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Abstract
Offline reinforcement learning, or learning from a fixed data set, is an attractive alternative to online re-
inforcement learning. Offline reinforcement learning promises to address the cost and safety implications
of taking numerous random or bad actions online, which is a crucial aspect of traditional reinforcement
learning that makes it difficult to apply in real-world problems. However, when offline reinforcement
learning is naïvely applied to a fixed data set, the resulting policy may exhibit poor performance in
the real environment. This happens due to over-estimations of the expected return for state-action
pairs not sufficiently covered in the data set. Therefore, offline reinforcement learning agents must
know what they do not know, allowing them to avoid these over-estimated state-action pairs and their
potentially erroneous outcomes. A promising way to instill offline reinforcement learning agents with
this ability is the pessimism principle, which states that agents should select actions that maximize
an uncertainty-based lower bound of the expected return. This pessimism principle has drastically
improved the performance of offline reinforcement learning methods in the tabular and linear func-
tion approximation domain. However, in deep reinforcement learning, uncertainty estimation is highly
non-trivial, and the development of effective uncertainty-based pessimistic algorithms remains an open
question. That is why in this thesis, we explore various existing deep learning-based uncertainty esti-
mation techniques with the aim to combine them with existing deep reinforcement learning methods to
create an uncertainty-aware offline deep reinforcement learning algorithm. This research has resulted
in two novel offline deep reinforcement learning methods built on Double Deep Q-Learning and Soft
Actor-Critic. We applied these methods to various benchmarks and experiments to demonstrate their
interesting and unique properties. In some situations, they even beat the current state-of-the-art results
of these benchmarks.
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1
Introduction

Reinforcement learning (RL) is a machine learning paradigm for solving sequential-decision making
problems. Using this framework, an agent can automatically learn near-optimal sequential-decision
making policies that maximize a user-specified reward function. Typically, RL algorithms learn these
policies using a trial and error-based approach. In this approach, the agent gathers more and more data
in an environment while it keeps iteratively improving its policy until it has sufficient information to
learn a near-optimal policy (Figure 1.1a). In recent years, this online learning-based approach combined
with deep neural networks has allowed RL methods to attain excellent results in various domains such
as robotics [4, 16] and games [33, 40, 49]. However, this online learning paradigm has proven to be
one of the biggest obstacles to its widespread adoption outside simulated problems such as games and
physics simulators [29]. Due to this online paradigm, the training of RL agents quickly becomes too
costly e.g., robotics or dangerous e.g., autonomous driving or healthcare if the method cannot do the
data collection part inside a simulator. In these situations, it would be preferred if RL agents could
learn from large pre-collected data sets without the need for any online data collection. Even when
online interactions are feasible, it could be preferable to utilize pre-collected data sets because neural
networks tend to perform and generalize better on more complex tasks with larger and more diverse
data sets [15, 29]. Offline RL promises to address these key issues of online RL. In this data-driven
paradigm of RL, the agents are no longer allowed to perform online data gathering. Instead, a data set
is available that contains transitions sampled from the environment that ideally provide useful infor-
mation about its dynamics and the task we want to optimize. Using only this data set, the agent must
learn a sequence of actions, called a policy, that maximizes the expected reward in the environment
that generated the data set (Figure 1.1b).

Replay 
buffer

Learner

Data collection

EnvironmentPolicy
sampled transitions 
[{s,  a, r ,  s ' } ]

Updated policy

Transitions [{s, a, r, s'}]

Action

State, Reward

(a) Online reinforcement learning

Dataset

Offline learning

Policy Environment

Deployment / Evaluation

Learner

Data collection

Environment
Data collection 

Policy

Policy

Updated
Policy

a

(r, d, s')

Transitions [(s, a, r, d, s')]

a

(r, d, s')

(b) Offline reinforcement learning

Figure 1.1: A visualization of the difference between the online and offline reinforcement learning process. In the offline
process, the agent only interacts with the environment once it has been deployed. This is a significant difference from
online reinforcement learning, where the agent interacts with the environment after every policy update.

In recent years, many offline deep RL algorithms have emerged [2, 11, 12, 19, 24, 25, 27, 50, 52, 53].
However, it remains challenging for offline deep RL methods to work with any type of data set, inde-
pendent of their data collection strategy [10, 38]. However, recent theoretical results have shown that

1



1.1. Knows what it does not know 1. Introduction

agents with the ability to know what they do not know based on their uncertainty do not have this issue
independent of the used data collection strategy [9, 38]. Using this ability, the agents can detect the
limit of their knowledge of their environment, allowing them to avoid sequences of action with unfore-
seen and potentially erroneous outcomes. These theoretical results have resulted in algorithms with
theoretical optimal regrets bounds in the tabular and linear function approximation setting [9, 23, 38].
However, at the point of writing, there exist no model-free uncertainty-aware offline deep RL algorithms.

This thesis explores how deep RL agents can be instilled with the ability to know what they do not
know. This thesis will do this in three ways. Firstly, it explores the offline RL problem and why
agents with the ability to know what they do not know based on their uncertainty have optimal regret
bounds based on the existing offline RL literature. Secondly, it explains the difficulties of integrating
the existing deep learning uncertainty estimation techniques with existing RL agents. Finally, it empir-
ically compares how well the resulting uncertainty-based offline deep RL agents follow the theoretically
predicted properties.

1.1. Knows what it does not know
When we speak about agents with the ability to know what they do not know, we mean the ability to
recognize that you have insufficient information to make a specific prediction. This ability is crucial
in offline RL, where agents are no longer able to gather more data. Because of this, offline RL agents
must know the limits of their knowledge, or else they will learn overoptimistic and potential erroneous
policies. To demonstrate why this ability is essential, let us consider the following questions.

Why should RL agents know what they do not know in the offline setting?
For an agent, the ability to know what it does not know is crucial if it wants to reason about counterfac-
tual queries sometimes called “what-if" questions, which are a core part of offline RL. To answer these
types of questions, an agent has to reason about what might have happened if it would have carried
out a different action. This ability is necessary for offline RL since the goal is to find a better policy
than the empirical policy observed in the data set.

In offline RL, agents can only learn to distinguish between rewarding and non-rewarding sequences
of actions from the data available in the data set. However, by definition, if an agent wants to find a
better policy than the empirical policy, the agent will have to evaluate sequences of actions that were
not in the original data set, so-called out-of-distribution (OOD) actions. In this situation, the indepen-
dent and identically distributed (i.i.d.) assumption of function approximators, such as neural networks,
no longer holds, which means that these distinctions will most likely be uncertain and erroneous [15].
Therefore, it is essential that agents know what they do not know. With this ability, an agent can
determine if it has sufficient information to estimate the expected reward for a specific sequence of
actions. If an agent knows it has too little information for a specific part of the action sequence, it can
avoid these OOD actions and their potentially erroneous expected reward evaluations. In this way, the
agent can still improve upon the empirical policy by combining promising parts of trajectories that are
in-of-distribution (IOD), while avoiding uncertain and potentially erroneous OOD actions.

Why must offline RL agents take the amount of information in the data set into account
to know what they do not know?
Suppose we have the simple offline multi-armed bandit problem of Figure 1.2. In an offline multi-armed
bandit problem, the agent aims to find the arm that maximizes the expected reward using only a
fixed data set. The naive approach would be to use any existing online RL method and prevent the
method from collecting any additional data. These online RL methods estimate the expected return
per arm using a maximum likelihood-based approach such as the empirical mean per arm. These naive
approaches do not measure if an agent has too little information to estimate the empirical mean and
naively select the arm with the highest empirical mean. It does not matter for these methods if this
empirical mean is highly uncertain or has little data supporting it. This property causes these naive
approaches to learn erroneous policies if the data set contains sampling errors or too little information
to estimate the mean correctly (Figure 1.2b).
In contrast, policy-constrained methods avoid the issues from the naive methods by taking the amount
of data supporting the empirical mean into account. These methods measure the data concentrations
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(a) The optimal solution if the true means
are known.

(b) Maximum likelihood solutions only
take the empirical mean into account.

(c) Policy-constrained methods take both
the empirical mean and the amount of

data supporting it into account.

(d) Uncertainty-aware methods take both
the empirical mean and its standard

deviation into account.

Figure 1.2: A visualization of the different approaches in offline reinforcement learning and the different information
they use on a simple offline multi-armed bandit problem. In this problem, every arm has an unknown true mean µi, an
empirical mean µ̄i, a sample standard deviation σ̄i, and a sample size |Di|. In offline reinforcement learning problems,
such as this one, only the uncertainty-aware approach is safe against statistical issues such as sampling errors.

in the data set, allowing them to constrain the learned policy to areas with high data concentrations.
This constraint makes it less likely that the method will learn an incorrect policy due to sampling
issues. However, this constraint also has a major side effect: it makes the learned policy dependent on
the quality of the data collection policy instead of the information in the data set. For example, the
policy-constrained method will pick arm-B in Figure 1.2c because it has more data even though the
data for arm-A is far more informative. This property is non-ideal for offline RL because the goal of
offline RL is to find the best possible policy given the data set, which is impossible for policy-constrained
methods if the data collection policy is sub-optimal [9].
Finally, there are the uncertainty-aware methods (Figure 1.2d). These methods take the uncertainty in
the empirical mean into account by picking the action with the highest lower bound on the expected
return. The general idea is that the uncertainty will be high for OOD actions and low for IOD data,
allowing the agent to avoid OOD actions if it maximizes this lower bound on the expected return.
The main benefit of these uncertainty-aware methods is that they only depend on the amount of
information in the data set and thus are independent of the data collection strategy. This property
makes the uncertainty-aware methods resilient against statistical issues such as sampling errors and
ensures that these methods have information-theoretical optimal regret bounds [9, 22, 38]. Thus, an
agent should know what it does not know in the ideal case by measuring how uncertain it is about a
specific state-action pair evaluation. Although it is clear how to estimate this uncertainty in tabular and
linear settings [9, 22, 38], it is still an open problem to estimate uncertainty in the deep RL setting. That
is why in this thesis, we explore various existing deep learning-based uncertainty estimation techniques
with the aim to combine them with existing deep RL methods to create an uncertainty-aware offline
deep RL algorithm.

1.2. Research Objective
This thesis aims to explore how deep RL agents can be instilled with the ability to know what they
do not know using uncertainty estimation techniques. We aim to achieve this goal by structuring our
research around the following primary research questions:

1. Which theoretical and implementation-related properties make deep uncertainty estimation tech-
niques suitable for uncertainty-aware offline deep RL algorithms?

2. Does our resulting model-free uncertainty-aware offline deep RL algorithm experimentally match
the theoretically predicted properties of uncertainty-aware algorithms?
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To answer the first primary research question, we will survey the offline RL, deep RL, and deep uncer-
tainty estimation literature to answer the following sub-research questions:

1.1 What is the pessimism principle, and what are the theoretical requirements it imposes on the
uncertainty estimation techniques?

1.2 What are the implementation requirements imposed by deep RL methods on deep uncertainty
estimation techniques to ensure learning stability?

1.3 Which existing deep uncertainty estimation techniques match these requirements and can be used
to create a model-free uncertainty-aware offline deep RL algorithm?

Using the answers for this first primary research question, we will design and create two model-free
uncertainty-aware offline deep RL algorithms. The first algorithm will specifically be designed for
discrete action spaces, while the second algorithm will be designed for continuous action spaces. Both
algorithms will be based on the deep uncertainty estimation technique that was found most suitable
according to primary research question 1. To answer the final primary research question, we will evaluate
our algorithm by answering the following sub-research questions:

2.1 Does our uncertainty-aware offline deep RL algorithm adhere to the theoretically predicted prop-
erties, such as not overestimating the expected return and being independent of the data collection
strategy?

2.2 How well does our method perform compared to prior offline deep RL methods?

1.3. Contributions
The main contribution of this thesis is the model-free uncertainty-aware offline deep RL algorithm named
PEssimistic ensemBLe (PEBL) 1. This method integrates an ensemble-based epistemic uncertainty
estimation technique with deep RL, instilling the resulting agent with the ability to know what it
does not know. This deep epistemic uncertainty technique has been chosen after an extensive survey,
and the resulting PEBL algorithm has been evaluated extensively. Therefore, we split our remaining
contributions into survey and experimental related contributions. Our survey contributions are as
follows:

1. We provide the reader with an overview of the offline (deep) RL problem.

2. We provide the reader with an overview of the pessimism framework and discuss how it can find
information-theoretical optimal solutions for the offline RL problem.

3. We provide the reader with an overview of the theoretical and implementation requirements deep
uncertainty estimation techniques must fulfill to make them suitable for a uncertainty-aware offline
deep RL algorithm.

Our experimental contributions are as follows:

1. We show experimentally how this PEBL algorithm compares to the theoretically predicted prop-
erties of uncertainty-aware offline RL algorithms.

2. We show experimentally how the PEBL algorithm compares against state-of-the-art methods.

1.4. Outline
The remainder of this work is organized as follows. Chapter 2 outlines important background infor-
mation and concepts concerning both online and offline deep RL and the necessary background for
deep uncertainty estimation. Chapter 3 discusses the fundamental challenges of offline RL and how
uncertainty-aware pessimism can solve these issues. Chapter 4 discusses the difficulties of integrating
existing uncertainty estimation techniques from the supervised learning field in the offline RL field and
which methods are most suitable. In chapter 5, we discuss our proposed algorithm in detail. Chapter
6 informs the reader how our methods relates to prior work in the offline deep RL field. Chapter 7
will evaluate our algorithm against its theoretically predicted properties and existing offline deep RL
methods. Finally, Chapter 8 provides a summary of our findings and directions for future work.
1An open-source implementation is available at: github.com/j0rd1smit/PEBL.
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2
Background

In this chapter, we introduced the mathematical formalism and our notations for the concepts in this
thesis. We do this by first introducing the mathematical formalism of online reinforcement learning
(RL) and its deep learning-based algorithms. Using these definitions, we define the offline reinforcement
learning problem setting, where the goal is to learn a near-optimal policy from a fixed pre-collected data
set. Finally, we conclude this chapter by introducing the mathematical formalism for deep uncertainty
estimation, which we will use in this thesis to design a uncertainty-aware offline deep RL algorithm.

2.1. Reinforcement learning
Reinforcement learning (RL) is a machine learning paradigm for solving sequential-decision making
problems. In RL, sequential-decision making problems are typically formalized as an Markov decision
process (MDP). An MDP is defined as a tupleM = (S,A,R, T , d0, γ), where S is the state space, A
is the action space, R is the reward function, T is the transition function, d0(s) is a distribution over
the initial states S0, and γ is the discount factor. All these components work together as follows: an
agent starts in the initial state s0, sampled from the initial state distribution d0. At time step t, the
agent receives the state st and then selects and executes the action at, which causes the environment to
transition according to T (st|at, st+1), which is a function that maps state-action pairs to a distribution
over next states T : S ×A×S → [0, 1]. The agent enters the next state st+1, and receives the reward
rt according to the reward function R(st, at), where R : S ×A → R. Note that both the reward and
transition function in this process only depends on the current state and action. This property is known
as the Markov property.

In an MDP, the reward rt describes the desirability of taking action at in state st. The eventual
goal in an MDP is to maximize the total amount of obtained reward. To do this, the agent learns a
policy π(at|st), which is a distribution over actions conditioned on the current state. The performance
of this policy, denoted by J(π), is measured as the expected return the agent will obtain in the MDP
over the initial state distribution d0:

Gt(st) =
H∑

k=t+1
γt−t−1rk (2.1)

J(π) = Es0∼d0 [G0(s0)] (2.2)
In this equation, Gt(st) is the discounted episodic return when starting in state st at time step t,
γ ∈ (0, 1] is a discount factor that ensures that the return remains finite and controls the trade-off be-
tween short and long-term rewards, and H is the number of steps before the environment is terminated,
which can be ∞. When H =∞, we refer to the task as a continuous infinite-horizon task. Otherwise,
we refer to the task as an episodic task.

For every policy π in an MDP, there exists a value function. These value functions estimate how
good it is for a policy to be in a specific state based on its expected return. Formally, the value function
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of a state s under policy π, denoted by V π(s), is defined as the expected return when following policy
π from state s:

V π(s) = Eπ [G(st)|st = s] = Eπ

[
H∑
k=0

γkrt+k+1|st = s

]
(2.3)

Similarly, the state-action value function under policy π, denoted byQπ(st, at), is defined as the expected
return for taking action at in starting state st and following the policy π from state st+1 onwards:

Qπ(s, a) = Eπ [G(st)|st = s, at = a] = Eπ

[
H∑
k=0

γkrt+k+1|st = s, at = a

]
(2.4)

Note that by definition, the value of terminal states is always zero for both the state and state-action
value function. In the remainder of this thesis, we will refer to this state-action value function as the
Q-function. Using these definitions, it is possible to define the optimal policy π∗ as the policy that
maximizes the value function and thus solves the MDP. The optimal policy’s state and state-action
value functions are denoted by V ∗(s) and Q∗(s, a). This optimal policy can be found using dynamic
programming algorithms such as value iteration and policy iteration [42]. However, this is only possible
if the agent has access to the reward and transition function of the MDP, which is not always possible.
In these situations, we have to resort to RL algorithms that can utilize the agent-environment interface
framework.

The agent-environment interface is a framework for RL problems whereby the reward and transition
function of the MDP are unknown to the algorithm or agent (Figure 2.1). In this framework, the agent
receives the initial state s0 ∼ d0 from the environment. Then at every time step t, the agent selects an
action at based on the observed state st and sends this to the environment. The environment processes
this action according to its internal MDP and provides the agent with the tuple (rt, dt, st+1), where rt
is the obtained reward, st+1 is the newly observed state, and dt is a terminal state indicator, which
is 1 if st+1 is a terminal state and 0 otherwise. These interactions with the environment result in ex-
perience tuples (st, at, rt, dt, st+1), which can be used to learn the underlying MDP of the environment.

EnvironmentAgent

a

(r, d, s')

Figure 2.1: The agent-environment interface. The agent sends action a to the environment, which changes the internal
state of the environment based on the underlying MDP. The environment provides the agent a reward r, a terminal state
flag d, and the new state s based on this transition.

One way to utilize the experiences obtained from the agent-environment loop is to learn a value func-
tion. This approach is called model-free RL since the value function indirectly models the underlying
MDP. To learn this value function, we need an estimate of the return. Most commonly, this estimate
is obtained using the recursive property of the value function know as the Bellman equation:

Q̂π(st, at) = rt + γQ̂π (st+1, π(st+1)) (2.5)

In this equation, Q̂ is the current estimate of the state-action value function, and the value estimate
for the next state is obtained by bootstrapping the current value function. Using this property, it is
possible to learn the value function of a policy by minimizing the mean squared Bellman error (MSBE).
This error is defined as the difference between the current predictions and the estimates of the returns

6



2.2. Deep reinforcement learning 2. Background

in the next state:
L = 1

N

∑
D
||(yt − Q̂(st, at))||2 (2.6)

yt = rt + dt · γ · Q̂π (st+1, π(st+1)) (2.7)

In these equations, yt is the temporal difference target in the MSBE, N is the number of experiences in
the data set D, and (st, at, rt, dt, st+1) is a transition in the data set where dt = 0 if st+1 is a terminal
state, dt = 1 in all other cases. This procedure can either be used to learn an estimator for the value
function of the policy that generated the data or to learn an estimator for another policy. When the
estimator learns the value function of the policy that generated the data, it is called an on-policy esti-
mator, and in the other case, it is called an off-policy estimator. This thesis focuses only on off-policy
value estimators because they theoretically work even with experiences collected by different policies
[42], which is an essential property for offline RL.

An alternative approach to utilize the experiences obtained from the agent-environment loop is to
directly learn the reward and transition function of the underlying MDP. This approach is called
model-based RL. There are many possible approaches to model-based RL. However, the main differ-
ences between these approaches lay in how they utilize their approximated versions of the reward and
transition function. For example, a common way to utilize these approximated functions is to combine
them with a planning algorithm such as value iteration to plan a trajectory that maximizes the expected
return. Alternatively, it is also possible to use the approximated versions of the reward and transition
function to generate additional syntactic experiences. These additional experiences can then be used to
learn a policy using a model-free RL algorithm. These are only two possible approaches to model-based
RL. For additional model-based approaches, we refer the reader to chapter 8 of [42] and to the survey
[36].

Both these model-free and model-based approaches make it possible to learn a (near) optimal pol-
icy even if the reward function and transition function of the MDP is unknown to the agent. However,
these approaches do not address the run time complexity issues when the state-action space becomes
too large. The next section will discuss how function approximation approaches using deep learning
can address this issue.

2.2. Deep reinforcement learning
The theory for RL was mostly developed in the tabular setting, where every state-action pair can be
stored explicitly in a table. However, when the number of states becomes too large, as in continuous
state spaces, it is no longer possible to explicitly store all these values in a table. Worst still, even if
we could store all these values, most of these states will never be explicitly encountered by the agent.
Therefore, we require a function that approximates the value function and policy with a manageable
amount of parameters and can generalize to some extent across the state-space.
In the machine learning field, many different function approximators fulfill these requirements. How-
ever, in recent years, it has become popular to approximate the value function and policy with neural
networks, often referred to as deep RL. These neural networks are non-linear function approximators
that can represent any smooth function when given enough parameters [15, 18]. Using these neural
networks, it is possible to approximate the Q-function and optimal policy of an MDP even in continuous
state spaces. In this thesis, we refer to this approximated Q-function as Q(s, a; θ), while we refer to the
approximated policy as π(a|s;φ), where θ and φ are the parameter vectors of the respected neural net-
works. Although the neural network-based function approximation approach sounds straightforward,
there are some particularities that make deep RL difficult. Therefore, section 2.2.1 will discuss the deep
RL components that address these issues, focusing on the components relevant to offline RL. Once we
have established these common deep RL components, section 2.2.2 will discuss the common deep RL
algorithms we build upon in this thesis.

2.2.1. Common deep RL components
In recent years, many new deep RL algorithms have been proposed. All these algorithms have to address
the challenges that arise from combining RL and neural networks. To do this, most deep RL algorithms
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use the same components that solve the most common issues in deep RL. This section will discuss the
most relevant components for this thesis, including the experience replay, target network, importance
sampling, and Lagrangian dual gradient descent.

Experience replay
The gradient-based optimization techniques used to train neural networks typically require independent
and identically distributed (i.i.d.) estimates of the gradients. However, in deep RL, this assumption
does not always hold. For example, all the data in a batch might come from a single episode. In this
situation, the experiences in the batch will result in highly correlated gradient estimates. To prevent
these issues, deep RL methods typically use an experience replay buffer. This buffer stores the highly
correlated experiences and makes it possible to randomly sample batches from different episodes. This
random sampling breaks the correlation and allows the algorithm to satisfy the i.i.d. estimates of the
gradients assumption [32, 33].

Target network
In deep RL, the Q-function is typically learned by minimizing the MSBE. This error is defined as the
difference between the network predictions and the estimates of the returns in the next state (Equation
2.6). The temporal difference targets in the process are obtained by bootstrapping the approximated
the Q-function in the next state, making these target highly correlated with the predictions that are
being optimized. This correlation is problematic for neural networks because parameters updates in a
neural network have a global effect. For example, a poor update in one area of the state space can affect
the prediction and temporal difference targets in other areas. Combined with the correlation between
the predictions and the targets, this effect can create an unstable feedback loop. The effects of this
feedback loop can be mitigated if the temporal difference targets are obtained using a target network
[32, 33]. This target network is an older version of the current Q-function network with parameters θ′.
The parameters of this target network can either be copied every c steps from the current Q-function or
be updated every step using a slow-moving average. Either way, this approach reduces the correlation
and allows the Q-function network to learn from a more stable target, resulting in a more stable learning
process.

Importance sampling
Some RL algorithms assume that the current policy has generated the experiences they are learning
from. These algorithms are called on-policy algorithms, while algorithms that do not make this as-
sumption are called off-policy algorithms. Sometimes, it is desirable to turn an on-policy algorithm into
an off-policy algorithm, e.g., when an on-policy algorithm has desirable properties, but no on-policy
data is available. In RL, this can be done using importance sampling [42]. Importance sampling is
a technique that estimates the expected value under one distribution based on samples from another
distribution. Using this technique, it is possible to re-weight experiences such that it appears like it was
generated by the current policy, making it possible for on-policy algorithms to learn from off-policy data.
This ability is beneficial for deep RL because most continuous action-space algorithms are on-policy
algorithms. Using importance sampling, it is possible to train these continuous action-space algorithms
using off-policy data. An additional benefit of importance sampling is that it reduces the bias in the
return estimate introduced by the bootstrapping procedure [37]. However, a major disadvantage of
importance sampling is that the importance weights will approach zero when the difference between the
policies becomes too large, making it impossible to learn from the sample. If this happens for a lot of
samples, we will waste a lot of computation. Therefore, importance sampling should be used with care.

Lagrangian dual gradient descent
Deep RL algorithms often have many hyper-parameters that impact the training process in complex and
sometimes unforeseen ways. Tuning these hyper-parameters can be very difficult because their ideal
value often varies during the training process. However, some deep RL algorithms remove the need
to manually tune these hyper-parameters using a technique called Lagrangian dual gradient descent
[16, 27]. Lagrangian dual gradient descent is a method that optimizes an objective under a constraint:

min
x
f(x) s.t. C(x) = 0 (2.8)
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In this equation, f(x) is the original optimization objective of the RL algorithm, e.g., maximizing
the expected return, and C(x) = 0 is a constraint that expresses the desirable effect of the hyper-
parameter, e.g., a minimum amount of entropy in the policy. The Lagrangian dual gradient descent
method transforms this constrained objective into a Lagrangian dual function which can be optimized
iteratively. Formally this problem is defined as follows:

L(x, λ) = f(x) + λC(x) (2.9)

g(λ) = L(x∗(λ), λ), where x∗ = argmin
x
L(x, λ) (2.10)

In these equations, the Lagrangian multiplier λ is the scalar value of the hyper-parameter, x∗(λ) is a
function that transforms λ into an input for f(x) that satisfies the constraint C(x) = 0, and g(λ) is
the lower bound dual optimization function of the original objective in Equation 2.8. Assuming the
objective function f(x) is convex, then the λ that maximizes g(λ) will ensure that x = x∗(λ) solves the
constraint optimization objective in Equation 2.8 [5]. A pleasant property of this process is that it works
iteratively. So if you keep taking small gradient-based optimization steps towards maximizing g(λ) and
minimizing L(x, λ), you will eventually optimize both the original objective and the hyper-parameter.

2.2.2. Deep RL algorithms
In this section, we will discuss the most relevant deep RL algorithms for this thesis. These algorithms
address the common problems in deep RL using one or more of the components and techniques discussed
in the previous section.

Deep Q-learning
The Deep Q-Network (DQN) algorithm is a discrete action-space algorithm, which aims to approximate
the optimal Q-function Q∗(s, a) using a neural network [32, 33]. Using this optimal Q-function it will
select actions according to the optimal:

π(s) = argmax
a

Q(s, a; θ) (2.11)

To approximate this optimal Q-function, the DQN algorithm minimizes the MSBE using the temporal
difference target:

yt = rt + (1− dt) · γ argmax
a

{Q(st+1, a; θ′)} (2.12)

In this equation, rt is the reward at time step t, and dt is a flag that indicates whether the episodes
terminated or not at the t-th time step. Note that the Q-values in the next state are parameterized
by θ′ instead of θ, which indicates that these values are calculated using a target network. A target
network is a version of the network with parameters θ′ that lags L gradient updates behind the current
version of the network. In the DQN algorithm, the target network is synced with the current network
only every c steps.

Double Deep Q-learning
The Double Deep Q-Network (DDQN) algorithm is an extension upon DQN, which aims to reduce
over-estimations caused by the max operator in the temporal difference target of the DQN algorithm
(Equation 2.12). These over-estimations can cause instability issues, which limits the final performance
of the algorithm [47]. The DDQN algorithm prevents these issues by selecting the action that maximizes
the current network instead of the target network. The target network is still used to estimate the Q-
value of this state-action pair. This means that the MSBE temporal difference target changes into:

yt = rt + (1− dt) · γQ(st+1, argmax
a

{Q(st+1, a; θ); θ′}) (2.13)

In this equation, θ is the parameters vector of the current neural network, θ is the parameters vector
of the target neural network, rt is the reward at time step t, and dt is a flag indicating whether the
episodes terminated or not at the t-th time step.
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Soft-actor critic
The Soft Actor Critic (SAC) algorithm is a deep actor-critic algorithm that is very popular for continuous
action spaces [16]. This algorithm learns both a policy and value function, which we refer to as π(a|s;φ)
and Q(s, a; θ), whereby θ and φ are their respective parameter vectors. The SAC algorithm can learn
this value function and policy from off-policy data using the importance sampling technique from the
previous section. The general idea behind the SAC algorithm is that an agent should spreads its bets,
by acting as randomly as possible, if multiple actions have the same expected return. This algorithms
implements this idea in both the value learning and policy learning process. In the value learning
process it implements the spreading its bets idea by adding an entropy bonus to the value function,
which changes the MSBE temporal difference target from Equation 2.6 to:

yt = rt + (1− dt) · γ min
j=1,2

{Q(st+1, ãt+1; θ′j)} − α log π(ãt+1|st+1;φ) (2.14)

while, the SAC algorithm implements this idea in the policy learning process by changing the policy
optimization objective to:

argmin
φ

α log π(ãt, st;φ)− min
i=1,2
{Q(st, ãt; θi)}, where ãt ∼ π(a|st;φ) (2.15)

In these equations, rt is the reward at time step t, and dt is a flag indicating whether the episodes
terminated or not at the t-th time step, ã is sampled from the learned policy πφ(.|s), θ′i is the parameter
vector of the i-th target network, and α is the entropy trade-off hyper-parameter, which controls the
amount of entropy in the policy. This entropy trade-off parameter is rather difficult to tune manually
because the ideal amount of entropy in the policy varies during the training process. Therefore, it
is common to automatically tune this hyper-parameter using the Lagrangian dual gradient descent
technique from the previous section [16]. Similar to the DDQN algorithm [47], the SAC algorithm
tries to minimize over-estimations caused by the function approximation. It does this by learning two
Q-value functions, parameterized by θ1 and θ2. It uses the lowerest Q-value estimation for its policy
losses and its MSBE temporal difference target to prevent over-estimations.

2.3. Offline reinforcement learning
The previous section showed how deep neural network and RL algorithms can be combined to create
deep RL algorithms that work in continuous state and action spaces. An interesting property of the
deep neural networks used in these approaches is that they perform better when the amount of data in
their training’s data set increases [15]. Using the traditional online data gathering approach from the
previous sections, these large data sets must be gathered from scratch every time a deep RL algorithm
is trained. One can easily imagine that this approach quickly becomes very expensive when the amount
of required data keeps increasing. Therefore, offline reinforcement learning aims to address this issue
by reformulating the reinforcement learning problem into a data-driven problem.

Offline RL is the problem of choosing how to act using only a fixed amount of data from the envi-
ronment. In offline RL, the goal is still to maximize the expected return (Equation 2.2). However,
the key difference from online RL is that the agent can no longer collect new information from the
environment (Figure 2.2). The agent is only allowed to interact with the environment at test time
to evaluate its final performance. Thus, the agent must learn a policy that maximizes the expected
return in the real environment consisting of transitions, denoted by JM(π), using only a static data set,
denoted by D = {(sit, ait, sit+1, r

i
t)}. From this data set, the offline RL algorithm must learn to represent

the transition and reward function of the MDP that generated the data set either explicitly or implicitly
in the model-free case.

The name offline RL makes it seem like it is best understood as a variant of RL. However, the core
issues of RL, such as the exploration vs. exploitation trade-off, are not present in offline RL. Therefore,
it is better to view offline RL as dynamic programming from a data set. In the dynamic programming
setting, we are guaranteed to find the optimal policy if we have access to the reward and transition
function. However, in offline RL, we do not have access to the reward and transition function. Instead,
we only have access to a data set that contains information about the reward and transition function.
This information is not necessarily complete. For example, it is possible that the data set is empty or
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Figure 2.2: A visualization of the learning process in offline reinforcement learning.

only contains information about a specific part of the state-action space. Therefore, we cannot guar-
antee we can recover the true reward and transition function. As a result, we cannot guarantee we can
find the optimal policy and optimal value function. Instead, the goal in offline RL should be to find
a data optimal policy, denoted by π∗D, which achieves the highest possible expected return in the real
environment while requiring only the data available in the data set.

Ideally, offline RL algorithms should be able to find this data optimal policy for any data set that
obeys the underlying properties of the MDP. However, specific data set properties can make some of-
fline RL data sets harder than others in practice. Therefore, we often classify offline RL data sets into
the following non-mutually exclusive data set types:

Expert and random data sets
Expert and random data sets are the two extremes on the data collection strategy spectrum. Expert
data sets have been collected by an expert, near-optimal policy. These expert data sets typically have a
very biased sample of the state-action space due to the absence of non-rewarding transitions [19]. This
property makes expert data sets very difficult for offline RL methods that assume a uniform sample
distribution, such as online deep RL methods [9, 38]. In contrast, random data sets have been collected
using a policy that samples actions at random. These random data sets typically have a much more
uniformly distributed sample of the state-action space due to the presence of non-rewarding transitions.
This property makes random data sets very difficult for offline RL methods, such as behavior cloning
and some policy-constrained methods, that assume any sort of near optimality in the data collection
strategy [9, 10]. Although expert and random data sets are the two extremes on the expert vs. non-
expert data set composition spectrum, the exact point on this spectrum is typically unknown for an
offline RL problem. Therefore, in an ideal situation, an offline RL algorithm should be able to learn
from any data set on this spectrum.

Undirected data sets
Undirected data sets are data sets where the demonstrator’s behavior does not align with the goal to
maximize the expected discounted return. A typical example of an undirected data set is a data set
that has been collected by an agent with the goal to explore the entire environment, while the offline
RL agent has the goal to find the fastest route to a specific state in the environment. This misalignment
makes these data sets very difficult to solve for offline RL methods such as behavior cloning and some
policy-constrained methods that assume that the empirical behavior of the demonstrator aligns with
its own reward function [9, 10]. However, in theory, offline RL methods should be able to learn from
undirected data sets because these data sets are still consistent with an MDP. The only difference is
that the data collection strategy maximized a different reward function. Therefore, in an ideal situation,
an offline RL algorithm should be able to learn from any undirected data set.

Mixture data sets
Mixture data sets are data sets where two or more different data collection policies have collected the
transitions in the data set. The difficulty of mixture data sets is that the empirical policy is no longer
approximately equal to the data collection policy. This property is troublesome for methods that make
this specific assumption, such as behavior cloning and some policy-constrained methods [9, 29]. This is
unfortunate because real-world data set will most likely be collected by observing multiple agents (e.g.,
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humans or robots) in parallel, making the ability to work with mixture data sets essential for practical
offline RL.

2.4. Uncertainty estimation
This thesis aims to create an offline RL algorithm that is aware of the uncertainty in its learned
value function. However, before we can create this algorithm, let us first discuss the different types of
uncertainties in the deep learning field. In deep learning, uncertainty occurs when the test and training
data are mismatched or when the labels overlap due to noise in the data. Based on these characteristics,
we can decompose a model’s predictive uncertainty σp into two components: [1]:

σp = σa + σe (2.16)

The first component in this equation is σa, which is called aleatoric uncertainty. This type of uncer-
tainty arises from the stochasticity that is naturally present in the observations. Its key property is
that it cannot be reduced by adding more data. A typical example of aleatoric uncertainty is a ran-
dom or noisy reward function; adding more data from this function will not remove the noise in the
observations. Besides aleatoric uncertainty, this type of uncertainty is sometimes also called irreducible
or data uncertainty. However, for the remainder of this thesis, we will refer to it as aleatoric uncertainty.

The second type of uncertainty is called epistemic uncertainty. This type of uncertainty is an in-
herent property of the model because it describes what the model does not know due to limitations in
the observed data. Due to this property, epistemic uncertainty tends to be higher in areas of low data
density. Formally it has been shown that epistemic uncertainty is approximately inversely proportional
to the density p(x) of the training data [7]:

σe(x) ∝ p−1(x) (2.17)

Due to this property, it is possible to reduce epistemic uncertainty by adding more data. Therefore,
is epistemic uncertainty is sometimes also referred to as knowledge uncertainty. However, for the
remainder of this thesis, we will refer to it as epistemic uncertainty.
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Figure 2.3: Visualization of the main differences between aleatoric and epistemic uncertainty. Aleatoric uncertainty is
high in areas with very noisy data and low in areas with low data noise. In contrast, epistemic uncertainty is high in
areas with little or no data and low in areas with large amounts of data.
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3
Motivation for pessimism in offline RL

The previous chapter formalized the definitions of both offline reinforcement learning (RL) and online
off-policy RL. Although these two approaches seem similar on the surface, the key difference is that
offline RL algorithms have no control over their data collection strategy, whereas off-policy methods do.
This subtle difference has immense implications because statistical issues introduced by the finiteness of
the data set can no longer be ignored in offline RL. In this chapter, we will discuss the main difficulties
that arise due to these statistical issues. After identifying these issues, we conclude this chapter by
introducing the pessimism principle and explaining how it can prevent these statistical issues.

3.1. Difficulties in offline RL
Offline RL can best be viewed as dynamic programming from a data set. In the dynamic programming
setting, we are guaranteed to find the optimal policy if we have access to the reward and transition
function. However, in offline RL, we do not have access to the reward and transition function. Instead,
the agent only has access to a fixed-sized data set containing information about the reward and transition
function. This information is not necessarily complete. For example, it is possible that the data set
is empty or only contains information about a specific part of the state-action space. This missing
information is not a problem in online RL since the agent can sample the environment for additional
data to fill in these gaps. However, this approach is not possible in offline RL since no interaction
with the environment is allowed. Therefore, we cannot guarantee we can recover the true reward and
transition function in offline RL using only the provided data set. As a result, we cannot guarantee we
can find the optimal policy and optimal value function. Instead, the goal in offline RL should be to find
a data optimal policy, which achieves the highest possible expected return in the real environment while
requiring only the information available in the data set. Formally, this objective can be formalized as:

minimize JM(π∗M)− JM(π∗D) (3.1)

π∗M = argmax
πM

JM(πM) (3.2)

π∗D = argmax
πD

JD(πD) (3.3)

In these equations, π∗M is the optimal policy in the real environment, π∗D is the data optimal policy,
JM(π) is the expected return in the real environment, and JD(π) is a proxy objective that can be
evaluated using only the information in data set D. These equations show that the main difficulty of
offline RL is: how do we choose a good proxy objective such that the regret in Equation 3.1 is minimized?

Before we can answer this question, we must first look at the relationship between the real objec-
tive and the proxy objective and their effect on the regret in Equation 3.1. Buckman et al. [9] showed
that this relationship obeys the following regret bound:

JM(π∗M)− JM(π∗D) ≤
(A)︷ ︸︸ ︷

inf
πD

[JM(π∗M)− JD(πD)] +
(B)︷ ︸︸ ︷

sup
πD

[JD(πD)− JM(πD)] (3.4)
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In this equation, the term labeled (A) reflects the accuracy of the proxy optimization objective on a
near-optimal policy. This term will be small whenever there is at least one reasonable policy that is
not underestimated by the proxy objective [9]. In contrast, the term (B) corresponds to the largest
overestimation error of any policy. Since term (B) contains a supremum, it will be small only when the
proxy objective does not overestimate any policy. Even a single overestimation can cause significant
regret [9]. Therefore, it is essential in offline RL to select a proxy objective that has the following two
properties. Firstly, the proxy objective can only use the information available in the data set. Secondly,
the proxy objective should underestimate at least one near-optimal policy as little as possible while also
overestimating all other policies as little as possible. So based on this observation, the key question is
how do we find such a proxy objective function for offline RL?

In offline RL, we typically use an off-policy value function as our proxy objective because it predicts
the expected return for the current policy, while it can also learn from any pre-collected transitions
[29, 42]. However, recent theoretical results have shown that naively applying this off-policy learning
approach can result in a value function that over-estimates the true return [9, 38], which is undesirable
given Equation 3.4. This overestimation effect mainly happens when the state-action space is not suf-
ficiently sampled to recover the underlying reward and transition functions. For example, a data set
collected using an expert demonstrator will contain only information about the expert demonstrator’s
policy, while it contains no information about other policies. Therefore, the areas of the state-action
space which were not covered by the data set will be regarded as low-information areas. In these low-
information areas, the learned value function can be arbitrarily bad and be potentially overestimated
due to missing information and sampling errors. In online RL, this is not a problem because if the
agent overestimates these areas, it will eventually sample them and collect additional information that
will help it to learn the correct reward and transition function in these low-information areas. However,
in offline RL, interactions with the environment are not allowed, meaning that the value function will
remain arbitrarily bad and potentially overestimated in these low information areas. This is problematic
for offline RL algorithms because they aim to learn a policy that maximizes this approximated value
function. Formally this policy optimization objective is defined as:

πD ← argmax
πD

Q̂πD (s, a)∀s ∈ D (3.5)

The problem with this objective is that it aims to find a policy that maximizes the Q-function over
all possible actions. This is problematic because the Q-function can be arbitrarily bad for actions not
or poorly covered in the data set. These arbitrarily bad Q-function predictions in low information
regions combined with the maximization objective result in an agent that will learn a policy that will
be biased towards actions with overestimated Q-values. By itself, this problem would only be minor
since the regret will be bounded by the proxy optimization bound in Equation 3.4. However, in off-
policy algorithms, this policy is also used to obtain the temporal difference target, which will be used to
improve the value function by minimizing the mean squared Bellman error (MSBE) iteratively. Formally
this MSBE optimization objective is defined as:

θ ← argmin
θ

1
|D|
||Q̂πD (st, at; θ)− yt||2 (3.6)

yt = rt + dt · γ · Q̂πD (st+1, πD(st+1); θ) where (st, at, rt, dt, st+1) ∈ D

In this equation, the red πD(st+1) is the action obtain from the learned policy that is biased towards
actions with overestimated Q-value in the low information regions, and yt is the likely overestimated
temporal difference target that has been obtained using this policy. This MSBE optimization objective,
combined with the policy optimization objective, means that the initially small overestimations of the
value function will be prioritized during the value learning process in the low-information regions. Due
to this effect, the value function overestimation will compound over time, which can result in divergent
behavior. This effect is undesirable since we just showed in Equation 3.4 that overestimation is a
highly undesirable property that results in large regret bounds. Empirically these results have also
been observed many times when a naive off-policy algorithm (e.g., Deep Q-Network (DQN), Double
Deep Q-Network (DDQN), or Soft Actor Critic (SAC)) gets provided with a fixed data set that does
not contain enough information to recover the dynamics of the real Markov decision process (MDP) and
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is not allowed to gather any additional data [10, 12, 19, 25, 29]. Therefore, it is essential in offline RL
that the policy and value function optimization objectives are constructed so that they both introduce
as little overestimation as possible in the low-information regions while still underestimating the true
value as little as possible in the high-information regions. In the next section, we will discuss how this
goal can be obtained using the pessimism principle.

3.2. The pessimism principle
The previous section showed that missing information in the data set and poorly selected optimization
objectives result in highly overestimated value functions in offline reinforcement learning (RL). These
overestimated value functions are problematic because they result in unrealistic policies with poor
regret bounds that seem rewarding based on the overestimated value function but are not in the real
environment. To avoid this issue, algorithms can follow the pessimism principle, which states that: "we
should choose the policy which acts optimally in the worst possible world" [9]. In offline RL, this principle
translates to learning a policy that maximizes the worst-case return by being pessimistic towards the
expected return based on the observed data. This pessimism principle can be integrated into off-policy
algorithms by learning a value function that is pessimistic towards low-information regions. Formally,
this means that we change the Bellman equation (Equation 2.5) into the following pessimistic Bellman
equation:

Q̂πD (st, at) = rt + γ
(
Q̂πD (st+1, at+1) − uπDD (st+1, at+1)

)
where at+1 ∼ πD(st+1) (3.7)

This equation is exactly the same as the original Bellman equation except for the addition of the
pessimistic penalty, denoted by uπDD (st+1, at+1). This pessimistic penalty allows us to control the
amount of overestimation and underestimation in the learned value function. Different choices for this
pessimistic penalty result in different overestimation and underestimation trade-offs, which directly
affect the regret bound formulated in Equation 3.4. However, generally speaking, we can divide the
choices for this pessimistic penalty into three choices, which result in the naive, policy-constrained,
and uncertainty-aware algorithmic families [9]. In the following sections, we will discuss the differences
between these pessimistic penalties as well as the unique properties of each algorithmic family.

The naive algorithmic family
The naive algorithmic family does not make a distinction between low and high information regions in
the state-action spaces. They assume that all data points are equally informative. Formally, this means
that these algorithms choose a pessimistic penalty that is independent of the state-action pair:

uπDD (st, at) = c (3.8)

where typically c = 0. Due to this constant pessimistic penalty, the algorithms in this family are
unable to distinguish between low and high information regions, which means that their learned value
function is equivalent to the maximum likelihood estimate of the value function [9]. Therefore, this
naive algorithmic family will always relatively overestimate the expected return in the low-information
regions as long as c is constant, which means that no constant value for c will improve their regret bound
in Equation 3.4. The only way to remove this relative overestimation is by ensuring that the data set
contains a uniform sample of the state-action space. This requirement is undesirable since offline RL
algorithms should ideally be able to learn from any data set. However, even if this data set requirement
was considered acceptable, the naive algorithms still need huge and diverse data sets before they can
recover the optimal policy due to the combinatorial size of the state-action space [2, 9]. This effect can
be observed in the replicated result of Buckman et al. [9] in Figure 3.1, which shows that the naive
algorithmic family performs badly on small and narrowly sampled data sets, while it starts to perform
increasingly better as the number of sample and their diversity increases.

The policy-constrained algorithmic family
The policy-constrained algorithmic family distinguishes between low and high information regions based
on the divergences from the empirical policy in the data sets. The main assumption here is that data
points which are more likely under the empirical policy are more informative since they will occur more

15



3.3. The need for uncertainty-based algorithms 3. Motivation for pessimism in offline RL

often in the data set [9]. This penalty can be formalized as:

uπDD (st, at) = δ(πD, πE)
V 2
max

(3.9)

In this equation, Vmax is the maximum expected discounted return of the Markov decision process
(MDP) that generated the data set, πE is the empirical policy in the data set, and δ(πD, πE) is the
total variation distance between the empirical policy and the policy learned using the data set. Due to
this choice of constraint, these algorithms prefer policies that stay near the empirical policy. Therefore,
these algorithms can be best understood as imitation learning algorithms, which permit minor deviations
from the empirical policy. However, constraining the policy in such a way has one major disadvantage
the learned policy will be unable to converge towards the optimal policy if the data set has not been
gathered according to a near-optimal policy, even in the limit of infinite data [9] (Figure 3.1). This
effect occurs because these algorithms conflate data with information. The empirical policy used in
this approach is estimated based on the data concentrations in the data set. However, these data
concentrations alone are not enough to determine if you know enough about the underlying MDP to
deviate from the empirical policy. Despite this fact, this approach is quite common in the offline deep
RL field [11, 19, 25, 27, 50] because estimating the divergence between the empirical policy and the
learned policy is relatively easy in the deep learning setting.

The uncertainty-aware algorithms algorithmic family
The uncertainty-aware pessimistic algorithmic family selects their pessimistic penalty based on an
agent’s epistemic uncertainty, which measures an agent’s knowledge about the true MDP. This uncertainty-
aware pessimistic penalty can be formalized as an upper-bound on the difference between the real value
function, denoted by QM(st, at), and the empirical maximum likelihood-based value function, denoted
by QD(st, at) [9]:

|QM(st, at)−QD(st, at)| ≤ c · uπDD (st, at) (3.10)

In this equation, c is a scaling parameter, and uπDD (st, at) the uncertainty-based penalty. This penalty
has the property that it is high in areas where the value function is uncertain, while the penalty
approaches zero when the model is more certain about its value function prediction. Therefore, the
pessimistic value function will be low in low information regions and close to the real value function in
high information regions. With this property, the uncertainty-aware pessimistic offline RL algorithm
will learn a policy that avoids low information regions and maximizes its expected discounted reward in
the high information regions. This property allows uncertainty-aware algorithms to maximize the ex-
pected discounted reward in regions with sufficient information to recover the true (local) transition and
reward function of the MDP while forcing it to follow the empirical policy in regions with insufficient
information [9]. Due to this property, these algorithms achieve the theoretically best possible results
even when the data set is only informative of a limited area of the state-action space, independent of
the used data collection strategy [9, 22, 38].

In the tabular setting, it is possible to derive this uncertainty-aware penalty exactly using Hoeffd-
ing’s inequality [9]. It is also possible to derive this penalty in the linear function approximation setting
based on the uncertainty of a maximum likelihood linear regression-based function approximator [22].
However, there is currently no theoretical correct approach to derive this uncertainty-aware penalty
exactly in the deep learning setting.

3.3. The need for uncertainty-based algorithms
Even though the policy-constrained and the uncertainty-aware pessimistic families seem different on
the surface, theoretical analysis shows that they are, in fact, closely related. Theoretical results show
that policy-constrained methods are uncertainty-aware algorithms that use a trivial value uncertainty
function based on the maximum expected discounted return in the MDP [9]. Therefore, Equation 3.10
always holds if we substitute the policy constrain penalty from Equation 3.9:

|QM(st, at)−QD(st, at)| ≤ c ·
δ(πD, πE)
V 2
max

(3.11)
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However, uncertainty-aware algorithms that use an epistemic-based penalty are strictly better than
their policy-constrained counterparts because, for any policy-constrained, we can always find a tighter
epistemic uncertainty-aware penalty [9]. This insight has led to multiple theoretical works that prove
the policies learned by uncertainty-aware algorithms are optimal and learn the theoretically best pos-
sible policy given any data sets. In contrast, the policies learned using policy-constrained methods do
not have these properties [9, 22, 38]. Uncertainty-aware offline RL algorithms already exist for the tab-
ular and linear function approximation settings. However, currently, there exists no uncertainty-aware
offline deep RL method. The main reason for this is that no theoretical proof shows equation 3.10 holds
for specific epistemic uncertainty estimation methods.

Even though there is no theoretical proof that uncertainty-aware offline RL algorithms are possible
in the deep learning setting, their predicted properties are still desirable targets to aim for. Therefore
the focus of this thesis is to experimentally explore which deep epistemic uncertainty estimation meth-
ods allow us to create offline deep RL methods with properties that match the theoretical properties of
uncertainty-aware algorithms as close as possible.
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Figure 3.1: Replicated experimental results of Buckman et al. (2020). These figures show the properties of different
families of offline reinforcement learning methods in a tabular grid world. Both figures show that uncertainty-aware
algorithms perform significantly better than all other families independent of the data set composition, while naive and
policy-constrained methods depend heavily on the data set composition.
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Uncertainty estimation techniques

In chapter 3, we established that there exists no mathematical proof that any deep uncertainty esti-
mation technique matches the theoretical requirement of uncertainty-aware algorithms. However, it is
hypothesized that in practice, it should be possible to approximate this requirement using deep epistemic
uncertainty estimation techniques [9]. In this chapter, we explore various deep uncertainty estimation
techniques and their epistemic uncertainty estimation capabilities. Furthermore, we also discuss the
main differences between the supervised learning and reinforcement learning problem and how these
differences impose implementation-related requirements on deep uncertainty estimation techniques. Fi-
nally, we concluded this chapter by selecting the most suitable uncertainty estimation technique for an
uncertainty-aware offline reinforcement learning (RL) algorithm.

4.1. Methods
During this research, we considered multiple uncertainty estimation techniques. These methods were the
Monte Carlo dropout method [14], the multi-headed bootstrap ensemble with random priors method,
and the orthonormal certificates method [43].

4.1.1. Monte Carlo dropout
Monte Carlo dropout is a Bayesian inference technique used in deep learning to estimate the uncertainty
in the model’s prediction [14]. As the name suggests, Monte Carlo dropout is based on the dropout
regularization technique [41]. Dropout works as a regularization technique by randomly masking or
“dropping out” a certain percentage of the output units of the network’s layers during each forward
pass in the training process. This change makes the training process noisy, forcing nodes within a
layer to probabilistically take on more or fewer inputs from the previous layer, which regularizes the
network [41]. Normally, dropout is disabled after the training phase, and inference happens as if the
dropout layers are not present. However, in Monte Carlo dropout, the dropout layers are left enabled at
inference time because it allows us to estimate the uncertainty in the prediction. Monte Carlo dropout
measures this uncertainty by making n predictions, each with its own dropout maskMi, and measuring
the standard deviation σ over these n predictions:

µ(x; θ) = 1
n

n∑
i=1

f̂(x; θ,Mi) (4.1)

σ(x; θ) =

√√√√∑n
i=1

(
f̂(x; θ,Mi)− µ(x; θ)

)2

n− 1 (4.2)

The key idea here is that each subset of neurons that have not been dropped out defines a new network.
Therefore, we can view the training process as training 2m in different models simultaneously, where
m is the number of neurons in the network [41]. In a situation where the model is uncertain, many of
these 2m different models will predict something different. At the same time, these models will mostly
make similar predictions in situations where the model is certain. Thus, allowing us to measure the
uncertainty in the prediction.
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4.1.2. Multi-headed bootstrap ensemble with random priors
The multi-headed bootstrap with priors method is another effective uncertainty estimation technique
[35, 39]. This approach is based on the ensemble-based uncertainty estimation method [28], but improves
upon this uncertainty estimation technique in two ways. Firstly, the method creates a different prior
function for each of the H ensemble members. These prior functions are randomly initialized, but frozen
networks, meaning their output will be input-dependent, but their weights will not change during the
training process. The final prediction of the network adds these prior functions to the prediction of
their corresponding trainable ensemble members to create the final prediction of the network:

f̂i(x) = f̂l(x; θi) + β · f̂pi(x) (4.3)

In this equation, f̂i(x) is the i-th ensemble prediction, f̂l(x; θi) is i-th learnable ensemble function,
fpi(x) is the i-th prior function, and β is a hyper-parameter that scales the importance of the prior
function. The main idea behind these prior functions is that each ensemble member learns to ignore
their prior in high data concentration areas while learning a different function from each other in the
low data concentration areas, resulting in better epistemic uncertainty estimation capabilities for out-
of-distribution (OOD) data [35]. A visualization of the resulting architecture can be found in Figure
4.1.
The second improvement upon the original ensemble-based uncertainty estimation method [28] is the
addition of the bootstrap. This bootstrapping procedure ensures that each ensemble member is trained
on a slightly different subset of the data. This procedure increases the diversity between the ensemble
members near the edges of data concentrations , especially if it is combined with the previously added
priors [35]. These two improvements significantly improve the epistemic uncertainty estimation capa-
bilities of the multi-headed bootstrap with priors method compared to the original ensemble method
[28, 35, 39].
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Figure 4.1: The multi-headed bootstrap ensemble with random priors network architecture. The architecture is similar to
traditional ensembles but adds the output of a frozen prior network to each head’s output to create a state depended prior.
In this figure, the red boxes are the trainable parts of the architecture, and the yellow parts are the frozen untrainable
parts.

The multi-headed bootstrap with priors method is still an ensemble based uncertainty estimation tech-
nique. Therefor, the methods estimates the uncertainty in its predictions as the standard deviation
between the prediction of its ensemble members:

µ(x) = 1
H

H∑
i=1

f̂i(x) (4.4)

σ(x) =

√√√√∑H
i=1

(
f̂i(x)− µ(x)

)2

H − 1 (4.5)
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In this equation, H is the number of ensemble members, and f̂i(x) is the prediction of the ith ensemble
member and its prior.

4.1.3. Orthonormal certificates
The orthonormal certificates method [43] is another epistemic uncertainty estimation technique. This
approach’s main advantage is that it requires only a single model and a single forward pass through
the network to estimate the epistemic uncertainty of a prediction [43]. The method works by learning
a collection of diverse non-constant functions called orthonormal certificates that map the feature of all
in-of-distribution (IOD) data to zero and all the features of OOD data to non-zero values. Intuitively,
the method can be thought of as constructing n binary classifiers, where each classifier adds a decision
boundary between IOD data and a subset of the OOD data. By increasing the number of binary
classifiers, we eventually end up with a decision boundary around the IOD data, allowing us to estimate
the epistemic uncertainty as shown in Figure 4.2.

(a) 1 OCs (b) 2 OCs (c) 3 OCs (d) 4 OCs

Figure 4.2: The intuition behind Orthonormal Certificates (OCs) for epistemic uncertainty estimation. Each orthonormal
certificate can be thought of as a binary classifier ci that adds a decision boundary where samples for the in-distribution
class (red) are mapped to zero and samples from the out-distribution class are mapped to one. By adding more and more
decision boundaries, we can eventually construct an entire decision boundary around the in-distribution.

We can make this procedure more mathematically formal by considering a deep learning model as
ŷ(x) = f(ψ(x)), where ψ is a deep feature extractor that extracts high-level features from the data,
e.g., a convolutional neural network, and f is a shallow model that groups the high-level features into
classes, e.g., a linear output layer. Next, we define the certificates C = (C1, ..., Ck) where each Ci is
a simple linear layer that maps the high-level features to a single output. These certificates are then
trained to map the high-level features of the data set to zero by minimizing the mean squared error loss
with an orthonormality constraint to ensure that every Ci learns a different non-constant function [43].

argmin
C

1
n

n∑
i=0
||CTψ(xi)||2 + λ · ||CTC − Ik||, where C ∈ Rh×k (4.6)

Using these orthonormal certificates, we can estimate epistemic uncertainty as the mean squared error:

u(x) = ||CTψ(x)||2 (4.7)

4.2. Epistemic uncertainty estimation experiment
In this section, we will test the epistemic uncertainty estimation capabilities of the previously introduced
methods. As a reminder, epistemic uncertainty specifies the model’s uncertainty in its prediction due
to inadequate knowledge and training data. Formally this means that the epistemic uncertainty is
approximately inversely proportional to the density p(x) of the training data [7]:

σe(x) ∝ p−1(x) (4.8)

To verify that these methods measure this epistemic uncertainty and not the aleatoric uncertainty
caused by the noise in the data, we will use a data set consisting of two clusters (Figure 4.3). The left
cluster has no aleatoric uncertainty in its data, while the right cluster has significantly more aleatoric
uncertainty in its data. Ideally, we want our epistemic uncertainty estimation to have the following
three key properties. Firstly, the epistemic uncertainty estimation must be low in areas with high data
concentrations, such as inside the two clusters. Secondly, the method should measure only epistemic
uncertainty and no aleatoric uncertainty. Therefore, the amount of epistemic uncertainty measured
should be approximately equal in both clusters, independent of the fact that the right cluster has
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significantly more noise in its data. Finally, the epistemic uncertainty estimation should be significantly
higher in areas with low or no data concentrations, such as between the two clusters and near the plot’s
edges.
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Figure 4.3: A visualization of the data set used in the epistemic uncertainty estimation capabilities experiment.

MC dropout results The experimental results for the Monte Carlo (MC) dropout method [14] are
shown in Figure 4.4. Based on this figure, the method has three noteworthy properties. Firstly, the
method is able to detect the gap between the two clusters. However, it is only able to do this with
reasonably high dropout rates. Secondly, the uncertainty does not reduce towards zero in areas with
high data concentrations. Finally, uncertainty estimation in the right cluster is relatively higher than
the uncertainty estimation for the left cluster. This result indicates that the method measures both
epistemic and aleatoric uncertainty. This is an undesirable property since we want a method that only
measures epistemic uncertainty.
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Figure 4.4: A visualization of the uncertainty estimated by Monte Carlo dropout. The dropout rate has a significant
effect on the uncertainty estimation capability of Monte Carlo dropout.

Ensemble with random priors results The results for the multi-headed bootstrap with priors
method [35, 39] are shown in Figure 4.5. This figure has three key things to note. Firstly, the uncertainty
is almost zero in areas with high data concentrations even if the data is noisy, while it is significantly
higher in areas with no data. This observation indicates that the method mainly focuses on epistemic
uncertainty. Secondly, the bootstrapping procedure causes the uncertainty near the edges to depend
on the amount of noise in the data. This is desirable because the noiseless edge data on the left can
probably be trusted more than the noisy edge data on the right. Note, this property is only desirable
near the edges of the data set because if it happens inside data clusters, it means that the method
measures aleatoric uncertainty. Finally, the figure also shows the effect of the prior importance weight
hyper-parameter β. If this parameter β increases, the learned function has to overcome a stronger prior,
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which results in more diverse functions and thus better epistemic uncertainty estimation capabilities.
However, this diversity comes at the expense of the expressiveness of f̂i(x) because there are fewer
functions for which f̂l(x; θi) + β · f̂pi(x) is as close as possible to the target variable y.
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(a) Prior importance weight β = 3
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(b) Prior importance weight β = 10

Figure 4.5: A visualization of the uncertainty estimated by the multi-headed bootstrap with priors method. The prior
weight scale β rate has a significant effect on the uncertainty estimation capability of the method.

Orthonormal certificates results The results for the orthonormal certificates method [35, 39] are
shown in Figure 4.5. In this figure, there are two key things to note. Firstly, the uncertainty is almost
zero in areas with high data concentrations even if the data is noisy, while it is significantly higher in
areas with no data. This observation indicates that the method mainly focuses on epistemic uncertainty
estimation. Secondly, a difficult property of the uncertainty measurement is that it has a different scale
than the predicted unit. This property makes it impossible to calculate a meaningful lower bound, such
as an n-standard deviation lower bound. However, this property does not mean that the method does
not work, as shown in Figure 4.5. It only means that we need to manually tune the scale, which can
be difficult in higher dimensions.
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(a) Uncertainty multiplied by 10
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Figure 4.6: A visualization of the uncertainty estimated by the orthonormal certificates method. An undesirable property
of this method is that the uncertainty measurement is on an unrelated scale, meaning that we have to manually scale the
measurement to make it visible.

4.3. Implementation requirements
Deep uncertainty estimation is a widely studied topic in the supervised learning domain, which has
resulted in a wide range of uncertainty estimation techniques. However, integrating existing methods
into deep RL algorithms is not straightforward because deep RL algorithms have specific properties
that make them fundamentally different from their supervised learning counterparts. For example, one
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of the most important differences between the two approaches is that offline deep RL methods need
their uncertainty estimate during the learning process. In contrast, supervised learning methods only
need it at inference time. Uncertainty-aware offline deep RL methods have this property because they
need an estimate of the current uncertainty to calculate their pessimistic temporal difference target in
the bootstrapping procedure that is used to learn the value function (Equation 3.7). This fundamen-
tal difference imposes certain computational requirements on the uncertainty estimation technique and
shows the need for online learning-based uncertainty estimation.

Another important difference between deep reinforcement and supervised learning is that there tends
to be a large amount of variance in the learning signals for deep RL, and this variance can cause major
issues for learning stability and speed [48]. For example, in deep RL, the only ground truth learning
signal comes from the rewards and state transitions. All other information is obtained by bootstrap-
ping the agent’s own value function. Due to this bootstrapping procedure, the temporal difference
target will keep changing over time during the learning process, introducing large amounts of variance
in the learning signal and correlated learning targets. Furthermore, the natural stochasticity of the
environment and the sampling strategy can also add additional variance in the learning signal. Most of
the recent improvements in deep RL have been focused on reducing this variance in the learning signal
[11, 16, 33, 47]. Therefore, the used uncertainty estimation technique must introduce a minimal amount
of additional variance into the learning signal to keep the fragile balance in deep RL algorithms stable.

Based on these key differences between offline deep RL-based uncertainty estimation and supervised
learning-based uncertainty estimation, we identified the following key implementation related require-
ments:

1. End-to-end epistemic uncertainty: When an empirical Bellman update is applied to a neural
network, the change in value can impact any state due to the generalization capabilities of the
network [9, 35]. Therefore, the epistemic uncertainty must be estimated in an end-to-end manner
such that the estimate is aware of the internal generalization of the model.

2. Dynamic uncertainty estimation: The epistemic uncertainty-based penalty must depend on
the current policy and value target estimate, which keep changing during the learning process [9].
Therefore, the uncertainty estimation method must be able to capture these changes, allowing it
to measure the current knowledge uncertainty with respect to both the current policy and value
function in an online learning-based manner.

3. Minimal computational cost: The epistemic uncertainty-based penalty must be calculated for
every value function loss calculation. Therefore, calculating the epistemic uncertainty should have
minimal computational costs to keep the learning speed of the algorithm manageable.

4. Same scale uncertainty measurement unit: The epistemic uncertainty-based penalty will
be used to calculate a lower-bound estimate of the temporal difference target by subtracting the
penalty from the value estimate. Therefore, it is desirable if the uncertainty estimation is in the
same units as the value estimate.

5. Works with moving learning targets: The temporal difference targets used to learn the
value function keep changing over type, due to the bootstrapping procedure used to obtain these
targets. Therefore, it is essential that the uncertainty estimation technique works with these
moving targets and does not assume any stationary in the temporal difference targets [48].

6. Minimal impact on the learning stability: Deep RL algorithms tend to have a high amount
of variance in their learning signals. These algorithms can become unstable and will fail to learn
when their learning signal variance increases even further [48]. Therefore, the used uncertainty
estimation technique must introduce a minimal amount of additional variance into the learning
signal.

In Table 4.1, we created an overview of how each uncertainty estimation technique measures our im-
plementation requirements. This table shows that the Monte Carlo dropout uncertainty estimation
technique [14] meets all but one of these implementation requirements. The main advantage of this
technique is that it estimates the uncertainty as the standard deviation between N Monte Carlo based
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Requirement Monte Carlo dropout [14]
Multi-headed bootstrap
ensemble with random

priors [35]
Orthonormal certificates [43]

End-to-end epistemic uncertainty 3 3 3
Dynamic uncertainty estimation 3 3 �
Minimal computational cost 3 � 3

Same scale uncertainty measurement unit 3 3 7
Works with moving learning targets 3 3 �

Minimal impact on the learning stability 7 3 3

Table 4.1: An overview of how well each uncertainty estimation technique matches the implementation requirements. In
this table, the 3 symbol means that the method matches the requirement, the 7 symbol means that the method does not
matches the requirement, and the � symbol means that it is debatable if the method matches the requirement.

forward passes through the network, which means that the method fulfills requirements 1, 2, and 4.
In addition, these Monte Carlo forward passes through the network can be performed in parallel on a
GPU, which means that the method also fulfills requirement 3. However, the main disadvantage of the
Monte Carlo dropout method is that the dropout used to obtain the Monte Carlo samples increases the
amount of variance in the learning signal. This additional variance in the learning signal can prevent the
deep RL method from learning and might even lead to divergent behavior [48]. The only way to reduce
the amount of additional variance is by reducing the dropout rate. However, in the previous section,
we showed that reducing the dropout rate also reduces the uncertainty estimation capabilities of this
method. Therefore, it is challenging to fulfill requirement 6 while also ensuring that the uncertainty
estimation capabilities of this method remain strong enough for our purposes.

In contrast, the Multi-headed bootstrap ensemble with random priors method [48] meets all require-
ments, except for requirement 2, which will only be met in certain situations. The main advantage of
this technique is that it estimates the uncertainty as the standard deviation between the predictions of
the different ensemble members. Due to this property, its uncertainty estimate is aware of the internal
generalization of the model, changes in tandem with the current value function during the learning
process, and is on the same scale as the prediction from the value function. Therefore, the method
meets requirements 1, 2, and 4. Furthermore, the only change in the training process is that we need
to train multiple models instead of one. Thus, this uncertainty estimation method will not change the
properties of a deep RL method when they are integrated together, which means that the method meets
requirements 5 and 6. Besides all these benefits, the method has one big disadvantage: the number
of weights and compute of this method increases linearly with the number of heads used. However, it
is possible to share a feature extractor such as a convolutional neural network. In theory, this shared
encoder can reduce the diversity in the ensemble, but it has been observed empirically that this effect
is minimal, making this a valid computational trade-off [34, 35, 39]. In practice, the parallel heads
and their priors contain only one or two fully connected layers making the memory and performance
requirements manageable. Therefore, this method only meets requirements 3 when this trade-off is
sufficient. However, the method will still require more computational resources compared to the other
single model uncertainty methods.

Finally, Table 4.1 shows that the orthonormal certificates method [43] meets some of the requirements,
except for requirements 2, 4, and 5. The main advantage of the orthonormal certificates method is that
it requires only a single model and a single forward pass through the network to estimate the epistemic
uncertainty. Due to this property, this method is the most efficient method with respect to requirement
3. Another advantage of this method is that it uses the internal representations of the value function’s
network in its uncertainty estimate, which means that it is aware of the internal generalization of the
model and thus meets requirement 1. However, a major disadvantage of the method is that it is not
well suited for online uncertainty estimation due to original design assumptions. In the original design
of the method, it was assumed that the orthonormal certificates would be learned when the prediction
model was done training [43]. During initial experiments, it appears that this assumption causes the
method to struggle with the moving targets and moving features in the offline deep RL setting since it
assumes some level of stationarity in these features. Therefore, it is unclear to which extent the method
meets requirements 2 and 5. The final disadvantage of this method is that the uncertainty measure is
not proportional to the predicted values, which means that the method cannot fulfill requirement 4.
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4.4. Conclusion
This chapter explored different uncertainty estimation techniques for their suitability in an uncertainty-
aware offline deep RL algorithm. To this end, we explored their epistemic uncertainty estimation
capabilities and evaluated them against multiple implementation requirements. Based on these results,
we found the multi-headed bootstrap ensemble with random priors method [35] the most suitable
epistemic uncertainty estimation for an uncertainty-aware offline deep RL algorithm. This method has
several advantages that make it suitable for offline deep RL. For example, the prior functions and the
bootstrapped data sets ensure that the method mainly focuses on epistemic uncertainty, covering the
theoretical requirements. Furthermore, the method also meets all implementation requirements, making
integrating this uncertainty estimation technique with existing deep RL methods significantly easier.
Therefore, we will use this uncertainty estimation technique in the next chapter to design a model-free
uncertainty-aware offline deep RL algorithm.
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5
Methods

In the previous chapter, we evaluated multiple deep uncertainty estimation techniques. Based on these
results, we found the multi-headed bootstrap ensemble with random priors method [35] the most suitable
method to be used in an uncertainty-aware offline deep reinforcement learning (RL) algorithm. In this
chapter, we propose two new offline deep RL algorithms, named PEssimistic ensemBLe (PEBL) that
use the multi-headed bootstrap with priors architecture [35] to approximate a pessimistic version of
the Q-function. The first algorithm is a pessimistic version of the Double Deep Q-Network (DDQN)
algorithm [47], which is aimed at problems with discrete action spaces. The second algorithm is a
pessimistic version of the Soft Actor Critic (SAC) algorithm [16], which works in both continuous and
discrete action-space cases. Although SAC can also be applied to discrete action spaces, DDQN is often
preferred in this setting due to its lower memory and computation costs. Therefore, we will only derive
the continuous action space version of PEBL SAC.

5.1. DDQN version
Our pessimistic version of DDQN, which we call PEBL DDQN, acts and learns similarly to the original
DDQN algorithm. It still prevents over-estimations cause by the max operator in the temporal difference
target by selecting the action that maximizes the current network instead of the target network while
using the target network to estimate the Q-value. However, the key difference between the original
algorithm and our pessimistic version is that in the pessimistic algorithm, we use a pessimistic Q-
function which we define as the one standard deviation lower bound over the prediction of each of the
ensemble members:

Qp(s, a; θ) = µQ(st, a; θ)− σQ(st, a; θ) (5.1)
where µQ(st, a; θ) is the sample mean over the different heads, and σQ(st, a; θ) is the sample standard
deviation over the different heads, which we calculate as follows:

µQ(st, a; θ) = 1
h

h−1∑
i=0

Qi(st, a; θ) (5.2)

σQ(st, a; θ) =

√∑h−1
i=0 (Qi(st, a; θ)− µQ(st, a; θ))2

h− 1 (5.3)

In these equations, Qi is the Q-value prediction of the ith ensemble head. This change has some
impacts on the other learning formulas. For example, this change also changes the TD-target of DDQN
in Equation 2.13 to:

yt = rt + (1− dt) ∗ γ
(
µQ(st+1, a

∗
t+1; θ′)− σQ(st+1, a

∗
t+1; θ′)

)
(5.4)

a∗t+1 = argmax
a
{µQ(st+1, a; θ)− σQ(st+1, a; θ)}

In this equation, (st, at, rt, dt, st+1) is a state transition sampled from the data set D where dt is a
Boolean flag that indicates where st+1 is a terminal state, γ is the discount factor of the Markov
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decision process (MDP), θ′ are the parameters of the target network, and θ is the parameter of the
online network. One thing to note here is that the TD-target in this equation differs from the original
definition from the bootstrapped Deep Q-Network (DQN) [34, 35] algorithm, which trained each head
on its own target head. We differ in aspect because we need to subtract an uncertainty penalty; if
the penalty was subtracted from each head directly, an unstable feedback loop is created, resulting in
potentially very large negative Q-values. We this knowledge in mind, we can derive the loss function per
head by adding the bootstrapping masks as described in the efficient implementation of bootstrapped
DQN [39], giving the following definition for the TD-loss per head i:

LQi = mt,i · L (Qi(st, at; θ), yt) (5.5)

In this equation, L is the Huber loss [20], and mt,i is a Boolean mask that has been sampled for each
training sample t and head i from a Bernoulli distribution with p = 0.8 [39]. Note that the m remains
constant throughout the entire training process. The final change we make to the algorithm is how its
select actions. Our algorithm changes this to:

πt = argmax
a
{µQ(st, a; θ)− σQ(st, a; θ)} (5.6)

To get a better understanding of how these changes impact the algorithm, we created an overview in
Algorithm 1 where differences from the DDQN algorithm [47] are in red. This pseudo-code summarizes
the proposed training process, which is very similar to the original DDQN algorithm, except for the
addition of the H heads and the bootstrapping masks m. Furthermore, it is important to note that we
do not propagate gradients through yt just like the original algorithm.

Algorithm 1: Pseudo code for PEBL DDQN, differences from DDQN [47] are in red.
Input: Data set D, discount γ, number of gradient step N , target network sync rate K,

bootstrap probability p, number of heads H
1 For every data point in D add m ∈ RH , where mi ∼ Ber(p) ;
2 Initialize Q-network θ and target Q-network θ′ both with the random bootstrap architecture

and H heads per action;
3 for i = 0 to N do
4 Sample (st, at, dt, st+1,m) ∼ D ;
5 Calculate the TD-target without gradients using:

yt ← rt + (1− dt) ∗ γ
(
µQ(st+1, a

∗
t+1; θ′)− ·σQ(st+1, a

∗
t+1; θ′)

)
, where

a∗t+1 ← argmaxa{µQ(st+1, a; θ)− ·σQ(st+1, a; θ)} ;
6 Update the Q-function with parameters θ by one ADAM [26] step using:

∇θLQθ ← 1
H

∑H−1
h=0 mh ·Huberloss (Q(st, at; θh), yt);

7 Update the target network every K updates using: θ′ ← θ ;
8 end
9 π = argmaxa{µQ(st, a; θ)− σQ(st, a; θ)} ;

10 return π
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5.2. SAC version
Our pessimistic version of SAC, which we call PEBL SAC, acts and learns similarly to the original SAC
algorithm. This pessimistic version of the algorithm still aims to learn a policy that acts as randomly
as possible if multiple actions have the same expected return. It also still aims to reduce the over-
estimations caused by the Bellman equation by estimating the expected return by taking the lowest
Q-value of two independent predictions. However, the key difference between the original algorithm
and our pessimistic version is that in the pessimistic algorithm, we estimate the expected return using
a pessimistic Q-function which we define as the one standard deviation lower bound over the prediction
of each of the ensemble members per independent Q-function:

Qp(s, a; θ) = µQ(st, a; θ)− σQ(st, a; θ) (5.7)

where µQ(st, a; θ) is the sample mean over the different heads, and σQ(st, a; θ) is the sample standard
deviation over the different heads, which we calculate as follows:

µQ(s, a; θ1, θ2) = 1
h

h−1∑
i=0

min
j=1,2

Q(s, a; θj,i) (5.8)

σQ(s, a; θ1, θ2) =

√√√√ 1
h− 1

h−1∑
i=0

(µQ(s, a; θ1, θ2)− min
j=1,2

Q(s, a; θj,i))2 (5.9)

In the equations, we use the minimum of the two Q-values as our prediction, just like the original SAC
method. The original SAC method took this minimum because prior work has shown that this prevents
over-estimations [16, 47]. In our case this minimization might not be necessary due to our pessimistic
approach. However, we kept this minimization in the algorithm to ensure that our method stays as
close to the original SAC algorithm as possible. Therefore, Qj,i is the Q-value prediction of the ith
ensemble head in the jth network. This change has some impacts on the other learning formulas. For
example, this change also changes the TD-target in Equation 2.14 to:

yt = rt + (1− dt) · γ ·
(
µQ(s, ãt+1; θ′1, θ′2)− σQ(st+1, ãt+1; θ′1, θ′2)− α log π(ãt+1|st+1;φ)

)
(5.10)

ãt+1 ∼ π(·|st+1;φ)

In this equation, (st, at, rt, dt, st+1) is a state transition sampled from the data set D where dt is a
Boolean flag that indicates where st+1 is the terminal state, γ is the discount factor of the MDP, ãt+1
is sampled stochastically from the learned policy, and α is the entropy trade-off parameter. Using the
TD-targets from Equation 5.10, we can calculate the loss per head j for each of the Q-network i ∈ {1, 2}
with mask mj :

LQi,j = mj · L (Qj(st, a; θi,j), yt) (5.11)

In this equation, L is the Huber loss [20], just like the original SAC algorithm.

The original SAC algorithm calculates the policy loss per data point using the formula:

Lπ = α log π(ãt, st;φ)− min
i=1,2
{Q(st, ãt; θi)}, where ãt ∼ π(a|st;φ) (5.12)

where ãt is sampled using the reparameterization trick, which is differentiable with respect to φ. Our
pessimistic version of this algorithm changes this loss function to:

Lπ = α log π(ãt, st;φ)−
(
µQ(s, a; θ1, θ2)− Cπ · σQ(s, a; θ1, θ2)

)
(5.13)

In this equation, we also introduce the uncertainty weight trade-off parameter Cπ. This parameter
controls the trade-off between minimizing uncertainty and maximizing theQ-values in the learned policy.
This trade-off parameter is needed because the policy loss in SAC is similar to a white box adversarial
attack on the Q-function due to the reparameterization trick [3]. This adversarial formulation of the
policy loss is not a problem in deep online RL because it forces the agent to learn about the flaws
in its Q-function, which helps with exploration. However, in offline RL, this adversarial formulation
is a problem because the agent can no longer collect counterexamples in the environment. Therefore,
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selecting the right parameter for Cπ is crucial. Empirically, we found that it is difficult to find the right
value for Cπ because it depends on many factors, such as the size of the data set, the state-action space
coverage, the difficulty of modeling the true MDP, etc. However, we also discovered it is possible to
learn the right value for this parameter using dual gradient descent, a technique that is increasingly
common in deep reinforcement learning [16, 27]. We apply dual gradient descent using the technique
described in section 2.2.1 and transform Cπ into a Lagrangian multiplier by adding the constraint that
the average uncertainty of the actions selected by the learned pessimistic policy π should be equal to
the average uncertainty observed in the actions for the data set:

1
n

D∑
st,at

σQ(st, at; θ) = 1
n

D∑
st

σQ(st, ap; θ), ap ∈ πp (5.14)

This constraint is possible because we are only interested in avoiding epistemic uncertainty, which is
high in areas where the network cannot model the function well. Thus, we allow the selection of out-of-
distribution actions as long as we avoid areas with above-average epistemic uncertainty. The constraint
in Equation 5.14 captures this property, which results in a higher value of Cπ if the πp chooses actions
with above-average epistemic uncertainty. It results in a lower value for Cπ if πp tends to choose actions
with below-average epistemic uncertainty.

With all the derivation from SAC complete, we can summarize our training process using Algorithm
2. This training process is very similar to the original SAC algorithm, except for the addition of the H
heads, the bootstrapping masks m, and the automatic tuning of the trade-off parameter Cπ. Note that
we do not propagate gradient through yt just like the original algorithm.

Algorithm 2: Pseudo code for PEBL SAC, differences from SAC [16] are in red.
Input: Data set D, discount γ, number of gradient step N , entropy target αtarget, bootstrap

probability p, number of heads H
1 For every data point in D add m ∈ RH , where mi ∼ Ber(p) ;
2 Initialize Q-network one and two and their target networks with θ1, θ2, θ′1 and θ′2 all with the

random bootstrap architecture and H heads;
3 Initialize trade-off parameters α and Cπ ;
4 for 0 to N do
5 Sample (st, at, dt, st+1,m) ∼ D ;
6 Calculate TD-target without gradients using:

yt = rt+ (1−dt) ·γ ·
(
µQ(s, ãt+1; θ1, θ2)− Cy · σQ(st+1, ãt+1; θ1, θ2)− α log π(ãt+1|st+1;φ)

)
,

ãt+1 ∼ π(·|st+1;φ);
7 Update the ith Q-function with parameters θi by one ADAM [26] step using:

∇θiLQθi ←
1
H

∑H−1
h=0 mh ·Huberloss (Q(st, at; θi,h), yt) for i = 1, 2

8 Update the policy πφ by one ADAM step using:
∇φLπ = α log πφ(ãt, st)− (µQ(s, ãt; θ1, θ2)− Cπ · σQ(s, ãt; θ1, θ2)), where ãt ∼ π(·|st;φ) is
sampled using the reparameterization trick making it differential w.r.t. φ;

9 Update the entropy trade-off parameter α by one ADAM step using:
∇αLα ← log(α) (log πφ(ãt, st)− αtarget) ;

10 Update the uncertainty trade-off parameter Cπ by one ADAM step using:
∇CπLCπ ← −Cπ (σQ(s, ãt; θ1, θ2)− σQ(s, at; θ1, θ2)) ;

11 Update target network using Polyak averaging: θ′i ← ρθ′i + (1− ρ)θi for i = 1, 2 ;
12 end
13 return πφ
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6
Related offline deep RL methods

The previous chapters showed that missing information in the data set and poorly selected optimization
objectives result in highly overestimated value functions in offline reinforcement learning (RL). These
overestimated value functions are problematic because they result in unrealistic policies with poor
regret bounds that seem rewarding based on the overestimated value function but are not in the real
environment. Only recently, it has become clear that the pessimism principle is the information-
theoretical optimal approach for the offline RL problem [9, 23, 38]. Although many prior works did not
have access to this proof, they were already aware of the overestimation and unrealistic policies problem
and tried to combat these issues in different ways. This chapter will discuss these prior methods and
how they attempted to combat these issues, and how it differs from our approach. To this end, we
have divided these prior methods into three categories. The first category of methods is the explicit
policy-constrained methods. The methods in this category apply explicit constraints on the learned
policy to prevent overestimation issues in offline RL. The second category is the pessimistic value
function category. The methods in this category appear very close to our desired goal of a model-free
uncertainty-aware offline RL algorithm. Still, they are, in reality, also policy-constrained methods with
implicit policy constraints because they still rely on the data collection strategy [9]. Finally, we conclude
the chapter by discussing model-based uncertainty-aware algorithms. The methods in this category are
the closest to our goal of creating a model-free uncertainty-aware offline RL algorithm. However, as the
name suggests, they are model-based approaches instead of model-free approaches.

6.1. Explicit policy-constrained methods
Many prior methods claimed that out-of-distribution (OOD) actions and distributional shifts caused
the commonly observed overestimations in the value function. To combat this issue, many methods
proposed various constraints that should prevent the learned policy from selecting these OOD actions.
In hindsight, this approach is similar to the policy-constrained algorithmic family we discussed in
chapter 3. The most obvious example of a deep policy-constrained method is Batch-Constrained Q-
learning (BCQ) [11, 12]. This algorithm aims to avoid overestimated OOD Q-function evaluations by
detecting OOD actions based on the likelihood of state-action pairs appearing in the empirical policy.
Using this technique, the BCQ algorithm can ignore these OOD actions while using policy optimization
techniques such as Q-learning [12] or actor-critic [11] on the remaining in-of-distribution (IOD) state-
action pairs. Formally, this means that the learned constrained value function, denoted by Qc(s, a; θ),
and the constrained policy, denoted by πc(s), are defined as:

Qc(s, a; θ) =
{
Q(s, a; θ), if πβ(a|s;φβ)

maxâ πβ(â|s;φβ) > τ

−∞, otherwise
(6.1)

πc(s) = argmax
a

Qc(s, a; θ) (6.2)

In these equations, πβ(a|s;φβ) is the learned empirical policy, and τ ∈ [0, 1) is the threshold hyper-
parameter that specifies how much the learned policy is allowed to deviate from the empirical policy.
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The main item of interest in this equation is the policy constraint, which is formulated in the first case
of Equation 6.1. This constrain normalizes the action distribution based on the relative likelihood of
selecting an action given the empirical policy. If this relative likelihood is higher than the threshold
hyperparameter, we consider the state-action pair as an IOD sample. It is more difficult to calculate
this constraint in continuous action spaces due to the max operator in the denominator. Therefore,
the denominator is typically approximated using the maximum of multiple samples from a variational
autoencoder (VAE) [11]. The main difference between the BCQ algorithm and our algorithm is that
the performance of the BCQ algorithm depends on the quality of the data collection strategy due to
its dependence on the empirical policy, while our method only depends on the amount of information
in the data set.

Another example of an explicit policy-constrained method in the literature is the Bootstrapping Error
Accumulation Reduction (BEAR) algorithm [25]. This algorithm is interesting because it also aims
to reduce the overestimation in the TD-targets using a small ensemble, just like our algorithm. The
BEAR algorithm aims to reduce this overestimation in two ways. Firstly, this method constrains the
policy used to estimate the TD-target to ensure that the action selected for the next state would be
relatively close to the empirical policy of the data set. It does this by sampling n actions from the
learn policy within a predefined maximum mean discrepancy of the empirical policy [25]. Secondly, it
estimates the TD-target as the weighted average between a small ensemble of Q-functions. This weight
ensemble of the TD-target is supposed to reduce the overestimations caused by the max operator in
the Bellman equation [25]. Due to this ensemble of Q-functions, the method seems similar to our al-
gorithm. However, the BEAR algorithm differs from our algorithm due to its usage of the maximum
mean discrepancy constrain. Due to this constraint, the BEAR algorithm depends on the empirical
policy, making it a policy-constrained method. In contrast, our method uses the ensemble to estimate
the uncertainty in the TD-target, which removes this dependency on the empirical policy.

Besides these two examples, there are many more examples of policy-constrained methods, each with a
slightly different policy divergent measure that will be used to detect OOD state-action pairs. For ex-
ample, other common divergent measures are the maximum mean discrepancy, Kullback–Leibler (KL)
divergence, Wasserstein Distance, and VAE based metrics [19, 25, 50]. On paper, all these methods
seem different. However, in the end, they are all part of the policy-constrained algorithmic family, which
means that their performance always depends on the quality of the used data collection strategy [9].
Our method differs in this aspect since it does not depend on such a constraint. Instead, our method
aims to avoid actions whose epistemic uncertainty is relatively higher. Due to this property, our method
only depends on the quality of the epistemic uncertainty estimate and the amount of information in
the data set. Therefore, our method should perform significantly higher than these policy-constrained
methods if the data set has been collected with a non-optimal data collection strategy. In the next
chapter, we will verify this by comparing the performance of our algorithm against the performance of
the BCQ method when the level of optimality in the data collection strategy varies.

6.2. Pessimistic value function methods
Another interesting approach in the literature to avoid value function overestimation is the Conservative
Q-Learning (CQL) approach [27]. This approach aims to avoid these overestimations by adding a
regularization objective to the value function optimization objective that minimizes all possible Q-
values while simultaneously maximizing the Q-values in the data set. The idea behind this algorithm is
that the additional regularization objective will help us to learn a Q-function who on average will lower
bounds the true Q-function [27]. Formally, this optimization objective can be formalized as:

(A)︷ ︸︸ ︷
min
Q

αEs∼D

[
log
∑
a

exp(Q(st, a; θ))− Ea∼πβ(a|st) [Q(st, a; θ)]
]

+ 1
2 Est,at,rt,st+1∼D [Q(st, at; θ)− yt(rt, st+1; θ′)]︸ ︷︷ ︸

(B)

(6.3)
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In this equation, term (A) is the regularization objective, and term (B) is the normal mean squared
Bellman error (MSBE) optimization objective commonly used in deep RL to learn the value function.
Furthermore, α is a trade-off hyperparameter that controls the trade-off between optimizing the regu-
larization objective and the MSBE objective, πβ is the empirical policy in the data set, and yt is the
TD-target obtained using a target value network. While it appears that this algorithm aims to avoid
low-information regions similar to those in the uncertainty-aware pessimistic algorithmic family, this
is not the case because it uses data concentrations as a proxy for information. Due to this property,
the algorithm still depends on the empirical policy and data collection policy, meaning it still belongs
to the policy-constrained pessimistic algorithmic family [9]. Interestingly, even though this algorithm
officially belongs to the policy-constrained pessimistic algorithmic family, the constraint it uses is ex-
tremely flexible, which has allowed this method to achieve state-of-the-art results in almost all offline
deep RL benchmarks [27].

At the time of writing, the only method that performs slightly better on these benchmarks is the
Conservative Offline Model-Based policy Optimization (COMBO) algorithm [53]. This algorithm is a
model-based extension of the CQL algorithm, which uses its learned reward and transition functions
to generate additional training samples. These additional synthetic training samples help improve the
final performance of the algorithm because the regularization term in the original CQL algorithm tends
to reduce the Q-values for all state-action pairs that are not in the data set, even if these state-action
pairs should be considered IOD. These synthetic training samples solve this problem because they fill
these gaps, ensuring that these IOD areas will not be unnecessarily regularized [53]. Although these
synthetic training samples solve an important problem in the conservative Q-learning approach, it does
not remove the dependence on the data collection strategy. In contrast, our method does not have this
dependency, which means that our method should theoretically be able to deviate and improve even
further from the empirical policy than these conservative Q-learning-based algorithms. Therefore, we
will use the CQL and COMBO algorithms in the next chapter to see how well our algorithm compares
to their state-of-the-art results.

6.3. Model-based uncertainty-aware methods
The two previous sections discussed different model-free approaches to offline deep RL and how they
aimed to avoid overestimations in the value function. Model-based RL is an alternative set of approaches
that aim to solve the offline RL problem by approximating the reward and transition function of the
underlying Markov decision process (MDP) of the data set. The main advantage of the model-based
approach is that the models learned using this approach receive more supervision, making it more
similar to a supervised learning problem [24, 52]. Interestingly, offline model-based RL suffers from
the overestimation problem in the same way as model-free RL does if the data set does not contain
enough information to recover the true reward and transition functions. This problem is also present in
model-based RL because it aims to maximize the expected return of the approximated reward function.
Therefore, the same missing information and poorly selected proxy optimization objective problems
that caused overestimations in model-free RL are also present in model-based RL [9].

The Model-based Offline Policy Optimization (MOPO) [52] algorithm is a model-based algorithm that
aims to prevent the overestimation problem using an approach that is similar to ours. The MOPO
algorithm prevents these overestimations in three steps. Firstly, it learns an ensemble of rewards and
transition functions, where each model is trained independently via maximum likelihood. In the second
step, the MOPO algorithm uses these ensembles to create a pessimistic version of the underlying MDP
that penalizes the reward in areas where the model is uncertain. This uncertainty is measured as the
maximum difference between different predictions within an ensemble of models. Formally, this means
that the pessimistic reward function is defined as:

R̂p(s, a) = 1
N

N∑
i=1

R(s, a;ψi)− λmax
i,j

{
‖R̂(s, a;ψi)− R̂(s, a;ψj)‖2 + ‖T̂ (s, a;ψi)− T̂ (s, a;ψj)‖2

}
(6.4)

In this equation, R̂p is the pessimistic reward function, R̂(s, a;ψi) is the i-th likelihood estimate of the
reward function, R̂(s, a;ψi) is the i-th likelihood estimate of the transition function, N is the number
of ensemble members, and λ is a hyperparameter that controls the strength of the pessimistic penalty.
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In the final step, the MOPO algorithm uses any existing model-free algorithm to sample and explore
the newly created MDP to find a policy that maximizes the expected return in this pessimistic version
of the underlying MDP. Besides this algorithm, there are other pessimistic offline deep model-based
RL algorithms [24, 52]. However, since they are completely identical except for their slightly different
reward function, we decided not to discuss them in more detail.

These model-based methods approach the overestimation problem using an approach that is similar
to our method. Both the model-based approaches and our method penalize their predictions using an
ensemble-based uncertainty estimate. However, there is one important difference between the model-
based methods and ours. The model-based algorithms measure their uncertainty based on the differences
within their ensemble of reward and transition functions. In contrast, our method measures its uncer-
tainty based on the differences within its ensemble of Q-value functions. This difference is important
because both methods eventually aim to optimize a Q-function. Therefore, the model-based algorithms
do not learn a pessimistic policy using an end-to-end based technique, while our method does. This
is potentially an issue because when an empirical Bellman update is performed on a function approxi-
mated Q-network, the value of a particular state is impacted by generalizations from other states, which
potentially confounds the pessimistic penalties [9]. This issue could potentially be solved by ensuring
that the reward function and transition function, value function, and policy have the same internal
representation and generalization by sharing an encoder network [17]. However, as far as we are aware,
no method does this in pessimistic model-based RL. Therefore, our method has the advantage since its
uncertainty measure is aware of the internal generalizations of the function approximator that is being
optimized.

6.4. Conclusion
In the previous sections, we discussed multiple prior approaches to the offline deep RL problem. Based
on these results, we conclude there exists a gap in the offline deep RL literature for an end-to-end model-
free uncertainty-aware pessimistic algorithm, which we aim to address using the methods proposed in
this thesis. In the next chapter, we will compare our proposed methods experimentally against these
previously discussed offline deep RL methods.
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7
Evaluation experiments

This chapter discusses the different experiments we performed to test our PEssimistic ensemBLe (PEBL)
methods in three different environments. The first environment is the MinAtar environment suite
[51], which contains several miniaturized versions of the Atari 2600 games. We use the flexibility
and computational efficiency of this MinAtar suit to experimentally validate that our PEBL methods
work as expected and to validate that our PEBL method follows the theoretically predicted properties of
uncertainty-aware algorithms on a wide range of data set compositions. The second environment we use
is the Maze-2D environment from the D4RL benchmark [10]. We use this environment to experimentally
show that our PEBL method has the unique ability to solve undirected data set problems. Undirected
data set problems are offline reinforcement learning (RL) problems whereby the demonstrator’s behavior
does not align with the goal to maximize the expected discounted return. Finally, we used the MuJoCo
gym task from the D4RL benchmark to experimentally compare our method against current state-of-
the-art offline RL techniques [8, 10, 44].

7.1. MinAtar
In this section, we experimentally validate that our PEssimistic ensemBLe (PEBL) methods work
as expected and we validate that our PEBL method follows the theoretically predicted properties of
uncertainty-aware algorithms on a wide range of data set compositions. The result of these experiments
will allow us to answer research question 2.1. We perform these experiments using the MinAtar environ-
ment. This environment is a testbed for reinforcement learning agents which implements a miniaturized
version of several Atari 2600 games such as Space Invaders and Breakout [51]. MinAtar is comparable
to the arcade learning environment [6]. However, MinAtar simplifies the games and their observations
by reducing the game to an 10 × 10 grid and the observations to an n × 10 × 10 boolean grid. Each
of these n channels indicates a game-specific object’s location, such as the ball, the paddle, and the
bricks in the game breakout (Figure 7.1). This simplified version of the game still captures the general
mechanics and difficulty of the behavior task while simplifying the representational complexity of the
game. With the representation learning problem simplified, it is possible to perform significantly more
experiments, even for a relatively low computational budget such as ours.

Currently, there exist no pre-collected offline reinforcement learning (RL) data set for the MinAtar
suite. However, in the offline RL literature, it is common practice to create these data sets yourself
[2, 9, 11, 12, 29]. In this process, we use an online RL method to find a near-optimal policy in the
environment. At this stage, the agent is still allowed to interact with the environment. This near-
optimal policy can then be used to collect different types of data sets by varying the data collection
strategy. Using this policy, we generate the ε-greedy data. This data set has been collected using an
ε-greedy data collection strategy, which means that for every transition, the data collection agent takes
either a greedy action with probability 1 − ε or it takes a random action with probability ε. When
the value of ε increases, the data collection strategy will collect less optimal data, thus allowing us to
control the optimality of the data sets. Increasing the value of ε also reduces the bias for high rewarding
trajectories because the randomly sampled action will cause the data collection strategy to sample less
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(a) Space Invaders (b) Break out

Figure 7.1: A visualization of some of the Atari 2600 games in the MinAtar suite. The color of a block indicates a
game-specific object’s channel at a specific location on the 10×10 grid. Note that the agent does not observe these colors,
but instead, it observes an n× 10× 10 boolean grid, where n is the number of different types of objects.

rewarding trajectories. By collecting multiple data set with varying values for ε, it is possible to validate
the properties of the offline RL method when the optimality of the data collection strategy changes.
Using these data sets, we can experimentally validate that our uncertainty-aware algorithm has the
theoretically predicted properties of uncertainty-aware algorithms and that these properties hold even
when the optimality of the data collection changes with ε. The remainder of this section will discuss
the experiments we performed using the ε-greedy data set to validate these properties.

7.1.1. Overestimation properties
The first property we will validate is that our uncertainty-aware algorithm adheres to the pessimism
principle. This principle states that the agent should learn a policy that acts optimally in the worst
possible world. Uncertainty-aware algorithms adhere to this principle by learning a pessimistic value
function, which does not overestimate the expected discounted return in the real environment [9]. Using
the ε-greedy data set, we can validate that an agent learns a value function that does not overestimate
the expected discounted return in three steps. First, we train the agent on an ε-greedy data set to
obtain its policy and value function. Secondly, we evaluate this policy in the real environment for 250
episodes per learned policy. However, before starting every evaluation episode, we first let the value
function estimate the expected discounted return given the initial state. Finally, we can assess how
much the value function overestimates by comparing the predicted expected discounted return and the
real return obtained by the policy.

Baseline In this experiment, we evaluate the overestimation capabilities of our PEBL Double Deep
Q-Network (DDQN) method. In this experiment, we use the DDQN algorithm as a baseline because
this is a member of the naive offline RL algorithmic family [47]. These naive offline RL algorithmic
family members are an ideal baseline because these methods have no value function overestimation
technique build in [9].

Results The outcome of the experiment is shown in Figure 7.2. The results show that the value
function learned by our PEBL DDQN method does not overestimate the expected discounted return
for any ε value in both the Space Invaders and Breakout environment. In contrast, the baseline DDQN
method overestimates the expected discounted return for every ε value. These results experimentally
show that our PEBL DDQN method adheres to the pessimism principle, even when the optimality of
the data collection changes.

7.1.2. Dependence on the optimality of the data collection strategy
The second property we will validate is that our uncertainty-aware algorithm learns a policy that is
less dependent on the empirical policy in the data set than the policy-constrained methods [9]. We will
experimentally validate this property by replicating the results presented by Buckman et al. in their
paper (2020). Their original experiment only compared the behavior cloning, policy-constrained, and
naive algorithmic families, excluding the deep uncertainty-aware algorithmic family, leaving it as an
open research question. Their original experiments used the same ε-greedy data collection strategy and
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Figure 7.2: The results for the over-estimation property experiment. Our PEBL DDQN method does not over-estimate
the expected discounted return for any ε in both the Space Invaders and Breakout environment. In contrast, the naive
DDQN method overestimates for every ε. The measurements are obtained by taking the average overestimation of the
final policy over 250 episodes averaged over 3 independent training runs each with their own random seeds.

the same MinAtar environments [9]. In our version of the experiment, we train every method for 75, 000
gradient updates on a data set of 50, 000 samples. We chose this relatively small data set because it
amplifies the effect of missing information, highlighting the advantage of the uncertainty-based method.

Baseline In this experiment, we compare the performance of PEBL DDQN against the performance
of the three other offline RL algorithmic families. Our version of the experiment will use the behaviour
cloning (BC) algorithm to represent the imitation learning family [21]. The policy-constrained algorith-
mic family is represented by the Batch-Constrained Q-learning (BCQ) algorithm [11, 12]. Finally, the
naive algorithmic family is represented by the DDQN algorithm [47].

Results The outcomes of the experiment are shown in Figure 7.3. The results show that our PEBL
DDQN method often performs best for a wider range of ε-greedy policy data sets than the other
algorithmic families. This result is mostly in line with the theoretical results we aimed to replicate [9].
However, interestingly our method does not follow the theoretically predicted behavior for uncertainty-
aware pessimistic algorithms in the expert data regime when ε approaches zero. We expected the
method to perform as well or similarly to the behavior cloning method in this area, but it falls notably
short. This suggests that our epistemic uncertainty estimation technique is not expressive enough for
highly biased data in this expert data regime.
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Figure 7.3: The performance of different representatives of each offline algorithmic family compared to our PEBL DDQN
algorithm on the ε-greedy data set. The measurements are obtained by taking the average performance of the final policy
over 250 episodes averaged over 3 independent training runs each with their own random seeds.
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7.2. D4RL: maze-2D
This experiment aims to show the unique ability of our uncertainty-aware algorithm to learn from
undirected data sets. Undirected data set problems are offline reinforcement learning (RL) problems
whereby the demonstrator’s behavior does not align with the goal to maximize the expected return. We
experimentally show that our method has this ability by applying our PEssimistic ensemBLe (PEBL)
Soft Actor Critic (SAC) to the maze-2D task of the D4RL benchmark [10].

In the maze-2D task, agents must learn a continuous action policy that can move a ball from any
point in a maze to a pre-specified point (Figure 7.4). The data set used in this task consist of ran-
dom routes through the maze. Thus, the agent must stitch together different trajectories to learn the
shortest path to the goal location from every possible starting point. This property makes the maze-2D
task an undirected data set problem because the demonstrator’s behavior does not align with the goal
to maximize the expected discounted return. Another interesting property of the data set is that the
observations contain only the agent’s current coordinates and velocity. The agent is thus unable to see
the entire maze and has to learn the layout from the data set. These properties have made the larger
maze-2D tasks very difficult for policy-constrained methods because they cannot deviate enough from
the behavior policy even though the data set covers every possible location in the maze [10].

(a) U-maze (b) Medium maze (c) Large maze

Figure 7.4: A visualization of the different mazes in the maze-2D task of the D4RL benchmark. The agent is the green
ball, and the red dot is the endpoint. Note that the agent does not observe these images, but instead, it observes a
state-vector, which contains the coordinates and velocities of the ball. Thus, the agent has to learn the layout of these
mazes based only on their data sets.

Baselines We compare our method to the results provided in the D4RL benchmark paper for Soft
Actor Critic (SAC), behaviour cloning (BC), and Continuous Batch-Constrained Q-learning (CBCQ)
[10, 11].

Results The performance of the algorithms on the Maze-2D experiment is displayed in Table 7.1.
PEBL SAC can deviate further from the observed behavior policy than the other baselines. This al-
lows it to solve all mazes, including the large maze, which has not yet been solved by any existing
policy-based pessimistic method [10]. Figure 7.5 visualizes the value of the uncertainty-based penalty
and the penalized Q-values. We see that the result of our pessimistic penalty is that the agent assigns
low Q-values to areas which it is uncertain about, such as positions occupied by walls. These results
empirically show that our method only needs sufficient information about the Markov decision process
(MDP) to find the optimal policy. The fact that the empirical behavior in this data set is not optimal
and even counterproductive does not matter for our method. This is a very desirable property that is
only present in uncertainty-aware algorithms [9], which make our method preferred for these kinds of
data sets .

7.3. D4RL: MuJoCo gym task
In this experiment, we aim to answer research question 2.2: How well does our method perform compared
to prior offline deep reinforcement learning (RL) methods? We do this by experimentally comparing
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Dataset type SAC BC CBCQ PESAC
U 88.2 3.8 12.8 151.1

Medium 26.1 30.3 8.3 146.6
Large -1.9 5.0 6.2 129.5

Table 7.1: Results for D4RL’s Maze-2D benchmark. Each score is the average normalized reward over 100 runs at the
last iteration of training.
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Figure 7.5: A visualization of the uncertainty-based penalty and the penalized Q-values for the large Maze-2D environment.
The gray areas in both figures indicate the number of data points available in the data set per location. Note that the
agent only observes (x, y, vx, vy), and still, the agent can learn where the walls are located using its own uncertainty.

our method against current state-of-the-art offline RL techniques, using the MuJoCo gym task from
the D4RL benchmark [10]. All the data sets in the benchmark task are available online, and they have
been extensively benchmark by prior work, allowing us to compare our method against a wide range of
prior methods.
In the MuJoCo gym task, the agent has to learn a continuous action policy that controls the joints of
various robots in the MuJoCo physics simulator [44]. The goal of these tasks is to learn a policy that
moves the robot as fast as possible to the right edge of the simulator. Depending on the type of robot,
they will either learn to walk (Figure 7.6a), jump (Figure 7.6b), or run like a cheetah (Figure 7.6c).

(a) Walker2d (b) Hopper (c) Half Cheetah

Figure 7.6: A visualization of the different robots in the MuJoCo gym task of the D4RL benchmark. Note that the agent
does not observe these images, but instead, it observes a state-vector, which contains the coordinates and velocities of
each joint.

This benchmark has four different data sets available for each of the tasks, each consisting of one million
transitions, that test the offline RL agent’s abilities. The expert data set was collected by first training a
Soft Actor Critic (SAC) agent to near-optimal performance, which was then used to collect the data set.
This expert data set aims to evaluate how well an offline RL agent can handle the narrow distribution of
expert data sets. The medium data set was also collected by first training a SAC agent, but this training
process was stopped early when the agent reached medium performance. This partially trained policy

38



7.3. D4RL: MuJoCo gym task 7. Evaluation experiments

was then used to collect the medium data set. This medium data set aims to evaluate how much an
offline RL agent can improve upon the partially trained policy. The medium-replay data set consists of
the last one million samples from the replay buffer used to train the medium agent. This medium-replay
data set aims to evaluate an offline RL agent’s ability to handle non-stationary data sets. Finally, the
random data set was collected by randomly re-initializing the policies for every roll-out. This random
data set aims to evaluate how much an offline RL agent can learn from random data. All these data sets
are available online, and they have been extensively benchmark, allowing us to compare our method
against a wide range of prior work.

Baselines Similar to the experiment in section 7.1.2, we compare our methods to representatives
of each algorithmic family. The methods are Soft Actor Critic (SAC) [16] and Continuous Batch-
Constrained Q-learning (CBCQ) [13] for the naïve and the policy-based pessimistic algorithmic family.
We also compare our method to Conservative Q-Learning (CQL) [27] and Conservative Offline Model-
Based policy Optimization (COMBO) [53]. Both methods are considered state-of-the-art offline RL
methods, and both methods are members of the policy-based pessimistic algorithmic family [9]. Com-
pared to other policy-based pessimistic algorithms, these methods have a significantly looser constraint,
allowing for larger improvements upon the data collection policies.

Results The results are shown in Table 7.2, where the performance of SAC, BC, and CBCQ is given as
reported in [13], and for CQL and COMBO are the number reported in [27] and [53], respectively. Sim-
ilar to the PEBL DDQN algorithm, we cannot match the performance of behavior cloning in the expert
data regime. In contrast, our method performs remarkably well in the half cheetah environment for data
sets generated using non-expert policies, marked Random, Medium, andMedium-replay. It even achieves
state-of-the-art results for the Medium and Medium-replay data sets. This is quite interesting since the
current state-of-the-art method is a model-based method while PEBL SAC is a model-free method. In
the walker2d and hopper environments, the performance of our method is nowhere near state-of-the-art.
In these environments, our method only achieves results comparable to policy-constrained methods such
as CBCQ. This result is especially interesting for the Walker2D-Medium, and Walker2D-Medium-Replay
data set since the value function learned by our method diverges here to large negative values. With
this diverging value function, we would expect the method not to learn anything, but surprisingly the
method only starts to perform reasonably well when the divergent behavior starts (Figure 7.7). We
suspect this divergent behavior happens because the method tends to have relatively high uncertainty
for the walker2D data set. This high uncertainty results in large penalties, which in turn result in larger
negative value targets. Thus, creating the negative feedback loop, we observe in the learning curve.
Interestingly, these large uncertainty values still indicate the method’s epistemic uncertainty and thus
allow the method to keep on performing reasonably well.

Dataset type Environment SAC BC CBCQ CQL COMBO PEBL SAC (ours)
Random halfcheetah 30.5 2.1 2.2 35.4 38.8 35.7
Random hopper 11.3 1.6 10.6 10.8 17.9 9.5
Random walker2d 4.1 9.8 4.9 7.0 7.0 3.6
Medium halfcheetah -4.3 36.1 40.7 44.4 55.1 61.5
Medium hopper 0.8 29.0 54.5 86.6 94.9 53.2
Medium walker2d 0.9 6.6 53.1 74.5 75.5 55.9

Medium-Replay halfcheetah 1.9 38.4 38.2 46.2 55.1 57.5
Medium-Replay hopper 3.5 11.8 33.1 48.6 73.1 37.8
Medium-Replay walker2d 1.9 11.3 15.0 32.6 56.0 26.3

Expert halfcheetah -1.9 107.0 - 104.0 - 3.6
Expert hopper 0.7 109.0 - 109.9 - 2.5
Expert walker2d -0.3 125.7 - 121.6 - 3.9

Table 7.2: Results for the D4RL benchmark. Each score is the average normalized reward over 100 runs at the last
iteration of training as described in the D4RL benchmark.
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(a) The Q-value learning curve of PEBL SAC for the walker2D
data sets.
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(b) The performance in the real environment learning curve of
PEBL SAC for the walker2D data sets.
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(c) The Q-value learning curve of PEBL SAC for the half
cheetah data set.
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(d) The performance in the real environment learning curve of
PEBL SAC for the half cheetah data set.

Figure 7.7: Surprisingly, our PEBL SAC method shows divergent behavior for the walker2D-medium and walker2D-
medium-replay data sets. In contrast, our method shows stable behavior for the other data sets. Therefore, we included
the learning curves for the half-cheetah-medium data sets as a reference point.
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8
Conclusion and future research

This thesis has investigated how offline deep reinforcement learning (RL) agents can be instilled with
the ability to know what they do not know. In this chapter, we will summarize the main conclusion and
contributions of our work, and address the limitations and possible future directions of our proposed
methods.

8.1. Conclusion
Before we can create an uncertainty-aware offline deep RL algorithm, we need to know what the pes-
simism principle is and which theoretical requirements it imposes on the uncertainty estimation tech-
niques. To this end, Chapter 3 explained that the pessimism principle is a theoretical framework for
offline RL that prevents overestimations in the value function of offline RL agents caused by missing
information in the data set and poorly selected proxy optimization objectives. Uncertainty-aware algo-
rithms, the algorithmic family we are interested in, implements this principle by penalizing the agent’s
value function using an uncertainty-aware penalty. This algorithmic family has the property that it
will learn an information-theoretical optimal policy independent of the data collection strategy used to
gather the data set. The only requirement for this optimality is that the penalty should be an upper
bound on the difference between the real value function and the empirical maximum likelihood-based
value function [9, 38, 46]. Currently, there exists no mathematical proof that any deep uncertainty esti-
mation technique has this property. However, it is hypothesized that in practice, it should be possible to
approximate this requirement if the estimated uncertainty has two properties [9]. Firstly, the estimated
uncertainty should be high in areas with insufficient information to model the true Markov decision
process (MDP). Secondly, the estimated uncertainty should be low in areas with sufficient information
to model the true MDP. Only deep epistemic uncertainty estimation techniques come close to this
property. Therefore, the main theoretical requirement imposed by the pessimism principle is that the
used deep uncertainty estimation technique should have excellent epistemic uncertainty measurement
capabilities, which will help to prevent the proxy objective from overestimating the true objective.

Besides this theoretical requirement, there are also implementation-related requirements that determine
if a deep uncertainty estimation technique is suitable for offline deep RL. These implementation-related
requirements originate from the fundamental differences between reinforcement learning and supervised
learning problems. Chapter 4 investigated these implementation-related requirements and came to the
conclusion that there are six major implementation-related requirements. Firstly, when an empirical
Bellman update is applied to a neural network, the change in value can impact any state due to the
generalization capabilities of the network [9, 35]. Therefore, the epistemic uncertainty must be esti-
mated in an end-to-end manner such that the estimate is aware of the internal generalization of the
model. Secondly, the epistemic uncertainty-based penalty must depend on the current policy and value
target estimate, which keep changing during the learning process. Therefore, the uncertainty estimation
method must be able to capture these changes, allowing it to measure the current knowledge uncertainty
with respect to both the current policy and value function in an online learning-based manner. Thirdly,
the epistemic uncertainty-based penalty must be calculated for every value function loss calculation.
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Therefore, calculating the epistemic uncertainty should have minimal computational costs to keep the
learning speed of the algorithm manageable. Fourthly, the epistemic uncertainty-based penalty will be
used to calculate a lower-bound estimate of the temporal difference target by subtracting the penalty
from the value estimate. Therefore, it is desirable if the uncertainty estimation is in the same units
as the value estimate. Fifthly, the temporal difference targets used to learn the value function keep
changing over type, due to the bootstrapping procedure used to obtain these targets. Therefore, it
is essential that the uncertainty estimation technique works with these moving targets and does not
assume any stationary in the temporal difference targets. Finally, deep RL algorithms tend to have a
high amount of variance in their learning signals. These algorithms can become unstable and will fail
to learn when their learning signal variance increases even further [48]. Therefore, the used uncertainty
estimation technique must introduce a minimal amount of additional variance into the learning signal.
Thus, if a deep uncertainty estimation technique adheres to these implementation requirements and the
theoretical requirement, it should be suitable for an uncertainty-aware offline RL algorithm.

Based on these theoretical and implementation-related requirements, we found the multi-headed boot-
strap ensemble with random priors the most suitable uncertainty estimation technique for our purposes
[35]. In Chapter 5, we showed how this uncertainty estimation technique was used to create our
model-free uncertainty-aware offline deep RL algorithms. The first algorithm, named PEBL DDQN,
is specifically designed for discrete action spaces, while the second algorithm, named PEBL SAC, is
designed for continuous action spaces.

To validate that our PEBL methods adhere to the pessimism principle and mimic the properties of
uncertainty-aware algorithms, we tested our methods in multiple environments and on multiple data
sets with a wide variety of data collection strategies in Chapter 7. In every situation, the learned value
function learned by our method always underestimates the real expected discounted return, showing
that the method adheres to the pessimism principle. Even with this underestimating value function,
the methods performed well on a wide range of data set distributions. The methods matched the the-
oretically predicted performance when the data collection strategy was between uniform random and
semi-expert. However, the methods did not match the theoretically predicted performance when the
data was collected using an expert data collection strategy. This is interesting because, based on the
theoretical predictions for uncertainty-aware algorithms, we expected our algorithm to perform as well
on these types of data sets as behavior cloning-based methods. Although our methods do not perform
as well as predicted for these expert data sets, it still performs significantly better on these expert data
sets than naive algorithms that do not adhere to the pessimism principle. However, our methods are
still outperformed on these expert data set by policy constrained-based methods and behavior cloning-
based methods. These results thus show that our deep epistemic uncertainty estimation technique
can approximate the theoretical requirements for the uncertainty-aware algorithm, especially for data
sets collected using either a uniform random or a semi-expert data collection strategy. However, our
method’s approximation of the theoretical requirement is not precise enough to obtain the expected
performance for the relatively biased and sparse data distribution of expert data sets.

With these uncertainty-aware properties validated, the only research question left is: how well does
our method perform compared to prior offline deep RL methods? To answer this research question, we
empirically tested our method against the D4RL MuJoCo gym benchmark [10]. This benchmark is
widely used in offline deep RL [19, 27, 53] and thus allows us to compare our method against a wide
range of prior work. The results from this experiment allowed us to draw two conclusions. Firstly, our
method significantly underperforms for data sets in the expert data regime compared to prior work.
This result supports our previous conclusion that our uncertainty measure is not strong enough for
the expert data regime. Therefore, we can conclude that our method in its current state is not yet
suitable for these expert data sets. Secondly, our method shows great potential for data sets generated
by non-optimal data collection strategies. For these types of data sets, our method even obtained state-
of-the-art performance for one of the three environments. In this specific environment, our method
even performed better than a model-based method, even though our method is a model-free method.
However, our method also became unstable for the same type of data set in another environment. Inter-
estingly, our method still performed reasonably well despite this instability. Therefore, we can conclude
that our method can be quite suitable for these non-expert data set. However, these instability issues
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must be removed first before our method can be safely picked over prior work.

8.2. Limitations and future work
Our method has some interesting and desirable properties for offline RL. However, it also has certain
limitations that limit its practical usage. For example, our methods do not match the theoretically pre-
dicted performance of uncertainty-aware reinforcement learning algorithms for expert data sets. This
property is problematic because the theoretical appeal of uncertainty-aware algorithms is that they
should work on any data set independent of the used data collection strategy. Based on our results, we
suspect that our method performs poorly on these data sets because our method’s approximation of the
theoretical requirement of the pessimism principle is not precise enough. Therefore, we suspect that
future work can significantly improve upon our results if it can identify a deep uncertainty estimation
technique with stronger epistemic uncertainty estimation capabilities.

Another limitation of our method is its instability in the walker2D data sets. Based on our experi-
ments, we suspect this instability is caused by the relatively high epistemic uncertainty that is present
in this data set. This increased epistemic uncertainty results in larger uncertainty penalties, which in
turn result in larger negative learning targets. This creates a negative feedback loop because the un-
certainty measured by our epistemic uncertainty estimation technique is dependent on the predictions’
magnitudes. Therefore, we suspect that future work can remove this instability if it can identify an
uncertainty estimation technique independent of the predictions’ magnitudes. A promising research
direction for this problem is feature-based epistemic uncertainty estimation. This family of methods
estimates the epistemic uncertainty based on the internal representations of the method instead of the
predicted values. Although these methods exist in the supervised learning domain [31, 43, 45], we were
unable to identify such a method that works in the deep RL domain. However, we hope that future
work will identify such a method that also works in the deep RL domain.

The final limitation of our method is its computational resource requirements. Our epistemic un-
certainty estimation technique uses an ensemble of methods to measure epistemic uncertainty. This
property significantly increases the number of weights in the network, increasing the GPU memory
requirements and learning time. These computational resources are currently manageable for the rela-
tively small network architectures used in deep RL [16, 33, 47]. However, this approach will not scale to
larger networks. This limitation has also been identified in the supervised-based uncertainty estimation
domain, which has resulted in the single model uncertainty estimation family [31, 43, 45]. However, we
have been unable to identify a method in this family that also works in the deep RL domain so far.
We hope that future work will identify such a method that also works in the deep RL domain, allowing
them to remove this computational resource bottleneck.
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A
Experimental details

A.1. MinAtar experiments

Hyperparameter Setting Used in algorithms
Q-network: channels 16 BC, DDQN, PEBL DDQN, BCQ
Q-network: filters 3 × 3 BC, DDQN, PEBL DDQN, BCQ
Q-network: strides 1 BC, DDQN, PEBL DDQN, BCQ
Q-network: hidden units 128, 128 BC, DDQN, PEBL DDQN, BCQ
Q-network: number of heads 15 PEBL DDQN
Q-network: activation function ELU BC, DDQN, PEBL DDQN, BCQ
Q-network: prior weight β 10 PEBL DDQN
Q-network: ensemble implementation conv1d PEBL DDQN
Target network update period every 500 steps DDQN, PEBL DDQN, BCQ
Target network procedure hard copy DDQN, PEBL DDQN, BCQ
Imitation threshold 0.3 BCQ
Imitation regularizer weight 0.01
Optimizer Adam BC, DDQN, PEBL DDQN, BCQ
Learning rate 0.00025 BC, DDQN, PEBL DDQN, BCQ
Maximum gradient norm 10 BC, DDQN, PEBL DDQN, BCQ
Number of gradient updates 75,000 BC, DDQN, PEBL DDQN, BCQ
Data set size 50,000 transitions BC, DDQN, PEBL DDQN, BCQ
Batch size 256 BC, DDQN, PEBL DDQN, BCQ
Discount factor 0.99 DDQN, PEBL DDQN, BCQ
Number of evaluation episodes 250 BC, DDQN, PEBL DDQN, BCQ
Seeds 0, 1, 2 BC, DDQN, PEBL DDQN, BCQ
Hardware: GPU Geforce RTX 2070 BC, DDQN, PEBL DDQN, BCQ

Table A.1: The hyperparameters used in the MinAtar experiments. The BCQ specific hyperparameters come from the
author’s implementation on GitHub [12]. The DDQN related hyperparameters are inspired by the parameters used in
the RLLIB library [30]. Finally, the architecture of the Q-network is the recommended architecture for the MinAtar
environment [51].
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A.2. D4RL experiments A. Experimental details

A.2. D4RL experiments

Hyperparameter Setting
Policy network: hidden units 256, 256
Q-network: activation function ELU
Q-network: hidden units 256, 256
Q-network: number of heads 15
Q-network: activation function ELU
Q-network: prior weight β 10
Q-network: ensemble implementation conv1d
Target network update period every 500 steps
Target network procedure polyak
Polyak rate τ 0.001
Auto entropy trade-off parameter tuning Enabled
Auto uncertainty trade-off parameter tuning Enabled
Optimizer Adam
Learning rate 0.00025
Maximum gradient norm 10
Number of gradient updates 500,000
Batch size 256
Discount factor 0.99
Number of evaluation episodes 250
Seeds 0
Hardware: GPU Geforce RTX 2070

Table A.2: The hyperparameters used in the experiments for both the maze2D and MuJoCo gym tasks in the D4RL
benchmark. The hyperparameters are inspired by the parameters used in the SAC implementation of the RLLIB library
[30]
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B
Hyper-parameter tuning experiments

B.1. Assessing the effect of the prior weight parameter
This experiment assesses the effect of prior weight parameter β on the performance of the PEssimistic
ensemBLe (PEBL) Double Deep Q-Network (DDQN) method. The original paper suggested that this
hyperparameter should either be set to 3 or 10 [35]. Thus, we trained our method with both values on
the ε-greedy data set and evaluated the final performance to assess the effect of this parameter.

Results The experiment’s outcomes are shown in Figure B.1. These results show that the parameter
has little effect on the average performance of the method. However, the parameter significantly affects
the variance in the performance between random seeds when the value is relatively low. Therefore, we
decided to use β = 10 in our experiments.
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Figure B.1: The performance of the PEBL DDQN method depending on the prior weight hyperparameter. The mea-
surements are obtained by taking the average return of the final policy over 250 episodes averaged over 3 random seeds.
There is no statistical significant difference between β = 3 and β = 10. However, the method appears to have a lower
variance over random seeds with β = 10.

B.2. Assessing the effect of the number of ensemble heads
This experiment assesses the effect of the number of ensemble heads H on the performance of the PEBL
DDQN method. This experiment tests the values H = 10 and H = 15. We do this by training our
PEBL DDQN method using both values on the ε-greedy data set. The resulting policies obtained by
both values are evaluated to assess the effect of this parameter.
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B.3. Assessing the effect of automatic hyper-parameter tuning on PEBL DDQNB. Hyper-parameter tuning experiments

Results The experiment’s outcomes are shown in Figure B.2. Interestingly, there is no significant
difference between H = 10 and H = 15 for ε < 0.8. The only difference lies in the variances over the
different seeds. Based on these results and the required additional computation resources for H = 15,
we decided to go for H = 10.
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Figure B.2: The performance of the PEBL DDQN method depending on the number of ensemble heads hyperparameter.
The measurements are obtained by taking the average return of the final policy over 250 episodes averaged over 3 random
seeds. There is no statistical significant difference between H = 10 and H = 15. However, the method appears to have a
lower variance over random seeds with H = 10.

B.3. Assessing the effect of automatic hyper-parameter tuning
on PEBL DDQN

This experiment assesses if the PEBL DDQN method also benefits from the automatic tuning procedure
for hyper-parameter Cπ. This automatic tuning procedure was originally designed for the PEBL Soft
Actor Critic (SAC) method, but it could also benefit the DDQN version. We test this hypothesis
by comparing the results of the PEBL DDQN method with automatic tuning procedure enabled and
disabled on the ε-greedy data set. In the disabled trial, we set Cπ = 1. In the enabled trial, we set
Cy = 1 and let the automatic tuning procedure find a value for Cπ.

Results The outcomes of the experiment are shown in Figure B.3. The results show that with
the automatic tuning procedure enabled, the method learns a policy that performs slightly worse.
Interestingly, it also appears that the automatic tuning procedure reduces the variance in the results.
However, we cannot confirm this result with certainty because most of the results are within one
standard deviation of each other for these three independent trials. Therefore, we will not use the
automatic tuning procedure in our PEBL DDQN method. Note that these results do not mean that
the automatic tuning procedure does not work. It only means that the procedure appears not to be
beneficial for the PEBL DDQN method. In the experiments for the PEBL SAC method, we show that
this procedure is essential.
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Figure B.3: The performance of the PEBL DDQN method when the automatic tuning of Cπ is both enabled and disabled.
The measurements are obtained by taking the average return of the final policy over 250 episodes averaged over 3 random
seeds. The method appears to perform slightly better when the tuning procedure is disabled, but the difference is not
statistically significant.
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Abstract

Offline reinforcement learning (RL), or learning from a fixed
data set, is an attractive alternative to online RL. Offline RL
promises to address the cost and safety implications of tak-
ing numerous random or bad actions online, a crucial as-
pect of traditional RL that makes it difficult to apply in real-
world problems. However, when RL is naı̈vely applied to a
fixed data set, the resulting policy may exhibit poor perfor-
mance in the real environment. This happens due to over-
estimation of the value of state-action pairs not sufficiently
covered by the data set. A promising way to avoid this is by
applying pessimism and acting according to a lower bound
estimate on the value. In deep reinforcement learning, how-
ever, uncertainty estimation is highly non-trivial and devel-
opment of effective uncertainty-based pessimistic algorithms
remains an open question. This paper introduces two novel
offline deep RL methods built on Double Deep Q-Learning
and Soft Actor-Critic. We show how a multi-headed bootstrap
approach to uncertainty estimation is used to calculate an ef-
fective pessimistic value penalty. Our approach is applied to
benchmark offline deep RL domains, where we demonstrate
that our methods can often beat the current state-of-the-art.

Introduction
Offline (batch) reinforcement learning (RL), addresses some
of the key problems that make general reinforcement learn-
ing unsuitable for real-world applications such as robotics
(Cabi et al. 2020), healthcare (Wang et al. 2018), recom-
mender systems (Strehl et al. 2010), and chatbots (Pietquin
et al. 2011). In offline RL, a particular core issue of stan-
dard RL is absent: the exploration-exploitation trade-off. In-
stead, a data set is available that contains transitions sam-
pled from the environment that ideally provide useful in-
formation about its dynamics and the task we want to op-
timize. This suggests that we can find a policy that opti-
mizes the task, given only the data set, and avoid taking ad-
ditional exploratory actions online whose consequences are
unknown. In safety-critical applications or anywhere ample
offline data is available, offline RL is an attractive approach
to automation. However, naı̈vely applying policy optimiza-
tion to a fixed data set has been repeatedly shown in practice
to produce a policy that performs very poorly on the true task

Copyright © 2021, Association for the Advancement of Artificial
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(Levine et al. 2020; Fujimoto et al. 2019; Fu et al. 2020; Kim
2020; Hou et al. 2020). The fundamental issue arises in the
likely case that the data has insufficient information to allow
the transition and reward model to be adequately estimated,
either explicitly or implicitly, in the model-free case. This
issue arises from the strong bias introduced by the policies
that generated the data set, rendering the data unrepresenta-
tive of the true MDP.

A theoretical analysis of the offline RL problem sug-
gests that policies learned on fixed data will become over-
optimistic, meaning they assign values to actions that are
higher than the true value in areas with insufficient informa-
tion (Buckman, Gelada, and Bellemare 2020). If the offline
data is collected by selecting actions at random, it is more
likely that the coverage of the problem space is sufficient
to recover the transition and reward functions. In this case,
over-estimation is less likely, but significantly more data is
needed to uncover optimal behavior. In the other extreme,
where data is collected according to expert demonstrations,
the data is highly biased and will contain transitions from
only a subset of the overall state-action space. The value at-
tributed to parts of the state-action space that were not rep-
resented enough in the data set is likely to not only be in-
correct but over-estimated. This effect occurs because over-
estimations have a larger impact on the performance of the
offline RL agent in the true environment (Buckman, Gelada,
and Bellemare 2020). One way to bypass this issue is to con-
strain the learned policy to lie near the policy exhibited in the
data. This has been shown to be effective (Levine et al. 2020;
Fujimoto et al. 2019; Kim 2020; Fujimoto, Meger, and Pre-
cup 2019), but such an approach is limited in its ability to
improve on the policy emergent in the data set. The ideal ap-
proach should be robust to many data collection strategies,
ranging from random actions to expert demonstrations.

An alternative to penalizing actions that are under-
represented in the data set is to penalize actions whose es-
timated value is highly uncertain. The penalty allows poli-
cies to deviate from the empirical policy in high infor-
mation regions while closely imitating the empirical pol-
icy in low information regions. This principle, referred to
as uncertainty-based pessimism, is a promising approach
to producing offline RL algorithms that are robust to var-
ious data collection policies (Jin, Yang, and Wang 2020;
Rashidinejad et al. 2021). The effectiveness of such an ap-



proach has been demonstrated in tabular problems, where
a principled approach can be taken to uncertainty estima-
tion (Buckman, Gelada, and Bellemare 2020). We aim to
extend these findings to deep RL, where the continuous
nature of the state-action space and use of function ap-
proximation means that count-based methods can no longer
be used for uncertainty estimation. We propose a multi-
headed bootstrap approach with randomized priors to esti-
mating epistemic uncertainty in deep learning settings (Os-
band, Aslanides, and Cassirer 2018). With the inclusion of
randomized priors, every ensemble member learns a differ-
ent function in regions with no training data, resulting in
better epistemic uncertainty estimation. With this, we de-
rive a pessimistically-penalized offline deep reinforcement
learning approach, which we call PEssimistic ensemBLe,
or PEBL (pronounced “pebble”). This paper introduces two
versions of PEBL, one built on Double Deep Q-Learning
(Van Hasselt, Guez, and Silver 2016) and another variant
based on Soft Actor-Critic (Haarnoja et al. 2018). Our im-
plementation of these techniques is available in an open-
source repository at: github.com/j0rd1smit/PEBL.

This paper first highlights related literature and describes
how our work builds upon recent advances in offline deep
RL. We then discuss uncertainty estimation in deep RL and
the motivations for the approach used in our method. This is
followed by the description of our two PEBL variants for of-
fline deep RL, tackling both discrete and continuous action
spaces. In experiments, we demonstrate that our uncertainty-
based pessimistic methods achieve state-of-the-art perfor-
mance, often improving on existing benchmarks. Finally, we
conclude and suggest directions for future work in this area.

Background
In this section, we formalize established concepts that pro-
vide a foundation for our work.

Reinforcement Learning
In reinforcement learning, the environment or task is mod-
eled as a Markov decision process (MDP). Formally, an
MDP is a tupleM = (S,A,R, T , γ) containing state space
S, action space A, reward function R, transition function
T , and a discount factor γ. An agent acting in an MDP at
time step t receives a state st and then executes an action
at which causes the environment to transition according to
T (st, at, st+1), a function that maps state-action pairs to a
distribution over next states T : S ×A×S → [0, 1].
The agent enters the next state st+1, and receives a re-
ward rt according to reward functionR(st, at, st+1), where
R : S ×A×S → R. The solution to an MDP is a policy
π that maps states to actions. The value of a policy V πs0=si is
the sum of expected discounted rewards when following pol-
icy π from initial state si. An optimal policy π∗ maximizes
this value for every state. The action-conditioned value is re-
ferred to as Q(s, a), which returns the value for a particular
action in a given state.

In reinforcement learning, the transition and reward dy-
namics of the MDP are unknown. An agent must there-
fore interact with the environment in order to learn to op-

timize rewards. In Q-learning, a common model-free ap-
proach for tabular problems, this is done by continuously
applying the Bellman update on experience sampled from
the MDP (s, a, r, s′) (collected by the agent) until Q con-
verges with learning rate α (Watkins and Dayan 1992):

Q(s, a) = Q(s, a)+α(r+γmax
a′

Q(s′, a′))+(1−α)Q(s, a)

Deep Reinforcement Learning
In continuous state-space environments, the Q-function can
no longer be represented in a table, and function approxi-
mation is required. In deep reinforcement learning, a multi-
layered neural network is used to approximate Q. The most
basic method applying this is Deep Q-Learning (DQN)
(Mnih et al. 2013, 2015), where the TD-target yt is calcu-
lated by the neural network (with parameters θ) is:

yt = rt + γmax
a′

Q(s′, a′ : θ)

Double Deep Q-Learning (DDQN) Naı̈ve applications of
DQN has been known to exhibit instability due to over-
estimation, thus DDQN (which originated in tabular set-
tings) was posed as a solution to this problem (Van Has-
selt, Guez, and Silver 2016). In DDQN, two Q-functions
are maintained, one of which is used for action selection
(parameterized by θ) and the other for evaluation (param-
eterized by θ′). The original DDQN algorithm calculates the
target using the formula:

yt = rt + (1− dt) · γQ(st+1, argmax
a
{Q(st+1, a; θ)}; θ′)

In this equation, rt is the reward, and dt is a flag indicating
whether the episode terminated or not at the t-th time step.

Soft Actor-Critic (SAC) Both DQN and DDQN are suit-
able for discrete-action problems. Soft Actor-Critic is an al-
gorithm that can also be applied to problems with continuous
action spaces. It builds on the popular Actor-Critic approach,
which splits learning the policy from the value function. In
this approach, the actor learns an action distribution that
maximizes the expected reward based on the feedback from
the critic, while the critic learns to approximates the value
function (Sutton and Barto 2018). Actor-Critic approaches
are typically used in on-policy settings. However, using im-
portance sampling, it is also possible to use this approach
in an off-policy setting (Haarnoja et al. 2018). In SAC, the
goal is to optimize for a trade-off of expected return and en-
tropy of the policy. The TD-target yt is calculated using the
formula:

yt = rt + (1− dt) · γ min
j=1,2

{Q(st+1, ãt+1; θ
′
j)}−

α log πφ(ãt+1|st+1)

In this equation, ãt+1 is sampled from the learned policy
πφ(.|st+1), and α is the entropy trade-off parameter. Simi-
lar to DDQN, SAC tries to minimize instability issues due
to over-estimations caused by the function approximation.
It does this by learning two Q-value functions, parameter-
ized by θ1 and θ2. It uses the lowerest Q-value estimation
for its policy losses, and it is TD-target to prevent over-
estimations.



Uncertainty-Aware Offline Reinforcement
Learning
Buckman, Gelada, and Bellemare describe two types of
offline reinforcement learning algorithms that apply pes-
simism: proximal (which we call policy-constrained) pes-
simistic algorithms and uncertainty-aware pessimistic algo-
rithms (2020). In their experiments, the performance of four
algorithmic families was demonstrated: naı̈ve (simply ap-
plies standard reinforcement learning on the given data set),
behavior cloning (copies the empirical policy followed in the
data set), policy-constrained pessimistic (penalizes actions
not well-represented in the data set), and uncertainty-aware
pessimistic (penalizes actions with high uncertainty in the
data set). A behavior cloning-based policy can only perform
as well as the data collection policy. The policy-constrained
pessimistic family can improve upon the data collection pol-
icy, but only slightly, as these algorithms are constrained to
stay close to it. The naı̈ve algorithmic family performs well
if the data set contains sufficient exploratory data, such as
in a huge randomly generated data set. However, its perfor-
mance quickly deteriorates when the data set is more biased
(such as that generated by expert demonstrations). Theoreti-
cally, and then in tabular experiments, it was shown that the
uncertainty-aware pessimistic approach was the most robust
to different types of data sets.

Related work
Uncertainty-aware approaches to reinforcement learning
have been used in the traditional online setting, notably in
the robust MDP framework which aims to build policies
that are robust to modeling errors (Zhou et al. 1996; Gi-
van, Leach, and Dean 2000; Nilim and El Ghaoui 2005;
Wiesemann, Kuhn, and Rustem 2013). Recently, the theo-
retical advantages of uncertainty-aware algorithms in the of-
fline setting have been demonstrated in tabular experiments
(Buckman, Gelada, and Bellemare 2020; Rashidinejad et al.
2021) and linear function approximation experiments (Jin,
Yang, and Wang 2020). We are concerned with the appli-
cation of uncertainty-aware pessimism in offline deep re-
inforcement learning, where quantifying uncertainty is par-
ticularly difficult (Buckman, Gelada, and Bellemare 2020;
Abdar et al. 2020). Recently, deep learning approaches for
offline reinforcement learning have received considerable at-
tention. Several of these advances can be viewed as members
of the policy-constrained pessimistic family (Kim 2020; Ku-
mar et al. 2020; Hou et al. 2020), where the primary dif-
ferences between approaches are the choice of constraint
(Buckman, Gelada, and Bellemare 2020). For example, both
Batch Constrained Q-Learning (Fujimoto et al. 2019) and
Pessimistic Offline Policy Optimization (POPO) (Hou et al.
2020) can be viewed as pessimistic algorithms because they
are pessimistic with respect to Q-values for state-action pairs
not covered by the behavior policy. However, because this
pessimism is based on the observed behavior policy, they
belong to the policy-constrained pessimistic family, whereas
we are interested in the uncertainty-based pessimistic family
and its theoretical advantages over the alternative.

Like our method, many other offline deep RL algo-

rithms also use an ensemble of Q-functions to prevent over-
estimating the Bellman backup. For example, the methods
BEAR (Kim 2020), POPO (Hou et al. 2020), and BRAC
(Wu, Tucker, and Nachum 2019) use ensembles to do this
by picking either the Q-function with the lowest value or
they pick a weighted average of the current highest and low-
est Q-value in the ensemble. This technique reduces the
over-estimation propagation caused by the target network
and the max operator in the Bellman equation. This works
well in online RL (Haarnoja et al. 2018; Fujimoto, Hoof,
and Meger 2018), but in offline RL, insufficient informa-
tion and insufficient coverage in the data set also causes
over-estimations which are not addressed by this technique
(Rashidinejad et al. 2021; Jin, Yang, and Wang 2020). Meth-
ods like BEAR, POPO, and BRAC have to resort to policy-
constrained techniques such as the maximum mean discrep-
ancy, KL divergence, and Wasserstein Distance to counter-
act this secondary source of over-estimations (Kim 2020;
Hou et al. 2020; Wu, Tucker, and Nachum 2019). In con-
trast, our method addresses the over-estimations caused by
insufficient information by penalizing the Q-values based on
the epistemic uncertainty.

Another interesting approach is Conservative Q-learning
(Kumar et al. 2020) and its model-based version Conserva-
tive Offline Model-Based Policy Optimization (COMBO)
(Yu et al. 2021). These methods regularize the Q-values
by simultaneously minimizing all the Q-values and maxi-
mizing the Q-values in the data set, finding a lower bound
on the Q-value. While it appears that this algorithm aims
to avoid low-information regions similar to the algorithms
in the uncertainty-aware pessimistic family, this is not the
case because it uses data concentration as a proxy for infor-
mation. In reality, it belongs to the policy-constrained pes-
simistic algorithmic family because it aims to stay close to
the empirical policy, especially in very noisy or small data
sets. This constraint is much looser than the previously men-
tioned policy constraints in practice, allowing for larger im-
provements. In contrast, our uncertainty-aware pessimistic
algorithm is not constrained by any empirical policy, which
theoretically allows for even larger improvements upon the
empirical policy in a wider range of data sets (Rashidinejad
et al. 2021; Jin, Yang, and Wang 2020).

Currently, Model-based Offline Policy Optimization
(MOPO) (Yu et al. 2020) and Model-Based Offline Rein-
forcement Learning (MOReL) (Kidambi et al. 2020) are
the most similar to our model-free algorithm. These model-
based methods use an ensemble of models to estimate the
uncertainty in the MDP. This uncertainty estimate is used
to construct a pessimistic version of the MDP by subtract-
ing the state uncertainty from the modeled rewards. The re-
sulting pessimistic MDP is then used as input to a model-
free method to learn a pessimistic policy. The major disad-
vantage of these methods is that they do not learn a pes-
simistic policy using an end-to-end based technique, as our
method does. This is potentially an issue because when a
Bellman update is performed on a function approximated Q-
network, the value of a particular state is impacted by gen-
eralizations from other states, which potentially confounds
the pessimistic penalties (Buckman, Gelada, and Bellemare



2020). We conclude that there is a gap in the offline deep RL
literature for an end-to-end model-free uncertainty-aware
pessimistic algorithm, which we aim to address using our
method PEBL.

Uncertainty-Based Pessimism in Deep
Reinforcement Learning

The uncertainty in reinforcement learning can be decom-
posed into two types of uncertainty, aleatoric and epistemic
(Abdar et al. 2020; Kendall and Gal 2017). Aleatoric uncer-
tainty arises from the stochasticity that is naturally present
in the observations. Its key property is that it cannot be re-
duced by adding more data. A typical example of aleatoric
uncertainty is a random or noisy reward function; adding
more data from this function will not remove the noise in
the observations. Epistemic uncertainty describes what the
model does not know due to limitations in the observed data.
This type of uncertainty has the key property that it can be
reduced by adding more data. In this work, we are mainly
concerned with epistemic uncertainty.

We seek to apply uncertainty-based pessimism to address
two key challenges emergent in offline deep reinforcement
learning. The first issue arises when a naı̈ve algorithm, such
as an online version of DDQN or SAC, is applied to an of-
fline data set. In this scenario, a wide range of literature has
observed that the Q-values can increase continuously until
the algorithm diverges (Levine et al. 2020; Fujimoto et al.
2019; Kim 2020). This effect is most apparent in data sets
with low state-action space coverage, such as small data sets
and expertly generated data sets. The issue is caused by over-
optimistic value estimations of the next state. These over-
estimations can be small initially, but they compound over
time due to the Bellman equation, resulting in divergent be-
havior. One way to apply pessimism to counter this com-
pounding effect is by penalizing the estimated Q-value in the
Bellman backup of the target network by a factor of the un-
certainty (estimated by the standard deviation) (Levine et al.
2020):

yt = µQ(st+1, a; θ
′)− σQ(st+1, a; θ

′) (1)

In this equation, µQ is the mean, σQ is the standard deviation
of the Q-value approximations, and θ′ is the weights of the
target network.

Another issue that must be addressed is the trade-off be-
tween minimizing uncertainty and maximizing the Q-values
in the learned policy. Uncertainty-aware offline RL algo-
rithms do this by learning a policy that maximizes the un-
certainty lower bound of the Q-values:

πp = argmax
a
{µQ(st, a; θ)− σQ(st, a; θ)} (2)

In the remainder of this section, we will discuss how this
estimate σQ can be obtained.

Estimating Uncertainty in Deep Reinforcement
Learning
We seek a penalty that represents the epistemic uncertainty,
not the aleatoric uncertainty, which means it should be in-
versely proportional to the density in the data set as well as

our confidence. The deep learning literature proposes mul-
tiple ways to estimate the uncertainty in the predictions of
a neural network (Osband et al. 2016; Osband, Aslanides,
and Cassirer 2018; Gal and Ghahramani 2016; Blundell
et al. 2015; Kendall and Gal 2017; Liu et al. 2020). One of
the best-known uncertainty estimation techniques methods
is Monte Carlo dropout (Gal and Ghahramani 2016). This
method measures the uncertainty as the sample standard de-
viation over N Monte Carlo samples of slightly differing
network configurations. Dropout has been shown to success-
fully capture uncertainty in several applications (Wang et al.
2019; Nair et al. 2020; Do et al. 2020). However, it mainly
focuses on aleatoric uncertainty because its Bayesian poste-
rior does not concentrate on the observed data and it cannot
propagate its uncertainty through the Bellman fixed point
(Osband, Aslanides, and Cassirer 2018). These properties
make Monte Carlo dropout an unsuitable candidate for our
problem.

Another well-known uncertainty estimation technique is
the ensemble (Pearce, Leibfried, and Brintrup 2020; Os-
band, Aslanides, and Cassirer 2018; Lakshminarayanan,
Pritzel, and Blundell 2017). An ensemble measures the un-
certainty as the sample standard deviation between the pre-
diction of its members. Ensembles are very good at estimat-
ing epistemic uncertainty as long as every member learns
a different function in low data density areas. Another ad-
vantage of the ensemble is that its uncertainty measure is
function-dependent and can propagate uncertainties through
the Bellman fixed-point by definition (Osband, Aslanides,
and Cassirer 2018).

Our method uses the multi-headed bootstrap ensemble
with random priors to ensure that the ensemble members
are as diverse as possible (Osband, Aslanides, and Cassirer
2018). This approach is similar to the traditional deep learn-
ing ensemble, but it improves upon it in two ways. First,
it adds a different parallel prior to the prediction of each
head (Figure 1). This prior is a randomly initialized but
frozen network, meaning its weights will not change during
the training process. Due to this strategy, each head has an
input-dependent prior, while the mapping remains constant
throughout the training process. Thus, in high data concen-
tration areas, each head learns to ignore its prior and ap-
proaches a similar function, while in the low data concentra-
tion areas, each head is biased by its prior and there are more
significant disagreements in the learned function between
heads. This results in better epistemic uncertainty estima-
tion for out-of-distribution data. The second improvement
is the addition of the bootstrap. By training each ensemble
member on a slightly different subset of the data, we ensure
that it learns a different function where data is sparse, which
results in improved epistemic uncertainty estimation at the
edges of dense data concentration.

There is one notable disadvantage to our proposed uncer-
tainty estimation technique: the number of weights and com-
pute of this method increases linearly with the number of
heads used. However, it is possible to share a feature extrac-
tor such as a convolutional neural network (CNN). In theory,
this shared encoder can reduce the diversity in the ensemble,
but it has been observed empirically that this negative ef-



fect is minimal, making this a valid computational trade-off
(Osband et al. 2016; Osband, Aslanides, and Cassirer 2018;
Sedlmeier et al. 2019). In practice, the parallel heads and
their priors contain only one or two fully connected layers
making the memory and performance requirements manage-
able.
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Figure 1: The multi-headed bootstrap ensemble with random
priors network architecture. The architecture is similar to
traditional ensembles but adds the output of a frozen prior
network to each head’s output to create a state depended
prior.

Pessimistic Ensembles for Offline Deep
Reinforcement Learning

We propose two new PEssimistic ensemBLe (PEBL) algo-
rithms that use a multi-headed bootstrap with priors archi-
tecture to approximate the Q-function. The first algorithm
is a pessimistic version of DDQN (Van Hasselt, Guez, and
Silver 2016) aimed at problems with discrete action spaces.
The use of two Q-networks helps avoid over-estimations
in the function approximation, offering more stable perfor-
mance. The second algorithm is a pessimistic version of
SAC (Haarnoja et al. 2018) and works in both continuous
and discrete action-space cases. Although SAC can also be
applied to discrete action spaces, DDQN is often preferred in
this setting due to its lower memory and computation costs.

Pessimistic Ensemble DDQN
Our pessimistic version of DDQN, which we call PEBL
DDQN changes the TD-target of DDQN to:

yt = rt+(1−dt)∗γµQ(st, a∗; θ′)−σQ(st, a∗; θ′) (3)

a∗ = argmax
a
{µQ(st, a; θ)σQ(st, a∗; θ)}

In this equation, µQ(st, a; θ) and σQ(st, a; θ) are the sam-
ple mean and sample standard deviation over the different
heads:

µQ(st, a; θ) =
1

h

h−1∑

i=0

Qi(st, a; θi) (4)

σQ(st, a; θ) =

√∑h−1
i=0 (Qi(st, a; θi)− µQ(st, a; θi))2

h− 1
(5)

In this equation, Qi is the Q-value prediction of the i-th en-
semble head. This definition is different from the original
definition from the bootstrapped DQN (Osband et al. 2016;
Osband, Aslanides, and Cassirer 2018), which trained each
head on its own target head. This is because we need to sub-
tract an uncertainty penalty; if the penalty was subtracted
from each head directly, an unstable feedback loop is cre-
ated, resulting in potentially very large negative Q-values.
Finally, we add the bootstrapping masks as described in the
efficient implementation of bootstrapped DQN (Sedlmeier
et al. 2019), giving the following definition for the TD-error
for head i:

TDi = mi,j · (Qi(st, a; θi)− yt)
In this equation, mi,j is a boolean mask that has been sam-
pled for each training sample j from a Bernoulli distribution
with p = 0.8 as suggested by (Pearce, Leibfried, and Brin-
trup 2020). Note that the mi,j remains constant through the
entire training process. The final policy selects the action
with the highest pessimistic q-value.

πt = argmax
a
{µQ(st, a; θ)− Cπ · σQ(st, a; θ)}

Pessimistic Ensemble SAC
Our pessimistic version of Soft Actor-Critic, called PEBL
SAC, changes the target to:

yt = rt + (1− dt) · γ · (µQ(s, a; θ1, θ2)
− σQ(s, a; θ1, θ2))− α log πφ(ãt+1|st+1) (6)

where ãt+1 is sampled from the learned policy πφ(.|st+1).
We define µQ(s, a; θ1, θ2) and σQ(s, a; θ1, θ2) as:

µQ(s, a; θ1, θ2) =
1

h

h−1∑

i=0

min
j=1,2

Q(s, a; θj,i) (7)

σQ(s, a; θ1, θ2) =√√√√ 1

h− 1

h−1∑

i=0

(µQ(s, a; θ1, θ2)− min
j=1,2

Q(s, a; θj,i))2 (8)

Using these targets, we can calculate the TD-errors of the
PEBL SAC algorithm in the same way we calculated the
TD-errors for the PEBL DDQN algorithm with head i and
mask mi:

TDi,j = mi · (Qi(st, a; θi)− yt)
The original SAC algorithm calculates the policy loss using
the formula:

L =
1

|B|
∑

s∈B
(α log πφ(ãt, st) − min

i=1,2
{Q(st, ãt; θi)})



Our pessimistic version of this algorithm changes the loss
policy function to:

L =
1

|B|
∑

s∈B
(α log πφ(ãt, st)− (µQ(s, a; θ1, θ2)−

Cπ · σQ(s, a; θ1, θ2)) (9)

In this equation, we also introduce the uncertainty weight
trade-off parameter Cπ . This parameter controls the trade-
off between minimizing uncertainty and maximizing the
Q-values in the learned policy. This trade-off parameter
is needed because the policy loss in SAC is similar to a
white box adversarial attack on the Q-function due to the
re-parameterization trick (Akhtar and Mian 2018). This ad-
versarial formulation of the policy loss is not a problem in
deep online RL because it forces the agent to learn about the
flaws in its Q-function, which helps with exploration. How-
ever, in offline RL, this adversarial formulation is a problem
because the agent can no longer collect counterexamples in
the environment. Therefore, selecting the right parameter for
Cπ is crucial. Empirically, we found that it can be difficult
to find the right value for Cπ because it depends on many
factors such as the size of the data set, the state-action space
coverage, or the difficulty of modeling the true MDP. How-
ever, we can tune this parameter online using dual gradient
descent, a technique that is increasingly common in deep
reinforcement learning (Haarnoja et al. 2018; Kumar et al.
2020). We apply dual gradient descent and transform Cπ
into a Lagrangian multiplier by adding the constraint that
the average uncertainty of the actions selected by the learned
pessimistic policy π should be equal to the average uncer-
tainty observed in the actions for the data set:

1

n

D∑

st,at

σQ(st, at; θ) =
1

n

D∑

st

σQ(st, ap; θ), ap ∈ πp (10)

This constraint is possible because we are only interested in
avoiding epistemic uncertainty, which is high in areas where
the network cannot model the function well. Thus, we al-
low the selection of out-of-distribution actions as long as we
avoid areas with above-average epistemic uncertainty. The
constraint in Equation 10 captures this property, which re-
sults in a higher value of Cπ if πp chooses actions with
above-average epistemic uncertainty. It results in a lower
value for Cπ if πp chooses actions with below-average epis-
temic uncertainty.

Experimental Results
In this section, we discuss the results of several empirical
evaluations of our PEBL methods. The main purpose of our
experiments is to demonstrate that uncertainty-based pes-
simistic algorithms can be applied to offline deep RL prob-
lems and achieve high performance and that they can do well
for a wide range of provided data distributions. In all experi-
ments, the trade-off parameter Cπ in the SAC version of our
algorithm is learned using Lagrangian dual gradient descent
(Equation 10). For an open-source implementation, please
refer to the code in the accompanying GitHub repository:
github.com/j0rd1smit/PEBL.

MinAtar
We first aimed to reproduce the results presented by Buck-
man, Gelada, and Bellemare in their paper (2020). In con-
tinuous experiments, they compared only three algorithmic
families, excluding the uncertainty-aware pessimistic and
leaving it as an open research question. We use their same
experimental set-up and additionally assess the performance
of our uncertainty-aware pessimistic algorithm PEBL.

The two environments used in this experiment are from
MinAtar, which contains several miniaturized versions of
Atari 2600 games (Young and Tian 2019). As is common in
offline deep RL experiments, we first train an online agent to
obtain an optimal policy for each of the environments (Buck-
man, Gelada, and Bellemare 2020; Fujimoto et al. 2019;
Fu et al. 2020; Agarwal, Schuurmans, and Norouzi 2020).
We then use this policy to generate several data sets with
different expert/random ratios by modifying epsilon in an
epsilon-greedy strategy. The generated data sets used in this
experiment contain 50000 transitions. We chose this slightly
smaller data set size because it highlights the advantages
of the uncertainty-based method. Using this experimental
setup, we evaluate our method in two ways. Firstly, we val-
idate that our method does not overestimate the expected
discounted return. We do this by comparing the return our
method obtains in the real environment with its prediction
for the discounted return at the start of the episode. Sec-
ondly, we evaluate how well our method adheres to the theo-
retically predicted property of uncertainty-aware algorithms
by measuring the final performance of the learned policy for
varying values of epsilon.

Baselines We compare PEBL to methods representing the
aforementioned algorithmic families. The first is the behav-
ior clone, referred to as BC. The policy-based pessimistic
family is represented by Batch-Constrained Q-Learning
(BCQ) (Fujimoto, Meger, and Precup 2019). The third cate-
gory is the naı̈ve algorithmic family, represented by DDQN
(Van Hasselt, Guez, and Silver 2016).

Results The outcomes of our MinAtar experiments are
pictured in Figures 2 and 3. The results of Figure 2 show that
the value function learned by our PEBL DDQN method does
not overestimate the expected discounted return for any ep-
silon value in both the Space Invaders and Breakout environ-
ment. In contrast, the baseline DDQN method overestimates
the expected discounted return for every epsilon value, and
this overestimation gets worse when the amount of informa-
tion in the data decreases.

In Figure 3, we see that PEBL DDQN performs best for
a wider range of epsilon-greedy policy data sets than the
other algorithmic families, in line with the theoretical results
we aimed to replicate (Buckman, Gelada, and Bellemare
2020). However, our method does not follow the theoret-
ically predicted behavior for uncertainty-aware pessimistic
algorithms in the expert data regime. We expected to per-
form as well as or similarly to the behavior cloning method
but fall notably short. This suggests that our epistemic uncer-
tainty estimation techniques are not expressive enough for
highly biased data. This result is interesting because Figure



2 shows that our method does not overestimate the expected
discounted return in these highly biased expert data sets.
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Figure 2: The over-estimations in our MinAtar experiment.
We define the overestimation as the obtained return minus
the predicted Q-value in the initial state. Our PEBL DDQN
method does not over-estimate the expected discounted re-
turn for any ε in both the Space Invaders and Breakout envi-
ronment. In contrast, the naive DDQN method overestimates
for every ε.

Maze-2D: Uncertainty Visualization
We applied PEBL SAC to the Maze-2D environment (Fig-
ure 4a) from the D4RL benchmark (Fu et al. 2020). A mo-
tivation for using this 2-dimensional domain is that we can
visualize the influence of pessimism on what our algorithm
learns. In this task, the agent is shown a data set with un-
related paths through the maze containing only x and y po-
sitions and velocities. The agent has to stitch these transi-
tions together to find a path to a goal location in the maze.
The challenge of this environment is that the agent never
observes the optimal path and has to learn the maze’s layout
through the data set.

Baselines We compare our method to the results provided
in the benchmark paper for SAC, Behavior Cloning (BC),
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Figure 3: The performance of different representatives of
each offline RL algorithmic families compared to our algo-
rithm. Measurements are obtained by taking the average per-
formance of the final policy over 100 episodes averaged over
3 random seeds. Each random seed has its own data set con-
taining 50000 transitions sampled with an ε-greedy policy,
where the greedy policy is an expert DDQN agent.

and Continuous Batch-Constrained Q-Learning (CBCQ)
(Fujimoto, Hoof, and Meger 2018; Fu et al. 2020).

Results The performance of the algorithms in the Maze-
2D experiment are displayed in Table 1. PEBL SAC is able
to deviate further from the observed behavior policy than the
other baselines. This allows it to solve all mazes, including
the large maze, which has not yet been solved by any exist-
ing policy-based pessimistic method (Fu et al. 2020). Figure
4b visualizes the value of the uncertainty-based penalty and
the penalized Q-values. We see that the result of our pes-
simistic penalty is that the agent assigns low Q-values to ar-
eas which it is uncertain about, such as positions occupied
by walls.

D4RL: MuJoCo gym
In this group of experiments, we compare PEBL SAC to
some of the more difficult continuous-action tasks in the
D4RL benchmark.



Maze type SAC BC CBCQ PEBL SAC
U 88.2 3.8 12.8 151.1

Medium 26.1 30.3 8.3 146.6
Large -1.9 5.0 6.2 129.5

Table 1: Results for D4RL’s Maze-2D benchmark. Each
score is the average normalized reward over 100 runs at the
last iteration of training.

(a) Maze-2D environment

(b) The uncertainty-based penalty and the penalized Q-values per
location on the map

Figure 4: A visualization of the learned Q-function and its
uncertainty for the large Maze-2D environment (Fu et al.
2020). Note that the agent only observes (x, y, vx, vy).
Figure b) shows the uncertainty-based penalty Cπ ·
σQ(s, a;φ1, φ2) where Cπ was learned and converged to
Cπ = 12.53 and the penalized Q-values, where the grey
areas are data points provided in the data set.

Baselines Similarly to the first experiment, we compare
our methods to representatives of each algorithmic family.
The methods are SAC (Haarnoja et al. 2018) and Continuous
Batch-Constrained Q-Learning (CBCQ) (Fujimoto, Meger,
and Precup 2019) for the naı̈ve and the policy-based pes-
simistic algorithmic family, respectively. We also compare
our method to Conservative Q-learning (CQL) (Kumar et al.
2020) and Conservative Offline Model-Based Policy Opti-
mization (COMBO) (Yu et al. 2021). Both methods are con-
sidered state-of-the-art offline RL methods and members of
the policy-based pessimistic algorithmic family (Buckman,
Gelada, and Bellemare 2020). Compared to other policy-
based pessimistic algorithms, these methods have a signif-
icantly looser constraint, allowing for larger improvements
upon the data collection policies.

Results The results are shown in Table 2, where the per-
formance of SAC, BC, and CBCQ is given as reported
in (Fujimoto, Meger, and Precup 2019), and for CQL and
COMBO are the number reported in (Kumar et al. 2020)
and (Yu et al. 2021), respectively. On the data sets gener-
ated using non-expert data policies, marked Random and
Medium, PEBL SAC performs on par or exceeds the best
prior methods. Interestingly, it even out-performs a model-
based method, while PEBL SAC is a model-free method it-
self. Similar to the PEBL DDQN algorithm, we are unable
to match the performance of behavior cloning in the expert
data regime.

Data set type SAC BC CBCQ CQL COMBO PEBL SAC
Random 30.5 2.1 2.2 35.4 38.8 35.7

Medium-Replay 1.9 38.4 38.2 44.4 54.2 57.5
Medium -4.3 36.1 40.7 46.2 55.1 61.5
Expert -1.9 107.0 - 104.0 - 3.6

Table 2: Results for the D4RL benchmark. Each score is the
average normalized reward over 100 runs at the last iteration
of training as described in the D4RL benchmark.

Conclusion and Future Work

We introduced the multi-headed bootstrap with randomized
priors approach to measuring epistemic uncertainty. Using
this ensemble-based method, we penalized the value func-
tion to produce two new pessimistic offline RL algorithms,
called PEBL DDQN and PEBL SAC. These algorithms are
a step towards robust uncertainty-aware pessimistic offline
RL algorithms in the deep learning setting. We have shown
that our methods are able to perform well on a wide range
of data set distributions compared to algorithms from the
naı̈ve and policy-based pessimistic families. However, in ex-
periments, we also showed that our methods do not perform
well on expert data sets, even though the theory predicts they
would. We expect that our epistemic uncertainty estimation
techniques are not expressive enough for highly biased data.
A more suitable uncertainty measure may address this is-
sue. Thus we hope to continue to investigate appropriate
measures of uncertainty for these problems. Some promis-
ing methods for future work are Bayesian neural networks
(Blundell et al. 2015) and deep Gaussian processes (Liu
et al. 2020; van Amersfoort et al. 2021). Both methods are
more accurate in their estimation of epistemic uncertainty
but are more difficult to optimize in practice. We would also
like to examine whether the epistemic uncertainty estima-
tion of our method can be improved using self-supervised
representation learning (Stooke et al. 2020; Laskin, Srini-
vas, and Abbeel 2020; Laskin et al. 2020). This technique
has been shown to improve existing offline RL methods in
various ways (Sinha and Garg 2021). It may prove beneficial
for our method as the improved representations might make
out-of-distribution detection easier. In general, we hope that
our work inspires further investigation into the development
of uncertainty-aware pessimistic algorithms that adhere to
the theoretical support of their abilities.
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