) moreover 
shows Bn ∈ L∞

t (Cα+ε
x ), where the norm is controlled by M . Otherwise, Bn ∈ L∞

t (Hα+ε,d/α

x ), 
since the Bessel potential commutes with mollification. Similarly to (15), we derive for fixed n
using smoothness of ρ that Bn is Lipschitz in the x variable uniformly in t . Now, according to 
Theorem 4.1, there exist unique weak (p, q)-solutions un to equation (P’) with B replaced by 
Bn in the definition of Bt .
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Step 2: Qualitative higher regularity for solutions of the regularized equations. Using the 
method of difference quotients, we show that the solutions un from Step 1 belong to the class 
Lq

t (w; W2,p
x ). This is a non-quantitative technical necessity to justify certain calculations in 

Step 3. To keep the notation concise, we will omit the subscript n and simply write u instead 
of un for the solution, and B instead of Bn for the coefficients. We emphasize that, in this step, 
the only quantitative property of the regularized coefficients that we are going to use is the Lips-
chitz property in x uniform in t .

For y ∈ Rd , define the translation operator Sy in the x-variable by f �→ f (· + y). We extend 
Sy by pointwise application in t to parabolic spaces like Lq

t (w; Lp
x ) (for simplicity, we keep 

writing the symbol Sy for this extension). Then, set for j = 1, . . . , d and h ∈ R the difference 
quotient operator Dj

hu := 1
h
(Shej

u − u), where ej is the j th unit vector in Rd . Observe that the 

operator Dj
h leaves the space of test functions invariant.

Using the chain rule and translation in the x-variable, one gets for t∗ fixed, y ∈ Rd , and 
g ∈ W1,p′

x the identity

bt∗(Syu(t∗), g)

=
ˆ

Rd

B(t∗, x)∇u(t∗, x + y) · ∇g(x)dx

=
ˆ

Rd

[
B(t∗, x) − B(t∗, x + y)

]∇u(t∗, x + y) · ∇g(x)dx + bt∗(u(t∗), S−yg).

(16)

Note that S−y is the adjoint of Sy , and, consequently, −D
j
−h is the adjoint of Dj

h . Hence, if we 

plug Dj
hu in (IE), and use the adjoint of Dj

h for the first and third, and (16) for the second term, 
we obtain

T̂

0

−ϕ′(s)(Dj
hu(s) |g) + ϕ(s)bs(D

j
hu(s), g) + ϕ(s)κ(D

j
hu(s) |g)ds

=
T̂

0

ϕ(s)

ˆ

Rd

(B(s, x) − B(s, x + hej )

h

)
∇u(s, x + hej ) · ∇g(x)dx ds

−
T̂

0

−ϕ′(s)(u(s) |Dj
−hg) + ϕ(s)bs(u(s),D

j
−hg) + ϕ(s)κ(u(s) |Dj

−hg)ds

=: I + II.

To bound term II, we use first that u is a solution for the right-hand side f , followed by the fact 
that we can estimate the difference quotients of g by ∇g, see for instance [18, Sec. 5.8.2. Thm. 3]. 
So, write
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T̂

0

−ϕ′(s)(u(s) |Dj
−hg) + ϕ(s)bs

(
u(s),D

j
−hg

) + ϕ(s)κ(u(s) |Dj
−hg)ds

=
T̂

0

ϕ(s)(f (s) |Dj
−hg)ds,

and for s ∈ (0, T ) fixed and all h ∈R, estimate the pairing in its integrand by

|(f (s) |Dj
−hg)| ≤ ‖f (s)‖Lp

x
‖Dj

−hg‖
Lp′

x

� ‖f (s)‖Lp
x
‖∇g‖

Lp′
x

.

Using Hölder’s inequality in the t-variable reveals that term II defines a functional on 
Lq ′

t (w′; W1,p′
x ) and is thus induced by a function in Lq

t (w; W−1,p
x ), with bound independent 

of h. To treat term I, use that B is Lipschitz in the x-variable uniformly in s ∈ (0, T ), along with 
Hölder’s inequality and translation invariance of the Lp

x -norm.
Eventually, we see that Dj

hu is a weak (p, q)-solution to some right-hand side in Lq
t (w;

W−1,p
x ), where the norm of the right-hand side can be controlled independently of h. Conse-

quently, the estimate from Theorem 4.1 gives

‖Dj
hu‖

Lq
t (w;W1,p

x )
�n ‖f ‖Lq

t (w;Lp
x ) (h ∈R, j = 1, . . . , d). (17)

With the symbol �n we emphasize that the implicit constant here depends on the regularization 
from Step 1. In particular, we deduce from (17) that there is a sequence (hn)n of positive numbers 
such that hn converges to 0, and such that Dj

hn
u converges to a weak limit point v ∈ Lq

t (w; W1,p
x ). 

We claim that, for almost every s ∈ (0, T ), the function v(s) is the j th weak derivative in the x-
variable of u(s). Indeed, it follows from the “integration by parts”-identity

ˆ

Rd

(D
j
hf )g dx = −

ˆ

Rd

f (D
j
−hg)dx,

which is a simple consequence of translation in the integral, that one has, for ϕ ∈ C∞
0 (Rd) and 

ψ ∈ C∞
0 (0, T ), the identity

−
T̂

0

ˆ

Rd

∂jϕ(x)u(s, x)dx ψ(s)ds = − lim
n

T̂

0

ˆ

Rd

D
j
−hn

ϕ(x)u(s, x)dx ψ(s)ds

= lim
n

T̂

0

ˆ

Rd

ϕ(x)D
j
hn

u(s, x)dx ψ(s)ds.

Integration against ϕ(x)ψ(s) gives rise to a functional on Lq
t (w; Lp

x ), hence weak convergence 
of Dj

u identifies the latest limit with
hn
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T̂

0

ˆ

Rd

ϕ(x)v(s, x)dx ψ(s)ds.

Finally, the fundamental lemma of the calculus of variations shows

−
ˆ

Rd

∂jϕ(x)u(s, x)dx =
ˆ

Rd

ϕ(x)v(s, x)dx for almost every s ∈ (0, T ),

which reveals ∂ju(s, x) = v(s, x) for almost every s ∈ (0, T ) and j = 1, . . . , d . But as v ∈
Lq

t (w; W1,p
x ), the lifting property for Sobolev spaces shows u ∈ Lq

t (w; W2,p
x ).

Step 3: Uniform bounds using a commutator argument. The current step is the essence of this 
proof, filling in the details of the heuristic given in the roadmap in Section 1.1. As in Step 2, we 
continue to work with the regularized coefficients, but still omit the subscript n in the notation. 
However, now we will also rely on the properties established in Step 1 that are uniform in n.

Note that ∂α
x commutes with ∇x and ∂t , where the former fact is a consequence of its definition 

as a Fourier multiplier.
Our goal is to show that ∂α

x u is a weak (p, q)-solution to some admissible right-hand side. 
Note that ∂α

x u ∈ Lq
t (w; W1,p

x ), owing to the higher spatial regularity of u established in Step 2, 
which allows us to plug this term into the equation. That being said, calculate

T̂

0

−ϕ′(s)(∂α
x u(s) |g) + ϕ(s)bs(∂

α
x u(s), g) + ϕ(s)κ(∂α

x u(s) |g)ds

=
T̂

0

−ϕ′(s)(u(s) | ∂α
x g) + ϕ(s)bs(u(s), ∂α

x g) + ϕ(s)κ(u(s) | ∂α
x g)ds

+
T̂

0

ϕ(s)
[
bs(∂

α
x u(s), g) − bs(u(s), ∂α

x g)
]

ds.

Note that ∂α
x g ∈ W1,p′

x since g is smooth and compactly supported. Hence, in the light of Re-
mark 3.5 (v), use the equation for u, and expand the definition of bs , to rewrite the last expression 
as

T̂

0

ϕ(s)(f (s) | ∂α
x g)ds +

T̂

0

ϕ(s)

ˆ

Rd

B(s, x)∇∂α
x u(s) · ∇g − B(s, x)∇u(s) · ∇∂α

x g dx ds

=: I + II.

We have to check that the terms I and II are induced by right-hand sides in Lq
t (w; W−1,p

x ). For 
term I, this is a direct consequence of the mapping properties of ∂α

x described in Definition 2.2, 
and the Lq

t (w; W−1,p
x )-norm can be controlled by ‖f ‖ q p .
Lt (w;Lx )
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Let us proceed with term II. Keep in mind that B(s, x) is Lipschitz in x, and thus is a multiplier 
on W1,p

x . We use this fact and higher regularity of u from Step 2 to commute ∂α
x with ∇x to 

rewrite the integral over Rd in II as

ˆ

Rd

B(s, x)∇∂α
x u(s) · ∇g − B(s, x)∇u(s) · ∇∂α

x g dx =
ˆ

Rd

[
B(s, x), ∂α

x

]
∇u(s) · ∇g dx.

Now, we apply the commutator estimates from Lemma 6.1 for all times s. We only present the 
case p < d/α, the other case is even easier. Keep in mind that B(s, ·) is smooth and bounded by the 
regularization in Step 1. Hence, the latter part of Lemma 6.1 along with Hölder’s inequality show 
that term II is induced by an Lq

t (w; W−1,p
x ) function as well. This time, the Lq

t (w; W−1,p
x )-norm 

is controlled by Cε‖u‖
Lq

t (w;W1,p
x )

+ ε‖∂α
x u‖

Lq
t (w;W1,p

x )
for any ε > 0, where implicit constants 

depend on the Sobolev regularity of the coefficients, which is also under control by Step 1. 
Observe that we have used once more that ∂α

x and ∇ commute.

Under the line, Theorem 4.1 gives ∂α
x u ∈ Lq

t (w; W1,p
x ) with estimate

‖∂α
x u‖

Lq
t (w;W1,p

x )
� ‖f ‖Lq

t (w;Lp
x ) + Cε‖u‖

Lq
t (w;W1,p

x )
+ ε‖∂α

x u‖
Lq

t (w;W1,p
x )

.

Choosing ε sufficiently small, we can absorb the term ε‖∂α
x u‖

Lq
t (w;W1,p

x )
into the left-hand side. 

Finally, apply Theorem 4.1 once more, but this time for u instead of ∂α
x u, to deduce

‖u‖
Lq

t (w;W1+α,p
x )

� ‖u‖Lq
t (w;Lp

x ) + ‖∂α
x u‖

Lq
t (w;W1,p

x )

� ‖f ‖Lq
t (w;Lp

x ) + Cε‖u‖
Lq

t (w;W1,p
x )

� ‖f ‖Lq
t (w;Lp

x ).

Step 4: Taking the limit in Step 1. The solutions un to the regularized equations from Step 1 
satisfy the identity

T̂

0

ϕ′(s)(un(s) |g) + ϕ(s)(f (s) |g) − ϕ(s)κ(un(s) |g)ds

=
T̂

0

ϕ(s)

ˆ

Rd

Bn(s, x)∇un(s) · ∇g dx ds.

(18)

Moreover, we have seen in Step 3 that ‖un‖Lq
t (w;W1+α,p

x )
� ‖f ‖Lq

t (w;Lp
x ) holds uniformly in n. 

Since p and q are in the reflexive range, we find a subsequence (which we still denote by un) for 
which un and ∇un converge weakly in Lq

t (w; Lp
x ) to some limit v ∈ Lq

t (w; W1+α,p
x ). Moreover, 

‖v‖
Lq

t (w;W1+α,p
x )

� ‖f ‖Lq
t (w;Lp

x ). The former fact directly enables us to pass to the limit

T̂

ϕ′(s)(v(s) |g) + ϕ(s)(f (s) |g) + ϕ(s)κ(v(s) |g)ds
0
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on the left-hand side of (18). For the right-hand side, write

T̂

0

ϕ(s)

ˆ

Rd

Bn(s, x)∇un(s, x) · ∇g(x)dx ds =
T̂

0

ϕ(s)

ˆ

Rd

∇un(s, x) · Bn(s, x)∗∇g(x)dx ds.

Clearly, Bn(s, x)∗ is uniformly bounded, and, by Cε
x regularity of B , one has Bn(s, x)∗ →

B(s, x)∗ pointwise. Hence, the dominated convergence theorem gives ϕ(s)Bn(s, x)∗∇g(x) →
ϕ(s)B(s, x)∗∇g(x) strongly in Lq ′

t (w′; Lp′
x ). Hence, the right-hand side of (18) converges to

T̂

0

ϕ(s)

ˆ

Rd

B(s, x)∇v(s, x) · ∇g(x)dx ds.

In summary, taking the limit in (18) results in

T̂

0

ϕ′(s)(v(s) |g) + ϕ(s)(f (s) |g) − ϕ(s)κ(v(s) |g)ds

=
T̂

0

ϕ(s)

ˆ

Rd

B(s, x)∇v(s, x) · ∇g(x)dx ds.

This shows that u and v solve the same equation. Uniqueness of solutions leads to u = v ∈
Lq

t (w; W1+α,p
x ) as desired. The corresponding estimate was already mentioned above. �

Remark 6.3. In Step 3, we have used that the fractional derivative can be written as a Fourier 
multiplier, and hence commutes with ∇ . This is the central reason that ties us to the whole-space 
in the x variable. Moreover, the limiting argument in Step 4 relies on the control of the implied 
constants from Theorem 4.1.

7. Proof of Theorem 1.1

Following the plan outlined in the roadmap in Section 1.1 we assemble the results from the 
previous sections to prove Theorem 1.1.

Proof of Theorem 1.1. Let f ∈ Lq
t (w; Lp

x ). In virtue of Remark 3.5 (iv), we consider the shifted 
problem (P’) with Bt = Lt instead of (P). Let u be its unique (p, q)-solution from Theorem 4.1. 
We want to show Ltu(t) ∈ Lq

t (w; Lp
x ) with estimate against ‖f ‖Lq

t (w;Lp
x ). This happens in three 

steps.

Step 1: Reduction to right-hand sides in C∞
0 (Lp

x ∩ L2
x). Let (fn)n be a sequence in C∞

0 (Lp
x ∩ L2

x)

that converges to f in Lq
t (w; Lp

x ). Let un be the weak (p, q)-solution of (P’) with Bt = Lt and 
right-hand side fn provided by Theorem 4.1. Suppose the maximal regularity estimate

‖Lt un(t)‖Lq
t (w;Lp

x ) � ‖fn‖Lq
t (w;Lp

x ) (19)
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with implicit constant independent of n. In the sequel, we allow tacitly passing to subsequences, 
even without changing the notation. Since the un are weak (p, q)-solutions, arguing as in Step 4 
of the proof of Proposition 6.2, we see that un converges weakly to u in Lq

t (w; Lp
x ) and that 

∇un converges weakly to ∇u in Lq
t (w; Lp

x ). Let v ∈ Lq ′
t (w′; Lp′

x ) ∩ L2
t (L

2
x). Then, in particular, 

(Lt∗un(t
∗) | v(t∗)) → (Lt∗u(t∗) | v(t∗)) for almost every t∗. Consequently, we find by Fatou’s 

lemma and (19) that

∣∣∣
T̂

0

〈Lt u(t), v(t)〉dt

∣∣∣ ≤ lim inf
n

∣∣∣
T̂

0

〈Lt un(t), v(t)〉dt

∣∣∣
� lim inf

n
‖fn‖Lq

t (Lp
x )‖v‖

Lq′
t (w;Lp′

x )

= ‖f ‖Lq
t (w;Lp

x )‖v‖
Lq′

t (w′;Lp′
x )

.

Hence, duality yields ‖Ltu(t)‖Lq
t (w;Lp

x ) � ‖f ‖Lq
t (w;Lp

x ), provided we can show (19).

Step 2: Treating the first term in (♥). We write u and f instead of un and fn for this part 
to emphasize that this step does not rely on the regularization of the right-hand side. Let v ∈
Lq ′

t (w′; Lp′
x ) ∩ L2

t (L
2
x). We aim to estimate S1 by duality. To this end, write

∣∣∣
T̂

0

tˆ

0

((Lt + κ)e−(t−s)(Lt+κ)(Lt −Ls)u(s) |v(t))ds dt

∣∣∣

=
∣∣∣

T̂

0

tˆ

0

(u(s) | ((Lt + κ)e−(t−s)(Lt+κ)(Lt −Ls)
)∗

v(t))ds dt

∣∣∣.
(20)

For t and s fixed, the operator (Lt + κ)e−(t−s)(Lt+κ)(Lt − Ls) maps W1+α,p
x → Lp

x with norm 
controlled by |t − s|−1+ε as combining Lemmas 5.2 and 5.3 shows. Consequently, its adjoint 
maps Lp′

x → W−1−α,p′
x with the same bound. Use this together with the W1+α,p

x –W−1−α,p′
x du-

ality pairing in (20) to bound its right-hand side by

T̂

0

tˆ

0

‖u(s)‖
W1+α,p

x
‖((Lt + κ)e−(t−s)(Lt+κ)(Lt −Ls)

)∗
v(t)‖

W−1−α,p′
x

ds dt

�
T̂

0

tˆ

0

‖u(s)‖
W1+α,p

x
|t − s|−1+ε‖v(t)‖

Lp′
x

ds dt.

By Hölder’s inequality, this can be bounded by

∥∥∥
tˆ

0

|t − s|−1+ε‖u(s)‖
W1+α,p

x
ds

∥∥∥
Lq

t (w)
‖v(t)‖

Lq′
t (w′;Lp′

x )
. (21)
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By Lemma 2.5 (the convolution kernel s �→ |s|−1+ε is radial, decreasing, and integrable over 
(0, T )) and Proposition 6.2, control (21) by ‖u‖

Lq
t (w;W1+α,p

x )
‖v‖

Lq′
t (w′;Lp′

x )
� ‖f ‖Lq

t (w;Lp
x ) ×

‖v‖
Lq′

t (w′;Lp′
x )

. Hence, duality shows in summary

‖
tˆ

0

(Lt + κ)e−(t−s)(Lt+κ)(Lt −Ls)u(s)ds‖Lq
t (w;Lp

x ) � ‖f ‖Lq
t (w;Lp

x ). (22)

In particular, the above calculation (applied with v constant) shows that

tˆ

0

‖(Lt + κ)e−(t−s)(Lt+κ)(Lt −Ls)u(s)‖Lp
x

ds < ∞ for almost every t ∈ (0, T ).

Whence, Hille’s theorem shows

(Lt + κ)

tˆ

0

e−(t−s)(Lt+κ)(Lt −Ls)u(s)ds = S1(u)(t),

so that (22) translates to

‖S1(u)‖Lq
t (w;Lp

x ) � ‖f ‖Lq
t (w;Lp

x ).

Step 3: Treating the second term in (♥). Thanks to the reduction to more regular right-hand sides 
in Step 1, Proposition 5.4 directly yields ‖S2(fn)‖Lq

t (w;Lp
x ) � ‖fn‖Lq

t (w;Lp
x ) � ‖f ‖Lq

t (w;Lp
x ).

In summary, Steps 2 and 3 in conjunction with Theorem 4.1 give

‖Lt un(t)‖Lq
t (w;Lp

x ) � ‖S1(un)‖Lq
t (w;Lp

x ) + ‖S2(fn)‖Lq
t (w;Lp

x ) + κ‖un‖Lq
t (w;Lp

x ) � ‖f ‖Lq
t (w;Lp

x ),

which is (19). Hence, ‖Lt u(t)‖Lq
t (w;Lp

x ) � ‖f ‖Lq
t (w;Lp

x ) as was demonstrated in Step 1. This com-
pletes the proof. �
Data availability

No data was used for the research described in the article.

References

[1] M. Achache, E.M. Ouhabaz, Lions’ maximal regularity problem with H
1
2 -regularity in time, J. Differ. Equ. 266 (6) 

(2019) 3654–3678, https://doi .org /10 .1016 /j .jde .2018 .09 .015.
[2] P. Acquistapace, B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Semin. 

Mat. Univ. Padova 78 (1987) 47–107.
[3] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.
[4] W. Arendt, D. Dier, S. Fackler, J.L. Lions’ problem on maximal regularity, Arch. Math. 109 (1) (2017) 59–72, 

https://doi .org /10 .1007 /s00013 -017 -1031 -6.
80

https://doi.org/10.1016/j.jde.2018.09.015
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibB2FFADEFD7079651E2C3AB3A6F29C9F8s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibB2FFADEFD7079651E2C3AB3A6F29C9F8s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib9D4EE6DD564C9AC14EB6BE02091A9224s1
https://doi.org/10.1007/s00013-017-1031-6


S. Bechtel Journal of Differential Equations 409 (2024) 49–82
[5] P. Auscher, On necessary and sufficient conditions for Lp -estimates of Riesz transforms associated to elliptic oper-
ators on Rn and related estimates, Mem. Am. Math. Soc. 186 (871) (2007).

[6] P. Auscher, M. Egert, On non-autonomous maximal regularity for elliptic operators in divergence form, Arch. Math. 
(Basel) 107 (3) (2016) 271–284, https://doi .org /10 .1007 /s00013 -016 -0934 -y.

[7] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, P. Tchamitchian, The solution of the Kato square root problem for 
second order elliptic operators on Rn , Ann. Math. (2) 156 (2) (2002) 633–654, https://doi .org /10 .2307 /3597201.

[8] P. Auscher, P. Tchamitchian, Square Root Problem for Divergence Operators and Related Topics, Astérisque, 
vol. 249, Société Mathématique de France, 1988.

[9] S. Bechtel, Lp-estimates for the square root of elliptic systems with mixed boundary conditions II, J. Differ. Equ. 
379 (2024) 104–124, https://doi .org /10 .1016 /j .jde .2023 .09 .036.

[10] S. Bechtel, C. Mooney, M. Veraar, Counterexamples to maximal regularity for operators in divergence form, Arch. 
Math. (2024), in press, https://doi .org /10 .1007 /s00013 -024 -02014 -9.

[11] S. Bechtel, E.M. Ouhabaz, Off-diagonal bounds for the Dirichlet-to-Neumann operator on Lipschitz domains, J. 
Math. Anal. Appl. 530 (2) (2024) 127696, https://doi .org /10 .1016 /j .jmaa .2023 .127696.

[12] G.D. Blasio, Maximal Lp regularity for nonautonomous parabolic equations in extrapolation spaces, J. Evol. Equ. 
6 (2) (2006) 229–245, https://doi .org /10 .1007 /s00028 -006 -0241 -3.

[13] D. Dier, R. Zacher, Non-autonomous maximal regularity in Hilbert spaces, J. Evol. Equ. 17 (3) (2017) 883–907, 
https://doi .org /10 .1007 /s00028 -016 -0343 -5.

[14] H. Dong, D. Kim, On the Lp-solvability of higher order parabolic and elliptic systems with BMO coefficients, 
Arch. Ration. Mech. Anal. 109 (3) (2011) 889–941, https://doi .org /10 .1007 /s00205 -010 -0345 -3.

[15] H. Dong, D. Kim, Higher order elliptic and parabolic systems with variably partially BMO coefficients in regular 
and irregular domains, J. Funct. Anal. 261 (11) (2011) 3279–3327, https://doi .org /10 .1016 /j .jfa .2011 .08 .001.

[16] H. Dong, D. Kim, Lp solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, 
Calc. Var. Partial Differ. Equ. 40 (3–4) (2011) 357–389, https://doi .org /10 .1007 /s00526 -010 -0344 -0.

[17] H. Dong, D. Kim, On Lp-estimates for elliptic and parabolic equations with Ap weights, Trans. Am. Math. Soc. 
370 (7) (2018) 5081–5130, https://doi .org /10 .1090 /tran /7161.

[18] L.C. Evans, Partial Differential Equations, second edition, Graduate Studies in Mathematics, vol. 19, Amer. Math. 
Soc., Providence, RI, 2010.

[19] S. Fackler, ArXiv preprint, available at https://arxiv.org /abs /1511 .06207v3.
[20] S. Fackler, J.-L. Lions’ problem concerning maximal regularity of equations governed by non-autonomous forms, 

Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34 (3) (2017) 699–709, https://doi .org /10 .1016 /j .anihpc .2016 .05 .001.
[21] S. Fackler, Nonautonomous maximal Lp -regularity under fractional Sobolev regularity in time, Anal. PDE 11 (5) 

(2018) 1143–1169, https://doi .org /10 .2140 /apde .2018 .11 .1143.
[22] S. Fackler, T.P. Hytönen, N. Lindemulder, Weighted estimates for operator-valued Fourier multipliers, Collect. 

Math. 71 (3) (2020) 511–548, https://doi .org /10 .1007 /s13348 -019 -00275 -0.
[23] C. Gallarati, M.C. Veraar, Maximal regularity for non-autonomous equations with measurable dependence on time, 

Potential Anal. 46 (3) (2017) 527–567, https://doi .org /10 .1007 /s11118 -016 -9593 -7.
[24] J. García-Cuerva, J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics 

Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985.
[25] B. Haak, E.M. Ouhabaz, Maximal regularity for non-autonomous evolution equations, Math. Ann. 363 (3–4) (2015) 

1117–1145, https://doi .org /10 .1007 /s00208 -015 -1199 -7.
[26] M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, vol. 169, 

Birkhäuser, Basel, 2006.
[27] M. Hieber, S. Monniaux, Pseudo-differential operators and maximal regularity results for non-autonomous parabolic 

equations, Proc. Am. Math. Soc. 128 (2000) 1047–1053, https://doi .org /10 .1090 /S0002 -9939 -99 -05145 -X.
[28] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-

Paley Theory, Springer, Cham, 2016.
[29] T. Hytönen, P. Portal, Vector-valued multiparameter singular integrals and pseudodifferential operators, Adv. Math. 

217 (2) (2008) 519–536, https://doi .org /10 .1016 /j .aim .2007 .08 .002.
[30] N. Kalton, S. Mayboroda, M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applica-

tions to problems in partial differential equations, in: Interpolation Theory and Applications, in: Contemp. Math., 
vol. 445, Amer. Math. Soc., Providence, RI, 2007, pp. 121–177.

[31] P.C. Kunstmann, L. Weis, Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H∞-
functional calculus, in: Functional Analytic Methods for Evolution Equations, in: Lecture Notes in Math., vol. 1855, 
Springer, Berlin, 2004, pp. 65–311.

[32] M. Meyries, M.C. Veraar, Pointwise multiplication on vector-valued function spaces with power weights, J. Fourier 
Anal. Appl. 21 (1) (2015) 95–136, https://doi .org /10 .1007 /s00041 -014 -9362 -1.
81

http://refhub.elsevier.com/S0022-0396(24)00418-2/bib0E09ADD68375D8AD7878F171820599C4s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib0E09ADD68375D8AD7878F171820599C4s1
https://doi.org/10.1007/s00013-016-0934-y
https://doi.org/10.2307/3597201
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib2C97449912EDAD2525CF205ADA96809Bs1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib2C97449912EDAD2525CF205ADA96809Bs1
https://doi.org/10.1016/j.jde.2023.09.036
https://doi.org/10.1007/s00013-024-02014-9
https://doi.org/10.1016/j.jmaa.2023.127696
https://doi.org/10.1007/s00028-006-0241-3
https://doi.org/10.1007/s00028-016-0343-5
https://doi.org/10.1007/s00205-010-0345-3
https://doi.org/10.1016/j.jfa.2011.08.001
https://doi.org/10.1007/s00526-010-0344-0
https://doi.org/10.1090/tran/7161
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibA0A1E71392FC13041B04F743C6727CA2s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibA0A1E71392FC13041B04F743C6727CA2s1
https://arxiv.org/abs/1511.06207v3
https://doi.org/10.1016/j.anihpc.2016.05.001
https://doi.org/10.2140/apde.2018.11.1143
https://doi.org/10.1007/s13348-019-00275-0
https://doi.org/10.1007/s11118-016-9593-7
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib816205D180B00FF0DC6AD6C740CC0D08s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib816205D180B00FF0DC6AD6C740CC0D08s1
https://doi.org/10.1007/s00208-015-1199-7
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib30AC7A594C994FB41C5B0305FB97423Cs1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib30AC7A594C994FB41C5B0305FB97423Cs1
https://doi.org/10.1090/S0002-9939-99-05145-X
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibC889BD3AD386C791FF9E468D46ED1D47s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibC889BD3AD386C791FF9E468D46ED1D47s1
https://doi.org/10.1016/j.aim.2007.08.002
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibD1F3723AEEB82710C2084AB5C0D75FA9s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibD1F3723AEEB82710C2084AB5C0D75FA9s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibD1F3723AEEB82710C2084AB5C0D75FA9s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibCD37B867BC72DE7092BE76FFDD85630Cs1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibCD37B867BC72DE7092BE76FFDD85630Cs1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibCD37B867BC72DE7092BE76FFDD85630Cs1
https://doi.org/10.1007/s00041-014-9362-1


S. Bechtel Journal of Differential Equations 409 (2024) 49–82
[33] E.M. Ouhabaz, C. Spina, Maximal regularity for non-autonomous Schrödinger type equations, J. Differ. Equ. 248 (7) 
(2010) 1668–1683, https://doi .org /10 .1016 /j .jde .2009 .10 .004.

[34] P. Portal, Ž. Štrkalj, Pseudodifferential operators on Bochner spaces and an application, Math. Z. 253 (4) (2006) 
805–819, https://doi .org /10 .1090 /S0002 -9939 -99 -05145 -X.

[35] J. Prüss, R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients con-
tinuous in time, J. Math. Anal. Appl. 256 (2) (2001) 405–430, https://doi .org /10 .1006 /jmaa .2000 .7247.

[36] J. Prüss, G. Simonett, M. Wilke, Critical spaces for quasilinear parabolic evolution equations and applications, J. 
Differ. Equ. 264 (3) (2018) 2028–2074, https://doi .org /10 .1016 /j .jde .2017 .10 .010.

[37] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon 
and Breach Science Publishers, Yverdon, 1993.

[38] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 
1970.

[39] R.S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967) 1031–1060.
[40] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 

vol. 18, North-Holland Publishing, Amsterdam, 1978.
82

https://doi.org/10.1016/j.jde.2009.10.004
https://doi.org/10.1090/S0002-9939-99-05145-X
https://doi.org/10.1006/jmaa.2000.7247
https://doi.org/10.1016/j.jde.2017.10.010
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibE719C8659B77EFF94634AD5E14D168B2s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibE719C8659B77EFF94634AD5E14D168B2s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibCC0722B733E25829ED9DE9E93AC97BE5s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibCC0722B733E25829ED9DE9E93AC97BE5s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bibE6FEC6F61ECC232A7C30E433E694C909s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib5AC2C1349CA0CF87B7F41A9350CE9304s1
http://refhub.elsevier.com/S0022-0396(24)00418-2/bib5AC2C1349CA0CF87B7F41A9350CE9304s1

	Weighted non-autonomous Lq(Lp) maximal regularity for complex systems under mixed regularity in space and time
	1 Introduction
	1.1 Roadmap

	2 Function spaces and weights
	2.1 Spatial smoothness spaces
	2.2 Muckenhoupt weights and parabolic spaces

	3 Uniform estimates for elliptic operators
	3.1 Elliptic coefficients
	3.2 Elliptic systems and weak (p,q)-solutions
	3.3 The elliptic operator on L2x and mapping properties
	3.4 Square roots and bounds on W−1,px
	3.5 Uniform R-sectoriality

	4 Existence and uniqueness of weak (p,q)-solutions
	5 Estimates for the solution formula
	5.1 Representation formula by Acquistapace and Terreni
	5.2 Estimates for the kernel of S1
	5.3 Boundedness of S2

	6 Higher regularity of weak solutions
	7 Proof of Theorem 1.1
	Data availability
	References


