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Abstract

Chess recognition refers to the task of identifying the chess pieces configuration from a chessboard
image. Contrary to the predominant approach that aims to solve this task through the pipeline of chess-
board detection, square localization, and piece classification, we rely on the power of deep learning
models and introduce two novel methodologies to circumvent this pipeline and directly predict the chess-
board configuration from the entire image. In doing so, we avoid the inherent error accumulation of the
sequential approaches and the need for intermediate annotations.

Furthermore, we introduce a new dataset, Chess Recognition Dataset (ChessReD), specifically
designed for chess recognition that consists of 10,800 images and their corresponding annotations. In
contrast to existing synthetic datasets with limited angles, this dataset comprises a diverse collection
of real images of chess formations captured from various angles using smartphone cameras; a sen-
sor choice made to ensure real-world applicability. We use this dataset to both train our model and
evaluate and compare its performance to that of the current state-of-the-art. Our approach in chess
recognition on this new benchmark dataset outperforms related approaches, achieving a board recog-
nition accuracy of 15.26% (≈7x better than the current state-of-the-art).
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1
Introduction

The game of chess has remained an object of fascination for researchers and enthusiasts alike through-
out centuries. Due to its complexity, it requires a high degree of strategic thinking and problem-solving
skills, testing the cognitive capabilities of not only the players but also the viewers. Professional chess
players are renowned for their ability to anticipate moves in advance, and thus act on that information.
Yet, reasoning the players’ moves is a challenging task for the average viewer. While there are chess
engines that leverage decision-making techniques and can explain the dynamics behind each move,
they require the state of the game to be inputted. One option would be to manually enter the positions
of the pieces on the engine’s digital chessboard. A better alternative is chess recognition.

Chess recognition refers to the task of identifying the chess pieces configuration from a chessboard
image, or alternatively “given an image of a chessboard, output the type and the chessboard position
of every piece in the image”. The applications of this task span multiple domains, including not only
the aforementioned use for automated game analysis, but also augmented reality gaming, educational
tools (e.g. chess tutoring), and chess database cataloging, among others. Nevertheless, the success
of the proposed methods depends on their ability to overcome several challenges related to chess
recognition. The occlusions between pieces, the lighting conditions, the perspective variations, the
reflections and the shadows, and the similarity between pieces represent some of the main concerns.

Another significant challenge for chess recognition is the lack of a comprehensive dataset that
would facilitate research in the field. To address this issue, in this work, we introduce a new dataset
specifically designed for chess recognition, named Chess Recognition Dataset (ChessReD), that com-
prises a diverse collection of 10,800 images of chess formations. Leveraging this new dataset and the
power of deep learning, we also introduce two novel methodologies for tackling this task. Chapter 2
presents these methodologies and the results of our approach in a scientific article.

The rest of the thesis is structured as follows. Chapter 3 provides insights into image processing
techniques used by related works for chess recognition to exploit the geometric nature of the chess-
board and identify its position in the image. Chapter 4 focuses on deep learning techniques and neural
networks. Sections about convolutional neural networks (CNNs) and transformers are also included
in this chapter to familiarize the reader with the ResNeXt (Section 4.2.5) and DETR (Section 4.3.5)
model architectures used in the experiments of Chapter 2. Chapter 5 discusses in more detail the
two datasets used in the aforementioned experiments, while Chapter 6 provides additional results and
visualizations.

1
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Abstract

Chess recognition refers to the task of identifying the
chess pieces configuration from a chessboard image. Con-
trary to the predominant approach that aims to solve this
task through the pipeline of chessboard detection, square
localization, and piece classification, we rely on the power
of deep learning models and introduce two novel method-
ologies to circumvent this pipeline and directly predict the
chessboard configuration from the entire image. In doing
so, we avoid the inherent error accumulation of the sequen-
tial approaches and the need for intermediate annotations.

Furthermore, we introduce a new dataset, Chess Recog-
nition Dataset (ChessReD), specifically designed for chess
recognition that consists of 10,800 images and their cor-
responding annotations. In contrast to existing synthetic
datasets with limited angles, this dataset comprises a di-
verse collection of real images of chess formations captured
from various angles using smartphone cameras; a sensor
choice made to ensure real-world applicability. We use
this dataset to both train our model and evaluate and com-
pare its performance to that of the current state-of-the-art.
Our approach in chess recognition on this new benchmark
dataset outperforms related approaches, achieving a board
recognition accuracy of 15.26% (≈7x better than the cur-
rent state-of-the-art).

1. Introduction
Chess recognition from a single image poses a signif-

icant challenge in the field of computer vision. The task
requires accurate identification of each chess piece’s type
and position on a chessboard configuration. The predomi-
nant approach [6,15,27,29] is to divide the overall task into
the tasks of chessboard detection, square localization, and
piece classification within each square. However, this ap-
proach not only suffers from error accumulation throughout
the intermediate steps but also often sets restrictions to the
task, with regard to selected viewing angles [27]. In this pa-
per, we propose a novel approach for chess recognition that

circumvents this pipeline and directly predicts the positions
of the pieces, with respect to the chessboard, from the entire
image.

One key advantage of our approach is that it does not im-
pose any restrictions on the input image, such as specific an-
gles and orientations. Our model can handle images taken
from various perspectives, enabling robust chess recogni-
tion. By leveraging a deep neural network, the model is
able to extract and use relevant visual features to efficiently
predict the pieces’ type and positions. Additionally, our ap-
proach does not require any human input beyond the input
image itself. Unlike traditional methods [8, 16, 21, 27] that
rely on user input, such as manually selecting the corners of
the chessboard or defining the player’s perspective, our ap-
proach directly learns to recognize the chessboard and infer
the piece positions strictly from the visual information in
the input image.

Furthermore, a factor that has hindered research on this
particular domain is the lack of a comprehensive real-world
dataset. To this end, we introduce a new real-world dataset
specifically designed for chess recognition, Chess Recogni-
tion Dataset (ChessReD), consisting of 10, 800 images and
their corresponding annotations, that would allow us to ef-
fectively train and evaluate our proposed approach. The
dataset comprises a diverse collection of chessboard im-
ages, covering various viewing angles, lighting conditions,
camera specifications, and piece configurations. By provid-
ing this dedicated dataset, we enable both further research
in chess recognition algorithms and a common benchmark
for researchers to evaluate their approaches.

The results indicate that our approach in chess recog-
nition on this new benchmark dataset outperforms related
approaches, achieving a board recognition accuracy of
15.26% (≈7x better than the current state-of-the-art). Thus,
our contributions can be summarized as follows.

• We introduce the first dataset of real images for chess
recognition, with increased variability in terms of
viewing angles and chess formations compared to syn-
thetic alternatives



• We demonstrate that chess recognition can be tackled
using an end-to-end approach, with improved perfor-
mance compared to sequential alternatives

2. Related Work
2.1. Early Approaches in Chess Recognition

Chess recognition has been a subject of research in the
field of computer vision, with several approaches proposed
to tackle the challenges associated mainly with detecting the
chessboard, but also with recognizing the individual pieces
on top of it. Early attempts in the field primarily focused on
integrating the chess recognition task as a part of a chess-
playing robotic system [1, 14, 21, 23]. These systems de-
tected chess moves by comparing the previous frame, with a
known game state, to the current frame. They relied on de-
tecting the occupied squares of the chessboard along with
the colors of the pieces occupying them. As such, these
methods were only able to detect valid chess moves and
failed to detect events when two pieces of the same color
were swapped, either illegally, or by promoting pawns to
another piece type. Additionally, they worked under the as-
sumption that the previous inferred state is correct. Thus, in
case of an erroneous move prediction, all of the subsequent
game states would be incorrect. Despite the aforementioned
issues, the same approach has been adopted by several stud-
ies [3, 4, 11, 12, 16, 24] since, with consecutive frames ob-
tained also from a video stream [12, 21, 24]. In this study,
contrary to these approaches, we aim to develop a robust
method that does not rely on the correctness of the previous
inferred state but rather performs chess recognition from a
single input image.

2.2. Chessboard Detection

For cases when the previous state is unknown, chess
recognition from a single image has also been the focus
of studies. Same as with the previously mentioned ap-
proaches, the first step is to employ image processing tech-
niques to detect the chessboard and the individual squares;
a challenging task even on its own. While it can be sim-
plified by explicitly asking the user to select the four cor-
ner points [8, 16, 21], modifying the chessboard [1, 7, 23]
(e.g. using a reference frame around the chessboard), or set-
ting constraints on the camera view angle (e.g. top-view)
[1, 12, 15, 16, 21, 23, 24], Neufeld et al. [17] recognized that
these approaches do not represent a general solution, where
the chessboard could be in arbitrary locations or the image
taken from various camera angles. They proposed a line-
based detection method which they combined with prob-
abilistic reasoning. However, they also restricted the set-
ting by expecting the camera angle to be in the range of
a human player’s perspective. Other studies have also ex-
ploited specific viewing angles, such as the players’ per-

spectives [3, 4, 8, 27] or side views [7, 18]. While chess-
board detection utilizing the Harris corner detection algo-
rithm [1, 11, 12], template matching [14, 23], or flood fill
[24] have been explored, in accordance with [17], line-
based chessboard detection methods have received signif-
icant research attention [3,4,7,15,22,29,30]. Czyzewski et
al. [6] introduced an approach based on iterative heat map
generation which visualizes the probability of a chessboard
being located in a sub-region of the image. After each itera-
tion, the four-sided area of the image containing the highest
probability values is cropped and the process is repeated
until convergence. While this method involves a great com-
putational overhead, it is able to detect chessboards from
images taken from varied angles, with poor quality, and re-
gardless of the state of the actual chessboard (e.g. damaged
chessboard with deformed edges), with a 99.6% detection
accuracy. Wölflein and Arandjelović [27] proposed a chess-
board detection method that leveraging the geometric nature
of the chessboard, utilizes a RANSAC-based algorithm to
iteratively refine the homography matrix and include all the
computed intersection points. Their method demonstrated
impressive results, since it successfully detected all of the
chessboards in their validation dataset. However, it’s worth
noting that the dataset only included images with viewing
angles within the range of a player’s perspective. In our
paper, we bypass the chessboard detection task, allowing
the deep learning models to internally infer its position, and
thus we do not rely on user input, or specific viewing angles.

2.3. Piece Classification

Upon detection of the chessboard, the next step the afore-
mentioned approaches employ is piece classification. A
number of techniques have been developed to address this
task, either in a 2-way approach (i.e. color and type), or 1-
way by treating each combination of piece color and type as
a separate class (e.g. “white-rook”). In Matuszek et al. [14],
the authors utilized one classifier to determine the piece
color, and then for each color they trained a type classifier
using concatenated scale-invariant feature transform (SIFT)
and kernel descriptors for features. A similar approach was
used in Ding [8], where the author employed SIFT and his-
togram of oriented gradients (HOG) as feature descriptors
for piece type classification with support vector machine
(SVM) classifiers. The color was subsequently detected by
comparing the binarized image of the square with that of an
empty one. Danner and Kafafy [7] and Xie et al. [29] argued
that the lack of distinguishable texture in small objects, such
as chess pieces, leads to insufficient features obtained us-
ing SIFT descriptors. Both studies suggested a template
matching approach for piece classification, comparing the
contours of the detected pieces with reference templates ob-
tained from various angles. Wei et al. [25] proposed an ap-
proach to recognize pieces using a depth camera and a vol-



umetric convolutional neural network (CNN). More recent
studies [6, 15, 18, 27] follow the 1-way approach for piece
classification. They train CNNs to distinguish between 12
or 13 classes of objects (i.e. six piece types in both colors
and one for empty squares), obtaining impressive results.
In Czyzewski et al. [6], they also leverage domain knowl-
edge, to improve piece classification, by utilizing a chess
engine to calculate the most probable piece configurations
and clustering similar figures into groups to deduce forma-
tions based on cardinalities. Additionally, given the varia-
tion in appearance between chess sets, Wölflein and Arand-
jelović [27] proposed a novel fine-tuning process for their
piece classifier to unseen chess sets. In our paper, same as
with the chessboard detection task, the classification of the
pieces is performed by the deep learning model, without the
need to train a separate piece classifier.

2.4. Chess Datasets

A common problem frequently mentioned in literature
[6, 8, 15, 27] is the lack of a comprehensive chess dataset.
This issue hinders not only the ability to fairly evaluate the
proposed methods in a common setting but also impedes
the deployment of deep learning end-to-end approaches that
require a vast amount of data. One proposed solution to
this problem is the use of synthetic generated data. In [25],
the authors produce point cloud data using a 3D computer-
aided design (CAD) model, while Blender [5] was used to
produce synthetic image datasets from a top view camera
angle [16], or the player’s perspective [27]. In our paper,
we introduce the first chess recognition dataset of real im-
ages, without setting any of the aforementioned restrictions
regarding the viewing angles.

3. Chess Recognition Dataset (ChessReD)
The availability of large-scale annotated datasets is criti-

cal to the advancement of computer vision research. In this
section, we tackle a main issue in the field of chess recog-
nition (i.e. the lack of a comprehensive dataset) by present-
ing a novel dataset specifically designed for this task. The
dataset comprises a diverse collection of images of chess
formations captured using smartphone cameras; a sensor
choice made to ensure real-world applicability.

3.1. Data Collection and Annotation

The dataset was collected by capturing images of chess-
boards with various chess piece configurations. To guar-
antee the variability of those configurations, we relied upon
the chess opening theory. The Encyclopedia of Chess Open-
ings (ECO) classifies opening sequences into five volumes
with 100 subcategories each that are uniquely identified by
an ECO code. We randomly selected 20 ECO codes from
each volume. Subsequently, each code of this set was ran-
domly matched to an already played chess game that fol-

lowed the particular opening sequence denoted by the ECO
code; thus creating a set of 100 chess games. Finally, using
the move-by-move information provided by Portable Game
Notations (PGNs) that are used to record chess games, the
selected games were played out on a physical chessboard
with images being captured after each move.

Three distinct smartphone models were used to capture
the images. Each model has different camera specifications,
such as resolution and sensor type, that introduce further
variability in the dataset. The images were also taken from
diverse angles, ranging from top-view to oblique angles,
and from different perspectives (e.g. white player perspec-
tive, side view, etc.). These conditions simulate real-world
scenarios where chessboards can be captured from a by-
stander’s arbitrary point of view. Additionally, the dataset
includes images captured under different lighting condi-
tions, with both natural and artificial light sources introduc-
ing these variations. Most of these variations are illustrated
in the four image samples of Figure 1. Each of those sam-
ples highlights a different challenge in chess recognition.
Occlusions between pieces occur more often in images cap-
tured from a low angle (Fig. 1c) or a player’s perspective
(Fig. 1b), while pieces are rarely occluded in top-view im-
ages (Fig. 1d). However, distinct characteristics of pieces
(e.g. the queen’s crown) that could aid the chess recognition
task are less distinguishable in a top-view.

The dataset is accompanied by detailed annotations pro-
viding information about the chess pieces formation in the
images. Therefore, the number of annotations for each im-
age depends on the number of chess pieces depicted in it.
There are 12 category ids in total (i.e. 6 piece types per
color) and the chessboard coordinates are in the form of
algebraic notation strings (e.g. ”a8”). These annotations
were automatically extracted from Forsyth-Edwards Nota-
tions (FENs) that were available to us by the games’ PGNs.
Each FEN string describes the state of the chessboard af-
ter each move using algebraic notation for the piece types
(e.g. “N” is knight) , capitalization for the piece colors (i.e.
white pieces are denoted with uppercase letters, while black
pieces with lowercase letters), and digits to denote the num-
ber of empty squares. Thus, by matching the captured im-
ages to the corresponding FENs, the state of the chessboard
in each image was already known and annotations could be
extracted. To further facilitate research in the chess recog-
nition domain, we also provide bounding-box and chess-
board corner annotations for a subset of 20 chess games.
An annotated sample is presented in Figure 2. The different
colors for the corner points represent the four distinct cor-
ner annotations (i.e. bottom-left, bottom-right, top-left, and
top-right) that are relative to the white player’s perspective.
For instance, the corner annotated with the red color in Fig-
ure 2 is a bottom-left corner. The discrimination between
these different types of corners provides information about



the orientation of the chessboard that can be leveraged to
determine the image’s perspective and viewing angle.

(a) Corner view (b) Player view

(c) Low angle (d) Top view

Figure 1. Image samples from ChessReD

3.2. Data Statistics

In this section, we present an overview of the ChessReD
statistics. As mentioned in Section 3.1, the dataset con-
sists of 100 chess games, each with an arbitrary number of
moves and therefore images, amounting to a total of 10,800
images being collected. The dataset was split into train-
ing, validation, and test sets following an 60/20/20 split.
Since two consecutive images of a chess game differ only
by one move, the split was performed on game-level to en-
sure that quite similar images would not end up in differ-
ent sets. The split was also stratified over the three dis-
tinct smartphone cameras (Apple iPhone 12, Huawei P40
pro, Samsung Galaxy S8) that were used to capture the im-
ages. Table 1 presents an overview of the image statistics
per smartphone. The three smartphone cameras introduced
variations to the dataset based on the distinct characteristics
of their sensors. For instance, while the image resolution
for the Huawei phone was 3072x3072, the resolution for
the remaining two models was 3024x3024.

Table 2 presents an overview of the annotations in
ChessReD. In Table 2a we can see that there is a significant
imbalance between provided annotations for the piece type
“Pawn” and the rest of the types in the dataset. This was to
be expected since every chess game starts with 8 pawns in
each side and only one or two of the remaining piece types.

Smartphone Number of images
Train Val Test

Apple iPhone 12 2,146 851 638
Huawei P40 pro 2,102 638 871
Samsung Galaxy S8 2,231 703 620
Total 6,479 2,192 2,129

Table 1. Overview of the image statistics

Figure 2. Bounding box and corner point annotations in
ChessReD2K

Regarding the colors of the pieces, no imbalance is detected
in the dataset. Additionally, while annotations about the
position of the pieces in algebraic notation are available for
every image in the dataset, we provide bounding box and
chessboard corner annotations only for a subset of 20 ran-
domly selected games from the train, validation, and test
sets. For this subset we followed a 70/15/15 split strati-
fied over the smartphone cameras, which led to a total of
14 training games (1442 images), 3 validation games (330
images), and 3 test games (306 images) being annotated. In
Table 2b we can see an overview of the annotation statistics
for this subset, named ChessReD2K.

4. End-to-End Chess Recognition
Unlike the conventional pipeline in chess recognition

that involves chessboard detection, square localization, and
chess piece classification, the focus of this study was to de-
velop an end-to-end approach that tackles the recognition
task utilizing only a single image as input. Thus, the de-



Piece type
Number of instances

Train Val Test
Black White Black White Black White

Pawn 35,888 35,021 11,410 11,042 11,616 11,472
Rook 9,317 9,260 2,605 2,876 2,992 3,077
Knight 6,158 6,471 2,222 2,206 2,032 2,202
Bishop 6,681 6,768 2,167 2,003 2,301 2,067
Queen 4,076 3,996 1,011 1,013 1,145 1,109
King 6,479 6,479 2,192 2,192 2,129 2,129

(a) Piece positions on the chessboard in ChessReD

Piece type
Number of instances

Train Val Test
Black White Black White Black White

Pawn 8,059 7,653 1,511 1,625 1,719 1,624
Rook 2,293 2,250 471 447 433 433
Knight 1,276 1,423 178 274 278 278
Bishop 1,578 1,607 380 335 296 304
Queen 862 838 125 126 157 160
King 1,442 1,442 330 330 306 306

(b) Bounding boxes in ChessReD2K

Table 2. Overview of the annotation statistics

veloped method should take as input an image of a chess-
board and output the type and the positions of the pieces
relative to the board. To this end, we experimented with
two different solutions by treating the problem either as a
multi-class multi-label classification or as a relative object
detection task.

4.1. Classification Approach

In the classification approach, we treat each chessboard
square as a distinct label. Since there are 64 squares in each
image, and thus 64 labels, this problem is treated as a multi-
label classification task. Additionally, each square in the
chessboard is either unoccupied or occupied by one of the
12 different types of pieces (i.e. 6 per color) in chess. There-
fore, to each label we assign one of 13 classes (i.e. 12 piece
types and empty), constituting this approach multi-label
multi-class classification. By formulating this approach as
such, the goal is for the model to learn the intricate rela-
tionships and visual patterns associated with the individual
squares.

4.2. Relative Object Detection Approach

In addition to the multi-class multi-label classification
approach, we explore a novel technique for chess recogni-
tion which we call relative object detection. Contrary to
conventional object detection methods that predict bound-
ing box coordinates in terms of absolute position in the im-
age frame, our modified method aims to predict the x and
y coordinates of the objects relative to the chessboard grid
in the image. In this manner, discrete coordinates that align
with the chessboard positions are used to provide spatial
information of its layout. For instance, the relative posi-
tion (0,0) corresponds to the chessboard square denoted by
”a8” in chess algebraic notation. Furthermore, since we
only need to predict the relative coordinates, we can omit
the height and width estimation, effectively bypassing the
complexities of the bounding box size estimation.

5. Implementation Details

5.1. Classification

For the classification approach, we employed a ResNeXt
[28] model. Based on the ResNet [9] architecture, ResNeXt
models constitute a powerful variant that can learn com-
plex representations of images. Their introduced concept of
“cardinality” (i.e. the number of parallel branches used in
each residual block) both enables deeper architectures with
reduced computation complexity and allows complex rep-
resentations to be learned by aggregating the information of
the multiple branches. Because of these modifications, this
family of models can achieve impressive results in image
classification.

For our experiments, we trained the resnext101 32d vari-
ant, which uses a cardinality of 32 and a width (i.e. number
of filters) of 8. This means that each residual block in the
network contains 32 parallel convolutional layers, and each
of them has a width of 8. Additionally, there are 101 layers
in the network, which amount to a total of 88.8M param-
eters. We trained this model from scratch for 200 epochs,
with early stopping enabled and a batch size of 8 samples,
using a cross-entropy loss function. We used an Adam [10]
optimizer with a learning rate of 0.001, which was reduced
to 0.0001 after the 100th epoch. The same training recipe
was used to train ResNext on all of the datasets in our ex-
periments (Sec. 6).

5.2. Relative Object Detection

As mentioned in Section 4.2, the goal is to predict a set of
coordinates x and y for the chess pieces relative to the chess-
board grid in the image. Thus, traditional object detection
models that use Region Proposal Networks (RPNs) [20] or
anchor boxes [19] are not suitable for this task, since they
output absolute image coordinates. However, a single end-
to-end object detection model, like Detection Transformer
(DETR) [2], that directly predicts bounding boxes and class
labels for objects in an image could be employed. DETR
uses a transformer encoder-decoder architecture, with the
encoder taking as input a feature map produced by a convo-



lutional backbone network and the decoder generating the
final predictions using self-attention mechanisms to attend
to different parts of the feature map.

For our experiments, we attempted to train a modi-
fied version of DETR that predicts relative object coordi-
nates and omits the height and width dimensions for the
bounding boxes of the traditional object detection task.
ResNext101 32d was used as a backbone network for fea-
ture extraction. We set the number of queries (i.e. the max-
imum number of objects that DETR can detect in an im-
age) to 32, since each chessboard can have at most 32 chess
pieces on top of it. DETR also requires a separate class for
“background”, which in our case corresponds to “empty”
squares. Thus, the number of classes that the model is
trained to predict is 13 (i.e. 12 piece types and background).
We trained the model from scratch for a total of 800 epochs,
with early stopping enabled and a batch size of 8 samples,
using DETR’s default bipartite matching loss for set predic-
tions, which takes into account both the class prediction and
the similarity of the predicted and ground truth coordinates.
We used an AdamW [13] optimizer with separate learning
rates for the backbone network and the encoder-decoder ar-
chitecture. In particular, the initial learning rates were set
to 10−5 and 10−6 for the encoder-decoder and backbone,
respectively, and a scheduler was used to reduce both by a
factor of 10 every 300 epochs. Furthermore, gradient clip-
ping was used with a threshold of 0.1.

However, the training of this modified DETR variant for
chess recognition did not yield optimal results, with the
model being unable to successfully detect chess pieces in
the images of ChessReD. This issue could potentially be
linked to DETR’s inherent limitation in detecting small ob-
jects [2, 31], especially when considering the intricacies of
the dataset (e.g. occlusions) and the relatively small sizes
of individual pieces. Due to the unsuccessful convergence
of the DETR variant, it will not be used in the experiments
of Section 6. Nevertheless, end-to-end relative object de-
tection with transformers is a promising area that should
be further investigated, with the focus being on refining the
model architecture ( [31]) or the training objective.

6. Experiments

6.1. Exp1: Comparison with the state-of-the-art

To the best of our knowledge, the current state-of-the-
art approach in chess recognition, namely Chesscog, was
introduced in Wölflein and Arandjelović [27]. In their ex-
periments, Chesscog achieved a 93.86% accuracy in chess
recognition on a synthetic dataset [26] rendered in Blender
[5], with a 0.23% per-square error rate. Additionally, the
authors introduced a few-shot transfer learning approach to
unseen chess sets and the system demonstrated a 88.89%
accuracy and 0.17% per-square error rate, when tested on

a set of previously unseen images of chessboards. In this
section, we will compare the performance of our approach
with that of Chesscog’s, both on their Blender dataset and
on our newly introduced ChessReD.

6.1.1 Current SOTA: Chesscog

Chesscog attempts to solve the chess recognition task using
a pipeline that involves chessboard detection, square local-
ization, occupancy classification, and piece classification. It
leverages the geometric nature of the chessboard to detect
lines and employs a RANSAC-based algorithm to compute
a projective transformation of the board onto a regular grid.
Subsequently, individual squares are localized based on the
intersection points and an occupancy classifier is used on
each individual square. Finally, the pieces on the occupied
squares are classified into one of 12 classes, using a pre-
trained piece classifier. The piece classifier is used on image
patches of the squares that are cropped based on a heuris-
tic approach that extends the bounding boxes based on the
square’s location on the chessboard. It is also important to
mention that during inference the user must manually input
the specific player’s perspective (i.e. “white” or “black”) to
determine the orientation of the board.

6.1.2 How does the classification approach compare to
Chesscog on the synthetic Blender dataset?

First, we evaluate the performance of our classification ap-
proach on the Blender dataset and compare it with that of
Chesscog. The Blender dataset comprises a set of 4,888
synthetic chessboard images with distinct piece configura-
tions, multiple lighting conditions, a limited range of view-
ing angles (between 45° and 60° to the board), and im-
ages taken only from the players’ perspectives. We trained
our ResNeXt model following the recipe described in Sec-
tion 5.1 on the dataset’s training samples. Subsequently, we
evaluated our trained model’s performance on the test set.
The first two columns of Table 3 demonstrate the evalua-
tion results for both approaches on the Blender dataset. We
use the same evaluation metrics as in Wölflein and Arand-
jelović [27].

Chesscog outperforms our classification approach across
all metrics. For the percentage of boards with no mis-
takes, which reveals a model’s ability to achieve perfect
board recognition, Chesscog demonstrates a significant ad-
vantage with 93.86% of boards correctly predicted, while
ResNeXt achieves this only in 39.76% of the boards. When
one mistake is allowed per board prediction, Chesscog
can successfully recognize almost all of the boards, with
ResNeXt’s performance improving significantly and reach-
ing 65.2%. Chesscog’s superiority is also corroborated by
the substantially lower mean number of incorrect squares



per board (0.15 vs. 1.19 for ResNeXt) and per-square error
rate (0.23% vs. 1.86% for ResNeXt).

6.1.3 How does the classification approach compare to
Chesscog on the real ChessReD dataset?

In this section, we compare the performance of our ap-
proach with that of Chesscog’s on our ChessReD. We
trained our ResNeXt model, using again the recipe of Sec-
tion 5.1, and finetuned the Chesscog classifiers as men-
tioned in [27], using two images of the starting position
from both players’ perspectives. Furthermore, for a fair
comparison we needed to take into account that Chesscog
cannot infer the orientation of the chessboard and requires
for it to be manually inputted. Since this information is not
available in our dataset, we address it by generating all pos-
sible orientations for the detected chessboards during eval-
uation.

Both approaches faced increased challenges when tested
on ChessReD, resulting in a performance drop across all
metrics, as seen in Table 3. While our ResNeXt model
can still demonstrate competitive results, recognizing suc-
cessfully 15.26% of boards with no mistakes and 25.92%
of boards with less than one mistake, Chesscog’s accuracy
decreases significantly, achieving only 2.3% and 7.79% in
these metrics, respectively. Chesscog’s performance dete-
rioration is also evident by its 42.87 incorrect squares per
board on average and the 73.65% per-square error rate.
ResNeXt’s performance for these metrics was 3.40 and
5.31%, respectively.

Upon further investigation, one important factor that led
to Chesscog’s performance degradation was the inaccurate
results of the chessboard detection process and the accumu-
lation of the error throughout the pipeline. While the limited
range of angles present in the Blender dataset of the pre-
vious section enabled Chesscog to achieve 100% accuracy
in chessboard detection, the corresponding accuracy in our
dataset is 34.38%. This issue highlights the sensitivity of
the image processing algorithms employed for chessboard
detection to their hyperparameters and the necessity to fine-
tune them across different datasets.

To further compare the performance of both approaches,
we conducted the same evaluation without taking into ac-
count the failed chessboard detections by Chesscog. In the
last two columns of Table 3, we evaluate the performance
of both approaches on the subset of the ChessReD’s test
set (denoted as ChessReD*) consisting of the 34.38% (732)
of the images in which Chesscog was able to detect the
chessboard. While Chesscog’s performance shows signif-
icant improvement when we don’t consider those erroneous
chessboard detections, it remains inferior in comparison to
the results achieved by our classification approach across all
metrics.

6.2. Exp2: Does the classification approach rely on
chessboard marks for recognition?

(a) With marks (b) Without marks

Figure 3. Sample pair of images for the ablation study

One significant advantage of our approaches is that they
do not require any further input to determine the orienta-
tion of the chessboard in an image. Yet, the visual cues
used by the models to deduce the chessboard’s orientation
remain unclear. To this end, we conducted an ablation study
to investigate whether the ResNeXt model relies on specific
marks of the chessboard (e.g. bishop logo in Fig. 3a) to de-
termine the board’s orientation and subsequently recognize
the chess configuration.

We hypothesize that the necessity of those marks for
successful chess recognition increases with the number of
moves that have been made prior to capturing the image.
The intuition behind this hypothesis is that in the early game
of chess, the majority of the pieces remain in their starting
position, so determining the boards orientation poses less of
a challenge, while in the end game, only a few pieces remain
on the board and they are usually far from their starting po-
sition. To validate this hypothesis, we created a dataset con-
sisting of 30 test images that were randomly selected from
the subset of images that the model was able to successfully
recognize in the evaluation of Section 6.1.3. The test images
were evenly distributed across three categories: early-game,
mid-game, and end-game. These categories correspond to
images that were taken when less than 30, more than 30 but
less than 75, or more than 75 moves had been made prior to
capturing the images, respectively. Subsequently, we man-
ually removed the marks, such as the bishop logo or the
algebraic chess notation on the sides, and evaluated again
the performance of ResNeXt on this subset of 30 modified
images. A sample pair of images is illustrated in Figure 3.
The model achieved an overall accuracy (i.e. boards with
no mistakes) of 66.6% on this subset, with a perfect recog-
nition in the early-game images, 60% accuracy in mid-game
images, and 40% accuracy in end-game images.



Blender Dataset ChessReD ChessReD*
Metric Chesscog ResNeXt Chesscog ResNeXt Chesscog ResNeXt

Mean incorrect squares per board 0.15 1.19 42.87 3.40 12.96 3.35
Boards with no mistakes (%) 93.86% 39.76% 2.30% 15.26% 6.69% 15.30%
Boards with < 1 mistake (%) 99.71% 65.20% 7.79% 25.92% 22.67% 27.04%
Per-square error rate (%) 0.23% 1.86% 73.64% 5.31% 39.57% 5.24%

Table 3. Performance evaluation for Chesscog’s and our classification approach’s (ResNeXt) predictions on the corresponding test sets.
ChessReD* represents the subset of the test images in which Chesscog could detect the chessboard.

7. Discussion
The evaluation on the Blender dataset revealed that

Chesscog outperforms our classification approach. How-
ever, further experimentation on our newly introduced
ChessReD showcased a shift in both methods’ perfor-
mances, with ResNeXt surpassing Chesscog across all met-
rics. It is evident that Chesscog’s low chessboard detec-
tion rate (34.38%), which is attributed to the diverse angles
and occlusions introduced by our dataset, significantly con-
tributed to that shift, while the specific range of angles used
in the Blender dataset, enabled Chesscog to successfully de-
tect the chessboard in all cases and achieve a remarkable
end-to-end performance.

The ablation study provided significant insights into our
ResNeXt model’s reliance on specific marks for determin-
ing chessboard orientation, and therefore chess recognition.
The study confirmed our hypothesis that the necessity of
those marks increases with the number of moves made prior
to image capture. The model achieved higher accuracy in
early-game images, where most of the pieces remained in
their starting positions, and lower accuracy in end-game im-
ages, where only a few pieces were still on the board and
farther from their starting positions. While depending on
such marks could be challenging in cases where they are
absent or obscured, it could prove to be an advantage in
end-game states in which even human annotators can have
trouble determining the board’s orientation without them.

8. Limitations
While our study sheds light on the importance of end-to-

end deep learning approaches for chess recognition, the lim-
itations of these solutions should also be considered. An in-
herent weakness of the classification approach is its inabil-
ity to recognize labels that are absent from the dataset that it
was trained on. For instance, if a specific piece/square com-
bination was first seen at inference time, the model would be
unable to assign the corresponding label. On the other hand,
the relative object detection approach would not encounter
this issue, but as a transformer-based solution it’s difficult to
converge when trained on a small dataset. Finally, finetun-
ing these models on previously unseen data would require

considerably more resources and compute time compared
to finetuning a simple CNN piece classifier in the sequen-
tial approaches.

Regarding ChessReD, although including a single chess
set in the images was a design choice, this lack of diversity
impedes the development of solutions with broader appli-
cability. Yet, it is feasible to enhance the dataset by col-
lecting varied data with relative positional annotations (i.e.
FEN strings instead of bounding boxes) from chess tourna-
ments recordings, where the players are obliged to annotate
their every move.

9. Conclusion
Our experiments demonstrate the effectiveness of our

classification approach in chess recognition tasks, while
also revealing Chesscog’s advantages on certain datasets.
However, with the focus being on real-world applicability,
the ChessReD dataset, consisting of real images with varied
angles and perspectives, poses a more challenging bench-
mark for chess recognition, and thus the experimental re-
sults establish our approach as the state-of-the-art method
for this task. Moving forward, improving the model’s abil-
ity to generalize by either enhancing the dataset, or incor-
porating domain adaptation techniques, should be explored.
Additionally, the relative object detection approach, if con-
verged, may constitute a more robust solution for chess
recognition, and thus requires further studying.
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3
Image Processing

Image processing is a fundamental field in computer vision that includes a wide range of techniques
and tools for manipulating digital images. From simple image enhancement (e.g. deblurring) to complex
object detection algorithms, image processing methods can be applied to a variety of computer vision
tasks and successfully exploit meaningful visual information from images. In this chapter, we will delve
into various image processing techniques commonly employed in chess recognition, including edge
detection, line detection, line clustering, and homography matrices for projective transformations.

3.1. Edge detection
Edge detection is an important technique in image processing, as it serves as a foundation for higher-
level methods. Qualitatively, edges occur at the boundaries of regions of the imagewith severe changes
in color, intensity, or texture. These boundaries often correspond to object edges, constituting edge
detection as a significant step in several computer vision tasks, such as object recognition.

Given the conditions under which edges occur, a reasonable approach for detecting them is to
identify points, or pixels, in an image where there are rapid variations in intensity. These points indicate
borders between regions of interest, which are in turn indicative of object boundaries. Exploiting this
observation, various edge detection methods have been proposed over the years, with Sobel-Feldman
operator (Sobel, Feldman, et al. 1968), Prewitt operator (Prewitt et al. 1970), and Canny edge detector
(Canny 1986) being the most commonly used ones.

3.1.1. Sobel-Feldman operator
While being introduced in 1968, the Sobel-Feldman operator remains a fundamental tool for detecting
edges. More commonly used on grayscale images, it is a simple but yet effective edge detection
operator. It is based on the convolution of an image with two 3x3 masks, one for the horizontal and
one for the vertical direction. The masks are designed to calculate the magnitude and the direction of
the gradient at each pixel in the image. The horizontal 𝐾𝑥 and vertical 𝐾𝑦 kernels of the masks are
presented in Equation (3.1).

𝐾𝑥 = ⎡⎢
⎣

−1 0 +1
−2 0 +2
−1 0 +1

⎤⎥
⎦

, 𝐾𝑦 = ⎡⎢
⎣

+1 +2 +1
0 0 0

−1 −2 −1
⎤⎥
⎦

(3.1)

The gradient components in each direction, 𝐺𝑥 and 𝐺𝑦, can be computed by convolving the im-
age with the corresponding kernels 𝐾𝑥 and 𝐾𝑦, respectively. Subsequently, the absolute gradient
magnitude 𝐺 at the pixel (𝑥, 𝑦) is computed as the Euclidean norm of those gradients:

𝐺(𝑥, 𝑦) = √𝐺𝑥
2 + 𝐺𝑦

2

12
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Figure 3.1 illustrates the results of applying the Sobel-Feldman operator on an image sample of
the ChessReD.

(a) Original image (b) Horizontal filter

(c) Vertical filter (d) Magnitude

Figure 3.1: Results of applying the Sobel-Feldman filter on an image sample of ChessReD

3.1.2. Prewitt operator
The Prewitt operator is quite similar to the Sobel-Feldman operator, with the only difference being the
variation in the weights of the utilized horizontal and vertical masks. The Prewitt kernels are presented
in Equation (3.2).

𝐾𝑥 = ⎡⎢
⎣

−1 0 +1
−1 0 +1
−1 0 +1

⎤⎥
⎦

, 𝐾𝑦 = ⎡⎢
⎣

−1 −1 −1
0 0 0

+1 +1 +1
⎤⎥
⎦

(3.2)

The Prewitt operator is considered to be less sensitive to noise, compared to the Sobel-Feldman
operator, but also slightly less accurate. Figure 3.2 illustrates the results of applying the Prewitt operator
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on an image sample of ChessReD, with minimal visual differences to the results obtained by the Sobel-
Feldman filter in Figure 3.1.

(a) Original image (b) Horizontal filter

(c) Vertical filter (d) Magnitude

Figure 3.2: Results of applying the Prewitt filter on an image sample of ChessReD

3.1.3. Canny edge detector
The Canny edge detector, introduced in 1986 by John Canny, remains even today one of the most
widely used algorithms for edge detection. It is a multi-stage algorithm known for its robustness and
its ability to provide accurate edge detections while minimizing false positives and noise. Its first step
is to reduce the noise in the image using a Gaussian smoothing filter. Then having calculated the
magnitude of each pixel (𝑥, 𝑦) in the second stage, using a similar approach to the Sobel-Feldman
and Prewitt operators, the third stage is non-maximum suppression. The final and fourth stage of the
algorithm is hysteresis thresholding.

1. Gaussian smoothing: Recognizing that convolving the masks directly with the original image
for gradient calculation may lead to noise amplification, the first step of the Canny edge detection
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algorithm is to apply a Gaussian smoothing filter on the image. Thus, it convolves the image with
a Gaussian kernel to both reduce the noise and make the edges more pronounced.

2. Gradient calculation: Similar to the Sobel-Feldman and Prewitt edge detection methods, the
Canny edge detector uses two 3x3 masks to compute the horizontal and vertical gradients of the
image. The weights of the masks are those introduced in the Sobel-Feldman operator (presented
in Equation (3.1)).

3. Non-maximum suppression: For each pixel, the algorithm compares the gradient magnitude
of the current pixel to that of the neighboring pixels, in the direction perpendicular to the edge. If
the current pixel’s magnitude is greater than its neighbors, the pixel remains as part of the edge.
Otherwise, it is suppressed.

4. Hysteresis thresholding: In this process, the Canny edge detector uses double thresholding
to classify the detected edges into three categories, strong edges, weak edges, and suppressed.
Pixels with a gradient magnitude greater than a defined higher threshold (𝑡ℎ𝑟𝑒𝑠ℎ𝐻) are classified
as strong edges, while those between the 𝑡ℎ𝑟𝑒𝑠ℎ𝐻 and the lower threshold (𝑡ℎ𝑟𝑒𝑠ℎ𝐿) are classified
as weak edges. Finally, those with a gradient magnitude less than the 𝑡ℎ𝑟𝑒𝑠ℎ𝐿 are suppressed.
Subsequently, edge tracking by hysteresis is performed, with the algorithm following the direction
of the gradient of the strong edge pixels, and connecting neighboring weak pixels until there are
no more weak edges to be linked. The remaining weak edges that are not linked get suppressed,
while the linked ones represent the final detected edges.

(a) Original image (b) Grayscale (c) Gaussian smoothing

(d) Sobel filter (e) Final Canny edges (f) Inadequate thresholds

Figure 3.3: Results of applying the Canny edge detector on an image sample of ChessReD

Figure 3.3 illustrates the stage-by-stage results of applying the Canny edge detector on an image
sample of the ChessReD. While the intermediate conversion of the image to grayscale (Figure 3.3b) is
not required, it usually leads to better results. Additionally, by applying the hysteresis thresholding, the
Canny algorithm produces thin, well-connected edges, in contrast with the thick one-pixel wide edges
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of the Sobel-Feldman filter (Figure 3.3e and Figure 3.3d respectively). Furthermore, in Figure 3.3f we
can see the effect of using inadequate thresholds for the hysteresis thresholding process.

3.2. Line detection
Line detection is a fundamental technique in image processing that involves the identification of straight
lines present in an image. A line can be defined as a set of connected pixels that share common
characteristics (e.g. intensity). Essentially formed by detected edges, lines can provide information
about the boundaries between objects and highlight their structure. Thus, lines are important features
necessary for higher-level computer vision tasks (e.g. object detection). There are several different
algorithms developed for line detection. In this section, we will discuss some of the most commonly
used ones.

3.2.1. Hough transform
The Hough transform (Hough 1962) is a well-known and widely used technique for line detection (Duda
and Hart 1972). It represents lines in polar coordinate space and evokes a voting procedure for plau-
sible line locations. In particular, the image is transformed into the Hough domain, where every edge
point (𝑥, 𝑦) of the image is converted to polar coordinates (𝜌, 𝜃). Then, a 2D array is created, called
Hough accumulator, that will store the number of votes for a specific (𝜌, 𝜃) pair, representing a unique
line (Figure 3.4). The size of the accumulator is determined by the minimum and maximum possible
values for 𝜌 and 𝜃. Subsequently, the Hough transform loops through all the pixels in the image and
if the pixel lies on a line, a vote is cast for that particular line in the Hough accumulator. Finally, the
algorithm searches for the peaks (i.e. high number of votes) in the accumulator to define lines.

Figure 3.4: Parametric description of a line (source: Duda and Hart 1972)

Figure 3.5 illustrates two examples of detected lines by the Hough transform algorithm, using the
same 𝜌 and 𝜃 parameters. In Figure 3.5a, we can see that all of the chessboard’s lines have been
detected, whereas in Figure 3.5b several lines are missing.

Several optimizations of the original Hough algorithm have been proposed. Kiryati, Eldar, and
Bruckstein 1991 introduced Probabilistic Hough Transform (PHT), which is considered to be more effi-
cient than the original algorithm, especially in cases where the majority of the pixels in the image are
not part of a line. The main difference is that in PHT not all edge points are considered perspective lines
and therefore put to voting. It conducts a random point sampling, reducing substantially the number
of points to be processed. Furthermore, Matas, Galambos, and Kittler 2000 proposed an even more
efficient algorithm, the Progressive Probabilistic Hough Transform (PPHT). In this method, the Hough
space is divided into a number of bins and instead of voting for lines at each pixel, a vote is cast for
the bin that the pixel lies in. Then, the probability of a line is based on the number of votes of the bin it
belongs to. This way, the most salient features of the image are likely to be detected first.
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(a) Successful line detection (b) Inadequate line detection

Figure 3.5: Results of applying the Hough transform on two image samples of ChessReD

3.2.2. Random Sample Consensus (RANSAC)
The Random Sample Consensus (RANSAC), introduced by Fischler and Bolles 1981, is a robust al-
gorithm used to fit models to data with outliers. In the case of line detection, it can effectively discard
outlier edges and image noise, which can significantly affect the accuracy of the method. It iteratively
estimates line model parameters from randomly sampled edge points until they fit the majority of the
data. The RANSAC algorithm consists of the following steps:

1. Random sample selection: Randomly select two edge points to uniquely define a line.

2. Parameter estimation: Estimate the line parameters (slope and y-intercept) based on the ran-
domly selected points.

3. Inlier identification: Determine the number of edge points that fall into this line (inliers), with a
user-defined tolerance.

4. Line validation: If the number of inliers is greater than a pre-defined threshold, proceed to the
next step. Otherwise, repeat the first three steps.

5. Line selection: After a pre-define number of iterations, or when a specific number of inliers have
been found, select the lines with the largest number of inliers.

While the RANSAC algorithm is able to ignore outliers, which makes it robust to noise, it can be
computationally expensive for large datasets and it is significantly sensitive to the predefined thresholds
for the tolerance and the number of line inliers.

3.2.3. Least squares fitting
Least squares fitting is a simple, yet effective line detection algorithm. Its goal is to minimize the sum of
the squared distances between edge points and a line. The algorithm starts by selecting a number of
edge points (𝑥, 𝑦), which will be used to calculate the line parameters (i.e. the slope and the y-intercept)
that minimize the sum of the squared distances between those points and the line. With the sum of the
squared distances as the objective, one can use a variety of methods to minimize it, such as gradient
descent. The process is repeated until the sum is minimized, and thus a line is defined.
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3.3. Line clustering
Once lines have been detected in an image, the next step is to cluster them into groups based on a
similarity metric. This is an important processing step for computer vision applications since it provides
insights into the underline structure that can be valuable for subsequent analysis. For instance, in
chessboard detection, this image processing technique can be employed to cluster chessboard lines
into vertical and horizontal groups. In this section, we will discuss common line clustering techniques,
such as k-means (MacQueen et al. 1967; Lloyd 1982), hierarchical (Lance and W. T. Williams 1967),
and density-based (Ester et al. 1996) clustering.

3.3.1. k-means clustering
The k-means is a widely used unsupervised clustering algorithm that aims to group data points into k
clusters. To accomplish that, each data point is assigned to the cluster with the nearest mean value,
based on a predefined metric. The step-by-step algorithm is described below.

1. Initialization: k initial cluster centroids can be assigned either randomly, or by selecting k random
data points.

2. Assignment: Each data point is assigned to the cluster whose centroid is nearest based on a
predefined distance metric (e.g. Euclidean distance)

3. Update: The centroids of the clusters are re-positioned to the mean values of their members.

4. Iteration: Steps 2 and 3 are repeated until convergence (i.e. no changes for a number of itera-
tions) or a predefined number of iterations is reached.
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Figure 3.6: Example of a converged k-means clustering with k=2

In the case of line clustering, the first step would be to identify the characteristic based on which
the lines would be clustered (e.g. orientation, length, etc). For chessboard detection, a common case
is to cluster them based on orientation (i.e. horizontal and vertical chessboard lines). Then, the data
points would be the different slopes of the lines and the number of clusters (k) would be 2.

3.3.2. Hierarchical clustering
Hierarchical clustering is a clustering method that builds a tree-like structure of the clusters (Figure 3.7),
generating a hierarchical representation of the data points. Depending on the hierarchical clustering
type, agglomerative (bottom-up) or divisive (top-down), clusters are merged or split, respectively, based
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on their similarity. The different steps to execute the agglomerative hierarchical clustering are presented
below.

1. Initialization: Start with each line as its own cluster.

2. Pairwise distance calculation: Calculate the pairwise distance between all clusters.

3. Merging: Merge the two “closest” clusters based on the calculated distances into a single cluster.

4. Iteration: Repeat steps 2 and 3 until a stopping criterion is met (e.g. target number of remaining
clusters)
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Figure 3.7: Example of an agglomerative hierarchical clustering with cut-off at 2 clusters

The way that the “closest” clusters are computed at step 3, defines the type of linkage for the
algorithm. For single linkage, the minimum distance between the two clusters is computed, whereas
for complete linkage, the maximum distance between two clusters is computed. Other types include the
average linkage, which computes the average distance between clusters, and centroid linkage, which
computes the distances between the calculated centroids for each cluster.

In the context of chessboard detection, agglomerative hierarchical clustering can be used to create
two top-level groups (i.e. horizontal and vertical) based on the lines’ orientations. The data points, again,
would be the different slopes of the lines, and the algorithm would repeat merging clusters until only two
were left. Figure 3.8 illustrates an example of this approach where detected lines have been clustered
to horizontal and vertical for an image of ChessReD, using single linkage.

3.3.3. Density-based clustering
Density-based clustering methods aim to identify clusters based on the density of the data points in
the feature space. Data points in high-density areas are clustered together, while those in low-density
areas are considered noise or border points. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)(Ester et al. 1996) is one of the most popular density-based clustering algorithms. In
DBSCAN, data points are separated into three categories, namely core points, border points, and noise
points. Core points are the data points that are surrounded by a predefined number of other points,
within a predefined 𝜀-neighborhood area. Border points are those that are not core points, but are
within the 𝜀-neighborhood of a core point. The rest of the points are considered noise. Thus, DBSCAN
requires the following two parameters to be specified:

• Epsilon (𝜀): Defines the neighborhood and represents themaximum distance between two points
for them to be considered neighbors.

• Minimum points: The minimum number of points required within the 𝜀-neighborhood for a point
to be considered core.

In practice, the algorithm works as follows.
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Figure 3.8: Results of applying agglomerative hierarchical clustering on the slopes of the detected lines of
Figure 3.5a for an image sample of ChessReD

1. Initialization: The algorithm randomly selects a data point and determines its 𝜀-neighborhood
area.

2. Cluster formation: If the selected node is a core point, a cluster is formed and it includes all the
density-reachable points from the core point. A point is considered density-reachable from a core
point when it is within its 𝜀-neighborhood, or when it is within the 𝜀-neighborhood area of a core
point that can be reached through a chain of core points that are density-reachable.

3. Noise points: If the selected point was not a core, it is marked as visited and noise. An initially
marked noise point can be converted to border point in a following iteration.

4. Iteration: If the cluster formation is finished (i.e. all density-reachable points have been included
in the cluster), or if the previously selected point was a noise one, the algorithm selects a new
unvisited data point at random and the whole process is repeated.

The DBSCAN algorithm leverages density information to automatically identify clusters of varying
shapes and sizes. The number of clusters does not have to be predefined, as it is inferred by the
density of the data points. In chessboard detection, this algorithm can be used to cluster similar lines
together based on orientation or distance from specific points, among others.

3.4. Homography matrices
In the scope of 2D computer vision, a homography matrix is a 3x3 matrix, usually denoted as H, that
represents a projective transformation. Projective is a transformation that maps points from one plane
to another. Thus, in the case of an image, a (𝑥, 𝑦) point in the original image will be mapped to the
transformed coordinates (𝑥′, 𝑦′) of the target image. To compute the homography matrix, at least four
pairs of corresponding points from the two images are required. In chessboard detection, these four
points could correspond to the corners of the chessboard and the homography matrix can be used to
transform the image of the chessboard from the given viewing angle to top-view. There are several
methods that can be used to compute the homography matrix, but two of the most commonly used are
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the Direct Linear Transform (DLT)(Dubrofsky 2009) and the Random Sample Consensus (RANSAC)
(Fischler and Bolles 1981).

3.4.1. Direct Linear Transform (DLT)
The DLT algorithm is used to compute the homography matrix for projective transformations between
two images. It aims to minimize the error between the projected points in the target image and the
corresponding points in the original one, while each pair of points represents the same point from a
different perspective. The algorithm can be summarized as follows.

1. Find correspondences: The algorithm requires at least four corresponding pairs of points be-
tween the target image and the original one, so the first step is to find those pairs.

2. Form the homogeneous linear system: From the projective transformation equations, a ho-
mogeneous linear system can be derived for the four correspondence pairs, resulting in a linear
system of 2N equations, with N being the number of correspondence pairs.

3. Solve the linear system: The linear system can be solved using various techniques, such as
Singular Value Decomposition (SVD).

4. Compute homography matrix: The solution vector h of the linear system represents the ele-
ments of the Homography matrix H. Thus, reshaping the solution vector to a 3x3 matrix produces
the homography matrix.

3.4.2. Random Sample Consensus (RANSAC)
The RANSAC algorithm presented in Section 3.2.2 can also be used to estimate the homographymatrix.
It iteratively selects a random subset of point correspondences and fits a homography model to them.
Then, it computes the number of inlier-points that are consistent with the estimated model. An overview
of the method is presented below.

1. Random sample selection: In each iteration, a minimal random sample of four point correspon-
dences is selected.

2. Candidate homography matrix computation: The candidate homography matrix is estimated
using a computation method (e.g. DLT) based on the selected correspondence pairs.

3. Inlier selection: The algorithm computes the inlier points, which are the correspondence points
within a predefined distance threshold of the projected points.

4. Model update: The homography model gets updated to the one with the largest number of inliers.

5. Iteration: The above steps are repeated until a termination criterion has been met (e.g. number
of iterations or target number of inliers)

6. Final homography matrix computation: Once the loop is terminated, the homography matrix
is computed based on the inliers of the obtained model.

In the scope of chessboard detection, the RANSAC algorithm could be used on the intersection
points of the detected horizontal and vertical lines (i.e. square corners). Ideally, the homography model
that would include the largest number of inliers, would correspond to the chessboard’s corners, and
thus the computed homography matrix would optimally project the chessboard, correcting perspec-
tive distortions. Applying this process to the detected horizontal and vertical lines of the example in
Figure 3.8, we can obtain the results of Figure 3.9.
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Figure 3.9: Results of applying the RANSAC-based homography estimation method on the detected horizontal
and vertical lines of Figure 3.8 for an image sample of ChessReD



4
Deep Learning

Deep learning is a type of machine learning, inspired by the human brain, that utilizes Artificial Neural
Networks (ANNs) to learn complex patterns in data. While its foundation dates back to the 1940s when
the first neuron model was created by McCulloch and Pitts 1943, significant advancements in neural
networks did not happen until the introduction of the perceptron architecture (Rosenblatt 1958), the
Stochastic Gradient Descent (SGD) (Robbins and Monro 1951) algorithm, and the backpropagation
algorithm (Rumelhart, Hinton, and R. J. Williams 1986), which enabled the training of multi-layer per-
ceptrons (MLPs). Since then, a lot of breakthroughs have occurred in the field with improvements in
Deep Neural Network (DNN) architectures and the introduction of different types of architectures, from
Convolutional Neural Networks (CNNs) (Fukushima 1980; LeCun et al. 1989) and Recurrent Neural
Networks (RNNs) (Hopfield 1982; Elman 1990), all the way to Transformers (Vaswani et al. 2017).

This chapter is organized as follows. Section 4.1 presents an overview of neural networks, along
with activation functions, loss functions, and details about the training process. In Section 4.2, we
will delve into a specific type of neural networks, the Convolutional Neural Networks (CNNs). Then,
Section 4.3, includes a brief introduction of the Transformers architecture and its different variants for
computer vision tasks.

4.1. Neural Networks
Neural networks, a fundamental component of deep learning, enable machines to learn complex pat-
terns in data. Inspired by the structure of the human brain, neural networks consist of artificial neurons,
organized into layers, and the connections between them.

4.1.1. Multi-layer Perceptrons (MLPs)
A multi-layer perceptron (MLP), also known as feedforward neural network, is the simplest form of
neural network. It is composed of multiple layers of interconnected artificial neurons. The first layer
(i.e. input layer), receives the raw data, then one or more hidden layers are used to extract features
and transform the output of the previous layer into a new representation of the data. Finally, the output
layer produces the model’s predictions or classifications. Furthermore, in a multi-layer perceptron,
each of the neurons is connected to all of the neurons of its previous and subsequent layers (i.e. fully-
connected). An overview of the MLP architecture is illustrated in Figure 4.1.

The alternative name, feedforward neural network, was given to MLPs because of the way that the
final output is computed. Layer by layer the output of a neuron is forwarded as input to the neurons of
the subsequent layer. More specifically, the input layer receives the raw data, typically in the form of a
feature vector, and passes it to the neurons of the first hidden layer. The output of a neuron in a hidden
layer is determined by the weighted sum of the inputs of the previous layer as in Equation (4.1).

23
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Figure 4.1: Multi-layer Perceptron with 2 hidden layers

𝑧𝑗 =
𝑛

∑
𝑖=1

(𝑤𝑖𝑗 ⋅ 𝑥𝑖) + 𝑏𝑗 (4.1)

Where:

• 𝑧𝑗 is the weighted sum for neuron j of the current layer

• 𝑛 is the number of neurons in the previous layer

• 𝑤𝑖𝑗 is the weight of the connection between neuron 𝑖 of the previous layer to neuron 𝑗 of the
current layer.

• 𝑥𝑖 is the output of neuron 𝑖 of the previous layer

• 𝑏𝑗 is a bias term for neuron 𝑗 of the current layer

Subsequently, the weighted sum is usually passed through an activation function 𝑓 to compute
the output 𝑦𝑗 = 𝑓(𝑧𝑗) of neuron j. Activation functions, further discussed in Section 4.1.3, are used to
introduce non-linearity to the network, and thus allow it to learn more complex data representations.
Then, the output layer performs a similar computation for the weighted sum, but the activation function
to be used depends on the task that the network has to perform.

4.1.2. Deep Neural Networks (DNNs)
A deep neural network (DNN) is a type of MLP that has several hidden layers. The introduced depth
has enabled DNNs to learn more complex patterns in data and create hierarchical representations. The
number of hidden layers can vary, but typically there are at least two hidden layers. Increasing the net-
works depth can facilitate the learning of more complex representations, but with greater computational
cost. Figure 4.2 shows an example of a deep neural network architecture with 𝑛 hidden layers.

DNNs have shown remarkable success, achieving state-of-the-art results, in various domains, in-
cluding computer vision, natural language processing, and speech recognition. The large availability
of data and computing resources, in combination with improved architectures and training techniques,
have contributed to the success of DNNs.

4.1.3. Activation functions
Activation functions are used in neural networks to introduce non-linearity, which in turn allows the
network to learn more complex patterns in data. They are differentiable operators, usually with no
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Figure 4.2: Deep Neural Network architecture with 𝑛 hidden layers

training parameters. Because of the significance of their role, several activation functions have been
researched. In this section, we will focus on some of the most commonly used.

The Sigmoid activation function, also known as the logistic activation function, was introduced
by Rumelhart, Hinton, and R. J. Williams 1986 in their search for a differentiable, non-linear activation
function. It maps its input to a range between 0 and 1 based on the formula of Equation (4.2).

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) = 1
1 + 𝑒−𝑧 (4.2)

Where 𝑧 is the weighted sum calculated at the neuron. A similar activation function that is commonly
used is the Hyperbolic Tangent (Tanh) function (Equation (4.3)). Their difference is that while the
sigmoid function maps the input between 0 and 1, the tanh maps it between -1 and 1. This wider range
of output values constitutes this function useful when the data is centered around zero.

𝑡𝑎𝑛ℎ(𝑧) = 2
1 + 𝑒−2𝑧 − 1 (4.3)

A more computationally efficient, and popular, activation function is the Rectified Linear Unit (ReLU)
(Fukushima 1975), presented in Equation (4.4). ReLU is a non-linear function with linear behavior
for positive inputs (i.e. remain unchanged) and zero output for negative inputs. It is a widely used
activation function because other than its simplicity and computational efficiency, it also addresses a
common issue of the sigmoid and tanh functions, the vanishing gradients (Hochreiter 1998).

𝑟𝑒𝑙𝑢(𝑧) = 𝑚𝑎𝑥(0, 𝑧) (4.4)

Variations of the ReLU activation function have also been proposed. The Parametric ReLU (He et al.
2015) function (Equation (4.5)) introduces a trainable coefficient that allows leakage of gradients for
negative inputs, preventing neurons from getting stuck as deactivated during training.

𝑝𝑟𝑒𝑙𝑢(𝑧) = {𝑧 , if z>0
𝛼 ⋅ 𝑧 , otherwise

(4.5)

Where 𝛼 is the trainable coefficient for the negative inputs. For 𝛼 = 0.01, the activation function is also
known as Leaky ReLU. Finally, the Softmax activation function, primarily used at the output layer of
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neural networks trained for multi-class classification tasks, converts the vector of real scores produced
by the output layer to class probabilities that sum to 1. The formula is presented in Equation (4.6).

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) = 𝑒𝑧𝑖

∑𝐶
𝑘=1 𝑒𝑧𝑘

(4.6)

Where𝐶 is the number of classes in the classification task. Figure 4.3 illustrates the aforementioned ac-
tivation functions, with the exception of softmax because its output represents a probability distribution
and we cannot visualize multiple values simultaneously. Also, for visualization purposes in Figure 4.3d
we have set the 𝛼 coefficient of the Parametric ReLU function to 0.3, while in practice 𝛼 is a trainable
parameter.
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Figure 4.3: Common activation functions

4.1.4. Loss functions
Loss, or cost, functions are significant components of neural network training. They are used to mea-
sure the error between the predicted output and the actual, expected output (ground truth). The calcu-
lated loss is then used to update the weights of the neural network during training. The choice of an
appropriate loss function depends on the nature of the task (e.g. regression, classification, etc.). Thus,
several different loss functions that can be used. In this section, we will present some of the most
commonly used ones.

The Mean Squared Error (MSE) (Lehmann and Casella 2006) is a loss function that measures
the average squared difference between the predicted and the actual outputs. It is widely used for
regression tasks, where the models are trained to predict continuous values. Equation (4.7) shows
how to compute the MSE loss for a dataset with 𝑁 data samples.

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (4.7)
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Where 𝑦𝑖 is the actual output for sample 𝑖 and ̂𝑦𝑖 is the corresponding predicted output.

For classification tasks where the goal is to predict discrete values, the Cross-Entropy loss func-
tion, or log loss, is commonly used when training neural networks. Initially introduced by Shannon 1948,
the cross-entropy is a measure of the difference between the predicted class probabilities and the ac-
tual ones. Equation (4.8) shows how to compute the cross-entropy loss for a classification dataset with
𝑁 data samples and 𝐶 classes.

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − 1
𝑁

𝑁
∑
𝑖=1

𝐶
∑
𝑗=1

𝑦𝑖𝑗𝑙𝑜𝑔( ̂𝑦𝑖𝑗) (4.8)

Where 𝑦𝑖𝑗 is the one-hot encoded actual output for sample 𝑖 and class 𝑗, and ̂𝑦𝑖𝑗 is the corresponding
predicted probability.

4.1.5. Optimization
The term optimization, in deep neural networks, refers to the process of finding an optimal set of model
parameters that minimize the selected loss function. Optimization algorithms are used during training
to iteratively update those parameters to minimize the loss on a training dataset. A widely known
optimization algorithm for training DNNs isGradient Descent (Cauchy et al. 1847). It is an optimization
algorithm that iteratively updates the parameters of the model in the direction of the steepest descent
(i.e. the negative gradient of the loss function). In particular, for each parameter 𝜃𝑖 of the model, the
update is given by the formula of Equation (4.9).

𝜃′
𝑖 = 𝜃𝑖 − 𝜂 ⋅ 𝜕𝐿

𝜕𝜃𝑖
(4.9)

Where 𝜂 is a chosen learning rate and 𝜕𝐿
𝜕𝜃𝑖

is the partial derivative, or gradient, of the loss function L with
respect to parameter 𝜃𝑖 for all training samples. Thus, for each gradient descent step, the algorithm
has to compute the gradient for the entire training dataset. However, deep neural networks are usually
trained on large datasets with millions of samples, constituting gradient descent inefficient.

A variant of gradient descent that addresses the aforementioned issue is Stochastic Gradient
Descent (SGD) (Robbins and Monro 1951; Kiefer and Wolfowitz 1952). In contrast to regular gradient
descent, SGD uses a single training sample at each step to update the model’s parameters. While this
solution is computationally efficient, it can cause the network to overfit on the training data. Thus, a
variant of SGD, calledmini-batch stochastic gradient descent, is widely used to train neural networks.
The term “mini-batch” refers to a small subset of the training samples that are used at each step to
update the network’s parameters. This technique can improve the model’s ability to generalize, without
sacrificing computational efficiency.

4.1.6. Backpropagation
In the previous section, it was mentioned that in order to find the optimal network parameters that
would minimize its loss function, the gradient of the loss function with respect to the network’s param-
eters needs to be computed. Backpropagation, proposed by Rumelhart, Hinton, and R. J. Williams
1986, is an efficient technique to calculate those gradients. It consists of two steps, the forward propa-
gation and the backward propagation. In the forward propagation, or forward pass, the input data are
processed layer by layer until the created intermediate feature representations reach the output layer,
which predicts the output. Subsequently, the backward propagation, or backward pass, starts with the
calculation of the gradient of the loss function with respect to the model’s output. Then, the computed
gradient is backpropagated through a recursive algorithm. The algorithm starts from the output layer
and recursively goes backwards, layer by layer, using the chain rule of calculus to calculate the deriva-
tives, until it reaches the input layer. When all of the gradients have been computed, the network’s
parameters can be updated as described in the previous section.
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4.2. Convolutional Neural Network (CNNs)
Convolutional Neural Networks (CNNs) (LeCun et al. 1989) are a specific type of neural network suit-
able for processing data with a grid-like structure. They were inspired by the work of Fukushima 1980,
which introduced the idea of complex cells that would hierarchically aggregate information, from simple
features into more complex ones. Similarly, CNNs employ multi-layered architectures to progressively
learn complex features. Due to their unique characteristics, CNNs are particularly effective in a variety
of image-related tasks, exploiting the grid-like structure of images.

In a convolutional neural network, the layers at the lower levels of the architecture (i.e. closer to
the input) focus on learning low-level features like edges and texture, while the higher-level layers
learn abstract features like shapes of objects. This feature extraction and aggregation is a result of
the main building blocks of such networks. Traditionally, a convolutional neural network consists of
convolutional layers, pooling layers, and fully connected layers. These layers also enable the network
to capture local patterns and spatial relationships between objects in images. An overview of a CNN
architecture is illustrated in Figure 4.4.

Figure 4.4: Convolutional Neural Network architecture of VGGNet by Simonyan and Zisserman 2014 (source:
Bačanin Džakula et al. 2019)

In this section, we will discuss the main building blocks of convolutional architectures. Additionally,
some more recent advancements, Residual Networks (ResNets) (He et al. 2016), that allowed CNN
architectures to go deeper and substantially improve their performance will be presented. Finally, we
will discuss the variation of ResNet, namedResNeXt (Xie et al. 2017), that was used in the experiments
of Chapter 2.

4.2.1. Convolutional layers
Convolutional layers are the foundation blocks of CNNs. They are responsible for extracting mean-
ingful features from input images, relying on their core operation, convolution. The convolution is a
mathematical operation between two variables, a kernel and a feature map. The kernel, also known as
filter, is a small matrix of learnable weights that is slid over the feature map, which is data in a grid-like
format. While the kernel is slid over the feature map, the dot product between them is computed at
each location. The output of the convolution is a new feature map that contains the extracted features
from the operation. Mathematically, the convolution for 2-dimensional inputs can be defined as follows
(Equation (4.10)).

𝐹 ′(𝑖, 𝑗) = (𝐾 ∗ 𝐹)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝐾(𝑚, 𝑛)𝐹(𝑖 + 𝑚, 𝑗 + 𝑛) (4.10)
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Where 𝐹 ′ is the output feature map, 𝐹 is the input feature map, and 𝐾 is the kernel. While Equa-
tion (4.10) in fact describes the cross-correlation formula, in the scope of deep learning convolution
and cross-correlation are used interchangeably. Figure 4.5 illustrates an example of the convolution
operation.

∗
𝑎 𝑏 𝑐×𝑤 𝑑×𝑥

𝑒 𝑓 𝑔×𝑦 ℎ×𝑧

𝑖 𝑗 𝑘 𝑙

Input

w x
y z

Kernel

= 𝑎𝑤 + 𝑏𝑥 + 𝑒𝑦 + 𝑓𝑧 𝑏𝑤 + 𝑐𝑥 + 𝑓𝑦 + 𝑔𝑧 𝑐𝑤 + 𝑑𝑥 + 𝑔𝑦 + ℎ𝑧
𝑒𝑤 + 𝑓𝑥 + 𝑖𝑦 + 𝑗𝑧 𝑓𝑤 + 𝑔𝑥 + 𝑗𝑦 + 𝑘𝑧 𝑔𝑤 + ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧

Feature map

Figure 4.5: Convolution operation with a stride of 1

Because of the sliding-window function of the convolution operation, it only considers a small
region of the input feature map at a time, allowing it to capture local patterns. The size of this region,
with respect to the initial input image, is called receptive field. The layer’s extracted features of each
region are passed to the next convolutional layer as input. The deeper the convolutional block is in the
network, the larger its receptive field (i.e. hierarchical features).

Finally, a significant property of convolutional layers is weight sharing. While there can be several
kernels in a convolutional layer, the exact same kernels are slid across the entire input feature map, and
thus the same weights are used to extract features from different regions of the input. This property
constitutes convolutional layers efficient for computer vision applications where the size of the input
images can be substantially large for high resolutions.

4.2.2. Pooling layers
Pooling layers are another important component of convolutional neural networks. Their role is to
downsample (i.e. reduce spatial dimensions) the output of preceding convolutional layers, enabling
the network to learn more high-level features, while also reducing the computational complexity. The
pooling operators, similar to the convolution, are applied on an input feature map using a sliding window
technique. The distinction is that the cross-correlation operator is replaced by an aggregation function.
Based on the selected aggregation function, there are two commonly used types of pooling layers, the
Max Pooling and the Average Pooling. The max pooling operator extracts the maximum value of the
input feature map at the corresponding region that it is applied, whereas the average pooling extracts
the mean value.

A parameter of the pooling operation that is commonly used is the window stride. It determines the
step size at which the window slides over the input feature map during the operation. The higher the
stride, the greater the downsampling. It should be noted that the stride parameter is not unique to the
pooling operation. It can also be used in convolutions resulting in what is called strided convolutions.
Figure 4.6 illustrates an example of using the pooling operations with a window size of 2 and a stride
of 2.

4.2.3. Fully-connected layers
Fully-connected layers, also known as dense layers, are usually found usually at the end of a CNN
architecture. They allow the network to learn global relationships and high-level features based on
the feature map representations obtained by the preceding convolutional layers. Thus, the output of
the fully-connected layer is used to make the predictions. Figure 4.7 illustrates an example of fully
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Figure 4.6: Pooling operations (source: Yingge, Ali, and Lee 2020)

connected layers.
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Figure 4.7: Fully-connected layers

Operation-wise, before applying a fully-connected layer, the feature map of the previous layer is
flattened. Then, all of the activations of the flattened feature map are connected with each neuron of the
fully connected layer. Subsequently, these neurons apply a linear transformation of the inputs, similar
to a simple perceptron, using a weight matrix. Then, non-linearity is applied by means of an activation
function, which is selected based on the task that the network has to perform. The output size of the
fully-connected layer determines the size of the predictions. For instance, in a multi-class classification
problem the output size of the last fully-connected layer would equal the number of classes in the
task. Next, a softmax activation function would be used to convert the layer’s output values into class
probabilities.

4.2.4. Residual Networks (ResNets)
When convolutional neural network architectures first started to get deeper, the problem of vanishing
gradients appeared. In Section 4.1.6, we described the process of backpropagating the loss, after
a forward pass, to update the network’s parameters during training. Backpropagation includes the
calculation of the derivative, or gradient, of the loss function with respect to the network’s parameters
using the chain rule of calculus. The deeper the network architecture, the longer the chain. Thus, the
gradients become extremely small when they backpropagate through multiple layers, with layers in the
lower level of the architecture (i.e. closer to the input) receiving negligible updates. This phenomenon
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is called vanishing gradients.

Figure 4.8: Residual Block (source: He et al. 2016)

Residual Networks (ResNets) (He et al.
2016) address this problem using a specific type
of building block, the residual blocks. A resid-
ual block mainly consists of two convolutional
layers and a skip connection between the input
and the output of the block. The skip connec-
tion enables the network to essentially bypass the
convolutional layers, thus creating an alternative
gradient path to mitigate the problem of vanishing
gradients. At the output of the residual block, an
element-wise addition is performed between the
output of the second convolutional layer and the
block’s input, as shown in Figure 4.8.

Figure 4.9: Bottleneck Residual Block (source: He et al.
2016)

ResNets are constructed by stacking sev-
eral residual blocks together. The authors pro-
posed architecture variants with 18, 34, 50, 101,
and 152 layers without encountering the vanish-
ing gradients problem. For the deeper architec-
tures, they also introduced the bottleneck resid-
ual blocks to reduce the computational time.
These blocks contain a stack of 3 convolutional
layers, instead of 2 in the basic residual block.
The first and the last of the layers are 1x1 convo-
lutions to reduce and then restore the dimensions
of the block’s input, thus creating a bottleneck for
the middle 3x3 convolutional layer. This modifica-
tion (Figure 4.9) leads to a deeper network with
similar time complexity to its shallower version.

Additionally, the skip connections in the
residual blocks helped alleviate another common
issue of the deeper architectures, the degradation problem. The problem refers to cases where in-
creasing the number of layers in the network, leads to performance degradation, as evidenced by
higher training error. However, with the skip connections, also known as identity mappings, ResNets
ensure that their deeper architecture variants won’t have a training error greater than their shallower
counterparts.

Due to the profound impact that ResNets have had in the field of computer vision, they have
become a fundamental architectural design that inspired several well-known architectures (Zagoruyko
and Komodakis 2016; Huang et al. 2017; Xie et al. 2017). Additionally, ResNets’ effectiveness has
established them as a preferred backbone network for feature extraction in various computer vision
tasks.

4.2.5. ResNeXt
Building upon the success of ResNet, Xie et al. 2017 proposed an architecture withmulti-path bottleneck
residual blocks, called ResNeXt. The paths within a residual block compute different representations
for the same input. Subsequently, these representations are aggregated to form the output of the
residual block. This process enhances the network’s representational capacity, which in turn leads to
better performance. The “cardinality” of the network, which refers to the number of parallel paths used
within each residual block, is a hyperparameter to be defined along the network’s depth (i.e. number
of layers) and width (i.e. number of filters). Additionally, the multiple paths share the same topology in
their convolutional layers.

Figure 4.10 illustrates three equivalent building blocks of ResNeXt explored by the authors. In this
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(a) Aggregated residual transformations (b) Early concatenation (c) Grouped convolutions

Figure 4.10: Equivalent building blocks of ResNeXt.The convolutional layers are denoted as
(#input channels, filter size, #output channels). (source: Xie et al. 2017)

example the cardinality of the network is 32. The building block of Figure 4.10a performs the aggre-
gated transformation described above. The aggregated output can be computed using the formula of
Equation (4.11).

𝑦 = 𝑥 +
𝐶

∑
𝑖=1

𝑇𝑖(𝑥) (4.11)

Where 𝑦 is the output of the block, 𝑥 is the input, 𝐶 is the cardinality, and 𝑇 is the transformation
of the path 𝑖. Furthermore, it has been proved (Xie et al. 2017) that with some tensor manipulation,
Figure 4.10b is equivalent to Figure 4.10a. Finally, in the building block of Figure 4.10c the aggregation
is reformulated into grouped convolutions.

Grouped convolution (Krizhevsky, Sutskever, and Hinton 2012) is a variant of the standard con-
volution operation, where the input channels are divided into a predefined number of groups and the
convolution is applied to each group independently. Thus, in the example of Figure 4.10c, the 128
channels at the bottleneck layer are divided into 32 groups of 4 channels each, similar to Figures 4.10a
and 4.10b. The individual outputs of the groups are then concatenated within the grouped convolution
to form its output. While equivalent, the grouped convolutions were selected out of the three building
blocks for ease of implementation.

The aggregation of information obtained from the 𝐶 different channels in the ResNeXt network,
where 𝐶 is the cardinality, allows the model to learn more complex features, while retaining its com-
putational efficiency. The model’s increased capacity enables it to achieve better classification perfor-
mance than its ResNet counterpart, without additional computational overhead. For this reason, it was
selected to be used in the experiments of Chapter 2.

4.3. Transformers
Transformers were originally developed by Vaswani et al. 2017 for natural language processing (NLP)
tasks. However, the introduced self-attention mechanism which enabled them to attend to differ-
ent regions of the input, while also capturing long-range dependencies between features, did not go
unnoticed in the field of computer vision. Ramachandran et al. 2019 were the first to show that self-
attention can replace convolution and achieve state-of-the-art results on vision tasks. Later the same
year, Cordonnier, Loukas, and Jaggi 2019 demonstrated that multi-head self-attention layers, with a
sufficient amount of heads, can express any convolutional layer, thus constituting the latter redundant
in their architecture. This finding was thoroughly evaluated by Dosovitskiy et al. 2020, with the authors
demonstrating that a pure transformer architecture, the Vision Transformer (ViT), that is applied directly
to sequences of image patches can achieve competitive, or even superior, classification performance
to that of the then state-of-the-art convolutional models. The same effectiveness has been shown by
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transformer variants, typically utilizing encoder-decoder architectures, in other computer vision tasks,
such as object detection and semantic segmentation.

4.3.1. Self-attention
The self-attention mechanism enables a transformer network to learn the relationships between differ-
ent pixels in an image. It is computed as a weighted sum of different positions within a transformed pixel
sequence. The learnable attention weights determine the relevance of an element of the sequence to
the other elements. Additionally, there are three key components of the self-attention mechanism: the
query, the key, and the value. The query vector is used to compute the attention scores, or relevance,
of an element with respect to all other elements in the sequence. The key vector represents the im-
portance of particular elements in the sequence. Finally, the value vector stores the information of
individual pixels in an image.

(a) Scaled dot-product attention (b) Multi-head attention

Figure 4.11: Attention mechanisms (source: Vaswani et al. 2017)

Figure 4.11a illustrates the self-attention mechanism, called scale dot-product attention (Vaswani
et al. 2017). To compute its output, the mechanism first computes the attention scores by taking the dot-
product between the query and key vectors, and normalizing it by dividing with the square root of their
dimension. The dot product measures the similarity between the pairs of elements. Next, a softmax
function is applied to the attention scores to compute the attention weights on the values. Finally, a
weighted sum of the values is computed as the output of the attention mechanism. Equation (4.12)
demonstrates how the output of the attention mechanism is computed.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (4.12)

4.3.2. Multi-head attention
Multi-head attention further enhances the model’s ability to learn various relationships between different
representations of pixels in an image. Using several self-attention layers, the transformer captures
different dependencies and representations between sequences of pixels, which are then concatenated
to a single representation. This representation is then transformed by a linear layer, which produces
the output of the multi-head attention layer (Figure 4.11b). The use of multi-head attention enables the
transformer to learn multiple representations for the same sequence of pixels and subsequently use
them to capture both local and global features in an image.

4.3.3. Patch and position embeddings
In transformer architectures, multi-head attention is applied to sequences of transformed pixels. Each
sequence is constructed by two types of embeddings, patch and position. To create patch embeddings,
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each image is first cropped into smaller fixed-size patches, which are then transformed into 1D embed-
ding vectors, using a learnable linear projection. Similarly, the position embeddings, that introduce
information about spatial relationships between patches, are learned by the network during training.
Patch and position embeddings are concatenated to produce a sequence that is fed as input to the
transformer encoder.

4.3.4. Transformer Encoder
The transformer encoder contains a predefined number of encoder layers, which can be adjusted based
on the complexity of the task. Each encoder layer has a multi-head self-attention module and a feed-
forward network (FFN). The FFN typically consists of multiple fully-connected layers followed by ac-
tivation functions, such as ReLU, to introduce non-linearity. Residual, or skip, connections are also
included to bypass both the multi-head attention mechanism and the FFN. They are included, along
with normalization layers, to stabilize training. Figure 4.12 illustrates this encoder architecture, intro-
duced by Vaswani et al. 2017 and used by several other studies for image classification (Dosovitskiy et
al. 2020), object detection (Carion et al. 2020), and semantic segmentation (Strudel et al. 2021) tasks.

Figure 4.12: Overview of the Transformer Encoder (source: Dosovitskiy et al. 2020)

4.3.5. Detection Transformer (DETR)
The Detection Transformer (DETR), proposed by Carion et al. 2020, is an innovative object detection
model that deviates from the traditional approaches to this task. Discarding region proposal networks
(Ren et al. 2015) and anchor boxes (Redmon et al. 2016), DETR leverages the power of transformer-
based architectures to directly predict bounding boxes and class labels. In this end-to-end solution, the
object detection is converted to a sequence-to-sequence task using an encoder-decoder architecture.
The input sequence consists of image features and the output is a predefined number of bounding
boxes. Figure 4.13 illustrates DETR’s architecture.

Instead of linearly projecting image patches to obtain patch embeddings, as described in Sec-
tion 4.3.3, DETR uses a conventional CNN backbone to extract image features in the shape of a 2D
representation vector. Subsequently, this vector is flattened and padded with learnable positional em-
beddings, as before, to create the encoder’s input sequence. Next, a typical transformer encoder
(Section 4.3.4) is used to enable the model to capture the global and local context in the input image
features. The encoder’s output is then passed to DETR’s decoder.

The decoder is responsible for learning relationships between image pixels and objects, which
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Figure 4.13: Overview of DETR’s architecture (source: Carion et al. 2020)

will be used to predict bounding boxes and class labels. Other than the encoder’s output, it also takes
as input a pre-defined number of learnable positional embeddings, called object queries. Similar to
the encoder’s architecture, the decoder consists of several multi-head self-attention layers and feed-
forward networks. Its architecture is illustrated in Figure 4.14, along with the encoder’s. The decoder’s
outputs are subsequently passed to FFNs (prediction heads) to generate predictions for object class
labels and bounding boxes.

Figure 4.14: Overview of DETR’s encoder-decoder architecture (source: Carion et al. 2020)

This direct-set prediction of the objects in images constitutes DETR a suitable solution for end-to-
end chess recognition (Chapter 2). However, instead of bounding boxes, we want to predict object
(piece) positions relative to the chessboard grid in the image. Thus, the prediction heads are modified
to output a set of (𝑥, 𝑦) coordinates, which are then translated to chessboard positions, along with the
object’s class.



5
Datasets

In this chapter, we will present in more detail the two datasets used in the experiments of Chapter 2.
First, we have the Blender dataset used by Georg Wölflein and Arandjelović 2021. Then, we present
our new dataset for chess recognition, ChessReD.

5.1. Blender dataset
The Blender dataset is a dataset of synthetic images of chessboards rendered in Blender (Community
2018). The piece configurations in the images were randomly selected from a publicly available dataset
of chess games played by Magnus Carlsen (Mentor 2020). In particular, 2% of all chess positions in the
dataset were sampled, amounting to a total of 4, 888 distinct chess configurations. The dataset provides
annotations regarding the pixel coordinates of the chessboard’s four corner points in the rendered
images, the FEN (Forsyth-Edwards Notations) descriptions of the pieces on the board in each rendered
image, the color of the current player, bounding boxes, and detailed information about the camera angle
and lighting mode.

(a) Flash (b) Spotlight

Figure 5.1: Samples of the Blender dataset (Wölflein and Arandjelovic 2021)

In each rendered image, the pieces were not positioned in the center of the squares, but rather
they were randomly rotated and positioned with a random offset to emulate real-world conditions. The
camera was aligned to point directly at the center of the chessboard from the perspective of a player’s
view. The 𝜃 angle, between the camera and the board’s surface, was selected to be in the range of 45
to 60 degrees to ensure maximum visibility of the pieces. An offset in the 𝑥-component of the camera
angle was used to introduce some variation. Regarding the lighting condition, a random choice was
made between two modes: camera flash and spotlights. Figure 5.1 illustrates two samples of the
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Blender dataset with these variations. More information about the dataset can be found in Wölflein and
Arandjelovic 2021.

5.2. Chess Recognition Dataset (ChessReD)
ChessReD is a novel chess dataset specifically designed for chess recognition. It is the first compre-
hensive dataset consisting of real images of chess positions, along with proper annotations for the task.
It comprises a diverse collection of images captured using smartphone cameras. We opted to use this
type of camera sensor to ensure real-world applicability. A detailed description of the dataset is pro-
vided in the corresponding section of Chapter 2. Thus, in this section, we will provide some additional
information, statistics, and figures for the dataset.

5.2.1. Physical Chessboard Properties
A plastic, foldable, single-weighted club chess set, that meets competition standards, was used for the
images in ChessReD. It contains black and white pieces on brown and white squares. The dimensions
of the chessboard are 44cm × 44cm, with the size of each square being 5.5cm × 5.5cm. There are
borders of 4cm in length on each side with chessboard coordinates in algebraic notation. The king’s
height is 9.5cm and the weight of the chess set is approximately 0.44kg.

5.2.2. Annotation Statistics
ChessReD contains 10, 800 chessboard images with 10, 242 unique piece configurations. While it is rare,
the dataset includes duplicate configurations, mainly due to early game moves and the 100 images of
the starting position of each game. However, because of the variability in the viewing angle of the
camera, the camera model, and the lighting conditions that differ even between images with the same
configuration, we decided to keep these duplicates in the dataset.

The histogram of Figure 5.2 illustrates the frequency distribution of the number of pieces on the
chessboard across ChessReD. The x-axis represents the number of pieces on the board, while the
y-axis displays the number of images. Given that every chess game starts with 32 pieces on board and
rarely ends in a draw with only the two kings remaining, it is reasonable that the frequency for these
two configurations to be the highest and the lowest, respectively.

Figure 5.3 illustrates the square occupancy heatmap for ChessReD. The most occupied square
in our dataset is 𝑔2, with an occupancy rate of approximately 65.3%, followed by 𝑔7 and 𝑓7, with about
65% each. The least occupied square, which is occupied in 1, 413 out of 10, 800 images, or about 13%,
is square 𝑔4.
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Figure 5.2: Distribution of chessboard configurations in ChessReD

Figure 5.3: Square occupancy heatmap in ChessReD



6
Experimental results

In this chapter, we will discuss some additional results and observations from our experiments, for both
the classification (Section 6.1) and the relative object detection (Section 6.2) approaches.

6.1. Classification Approach
As mentioned in Chapter 2, in the classification approach we employ a model to perform multi-label
multi-class classification. While ResNeXt (Xie et al. 2017) performed best on ChessReD’s validation
dataset, a number of models were trained on the same task. Table 6.1 presents the accuracy of the
trained models on the validation set.

Model Boards with no mistakes (%)
ResNet50 5.07%
ConvNext_base 5.66%
EfficientNetV2 9.81%
Wide_ResNet101 12.04%
ResNeXt101 14.47%

Table 6.1: Performance of selected classification models on ChessReD’s validation dataset

We also evaluated the model’s ability to detect the position of the pieces on the board, regardless
of their type. For this reason, a new metric, occupancy accuracy, that determines the percentage of
boards in which the predicted chess configurations contain the same occupied squares as in the tar-
get configurations was defined. The ResNeXt model achieved a 42.69% occupancy accuracy, which
means that in 909 out of 2129 test images, the model was able to successfully predict the occupied
squares, while the correct types of pieces were detected in only 325 of them. Upon further qualitative
investigation, the main factor that led to the misclassification of the pieces’ type was the occlusions be-
tween pieces, followed by top viewing angles that concealed some of the pieces’ unique characteristics
(e.g. the queen’s crown).

6.2. Relative Object Detection
For the relative object detection approach of Chapter 2, we employed variations of the DETR model
(Carion et al. 2020). We trained the models both from scratch and by using pre-trained weights for differ-
ent backbone networks (ResNet and ResNeXt variants). Regardless, the training was not successful,
with neither of the trained variants being able to perform chess recognition. Although the validation loss
was reduced (Figure 6.1), which is a combination of a cross entropy-loss for the classes and an L1 loss
for the coordinates, the recognition accuracy (i.e. percentage of boards with no mistakes) on the val-
idation set remained zero throughout the training process. Additionally, while 61.45% of the positions
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Figure 6.1: DETR variants’ performance on ChessReD’s validation dataset (the variants are denoted as
[backbone]_[weights], with the 101-layer architectures selected for all backbones)

of the chess pieces in the validation dataset were correctly predicted for the best performing DETR
variant (ResNeXt101 backbone, trained from scratch), the occupancy accuracy is 0% since there is an
average of 11.5 miss-positioned pieces per image.
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