
Dynamic sedimentation of linear micellar aggregates in a centrifugal field 
Alexander Duyndam and Theo Odijk 
Department of Polymer Technology, Faculty of Chemical Engineering and Materials Science, Delft 
University of Technology, P.0. Box 5045, 2600 GA Delf The Netherlands 

(Received 12 October 1993; accepted 6 November 1993) 

We formulate an equation for the dynamic sedimentation of linear micelles (both rodlike and 
flexible) in the limit of local thermodynamic equilibrium when the recombination and scission 
of mice&s are fast processes. A self-similar solution of the first kind is proposed for rodlike 
micelles in a free-draining approximation. The analytical structure of the associated nonlinear 
ordinary differential equation is very different from that pertaining to solutions of 
nonaggregating molecules. The theory may be of use in an experimental determination of the 
growth parameters by ultracentrifugation. 

1. INTRODUCTION 

There are several reasons for studying the dynamic 
sedimentation of linear micelles theoretically. Ultracentrif- 
ugation may offer a convenient means of characterizing the 
growth parameters with little ambiguity’ (although the use 
of the ultracentrifuge for characterization purposes is on 
the decline, worldwide). Light scattering, for instance, has 
the drawback of our having to know the distribution of the 
micellar size explicitly. Gravity and centrifugal fields are 
pure potentials so it is straightforward to develop a trans- 
parent theory in terms of a local chemical potential of a 
surfactant molecule. Finally, because diffusion and sedi- 
mentation may occur on well-separated time scales, one 
expects to be able to simplify the mathematics of the mi- 
cellar transport to a considerable extent. 

The connection between the exchange kinetics of the 
micelles (i.e., their recombination and breaking apart) and 
their polymerlike motion was first addressed quantitatively 
by Cates for entangled solutions.2 A connection exists even 
when the solution is dilute: an external field affects the 
distribution of micellar size which itself has an impact on 
the transport properties; continuity equations yield a self- 
consistent theory for the distribution. Such a program was 
carried out by several theoretical groups for shear and 
elongational flo~~-~ and diffusion.’ In an ultracentrifuge 
experiment, both diffusion and sedimentation will, in the 
long run, be slow processes compared to the micellar ki- 
netics. It thus make sense to study, in particular, the “fast 
reaction” regime. Hence, our starting equations are based 
on arguments similar to those introduced by Cates et al.3p8 

We first summarize the usual, linear theory of the sed- 
imentation of nonaggregating molecules, not only for the 
sake of comparison but also because we present a new 
method of deriving a similarity solution to the Lamm equa- 
tion. This is readily extendible to a certain class of nonlin- 
ear transport equations. Next, we formulate the continuity 
equation for the surfactant concentration in the limit of 
fast exchange or local thermodynamic equilibrium, and 
evaluate explicit forms for both flexible and rodlike mi- 
celles. Here, our interest is especially in the latter which are 
currently the subject of active investigation.g710 We seek a 
self-similar solution for the temporal and spatial depen- 
dence of the concentration front for rodlike aggregates, 

albeit in a free-draining approximation. We study the as- 
sociated ordinary differential equation in some detail. 

II. SEDIMENTATION OF NONAGGREGATING 
PARTICLES 

We first recall the classical approach to linear sedimen- 
tation equations. “,I2 The Lamm equation describes the 
time evolution of the concentration profile for a dilute, 
incompressible solution of noninteracting Brownian parti- 
cles in a centrifugal field 

ax 1 a kBTax mw23 -=A- 
at rdr fZ-fX ’ i 1 

(2.1) 

where X(r,t) designates the mole fraction of solute at a 
distance r from the axis of rotation at time t, k,T the 
Boltzmann constant times the absolute temperature, w the 
angular velocity, f the translational friction coefficient, 
and m the mass of a solute particle corrected for buoyancy 
(see Fig. 1). A common choice for the initial condition is 
a step function profile at t=O 

X(r,t=O> =0 for r<r,, 

X(r,t=O> =X0 for r>ro. 
(2.2) 

The boundary conditions are 
kBT aX 

--=X at r=rl and r=r2; t>O, mw2r ar (2.3) 

stating that particles cannot cross the meniscus of the so- 
lution or the bottom of the cell, respectively. An exact 
solution of Eqs. (2.1)-(2.3) has been provided by 
Archibald in terms of an infinite series of confluent hyper- 
geometric functions.13 

A convenient, closed approximation can be obtained 
when we restrict ourselves to the early stages of the sedi- 
mentation process. Three regions can then be distin- 
guished: a small one at the bottom of the cell where the 
solute accumulates, a relatively broad intermediate region 
virtually unaffected by the two boundaries, and another 
small region at the top of the cell (see Fig. 2). In the 
intermediate region, the solute sediments almost as if in an 
infinite cell. Faxtn solved the Lamm equation in this case 
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t- R 

FIG. 1. Cross section of the ultracentrifuge cell, rc denoting the position 
of the meniscus of the solution. 

exactly in 1929. Rewriting Eq. (2.1) in terms of the di- 
mensionless variables: @(x,t) =X(r,t)/X,; xe (r/ro)2; 
7~ (2mw2t)/f and ES (2k,T)/(m&) 

g=g (2&3). 

We can express the asymptotic form of his solution as’l 

@=q~ [ 1 -erf( *) +O(P2$n)]. (2.5) 

Here, x=0(1), r<O(l), and ~41 which define an exper- 
imentally realistic limit. The error function is given by 

e-3 dy. 

The argumentation sketched above depends explicitly 
on the linearity of Eq. (2.4). We now present a physically 
motivated derivation of Eq. (2.5) which makes use of the 
smallness of E from the beginning. It has the advantage of 
being applicable to the nonlinear case when the diffusion 
has a power law dependence on the concentration as in the 
next section. For small E, we expect the solution to Eq. 
(2.4) to be a propagating concentration wave whose front 
is a relatively thin, diffusive boundary layer. This motivates 
the substitutions ~(x,~)=x@(x,~) and z=logx in Eq. 
(2.4) 

X 

FIG. 2. Schematic plot of the concentration within the cell. 

aq a2(e-zq> a7 -=E a7 a2 -Z (2.6) 

and subsequent elimination of the translating wave by pos- 
tulating that T(z,~) has the form q(z,~)=+(z 
--7,~) =@(y,~) with y=z--7 

aa a2(e-Y-W) -=E ar ay2 * (2.7) 

Hence, this equation focuses on the diffusion within the 
boundary layer. Eliminating the time dependence on the 
right-hand side by choosing a new time variable q= 1 
- evT, we get 

a6 a2(e-Y*) -=e 
aq a3 * (2.8) 

Keeping in mind that ~(1, we may view the cell as 
effectively infinite in extent, in the beginning and even in 
the intermediate stages of the sedimentation. Moreover, 
well beyond the thin boundary layer, the original variable 
0 decreases as e-’ in the bottom part of the cell in view of 
mass conservation. Accordingly, the solution to Eq. (2.8) 
has to satisfy the effective boundary conditions: @(y= 
-w,q)=O and <p(y=+oo,q)=l besides the initial con- 
dition Q>(y,q=Q) =0 for y<O and ia(y,q=O) = 1 for y)O. 
In fact, to zero order we have x=e7+y,e7 or Q, -e’O for 
relevant values of y throughout the diffusive layer since Eq. 
(2.8) shows that lyl =O(e1’2q”2) (q<l so lyl <l at all 
times if egl). Note that the right-hand side of Eq. (2.8) is 
greatly simplified within a zero-order approximation 

a2e-YQ a24> a2a 
~=e-y@-2e-Y$+e-Y~ ‘vi - (2.9) 

Next, the zero-order boundary value problem is soluble 
with the help of a standard similarity transformation in 
terms of the variable p=y/2(eq) 1’2. Equations (2.8) and 
(2.9) reduce to an ordinary differential equation 

$=-2pg with @(-a)=0 and Q(+co)=l 

(2.10) 
whose solution is 

Q(p) Lf( 1 +erfp). (2.11) 
We note that in principle Eq. (2.11) is satisfactory not 

too far outside the diffusive layer, i.e., for Ip ( <e-l’2 oth- 
erwise Eq. (2.9) breaks down. However, although the ap- 
proach to the respective limits 0 and 1 will certainly deviate 
from Eq. (2.11) well beyond this layer, the value of Cp itself 
tXi?i&out to be very well approximated by Eq. (2.11). A 
second potential difficulty is that Eq. (2.11) has a point of 
infleCtion at p=O which is the center of an inner region 
where, again, Eq. (2.9) is poor. But a balance of terms in 
Eq. (2.9) using Eq. (2.11) shows that this region is of very 
small size [O(gq)] and merely a fraction [O(~“zq1’2)] of 
the diffusive layer. Furthermore, the solution to Eq. (2.8) 
must increase monotonically so the influence of the inner 
region is negligible. Hence, we may regard Eq. (2.11) a 
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uniformly valid approximation to the complete problem 
[Eq. (2.8)], provided ~41. In terms of the original vari- 
ables, Eq. (2.11) becomes . 

@=y [ l+e,f(~)]. 

where p. is the chemical potential of one amphiphile in an 
infinitely long micelle in the absence of the field and de- 
pends on the external pressurep,, and the temperature T, 
K is the free energy of formation of two end caps, n is a 

(2.12) number 0( 10) correcting for the loss of degrees of freedom 
of an amphiphile upon aggregation, mb is the mass of one 
amphiphile corrected for buoyancy, and Y(r) is the poten- 
tial of the centrifugal field which gives only an extensive 
contribution to the free energy of the system.’ The am- 
phiphiles are supposed incompressible. 

Defining q( r,t), which is assumed to be positive, as 

This is fully consistent with Faxen’s Eq. (2.5) 
throughout the diffusive layer within our zero-order ap- 
proximation [x=0(1), 7=0(l), IyI =O(P2), log,=. 
+y, see above]. Beyond the diffusive region Eqs. (2.5) and 
(2.12) all but coincide even though the respective asymp- 
totic behaviors to the limits 0 and 1 are entirely different. 

III. SEDIMENTATION EQUATIONS FOR LINEAR 
MICELLES 

Suppose a solution of linear micelles is put in a non- 
equilibrium state characterized by, say, a weak concentra- 
tion gradient of typical scale A. The original size distribu- 
tion will readjust itself in two stages essentially. The first 
involves rearrangement of the surfactant molecules among 
the micclles because the latter break up and collide. We 
now assume that this process reaches local thermodynamic 
equilibrium (with respect to surfactant exchange) within a 
comparatively short time r,, and within a volume &&A3; 
r,, and rIoc are independent of A if the latter is large 
enough. In the second stage, diffusion occurs on length 
scales Z,& rl, and time scales T&T,~. 

In view of these arguments, we introduce a hydrody- 
namic or coarse-grained description with all fields depend- 
ing on the coordinates r and time t, i.e., point r refers to a 
box of dimension u (&&(A3) containing many micelles 
and St>rtm. Next, let V be an arbitrarily chosen volume in 
the solution ( V%v). The total mole fraction of am- 
phiphiles V- ‘s VX( r,t)dr within V is not influenced by the 
exchange reactions.’ Hence, we can write the equation of 
continuity as 

ax(w) 
-= -$ - J,,,(r,t), at 
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d&t) =~O(~exm +!?mbY(r> -@(r,t> 

we may express the micellar distribution by 
(3.4) 

X,(r,t) =s” exp[ -sq(r,t) --K] (3.5) 

since F is independent of s in local thermodynamic equi- 
librium. Expressions~ analogous to Eqs. (3.1) and (3.5) 
have appeared before in theories on micellar growth under 
stationary tlo~.~ What appears to be new is our focus on 
temporal phenomena. Ultimately, we wish to express all 
variables in terms of the mole fraction X( r,t) which can be 
measured in a sedimentation experiment. In the calcula- 
tions below, we eliminate the function q(r,t) with the help 
of the relation 

X= C XsEemK 
OS0 

ds s”e-q 

N (2?r/n)1n(n/rl)“+1e-n-K. (3.6) 

The last equation follows from the Laplace method and the 
fact that SOT < n. 

Finally, we rewrite Eqs. (3.1) and (3.2) in the case of 
a centrifugal field Y (r > = -&‘? in cylindrical coordinates 
as 

(3.7) 
(3.1) 

with 
where the flux J,,,(r,t) defined with respect to a cell-fixed 
reference frame is 

JtOt(r,t)=-kBT C x,Oasp(r,t)., 
s>so 5‘(s) ar 

upuo(r,t)E c -, 
s>so Us) 

(3.2) 
s-ur,t> o*=a1(r,t)= E - 

s>so !w * We have neglected cross terms in the mobility tensor and 
all intermicellar interactions (hydrodynamic or other- 
wise), thereby restricting ourselves to dilute solutions. 
X,( r, t) is the mole fraction of amphiphiles in the state of 
aggregation indexed s (X + &,,,,X,), so is some minimum 
aggregation number, and c(s) is the translational friction 
coefficient (averaged over all possible orientations) of a 
micelle containing s amphiphiles. The chemical potential ,G 
(in units k,T=fl-‘) of one amphiphile in a solution of 
linear micelles in local thermodynamic equilibrium is’ 

The rest of this section is devoted to the evaluation of u. 
and crl in terms of X for a number of specific models. In the 
absence of the external field, the reasoning presented above 
yields results similar to the diffusion equations derived by 
Cates et al8 

P(r,t) =pOCloexJ) +Ks-‘+s-’ logX,(r,t) 

-ns-’ logs+pmbY(r), 13.3) 

A. Dilute solutions of rodlike micelles 

The friction coefficient c of a rod of length L and 
diameter d (L/d& 1) in a solvent of viscosity q. has the 
following form’4-16 

5‘=3~~oL[log(L/d)+2log2-1]-‘. 
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The length L of a rodlike micelle containing s amphiphiles 
is given by L = 2d (s-s,) /3s, where the constant s, denotes 
the number of amphiphiles within the two end caps.17 (We 
assume a uniform hydrocarbon density in the micellar 
core). For long micelles this can be simplified to L E 2ds/ 
3s, for this is consistent with all previous approximations 
made. 

For simplicity we set n = 1 (which is often thought to 
be true).18 The functions a0 and o1 can now be calculated 
with the help of Eq. (3.6) and the following approximate 
expressions, valid for so74 1: 

s 

m 
ds log se-q = --Y--l% rl 

(3.9) 
SO rl ’ 

s 

m 
dss log se-q e 

1 --y-log 77 

SO ?12 ’ = 
where y is Euler’s constant. 

aIX1’2s 
co=* (log X+K-2 log sc+a2), 

4-Q 
al=3 (log X+K-2 log sC+a4), 

(3.10) 

(3.11) 

where the constants have the following values: al 
424 --5/4e1/2, a2=210g$-1--2y+log271; a3 
=i(27r)-3’2e, and a,=2 log f+ 1-Q-i log 27r. 

B. Dilute solutions of rodlike micelles in the free- 
draining limit 

Equations (3.7), (3.11), and (3.12) form a compli- 
cated problem tractable by tedious numerical analysis only. 
However, the logarithmic terms in Eqs. (3.11) and (3.12) 
vary within fairly narrow bounds. Accordingly, it is worth- 
while to develop a free-draining approximation. We set 

f(s) =La 
with 

(3.13) 

&,=F [log(Ls/d)+210g2-l]-‘, 

where Lo is a zero-order estimate for the average length. 
After deriving X(r,t) we calculate a new (spatial and 
time) average which forms the next iterate L1, and so 
forth. 

The functions a0 and or are evaluated as in Eq. (3.6). 
Next, Eq. (3.7) is rewritten using the transformations out- 
lined in Sec. II 

ao a 
( 

a&(n+l) 
Z7G ex ax 

where T=2mf12t/co 

2kBT 
es-a c(n)e- K/(n+l)X;l/(n+l) 

, 

(3.15) 

(3.16) 

c(n) E (27r) 1/(2n+2)el/(n+l)n(-2n2--n)/(2n+2)(n_l)n--1/2 

for n#l, 

J. Chem. Phys., Vol. 

and c( 1) = (2~) -1’4e1’2. c(n) changes monotonically from 
0.6 for n=2 down to 0.4 for larger values of n. Typical 
values of the variables in Eq. (3.16) are: K=30, mb=5 
~10~~~ kg, w=6000 rad/s, ro=0.07 m, T=298 K, and 
X0= 10m5, which give a value of 10F4 for E. Applying the 
approximation scheme introduced in the previous section, 
we arrive at the equivalent of Eq. (2.10) for rodlike mi- 
celles 

&,d’n+” 

dp= 
=~2pz with Q(-w>=O 

and @(+co)=l (3.17) 

with a different definition of q: q=(n+l)/n(l 
-e-n7’(n+1)). In the next section we will fully investigate 
this nonlinear differential equation in the case n= 1. 

C. Dilute solutions of linear flexible micelles 

Flexible micelles shave a persistence length which is 
much smaller than the average contour length. However, 
they are generally quite slender (persistence length>d) so 
a simple Zimm model for the friction coefficient is often 
not applicable. Here, we simply set 

Us) =&7c (3.18) 
where I& and Y are empirical constants. Using Eq. (3.18) 
to calculate o. and or and again taking n = 1 for simplicity, 
we have 

(27T)V’4 
a()= ___ey(--K+1)/2(1_y)-~+3/2~1--v/2, (3.19) 

G 

(Tl= (27Tp1)‘4 

h 

e(K-l)(l-v)/2(2+,) -v+5/2~(3-d/2. 

(3.20) 
Hence, Eq. (3.7) is now a generalized Burgers equation” 
where both terms on the right-hand side contain rational 
powers of X. 

IV. ANALYSIS OF EQUATION (3.17) 

We analyze and solve Eq. (3.17) numerically in the 
case n = 1. After substituting Y(p) = Cp (p) 1’2 we get 

d2Y 
---4pY$ with Y(--co)=0 and Y(+c~)=l. 
dp2 - 

(4.1) 
It can be proved that this equation does not belong to any 
of the 50 classes of second-order nonlinear ordinary differ- 
ential equations distinguished by PainlevC.20 Equation 
(4.1) is therefore nontrivial for it contains spontaneous or 
movable singularities. 

We tirst~mvestigate the limiting behavior of Y(p) as 
p + + 0~) , in which case linearization of Eq. (4.1) is possi- 
ble. We set 

Y(p)=l--E(p), e(p)<i as p++c0. (4.2) 

Substitution of Eq. (4.2) in Eq. (4.1) and keeping terms of 
linear order in E yield the equation 
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FIG. 3. Plot of the numerical calculation of Q(p) for rodlike micelles in 
the free.-draining limit. The symmetric plot (dashed curve) holds for a 
nonaggregating solute. 

~“(P)=-4p&(p) with ~(+a)=0 

whose solution is 
(4.3) 

e(P)=~~(l-erf2l’~p). (4.4) 
Having established Eq. (4.4), we next consider it conve- 
nient to solve Eq. (4.1) numerically by using a fourth- 
order Runge-Kutta scheme with Eq. (4.2) as input.21 We 
have determined cl to be 0.3816 by minimizing Y(p= 
- loo0). The numerical solution is plotted in Fig. 3. 

At this stage it becomes sensible to address the, limiting 
behavior of Y asp-, - CO. First it is noted that Eq. (4.1) is 
scale invariant. Next, substitution of Y(p) G [U (p)]/p2 and 
pz -e’, leaves us with an autonomous differential equation 

&u du 
z-5 Z+6u= -4u dt *+ 8u2. (4.5) 

Inspection of our numerical results urges us to surmise that 
u(t) - 3/4 for t-* CO. Thus we tentatively set 

u(t) =3/4--w(t), w(t) 41 as t-9 CO. (4.6) 

After substituting this in Eq. (4.5) and retaining terms of 
linear order in o, we obtain an Euler equation whose so- 
lution leads to 

u(p) -3/a-c2( -p)‘-” as p-t - CO. (4.7) 
Our numerical calculations do indeed agree completely 
with this limiting form; the constant c2 equals 1.24. 

The analytical structure of Eqs. (4.4) and (4.7) shows 
that the deceptively simple looking Eq. (4.1) is difficult to 
solve, even approximately. We have made little or no at- 
tempt to determine a globally valid approximation. 

V. CONCLUDING REMARKS 

The theory presented here is valid only for dilute so- 
lutions of linear aggregates. Extension to the nondilute case 
would require careful scrutiny of a variety of correction 
terms. We stress that the treatment is definitely nonrigor- 
ous. For instance, we have not discussed precisely what 
happens close to zero concentration at the top of the cell. 
Then, the micelles are either spherical or almost nonexist- 

ent so Eq. (3.2) is no longer correct. However, the extent 
of this anomalous region is negligible when the micelles are 
sufficiently slender at the mole fraction X0. 

Besides the approximations emphasized earlier, we 
also point out that rodlike micelles are not absolutely rigid 
but inevitably wormlike though the undulations may be 
small. This effect introduces yet another perturbative non- 
linearity in the continuity equation. On the whole, a rigor- 
ous mathematical justification for our physically motivated 
self-similar solution of the first kind would be very com- 
plicated and & outside the scope of this work. Nor have we 
discussed the sedimentation of flexible micelles in more 
detail, for we suspect the solution to the continuity equa- 
tion is again self-similar but of an entirely different struc- 
ture, namely of the second kind with an associated nonlin- 
ear eigenvalue problem.lg An exhaustive analysis of this 
entails a paper by itself. 

In the usual centrifuge experiment of sedimenting par- 
ticles that do not aggregate, the scaled concentration pro- 
file is symmetric (Fig. 3) in the intermediate regime be- 
cause the transport equation is linear [Eq. (2.1)]. By 
contrast, for rodlike aggregates the profile is asymmetric 
(Fig. 3) since the transport equation is no longer linear 
[Eqs. (3.5) and (3.7) are coupled]. In the free-draining 
limit, the centrifugal driving force on a micelle is exactly 
proportion@ to the friction on it exert@ by the solvent so 
the driving term o1 is proportional to the volume fraction 
as it should be. But the diffusion term a, is nonlinear [in 
fact proportional to X1’2; see Eq. (3.1 l)] in view of the 
restriction given by Eq. (3.5) signifying the local equilib- 
rium of the scission and recombination kinetics of the mi- 
celles. The difliusion coefficient thus scales as X-“2 and 
such a diffusion process is termed “fast.“‘g This terminol- 
ogy is reasonable from a physical point of view: in the top 
of the cell, the surfactant concentration is low and the 
micelles are generally fairly small so they diffuse faster 
than aggregates in the bottom part of the cell. However, it 
is difficult to understand the complete structure of the 
asymmetric curve in Fig. 3 for reasons stated in the previ- 
ous section. 

Finally, we illustrate how a zero-order free-draining 
approximation may be applied to the characterization of 
rodlike micelles by dynamic centrifugation. For simplicity, 
we discuss the case n= 1 only. First, the mole fraction of 
surfactant X is determined as a function of distance r and 
time t in the intermediate region (Fig. 2). If the centrifuge 
rotates fast enough, the diffusive boundary layer will be 
relatively thin at all times i.e., E( 1, so it should be possible 
to distinguish a sedimenting front. Ideally, the front should 
move in such a way that zf=2 log(rf/rO) is linear in t; the 
slope 2me2/&, yields the friction coefficient cm in the 
zero-order free-draining approximation. Next, the diffusive 
layer is analyzed on a much finer scale 2~2 log(r/r,) at 
various scaled times ~=22rn~w~t/&,. Plots of the variable 
@=eTX/XO as a function of (z-~)/q”~ with q=2(1 
-e-r’2) should collapse onto one curve. Comparison of 
this universal plot with Fig. 3 gives the sought after quan- 
tity EE2e “2k,T/(2?r) 1’4mbw2t$e K’2XA’T via the identity 
p=(z--7)/2~“~q”~. In this way we obtain the end cap 
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term K and a zero-order friction coefficient &. The itera- 
tive free-draining scheme outlined in Sec. III takes the 
hydrodynamic interaction into account to some extent but 
is much more elaborate. 
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