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Abstract

This project aimed to investigate reinforcement learning (RL) algorithms to improve
water management policy development in the Nile Basin, with a focus on the
Multi-Objective Natural Evolution Strategies (MONES) and Evolutionary Multi-
Objective Direct Policy Search (EMODPS) algorithms. This project intended to
refactor a Nile Basin simulation to be compatible with the MONES algorithm,
which continues the exploration of different machine learning algorithms in water
resource management. Additionally, the RL algorithms were aimed at training
using two climate data sets: human-favourable and climate-varying conditions, and
then evaluating on the satisfaction and regret metrics. The successful integration of
the MONES framework shows the feasibility of utilizing advanced RL algorithms
for water management problems. Initial results indicate that the MONES algorithm
underperforms compared to the EMODPS algorithm according to hypervolume
and diversity of solutions, however, further research is needed to test whether this
claim holds. The EMODPS algorithm faced challenges in finding optimal solutions
when dealing with variable climate conditions scenarios, accentuating the need
for robust solutions, which consider a variety of possible climate outcomes. The
observed sensitivity to variable climate conditions underlines the crucial importance
of accurate and recent data, as well as the need to consider the climate change
effects on water management. The study concluded with suggestions that future
simulations of water management strategies may be improved if a broader set of
external factors and a more realistic representation of objectives are included in the
simulation model. These improvements stand to positively impact the accuracy,
applicability and reliability of future simulations.

1 Introduction

In today’s rapidly advancing world, the challenges posed by climate change, specifically the need for
effective water management, become increasingly prominent. Recent climate patterns and weather
events are leading to periodic droughts and floods [15]. Since water resources are becoming more
scarce and less predictable-such as the expected rainfall or groundwater levels at specific times of the
year- it is of crucial importance to manage them effectively[8]. Additionally, projects in this field
have to take into account multiple concerns that are not only based on resources themselves but also
those of the environment and society [21]. Fortunately, machine learning algorithms can be of help
when addressing such multi-faceted issues[6]. It is possible to cast the problem of devising effective
policies for the management of water resources as an optimization problem. The problem is subject
to constraints imposed by environmental and societal concerns in addition to the scarcity of resources.
A machine learning algorithm is a kind of tool which is capable of generating solutions to this type of
multi-faceted constrained optimization problem.

Specifically for this project, the point of focus is on the pressing issue of the Nile Basin: Ethiopia,
being at the highest point of the river, has constructed a dam - Grand Ethiopian Renaissance Dam
(GERD), which generates a lot of crucial energy for the country. Sudan, positioned at the river’s
upper course as well, has multiple dams so they can control the inflow for their agricultural demand.
This leaves Egypt with a water deficiency if its water supply is not controlled accordingly[3]. It
has been demonstrated that an agreement between all three countries could result in a more optimal
solution, where all countries benefit [19].

Machine learning can improve the ability to derive policies for water resources more effectively in the
face of climate change. Reinforcement learning (RL) is suitable for this challenge, as the algorithm is
capable of learning optimal policies through iterative interactions with the environment, making it
particularly effective for dynamic and complex problems in water management. This overarching
project aims to model the problem as a reinforcement learning problem to see if any improvements in
efficiency and accuracy can be achieved.

The significance lies not only within this particular problem but could potentially be applied to
broader water management crises. The inspiration for this work is from a Master Thesis done by
Yasin Sari [12]. The thesis has implemented a model that simulates the Nile Basin conflict. Using the
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model, this project implements a MONES reinforcement learning algorithm, instead of EMODPS,
which has been a key choice algorithm for similar water management problems [21].

The Nile Basin model simulates the flow of water through the Blue Nile, the Main Nile, and ending
at the High Aswan Dam (HAD), incorporating key dams like the GERD and HAD, Roseires and
Sennar dams. The simulation makes use of predefined data for 8 water catchments and 6 irrigation
districts, which represent water inflows and depletions, respectively. It requires both static data, such
as water storage descriptions in the reservoir, and dynamic data, namely river inflow rates, requested
depletions by countries, and water evaporation rates.

The impact of climate change on this dynamic data is significant[5]. Climate conditions affect river
inflows and evaporation rates, which influences water availability. This makes the discussion of
climate change-impacted data crucial, as it underlines the need for adaptive water management
strategies. It is through the understanding of how climate change may affect water resources we can
develop more efficient and robust water management solutions. Thus, this project will use datasets
with varying climate conditions, including droughts and floods, to illustrate the extreme climate
scenarios that could happen within 20 years.

Given that climate change significantly impacts water management problems, it is crucial to take into
account different climate change scenarios when developing solutions for these challenges[9]. The
project aims to use two data sets to illustrate plausible scenarios of human-favourable and varying
climate change conditions for the Nile Basin’s future. These data sets were then used to assess how
the reinforcement learning algorithms performed on the Nile Basin simulation. The results showed
that both algorithms faced more difficulties when dealing with varying climate scenarios, producing
models that posed greater challenges for the countries involved. The results of cross-evaluation of the
RL models on the normal and varying climate scenarios highlight the need to take climate change
into account, as this would provide a more accurate representation of the problem and improve the
efficiency of the solutions that are developed.

2 Methodology

The methodology of this research consists of six key components: gathering the necessary background
information needed for this experiment, refactoring of the Nile Basin simulation, data analysis and
modelling for the algorithms, integration of the model into MONES RL algorithm, experimental
setup and evaluation methods used for assessing solutions’ performance.

2.1 Background

EMODPS

EMODPS is a well-established algorithm commonly used in the water management community[6].
This algorithm combines direct policy search and multi-objective evolutionary algorithms to find
the optimal set of solutions, otherwise called the Pareto front. By using non-linear approximating
networks EMODPS generates policies that can then be used to address water management challenges.
While this algorithm performs well on complex reservoir systems, further research is needed to better
explore alternative algorithms that could outperform EMODPS[21].

MONES

MONES uses evolutionary processes to a population of neural networks (NNs), aiming to find a
set of optimal solutions. In MONES, each network acts as an "agent", which interacts with the
environment. The weights of each NN are randomly sampled from a Gaussian distribution. When an
agent completes an action or takes a step in the environment, MONES evaluates their performance
based on predefined objectives. These evaluations are then used to make adjustments on the NNs’
weight distributions. This way the algorithm iteratively improves the population and produces a
diverse set of solutions[7].

Gymnasium

Gymnasium is an open-source project that provides an environment to build reinforcement learning
algorithms[1]. Within the Gymnasium environment, users define actions that the reinforcement
learning agent can take and the corresponding observation spaces. The core interaction is the
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"step" function, which takes an action as input and produces an observation and a reward based
on the objectives. This framework provides users with standardized environments, which allow
for reproducibility and comparability. Additionally, there is an equivalent framework built for
Multi-Objective reinforcement learning (MORL) algorithms - MO-Gymnasium[2].

MORDM vs. MORO

In the research of Yasin Sari, the posterior multi-objective robust decision making(MORDM) was
used[12, 14]. This method involves using the same data for every simulation and then testing with
different data that represent climate scenarios. For this project, however, a different climate scenario
is chosen randomly before every simulation of the training. This approach is called many-objective
robust optimization (MORO)[4]. By training on different possible outcomes of data tailored to
extreme climate conditions, it is expected the algorithm to better perform on future scenarios that
may impose extreme droughts or floods in the basin.

The Nile Basin simulation

The simulation only includes a single thread of the river (see appendix A), which starts in Ethiopia,
passes through Sudan, and ends in Egypt. There are four dams included in the model: GERD in
Ethipoia, Roseires and Sennar in Sudan, and HAD in Egypt. Key points of the river are the water
inflows: the Blue Nile River, water catchments from GERD to Roseires dams, water catchments from
Roseires to Abu Naama dams, water catchments from Suki to Sennar, the Dinder and Rahad rivers,
followed by the larger White Nile and Atbara rivers. Additionally, water depletions in the simulation
are represented by irrigation districts: Downstream and Upstream Sennar, Gezira, Hassanab, and
Taminiat, all located in Sudan, and Egypt as a single irrigation district. Egypt is considered as a
single irrigation district as the simulation only includes the Nile until the HAD dam, but Egypt’s
water resources are a crucial objective. The simulation considers a time step of one month, as this is
enough to consider varying seasonal climate conditions, but is not too small as to highly increase the
complexity of the simulation[17].

Simulation objectives

Since managing water resources in the Nile Basin simulation consists of balancing a few competing
objectives, it is considered an optimization problem. The objectives that are being optimized within
this simulation are:

• Minimize Egypt’s average yearly water deficiency. The lack of water in the irrigation
farms throughout the 20 years of the simulation should be minimized.

• Minimize HAD months below the hydro-power plant threshold. The amount of months
the HAD reservoir level is below the level the hydro-power plant can generate power should
be minimized.

• Minimize Sudan’s average yearly water deficiency. The lack of water in the irrigation
farms throughout the whole simulation should be minimized.

• Maximize Ethiopian yearly hydro-energy. Ethiopian-produced hydro-power plant energy
should be maximized.

2.2 Refactoring the Nile Basin simulation model

The initial Nile Basin simulation model is tightly integrated with the EMODPS algorithm, with the
algorithm’s code being embedded within the simulation. Additionally, EMODPS generates policies
for the whole duration of a simulation, whereas MONES does it a single step at a time. Thus, to
simulate the MONES algorithm, the functionality of the existing simulation model had to be extracted.
This refactoring was essential, as the original model was tailored specifically for the EMODPS
algorithm.

The new version of the Simulation model is designed to fit a bigger variety of water management
problems. The generalization of the framework allows specialists to adjust multiple water system
models with varying qualities and entities. For instance, the model now accommodates adding water
catchments, irrigation systems and power plants, each of which can be configured with varying water
demand, supply and energy generations.
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Figure 1: Water management system simulation UML diagram.

The figure above (see fig. 1) displays the general structure of the model. The simulation consists of
these modular classes:

• Controlled Facility: this abstraction is used for classes for which there are decisions to
be made in the water management systems. There are possibilities for other classes, for
example, a controlled water depletion point.

– Dam: this class is responsible for controlling how much water passes is stored in the
reservoir and how much passes downstream.

• Facility: this abstraction is used for classes that work without external control from the
outside world.

– Catchment: this object is responsible for indicating how much water is collected
through natural inflows. It is usually indicated statically through a list over a period of
time.

– Irrigation District: this object represents a district which consumes water. In this
implementation, it is indicated through a static list.

– Power Plant: this object calculates the amount of energy the power plant produces
given the flow from the dam.

• Flow: this object represents an edge in the network of the water management system, it
contains a number which represents the water flow from one facility to another.

• Water Management System: it is the main connecting class that connects the system. It
contains the functionality of connecting the flow through all the elements of the system.

Simulation validation

It was necessary to make sure the new model is correct and behaves the same as the reference
simulation model. The simulation itself is deterministic, thus with the same context data and actions,
the same results will be seen. Firstly, all data was copied from the original simulation model to
the new model. Then, using the same machine a set of random actions was generated for 20 years.
Throughout the simulation, at every time step Reservoirs’ inflow and outflow as well as GERD
power-plant energy production were logged. These checkpoints throughout the simulation served as
markers, as all other processes depend on this data. Then upon comparing the results of the old and
new simulations, we found that they yielded identical results.

2.3 Data analysis and modelling

The data used in this simulation can be separated into two parts, namely one that is affected by the
climate and socio-economic factors and one that is independent. The former includes lake evaporation
factors, irrigation and civilization water demands, and inflows from catchments in the upstream parts
of the basin. The latter data includes water surface area, level, and volume relativity of the dams’
reservoirs, and minimum and maximum release policies dependent on the reservoirs’ water levels.
This subsection further describes the modelling process.

A simplified overview of how the data influences the model is illustrated in Figure 2. The simulation
dynamically receives generated data before each run. Based on this data, the simulation and the RL
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Figure 2: Abstract representation of the algorithm.

algorithm start an iterative process where the simulation provides an observation to the RL agent,
and the agent responds with an action to the Nile Basin simulation. Once the iterative process is
completed, the RL algorithm produces the Pareto front - the solution set.

Static data

Each of the three countries’ authorities imposes minimum and maximum water release policies that
allow for control of the dam. These policies control extreme situations, for example, so that the
valley does not completely dry out or overflow in case of a flood, and provide a sufficient amount
of energy. Additionally, detailed information about the water storage inside the dam’s reservoir is
needed. Specifically:

• Water surface area: used to calculate the evaporation rates of the water in the reservoir.

• Water level: used to determine energy productions from the hydropower plant and implement
the minimum and maximum water release policies.

• Water volume: crucial for the river’s water flow process throughout the simulation.

This data was adopted from the reference Nile Basin simulation.

Climate and Socio-Economic Dependent Data

Evaporation rates, water demands and inflows from the smaller parts of the river are highly uncertain,
and with climate change, increasingly difficult to control. This subsection describes the modelling of
the data that is influenced by external factors and explains how the uncertainty was applied to the
dataset.

Evaporation factor

Evaporation rates are taken from Kevin G. Wheeler’s simulation of the Nile Basin [19]. To account for
increasing temperatures due to climate change, the relation found between the increasing temperature
and the evaporation factors in Lake Qarun in Egypt has been taken[13]. It describes the relationship
as a linear function between the temperature of the surface and evaporation. This acted as a guideline
when creating the climate models for the simulation. It described a mean increase in evaporation rates
as 0.3% yearly from 1980 to 2019. As temperature increase is forecasted to increase in the future, the
increase rate yearly was taken as 0.4%. Uncertainty was injected into this dataset by getting a value
from a normal distribution for each year, and applying a log transformation with it, which allows
for randomness and non-linear distortions. Since Wheeler described the data in 2018, The same
transformation has been applied to start the new data from 2024.

Water inflows

Kevin G. Wheeler et al. have described and created 3 artificial datasets with different climate
scenarios: baseline, with 15% ias and 20% Hurst coefficients for uncertainty [19]. 15% ias coefficient
implies 15 % interannual standard deviation between the years 2018 and 2060, whereas 20% Hurst
coefficient implies a standard deviation increase at each inflow. Each dataset has 100 traces describing
different climate outcomes, with each trace having 50 years of data for 162 catchments. For simplicity
of this project, this dataset has been reduced from 162 catchments to 8 and we act as there are 8 big
catchments in the Nile Basin (Blue Nile, Atbara, White Nile, Rahad, Dinder rivers, Gerd to Roseires,
Roseires to Abu Naama, Suki to Sennar river catchments). These traces are going to be used for the
training of the reinforcement learning models, to increase robustness, according to the MORO. For
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this project, the baseline and 20% Hurst coefficient datasets are used to represent favourable climate
conditions as well as the more extremes, which are similar to those described by Strzepek et al.[16].

Table 1: Standard deviation and mean difference of Hurst and Baseline datasets, measured in %.

Region (stdHurst−stdBaseline)×100%
stdBaseline

(meanHurst−meanBaseline)×100%
meanBaseline

Atbara 7.58 0.02
Blue Nile 11.34 -1.67
Dinder 12.66 -4.14
Gerd To Roseires 31.15 -3.56
Roseires to Abu Naama 0.95 -3.62
Suki To Sennar 0.00 0.00
White Nile 2.63 8.12

In Table 2, the differences between the Hurst and Baseline datasets are displayed in terms of standard
deviation and mean differences. These metrics were calculated by determining the standard deviation
and mean for every month across the 8 catchment districts and then averaging these values over the
20-year simulation period. The standard deviation metrics were consistently higher of the Hurst
data set. This indicated that the inflows were more variable, presenting an increased possibility for
flood and drought conditions. A negative mean difference implies reduced water resources in the
simulation in the Hurst dataset, whereas a positive mean difference indicates an increase.

Notably, in the case of the Roseires to Abu Naama catchment, both the standard deviation and mean
are 0.0. This indicates the datasets were the same. This anomaly could be due to a computational
error or a faulty initial dataset. Given that the Roseires to Abu Naama catchments contribute only
0.196% of the total water resources on average throughout the simulation, the cause of this anomaly
was not further investigated due to limited time resources.

Water demands

To account for water demands we have taken 8 different irrigation districts and their water demands
as Kevin G. Wheeler et. al. model has outlined [18]. This data contains 8 different irrigation districts
in Sudan and one as a whole in Egypt. Since 2 water depletion districts were outside of the river line,
the water demand was subtracted from the inflow data of that river line. This data is highly dependent
on population, thus we will project it according to the residents’ planned increase. Uncertainty was
added by generating noise randomly from a normal distribution, with a standard deviation specified by
the user. This noise is applied annually, this introduces variability. Population growth and increased
water needs were represented by a 2% mean increase every year, taking into account the 0.1–4.5%
annual growth economic range of scenarios considered[10].

2.4 Integration into MONES

To make the integration of the simulation easier, we used the MO-Gymnasium framework. To use
our model with MO-Gymnasium environment, our model had to inherit from the Environment class
of the said framework.

Our implementation integrates the inheritance by all facilities and the main water management system
having ’step’ and ’reset’ methods. This ensures that all actions can be executed through the main
structure of the simulation. The ’step’ method represents one iteration of the simulation and allows it
to progress. The step action produces rewards on which the algorithm evaluates and produces actions
for the next step. The ’reset’ method re-initializes the simulation and sets the states to their starting
state.

The ’step’ function takes an action as input and returns a reward, an observation and booleans whether
the simulation is finished or has to be truncated. The action is determined by the machine learning
algorithm. The reward can be determined by any class, for example, for a dam it might be a minimum
level of water, or irrigation farms the satisfaction of a demand. Classes like catchments usually do
not have objectives, so no object can be returned. Observation is data on which the machine learning
algorithm decides its next action, in other words - the state of the simulation. Similarly, it can be
tailored to various cases, in ours specifically it is the water storage in the dam. While we don’t use
termination and truncation in our model, it can be determined by for example a dam overflowing.
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2.5 Experimental setup

The EMODPS algorithm was used to analyze the impact of climate scenarios on water demand,
evaporation and water inflows to the basin. The algorithm was run twice: using baseline, human-
favourable data and using extreme climate conditions (further referred to as baseline and Hurst
runs). For water catchments, pre-generated datasets were used with Baseline conditions and 20%
Hurst coefficient uncertainty. For both cases, it was assumed that water demand would grow 2%
annually, with a standard deviation of 1% to account for outside factors. Lastly, evaporation rates
were set to have a yearly increase of 0.4%. For baseline conditions, the evaporation rates had a noise
that followed a normal distribution of mean 0.5 and standard deviation of 0.5. For varying climate
conditions the numbers were 1 and 5 respectively, introducing significant variability.

To ensure convergence of the algorithm, each run had 70,000 iterations. Taking into account the
computational complexity of the training, the runs were done on the DelftBlue supercomputer with
48 CPU cores. The process for each run took approximately 21 hours, compared to an estimated 90
hours on a standard 6-CPU core laptop.

2.6 Solutions’ evaluation

To evaluate the overall performance of the solutions, their efficiency was assessed on all the climate
scenarios used in this project. This approach gave insight into how robust the solutions were.

Figure 3: Evaluation process using satisfaction and regrets metrics.

The evaluation, outlined in Figure 3, began by picking out solutions that seemed best from the
training, based on their return results of the algorithm. This step was inserted to reduce the space of
solutions to be evaluated. This reduction was necessary due to a constraint on available computational
resources. For each of the two models, three solutions were picked:

• Best Ethiopia Power This solution performed best in terms of energy production for
Ethiopia, which is crucial as Ethiopia’s dam purpose is to maximize energy production for
the country.

• Best Percentile Threshold This solution has all the objectives exceed a certain percentile
threshold, where the 100th percentile is the best. This percentile threshold in this project
varied from the 40th to the 50th percentile.

• Best Absolute Threshold This solution is superior when all the objectives are normalized
and their combined sum exceeds a specific threshold. The threshold values in this project
were between 0.8 and 0.9.

Next, these three solutions from the models trained on human-favourable and climate-varying
data—totalling six solutions— were evaluated on all 100 scenarios of the two datasets separately.
This evaluation gave insight into satisficing and regret metrics [20]. The satisficing-based robustness
metric represents how well the model performs on baseline data, while regret-based robustness tries
to minimize the deviations in performance under more challenging climate conditions.

3 Results

This section presents the analysis of the results obtained from the EMODPS and MONES algorithms
under different scenarios. It includes the convergence behaviour, trade-offs in the solutions, and the
cross-evaluation of EMODPS between the baseline and Hurst datasets.
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To know that the machine learning algorithm has stabilized and the results are reliable for decision-
making, convergence behaviour is necessary. MORL convergence can be quantified using metrics
like ε-progress and hypervolume[11, 7]. The ε-progress is a metric for evaluating the improvement
of the solutions over iterations, whereas the hypervolume metric assesses the volume of the objective
space created by the Pareto front. Beyond convergence, it is necessary to determine which solutions
are optimal according to the metrics defined.

In MORL, understanding trade-offs between solutions is essential, as real-world problems often
include conflicting objectives. The decision-makers have to understand the connection between these
different objectives to make an informed decision. Examining trade-offs allows for understanding
how an improvement of one objective may lead to a deterioration of another. This allows for a more
balanced and prioritized solution selection.

3.1 EMODPS results’ analysis

Figure 4: EMODPS convergence graphs for the baseline run.

Figure 5: EMODPS convergence graphs for the Hurst run.

In the figures above (see fig. 4, 5) epsilon progress and hypervolume metrics were used to check the
convergence of the algorithms. For the case of the baseline Run, both ε-progress and hypervolume
indicated quick convergence, and the algorithm could have been terminated after 50,000 iterations
without a significant loss of accuracy. The Hurst run, however, has displayed more challenges
converging. The ε-progress displayed a slow increase after rocketing in the beginning, while the
hypervolume metric did not reach convergence, but rather showed an upward trend. This shows, that
the algorithm struggled with the Hurst run which includes the increased variability and randomness
of the data.

In Figure 6 the scores of all the considered solutions are plotted for four categories of scores: "Egypt
Irr. Deficit" - water deficit in Egypt measured in billion cubic meters(BCM) per year, "Egypt Low
HAD" - HAD reservoir being below energy making threshold, measured in %, "Sudan Irr. Deficit" -
water deficit in Sudan measured in BCM/year and " Ethiopia Hydropower" - the amount of energy
Ethiopia makes per year, measured in measured in terawatt-hours(TWh) per year. Of all the solutions,
6 of the solutions are highlighted and assigned a description and a colour. The first of these four
solutions are "Best Egypt Irr", "Best Egypt HAD", "Best Sudan Irr" and "Best Ethiopia Hydropower".
These four solutions each correspond to a solution that would be optimal for maximizing only one
relevant objective. The other two highlighted solutions display compromise between the relevant
objectives. These solutions are "Compromise Percentile Threshold" and "Compromise Absolute
Threshold". The former solution displays a policy that makes all objectives better than the 40th
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Figure 6: EMODPS solutions for the baseline run.

percentile, where the 100th percentile is the most desirable. In contrast, the latter solution gets a
value that is bigger than 0.88 when the outcomes for the objectives are normalized.

The EMODPS run on baseline scenarios found in a total of 24 solutions. A quick breakdown of the
notable solutions is as follows:

• Best Ethiopia Power This is the best case found for Ethiopia power generation, making
16.81 TWh of energy yearly. This is important, as it maximizes the power made for Ethiopia.
Note that a need for larger power generation in Ethiopia was the initial cause of the water
use conflict under consideration. It leaves Egypt with approximately 1.44 billion cubic
meters (BCM) and Sudan with around 1.12 BCM of water per year. Additionally, over a
20-year period, there would be one month when Egypt would have the water level in the
HAD reservoir under the energy generation threshold for the hydro-power plant.

• Best Percentile Threshold In this solution, Ethiopia loses around 0.6 TWh, still making
16.75TWh per year compared to the solution of maximizing Ethiopia power. However, the
reallocation of water to Egypt and Sudan allowed by this solution leads to decreased water
shortages of only 0.2 BCM and 0.23 BCM respectively. HAD levels stay above the threshold
throughout 20 years.

• Best Absolute Threshold This solution proposes 16.75 TWh energy production for Ethiopia
and 4 months for HAD under the threshold. The trade-off seems to happen for Egypt and
Sudan water depletions, producing 0.23 and 0.12 BCM water shortages.

Figure 7: EMODPS solutions for the Hurst run.
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Similarly to the baseline run, the Hurst run produced 21 solutions, which are displayed in Figure 7.
These are the three solutions picked the same way as the baseline run:

• Best Ethiopia Power The best case scenario for Ethiopia makes 16.93 TWh of energy
yearly, as well as keeping HAD levels above the threshold throughout the year. However,
this leaves Egypt and water with high shortages, being 5.44 BCM and 1.04 BCM yearly
respectively.

• Best Percentile Threshold This scenario makes almost the same amount of energy for
Ethiopia, being 16.86TWh but leaves HAD levels below the threshold two months in 20
years. The water depletion lack in Egypt and Sudan is 0.71 and 0.21 BCM.

• Best Absolute Threshold Absolute threshold scenario offers 16.85 TWh of energy and
3 months of HAD being below the threshold. Egypt has a 0.72 BCM water shortage and
Sudan has 0.095 BCM of water per year.

Figure 8: Solutions of Baseline and Hurst runs combined.

In Figure 8 all solutions of both algorithms are displayed. Both runs have high variability in their
solutions. Significantly better performance of one run is not seen over another, however, green
lines representing baseline solutions seem to assume the top positions of the graph. This shows that
the solution of the Baseline run better fulfils the objectives. Taking the hypervolumes of the runs,
Baseline has 2.78, whereas Hurst has 2.47.

3.2 MONES results’ analysis

Due to the lack of computational resources, only the performance of the Hurst run on the MONES
model was executed.

Figure 9: MONES hypervolume trend over iterations for the Hurst run.

Figure 9 displays the hypervolume trends over iterations of the MONES algorithm using Hurst data,
which represent varying climate conditions. The graph indicates sporadic jumps in the hypervolume.
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A slight overall trend upward can be observed, however, it cannot be said that the graph converged.
This indicates that the model did not fully learn, or there were not enough iterations for the algorithm
to fully converge. The overall hypervolume was on average lower than that of the EMODPS run.

Figure 10: MONES solutions for the Hurst run.

As for EMODPS training, a parallel coordinates plot (see Figure 10 was used to depict 15 solutions
that MONES found. Similarly to EMODPS, the same logic was applied when picking the three
notable solutions:

• Best Ethiopia Power The best case scenario for Ethiopia produces 13.09 TWh energy per
year, leaving HAD dams above the energy production threshold throughout the simulation.
This solution minimizes the water deficit in Sudan to 0, whereas for Egypt there is a 0.22
BCM water deficit per year.

• Best Percentile Threshold This scenario decreases the energy production for Ethiopia
to 12.26 TWh per year, still leaving HAD reservoir levels above the threshold of energy
production. In this scenario, Sudan is provided with a sufficient amount of water, however,
Egypt has a deficit of 0.19 BCM per year.

• Best Absolute Threshold Absolute threshold scenario offers 11.64 TWh energy for Ethiopia
per year, also keeping the HAD levels above the threshold. The water deficit for Sudan is
again 0, with Egypt being 0.18 BCM per year.

3.3 EMODPS and MONES comparison

Comparing the performance of the EMODPS and MONES algorithms, some differences emerge when
it comes to their ability to handle varying data scenarios, particularly on the Hurst dataset. EMODPS
produced a robust solution set, displaying clear trade-offs between objectives, on both the baseline
and Hurst runs, which achieved high energy production for Ethiopia while having low water deficit
levels for Sudan and Egypt. Additionally, EMODPS kept the hypervolume trend upward throughout
the training. In contrast, MONES struggled more visibly with the Hurst dataset, showing sporadic
hypervolume jumps and failing to converge. MONES achieved a notable water deficit reduction
for Sudan and Egypt, simultaneously keeping HAD water levels above the threshold throughout the
whole simulation, albeit with lower energy outputs for Ethiopia. The low hypervolume together with
the overall solution set objectives shows a narrow Pareto front, with a less trade-off compromises.
This comparison highlights EMODPS’s adaptability and efficiency in optimizing multiple objectives,
producing a wide Pareto front.
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3.4 EMODPS solutions’ evaluation

Three chosen solutions, namely Best Ethiopia Power, Best Percentile Threshold and Best Absolute
Threshold, from each training of baseline and Hurst datasets, were cross-evaluated on both datasets
in terms of all 100 scenarios.

Figure 11: EMODPS solutions’ cross evaluation results.

The graph in figure 11 presents the evaluations of the 6 solutions produced by the EMODPS algorithm.
All the values were normalized based on the minimum and maximum values of the objectives.
Additionally, the objectives for Egypt’s water deficit, HAD level and Sudan’s water deficit were
inverted so that all objectives are on the maximization scale, making the tallest bar present the
best solution. The left side of the chart shows the average performance of the solutions across 100
baseline scenarios, while the right side shows the average performance across 100 challenging climate
scenarios.

For both sets of tests, the absolute best solution was tied between those trained on Hurst and Baseline
data. In the baseline evaluations, the mean performance of solutions trained on baseline scenarios was
higher than that of solutions from Hurst training. The same pattern can be observed in evaluations
of the Hurst climate scenarios. Importantly, the overall optimization of the objectives in the Hurst
evaluation, regardless of the training data, was lower than that of baseline scenarios.

Examining the overall performance of the models in the evaluation (see Appendix B), a significant
decrease in performance is noticeable compared to the training results. The best two solutions
evaluations from both baseline and Hurst climate conditions compared with their respective training
outputs:

• Trained on Baseline, tested on Baseline - Best Absolute Threshold compared to Best
Absolute Threshold solution from the Baseline training: A decrease of 1.6 TWh in energy
generated by GERD, and an increase in water deficit for Egypt and Sudan by 1.51 BCM and
0.2 BCM, respectively. There was a major increase of 44 months for HAD being below the
threshold.

• Trained on Hurst, tested on Baseline - Best Percentile Threshold compared to Best
Percentile Threshold solution from the Baseline training: The values changed by almost the
same amount as in the previously discussed solution. The models trained similar policies
that ended up with similar results.

• Trained on Baseline, tested on Hurst - Best Absolute Threshold compared to Best
Absolute Threshold solution from the Hurst training: A reduction of 1.8 TWh in energy
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for Ethiopia, and an increase in water deficit for Egypt and Sudan by 1.41 BCM and 1.13
BCM, respectively. There was an increase of 54 months in which HAD levels were below
the threshold.

• Trained on Hurst, tested on Hurst - Best Percentile Threshold compared to Best Per-
centile Threshold solution from the Hurst training: A reduction of 1.81 TWh in energy for
Ethiopia, and an increase in water deficit for Egypt and Sudan by 1.42 BCM and 0.12 BCM,
respectively. There was an increase of 52 months for HAD being below the threshold.

4 Responsible Research

This project was completed adhering to the principle of responsible research. The focus was on
transparency, reproducibility, and ethical considerations throughout the whole process. All data
used within this project is sourced and taken from reputable papers, which are aimed at achieving
transparency and maintaining a standard of scientific integrity. This allows others to verify the sources
and methods independently. To make the project reproducible, a detailed process is described within
this document, along with providing the code that was used for obtaining the results. This enables
other researchers to replicate this study. Additionally, the author has taken measures to clearly outline
potential biases in the process of this project as well as the data used, ensuring that any influencing
factors are clearly defined and accounted for. Lastly, the author declares no financial or personal
affiliations with any parties that could have influenced the project. This is aimed to produce unbiased
results.

All the data and code can be accessed via https://github.com/lukavicius/cse3000_
bachelor_thesis.

5 Discussion

This research aimed to provide insights into the impact of data and its representation for future
scenarios in the context of using different reinforcement learning algorithms for water manage-
ment, specifically in the Nile Basin. Some constraints and limitations need to be acknowledged to
comprehend the constraints of the results.

Firstly, only a single line of the river was taken to represent the whole Basin in the simulation. A
larger scale of the simulation, taking into account the broader context of the problem, could offer a
more accurate solution. The current simulation lacked accuracy in terms of other irrigation districts
that were on the other lines of the river. Additionally, several dams on the considered line of the
river were not considered, which could have influenced the results. Meteorological factors, such as
evaporation factors in the rivers were not taken into account, potentially affecting the water flow and
general water resources availability. Furthermore, this study focused on four main objectives, which
can be insufficient to precisely represent the multifaceted discussions countries have to partake in
when managing real-life water management challenges.

The training of the MONES algorithm showed results that were significantly lower than those of
EMODPS. This could have been due to the fewer iterations used to train the model. The hypervolume
metric did not converge by the end of the training, indicating that the algorithm could have learnt
more with additional iterations. Another potential improvement for the MONES algorithm is to
explore a wider solution set, thus allowing for bigger trade-offs for the optimization problem, and
thereby providing decision-makers with a better idea of the possibilities.

Moreover, the data that was used for this research was mostly taken from the previous century to
project future scenarios, which is likely to decrease the accuracy of the algorithm in terms of rapidly
changing climate conditions. Although transformations which were applied to account for the time
difference tried to mitigate that effect, the transformations may not directly represent the climate.
Similarly, the rough estimates of water depletions in the future do not exactly represent the actual
increase in demand.

The EMODPS algorithm used in this project performed better in terms of hypervolume than that
of Yasin Sari, likely due to the change of the data in the catchments [12]. In Sari’s research, the
same 8 catchments outlined by Wheeler were used, but only the largest points of Wheeler’s grouping
were considered[19]. This project mapped all of the points into 8 catchments, effectively making the
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water resources larger. This allowed the algorithm to perform better on the objectives, showcasing an
overall higher hypervolume.

Another improvement that made a significant impact on this project was the use of different simulation
data for each run. This allowed the algorithm to learn from different scenarios the simulation could
encounter, which enhanced its robustness. However, this approach simultaneously increased the
complexity of the algorithm. While the baseline run of the algorithm converged quickly, the Hurst
run with varying climate conditions did not reach full convergence. This issue could potentially be
mitigated by averaging over a few runs of the simulation when evaluating the performance during the
training.

The evaluation of the EMODPS solutions displayed substantial performance differences when tested
on different climate scenarios. This highlights the importance of using different climate scenarios,
especially those that represent climate change, in the training and evaluation of our models. The
unpredictable effects of climate change lead to a wide variety of future scenarios, making it essential
to consider multiple different climate scenarios. Interestingly, models which were trained on baseline
data seemed to perform better on unseen varying climate conditions than those trained on it. This is
possibly due to bias introduced by the traces. Since the output results only take the results of the last
iteration, it could happen that the last iteration had a more favourable scenario, making the results
better. This would suggest that a solution that possibly was less optimal had higher performance
metrics.

Overall, this study has made milestones in improving the water management simulation for the Nile
Basin, future work should address the above-mentioned limitations when developing more accurate
and reliable models.

6 Conclusion

This research had two main objectives: refactoring the simulation to fit into MONES or any other
Markov decision-making process-based reinforcement learning algorithm and testing EMODPS on
the simulation with two types of data sets. Both aims of the research were successfully achieved,
which provided insights on the application of RL in water management problems.

The simulation has been successfully refactored and integrated into the MONES framework. This
proves that advanced RL algorithms can be applied to optimize complex water management issues.
While MONES did not perform well as compared to EMODPS, further research and experimentation
are needed to make definitive conclusions about MONES’ efficiency.

When the EMODPS algorithm was applied to two different data sets, the solutions of the varying
climate conditions faced significant challenges in finding solutions that were as optimal as those
trained on the better climate conditions. This underscores the need to improve the training process for
such scenarios, as they represent the future climate conditions better. This is important as once these
climate conditions are encountered, the policy chosen by decision-makers might fail to efficiently
utilize the resources. It is through the incorporation of diverse climate scenarios that the optimization
solutions will be robust and efficient for real-world applications.

Further research in the field has to enhance the accuracy and reliability of water management
simulations. This can be done by including a bigger context in the simulation. More meteorological
factors such as river evaporation rates should be considered. A better representation of objectives is
necessary, as it could capture the complexities of real-world decision-making processes. Utilizing
more accurate and recent data to reflect and project the climate conditions will improve algorithms’
relevance and accuracy.

This project is aimed at improving water management by exploring different machine-learning
algorithms. The goal of this project is to assess whether these algorithms can be efficiently used for
complex water management problems, rather than be used as a direct controlling policy in real-life
situations. Incorporating varying climate conditions into our simulations is not intended to alarm
the public about the future, but rather an encouragement and spotlight on the ongoing problems.
By highlighting potential climate change scenarios it is aimed to draw attention to the urgent need
for solutions and higher research efforts to tackle ongoing and possible future water management
challenges.
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In conclusion, this study highlights the potential of improving the machine algorithms used in water
management, especially in the face of climate change. It spotlights the necessity for robust and
flexible approaches to modelling and resolving water management challenges, to ensure a more
effective and sustainable water resource management in the future.

A Nile Basin simulation overview

Figure 12: Nile Basin simulation overview. Source: Adapted from [12]
.

B EMODPS Solutions’ Evaluation results

Table 2: EMODPS solutions’ cross evaluation results.

Solution Egypt Irr. Deficit Egypt Low Sudan Irr. Deficit Ethiopia
BCM/year HAD, % BCM/year Hydropower, TWh

BonB Best Ethiopia Power 2.23 0.14 1.27 15.21
BonB Best Percentile Threshold 2.62 0.27 0.44 15.16
BonB Best Absolute Threshold 1.74 0.19 0.32 15.15

BonH Best Ethiopia Power 2.56 0.18 1.27 15.11
BonH Best Percentile Threshold 3.09 0.3 0.44 15.06
BonB Best Absolute Threshold 2.13 0.23 0.34 15.05

HonB Best Ethiopia Power 3.28 0.32 0.6 15.18
HonB Best Percentile Threshold 1.75 0.19 0.32 15.15
HonB Best Absolute Threshold 2.43 0.24 1.23 15.2

HonH Best Ethiopia Power 3.75 0.34 0.6 15.07
HonH Best Percentile Threshold 2.13 0.23 0.34 15.05
HonH Best Absolute Threshold 2.85 0.27 1.22 15.01

BonB - Solution trained on Baseline data, tested on Baseline scenarios
BonH - Solution trained on Baseline data, tested on Hurst scenarios
HonB - Solution trained on Hurst data, tested on Baseline scenarios

HonH - Solution trained on Hurst data, tested on Hurst scenarios
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