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Abstract

Spiking neural networks (SNNs) are a new generation of neural networks aiming at
reducing the power consumption of conventional artificial intelligence systems by mim-
icking the behaviour of biological neurons found in the human brain. To achieve
this goal, SNNs mimic the propagation of information observed in biological neurons
through the use of discrete events known as spikes. Historically, different theories
have been proposed to explain how information is encoded into these spike events.
One such theory is time-to-first-spike (TTFS) coding, which offers valuable opportuni-
ties for low-power and low-latency hardware implementations.

Nonetheless, networks of spiking neurons still miss a characteristic of learning
observed in human beings. Specifically, they are unable to learn different tasks in a
sequential fashion without incurring in the problem of catastrophic forgetting. Indeed,
while these networks achieve state-of-the-art results in a vast number of problems,
they require a full retraining of the network as new tasks need to be learned. This
problem not only highlight a difference from biological systems, but also limits the
applicability of such systems in environments which require adaptation to new tasks.

Currently, there exists no hardware that is capable of mitigating the problem of
catastrophic forgetting while leveraging the low-power and low-latency opportunities
offered by TTFS coding. To overcome this research gap, we conducted a literature
review of proposed solutions to the problem of catastrophic forgetting in both the ar-
tificial and spiking neural network domains. The aim of this review it to uncover bi-
ologically inspired solutions to the problem of catastrophic forgetting which could be
applied to TTFS-encoded spiking networks. Furthermore, to implement a digital hard-
ware accelerator capable of incorporating the requirements of the selected solution,
we summarized key architectures for event-based SNNs.

This thesis presents a novel neural model based on a spike responsemodel (SRM)
with a Rel-PSP kernel, which is enhanced with active dendrites. The proposed solu-
tion successfully mitigates the problem of catastrophic forgetting in a typical continual
learning setup, in which the network is trained over different tasks in a sequential
fashion, i.e. one task after the other. Additionally, we designed a digital hardware
architecture that implements the proposed solution in a Xilinx Zynq-7020 SoC FPGA.

Our solution is capable of learning the first five digits of the N-MNIST dataset in
a sequential fashion, resulting in a final average accuracy of 100% across all tasks.
Conversely, the same model without active dendrites achieves an accuracy of only
23%, which is close to random guessing, thereby demonstrating a successful miti-
gation of catastrophic forgetting with the proposed solution. Additionally, our digital
hardware implementation is capable of classifying a sample image of the dataset in
an average time of 117 µs while consuming 232 mW at a clock frequency of 125 MHz.
The proposed architecture uses 74% of the LUTs, 28% of the FFs, and 32% of the
BRAM available in the FPGA.
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1
Introduction

As human beings experience the physical world, they have the inherent ability to learn
different tasks. Take, for instance, consecutive learning experiences, from the initial
steps of walking to the ability of driving a bike without falling, and finally to the more
complex task of driving a car. Although the act of driving a bike shares some similar-
ities to walking, e.g. both tasks require similar movements of the legs, humans have
the innate ability to learn a new task while incorporating information from previously
learned tasks, without forgetting how to perform them. This ability, called continual
learning (CL) in the deep learning community, is visually depicted in Fig. 1.1a.

(a) Human continual learning

(b) Machine learning with interleaved learning of tasks

(c) Machine learning with sequential learning of tasks (catastrophic forgetting)

Figure 1.1: Human vs machine learning. (a) The human brain can learn different tasks in sequential
order without forgetting them. (b) Machine learning with stochastic gradient descent (SGD): training
examples are provided in an interleaved fashion and tasks are learned simultaneously. (c) Machine
learning in a sequential training environment results in forgetting initial tasks, e.g. walking and biking.

Inspired by the capabilities of the human brain, artificial neural networks (ANNs)
have demonstrated astonishing capabilities in recognizing patterns [1], detecting ob-
jects from images and videos [2, 3], processing natural language [4, 5], and recogniz-
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ing speech [6]. These remarkable achievements were made possible by the introduc-
tion of back-propagation (BP) [7] and stochastic gradient descent (SGD) [8], which
require to present each task to the network in an interleaved fashion as depicted in
Fig. 1.1b. Indeed, following our initial metaphor, whereas the human brain can se-
quentially learn to walk, ride a bike, and drive a car, current training methodologies
using SGD require to present examples of each task in an interleaved manner. It is
as if one were to learn a little about walking, then a little about driving a car, and then
a little about riding a bike, repeating this process iteratively until all tasks are learned.
Following this approach, incorporating a new task into the neural network requires ag-
gregating the new data with the data from previous tasks, followed by a retraining of
the network from scratch. The first trace of this limitation appeared in 1989 through the
work of McCloskey [9]. In this work, the term catastrophic inference (or catastrophic
forgetting) was introduced to indicate the inability of deep neural networks to learn
new tasks sequentially. An example of this problem is depicted in Fig. 1.1c.

Moreover, beyond the limitation imposed by catastrophic forgetting, the power con-
sumption of current Artificial Intelligent (AI) machines is approximately two orders of
magnitude higher than that of the brain when solving the same task [10]. With the
aim of reducing the power consumption of AI systems, researchers started to develop
a new generation of neural networks called spiking neural networks (SNNs), which
attempt to mimic the dynamics of biological neurons. This novel approach, known as
neuromorphic computing, seeks to emulate the remarkable efficiency and adaptability
of the brain in information processing to reduce the power consumption of AI hardware.
The fundamental difference between SNNs and ANNs lies in the way information is
represented and processed. For example, in traditional ANNs, the information is rep-
resented using real-valued numbers. On the other hand, SNNs use discrete events,
called spikes, to propagate information throughout the network. This approach is in-
spired by the action potential generated by neural cells to communicate information
to other neurons. The difference between these two approaches is shown in Fig. 1.2
for a single neuron.

Figure 1.2: Artificial vs spiking neuron. On the left side, x1, x2 and x3 are the real-valued inputs of
an artificial neuron. The symbol y is the real-valued output. On the right side, s1(t), s2(t) and s3(t) are
the input spike trains of a spiking neuron. The symbol sout(t) is the output spike train.

How information is efficiently encoded into biological spikes has been extensively
researched in the field of computational neuroscience, and it is still an open question.
Historically, different coding schemes have been proposed to explain the mechanism
of information transmission in neural cells. One such scheme is rate coding, which
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is the dominant model in neuroscience and SNNs. It uses spiking rates to represent
information and has been experimentally observed in sensory systems, such as the
visual and motor cortices [11]. Despite its simplicity and robustness, rate coding re-
quires an observation window to calculate the mean rate, resulting in slow information
transmission and long processing times. On the other hand, another scheme, referred
to as time-to-first-spike (TTFS) coding, has been hypothesized to account for areas
of the brain that require a fast and efficient response. Numerous experiments high-
lighted the plausibility of this encoding mechanism in nervous systems such as the
retina and tactile afferents [12]. This coding scheme encodes information into the
spike time from an initial observation reference, and each neuron spikes at most once.
Compared to the aforementioned rate coding, the behavior of TTFS coding is charac-
terized by a low spiking activity (i.e. high sparsity), which holds significant potential
for low power consumption, particularly when implemented into custom event-based
hardware. Moreover, because the information is encoded in the time of the first spike,
network inference can potentially be made extremely fast by eliminating the necessity
to wait for all neurons to spike.

Figure 1.3: Encoding mechanisms. A real value can be converted into rate or TTFS coding. In the
former, the value is encoded in the firing rate. In the latter, the value is encoded in the time of the
spike from an initial reference: the lower the time until the first spike, the higher the value.

Nowadays, there is a strong need for fast and power-efficient CL hardware that can
incorporate new tasks without a complete retraining of the network. However, despite
the potential of TTFS coding for efficient hardware, there exists no prior proposal for
learning algorithms aimed at mitigating the problem of catastrophic forgetting in TTFS
encoded neural networks. This deficiency extends to the domain of hardware accel-
erators that could be effectively used in continual learning situations that require low
power and fast inference. To fill this gap, the main research question of this thesis can
be formulated as follows:

Is it feasible to formulate a learning algorithm capable of mitigating the problem
of catastrophic forgetting in TTFS encoded networks and design its corresponding
hardware accelerator following a neuromorphic approach ?
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To address this question, a literature review has been conducted to investigate
solutions aimed at mitigating catastrophic forgetting in both the realms of ANNs and
SNNs. This exploration seeks to uncover strategies that are not only rooted in tradi-
tional computational methods, but also inspired by the complex biology of neural sys-
tems. Furthermore, to address the design of a corresponding hardware accelerator, a
review focusing on existing event-based architectures for continual learning and time-
to-first-spike coding has been conducted. This review aims to design an accelerator
that can incorporate the solution to the catastrophic forgetting problem while accom-
modating the requirements of TTFS coding, resulting in the following sub-problems of
the main research question:

1. What specific biologically-inspired computational mechanisms could be lever-
aged to solve the problem of catastrophic forgetting ?

2. Does TTFS coding offer an effective advantage in terms of power consumption
and latency compared to other coding schemes?

3. Can the inherent characteristics of TTFS encoded neural models be used to de-
velop a learning algorithm that effectively mitigates catastrophic forgetting while
easing hardware requirements ?

4. How do different architectural choices of the neural model impact hardware re-
quirements ?

The main contribution of this thesis is two-fold. First, it proposes a novel neural
model inspired by the biological concept of active dendrites [13], which can effectively
mitigate the problem of catastrophic forgetting in time-to-first-spike neural networks.
Second, it provides an efficient hardware accelerator design that can effectively ac-
commodate for the unique characteristics of the proposed model. The efficacy of
the proposed solution to retain previously learned tasks has been evaluated with a se-
quential classification task based on the neuromorphic MNIST (N-MNIST) digit dataset
[14]. The proposed solution successfully learns the first five digits in sequential order,
achieving an average accuracy of 100%. On the contrary, when the same model
is used without the suggested approach, the average accuracy drops significantly to
23%, thus demonstrating the effectivemitigation of the catastrophic forgetting problem.
Furthermore, the hardware accelerator enhanced with active dendrites can classify an
image in an estimated average time of 117 µs at fclk = 125 MHz while consuming
231 mW of power on a Zynq-7020 SoC FPGA, and using 72 % of the available re-
sources. To guide the reader through a comprehensive exploration of the proposed
solution, this thesis is organized into several chapters.

Chapter 2 introduces the reader to the foundational background material required
to comprehend the proposed solution. Initially, an exploration of the biological anatomy
and operating principles of biological neurons is presented. This material will serve
as a basis to understand the different encoding mechanisms used by biological neu-
rons to transmit information, along with an exploration of the hardware and software
implications associated with each mechanism. Following this introduction, the chap-
ter explains the most popular neuron models used by the neuromorphic community.
Specifically, it will provide mathematical formulations for the leaky integrate-and-fire
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(LIF) model and the spike response model (SRM). Furthermore, the chapter elabo-
rates on the conventional layered architecture and the algorithm used to train such
a structure. Moving forward, a literature review of existing software approaches ad-
dressing the problem of catastrophic forgetting in both SNNs and ANNs is provided
with the aim of uncovering a biologically plausible mechanism to mitigate the problem
of catastrophic forgetting in a TTFS network. Finally, this chapter offers an overview
of general hardware architectures for TTFS networks and continual learning.

Chapter 3 presents the design of the proposed solution from both the software
and the hardware perspectives. It begins by laying out the mathematical basis of the
proposed neuron model, followed by an explanation of the network architecture and
the training process. Furthermore, this chapter provides a detailed explanation of the
hardware architecture and its subcomponents, including controllers, the neural model,
and the neural cluster.

Chapter 4 discusses the results obtained from both the software simulation and
the hardware implementation. It starts by introducing the case study used to gauge the
efficacy of the proposed model. Afterwards, it provides a discussion of the software
results in terms of the ability of the proposed model to retain previously learned tasks.
Furthermore, the hardware results of the implemented solution will be discussed in
terms of latency, resource utilization, power consumption, and energy efficiency.

Chapter 5 presents the conclusion of this thesis and explores potential avenues
for future work with the proposed model.



2
Background material

This chapter presents the fundamental knowledge required to comprehend the pro-
posed solution to the main research question of this thesis. In Section 2.1, we will in-
troduce the anatomy and operating principles of biological neurons. This foundational
knowledge will serve as the basis for Section 2.2, where we examine the different en-
coding schemes employed by neurons to transmit information and their implications
in the context of machine learning and hardware implementations. In Section 2.3, we
will introduce the most popular models employed by the neuromorphic community to
mimic the behavior of biological neurons. In Section 2.4, we will explore both the
conventional architectures used to implement networks of spiking neurons and the
training algorithm employed to train such structures. This knowledge will provide the
foundation to understand the problem of catastrophic forgetting discussed in Section
2.5. In addition to a formal definition of the problem, in this section, we will provide
information on evaluation datasets and discuss the existing literature on the problem
of catastrophic forgetting. Within this discussion, we will highlight the significant role
that active dendrites play in enabling spiking networks to learn continually. Finally,
in Section 2.6, we will introduce the reader to the general hardware architectures for
continual learning and TTFS-encoded networks.

2.1. Principles and anatomy of biological neurons
The cerebral cortex, often referred to as the gray matter of the brain, is a complex and
intricate structure of computational units known as neurons, among which pyramidal
neurons are the most abundant [15]. As illustrated in Fig. 2.1, pyramidal neurons
consist of the following components:

• Synapse: connection between the axon terminal of one neuron and the den-
drites of another neuron.

• Distal dendrites: also called active dendrites, are tree-shaped structures con-
taining thousands of synapses that receive signals from neurons in the distal
regions of the brain. They perform non-linear local processing of contextual in-
puts [16]. There are two classes of distal dendrites: basal, extending from the
base of the neuron, and apical, extending from the apex.

6
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• Proximal dendrites: tree-shaped structures, located close to the neuron’s soma,
contain thousands of synapses that receive signals from nearby neurons and
perform a linear processing of incoming signals.

• Soma: the main body of the neuron, which is responsible for processing post-
synaptic signals from proximal and basal dendritic trees.

• Axon: a nerve fiber that transmits the processed signals from the soma to neigh-
boring neurons through a series of electrical pulses known as spikes.

Figure 2.1: Anatomy of pyramidal neurons. A pyramidal neuron consists of two different types of
dendritic branches: distal, also known as active dendrites, and proximal. The former contains
thousands of connections from neurons located in distal regions of the brain, whereas the latter
contains connections from neighboring neurons. These connections are called synapses and link the
axon of one neuron to the dendrites of another. The triangle in the center of the image represents the
neuron’s soma. The branches extending from the base of the triangle are called basal dendrites,
whereas the ones extending from the apex of the triangle are called apical dendrites. The black
arrows represent the flow of information in the neuron. As one can see, the dendrites receive signals
from other neurons while the axon sends the processed signal to other neurons.

The soma of a neuron exhibits a difference in the electric potential between its inner
part and the outer environment, also known as themembrane voltage. This difference
arises from the motion of ions like sodium (Na+), potassium (K+), and chloride (Cl-)
flowing in and out of the cell. When at rest, i.e. balanced ions flow, the potential
sits at -70 mV, also known as the resting voltage. Whenever the neuron receives a
stimulus from another neuron through a synaptic connection, the membrane voltage



2.1. Principles and anatomy of biological neurons 8

leaves its resting state1. If the post-synaptic signal is strong enough, the membrane
can reach a specific voltage called threshold voltage after which the neuron emits
an action potential as shown in Fig. 2.2. The action potential is an abrupt increase
in the electrical potential of the neural cell characterized by a depolarization and a
repolarization phase, after which the neuron returns to its resting potential. This action
potential travels through the axon fiber until it reaches the synapses located in the
dendritic trees of other neurons.

Figure 2.2: Action potential. Following a post-synaptic stimulus, the membrane potential,
represented by the orange line, reaches the threshold voltage. After this event, the neuron cell
depolarizes until it reaches a peak potential and repolarizes until it reaches the hyperpolarization
phase. During this stage, the neuron is insensitive to incoming stimuli. Following this phase, the
potential goes back to the resting state and becomes sensitive to incoming stimuli again. If the
stimulus is not strong enough, the action potential is not elicited, resulting in a failed interaction,
represented by the blue lines.

It is a well-known fact that synaptic connections between neurons play an essential
role in retaining the information obtained during learning, as they can modulate how
information is transferred to the membrane potential [17]. Specifically, a synapse can
undergo a change in strength, which either enhances or weakens the signal transmit-
ted from the pre-synaptic neuron. This idea, referred to as synaptic plasticity, consti-
tutes the core concept of learning in networks of neurons.

1The input signal has to be strong enough to move the membrane potential from its resting state
and the neuron must not be in its hyperpolarization phase.
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2.2. Neural coding
Long before the advent of neural networks as a computing paradigm, humans have
wondered about the language of neurons. The concept of neural coding, or the idea
that patterns of electrical activity within the brain might represent the alphabet of neu-
ral cells, has deep historical roots. This idea was first proposed by Cajal in 1909 in
his work [18]. Although his intuitions were groundbreaking, a formal mathematical
model to describe the neural language of neurons was still missing. Only after the ad-
vent of electrophysiological recording techniques in the mid-20th century could a first
mathematical framework be laid down, resulting in the discoveries of the two Nobel-
Prize-winning scientists, Hodgkin and Huxley [19]. Their work proposes a mathemat-
ical model that describes the evolution of the membrane potential and the generation
of action potentials. It further suggests that action potentials, i.e. spikes, are the key
information primitive of the neural alphabet. However, it has only been within the last
three decades that new theories have been proposed that shed some light on the
mechanism of information encoding into action potentials [20]. The most plausible en-
coding mechanisms are rate coding, temporal coding, burst coding, and phase coding.
A visual representation of each encoding scheme can be seen in Fig. 2.3.

Figure 2.3: Neural coding schemes. (a) represents the real-valued quantity to be encoded in a
spike train. This information can be encoded in a spike train using (b) rate coding, (c)
time-to-first-spike coding, (d) burst coding, and (e) phase coding.

2.2.1. Rate coding
Rate coding is the most widely adopted encoding theory in both neuroscience and
spiking neural networks. It encodes information in the spike count, i.e. firing rate,
which is proportional to the quantity being encoded. This behavior was observed for
the first time in the retina by Hubel and Wisel in their pioneering work [21]. This work
demonstrates that if a photoreceptor cell in the retina is stimulated with bright light, it
generates a greater number of action potentials transmitted to the visual cortex com-
pared to its response under lower luminosity. This mechanism requires a temporal
observation window to count the number of spikes generated by each neuron.
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2.2.2. Temporal coding (TTFS)
Temporal coding or time-to-first-spike (TTFS) coding, encodes information in the spike
time. For example, as depicted in Fig. 2.3c, a large quantity is encoded in an early
spike time, while a small quantity is encoded in a late spike time. This encoding mech-
anism is particularly suitable for nervous systems that require a very fast response. In
fact, temporal coding is the mechanism of communication observed in tactile afferents
that requires responses within a few milliseconds [22].

2.2.3. Burst coding
As the name suggests, burst coding encodes information in a spike burst at a specific
time. Specifically, this coding scheme has been shown to convey information through
the number of spikes or the interval between spikes [23]. Not only the location of the
burst can convey information, but also the number of spikes and their relative spacing
within a burst [24].

2.2.4. Phase coding
In phase coding, the information is encoded in the phase of the spike with respect to
a global oscillation. This distinctive phenomenon has been observed within specific
areas of the brain, such as the hippocampus and the olfactory system [25]. The oscil-
lations within the neuron population of these regions can serve as a reference signal
for the activity of other neurons. For example, O’Keefe has experimentally demon-
strated that, in a rat’s brain, the phase of a spike that occurs with an oscillation of
the neural population of the hippocampus conveys information about the rat’s spatial
location [26].

2.2.5. Comparison and discussion
Each coding scheme has different implications for software and hardware implemen-
tations. In the context of hardware-software co-design, these implications hold sig-
nificant potential to facilitate the development of hardware architectures with reduced
power consumption and fast inference time. In 2021, Guo et al. [11] propose a sys-
tematic review of each coding scheme using metrics such as accuracy, latency, num-
ber of synaptic operations (# SOP), area, power, and resilience to quantization. The
authors utilize Fashion-MNIST as an evaluation dataset for each scheme. The quali-
tative results of each coding scheme for each metric obtained through this study are
summarized in the heat map of Fig. 2.4.

The accuracy, latency, # SOP, and resilience to quantization metric were obtained
from a software simulation of each scheme. Conversely, the area requirements were
obtained by determining the equivalent number of NAND gates for each scheme. Fi-
nally, for power estimations, each coding scheme was implemented on a Xilinx VC709
FPGA board running with a clock frequency of 100 MHz. The numerical results ob-
tained from these measurements were first normalized using a min-max normalization
method and then rated to generate a table similar to the proposed heatmap. It is ev-
ident that TTFS encoding provides the most favorable trade-offs among the different
schemes.
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Figure 2.4: Neural coding comparison. Qualitative heatmap of the different encoding schemes
evaluated for accuracy, latency, number of synaptic operations (# SOPs), area, power and resilience
to quantization. The heatmap is generated form Table 9 of [11].

To gain insights into the main advantages related to latency and power efficiency,
which are key metrics for our research question, it is valuable to examine the standard
machine learning problem of image classification. Generally, as will be discussed in
Section 2.4, networks of spiking neurons are organized in a layered structure where
the output layer contains as many neurons as classes of images. The objective of the
network is to increase the activity of the output neuron assigned to a specific class
when the network is presented with an image of that class.

In the context of rate coding, each neuron in the output layer needs to be observed
for the same duration before concluding which one is the most active, and hence
determining the classification result. On the contrary, temporal coding eliminates the
need to wait for spikes from all output neurons. By encoding the information in the
spike time, the correct class can be precisely determined in the instance where the first
neuron emits a spike. For this reason, temporal encoding provides a shorter inference
time compared to rate coding. Furthermore, in this coding methodology, each neuron
is allowed to spike at most once. Therefore, if properly designed, physical neurons in a
custom hardware implementation could be gated from processing new incoming data
after the occurrence of a spike, thus reducing power consumption. As a consequence,
temporal coding has significant potential for designing custom accelerators with fast
inference and low power.

2.3. Spiking neuron models
From a biophysical perspective, action potentials are the result of the flow of ions
(calcium, potassium, and chlorine) through the membrane. In computational neuro-
science, the generation of action potentials can be described by conductance-based
or phenomenological models [25]. The former aims at capturing the biophysical mech-
anism of ions flowing across the neuron’s membrane. The latter attempts to capture
the essential behavior of the neuron without accounting for the underlying ion chan-
nel dynamics. Phenomenological models trade off the simplicity of the mathemati-
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cal model for computational efficiency, sacrificing the biophysical details captured by
conductance-based models. As a result, to allow for efficient large-scale simulations
and hardware implementations, spiking neurons are usually implemented using phe-
nomenological models. The most commonly employed model is the ubiquitous leaky
integrate-and-fire (LIF) neuron model. However, the LIF model is a specific case of
the more general spike response model (SRM) proposed by Gerstner in [27]. In the
incoming sections, the reader will be introduced to both models.

2.3.1. Leaky-integrate-and-fire model

Figure 2.5: Leaky-integrate-and-fire (LIF) model. The figure represents one post-synaptic neuron
connected to three pre-synaptic neurons. Each pre-synaptic neuron sends a spike train, e.g. s1(t),
s2(t) and s3(t), through the synapses with weights W10, W20 and W30. These spike trains are
converted into currents by the synapses and are summed up into the current I(t). This current goes
through an RC circuit where part of it is integrated in the capacitor C and another part is leaked
through R. The switch represents the resetting mechanism of the neuron. If the membrane potential
Vm(t) crosses the threshold voltage Vth, the switch is closed and the capacitor is discharged, thereby
resetting the membrane potential to its resting potential.

The LIFmodel describes the behavior of themembrane potential Vm(t) and the gen-
eration of spikes by incorporating the idea of leaky integration and threshold crossing.
A graphical representation of the model is provided in Fig. 2.5. The model consists of
an RC circuit driven by the current I(t), which results from the sum of all post-synaptic
currents obtained by multiplying the input spike trains Si(t) with the associated synap-
tic strength Wij, where i and j represent the pre-synaptic and post-synaptic indices,
respectively. It is worth noting that the former is a simplified description of the dynam-
ics2. The differential equation describing the behavior of a LIF model is

τ
dVm(t)

dt
= −Vm(t) + I(t)R, (2.1)

2After the generation of a spike, the neuron goes into an hyperpolarization phase, also called refrac-
tory period, where it is insensitive to incoming signals, which is not modelled here.
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where τ = RC is the time constant of the model. The solution of Eq. (2.1) for constant
input current is

Vm(t) = IR + [Vrest − IR]e−
t
τ . (2.2)

From this solution, it becomes evident that, at t = 0, the membrane voltage is at the
resting voltage Vrest and exponentially increases to a steady-state voltage IR with
a time constant of τ . By approximating Eq. (2.2) with the forward Euler method and
incorporating the resetting mechanism, the evolution of the membrane potential of the
LIF model can expressed in a time-stepped equation as

Vm[t] = βVm[t− 1] +WijS[t]− Sout[t− 1]Vth, (2.3)

where β is a parameter that represents the exponential decay e−
t
τ of the membrane

potential,WijS[t] is the post-synaptic current, i.e. I(t), and Sout[t−1]Vth the reset mech-
anism. In any generic spiking model, the membrane potential is constantly compared
to the threshold voltage V th as formulated in Equation 2.4. Here, Sout[t] is the spike
event expressed as

Sout[t] =

{
1, if Vm[t] > Vth

0, otherwise.
(2.4)

It is worth highlighting that different reset mechanisms are also possible. Here, we opt
for a soft reset, where Vth is subtracted from the membrane potential when the neuron
spikes.

2.3.2. Spike response model (SRM)
The spike response model (SRM) is a more generic model that attempts to capture
the temporal dynamics of a neuron in response to an incoming spike. While the math-
ematical formulation of a LIF model is typically described by differential equations, the
SRM describes the time evolution of the membrane potential as an integration over
previous time intervals [27].

For example, consider a post-synaptic neuron which receives a spike from one of
the I pre-synaptic neurons at time ti and generates a spike at time tj. The SRM de-
scribes the evolution of the membrane potential as a response to the incoming spike
in accordance with Eq. (2.5), where the function ϵ is a kernel that describes the post-
synaptic potential (PSP) after the occurrence of a spike from a pre-synaptic neuron,
and where the function η, known as the refractory kernel, describes the neuron’s re-
setting mechanism.

Vm[t] =
I∑
i

Wijϵ[t− ti]− η[t− tj] (2.5)

It is worth highlighting that the SRMmakes the dynamics that governs the timing of
the spike explicit. For example, Eq. (2.5) can be written in terms of the post-synaptic
spike time, i.e. tj, by setting Vm(t) = Vth.
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SRM with Alpha-PSP Kernel
Different PSP kernels are viable, among which the alpha function, defined as

ϵ[t] =
t

τ
e[1−

t
τ
], (2.6)

is the one that most closely resembles the shape of post-synaptic potentials observed
in biological neurons [28, 29]. The alpha function describes the evolution of the mem-
brane potential as a rapid initial increase followed by an exponential decay with a time
constant of τ . An example of the evolution of the membrane potential following a
pre-synaptic spike with an alpha kernel is provided on the left side of Fig. 2.6.

It is important to highlight that the utilization of an exponential function in the
definition of the kernel presents considerable challenges when implemented in hard-
ware [30]. For instance, exponential functions cannot be directly computed in hard-
ware; instead, various algorithms can be employed, differing in convergence speed,
complexity, and resource utilization, to approximate the exponential behaviour. Hence,
the hardware implementation of an exponential function requires a careful study of
the trade-off between the different algorithms based on the specific hardware require-
ments.

(a) Alpha PSP (b) Rel PSP

Figure 2.6: Membrane potential evolution of Alpha PSP and Rel PSP. (a) Alpha post-synaptic
potential (PSP) and (b) Rel PSP. Green lines represent the evolution of the membrane potential for
large weights and blue lines for small weights. If the weights are too small, a post-synaptic neuron
might spike after the simulation time window, i.e. Tmax, thereby generating a dead neuron.

SRM with Rel-PSP Kernel
The Rel-PSP kernel, proposed by Zhang et al. in their work [31], is defined as

ϵ[t] =

{
t− ti, if t > ti

0, otherwise.
(2.7)

The evolution of the membrane potential for a Rel-PSP kernel in response to a
pre-synaptic spike at ti is depicted in Fig. 2.6b. As one can see, the Rel-PSP kernel
has a linear response to a pre-synaptic spike similar to a Relu function. It works by
linearly integrating the corresponding synaptic strength Wij after the occurrence of a
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pre-synaptic spike, i.e. ti. If the membrane potential crosses the threshold voltage Vth,
an output spike is emitted. The spike time can be calculated by setting Vm[t] = Vth in
Eq. (2.5) and Eq (2.7) resulting in the post-synaptic spike time

tj =
Vth +

∑I
i Wijti∑I

i Wij

if tj > ti. (2.8)

It is important to highlight that the kernel function defined in Eq. (2.7) does not con-
tain any exponential function, thereby relaxing the hardware resource requirements
compared to an Alpha-PSP kernel.

2.4. Spiking neural networks (SNNs)
In the previous section, we provided an overview of two major computational models
of a spiking neuron. However, it is fundamental to understand that individual neurons
possess limited computational capabilities. Therefore, in the following sections, wewill
introduce the reader to the conventional organizational structure of a neural network
and the training methodology of this structure. For the latter, we will provide a general
description of the back-propagation algorithm. Furthermore, we will discuss how this
algorithm can be employed in a TTFS-encoded network.

2.4.1. General network architecture
Inspired by the layered architecture of biological neurons, networks of spiking neurons
are conventionally organized in a layered structure as represented in Fig. 2.7.

Figure 2.7: Layered architecture. Example of a multilayered spiking neural network with two hidden
layers, i.e. l = 1 and l = 2, one input layer, i.e. l = 0, and one output layer, i.e. l = 3, where l is the
layer index. The number of neurons in each layer and the number of hidden layers is adjustable. For
the purpose of simplicity, in this figure, we only show two hidden layers. This organization allows for
hierarchical processing of information: the input layer represents the signal from the outside world,
e.g. an image of a digit, the hidden layers represent the computational elements, and the output layer
represents the final response of the network, e.g. the classified digit. The interconnection between
neurons of subsequent layers, represented by the grey lines, are the synaptic strengths,
conventionally represented by the symbol W l−1.
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It is worth highlighting that the input layer does not perform any computation and it
only serves as a gate to the external world. For example, if the input to the network is
the image of a digit, each neuron of the input layer is the value of a pixel of the image.

In a network of spiking neurons, the output of a given layer, i.e. yl[t], is a function
of the outputs of the previous layer, i.e. yl−1[t], and the synaptic strength W l−1. This
relationship can be expressed as

yl[t] = g[yl−1[t],W l−1], (2.9)

where yl ∈ RJ , yl−1 ∈ RI and W l−1 ∈ RI×J , with J being the total number of post-
synaptic neurons in layer l, and I being the total number of pre-synaptic neurons in
layer l − 1. In Eq. (2.9) the function gl[·] models the dynamics of the neuron. For
example, gl[·] can express the neural dynamics defined by a LIF or SRM model.

2.4.2. General training
Networks of neurons are conventionally trained by coupling stochastic gradient de-
scent (SGD) [8] with back-propagation (BP) [7]. The former iteratively adjusts the
strength of the synaptic connections, with the aim of reducing the error between the
network output and the target output, by minimizing a loss function L. For instance,
according to SGD, the new value of a synaptic connection that minimizes the loss
function, i.e. W̃ij, can be calculated as

W̃ij = Wij − η
∂L

∂Wij

, (2.10)

where η is the learning rate, and ∂L/∂Wij is the gradient of the loss function L, with
respect to the synaptic strength parameterWij, found with the back-propagation algo-
rithm, as illustrated in Fig. 2.8.

Figure 2.8: Back-propagation. Computational graph for the back-propagation algorithm. Green
lines represent the forward propagation of inputs and the orange lines the back-propagation of
gradients.
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This algorithm generally comprises two phases: the forward propagation and the
backward propagation [7]. The former propagates the input signals through the net-
work and evaluates the error of the network’s output with respect to the target output.
The latter involves the calculation of gradients of the loss function with respect to the
weights of the network, i.e. ∂L/∂Wij. These gradients indicate the direction of steep-
est descent that minimizes the loss function. In other words, they indicate how the
parameter W should change to decrease the loss. Figure 2.8 illustrates the computa-
tional graph of the back-propagation algorithm required to update the parameter Wij

that connects the post-synaptic neuron j with the pre-synaptic neuron i.
In the forward propagation, the input signal xi is multiplied by the synaptic strength

parameter Wij and processed by the neuron to produce the output signal yj. In the
backward propagation, the neuron receives the upstream gradient, i.d. ∂L/∂yj, from
the layer above, which indicates how the output of the given neuron influences the
loss function L. By applying the chain rule, the algorithm finds the direction of steepest
descent that minimizes the loss as

∂L

∂Wij

=
∂yj
∂Wij

∂L

∂yj
. (2.11)

In addition, the upstream gradient, i.e. ∂L/∂yj, is used together with ∂yj/∂xi to find
the downstream gradient ∂L/∂xi as

∂L

∂xi

=
∂yj
∂xi

∂L

∂yj
. (2.12)

This gradient becomes the upstream gradient for the neuron in the previous layer,
i.e. neuron i, thereby enabling subsequent application of the chain rule. In other words,
to compute the gradient of the loss function for the synaptic strength parameter Wij

of each layer, the chain rule is iteratively applied from the output to the input layer.
It is of fundamental importance to understand that, up to this point, we have consid-

ered the signal propagating through the network as a real-valued number. However,
spiking neural networks (SNNs) process spike trains, denoted as s(t). To account for
the effect of time, the computational graph is unrolled through time, as illustrated in
Fig. 2.9. The effect of each synaptic strength parameter on the loss function at each
time step is summed up together as per Eq. (2.13), where Tmax is the duration of the
spike train. Upon completing the sequence processing, i.e. t = Tmax, the gradient of
Eq. (2.13) is propagated backwards across different time steps and layers to update
the parameter Wij. This process is illustrated in Fig. 2.9, and takes the name of error
back-propagation through time (BPTT).

∂L

∂Wij

=
Tmax∑

t

∂L[t]

∂Wij

(2.13)

Additionally, spiking neurons require a non-differentiable threshold function to gen-
erate output spikes as per Eq (2.4). Since the chain rule requires each pathway to
be differentiable, the non-differentiability of the spiking function hinders the applica-
bility of the back-propagation algorithm. Historically, various techniques have been
adopted to address the non-differentiable nature of spiking neurons [10]. The most
robust and popular solution is to use a surrogate gradient of the threshold function
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during backward propagation [32]. This approach has proven to be highly effective
and has enabled spiking neural networks to achieve state-of-the-art results in various
tasks.

Another solution consists in applying the back-propagation algorithm to the spike
time [33]. In other words, instead of calculating the gradients through the discontinu-
ous spike generation mechanism, gradients are calculated with respect to the spike
time, which is a continuous function as long as a spike occurs [33]. In TTFS-encoded
SNNs, the information is encoded in the spike time, which allow sidestepping the prob-
lem of non-differentiable threshold functions.

Figure 2.9: Back-propagation through time (BPTT). Computational graph of the BPTT algorithm.
Green lines represent the forward propagation of inputs while the orange lines the back-propagation
of error gradients across layers and time. Differently from the normal BP algorithm, to process a spike
train, BPTT requires making a copy of the network for each time step.

Least but not last, to evaluate the performance of a neural network, the dataset,
which contains multiple labeled examples of a given problem, is typically divided into
two distinct subsets: the training set and the test set. The first, is employed to train
the network, e.g. by applying SGD and BP, whereas the second is used to verify that
the network can generalize to unseen data. In the context of a classification problem,
the performance of a model is evaluated using the accuracy metric defined as

Accuracy =
NP

NT

, (2.14)

where NP is the total number of correct predictions of the network, and NT is the total
number of examples in the test set. A high accuracy metric on the test set reflects the
network’s ability to properly generalize to unseen data.
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2.4.3. Training the SRM with Rel-PSP Kernel
Similarly to Fig. 2.8, the computational graph for the back-propagation algorithm ap-
plied to a SRM with a Rel-PSP kernel using TTFS coding is shown in Fig. 2.10.

Figure 2.10: Rel-PSP computational graph. The green lines represent the forward propagation
path, and the orange ones the backward propagation path. The trainable parameters are colored in
red, e.g. Wij . The spike times of neurons i and j of Fig. 2.8 are ti and tj , respectively. The synaptic
strength parameter, e.g. Wij , is updated with the gradient ∂L/∂Wij . The gradient ∂L/∂tj is the
upstream gradient from the next layer while ∂L/∂tj is the upstream gradient to the previous layer.

Considering Eq. (2.5), together with Eq. (2.7) and Eq. (2.4), it is possible to find
the back-propagation gradient required to update the synaptic strength parameter W
as

∂L

∂Wij

=
∂tj

∂V [tj]

∂V [tj]

∂Wij

∂L

∂tj
=

(
−1∑I
i Wij

)
(tj − ti)

∂L

∂tj
, (2.15)

and the downstream gradient as

∂L

∂ti
=

∂tj
∂V [tj]

∂V [tj]

∂ti

∂L

∂tj
=

(
−1∑I
i Wij

)(−Wij

)
∂L

∂tj
(2.16)

The loss function L employed by Zhang in [31], is a regular cross-entropy function
which attempts to reduce the time of the spike of the target neuron and, concurrently,
extend the time of the spike of non-target neurons. In the context of a classification
task, the output layer of a spiking network, e.g. l = 3 in Fig. 2.8, consists of multiple
neurons, each of which spikes at a different time. The output neuron that indicates the
correct class must have the shortest spike time. To achieve this goal, the loss function
is defined as

L = −ln
exp(−tĵ)∑O
j exp(−tj)

, (2.17)

where O is the number of neurons in the output layer, j their index, and ĵ the index of
the neuron that represents the correct class.
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2.5. Continual learning (CL)
Humans have the innate ability to continuously learn new tasks without forgetting old
ones. This ability is conventionally called continual learning in the deep learning com-
munity. On the contrary, spiking and artificial neural networks cannot learn new tasks
sequentially without forgetting previous ones. In other words, both SNNs and ANNs
suffer from the problem of catastrophic forgetting. This section provides the reader
with a formal definition of the problem of catastrophic forgetting and presents various
solutions proposed in the existing literature.

2.5.1. Problem statement
In a typical continual learning setup, a neural network must sequentially learn the tasks
T = (T1, T2, .., Tn) without catastrophically forgetting any of the previously learned
tasks. This condition drastically differs from the typical neural network training pro-
cedure, where examples of different tasks are independently sampled from the train-
ing set and presented to the network in an interleaved fashion and all trained at the
same time. Indeed when tasks are trained sequentially, as illustrated in Fig. 2.11a,
the accuracy of the network for each task on the test set tends to decrease when new
tasks are introduced. In contrast, the main goal of continual learning is to minimize the
amount of accuracy drop across multiple tasks when trained sequentially as illustrated
in Fig. 2.11b.

(a) Catastrophic Forgetting (b) Ideal Continual Learning

Figure 2.11: Continual learning accuracy. In both figures, three tasks are presented sequentially,
where the start of training for each new task is represented by the dashed lines. In (a), as a new task
is presented to the network, the accuracy of previously learned task drops, demonstrating catastrophic
forgetting. In (b), which is the ideal scenario, the accuracy of previously learned tasks does not drop
as new tasks are learned. In both figures Ttrain defines the last training step of the last task.

In addition, as Hsu et al. suggested in [34], the difficulty of addressing the problem
of catastrophic forgetting varies depending on experimental protocols. For example,
the author identified three different scenarios of increasing difficulty based on the pres-
ence of a task ID to identify the change in task during training. These scenarios are:

• Incremental Task Learning: the task ID is provided,
• Incremental Domain Learning: the task ID is inferred,
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• Incremental Class Learning: the task ID is neither provided nor inferred.

Furthermore, in a typical continual learning environment, the network architecture
can be single-headed or multi-headed [34]. In a single-headed architecture, all pa-
rameters, i.e. Ws, are shared between different tasks, while in a multi-headed archi-
tecture, the output layer has a separate set of parameters for each task. In this thesis,
we will focus on the simplest case of incremental task learning with a multi-headed
architecture. To evaluate the performance of the proposed solution, the average ac-
curacy metric, as per Eq. (2.14), is calculated across different tasks at the end of the
sequential training, i.e. Ttrain.

2.5.2. Evaluation datasets
In the domain of ANNs, the effectiveness of a proposed solution in mitigating the prob-
lem of catastrophic forgetting is conventionally assessed with the Split-MNIST [35] and
the Permuted-MNIST [36] datasets, both derived from the original MNIST dataset of
handwritten digits [37]. In the case of Split-MNIST, the dataset is divided into dis-
tinct subgroups, resulting in binary classification tasks, as illustrated in Fig. 2.12a.
For instance, Task 1 involves distinguishing between digits 0 and 1. On the other
hand, Permuted-MNIST generates tasks by permuting pixels within MNIST images,
as shown in Fig. 2.12b. Essentially, each task corresponds to a specific permutation
applied to every image in the dataset.

(a) Split-MNIST

(b) Permuted-MNIST

(c) Incremental-MNIST

Figure 2.12: Datasets for continual learning. In (a), the MNIST dataset is partitioned into distinct
binary classification subgroups. In Task 1, the network is exposed to multiple images of digits 0 and 1
during training, with the goal of classifying whether an image belongs to one class or the other. In (b),
each digit in the MNIST dataset is permuted to generate a new task. The network is then presented
with multiple examples of permuted digits, spanning from 0 to 9, and its objective is to correctly
classify which digit the image represents. In (c), each digit of the MNIST dataset is fed to the network
incrementally. For example, in Task 1, only the images of digit 0 are presented to the network. The
objective of the network is to correctly classify which digit the image represents.

Furthermore, in the neuromorphic community, a commonly employed approach
is to incrementally classify the digits of the MNIST dataset [38, 39, 40]. This idea
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is depicted in Fig. 2.12c, where, during a specific task, the network is exposed to
multiple images of a single digit with the objective of classifying the digit against the
others. Indeed, it is crucial to highlight that, as a new digit (or task) is presented to the
network, images of previous digits are no longer supplied, thus establishing a typical
scenario for continual learning.

2.5.3. Review of solutions
This section provides a review of the literature, examining various approaches and
strategies to mitigate catastrophic forgetting in both the ANNs and SNNs worlds. This
review seeks to uncover a biologically inspired strategy that could be implemented in
a TTFS encoded neural network trained with back-propagation. Hence, only works
that are biologically inspired and employ the back-propagation algorithm are reported.

Strategies used to mitigate the problem of catastrophic forgetting usually fall into
three distinct categories: regularization-based, which attempts to prevent changes in
parameters that are important for a given task as a new task arrives; architecture-
based, which adds a set of parameters for each new task; and memory-based, which
consists of feeding a few examples from previous tasks as the new task is being
trained. The most relevant works addressing this problem are chronologically listed
in Table 2.1.

Author Year Strategy Type
ANNs

Kirkpatrick [41] 2017 Elastic Weight Consolidation (EWC) Regularization
Zenke [35] 2017 Synaptic Intelligence (SI) Regularization
Masse [42] 2018 Context Gating + SI / EWC Regularization, Architectural
Iyer [13] 2022 Active Dendrites Architectural

SNNs
Hammouamri [43] 2022 Threshold Modulation Architectural

Table 2.1: Summary of continual learning strategies using back-propagation in ANNs and SNNs.

Within the domain of ANNs, the two most popular approaches to address the prob-
lem of catastrophic forgetting are elastic weight consolidation (EWC) and synaptic in-
telligence (SI). Both approaches introduce a quadratic regularization term in the loss
function with the aim of capturing the relevance of each weight to a given task. The
former estimates the significance of individual weights by assessing their impact on
the network’s output after training on each task. The latter estimates the importance of
each weight by analyzing how the gradient of the loss function relates to the updates
of these weights while training. Specifically, both strategies aim at penalizing changes
in weights that are important for previously learned tasks, preventing the overwriting
of previously acquired information, and are thus regularization-based techniques.

Although both approaches demonstrated the ability to retain information from previ-
ously learned tasks, the work of Masse [42] shows that context gating, coupled with SI
or EWC, results in even better information retention. Specifically, when these strate-
gies are benchmarked in a continual-learning environment comprising the sequential
learning of 100 tasks from the Permuted-MNIST dataset, EWC achieves a mean test
accuracy of ≈ 70%, SI of ≈ 80% and Context Gating + SI / EWC of ≈ 95%. The
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solution proposed by Masse consists of projecting a context vector onto the neurons
of a hidden layer to gate a set of non-overlapping neurons for each task, as depicted
in Fig. 2.13 for tasks 3 and 5, with a one-hidden-layer network. The hidden layer
receives a context vector that gates different neurons for different tasks. In this con-
text, gating means that the context vector inhibits the output of each selected neuron.
Furthermore, synaptic connections are updated only for neurons that are not gated,
thus suppressing the interference of the current task on previously learned ones. This
approach is inspired by the experimental evidence that areas of the brain, such as
the prefrontal cortex, generate gating signals to the cortical area, allowing for task-
dependent processing of information [42].

Figure 2.13: Context gating. The neurons in the hidden layer receive a different context vector for
each task. This context vector gates a different non-overlapping subset of neurons for each task.

The concept proposed by Masse is extended even further by Iyer et al. in their
work [13]. Specifically, the authors hypothesize that the gating mechanism is con-
trolled by the active dendrites of pyramidal neurons. This hypothesis takes inspiration
from the concept that a dendritic spike initiated by active dendrites can depolarize the
neuron for a long period of time, typically on the order of seconds [44]. This depo-
larization makes the neuron more likely to spike as new inputs arrive at the proximal
dendrites, thus creating a modulation effect on the cell response.

It should be emphasized that conventional artificial or spiking neuron models are
anachronistically rooted in the perceptron model [45]. This model assumes a linear
effect of all synapses on the cell, as postulated in the point neuron model proposed
by Lapicque [46]. This behavior is particularly prominent in proximal dendrites com-
pared to their distal counterparts, i.e. active dendrites, which, in turn, have the largest
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number of synaptic connections. Indeed, current neuron models, whether artificial of
spiking, typically do not model the effect of active dendrites. As a consequence, Iyer
et al. attempt to enhance the regular point neuron by implementing the following key
aspects:

• each neuron contains multiple isolated active dendritic segments that handle
contextual inputs using distinct sets of weights,

• contextual inputs can either up-modulate or down-modulate the feedforward ac-
tivation of active dendrites,

• a k-winner-take-all (k-WTA) layer is used to select the k neurons with the highest
activation to ensure sparsity.

The neural architecture proposed by Iyer et al. consists of a hidden layer followed
by a k-WTA layer (Fig. 2.14a), and each neuron in the hidden layer is enhanced with
branches of active dendrites (Fig. 2.14b). The effect of feedforward (FF) inputs, rep-
resented by the proximal dendrites, is modulated by the active dendrites depending
on the response to the context vector.

(a) Network Architecture (b) Neuron Model

Figure 2.14: Active dendrites. (a) represents the network architecture comprised of input, hidden,
k-WTA, and output layers. (b) represents the enhanced neuron model used in each neuron of the
hidden layer.

Consider, for example, the input vector x to the hidden layer, the matrix W rep-
resenting the synaptic strengths between the input layer and the hidden layer, and
the bias vector b. The conventional linear feedforward integration of the input signal
performed by proximal dendrites can be expressed as

y = Wx+ b. (2.18)

The branch of active dendrites contains n dendritic segments, where n is the total
number of tasks. Each segments is a vector dj ∈ Rn. For each dendritic segment, the
dot product between the segment vector parameter dj and the context vector c⃗ ∈ Rn

is computed. Subsequently, the segment with the highest activation is selected to
generate the dendritic activation d, as per Eq. (2.19).
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d = max
j

(dj · c) (2.19)

Tomodulate the neural feedforward activation y, the dendritic activation d is passed
through a sigmoid function σ(·) that modulates y, resulting in

ỹ = y⃗ × σ(d) = (Wx+ b)× σ(max
j

(dj · c⃗)). (2.20)

As per Eq. (2.20), a positive response to a specific context vector preserves the
standard feedforward linear activation, whereas a negative response down-modulates
the activation. As a result, neurons relevant for a given task, preserve their activation,
whereas neurons that are irrelevant, are gated. Subsequently, the k-WTA selects the
neurons with the k highest activations and gates the rest. In this manner, only a sparse
subgroup of the neurons in the hidden layer are activated for a given task.

Furthermore, during the backward pass, only synaptic strengths of winning neu-
rons are updated. Of these winning neurons, only the dendritic branch parameter dj
with the highest response is updated. Iyer et al. hypothesize that following this ap-
proach, each dendritic branch learns to detect specific context vectors. Also, since
dendritic branches irrelevant to the current task are not updated, modulation of each
neuron becomes context-dependent. This, in turn, invokes different subnetworks for
each task, thereby reducing interference between tasks and mitigating catastrophic
forgetting.

Compared to Masse’s solution, the approach proposed by Iyer at al., achieves a
3% lower mean accuracy on the Permuted-MNIST dataset with 100 tasks. However,
their solution offers one key advantages: distinct subnetworks automatically emerge
from the active dendrites, as opposed to being pre-allocated for each task.

As we have seen up to this point, the problem of catastrophic forgetting has been
thoroughly addressed in the domain of ANNs trained with back-propagation. On the
contrary, insufficient attention has been directed to the same problem in the domain
of SNNs. Part of the reason for this disparity stems from the historical difficulty of
applying back-propagation to SNNs, which became feasible only recently [32]. As
a consequence, a significant portion of research aimed at addressing the issue of
catastrophic forgetting in SNNs [47, 38, 39, 40], employ STDP [48] as the primary
learning algorithm, which is known to scale poorly [49].

To the best of our knowledge, the only work that uses a back-propagation-based
approach to solve continual learning with SNNs is the work proposed by Hammouamri
et al. in [43]. The main idea behind this work is to modulate the threshold voltage of
each neuron in a task-dependent manner. To achieve this goal, the authors implement
two different networks. One, which is responsible for the conventional classification,
and another, which is responsible for modulating the threshold voltage of the first net-
work’s output layer, in a task-depend manner. By following this approach, the activity,
e.g. number of spikes, is modulated depending on the current task being presented.
Indeed, this approach is analogous to the methods proposed in [13] and [42] to mit-
igate the problem of catastrophic forgetting in ANNs. It is important to note that the
network responsible for modulating the threshold values is trained using an evolution-
ary optimization algorithm. Additionally, the algorithm requires two training steps for
each network and has slow convergence rates.
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2.5.4. Discussion
This review highlighted the importance of gating neurons in a context-dependent fash-
ion as a fundamental mechanism to alleviate the problem of catastrophic forgetting in
both artificial and spiking neural networks. In particular, Iyer suggests that extending
the conventional point-neuronmodel with active dendrites leads to a novel mechanism
that, when coupled with a k-winner-take-all layer, generates different subnetworks for
each task. The generation of these subnetworks is crucial as it prevents any interfer-
ence between tasks during the training process. For this reason, in Chapter 3 we will
investigate if this solution is also applicable to a TTFS-encoded SNN.

2.6. Hardware architectures for event based SNNs
This section serves as a review of the various architectural approaches commonly
used for the implementation of event-based digital SNNs. Furthermore, we provide a
review of the current digital hardware implementation for continual learning and TTFS
encoded networks.

2.6.1. General principles
Hardware architectures of SNNs can be classified into two major categories, the first
targeting large-scale applications such as brain simulations or large SNNs, the second
targeting small-scale SNNs implementations for embedded neuromorphic computing
at the edge. The former focuses on optimizing the design for high throughput and
scalability, whereas the latter focuses on optimizing area and power efficiency.

Figure 2.15: Crossbar architecture. This architecture is comprised of a set of neural cores,
represented by the grey boxes, interconnected with a network-on-chip, represented by the orange
lines. The event-based protocol employed in neuromorphic solutions to exchange spikes between
different cores is the address-event-representation (AER) [50]. Each core consists of a neurosynaptic
core and an AER interface. The first is comprised of local memory and processing elements required
to emulate the dynamics of multiple neurons and synapses. The second is comprised of input and
output encoder receiving input spikes and dispatching the generated spikes to other neurons through
the AER bus, respectively.
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Large-scale neuromorphic hardware is conventionally implemented using a cross-
bar array, as depicted in Fig. 2.15. This architectural design attempts to solve the von
Neumann bottleneck by co-locating memory and processing. Examples of systems
implementing these architectures include TrueNorth [51] and BrainScaleS [52]. The
crossbar architecture is highly scalable as it can be implemented in many core single-
and multi-chip configurations.

On the other hand, to optimize for area and power efficiency, small-scale digital
implementations can take two approaches: emulating the crossbar architecture by
using time-multiplexing [53], as depicted in Fig. 2.16a, or organizing neuron comput-
ing elements in a parallel fashion [54, 55, 56, 57], as depicted in Fig. 2.16b. In the
first approach, the neurons states in a layer are updated sequentially using shared
resources, while in the second approach they are updated in parallel using shared or
local resources.

(a) Time-multiplexed architecture (b) Parallel architecture

Figure 2.16: Small scale architectures. Layer architecture using time-multiplexing and parallel
computing. In (a) a single computational element updating the state of neurons in a layer using
time-multiplexing. The input spikes are sent to the AER input encoder and moved into an event
scheduler by the main controller, which then fetches the related synaptic parameters stored in the
synapse memory and updates the neuron state. The new state is stored in the neuron memory.
Whenever a neuron crosses the threshold, thereby generating a spike, the address of that neuron is
sent to the AER output encoder. The interconnection between neurons is specified by the value
stored in the synapse memory. In (b), the neural cluster contains multiple instances of a neuron
processing element (PE), similar to the neuron update logic of a time-multiplexed architecture. The
states and synaptic connections of each physical PE can be stored in a shared memory or in local
memory elements.

Consequently, from a layer perspective, time-multiplexed architectures offer ad-
vantages in terms of area and power efficiency by sacrificing speed. On the other
hand, parallel architectures offer advantages in terms of speed by sacrificing area
and power efficiency.

2.6.2. Architectures for TTFS SNNs and continual learning
In this section, we will cover state-of-the-art solutions to two concepts at the core of
this thesis: (i) architectures optimized for TTFS coding, and (ii) first proofs-of-concept
for continual-learning hardware.
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Architectures supporting the TTFS encoding
Frenkel et al. in [58] propose the spiking online-learning convolutional neuromorphic
processor (SPOON), a digital architecture with online learning, consisting of a con-
volutional core and a fully-connected core, capable of classifying images from the
N-MNIST dataset using a TTFS encoding. Specifically, the fully-connected core con-
tains two layers, one for the hidden neurons and the other for the output neurons, as
depicted in Fig. 2.17a. The first utilizes time multiplexing to compute the neural dy-
namics of 128 neurons, while the second has 10 neurons capable of updating their
state in parallel. The proposed architecture can be trained online to achieve 90% ac-
curacy in a single epoch (93% after 100 epochs) and consumes only 655 nJ to classify
a sample image (post-layout simulation in a 28nm node). However, SPOON only sup-
ports a standard learning setup where all training data is provided in parallel and not
sequentially. In other words, this architecture would suffer from catastrophic forgetting
in a continual-learning scenario.

(a) (b)

Figure 2.17: TTFS-encoded architectures. In (a) the fully connected layer of the SPOON
architecture [58], in (b) one layer the YOSO architecture [55].

The SRM with Rel-PSP kernel neuron model presented in Section 2.3.2 was suc-
cessfully implemented in the you only spike once (YOSO) digital architecture, as pro-
posed by Srivatsa et al. in [55]. The architecture of a single layer is illustrated in
Fig. 2.17b. Each layer contains a single time-multiplexed core that emulates the be-
havior of 256 neurons. Unlike SPOON, this work does not provide online-learning
capabilities. Synthesis results in a 22nm node show that YOSO implementing the Rel-
PSP model descibed in [31], is capable of classifying a sample image of the MNIST
dataset in 47.71 ms while consuming 0.750 mW, resulting in an energy per inference
of 36µJ for a classification accuracy of 98.4%.

In contrast, Widmer et al. implement in [59] the SRM with Rel-PSP kernel neuron
model in a novel digital architecture that updates the state of each neuron in parallel.
Notably, in this design, the post-synaptic membrane potential is integrated in a local
register, thereby reducing the amount of data movement to and from the memory,
compared to the previous two designs. This architecture has been tested with the
Iris dataset [60], where post-layout simulation results in a 7nm node show that one
sample image can be classified in only 21 ns while consuming 2.62 mW, resulting in
an energy per inference of 55pJ for a classification accuracy of 96 %, yet restricted to
a simple dataset.
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In summary, the different existing architectures for TTFS-encoded networks typi-
cally use multi-layer architectures. However, while YOSO utilizes a time-multiplexed
approach for its computational element, SPOON utilizes a hybrid approach between
time-multiplexed and parallel computing of neuron dynamics. Finally, the work of Wid-
mer et al. proposes an architecture where neurons are fully updated in parallel and
the membrane potential is stored in a local register.

Architectures supporting continual learning
Regarding hardware architectures that target a continual-learning setup, the available
literature is notably limited. The only two works that attempt to address these chal-
lenges in a bio-inspired fashion are MetaplasticNET [61] and SCOLAR [62]. Both
works provide online continual learning capabilities and implement the neuron’s state
update using a systolic array of processing elements (PEs). The former uses a 2D
systolic array of PEs to update the state of the neuron, while the latter uses a 1D array.
The first architecture is designed to implement networks of artificial neurons, whereas
the second for implementing networks of spiking neurons. As SNNs are at the core
interest of our research question we report only the second architecture as shown in
Fig. 2.18. Each processing element sequentially updates the state for Nfold = Nh/Npe

neurons, whereNh is the number of hidden neurons andNpe is the number of process-
ing elements, providing some level of parallelism.

Figure 2.18: SCOLAR architecture. On the right side of the image is the systolic array of processing
elements (PE) computing the neuron’s updates. Image source from [62].

Discussion
Notably, none of the TTFS architectures support continual learning3. Similarly, while
different levels of parallelism have been investigated in current continual-learning ar-
chitectures for efficiency purposes, none of them supports sparse data representation
such as the TTFS encoding. This reveals an obvious gap between robust learning
and processing efficiency in the current literature, which we will address in Chapter 3.

3SPOON is the only architecture supporting learning with a TTFS encoding, but it still suffers from
catastrophic forgetting.
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Design

This chapter, comprising two sections, describes the proposed solution to the main
research question. The first section, focusing on software development, explains the
proposed neural model enhanced with active dendrites, the network architecture, and
the mathematical derivation of the gradients necessary for the back-propagation al-
gorithm. The second section, which focuses on hardware design, explains the gen-
eral hardware architecture, the neuron model, the neural cluster, and the relative con-
trollers.

3.1. Software design
This section provides a detailed explanation of the mathematical model, the network
architecture, and the gradients derivation of the proposed model. The computational
model resulting from the proposed solution has been implemented using the conven-
tional PyTorch [63] framework with the Python programming language. The detailed
code implementation can be found here.

3.1.1. Neuron model
To address the TTFS encoding mechanism, the proposed neuron model is based on
a SRM with the Rel-PSP kernel introduced by Zhang et al. in [31]. To mitigate the
problem of catastrophic forgetting, this kernel is enhanced with an adapted version
of active dendrites, as proposed by Iyer et al. in [13]. An illustration of the proposed
neuron model is shown in Fig. 3.1a.

As explained in Section 2.5.3, Iyer et al. introduce a modulation factor of neural
activity depending on the response of the active dendritic branch to the context vector
c. For of a TTFS-encoded model, the activity of a neuron is represented by the spike
time tj, rather than a real-valued number. Hence, modulating the activity of a TTFS-
encoded neuron is equivalent to modulating its spike time.

To achieve this goal, the spike time tj is delayed to t̃j by the function f(uj), as
shown in Fig. 3.1b, where the function f(·) represents a non-linear activation of the
selected dendritic segment uj, with j being the index of the post-synaptic neuron. It is
important to note that, differently from Iyer et al., the dendritic branch of our proposed
solution is a vector u ∈ Rn, rather than a matrix d ∈ Rn×n, with n being the number
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of tasks. In other words, in our model, each dendritic segment contains a single pa-
rameter, while in Iyer et al. each segment contains a vector of n parameters. The
parameter uj related the current task is extracted as

uj = u · c, (3.1)

where c is a one-hot-encoded vector with dimension Rn representing the current task
at play. This operation implements a simple task-dependent switching mechanism
that selects different dendritic segments for different tasks.

(a) Proposed neuron model (b) spike Time Delay

Figure 3.1: Proposed solution. (a) Rel-PSP model enhanced with active dendrites. It is composed
of n dendritic segments, each representative of a different task and each possessing a training
parameter u. Depending on the one-hot encoded vector c, the respective dendritic branch parameter
uj passes through the non-linear function f(·), thereby introducing a delay in the spike time. In (b) the
integration of the membrane potential is depicted. As one can see, the actual spike time tlj is shifted
to t̃lj due to the effect of the dendritic delay introduced by f(uj). This behavior effectively modulates
neuron activity similar to the solution proposed by Iyer et al..

The selected dendritic segment uj is passed through the activation function f(·)
and used to modulate the spike time of the neuron. To effectively introduce the mod-
ulation delay f(uj), the kernel is defined as

ϵ[t] =

{
t− ti − f(uj), if t > ti + f(uj)

0, otherwise.
(3.2)

Consequently, the evolution of the membrane potential of a single neuron becomes

Vm[t] =

{∑I
i Wij[t− ti − f(uj)], if t > ti + f(uj)

0, otherwise.
(3.3)

Differently from the original model formulation of Eq. (2.5), where the membrane
potential integration starts when a pre-synaptic neuron emits a spike, in Eq. (3.3), the
membrane potential integration is delayed by a factor f(uj) following the event of a
pre-synaptic spike. Consequently, the effective spike time of the proposed neuron
model is exactly delayed by the function f(uj) as defined in Eq. (3.4).
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t̃j =
Vth +

∑N
i Wijti∑N

i Wij

+ f(uj). (3.4)

The dendritic activation function, i.e. f(·), plays a fundamental role in modeling the
amount of delay introduced in the spike time. This activation function is defined as

f(uj) = N
1

1+e
uj − 1. (3.5)

In Eq. (3.5), the parameterN is a hyperparameter that can be changed to increase
the modulation effect of active dendrites. This function has been designed so that
when the parameter uj increases towards positive values, the delay is reduced, and
when it decreases towards negative values, the delay increases, as shown in Fig. 3.2.
Moreover, this function is differentiable with respect to parameter uj, thus allowing the
gradients to be calculated as per the back-propagation algorithm.

Figure 3.2: Dendrites activation function. The activation function is depicted for different values of
N . At the beginning of training, the parameter uj is initialized to 0. Depending on the direction of the
gradient update, uj can move either to positive or negative values, respectively decreasing or
increasing the dendritic delay f(uj). If the neuron is relevant to the task, the delay is reduced,
otherwise, the delay is increased. This mechanism ensures a modulation of the neuron’s activity
depending from the relevance to the current task.

It is worth highlighting that there is a major conceptual difference between the
model proposed by Iyer et al. and ours. For instance, to ensure that each dendritic
segment can learn to recognize the context vector of each task, Iyer et al. assume that
there are n dendritic segments, each containing a vector of n parameters, resulting in
a total of n2 parameters for the active dendrites of a single neuron. By following this
approach and applying the selection mechanism of Eq. (2.19), Iyer et al. ensure that
the network can incorporate new tasks without having to add new dendritic segments.
However, the authors have shown that not all dendritic segments are required to learn
a small number of tasks. As a consequence, to reduce the complexity in light of a
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hardware implementation, our model includes a single parameter for each dendritic
segment, resulting in a total of n parameters for a single neuron.

3.1.2. Network architecture
As mentioned in the previous chapter, gating specific neurons in a task-dependent
manner plays a fundamental role in mitigating the problem of catastrophic forgetting.
To achieve this task-dependent gating, Iyer et al. add a k-WTA layer after the hidden
layer enhanced with active dendrites. The k-WTA layer is essential in artificial neural
networks to set the activation values of the k least active neurons to zero, thus re-
moving their gradients in the backward pass. On the contrary, we hypothesize that
the issue of dead neurons inherent in a TTFS spiking network behaves similarly to a
k-WTA layer. The architecture used in our software simulation is depicted Fig. 3.3 for
two different tasks.

Figure 3.3: Architecture and sub-networks of a Rel-PSP model enhanced with active dendrites.
The same network architecture is depicted for two different tasks, e.g. task 4 and task 1. The
brush-like structures connected to each hidden neuron are representative of the active dendrites. The
thickest bristle represents the dendritic segment of the current active task. Inside each neuron, a
small temporal plot represents the spike time, illustrating when the neuron fires. The red area
represents the time range after which the neuron is dead. In the hidden layer, neurons with thick black
lines are active, while the others are gated. Note that different tasks activate distinct neurons based
on the connected dendritic segment parameter, thereby creating different subnetworks for each task
and reducing information interference during training.

A neuron is considered dead if its spike time occurs after the observation window
Tmax, making it impossible to calculate its gradients. Moreover, a dead neuron is
equivalent to a real value of zero in a network of artificial neurons, thereby acting as
a gating mechanism similar to the one employed by the k-WTA layer. Since our pro-
posed neural model introduces a task-dependent delay in the spike time of a neuron,
its probability of being dead changes depending on the current task. For instance, if a
neuron is irrelevant for a given task, its delay will be increased by the back-propagation
algorithm, thereby increasing the chance of being dead in the next iteration. By follow-
ing this approach, different neurons in the hidden layer are gated based on the current
task. For each of these neurons, only those that are relevant to the current task are
not gated and thus updated, thereby reducing the interference of information between
different tasks.
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3.1.3. Training
In Section 2.4.3, an SRM with a Rel-PSP kernel is trained with the conventional back-
propagation algorithm. However, to apply this algorithm to the proposed model, its
computational graph must be modified to account for the additional computations
required to incorporate the active dendrites. The new computational graph, which
encompasses both forward and backward propagation, is illustrated in Fig. 3.4. As
shown in this figure, the only additional computational path, compared to the standard
Rel-PSP kernel, is the one defined by the dendritic parameter uj.

Figure 3.4: Computational graph of the proposed solution. The green lines represent the forward
propagation while the orange ones the backward propagation. The trainable parameters are colored
in red, i.e. Wij and uj .

The downstream gradient ∂L/∂tlj comes from the next layer and depends on the
loss function expressed in Equation 2.17. Following the introduction of the modulation
effect, the gradient required to update the neuronal parameters Wij changes to

∂L

∂Wij

=
∂tj

∂V [tj]

∂V [tj]

∂Wij

∂L

∂tj
=

−tj + ti + f(uj)∑I
i Wij

∂L

∂tj
. (3.6)

On the other hand, the gradient required to update the dendritic parameter uj is

∂L

∂uj

=
∂tj

∂V [tj]

∂V [tj]

∂uj

∂L

∂tj
=

f ′(uj)∑I
i Wij

∂L

∂tj
, (3.7)

where f ′(uj) is the derivative of the activation function f(·) found as

f(uj)
′ =

N
1

e
uj+1 ln(N)euj

(1 + euj)2
. (3.8)

The downstream gradient, i.e. ∂L/∂ti, is not affected by the introduction of the active
dendrites and remains the same as defined in Eq. (2.16). Both the forward and back-
ward paths have been implemented using the PyTorch neural network framework.
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3.2. Hardware design
This section presents a novel hardware implementation incorporating active dendrites
to solve the problem of catastrophic forgetting in a TTFS-encoded neural network. The
section starts by presenting the hardware architecture, followed by an explanation of
the neuron processing unit (NPU), the neural cluster, the memory organization, and
the controllers. The proposed solution has been implemented on a Xilinx Zynq-7020
SoC FPGA using the Verilog hardware description language. To ensure the matching
between the software implementation and the hardware implementation, the state of
each neuron is updated at each simulation time step1. The detailed Verilog code
implementation can be found here.

3.2.1. Architecture
The power efficiency of parallel architectures can be improved if properly designed for
the encoding mechanism of choice. For example, in TTFS-encoded neural networks,
after a neuron in a layer has spiked, it does not need to process any additional in-
coming spikes. Since the dynamic power of a digital system is directly proportional to
the switching activity, which represents the rate of transitions between logic states in
the system, TTFS encoding can reduce this activity by minimizing unnecessary tran-
sitions and conserving power resources. In essence, a physical neuron within the
cluster of a layer can be selectively disabled after a spike, thereby reducing dynamic
power consumption. To exploit these capabilities, a parallel architecture similar to the
one explained in Section 2.6.1 is utilized. The architecture of a single layer is shown
in Fig. 3.5.
The proposed layer architecture consists of the following blocks:

• Main controller: finite-statemachine (FSM)managing the processing controller,
the memory controller, the neural cluster, and the output queue. It implements
a 4-phase handshake protocol to communicate with other layers. A detailed
description of this block is provided in Section 3.2.4.

• Processing controller: FSM that processes the spikes in the input queue. A
detailed description of this block is provided in Section 3.2.4.

• Input queue: first-in-first-out (FIFO) queue storing the memory addresses of
the incoming spikes from the previous layer.

• Output queue: FIFO queue storing the memory address of the neurons that
generated a spike in the current layer. Addresses within this queue are pushed
to the input queue of the next layer when layer processing is complete.

• Memory controller: FSM controlling memory accesses to the synapse and ac-
tive dendrites memories. A detailed description of this block is provided in Sec-
tion 3.2.4.

• Synapse memory: block-random-access memory (BRAM) containing synaptic
strength parameters connecting the neurons of one layer with the previous. The
memory organization of this block is provided in Section 3.2.3.

1Discrete unit of time used to process pre-synaptic spikes and update post-synaptic neurons.
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Figure 3.5: Proposed hardware layer. Hardware architecture of the proposed solution showing the
different components of a given layer. The arrows represents the data flow of information.

• Active dendrites memory: BRAM containing dendritic delays, i.e. f(uj) for
each neuron in the layer. The memory organization of this block is provided in
Section 3.2.3.

• Neural cluster: array of neuron processing unit (NPU), described in Section
3.2.2. It receives synaptic parameters and delays from BRAM and updates the
internal states of each neuron. A detailed description of this block is provided in
Section 3.2.3.

Figure 3.6: 4-phase handshake protocol. The signal transition between two consecutive layers
takes place in four different different phases, shown in numbered circles.
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The communication of spikes between layers is managed by a 4-phase handshake
protocol, as depicted in Fig. 3.6. During Phase 1, the input spikes that occur within a
simulation time step tstep, in a given layer l, are accumulated in the input spike queue
of the next layer l + 1. Following this accumulation, layer l, sends a request signal
to layer l + 1, which initiates Phase 2. During this phase, the states, e.g. membrane
potentials, of neurons in the neural cluster of layer l + 1 are updated and compared
against the threshold voltage. If a spike is emitted, the address of the spiking neuron
is stored in the output queue of layer l + 1.

Following this processing phase, layer l+1 generates an acknowledgment signal,
thus initiating Phase 3 of the handshake protocol. During this phase, the FSMs of the
controllers in layer l are reset to their idle states. Subsequently, layer l sets the request
to zero, thus initiating Phase 4. During this phase, all the consecutive layers process
their input queues following the same scheme. At completion, the acknowledgment
bit is set to zero, signaling the completion of processing of the current simulation time
step, from all layers.

3.2.2. Neuron processing unit (NPU)
The neuron processing unit (NPU) implements the neural dynamics of an SRM model
with a Rel-PSP kernel, enhanced with active dendrites as defined in Section 3.1.1.
The digital implementation of the proposed NPU is depicted in Fig. 3.7.

Figure 3.7: Neuron processing unit (NPU). Hardware implementation of the proposed neuron
model. Signals in orange are from the main controller while signals in blue are from the BRAM. The
down counter contains the delay f(uj) introduced by the active dendrites.

Within a particular simulation time step, a single post-synaptic neuron in layer l
might receive spikes from different pre-synaptic neurons in layer l−1. The addresses
of the pre-synaptic neurons that emit a spike in layer l−1 are stored in the input queue
of layer l. In accordance with Eq. (3.3), the synaptic strength parametersWij connect-
ing the spiking pre-synaptic neurons to the post-synaptic neuron are accumulated.

To implement the accumulation mechanism, when a pre-synaptic spike is retrieved
from the input queue, the memory controller retrieves the corresponding synaptic pa-
rameter from the BRAM and redirects it to the NPU input, represented by the blueW in
Fig. 3.7. Subsequently, the main controller sends an accumulation signal (accumulate
in Fig. 3.7), which stores the parameter in the synaptic register. When a new spike
is retrieved from the queue, the same process is performed, buffering the sum of the
parameters of the spiking pre-synaptic neurons in the synaptic register. This process
is performed until the input queue is empty.
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As the simulation progresses, the accumulated parameters are integrated in the
membrane register when the update state signal transitions to a high state, thus imple-
menting the complete discrete-time evolution of the membrane potential of Eq. (3.3).
At the end of each simulation time step, the membrane voltage is compared with the
threshold voltage Vth. If its value exceeds the threshold, the count signal transitions to
a high state. This event corresponds to the occurrence of a spike in a standard SRM
model with a Rel-PSP kernel without active dendrites.

As explained in Section 3.1.1, the active dendrites of a neuron introduce a delay
in the time it takes for the neuron to spike. This delay can be modeled by a counter,
called the down counter. The down counter is initialized with the delay of the given
task, i.e. f(uj), contained in the BRAM. When the count signal transitions to a high
state, the down counter starts decrementing by one with each new simulation step
until it reaches zero. At this point, i.e. tsim = t̃j, the neuron emits a spike by raising the
spike signal to a high state. An example timing diagram of these transitions is shown
in Fig. 3.8.

Figure 3.8: Timing diagram of a NPU. At the beginning of the first time step, the DELAY is loaded
into the down counter, following the transition to a high state of the LOAD DELAY signal. In this
example, during the first simulation step, the post-synaptic neuron receives 3 spikes from different
pre-synaptic neurons. These spikes are decoded and the relative synaptic parameters, i.e. W = 1,
W = 2, and W = 3, are directed to the input of the NPU from the BRAM. In this specific example, the
post-synaptic neuron does not receive any new spike in the following time steps. When the value in
the membrane register crosses the threshold, i.e. Vm > Vth, the count signal transitions to a high
state, thus starting the down counter. When this counter value reaches zero, the spiked signal
transitions to a high state, indicating the event of a spike.

3.2.3. Memory organization and neural cluster
Each layer contains two physical memories: the synapse memory and the active den-
drite memory. These memories are implemented using the BRAM available in the
programmable logic (PL) of the Zynq-7020 SoC. Specifically, the Zynq-7020 has a
total memory of 8.4 kB organized in 140 blocks of 4.8 kb each. The memories in each
layer are instantiated using the Xilinx Block Memory Generator IP. This tool enables
the user to specify the depth and word length of each memory. The tool then arranges
the different blocks so that the required memory appears as a single unified memory
block to the user.

As discussed in Section 2.4.1, an SNN consists of multiple layers of neurons, each
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(a) Neural cluster (b) Memory organization

Figure 3.9: Neural cluster and memory organization. (a) Neural cluster containing three neural
processing units, i.e. units (0), (1) and (2). Each NPU is connected to the synapse and active
dendrites memories. The connections to the main controller are shared between the NPUs. (b)
Memory organization of the synapse memory (top) and the active dendrites memory (bottom) is
shown for three post-synaptic neurons. The colors indicate the connections between the memories
and the cluster. For example, W00 and f(u0), represented in orange, are directly connected to unit (0).

layer connected to the next by a synaptic connection matrix W l ∈ RI×J , where J is
the number of post-synaptic neurons in layer l, and I is the number of pre-synaptic
neurons layer l − 1. The matrix entries Wij are stored in the BRAM of the synapse
memory with a bit precision of NW .

To implement this layered structure, the neural cluster in a given layer l contains
multiple instances of NPUs implementing the dynamics of neurons in that layer. Sig-
nals from the main controller are shared between units, allowing their updates to oc-
cur in parallel. In addition, each NPU is directly connected to the output ports of
the synapse and active dendrite BRAMs. This connectivity ensures direct access to
synaptic parameters and active dendritic delay values, allowing the NPU to receive
the parameters required for integration in parallel.

Consider, for example, the three post-synaptic NPUs depicted in Fig. 3.9a, specif-
ically units (0), (1) and (2). According to Eq. (3.3), which describes the evolution of
the membrane potential of the proposed model, if the pre-synaptic neuron i = 0 emits
a spike in a given simulation step, unit (0) requires synaptic parameter W00, unit (1)
requires W01 and unit (2) requires W02 to update their states. To receive these param-
eters in parallel, the synapse memory is organized as depicted in Fig. 3.9b. The depth
of the synapse memory is determined by the number of neurons I in the pre-synaptic
layer, while the word length is given by the product of the number of post-synaptic
neurons and the precision of each parameter, i.e. J ×NW .

According to this memory organization, when the address of a spiking pre-synaptic
neurons is retrieved from the input queue of the post-synaptic layer, the memory con-
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troller selects the corresponding location in the synapse memory, thereby connecting
each parameter to the respective NPU. Following our initial example, since the pre-
synaptic neuron i = 0 emitted a spike, the memory controller selects the address 0
from the synapse memory, thus connecting W00 to unit (0), W01 to unit (1) and W02

to unit (2). Subsequently, the main controller sends the control signals explained in
Section 3.2.2, to update the states of the NPUs.

Least but not last, to implement the delay effect of active dendrites, the down
counter of each NPU must be initialized with the delay of the current task. Delay
values are stored in the active dendrite BRAM with precision Nu. To achieve parallel
initialization of the down counters, the active dendrite memory is organized as shown
in the bottom of Fig. 3.9b. Specifically, memory depth is determined by the number
of dendritic segments which, as explained in Section 3.1.1, is equal to the number of
tasks, i.e. n. On the other hand, the length of the word is determined by the product
of the number of post-synaptic neurons and the precision of each delay, i.e. J ×Nu.

Using the same example as in Fig. 3.9, if the first task is being performed, the
delay values of the first dendritic segment of each neuron, i.e. f(u0), f(u1) and f(u2),
must be loaded onto the down counter of the respective neurons, i.e. units (0), (1) and
(2). To achieve this goal, the memory controller selects the first address of the active
dendrite BRAM, connecting the delay f(u0) to unit (0), f(u1) to unit (1), and f(u2) to
unit (2). Subsequently, the main controller raises the load delay signal to a high state,
thereby loading all the delays in the respective down counters.

3.2.4. Controllers
The proposed layer architecture contains three controllers: the main controller, the
processing controller, and the memory controller implemented as a hierarchical finite-
state machine, as shown in Fig. 3.10.

Figure 3.10: Hierarchical FSM. Interactions among the main controller (orange), the processing
controller (green), and the memory controller (blue).
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The main controller is the fundamental block of a layer. It implements the 4-phase
handshake protocol to communicate with adjacent layers. It updates the membrane
potential of each NPU. It evaluates the occurrence of a spike, and subsequently adds
the addresses of any spiking neurons to the output queue. The finite state machine
of this controller is depicted in Fig. 3.11a. It consists of the following states:

• IDLE: spikes in a given simulation step from the previous layer are stored in the
input queue,

• LOAD TASK: sends a signal to start the memory controller with the aim of load-
ing the active dendrites delays,

• START PROCESSING: sends the signal to start the processing controller,
• EVALUATE: checks the membrane potential of each NPU in the neural cluster
against the threshold voltage, pushing the address of any NPU that crosses the
threshold into the output queue,

• UPDATE POTENTIAL: updates the membrane potential of each NPU based on
the accumulated spikes from the processing controller,

• POP OUT: pops an element from the output queue,
• PUSH OUT: pushes the popped elements into the input queue of the next layer,
• DONE: the current simulation step of the layer is completed, and the controller
remains in this state until it receives an acknowledgment signal from the next
layer.

The purpose of the processing controller is to process the spikes accumulated in
the input queue from the previous layer. Specifically, it pops elements from the input
queue until it is empty and accumulates the respective synaptic parameters in the
synapse register of each NPU. The FSM of this controller is depicted in Fig. 3.11b. It
consists of the following states:

• IDLE: waits for the start signals from the main controller,
• POP IN: pops one element from the input queue,
• LOAD WEIGHT: sends a signal to activate the memory controller, which will
decode the popped element and access the synapse memory,

• ACCUMULATE: sends and accumulate signal to each of the NPUs in the neural
cluster and checks if the input queue is empty,

• DONE PROCESSING: sends the done processing signal to the main controller,
forcing a transition to the next state.

The memory controller manages accesses to the synapse and active dendrite
BRAMs. The finite state machine of this controller is depicted in Fig. 3.11c. It con-
sists of the following states:

• ACCESS DELAY MEMORY: sends a read signal to the active dendrite memory,
• DONE LOAD TASK: sends a done signal to return to the idle state of the main
controller,



3.2. Hardware design 42

• DECODE ADDRESS: decodes the address in the input queue to a memory
address of the synapse memory,2

• ACCESS SYNAPSE MEMORY: sends a read signal to the synapse memory,
• DONE LOAD WEIGHT: sends a done signal to return to the idle state of the
main controller.

It should be highlighted that the BRAM in the Zynq-7020 SoC requires two clock
cycles to access the data at a given address with the output register enabled. As a
consequence, each time the memory controller enters one of the two memory access
states, it remains in that state for two clock cycles while keeping the read signal to a
high state.

(a) Main controller (b) Processing controller (c) Memory controller

Figure 3.11: Controllers states. The state machine for each controller is displayed following the
same color convention of Fig. 3.10. For the purpose of clarity, self-loops of states are not depicted.
The name of the signal adjacent to each arrow connecting two states represents the transition signal.
If this signal is not received, the state does not change. Arrows connecting states without specified
transition signals denote transitions independent of other signals.

2This state is empty in our experimental implementation because the synaptic parameters connect-
ing a specific pre-synaptic neuron to all the post-synaptic neurons can be written in a single word of
memory. Hence, there is a one-to-one mapping between the address of the pre-synaptic neuron and
the memory address. If the number of post-synaptic neurons is greater than 4608/Nbits, a decoding
mechanism is required.



4
Results

This chapter provides the results obtained with the proposed solutions, encompass-
ing both the software and hardware perspectives. First, we introduce the reader to
the case study used to evaluate the ability of our solution to mitigate the problem of
catastrophic forgetting. Second, we present software simulation results for two mod-
els: one enhanced with active dendrites and another without, highlighting the model’s
performance in terms of memory retention within a continual learning environment.
Finally, we present the hardware results of the proposed architecture, highlighting its
efficacy in terms of latency, resource utilization, and power.

4.1. Case study
In the field of neuromorphic computing, the Neuromorphic-MNIST (N-MNIST) dataset
[14] is a common dataset used to benchmark a model. This dataset is a spiking ver-
sion of the conventional frame-based MNIST dataset [14] employed by the machine
learning community.

The N-MNIST dataset is realized by recording the output of an event-based ATIS
dynamic vision sensor (DVS) [64] mounted on amotor-controlled pan-tilt unit. The sen-
sor is directed towards a monitor displaying all the images of the frame-based MNIST
dataset. To generate output spikes, the DVS is moved in three different directions, to
mimic three saccades of a human eye. An example of the output of the DVS camera
while recording a zero digit is shown in Fig. 4.1. The recorded output from a DVS
camera is a list of events, where each event is represented by 40 bits as described
below:

• bits 0-22: Timestamp (µs)
• bits 23: Polarity (increase or decrease in light intensity)
• bits 24-31: Y address (pixels)
• bits 32-39: X address (pixels)

However, conventional neural networks can only process tensor formats and can-
not effectively handle a list of events. The temporal resolution of the ATIS camera is
on the order of microseconds and the total average duration of each sample image is

43
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Figure 4.1: N-MNIST saccades. Output of the DVS camera for three saccades while viewing digit
zero of the frame-based MNIST dataset. Image modified from [14]. Red spikes represent an increase
in light intensity, whereas blue ones represent a decrease in light intensity.

of 100 ms for each saccade. Thus, attempting to represent these events in a tensor
format would result in a temporal dimension of the order of 105 steps, which makes it
intractable in terms of training time. Consequently, to reduce training time, events are
conventionally binned into frames [65]. Specifically, in our experimental setup, events
that occur within a time window of 1 ms are binned together.

Furthermore, as Frenkel et al. demonstrated in [58], using only the first saccade is
sufficient to achieve good levels of performance in classification tasks. Consequently,
to further reduce training time without sacrificing performance, we only consider only
the spikes that occur within the first saccade.

Finally, also similar to [58], each image in the dataset needs to be converted to a
TTFS encoding. Hence, only the first spike event for each pixel is retained, while all the
following spikes of the same pixel are removed. Lastly, only the events of increasing
light intensity have been considered for all our experiments, i.e. only one channel is
used.

4.2. Software results
This section provides the software results of the proposed solution. It is divided into
two subsections. The first provides quantitative results of the proposed model, i.e. an
SRM with Rel-PSP kernel enhanced with active dendrites, in typical continual learn-
ing environment, compared to the same model without active dendrites. The second
provides a discussion of these results. Specifically, it focuses on discussing the emer-
gence of subnetworks for each task and the specialization of each neuron to each
task.

4.2.1. Continual learning results
Indeed, as previously explained in Section 2.5.2, a typical neuromorphic experiment
to benchmark continual learning solutions consists in sequentially feeding images of
digits to the network during the training phase. In other words, tasks, each containing
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all images of a single digit, are presented sequentially to the network.
To create this environmental setup, the N-MNIST dataset has been modified to

present the digits to the model in a sequential order, with all samples of one digit
at a time. N-MNIST contains 60000 training samples and 10000 testing samples.
However, the number of samples for each digit is not balanced. Consequently, to
ensure a balanced number of samples for each task, the dataset has been modified
to include 5000 training samples and 890 test samples for each digit.

To evaluate the performance of the proposed model, we use the average accuracy
metric across 5 tasks, i.e. digits 0, 1, 2, 3, and 5, at the end of the training session
as described in Section 2.5.1. For each experiment, we maintain two models: one
enhanced with active dendrites and one without, where the former is expected to alle-
viate the catastrophic forgetting problem of the latter.

The images of a specific task are grouped into batches of 256 elements. Each
task is trained for 5 epochs using the Adam optimizer. To ensure statistical validity,
the experimental results are averaged across 4 different seeds. The neural network
employed for all our experiments is a one-hidden-layermodel. The input layer contains
1156 neurons, one for each pixel of the DVS camera, the output layer contains 5
neurons, one for each digit. Finally, the hidden layer contains 256 neurons. The
synaptic connections of each model are initialized using a He [66] distribution.

To find the best-performing model, we performed a grid search across various
hyperparameters such as the active dendrites strength N of Eq. (3.5), the learning
rate of the dendrites ηu, and the learning rate of the synaptic weights ηW of Eq. (2.10).
The results of this experiment are summarized in Table 4.1.

N ηW ηu = 0.001 ηu = 0.01 ηu = 0.1
0.00001 0.23 0.45 0.23 0.8 0.23 0.85

3 0.0001 0.38 0.4 0.38 0.52 0.38 0.67
0.001 0.23 0.25 0.23 0.25 0.23 0.31
0.00001 0.23 0.98 0.23 1.00 0.23 1.00

30 0.0001 0.38 0.83 0.38 1.00 0.38 1.00
0.001 0.23 0.50 0.23 0.64 0.23 0.75
0.00001 0.23 0.20 0.23 0.23 0.23 0.2

300 0.0001 0.20 0.38 0.20 0.38 0.20 0.38
0.001 0.23 0.20 0.23 0.20 0.23 0.20

Table 4.1: Average test accuracy expressed in decimal values across 5 tasks measured at the end of
training, i.e. all digits have been presented to the network. Each entry contains two sets of results. On
a dark gray background, are the test accuracy results for the model enhanced active dendrites, while
on a light gray background are the test accuracy results for the model without active dendrites.

To gain deeper insights into the effectiveness of our proposed solution in mitigating
the problem of catastrophic forgetting, it is possible to generate plots such as the
one depicted in Fig. 4.2. These plots are generated by evaluating the network’s test
accuracy at each training step, considering all previous tasks and training epochs.

For the specific model used to generate the plots shown in Fig. 4.2, we set the
network’s hyperparameters as follows: N = 30, ηW = 0.0001 and ηu = 0.1. Notably, in
the model without active dendrites, depicted on the left side of Fig. 4.2, the accuracy
on the test set of previously-learned tasks decreases as new tasks are encountered.
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Figure 4.2: Test accuracy at each epoch. On the left side, the test accuracy at each step for the
model without active dendrites is shown. On the right side, the test accuracy at each step for the
model with active dendrites is. The beginning of training for each new task is marked by the vertical
lines every 5 epochs. The different colors represent the different task. For example, the green color
represents task 0, where only images of the digit zero are presented to the network.

For instance, consider the fifth epoch in the figure on the left, during which the second
task performs its first training step. As one can see, during this step, the accuracy
of the first task, depicted in green, drops from 100% to around 60%, highlighting the
problem of catastrophic forgetting. On the contrary, the model enhanced with active
dendrites maintains the same test accuracy when the first iteration of the next task
begins.

4.2.2. Discussion
The results provided in Table 4.1 suggest that the proposed solution is capable of mit-
igating the catastrophic forgetting problem. However, the results shown in the right
plot of Fig. 4.2 raise many questions. Indeed, it is highly unlikely to obtain a final av-
erage accuracy of 100% in all tasks. There are multiple reasons that could cause this
event to occur. In the best-case scenario, this high accuracy can be attributed to the
fact that the tasks are too simple and that each task is trained by a different subnet-
works, therefore removing the interference of other digits. In the worst-case scenario,
this high accuracy could be attributed to repetition of digits within the same task. The
latter has been experimentally tested, and there is no identical image within the same
task. It is worth highlighting that other works attempting to mitigate catastrophic for-
getting under the same continual learning setup, also archive very high accuracy. For
example, the best performing model in [40] achieves an average accuracy of 99% at
the end of the training phase of the first five digits. Notably, similar to our results, in
[40, 38] the average accuracy for the first two digits is also 100%.

Furthermore, when the strength of the active dendrites is large, e.g. N = 300, the
proposed solution performs worse than the model without active dendrites. This is
mainly due to the design of the activation function of the dendritic segment defined in
Eq. (3.5). If the activation strength is too large, i.e.N is large, each dendrite introduces
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a large delay in the spike time, resulting in a large number of dead neurons, which
in turn hinders the possibility of calculating error gradients. On the other hand, if the
activation strength is reduced, a smaller number of neurons become dead, allowing for
a better calculation of error gradients. As explained in Section 3.1.2, we hypothesized
that dead neurons act like a task-dependent gating mechanism which ensure that only
the neurons relevant to a specific task remain active during the forward propagation.
This gating mechanism generates different subnetworks for different tasks, thereby
reducing the interference of information between tasks.

To test this hypothesis, we measured the activity of each neuron across tasks,
where the neuron activity is defined as the number of spikes emitted during the pre-
sentation of images associated with a specific task. This measurement enables us to
gain insight into the neural response in relation to each task. A plot of the activity of
each neuron in the hidden layer with respect to each task is depicted in Fig. 4.3. In
this figure, a dark blue line indicates a large number of spikes, whereas a light blue
line represents a small number of spikes.

(a) Activity without active dendrites

(b) Activity with active dendrites

Figure 4.3: Neurons activity for different tasks. The horizontal axis represents the neuron,
whereas the vertical represents the current task. The color represents the neuron activity, the darker
is the color the more active is the neuron.

From this figure, it is evident that active dendrites increase sparsity in the neural
activity of the hidden layer, thereby validating our hypothesis that dead neurons act as
a gating mechanism. Furthermore, when the model is enhanced with active dendrites,
the activity of each neurons becomes more specific to a given subset of tasks.

To gain a better understanding of the degree to which each neuron is responsive to
each task, we define a neuron as being highly responsive to a given task if it generates
an output spike for at least half of the image samples of that task. By employing
this metric, we generated the graph shown in Fig. 4.4, where the orange columns
represent the model without active dendrites, while the blue columns represent the
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model with active dendrites. From this figure, it is evident that when the model is
enhanced with active dendrites, each neuron becomes more responsive to a subset
of the total tasks.

Figure 4.4: Neurons specialization. The horizontal axis represents the neurons in the hidden layer.
The vertical axis represents the number of tasks for which each neuron is specialized. The orange
columns are for neurons without active dendrites, while the blue columns are for neuron with active
dendrites.

In summary, the experimental results in Table 4.2 demonstrate the effectiveness of
the solution in mitigating the problem of catastrophic forgetting when the hyperparam-
eters are properly chosen. Additionally, the neuron activity plot of Fig. 4.3 supports
the hypothesis that active dendrites increase the sparsity of neural activity. Moreover,
as shown in Fig. 4.4, the task-dependent gating mechanism ensures that each neu-
ron is specialized to a subset of tasks, thereby reducing interference during training.
This provides strong evidence that an SRM with a Rel-PSP kernel enhanced with ac-
tive dendrites effectively mitigates the problem of catastrophic forgetting, offering a
promising solution for continual learning in a TTFS-encoded network.

4.3. Hardware results
This section presents the results of the hardware implementation of the digital architec-
ture presented in Section 3.2. Specifically, the hardware implementation realizes the
neural network used for the software experiments of Section 4.2. The final objective of
this section is to demonstrate the feasibility of a TTFS-encoded network with a hidden
layer enhanced with active dendrites. To achieve this objective, this section is divided
into subsections as follows. The first subsection explains the implementation and val-
idation methodology. The second subsections provide the simulation waveforms of
the implemented neural network, demonstrating a close match between software and
hardware simulations. Finally, the last subsection provides a characterization of the
hardware implementation in terms of power consumption, resource utilization, and
latency.

4.3.1. Methodology
The methodology employed to implement the proposed architecture follows a bottom-
up approach. Specifically, each component of the architecture illustrated in Fig. 3.5
has been individually implemented and validated with a testbench using behavioral
simulations. Once these components were successfully validated, they were intercon-
nected to construct a complete layer. Henceforth, following a behavioral evaluation



4.3. Hardware results 49

of the layer module, two layers were interconnected to implement the neural network
architecture of Section 4.2.

Subsequently, the neural network architecture is synthesized and implemented
to verify correct operations from a timing perspective. Following the implementation
process, a timing analysis was performed to verify timing closure and explore the
possibility of increasing the operating frequency.

Furthermore, to enable fast reconfigurability of the hardware, we employed a pa-
rameterized approach for each module. The top module, containing two intercon-
nected layers, provides the flexibility to specify various parameters, including the pre-
synaptic and post-synaptic neurons in each layer, the number of dendrites for each
neuron, the threshold voltage, the precision of the synaptic and dendritic delays and
the depth of the FIFOs. By following this approach, the dimensions of the registers
and wires are automatically generated for different networks sizes.

To load synaptic weight parameters and dendritic delays in the Zynq-7020 BRAM,
we used the Xilinx block memory generator IP. This block enables the initialization
of the memory from .coe formatted files. To generate these files, we quantized the
weight parameters and synaptic delays to a fixed-point precision during the training
process. Subsequently, these parameters were converted into binary strings and writ-
ten into a .coe file. This approach not only facilitates memory initialization during the
design elaboration phase, providing initial values for simulation, but also enables the
generation of a bitstream file to initialize the physical BRAMs of the FPGA.

Finally, to validate our hardware implementation with the software simulation, we
first quantize the best-performing model of Table 4.1. Specifically, we quantized each
synaptic weight to a 4-bit fixed-point precision, while each dendritic delay was quan-
tized to an 8-bit fixed-point precision to ensure accuracy in the delay introduced by
the active dendrites. Subsequently, we loaded the quantized parameters into the re-
spective BRAMs and conducted behavioral, post-synthesis and post-implementation
simulations using one sample images from the N-MNIST dataset to verify matching
between the different phases.

It is important to note that while post-implementation simulations constitute a nec-
essary step towards a proper evaluation of the proposed solution, a stronger validation
would be offered by a full FPGA mapping where, image samples are stored in an SD
card and loaded from the FPGA core to the programmable logic where the instance
of the network resides. This further validation is left for future work.

4.3.2. Hardware neural network
The implemented neural network consists of two hardware layers:

• The first layer contains 1156 pre-synaptic neurons and 256 postsynaptic neurons,
resulting in 256 NPU instances inside the neural cluster. Each NPU contains a
down counter to load the dendritic delay.

• The second layer contains 256 pre-synaptic neurons and 5 post-synaptic neu-
rons, resulting in 5 NPU instances inside the neural cluster.

This network was elaborated, synthesized, and implemented. An example image
of the implemented design is provided in Fig. 4.5. To evaluate the matching between
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hardware and software simulations, we conducted a behavioural simulation where
three randomly selected images from the dataset are used as input to the network.
In this context, each image represents a different task. Therefore, at the beginning
of each simulation, the corresponding dendritic delay for the task was loaded into all
256 NPUs in the first layer. An example of the waveforms generated from the output
neurons in response to these images is shown in Fig. 4.6.

Figure 4.5: FPGA implementation view of the neural network. Red elements belong to the first
layer, and blue elements belong to the second layer.

As explained in previous sections, in a TTFS-encoded network, the information is
encoded in the spike time. Consequently, the classification output of a specific image
is determined by the neuron that spikes first. For instance, if we attempt to classify
the zero digit, then the spike time of the first neuron in the output layer should be the
first to emit a spike. As can be seen from Fig. 4.6, there is a match between the input
digit and the classified digit. For example, when classifying the zero digit, neuron
with address zero spikes first, whereas when classifying the digit two, the neuron with
address two spikes first. To further verify the match between hardware and software,
Table 4.2 presents the time step of the spike events of each neuron of hardware and
software simulations.

As can be seen in the table, the hardware provides a correct classification result.
Most spike times match exactly or within 1-2 simulation steps. a small mismatch that
likely results from the fact that in software simulations only the synaptic parameters
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Figure 4.6: Behavioural simulation waveforms. Classification waveforms of the output neurons in
response to the three randomly sample images. For each neuron the address, the spiked output and
the membrane voltage are plotted.

Neuron Digit 0 Digit 1 Digit 2
0 117 117 X X 341 402
1 X X 187 187 X X
2 442 374 233 235 101 100
3 154 152 271 270 232 232
4 X X 195 195 X X

Table 4.2: Hardware-software correspondence in spike times for the neurons in the output layer.
Grey entries represents the spike time of the hardware simulation. The X denotes a non-spiking
(i.e. dead) neuron.

and dendritic delays are quantized, while the membrane potential is maintained with
floating point-precision. Conversely, in the hardware simulations, the membrane po-
tential uses fixed-point notation, thereby resulting in a difference in membrane po-
tential integration between software and hardware. This also likely explains why the
biggest discrepancies (see neuron 2 for digit 0 and neuron 0 for digit 2 in Table 4.2)
manifest only for the late spike times, as such discrepancies accumulate until the
change the network dynamics. Further investigation is left for future work.
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4.3.3. Characterization
To obtain an accurate estimate of the power consumption of the proposed architec-
ture under a typical operating condition. A post-synthesis simulation of a randomly-
selected digit was used to create a .saif annotation file. This file provides the switching
activity of each net in the design, allowing for an accurate estimate of the power con-
sumption, assuming that the activity of this digit is representative of the full dataset.
Specifically this simulation was conducted using the synthesized design at the post-
implementation timing closure clock period Tclk = 8 ns. From this analysis our net-
works is estimated to consume 122 mW of dynamic power and 109 mW of static
power, for a total power consumption of 231 mW .

We evaluated the FPGA resources required to implement the suggested architec-
ture by analyzing the Vivado utilization report. The proposed architecture utilizes a
total of 39232 (74%) LUTs, 30169 (28%) FF, and 44.5 (32%) BRAMs. A detailed
breakdown of the resource utilization for each component of a layer is provided in
Fig. 4.7. Specifically, Fig. 4.7a illustrates the breakdown of resource utilization of the
first layer, while Fig. 4.7b illustrates the utilization of the second layer.

(a) L1 utilization (b) L2 utilization

Figure 4.7: Resource utilization by layer. Percentage of used resources by different modules
within each layer of the network.

The estimate the average time required to classify an image in hardware without
a deployed model we define the average classification time as

tavg = Tavg,out × tavg,step, (4.1)

where Tavg,out is the average number of simulation steps required for the neurons in
the output layer to emit the first spike, and tavg,step is the average time duration of a sim-
ulation step in hardware. The first can be estimated by running a software simulation
across all images and measuring the average simulation step at which the neurons in
the output layer fire their first spike, thereby determining the classification output. The
second is largely determined by the number of pre-synaptic spikes processed by the
hidden and output layers. This parameters is estimated as

tavg,step = tmin × (Nhidden +Noutput), (4.2)
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where tmin is the time required to process one pre-synaptic spike in hardware, Nhidden

is the average number of pre-synaptic spikes per time step in the hidden layer and
Noutput is the average number of pre-synaptic spikes per time in the output layer.

The last two parameters can be calculated from software simulations. On the other
hand, the first parameter can be measured from post-implementation simulations by
feeding a layer with a single pre-synaptic spike and measuring the time it takes for the
time step to end. Consequently, by plugging Eq. (4.2) into Eq. (4.1) the average time
required for the hardware to classify an image is defined as

tavg = Tout,avg × tmin × (Nhidden +Noutput). (4.3)

These parameters were measured at the timing closure frequency fclk = 125 MHz,
and are summarized in Table 4.3. The expected average time to classify an image of
the dataset is 117.29 µs.

Parameter Value
Tout,avg 284 steps
tmin 100 ns
Nhidden 3.94 spikes
Noutput 0.19 spikes

Table 4.3: Measurements of parameters required to find tavg.
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Conclusion and Future Works

This thesis aims at evaluating the feasibility of a learning algorithm capable of mitigat-
ing the problem of catastrophic forgetting in TTFS-encoded spiking neural networks
and designing its corresponding hardware accelerator following a neuromorphic ap-
proach. This work presents a novel TTFS-encoded model based on an SRM with a
Rel-PSP kernel, enhanced with active dendrites. The key claims of this thesis are as
follows:

• The biologically inspired concept of active dendrites provides a viable solution
to mitigate the problem of catastrophic forgetting in TTFS-encoded networks.

• The inherent problem of dead neurons in TTFS encoded networks, when cou-
pled with active dendrites, can be leveraged to create a gating mechanism that
increases sparsity and gives rise to different subnetwork for different tasks.

The proposed model can successfully mitigate the problem of catastrophic forget-
ting when training the N-MNIST dataset sequentially, i.e. one digit class at a time. The
final model consists of 1156 input neurons, 256 hidden active-dendrite neurons, and
5 output neurons, one for each digit. This model can be trained to classify the first
five digits of the N-MNIST dataset sequentially, achieving an end-of-training test ac-
curacy of 100% on all tasks. On the contrary, the same model without active dendrites
achieves an end-of-training test accuracy of 23%, which is close to random-guessing
performance. These results underscore the ability of active dendrites to effectively mit-
igate the problem of catastrophic forgetting using a TTFS-encoded neural network.

In addition to the theoretical novelty of the neuron model, we evaluated the feasibil-
ity of the proposed model on a digital hardware accelerator. To achieve this goal, we
designed a custom hardware neural processing unit that can effectively leverage den-
dritic delays from active dendrites to delay the spike time in a task-dependent manner.
This neural model was incorporated into an event-based layered architecture to form a
TTFS encoded neural network. The proposed hardware implementation utilizes 74%
of the LUTs, 28% of the FFs, and 32% of the BRAM available on a small-scale Xil-
inx Zynq-7020 SoC FPGA. The hardware network is expected to have an average
classification time of 117 µs and consumes 232 mW at a clock frequency of 125 MHz.

However, this work also has several limitations. For instance, the use case em-
ployed to validate our proposed model leads to a trivial classification accuracy on
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the test set. Additionally, our selected use case corresponds to a task-incremental
continual-learning scenario, where the switch between tasks is known, a condition that
is usually not met in the real word. From the hardware perspective, as the proposed
implementation stopped with post-implementation simulations, it would benefit from
further validation with a deployment in the programmable logic fabric of the FPGA.

To expand the breadth and depth of these claims, our work uncovers several
venues for potential improvements and future research, as follows:

• Improvements:

– Task difficulty: Increase the complexity of the continual learning scenario
by testing the proposed solution on the split N-MNIST and permuted N-
MNIST datasets.

– Model capacity: Increase the number of tasks by an order of magnitude to
verify the capacity of the model to retain information of a larger number of
tasks. This improvement could also be tested with the sequential N-MNIST
dataset by generating a random permutation of images for each new task.

– Task switching: Explore a prototype method capable of dynamically infer-
ring task switches from the data, similar to the approach used by Iyer et
al. in [13].

– Quantization-aware training: Create a quantization aware training setup,
where parameters, activation functions and gradients are quantized.

– FPGA deployment: Finalize the validation of the hardware design by test-
ing the inference capabilities directly inside the FPGA board. To achieve
this goal, one could load test samples of the dataset inside the SD card
of the FPGA board. The SoC core should then load these images to the
programmable logic of the FPGA where the model instance is deployed.

• Future Work:

– Lottery ticket hypothesis: Although the task of classifying the N-MNIST
digits sequentially only provides a simple proof of concept, it is worth high-
lighting that the proposed network can also be trained to 100% accuracy
when the synaptic weight learning rate is zero. This surprising finding sug-
gests that the network can learn the different tasks only by training the
parameters of the active dendrites. The lottery ticket hypothesis suggests
that, within a dense initialization weight matrix, there is a subset of sparse
weights, which, if trained from scratch, can achieve the same accuracy per-
formance as the dense network [67]. This hypothesis is further extended
by Ramanujan et al. in [68], which suggests that the hidden weight matrix,
if properly initialized, contains a set of sparse weights that can achieve im-
pressive accuracy results without ever training the weights. Consequently,
we hypothesize that active dendrites are capable of enhancing the activity
of neurons attached to these sparse weights while reducing the activity of
neurons that do not belong to the set of sparse winning weights. Thus, a
promising avenue for future work is to investigate whether there is formal
mathematical equivalence between the two mechanisms.
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– Online continual learning: Ideally, the goal of neuromorphic computing
is to design general-purpose machines that can learn online and process
temporal data with short-to-long-term dependencies, while adapting to a dy-
namical environment where tasks are different and can changewithout prior
notice. Recurrent spiking neural networks offer a viable solution to the prob-
lem of long-term dependencies [69]. Recently, different algorithms have
been proposed to train these networks in a forward only fashion, i.e. with-
out requiring a backward pass [70, 71, 72, 73, 74], thus allowing online
network training. A potential avenue is to enhance these algorithms with
the concept of active dendrites to enable a dynamical adaptation to different
tasks.

In conclusion, this work has revealed a promising path for neuromorphic comput-
ing, where custom hardware based on TTFS-encoded neuron models enhanced with
active dendrites can mitigate the problem of catastrophic forgetting. While our re-
search journey provided a first compelling proof of concept, it also revealed promising
avenues for future research.
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