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Chapter 1

Introduction

1.1 Motivation

Many physical, biological and economical systems can be modeled by mathematical constructs
such as differential or difference equations. These systems evolve in time or in any other inde-
pendent variable according to some dynamical relations. We can enforce these systems to fulfill
some requirements over a finite period of time (horizon) by the application of some external in-
puts or controls. However, these requirements must be met within the limitations and restrictions
that those systems manifest such as equipment or safety constraints. If these requirements can be
achieved, there may exist different controls for achieving them. If there exist different controls
for achieving the same requirements, then there might exist one control that is achieving it in
the “best” way. The measure of “best” or performance is called cost function, the limitations on
inputs and outputs are called constraints, the best control is called optimal control and we refer
to the associated design method as finite-horizon optimal control problem.

We can design an infinite-horizon optimal control by repeatedly solving a finite-horizon op-
timal control problem in a receding horizon fashion as it is explained next. At each step, a
finite-horizon optimal control problem is solved for which an optimal control sequence is com-
puted. Only the first control sample of the obtained optimal control sequence is applied to the
system. At the next step, a new finite-horizon optimal control problem is solved. The resulting
design method will be referred to as model predictive control (MPC), or model-based predictive
control as it is sometimes known.

But, a real system is much too complicated to allow anything but approximations. Therefore,
the mathematical description does not copy exactly the relevant physical phenomena taking place
into the system. Such a mismatch is called uncertainty. Moreover, the system is often affected
with disturbances from various sources. If the effect of the uncertainty and of the disturbances in
the model is not taken into account, then the real and theoretical behavior of the system will differ
and the requirements might not be met. Furthermore, the constraints might also be violated.
Depending on the requirements we can have system failure, which in turn might lead to huge
losses or even endanger human lives. That is why it is so important to design an optimal controller
that can cope with these issues. Optimal control that is robust against disturbances and model
uncertainty is referred to as robust optimal control. The receding horizon version of such control
will be referred to as robust model predictive control (robust MPC).

However, the techniques available for nonlinear systems cannot be extended easily to hybrid
systems and discrete event systems since many concepts have to be adapted adequately or new
concepts have to be introduced. This constitutes the motivation for the work reported in this
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thesis. The present thesis concentrates on synthesizing (robust) optimal controllers and their
(robust) MPC versions for some specific classes of nonlinear dynamical systems that in recent
decades have become an integral part of our world: hybrid systems and discrete event systems.

Hybrid systems are mixtures of continuous dynamics and discrete events. Both dynamics
interact and changes occur in response to discrete events but also in response to continuous dy-
namics (e.g. dynamics described by the difference or differential equations). Two basic hybrid
system modeling approaches can be distinguished, an implicit and an explicit one [161]. The
explicit approach is often represented by a hybrid automaton or a hybrid Petri net. The implicit
approach is often represented by guarded equations to result in a collection of systems of dif-
ference or differential equations, one system for each mode, where the active mode changes via
some guard conditions. In this thesis we concentrate on the second modeling approach. In partic-
ular, we consider hybrid systems described by piecewise affine (PWA) and max-min-plus-scaling
(MMPS) difference equations. These systems arise naturally in many applications such as:

• air traffic control where the air traffic controller uses a set of maneuvers (speed change,
short cut, etc) in order to obtain a conflict-free flight environment and the underlying air-
crafts dynamics are or can be approximated as PWA difference or differential equations
and various constraints must be obeyed.

• automotive control where the speed of a car engine is naturally modeled using several
discrete modes corresponding to the position of the gear, while each mode is described by
continuous dynamics (e.g. affine difference equations).

• chemical process control where to produce a substance, an instruction sequence is de-
signed, in which each instruction could involve several continuous control elements.

• electrical networks by their very nature are hybrid (switching, diodes).

• actuator saturation in a linear system, etc.

We also consider a class of dynamic systems whose evolution equations change in time by
the occurrence of events at possibly irregular time intervals nowadays often referred to as discrete
event systems. Discrete event systems that model only synchronization aspects are called max-
plus-linear (MPL) systems. However, we will introduce also the class of switching MPL systems
that can model also choice by breaking synchronization and changing the order of events. This
type of systems essentially consist of man-made systems that contain a finite number of resources
(such as machines, communications channels, etc), that are shared by several users (such as jobs,
information packets, etc) all of which contribute to the achievement of some common goal (the
assembly of products, a parallel computation, etc.) [4] such as:

• manufacturing systems where the synchronization aspects are modeled using the max op-
erator.

• railway networks where the connections between trains determine naturally (switching)
max-plus-linear dynamics.

• parallel computing where several jobs processed on several computers involve the max
operator.

• queuing systems with finite capacity where the service of a customer involves typically
max-plus-linear dynamics.
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Figure 1.1: The interaction between the chapters.

• planning is one of the traditional fields where the max operator plays a crucial role (e.g.
scheduling problems, the shortest path problem), etc.

This chapter proceeds now with a short summary of the Ph.D. thesis.

1.2 About this thesis
We have opted to make this Ph.D. thesis as self-contained as possible. Most of the notation used
in this thesis is consistent with the literature, each new symbol is explained on the page where
it is introduced, and in order to prevent confusion some notations and definitions are repeated
in each chapter that makes use of them. The basic road map and the interaction between the
chapters of this Ph.D. thesis are illustrated in Figure 1.1.

The background material is given in Chapter 2. Optimal control and MPC are the main
control design techniques used in the thesis. In Chapter 2 we formulate the problem of finite-
horizon optimal control and its receding horizon implementation (referred to as MPC) for general
nonlinear systems. The focus in this chapter is on two major topics: techniques that are available
to ensure stability of model predictive controllers for nonlinear systems and techniques by which
the disturbances are handled in optimal control and MPC strategies.

Chapter 3 and Chapter 4 deal with optimal control and MPC for some special classes of
discrete event systems: MPL systems and switching MPL systems. In the first part of Chapter
3 we study the finite-horizon optimal control problem for discrete event MPL systems. We
derive sufficient conditions that ensure the constrained optimal control problem is solved via a
linear program. Moreover, in the unconstrained case we demonstrate that for a proper choice
of the cost function we obtain explicitly the state-space formula for the just-in-time controller.
The robustification of the deterministic optimal control problem is considered in the second part
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of Chapter 3 where three types of min-max control problems are considered depending on the
nature of the input over which we optimize: open-loop input sequences, disturbance feedback
policies and state feedback policies. Despite the fact that the controlled system is nonlinear, we
provide sufficient conditions that allow us to preserve convexity and consequently to recast the
corresponding min-max problems as either linear programs or multi-parametric linear programs.
In Chapter 4 we consider the receding horizon implementations of the optimal control problems
discussed in Chapter 3. We mainly focus on stability of the closed-loop MPC. We introduce the
notions of Lyapunov stability and positively invariant set for a normalized MPL system. Further,
we design MPC strategies that guarantee a priori stability for the corresponding closed-loop
system. The stability results are obtained either by deriving bounds on the tuning parameters or
by using a terminal cost and a terminal set approach.

Chapter 5 represents the bridge that connects the previous chapters with Chapter 6. MMPS
systems model on the one hand a large class of discrete event systems and on the other hand they
are equivalent to some relevant subclasses of hybrid systems. In Chapters 5 and 6 we propose
different MPC schemes for particular classes of discrete event systems and hybrid systems. In
Chapter 5 we show that the open-loop min-max MPC optimization problem for uncertain MMPS
systems can be recast as a finite sequence of linear programs if certain conditions on the stage
cost and constraints are satisfied. We also introduce feedback by optimizing over disturbance
feedback policies and an efficient algorithm is derived in order to solve this type of min-max
control problems. In Chapter 6 different MPC strategies for deterministic and uncertain piece-
wise affine systems are presented that incorporate the property of nominal closed-loop stability
and robust stability, respectively. Although the controlled system may be discontinuous we are
able to show that the optimal value function in the deterministic case is continuous at the equi-
librium point and thus it can serve as a Lyapunov function for the closed-loop system. In the
disturbance case a new sufficient condition that preserves convexity of the predicted state set is
introduced and based on this condition a robustly stable dual-mode MPC strategy is derived that
considers only the extreme disturbance realizations.

Chapter 7 contains the conclusion of the thesis and suggestions for future research.
Appendix A presents some results that we obtained in the first year of the Ph.D. research. In

this appendix we derive the main properties such as the formulas for the shock waves, rarefaction
waves and the solution of the Riemann problem for a macroscopic gas-kinetic traffic flow model,
called the Helbing traffic flow model.

Appendices B and C contain some additional background material on linear matrix inequali-
ties and Lyapunov stability.

1.3 Contributions to the state of the art
The objective of the research presented in this thesis is to extend optimal control and MPC tech-
niques to relevant classes of hybrid systems and discrete event systems. By focusing on specific
classes of hybrid systems and discrete event systems, the goal is either to extend the framework
by introducing new analysis techniques, to facilitate the design of the optimal controller, or to
improve the performance by exploiting the particular structure of these model classes. We now
explain how each chapter relates to this research objective and the main contributions of each of
these chapters to the state of the art are also summarized.

Chapter 3 “Finite-horizon optimal control for constrained max-plus-linear systems” Most of
the existing literature on optimal control of MPL systems uses a residuation-based ap-
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proach1 based on input-output models in order to design a controller. However, the resid-
uation approach does not take into account uncertainties in a general framework, feedback
is not incorporated, initial conditions are not considered, and the residuation approach does
not handle general state and input constraints. In this chapter we derive novel methods to
solve finite-horizon optimal control problems for nominal or uncertain MPL systems de-
pending on the nature of the input over which we optimize that circumvent these issues. In
the unconstrained case and for an appropriate cost function we obtain an analytic solution
for the optimal control problem corresponding to the nominal case that leads to a just-in-
time controller. Since MPL systems are nonlinear, non-convexity is clearly an issue if one
seeks to develop efficient methods for solving optimal control problems for MPL systems.
However, by employing recent results in polyhedral algebra and multi-parametric linear
programming we prove that in the constrained case the optimal control problems for the
nominal and uncertain MPL systems can be recast as linear programs or can be solved
off-line via a set of multi-parametric linear programs. For the robust control problem we
assume that the uncertainty lies in a polytope, we consider the min-max framework and
feedback is incorporated using disturbance feedback policies or state feedback policies.
These methods are useful for the design of MPC schemes in the next chapter.

Chapter 4 “Model predictive control for max-plus-linear systems” Recently, the MPC frame-
work was extended to discrete event MPL systems. A major concern of MPC schemes
is to prove closed-loop stability, since this property was not explicitly incorporated into
the design procedure. In this chapter we introduce the notions of Lyapunov stability and
positively invariant set for normalized MPL systems and their main features are derived.
An MPC scheme for unconstrained MPL systems is proposed that, by a proper tuning of
the design parameters, guarantees a priori closed-loop stability. In the constrained case
we introduce a terminal inequality constraint (based on a positively invariant set) and an
appropriate terminal cost that together guarantee closed-loop stability. Furthermore, in the
disturbance case a robustly stable feedback min-max MPC scheme is developed that uses
disturbance feedback policies or state feedback policies. This leads in general to a better
performance and increased feasibility than with the existing open-loop MPC schemes. Us-
ing the results from Chapter 3 we obtain that the MPC optimization problems can be recast
as linear programs or can be solved off-line via a set of multi-parametric linear programs.
The equivalence between stability in terms of boundedness and asymptotic stability does
not hold for MPL systems, as it holds for conventional linear systems, but under some
additional assumptions we prove that both notions of stability hold for the closed-loop
MPC.

Chapter 5 “Model predictive control for uncertain max-min-plus-scaling systems” MMPS sys-
tems have a dual interpretation: on the one hand they can be seen as an extension of discrete
event MPL systems and on the other hand they are equivalent with some interesting classes
of hybrid systems. In Chapter 5 we design a min-max MPC algorithm for uncertain MMPS
systems based on open-loop input sequences. To the author’s best knowledge the robust
MPC problem for MMPS systems has not yet been addressed before by other authors. It
is demonstrated that the resulting min-max problem can be solved efficiently by solving
a finite sequence of linear programs. As an alternative to the open-loop MPC algorithm
a feedback min-max MPC scheme is designed by optimizing over disturbance feedback

1Residuation is a general notion in lattice theory [20] which allows defining “pseudo-inverses” of some isotone
maps (f is isotone if x ≤ y ⇒ f(x) ≤ f(y)).
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policies, which leads to improved performance compared to the open-loop approach. This
chapter can be regarded as the extension of some of the MPC algorithms of Chapter 4
towards a min-max MPC-MMPS algorithm.

Chapter 6 “Model predictive control for piecewise affine systems” A common way to guaran-
tee nominal closed-loop stability for PWA systems using a model predictive controller is
the introduction of an end point equality constraint. In order to guarantee feasibility of the
corresponding MPC optimization problem we then need a long prediction horizon. How-
ever, the MPC framework often uses short prediction horizons in order to keep the MPC
optimization problem tractable. In this chapter we develop a stabilizing MPC algorithm
based on a terminal inequality constraint that allows us to choose short prediction horizons.
In order to develop such an algorithm we make use of the special structure of our system.
In particular, using the piecewise linear (PWL) dynamics of the PWA system we derive a
stabilizing PWL local controller that enables us to construct a terminal set and a terminal
cost. The PWL controller is obtained using the linear matrix inequality framework (via
a relaxation procedure called the S-procedure) and the particular structure of the system.
Despite the fact that the PWA system may be discontinuous we are able to show that the
optimal value function of the corresponding MPC optimization problem is continuous at
the equilibrium and can serve as a Lyapunov function for the closed-loop system. This
is an interesting result since continuity is the classical and customary assumption on the
optimal value function due apparently to the fact that MPC has often been applied to suf-
ficiently smooth systems. The robustification of the MPC is considered in the second part
of this chapter. We develop a robustly stable feedback MPC algorithm that considers only
the extreme disturbance realizations by introducing a new sufficient condition that allows
us to preserve convexity of the predicted state set.

Appendix A “Structural properties of the Helbing traffic flow model” In this appendix we study
the main properties of the macroscopic, gas-kinetic, Helbing traffic flow model. For the
first time it is demonstrated that this model does not give rise to negative flow and density.
In addition, the main properties such as the formulas for the shock and rarefaction waves
and the solution of the Riemann problem are derived.

1.4 Publications
Most of the material that is presented in this Ph.D. thesis has been published, or accepted for
publication, in journals or conference proceedings. Some of the material has been submitted for
publication recently. We detail below the links between these publications and each chapter of
the thesis.

• Chapter 3 is based on the papers [122, 125, 126, 158].

• Chapter 4 is based on the papers [123, 124, 127, 128, 159].

• Chapter 5 is based on the papers [118, 119, 121].

• Chapter 6 is based on the papers [35, 114, 117, 120].

• Appendix A is based on the papers [115, 116].



Chapter 2

Background

In this chapter we describe briefly some special classes of hybrid systems (piecewise affine sys-
tems and max-min-plus-scaling systems) and discrete event systems (max-plus-linear systems
and switching max-plus-linear systems) since the present thesis focuses on designing efficient
optimal controllers for these particular classes of systems by exploiting their special properties.
We also give an overview of optimal control and its receding horizon implementation which is
referred to as model predictive control for general nonlinear systems. Besides their formulation,
we concentrate on three important issues: feasibility, robustness and closed-loop stability.

2.1 Hybrid systems

The mathematical description of a system is, in general, associated with differential or difference
equations that are typically derived from physical laws governing the dynamics of the system
under consideration. Therefore, most of the literature on dynamic modeling and control is con-
cerned with systems that are either completely continuous or completely discrete, and whose
evolution is described by smooth linear or nonlinear state transition functions. However, most
of the dynamical systems around us may be described in a hybrid framework: cars (gear shift),
washing machines (on/off switches or valves), computers (if-then-else rules), etc.

The demands on modern technology have caused a considerable interest in the study of dy-
namical systems of a mixed continuous and discrete nature, called hybrid systems. The interest
in hybrid systems has grown in both the academic community, due to the theoretical challenges,
as well as in industry, due to their impact on applications. A more detailed and comprehensive
review of the topic on hybrid systems can be found in [161].

There are many examples of hybrid systems [3, 161]. Air traffic control, automotive control,
chemical processes, power electronics are hybrid by their very nature. As an illustrative example
of a simple hybrid system, we mention a temperature control system in a room consisting of a
heater and a thermostat. This is a system that can operate in two modes depending on whether
the heater is on or off and the room temperature is described by differential equations. The
variables of the system are the temperature (real-valued) and the operating mode of the heater
(Boolean). Clearly, there must be a coupling between the continuous and discrete variables,
so that for instance the operating mode will be switched to off when the temperature crosses a
certain upper value (this example will be studied in more detail in Chapter 5).

Initially, the engineering solution to a hybrid control problem was based on a continuous or
discrete formulation and dealt with the hybrid aspects in an ad hoc manner. Recently, because
of their complexity, many analysis and synthesis techniques for such hybrid control problems

9



10 2 Background

have been proposed that rely on qualitative techniques, which have their roots in well-grounded
classical methodologies. Among them, the class of optimal controllers is one of the most stud-
ied [11, 99, 139, 151]. Of course, the approaches differ in the hybrid model adopted, in the
formulation of the optimal control problem and in the methods used to solve it.

In this section we briefly discuss a framework for modeling, analyzing and controlling hybrid
systems. We will focus only on discrete time linear hybrid models. In this hybrid framework,
the system is allowed to be discontinuous, both inputs and states are real-valued, an event occurs
when the states reach a particular boundary and the states and inputs satisfy a given set of linear
inequality constraints. We will focus on two special classes of hybrid systems:

• piecewise affine (PWA) systems

• max-min-plus-scaling (MMPS) systems

Each class has its own advantages over the others. For instance, stability criteria and con-
trol techniques were proposed for PWA systems in [22, 26, 74, 112, 139, 151] while control and
verification techniques for MMPS systems are provided in [21, 42, 44, 46].

This section proceeds now with the introduction of the class of PWA systems and MMPS
systems. In Section 2.2 we introduce two particular classes of discrete event systems: max-
plus-linear systems and switching max-plus-linear systems. Finally, in Section 2.3 an overview
of optimal control and model predictive control for nonlinear systems is given with particular
interest in feasibility, closed-loop stability and robustness.

2.1.1 Piecewise Affine (PWA) systems
Among various classes of discrete time hybrid systems, PWA systems are the most studied since
they represent the “simplest” extension of linear systems that can still model hybrid phenomena
[9, 11, 22, 26, 49, 75, 151]. Discrete time PWA systems can model exactly a rich class of hybrid
processes, such as actuator saturation in linear systems or switched systems where the dynamic
behavior is described by a finite number of discrete time affine models, together with a set of
logic rules for switching among these models. Moreover, they can approximate smooth nonlinear
systems with arbitrary accuracy by sampling the continuous dynamics and linearizing at different
operating points. Loosely speaking, PWA systems are defined by partitioning the state and/or
input space of the system in a finite number of polyhedral regions and associating to each region
a different affine dynamic. We will give in the sequel a precise definition for PWA systems.

We use some rather standard definitions:

Definition 2.1.1 A polyhedron in the Euclidean space R
n is a set described as the intersection

of a finite number of half spaces. Each half space can be either closed (i.e. {x ∈ R
n : aTx ≤ b},

where a ∈ R
n, b ∈ R) or open (i.e. {x ∈ R

n : aTx < b}). A bounded polyhedron is called
polytope.

Definition 2.1.2 Given a polyhedron X , then a polyhedral partition of X is a finite collection of
nonempty polyhedra {Xi}i∈I satisfying (i) ∪i∈IXi = X , (ii) Xi ∩ Xj = ∅ for all i 6= j.

We define R̄ := R ∪ {−∞,∞}. For a given function g : R
n → R̄, its effective domain

is defined as in [144] dom g := {x ∈ R
n : g(x) < ∞}. The function g is called proper if

g(x) < ∞ for at least one x ∈ R
n and g(x) > −∞ for all x ∈ R

n. In other words the proper
functions g : R

n → R̄ are thus the ones obtained by taking a set X ⊆ R
n, X 6= ∅ and a function

g : X → R and putting g(x) =∞ for all x ∈ R
n \ X .
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Definition 2.1.3 The epigraph of a function g : X → R is defined as

epi g := {(x, t) ∈ X × R : g(x) ≤ t}. (2.1)

Definition 2.1.4 A function g : X → R
k, where X ⊆ R

n, is PWA if there exists a polyhedral
partition {Xi}i∈I of X and g is affine on each Xi, i.e. g(x) := Hix+ ki for all x ∈ Xi and i ∈ I.
If in addition g is continuous, then g is called a continuous PWA function.

Piecewise quadratic functions are defined analogously.
In [144] an alternative definition is given for a PWA function. Namely, g : X → R

k, g =
[g1 g2 · · · gk]

T is a PWA function if the epigraph of each function gi is a finite union of polyhedra.
We now can define a PWA system.

Definition 2.1.5 A PWA system is a dynamical system whose evolution is defined as follows:
x(k+ 1) = fPWA(x(k), u(k)), y(k) = hPWA(x(k)), where fPWA(·, u), hPWA are PWA functions
for each fixed u and fPWA(x, ·) is an affine function for each fixed x. Here, k is a discrete time
step, x ∈ R

n are the states, u ∈ R
m are the inputs and y ∈ R

p are the outputs. We say that a
PWA system is continuous if the functions fPWA and hPWA are continuous.

From Definition 2.1.5 we have the following explicit description of a PWA system:

x(k + 1) = Aix(k) +Biu(k) + ai

y(k) = Cix(k) + ci
if x(k) ∈ Ci, (2.2)

where Ai ∈ R
n×n, Bi ∈ R

n×m, Ci ∈ R
p×n and ai ∈ R

n, ci ∈ R
p. Here, {Ci}i∈I is a polyhedral

partition of the state space R
n and I is a finite index set. We may assume, without loss of

generality, that the origin is an equilibrium point for the PWA system (2.2). We denote with
I0 ⊆ I the set of indexes for the polyhedral sets Ci that contain the origin in their closure. It
follows that the cardinality of I0 satisfies |I0| ≥ 1. If I0 = I then the PWA system (2.2) is called
piecewise linear (PWL). It follows that ai = 0, ci = 0 for all i ∈ I0.

Note that Definition 2.1.5 is the discrete time version of the definition of a PWA system in
the system state x given in [74, 139] for the continuous time case. In order to avoid some issues
in connection with the existence of a PWL controller (that will be derived in Section 6.1.2) we
use this particular case of a more general definition of a PWA system:

Definition 2.1.6 A general PWA system is a dynamical system whose evolution is defined as
follows: x(k + 1) = fPWA(x(k), u(k)), y(k) = hPWA(x(k)), where fPWA, hPWA are PWA
functions. When fPWA and hPWA are continuous PWA functions, we call such a system a general
continuous PWA system.

However, the most common situation is when the system equations are PWA in the system state
x only. As we mentioned previously such model can, for example, arise from the linearization of
nonlinear systems around different operating points, or from interconnections of linear systems
and static PWL components, or even in practical applications (automotive control, air traffic
control, chemical process control, etc.). Therefore, in this thesis the term “PWA” refers to PWA
in the state space only (i.e. x ∈ Ci ⊆ R

n) while the term “general PWA” refers to PWA in the
state and input space (i.e. [xT uT ]T ∈ Ci ⊆ R

n+m).
In [9, 64] the equivalence of discrete time general PWA systems and other classes of dis-

crete time hybrid systems such as mixed logical dynamical (MLD) systems [11], max-min-plus-
scaling (MMPS) systems [21, 44] (see also Section 2.1.2), linear complementarity (LC) sys-
tems [65, 160], extended linear complementarity (ELC) systems [43] is proved, possible under
some additional assumptions related to boundedness of input, state, output or auxiliary variables.
In particular, the following result can be deduced from [64]:
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Lemma 2.1.7 Every general PWA system can be written equivalently as an MMPS system pro-
vided that the set of feasible states and inputs is bounded.

The equivalence of discrete time MLD, MMPS, LC, ELC and general PWA systems allows
to easily transfer certain theoretical properties and tools developed for some class to other. It
depends on the application, which of these classes is the best suited. It has been shown in [46]
that in some particular applications the use of the MMPS framework has some advantages in the
computations of optimal controllers.

2.1.2 Max-Min-Plus-Scaling (MMPS) systems
Another class of hybrid systems is the class of MMPS systems, the evolution equations of which
can be described using the operations maximization, minimization, addition and scalar multipli-
cation. In [61] the general properties of these class of systems are studied and conditions for
stability are derived while in [44] optimal control, especially model predictive control, is pro-
posed for the deterministic case (i.e. in the absence of disturbances). We introduce the following
definitions:

Definition 2.1.8 A scalar-valued MMPS function g : R
n → R is defined by the recursive rela-

tion:

g(x) =xi|α|max{gj(x), gl(x)}|min{gj(x), gl(x)}|gj(x) + gl(x)|βgj(x), (2.3)

where i ∈ N[1,n], α, β ∈ R and gj, gl : R
n → R are again MMPS functions, and the symbol |

stands for “or”. For vector-valued MMPS functions the above statements hold component-wise.

An MMPS function is e.g. g : R
2 → R, g(x) = −2x1 + 3x2 + max

{
min{5x1 −

1,−x2},−x1 + x2 − 1
}

. The following lemma taken from [131] states the equivalence between
continuous PWA and MMPS functions:

Lemma 2.1.9 Any continuous PWA function having domain R
n can be written as an MMPS

function and vice versa.

We now introduce the class of discrete time MMPS systems:

Definition 2.1.10 An MMPS system is a dynamical system whose evolution can be expressed as
follows:

x(k + 1) = fMMPS(x(k), u(k))
y(k) = hMMPS(x(k)),

(2.4)

where fMMPS and hMMPS are vector-valued MMPS functions.

From Lemma 2.1.7 it follows that under boundedness assumption on the states and the inputs,
the class of general PWA systems is equivalent with the class of MMPS systems. From Lemma
2.1.9 we see that we can remove the boundedness assumption in the case of general continuous
PWA systems:

Lemma 2.1.11 Every general continuous PWA system can be written equivalently as an MMPS
system and vice versa.
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2.2 Discrete event systems (DES)
In the previous section we saw that the state of a hybrid system generally changes as time
changes. At every tick of the clock the state is expected to change and we refer to such sys-
tems as time-driven systems. In this case, the time variable k is a natural independent variable
and the state transitions are synchronized by the clock, i.e. at every tick of the clock an event
occurs that determines a change in the state. However, in the day-to-day life we encounter many
systems that evolve in time by the occurrence of events at possible irregular time intervals, i.e.
not necessarily coinciding with clock ticks. In this case state transitions are the result of asyn-
chronous events and then time may no longer be an appropriate independent variable. We refer
to such systems as event-driven systems. In this case, the variable k is an event counter. In [28]
discrete event systems (DES) are defined as discrete-state, event-driven systems. In this thesis as
in [4,37] we refer to DES also to those event-driven dynamical systems for which the state space
is a continuum.

Many practical systems, particularly technological ones are DES: manufacturing systems,
telecommunications networks, railway systems, logistic systems and so on. All these systems are
man-made and consist of a finite number of resources (e.g. machines, communication channels,
memories) shared by several users (e.g. manufactured objects, jobs) all of which contribute to
the achievement of some common goal (e.g. the assembly of products, a parallel computation).
The behavior of such systems is governed by events rather than by ticks of a clock. An event
corresponds to the start or the end of an activity. If we consider a production system then possible
events are: the completion of a part on a machine, a buffer becoming empty, etc. All these
events occur at discrete time instants. Moreover, the intervals between events are not necessarily
identical; they can be deterministic or can vary stochastically.

In general the dynamics of DES can be described using the two paradigms of synchronization
and concurrency. Synchronization requires the availability of several resources at the same time
(e.g. before we assembly a product on a machine , the machine has to be idle and the various parts
have to be available), whereas concurrency appears when some user must choose among several
resources (e.g. in a manufacturing system a job may be executed on one of several machines that
can handle that job and that are idle at that time) [4].

Although in general DES lead to a nonlinear description in conventional algebra, there exists
a subclass of DES that contains only the paradigm of synchronization. For these DES the system
equations become “linear” when we formulate it in the max-plus algebra. Such systems will be
called max-plus-linear systems. We also consider dynamical systems in which we can switch
between different modes of operation, each mode being described by a max-plus-linear model.
We refer to such a system as switching max-plus-linear system. We can note that MMPS systems
represent a general framework for modeling hybrid systems but also DES that includes max-
plus-linear systems and switching max-plus-linear systems (provided that the switching function
depends only on (x, u) and it is linear) as particular subclasses, as we will see in Section 5.1.2.
Then, the index k might also have different interpretations: a time counter or an event counter,
respectively. Therefore, depending on the meaning of k the constraints, the cost function and the
implementation of the controller have to be adjusted adequately.

There are many modeling and analysis techniques for DES, such as queuing theory, max-
plus algebra, perturbation analysis, computer simulation, etc. All these modeling and analysis
techniques have particular advantages and disadvantages and it really depends on the systems we
want to model and on the goals we want to achieve which one of the above procedures best suits
our needs. Although the class of DES that can be described using max-plus algebra is somewhat
limited, its analysis gives many insights in theoretical problems. Therefore, in the rest of this
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Figure 2.1: A production system.

section we concentrate on DES modeled using max-plus algebra.

2.2.1 Max-Plus-Linear (MPL) systems
The main goal of the next two sections is to introduce to the reader two classes of DES that can
be modeled using the max-plus addition ⊕ and max-plus multiplication ⊗ operations.

First we give a very short introduction to the basic concepts of the max-plus-algebra that will
be used in this section. A more detailed discussion on this topic will be given in Section 3.1.1.
We consider the set of real numbers and ε := −∞ denoted with Rε := R ∪ {ε}. For elements
x, y ∈ Rε we define two basic operations ⊕ and ⊗ by

x⊕ y := max{x, y} and x⊗ y := x+ y.

The set Rε together with the operations ⊕ and ⊗ is called max-plus algebra.
For matrices A,B ∈ R

m×n
ε and C ∈ R

n×p
ε one can extend the max-plus operations in the

usual way:

[A⊕B]ij := Aij ⊕Bij = max{Aij, Bij} ∀i ∈ N[1,n], j ∈ N[1,m],

[A⊗ C]il :=
n⊕

k=1

Aik ⊗ Ckl = max
k∈N[1,n]

{Aik + Ckl} ∀i ∈ N[1,n], l ∈ N[1,p].

Note that in this thesis we use both max-plus and conventional algebra. Therefore, we will
always write ⊕ and ⊗ explicitly in all equations. The operations ‘+’ and ‘·’ denote the conven-
tional summation and multiplication operators (only the conventional multiplication operator is
omitted).

We now show by an example how certain classes of DES, characterized only by synchroniza-
tion, can be modeled using max-plus algebra.

Example 2.2.1 A production system

Consider the production system of Figure 2.1. It consists of three processing units (ma-
chines). Raw material is fed to the first two units. The processing times for these three machines
are p1 = 1, p2 = 2 and p3 = 2 time units. We assume that it takes t1 = 1 and t2 = 1 time unit
for the raw material to get from the input source to the first and second unit, respectively and
t4 = 3 time units for the finished products of the first machine to reach the third unit. The other
transportation times (i.e. t3, t5 and t6) are assumed to be negligible. At the input of the system
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and between the processing units there are buffers with a capacity that is large enough to ensure
that no buffer overflow will occur. Each unit can only start working on a new product if it has
finished processing the previous product. We assume that each processing unit starts working as
soon as all parts are available. We denote with

• u(k): time instant at which a batch of raw material is fed to the system for the (k + 1)th

cycle,

• xi(k): time instant at which unit i starts working for the kth cycle,

• y(k) time instant at which the kth product leaves the system.

We explain in details the dynamical equation that describes the evolution of the first processing
unit: unit 1 will start with job k + 1 when

i) the previous job is finished, indicated by x1(k)+ p1 (i.e. the start of the previous job x1(k)
+ the production time p1) and

ii) the raw material has arrived at the machine at time u(k)+ t1 (i.e. the time the raw material
is put into the system u(k) + the transportation time t1).

Since machine 1 starts working on a batch of raw material as soon as the raw material is available
and the current batch has left the machine, this implies that we have x1(k + 1) = max{x1(k) +
p1, u(k) + t1}. The same reasoning applies to the second and third machine. Therefore, the
dynamical equations corresponding to this manufacturing system are:

x1(k + 1) = max{x1(k) + 1, u(k) + 1}
x2(k + 1) = max{x1(k) + 2, x2(k) + 2, u(k) + 2}
x3(k + 1) = max{x1(k) + 5, x2(k) + 4, x3(k) + 2, u(k) + 5}

y(k) = x3(k) + 2.

If we write these dynamical equations in max-plus matrix notation, we obtain

x(k + 1) =





1 ε ε
2 2 ε
5 4 2



⊗ x(k)⊕





1
2
5



⊗ u(k)

y(k) = [ε ε 2]⊗ x(k),
(2.5)

where x(k) = [x1(k) x2(k) x3(k)]
T is the state vector.

Clearly, in Example 2.2.1 we only had synchronization and no concurrency. Synchronization
requires the availability of several resources at the same time and this leads to the appearance
of the max operator in the description of the dynamics of the system considered above. This
example can be generalized. If we consider DES in which the sequence of the events are fixed
(such as repetitive production systems, queuing systems with finite capacity, railway networks,
logistic systems, etc.), then the behavior of such a process can be described by equations of the
form

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)
y(k) = C ⊗ x(k). (2.6)

Here, A ∈ R
n×n
ε , B ∈ R

n×m
ε , C ∈ R

p×n
ε and x represents the state, u the input and y the output

vector. We refer to (2.6) as max-plus-linear (MPL) system.
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Note that the description (2.6) closely resembles the state space description of classical
discrete-time linear systems

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k).

The term “max-plus-linear” comes from the fact that the input-output representation of (2.6) is
linear in the max-plus algebra, i.e. if the input sequences u1 and u2 yield the output sequences
y1 and y2 respectively, then the input sequence α ⊗ u1 ⊕ β ⊗ u2 yields the output sequence
α⊗ y1 ⊕ β ⊗ y2 [4, 41].

2.2.2 Switching MPL systems
We have seen in the previous section that DES in which only synchronization occurs (i.e. avail-
ability of several resources at the same time) can be modeled as MPL systems. When at a certain
time a user has to choose among several resources we have concurrency. This aspect cannot
be described directly by a max operation but as we will see in this section, in some cases (see
also [156, 157, 159]), we can still model such phenomenon via switching among different max
expressions. The switching allows us to change the structure of the system, to break synchro-
nization and to change the order of events. We illustrate this aspect through an example.

Example 2.2.2 A production system with concurrency
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Figure 2.2: A production system with concurrency.

Consider the production system of Figure 2.2. This system consists of five processing units.
The raw material is fed to the first two units, where preprocessing is done. Both intermediate
products now have to be finished in either unit 3 or 4, which basically perform the same task,
but the processing time of the third unit is longer than of the fourth unit. Therefore, the products
coming from machine 1 and 2 are directed to a switching device Sw, that feeds the first product
in the kth cycle to the slower machine 3 and the second product to the faster machine 4. Finally,
the products are assembled instantaneously (i.e. with a negligible processing time) in the fifth
machine and become available. We assume that each machine starts working as soon as possible
on each batch, i.e., as soon as the raw material or the required intermediate products are available,
and as soon as the machine is idle. Similarly as in Example 2.2.1 we define

• u(k): time instant at which raw material is fed to the system for the (k + 1)th cycle,
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• xi(k): time instant at which machine i starts working for the kth cycle,

• y(k) time instant at which the kth product leaves the system.

The variables tj are the transportation times and they take the following values: t1 = 4, t2 =
t8 = 1 time units and the other transportation times are assumed to be negligible. The processing
times are p1 = 1, p2 = 3, p3 = 6, p4 = 4 and p5 = 0 time units.

Using similar arguments as in Example 2.2.1, we can write easily the system equations for
x1 and x2:

x1(k + 1) = max{x1(k) + 1, u(k) + 4} (2.7)
x2(k + 1) = max{x2(k) + 3, u(k) + 1}. (2.8)

It is clear that we have two subsystems (modes):
First mode: x1(k + 1) + p1 ≤ x2(k + 1) + p2, i.e. if machine 1 finishes first and machine 2

finishes later in the (k + 1)th cycle, the product of machine 1 will be directed to machine 3 and
the product of machine 2 will be directed to machine 4. Machine 3 will start when

i) the previous job is finished at time instant x3(k) + p3 (i.e. the start of the previous job
x3(k) + the production time p3), and

ii) the intermediate product has arrived from machine 1 at time instant x1(k+1)+p1 (i.e. the
start of the job x1(k + 1) + the production time p1 + transportation time t3).

So,

x3(k + 1) = max{x1(k + 1) + 1, x3(k) + 6}.
By substitution of (2.7) we obtain:

x3(k) = max{x1(k) + 2, x3(k) + 6, u(k) + 5}.
In a similar way we derive

x4(k) = max{x2(k) + 2, x4(k) + 4, u(k) + 4},
x5(k) = max{x1(k) + 8, x2(k) + 11, x3(k) + 12, x4(k) + 9, u(k) + 11}.

For this first mode (i.e. x1(k+1)+p1 ≤ x2(k+1)+p2) we obtain the max-plus-linear subsystem
x(k + 1) = A1 ⊗ x(k)⊕B1 ⊗ u(k) given explicitly by

x(k + 1) =









1 ε ε ε ε
ε 3 ε ε ε
2 ε 6 ε ε
ε 6 ε 4 ε
8 11 12 9 ε









⊗ x(k)⊕









4
1
5
4
11









⊗ u(k).

Second mode: x1(k + 1) + p1 > x2(k + 1) + p2, i.e. machine 2 finishes first, machine 1 finishes
later, we obtain the max-plus-linear subsystem x(k+1) = A2⊗x(k)⊕B2⊗u(k) given explicitly
by

x(k + 1) =









1 ε ε ε ε
ε 3 ε ε ε
ε 6 6 ε ε
2 ε ε 4 ε
7 12 12 9 ε









⊗ x(k)⊕









4
1
4
5
10









⊗ u(k).
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In both modes the output is given by: y(k) = [ε ε ε ε 0] ⊗ x(k). To decide the switching
mechanism, we define the switching variable z = [z1 z2]

T as:
[
z1(k + 1)
z2(k + 1)

]

=

[
x1(k + 1) + p1

x2(k + 1) + p2

]

=

[
max{x1(k) + 2, u(k) + 5}
max{x2(k) + 6, u(k) + 4}

]

,

and the sets

C1 = {z ∈ R
2
ε|z1 ≤ z2},

C2 = {z ∈ R
2
ε|z1 > z2}.

Note that z1(k + 1) and z2(k + 1) are the time instants at which machines 1 and 2, respectively,
finish their product in the cycle k + 1. With that in mind, it is clear that mode 1 corresponds
to “machine 1 finishes first, machine 2 finishes later” (z1 ≤ z2) and mode 2 corresponds to
“machine 2 finishes first, machine 1 finishes later” (z1 > z2).

In conclusion, if we consider DES that can switch between different modes of operation,
where each mode corresponds to a set of required synchronizations and an event order schedule,
then such systems can be modeled as follows:

x(k + 1) = Ai ⊗ x(k)⊕Bi ⊗ u(k)
y(k) = Ci ⊗ x(k) if ψ(x(k), z(k), u(k), ν(k)) ∈ Ci, (2.9)

where the switching is determined by a function ψ which may depend on the previous state x(k),
the previous switching variable z(k) ∈ R

nz
ε , the input variable u(k), and an (additional) control

variable ν(k) ∈ R
nν , and is denoted with:

z(k + 1) = ψ(x(k), z(k), u(k), ν(k)). (2.10)

Here, i ∈ I is a finite index set and the moments of switching occur when the switching variable z
reaches the boundary of a certain set Ci, where {Ci}i∈I is a polyhedral partition of R

nz
ε . Moreover,

the system matrices are Ai ∈ R
n×n
ε , Bi ∈ R

n×m
ε , Ci ∈ R

p×n
ε for all i ∈ I.

Besides production systems with concurrency, we can model using the difference equations
(2.9) also railway networks in which we can change the order of trains, scheduling problems, etc.
In some of these systems the switching mechanism will completely depend on the state x and
input u, in other examples (e.g. railway networks) z will be equal to ν and so we can control the
switching by choosing an appropriate ν. Usually ν takes finite discrete values (e.g. ν is binary,
where ν = 0 corresponds to the nominal case while ν = 1 corresponds to the perturbed case,
i.e. a synchronization is broken or the order of two events is switched). Note that the basic idea
of switching MPL systems in the event-driven domain is parallel to that of PWA systems in the
time-driven domain. In the analysis of PWA systems, the properties of the linear subsystems
are often employed to derive properties for the PWA system [74, 139, 151]. Analogously, we
will be able to use the properties of the MPL subsystems (i.e. the max-plus eigenvalues, the
eigenvectors, the paths, etc.) for the analysis of the switching MPL system.

2.3 Optimal control and model predictive control
In engineering and mathematics, control theory deals with the behavior of dynamical systems
over time. When the output variables of a system (process) need to show a certain behavior
over time, a controller manipulates the inputs of the process to obtain the desired performance



2.3 Optimal control and model predictive control 19

specifications on the output of the process. The performance specifications may include safety
constraints, a certain level of performance, suppression of unknown disturbances, etc. Different
design methods to achieve the performance specifications are proposed in the literature. Among
them the class of optimal controllers is the most studied. In optimal control problems the control
signal optimizes a certain cost function (cost criterion). Therefore, the performance specifications
are imposed on the controls (inputs) while the sensors measure the outputs. The objective of the
control system must be accomplished taking into account the dynamics of the process, the effects
of the disturbances and the constraints.

Control systems are often based on exploiting the phenomenon of feedback. The basic prin-
ciple of feedback is to measure through sensors the actual output of the process and then the con-
troller processes the measurements and changes the inputs in an appropriate fashion [87, 100].
One of the most used optimal control method in process industry that makes use of feedback is
model predictive control. The essence of model predictive control is to determine a control profile
that optimizes a cost criterion over a prediction window (horizon) and then to apply this control
profile until new process measurements become available at which time the whole procedure
is repeated. Feedback is incorporated by using these measurements to update the optimization
problem for the next step.

This section proceeds now with the problem formulation of the optimal control for a given
nonlinear dynamical system.

2.3.1 Optimal control: problem formulation
In the optimal control literature the plant to be controlled is usually described in terms of differ-
ence equations of the form:

x(k + 1) = f(x(k), u(k)) (2.11)
y(k) = h(x(k)), (2.12)

where x ∈ R
n is the state, u ∈ R

m is the input and y ∈ R
p is the output. Note that we only

consider discrete “time” systems (here k may denote time or any other independent variable, e.g.
an event counter in the context of discrete event systems). We assume that f : R

n × R
m → R

n

is continuous at the origin1, f(0, 0) = 0 and h : R
n → R

p, with h(0) = 0. The control and state
sequence must satisfy

x(k) ∈ X and u(k) ∈ U ∀k ≥ 0, (2.13)

where usually X is a closed, convex subset of R
n and U is a compact, convex subset of R

m, each
set containing the origin in its interior. We employ u to denote a control sequence and φ(k;x,u)
to denote the state solution of (2.11) at step k when the initial state is x at step 0 and the control
sequence u is applied. By definition φ(0;x,u) := x.

The control objective is to steer the state of the system in a finite number of steps N to a
“safe” region Xf , that for instance might be the origin or any other set point, in a “best” way.
Performance is expressed via a performance measure (cost function) and the “best” way means
that the plant has to be controlled so that the cost function in minimized. Other objectives like
tracking (i.e. the plant should follow a predefined reference trajectory) can be reinterpreted to
the objective of steering the system to a safe set by an appropriate extension of the model and a
suitable change of coordinates or a certain choice of the cost function. We assume that Xf ⊂ X

1Note that we can replace the origin with an invariant set. The presentation remains the same.
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is also a closed, convex set, containing the origin. The cost criterion is written as a sum of stage
costs `(x, u) satisfying `(0, 0) = 0. Performance can also be expressed with respect to the safe
regionXf , where we may have a cost criterion (terminal cost) Vf . Combining these two measures
of performance we obtain a cost function (sometimes also referred to as a performance index) :

VN(x,u) =
N−1∑

i=0

`(xi, ui) + Vf(xN), (2.14)

where u := [uT
0 uT

1 · · · uT
N−1]

T and xi := φ(i;x,u) (and thus x0 = x). For a given initial
condition x, the set of feasible input sequences is defined by:

ΠN(x) := {u ∈ R
Nm : xi ∈ X, ui ∈ U ∀i ∈ N[0,N−1], xN ∈ Xf}. (2.15)

We denote with XN the set of initial states for which a feasible input sequence exists, i.e.

XN := {x ∈ R
n : ΠN(x) 6= ∅}. (2.16)

Then, the finite-horizon optimal control problem is formulated as follows:

PN(x) : V 0
N(x) := inf

u∈ΠN (x)
VN(x,u). (2.17)

Corresponding to PN(x), we introduce notation also for the set of input sequences u where the
minimum of VN(x, ·) over ΠN(x) is regarded as being attained [144]:

arg min
u∈ΠN (x)

VN(x,u) :=

{

{u ∈ ΠN(x) : VN(x,u) = V 0
N(x)} if V 0

N(x) 6=∞
∅ if V 0

N(x) =∞ (2.18)

The optimal control problem PN(x) yields an optimal control sequence u0
N(x) ∈

arg minu∈ΠN (x) VN(x,u):

u0
N(x) = [(u0

0(x))
T (u0

1(x))
T · · · (u0

N−1(x))
T ]T . (2.19)

For any initial condition x ∈ XN the optimal control sequence u0
N(x) steers the plant to the

safe region Xf in N steps without violating the constraints (2.13) in the best way. This control
sequence is applied to the plant in an open-loop fashion.

The function V 0
N : XN → R̄ associates to each state x ∈ XN the minimum value of the

performance index. V 0
N(x) and u0

N(x) will be referred to as the optimal value function and
the optimizer (minimizer), respectively. Note that the nonlinear program (2.17) depends on a
parameter, the state x, appearing in the cost function but also in the constraints. Therefore, we
can view (2.17) as a multi-parametric program:

J0(x) = inf
u∈U
{J(x, u) : g(x, u) ≤ 0}, (2.20)

where u ∈ U ⊆ R
m is the optimization variable, x ∈ R

n is the parameter, J : R
n × R

m → R is
the cost function and g : R

n × R
m → R

ng are the constraints.
Important issues in multi-parametric programming are the behavior with respect to the pa-

rameter x of the optimal value and of the optimizer. A small perturbation of the parameter x
in the nonlinear program (2.20) can cause different results. Depending on the properties of the
functions J and g the optimizer u0(x) ∈ arg minu∈U{J(x, u) : g(x, u) ≤ 0} may vary smoothly



2.3 Optimal control and model predictive control 21

or change drastically as a function of the parameter x. Let us denote by X the set of feasible
parameters, i.e.

X = {x ∈ R
n : ∃u ∈ U s. t. g(x, u) ≤ 0}

and by Π(x) the point-to-set-map that assigns to each parameter x ∈ X the set of feasible u, i.e.

Π(x) = {u ∈ U : g(x, u) ≤ 0}.

The following theorem, which can be found in [22,51,143], provides sufficient conditions under
which the optimal value function J 0 and the optimizer u0 are “well-behaved”:

Theorem 2.3.1 Suppose that U is a compact and convex set, J and g are continuous on R
n×U ,

and each component of g is convex on R
n × U . Then, J0 : X → R̄ is a continuous function. If

additionally J is strictly quasi-convex on U for each fixed x ∈ X , then we can always select a
continuous optimizer u0 : X → R̄

m. ♦

When J and g are linear, i.e. J(x, u) = cTu and g(x, u) = Hx + Gu + ω, then the multi-
parametric program (2.20) is called multi-parametric linear program:

J0(x) = min
u∈Rm
{cTu : Hx+ Gu+ ω ≤ 0}. (2.21)

Here, we consider that U = R
m and the cost function J(x, u) = cTu instead of J(x, u) =

cT [xT uT ]T since by adding an extra variable we can reduce in the optimization problem (2.21)
the later cost function to first one. Moreover, for a linear program we use “min” instead of “inf”
since the infimum is attained at a point in the feasible set. We define the set of feasible parameters
X : X = {x ∈ R

n : ∃u s. t. Hx+ Gu+ ω ≤ 0}. Using duality for linear programming [52,147]
it can be easily shown that if there exists an x0 ∈ X such that J0(x0) is finite, then J0(x) is finite
for all x ∈ X . In the following we will summarize the main results of [52]:

Theorem 2.3.2 Consider the multi-parametric linear program (2.21) such that there exists an
x0 ∈ X satisfying J0(x0) is finite. Then, X is a closed polyhedral set, J 0 : X → R is a convex
continuous PWA function, and we can always select a continuous PWA optimizer u0 : X → R

m.
♦

The reader is referred to [23, 86] for geometric algorithms for computing the solution to a
multi-parametric linear program. Methods of selecting a continuous optimizer can be found
in [23, 76, 152].

2.3.2 Model Predictive Control (MPC)
“The only advanced control methodology which has made a significant impact on industrial
control engineering is model predictive control. The main reasons for his success in applications
are: (i) it handles multivariable control problems naturally; (ii) it can take account of actuator
limitations; (iii) it allows operation closer to constraints, which frequently leads to more
profitable operation.”

J.M. Maciejowski [101]

In Section 2.3.1 we have presented the main ingredients of a constrained finite-horizon
optimal control problem for a general nonlinear system (2.11)–(2.12). We can obtain an
infinite-horizon controller by repeatedly solving the finite-horizon optimal control problem
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Figure 2.3: The model predictive control setup.

(2.17) where the current state of the plant is used as an initial state for the optimization. From
the computed optimal control sequence only the first control sample is implemented and the
whole procedure is repeated at the next step when new measurements of the state are available.
This is referred to as the receding horizon implementation of the controller and the resulting
design method is called model predictive control (MPC).

The previous description of the MPC can be mathematically summarized as follows: given
the event pair (k, x), i.e. x(k) = x, the optimization problem (2.17) is solved yielding the optimal
control sequence u0

N(x). Only the first control u0
0(x) is applied to the system at step k. At the

next step k+1 a new optimization problem is solved over a shifted horizon (see also Figure 2.3).
This defines an implicit MPC law

κN(x) = u0
0(x). (2.22)

Note that we can drop out the index k in the mathematical formula since f, ` and Vf are time
invariant. An intrinsic feature of the MPC is that the optimization problem (2.17) is performed in
open-loop. However, the MPC law (2.22) is a feedback law. Therefore, an open-loop control is
used in the prediction although, the actual controller of the plant (i.e. the MPC) is in closed-loop
form:

x(k + 1) = f(x(k), κN(x(k))), y(k) = h(x(k)). (2.23)

There exists a vast literature dealing with MPC. Early industrial MPC algorithms like
IDCOM (identification and command) [141] or DMC (dynamic matrix control) [38] used a
quadratic cost function while the constraints were treated in an ad hoc fashion. One of the
first MPC schemes that took explicitly into account the constraints in the optimization algorithm
is QDMC (quadratic matrix control) [53]. Later an extensive number of publications appeared



2.3 Optimal control and model predictive control 23

dealing with theoretical analysis of such algorithms , mainly concerning feasibility, robustness
and closed-loop stability [1, 105, 111, 148, 149]. In fast applications (i.e. applications where the
sampling time is small) the on-line computational burden of the nonlinear MPC algorithms may
be too large and thus making these MPC schemes impracticable. Therefore, a large body of lit-
erature is devoted to the reduction of the on-line computations [7, 8, 13, 84, 145]. There are also
several text books that discuss MPC, the most recent ones [27,101] give an overview of the main
MPC techniques.

We can find in the literature different formulations for MPC but all of them have common
ingredients. One of these ingredients is the explicit constraints handling. Another important
ingredient is the use of a model for the plant to be controlled. Using this model at each step,
starting at the current state, we make a prediction of the “future” behavior of the plant over a
finite-horizon. The actual input is computed on-line based on this future behavior. Despite the
fact that we use future predictions in order to compute the actual input, the resulting controller
remains causal. Although in some of the literature on predictive control there is a distinction
between MPC and receding horizon control (see e.g. [22]), in this thesis we propose MPC as a
generic title for that control method in which the current input action is computed by solving
on-line a finite-horizon optimal control problem.

MPC is extensively used in industry, due to its ability to cope with hard constraints on inputs
and states. Therefore, it has been widely applied in process industry where satisfaction of the
constraints is particularly important because the most profitable operation is often obtained when
a process is running at the constraints [101, 140]. There are also other attractive futures of the
MPC: it is an easy-to-tune method, it is applicable to multivariable systems, it is capable of
tracking pre-scheduled reference signals, etc. For an overview of applications of MPC schemes
the reader is referred to [54, 137].

The main issues in MPC are feasibility of the on-line optimization and closed-loop stabil-
ity. These two issues are connected to each other and we will discuss them in more details in
the sequel. The treatment follows a similar reasoning as in [105]. Clearly, if the initial state
x(0) /∈ XN , then the optimization problem (2.17) is infeasible from the beginning. Therefore,
we are mainly concerned with providing sufficient conditions that guarantees feasibility of the
optimization problem (2.17) at each step, once the initial state x(0) ∈ XN . Before proceeding
further a definition is given:

Definition 2.3.3 For the autonomous system x(k + 1) = g(x(k)) the set X is a positively in-
variant (PI) set if for all x ∈ X , g(x) ∈ X (in other words if for any initial condition in X the
subsequent trajectory remains in X ).

Let us assume that inside Xf a local stabilizing controller κf : Xf → R
m is available. The

following conditions, if satisfied, ensure feasibility of the optimization problem (2.17) at each
step, once the initial state is inside XN :

F1: Xf ⊆ X and 0 ∈ int(Xf)

F2: κf(x) ∈ U for all x ∈ Xf

F3: f(x, κf(x)) ∈ Xf for all x ∈ Xf .

Here, int(Xf) denotes the interior of the set Xf . Note that the condition F3 expresses the fact
that Xf is a PI set for the closed-loop system x(k + 1) = f(x(k), κf(x(k))).

Theorem 2.3.4 Suppose that the conditions F1–F3 hold, then the set XN is a PI set for the
closed-loop system (2.23).
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Proof : Let x ∈ XN then, the optimization problem (2.17) has an optimal solution (minimizer)
u0

N(x) = [(u0
0(x))

T (u0
1(x))

T · · · (u0
N−1(x))

T ]T . Let

x0 = [xT (x0
1)

T · · · (x0
N)T ]T

denote the optimal state trajectory, i.e. x0
i = φ(i;x,u0

N(x)) for all i ∈ N[1,N ]. The MPC law
κN(x) = u0

0(x) steers the plant from the state x to the successor state x0
1 = f(x, κN(x)). Our

goal is to show that the optimal control problem PN(x0
1) is also feasible. Since x0

N ∈ Xf , then
κf(x

0
N) ∈ U (according to F1) and f(x0

N , κf(x
0
N)) ∈ Xf ⊆ X (according to F3 and F1).

Furthermore, the control sequence u0
N(x) is feasible for the optimization problem PN(x) and

thus the feasible control sequence [(u0
1(x))

T · · · (u0
N−1(x))

T ]T steers the plant from the state x0
1

to x0
N ∈ Xf . It follows that a feasible control sequence for PN(x0

1) is given by

uf = [(u0
1(x))

T · · · (u0
N−1(x))

T (κf(x
0
N))T ]T .

We conclude that f(x, κN(x)) ∈ XN and thus XN is a PI set for (2.23). Moreover, Xf ⊆ XN .
♦

Once feasibility is guaranteed, the next step is to prove stability for the closed-loop system
(2.23). Let us assume that the terminal cost Vf satisfies the following condition:

S1: Vf(f(x, κf(x)))− Vf(x) + `(x, κf(x)) ≤ 0 for all x ∈ Xf .

Condition S1 expresses the fact that Vf is a Lyapunov function for the system if additionally the
conditions (i)-(ii) of Theorem C.1.2 are satisfied. For an elaborate discussion about Lyapunov
stability see Appendix C.

In MPC, typically the stage cost satisfies `(x, u) ≥ α(‖x‖) for all x ∈ R
n, where α is a

K function (see Appendix C for an appropriate definition) and ‖ · ‖ denotes some vector norm
on R

n. A typical example of such stage cost is the quadratic cost: `(x, u) = xTQx + uTRu,
where the weighting factors satisfy Q � 0 and R � 0 (i.e. Q,R are positive definite matrices
as defined in Appendix B). If we define R+ := [0, ∞), then from Theorem 2.3.4 it follows that
V 0

N : XN → R+ ∪ {∞}. Let us assume that V 0
N is continuous at the origin. From Theorem 2.3.1

it follows that V 0
N is continuous at the origin when the system is linear, i.e. f(x, u) = Ax+ Bu,

X and U are polytopes, the stage cost is quadratic, i.e. `(x, u) = xTQx + uTRu, and terminal
cost is a quadratic expression, i.e. Vf(x) = xTPx, where P � 0. We will show in Chapter 6 that
V 0

N is continuous at the origin also for a discontinuous PWA system subject to linear state and
input constraints and quadratic stage cost.

The following theorem follows immediately:

Theorem 2.3.5 Suppose that the conditions F1–F3 and S1 hold. Suppose also that V 0
N is con-

tinuous at the origin and `(x, u) ≥ α(‖x‖) for all x ∈ R
n, where α is a K function. Then, the

closed-loop system (2.23) is asymptotically stable with a region of attraction XN .

Proof : We show that the conditions (i)–(iii’) from Corollary C.1.4 given in Appendix C hold2

for the function V 0
N : XN → R+ ∪ {∞}. From Theorem 2.3.4 it follows that XN is a PI set

for (2.23), containing the origin in its interior (we recall that 0 ∈ int(Xf) and Xf ⊆ XN ). First,
V 0

N(0) = 0, V 0
N is continuous at the origin. Second, since the stage cost is bounded from below

by a K function α, it follows that V 0
N(x) ≥ α(‖x‖) for all x ∈ XN . Third, the condition S1

implies that the function V 0
N satisfies (iii’) on XN , i.e.

V 0
N(f(x, κN(x)))− V 0

N(x) ≤ VN(f(x, κN(x)),uf)− V 0
N(x) =

−`(x, κN(x)) + Vf(f(x0
N , κf(x

0
N)))− Vf(x

0
N) + `(x0

N , κf(x
0
N)) ≤ −α(‖x‖) ∀x ∈ XN . ♦

2Note that although in the MPC literature [80, 105] Xf is required in F1 to be also closed, in order to prove
stability we do not need this requirement (see Theorem C.1.2-sufficiency).
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2.3.3 Robustness against uncertainty

The introduction of uncertainty in the mathematical description of the system raises the issue
of robustness. A controlled system is robust when stability is maintained and the performance
specifications are met for a certain range of model variations and a class of disturbances. Sta-
bility and performance robustness guarantee controlled systems’ good behavior and safety. We
can find different approaches in the literature to the study of robustness. In the present thesis we
study robustness using a min-max game between the controller (acting as the minimizing player)
and the plant model and the disturbance (acting as the maximizing player). In this case the ro-
bust optimal control approaches can be classified in two categories: open-loop min-max control
and feedback min-max control. In an open-loop min-max control problem a single control se-
quence is used to minimize the worst-case cost while in a feedback min-max control problem the
worst-case cost is minimized over a sequence of feedback control laws. We briefly address each
approach below.

The robust control problem considered here is to steer an uncertain system subject to hard
state and input constraints to a safe (target) set, while also minimizing a worst case performance
function. This problem dates back to the late sixties and [16, 17, 48, 167] provide us first the-
oretical results on this topic. However, the main difficulty that had to be overcome was to find
conditions to guarantee that the trajectory remains in the safe region once it had been reached.
These conditions were provided in [18, 106] in terms of robust invariance: it was required that
the safe region is a robustly invariant set. A more recent approach on this subject is based on set
invariance theory and the reader is referred to [19, 79] for a survey.

Mathematically, this problem can be posed as follows. We assume that the plant is described
in terms of difference equation of the form:

x(k + 1) = f(x(k), u(k), w(k)) (2.24)
y(k) = h(x(k)), (2.25)

where the value of the uncertain parameters w(k) is unknown, but is assumed to be time-varying
and to take on values from a polytope W = {w ∈ R

q : Ωw ≤ s}, where Ω ∈ R
nΩ×q and

s ∈ R
nΩ . Moreover, we assume that 0 ∈W , f is continuous in the origin and f(0, 0, 0) = 0.

Let u := [uT
0 uT

1 . . . u
T
N−1]

T be an open-loop input sequence and w := [wT
0 wT

1 · · ·wT
N−1]

T

denote a realization of the disturbance over the prediction horizon N . Also, let φ(k;x,u,w)
denote the solution of (2.24) at step k when the initial state is x at step 0, the control is determined
by u (i.e. u(k) = uk) and the disturbance sequence is w. By definition, φ(0;x,u,w) := x.
For a given initial state x, control sequence u and disturbance realization w, the cost function
VN(x,u,w) is:

VN(x,u,w) :=
N−1∑

i=0

`(xi, ui) + Vf(xN), (2.26)

where xi := φ(i;x,u,w) and thus x0 = x.
For each initial condition x we define the set of feasible open-loop input sequences u:

Πol
N(x) := {u : xi ∈ X, ui ∈ U ∀i ∈ N[0,N−1], xN ∈ Xf , ∀w ∈ W}, (2.27)

whereW := WN . Also, letXol
N denote the set of initial states for which a feasible input sequence

exists:
Xol

N := {x : Πol
N(x) 6= ∅}. (2.28)
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The finite-horizon open-loop min-max control problem is defined as:

P
ol
N(x) : V 0,ol

N (x) := inf
u∈Πol

N
(x)

max
w∈W

VN(x,u,w). (2.29)

Typically VN is a continuous function and since W is a compact set, it follows that the maximum
is attained in (2.29) and it is finite. Therefore, we use “inf max” instead of “inf sup”.

When an open-loop min-max control is applied in a receding horizon fashion we refer to
this design method as open-loop min-max MPC. In this case, the conditions from Theorem 2.3.4
do not guarantee feasibility and robust stability of the closed-loop system. We can find in the
literature [5, 12, 105, 111] different modifications of the optimization problem P

ol
N(x) and of the

conditions F1–F3 and S1 that guarantee robustness of the open-loop min-max MPC controller,
i.e. robust feasibility and robust closed-loop stability. For instance in [111] the fixed receding
horizon N is replaced by a variable receding horizon. In [5] an additional robust stability con-
straint is included in the optimal control problem that requires the control to reduce the cost
associated to each possible realization of the system (assumed finite in number).

In general the open-loop formulation, although it is attractive from a computational point
of view, is too conservative since the set of feasible trajectories may diverge severely from the
origin [148]. It is known that effective control in the presence of disturbances requires one to
optimize over feedback policies [16, 91, 103] rather than open-loop input sequences. A feedback
control prevents the trajectory from diverging excessively and also the performance is improved
compared to the open-loop case. This results from the increased number of degree of freedom in
the optimal control problem.

We now present the feedback min-max optimal control formulation. In this case we define
the decision variable in the optimal control problem, for a given initial condition x as a control
policy

π := (µ0(·), µ1(·), . . . , µN−1(·)),
where each µi(·) is a feedback law. Also, let xk = φ(k;x, π,w) denote the solution of (2.24)
at step k when the initial state is x at step 0, the control is determined by the policy π and the
disturbance sequence is w.

For each initial condition x we define the set of feasible policies π:

Πfb
N(x) := {π : µi ∈ U, xi ∈ X ∀i ∈ N[0,N−1], xN ∈ Xf , ∀w ∈ W} (2.30)

Also, let X fb
N denote the set of initial states for which a feasible policy exists, i.e.

X fb
N := {x : Πfb

N(x) 6= ∅}. (2.31)

The finite-horizon feedback min-max control problem is defined as:

P
fb
N(x) : V 0,fb

N (x) := inf
π∈Πfb

N
(x)

max
w∈W

VN(x, π,w). (2.32)

The receding horizon implementation of a feedback min-max control is referred to as feedback
min-max MPC. Let κfb

N denote the corresponding feedback MPC law, i.e. κfb
N(x) = µ0

0(x), where
π0(x) = (µ0

0(x), µ
0
1(·), · · · , µ0

N−1(·)) is a minimizer of (2.32). Before proceeding to study the
behavior of the corresponding closed-loop system the notion of robust stability [80] is introduced.
Because the disturbance is assumed to be bounded, the most that can be achieved with a controller
is to steer the state to a neighborhood of the origin Xf and then with a local controller κf to
maintain the state in Xf for any possible realizations of the disturbances. Therefore, the set
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Xf is robustly stable if for all ε > 0 there exists a δ > 0 such that d(x,Xf) ≤ δ implies
d(φ(k;x, κfb

N ,w), Xf) ≤ ε for all k ≥ 0 and for all admissible disturbance sequences w. If
limk→∞ d(φ(k;x, κfb

N ,w), Xf) = 0 for all admissible disturbance sequences w and for all x ∈ X ,
then the set Xf is robustly asymptotically attractive with a region of attraction X . When both
conditions are satisfied we refer to Xf as robustly asymptotically stable. Here, d(x,Xf) denotes
the distance from a point x to the set Xf induced by some p-norm.

By some appropriate modifications of the conditionsF1–F3 and S1 (see e.g. [8,83,105,148])
robust feasibility and robust closed-loop stability can be recovered for the feedback min-max
MPC controller. One method is proposed in [80,148] where the feedback min-max MPC problem
for a linear system and a convex cost is solved by considering only the disturbance realizations
that take on values at the vertexes of the disturbance polytope W . Robust stability is guaranteed
under the following conditions on Xf , κf and Vf [80, 103, 105, 148]:

F1w: Xf ⊆ X and 0 ∈ int(Xf)

F2w: κf(x) ∈ U for all x ∈ Xf

F3w: f(x, κf(x), w) ∈ Xf for all x ∈ Xf and w ∈W

S1w: Vf = 0 and `(x, u) = 0 for all x ∈ Xf , `(x, u) ≥ α(d(x,Xf)) for all x ∈ X \Xf ,

where α is a K function. Using these conditions one can follow a standard procedure of using the
optimal value function as a candidate Lyapunov function [80,103,105] to show robust asymptotic
stability.

As an alternative, in [8] it is proposed that a dynamic programming approach be used to obtain
an explicit expression for the feedback MPC law. Provided the system is linear, the disturbance
enters additively and the stage cost is piecewise affine (e.g. 1-norm or ∞-norm), a piecewise
affine expression for the MPC law can be computed off-line using tools from multi-parametric
linear programming.

2.4 Conclusions
In this chapter we have summarized some basic background on specific classes of hybrid systems
(PWA systems and MMPS systems) and DES (MPL systems and switching MPL systems). The
reader should note that we make distinction between PWA systems defined in the state space only
and general PWA systems defined in the state and input space. It is also interesting to note that
MMPS systems encompasses MPL systems and switching MPL systems, provided that some
assumption on the switching function holds.

Furthermore, the main ingredients of finite-horizon optimal control and its receding horizon
implementation, called MPC, for general nonlinear systems have been introduced and some gen-
eral solutions to the main issues in MPC (e.g. feasibility, robustness and closed-loop stability)
were presented, based on a terminal set and a terminal cost approach.
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Chapter 3

Finite-horizon optimal control for
constrained max-plus-linear systems

We provide in this chapter a solution to a class of finite-horizon optimal control problems for
MPL systems. We first consider the deterministic case and then we extend the results to the
disturbance case where we consider the min-max framework and where the uncertain parameters
are assumed to lie in a given polytope. Despite the fact that the controlled system is nonlinear, we
are able to provide sufficient conditions, which are often satisfied in practice, such that we can
preserve convexity of the system and thus the optimal solution is computed by solving a linear
program or multi-parametric linear programs. The key assumptions that allow us to guarantee
convexity of the optimal value function and its domain are that the stage cost has a particular
representation in which the coefficients corresponding to the state vector are nonnegative and
that the matrix associated with the state constraints is also nonnegative.

3.1 Introduction

Conventional control theory uses systems which typically deal with quantities that are continu-
ous variables, in the sense that they change as time passes and take on values in a continuum.
However, in this technological era we encounter many quantities that are discrete and that evolve
in time by the occurrence of events at possible irregular time intervals, i.e. not necessarily co-
inciding with clock ticks. We refer to these systems that contain such quantities as event-driven
systems or discrete event systems (DES).

In general the dynamics of DES can be characterized by synchronization and concurrency
(see Section 2.2). These two aspects make the dynamics of a general DES nonlinear in conven-
tional algebra. However, there exists a class of DES that contains only the synchronization aspect
for which the system equations become “linear” when we formulate it in the max-plus algebra.
We refer to such a system as max-plus-linear (MPL) system.

In this chapter we focus on MPL systems and different versions of optimal control for such
a class of systems will be presented. Before proceeding further, we give a short introduction to
the basic concepts of the max-plus algebra. A more elaborate review of the topic can be found
in [4, 37, 66]. In Section 3.2 we derive sufficient conditions under which the solution to a finite-
horizon optimal control problem for constrained MPL systems can be computed by solving a
linear program. Moreover, in the unconstrained case we derive the explicit state-space formula
of the just-in-time controller. In Section 3.3 the robustification of the optimal control problem
is discussed using the min-max paradigm. Since MPL systems are nonlinear, non-convexity is

29
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the main concern when we want to solve a min-max control problem for uncertain MPL sys-
tems. Using recent results in polyhedral algebra and multi-parametric linear programming it is
demonstrated that the solutions to open-loop, disturbance feedback and state feedback min-max
control problem can be computed by solving either a linear program or multi-parametric linear
programs. This chapter is an extension of the work presented in [122, 125, 158].

3.1.1 Max-plus algebra
Define ε := −∞ and denote Rε := R ∪ {ε}. For elements x, y ∈ Rε we define the operations ⊕
(max-plus addition) and ⊗ (max-plus multiplication) by

x⊕ y := max{x, y} and x⊗ y := x+ y. (3.1)

The set Rε together with the operations ⊕ and ⊗ is called max-plus algebra and is denoted by
Rε = (Rε,⊕,⊗, ε, 0). It can be shown that the max-plus algebra Rε is an algebraic structure
called semiring: (i) ⊕ is associative and commutative with zero element ε; (ii) ⊗ is associative,
distributes over ⊕ and has unit element 0; (iii) ε is absorbing for ⊕ (i.e. x ⊗ ε = ε ⊗ x = x for
all x ∈ Rε). Note that the semiringRε is also commutative (i.e. x⊗ y = y ⊗ x) and idempotent
(i.e. x ⊕ x = x). The reason for using the symbols ⊕ and ⊗ for max and +, respectively, is
that the remarkable analogy with the conventional algebra: many concepts and properties from
conventional algebra (such as eigenvectors and eigenvalues, Cayley-Hamilton theorem, etc.) can
be translated to max-plus algebra by replacing + by ⊕ and · by ⊗, as we will see below.

For any x ∈ Rε define

x⊗
k

:= x⊗ x⊗ · · · ⊗ x
︸ ︷︷ ︸

k times

∀ k ∈ N \ {0}, x⊗
0

:= 0.

Observe that x⊗
k corresponds to kx in conventional algebra.

The set of m×n matrices with entries in Rε is denoted by R
m×n
ε . For matrices A,B ∈ R

m×n
ε

and C ∈ R
n×p
ε one can extend the max-plus operations in the usual way:

[A⊕B]ij := Aij ⊕Bij = max{Aij, Bij} ∀i ∈ N[1,n], j ∈ N[1,m],

[A⊗ C]il :=
n⊕

k=1

Aik ⊗ Ckl = max
k∈N[1,n]

{Aik + Ckl} ∀i ∈ N[1,n], l ∈ N[1,p].

Moreover, for any A ∈ R
m×n
ε and λ ∈ Rε we denote with λ + A, with some abuse of notation,

the matrix from R
m×n
ε defined as [λ+A]ij := λ+Aij for all i, j. Similarly, in max-plus algebra

we define λ ⊗ A as the matrix λ + A. The matrix E ∈ R
n×n
ε is the identity matrix in max-plus

algebra: Eii := 0, for all i ∈ N[1,n] and Eij := ε, for all i 6= j and the zero matrix is denoted
with ε: εij := ε, for all i, j ∈ N[1,n]. The dimensions of the matrices E and ε are usually clear
from the context.

For any matrix A ∈ R
n×n
ε , the kth max-plus power of A is denoted with

A⊗
k

:= A⊗ A⊗ · · · ⊗ A
︸ ︷︷ ︸

k times

∀ k ∈ N \ {0}, A⊗
0

:= E.

Moreover, we define A∗, whenever it exists1, by

A∗ := lim
k→∞

E ⊕ A⊕ · · · ⊕ A⊗
k
. (3.2)

1See Lemma 3.1.1 (ii) below.
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The kth max-plus power of the matrix A has an interesting expression. For all i, j ∈ N[1,n] let us
define the set of paths between i and j of length k as

Path(i, j; k) := {(i1, i2, · · · , ik+1) ∈ N
k+1
[1,n] : i1 = i, ik+1 = j, Aijij+1

6= ε ∀j ∈ N[1,k]} (3.3)

When i = j the path is called a cycle. Then, it follows that

[A⊗
k
]ij = max{Ai1i2 + Ai2i3 + · · ·+ Aikik+1

: (i1, i2, · · · , ik+1) ∈ Path(i, j; k)}. (3.4)

The following consequence is immediate [66]:

Lemma 3.1.1 Suppose that A ∈ R
n×n
ε such that Aij < 0 for all i, j ∈ N[1,n].

(i) The following relation holds: limk→∞A⊗
k

= ε.
(ii) A∗ exists and is given by A∗ = E ⊕ A⊕ · · · ⊕ A⊗

n−1
. ♦

A matrix P ∈ R
n×n
ε is invertible in max-plus algebra if there exists a matrix P ⊗

−1 ∈ R
n×n
ε such

that P⊗
−1⊗P = P ⊗P⊗

−1
= E. It is well-known [4,66] that a matrix P ∈ R

n×n
ε is invertible in

max-plus algebra if and only if it can be factorized as P = D⊗T , where D ∈ R
n×n
ε is max-plus

diagonal matrix with non-ε diagonal entries and T ∈ R
n×n
ε is a max-plus permutation matrix2.

Important notions in max-plus algebra are those of max-plus eigenvalue and eigenvector.

Definition 3.1.2 Let A ∈ R
n×n
ε . Then, λ ∈ Rε is a max-plus eigenvalue and v ∈ R

n
ε (where v

has at least one finite entry) is a max-plus eigenvector if A⊗ v = λ⊗ v. ♦

Note that Definition 3.1.2 allows an eigenvalue to be ε. Note further that a square matrix may
have more than one max-plus eigenvalue. We denote with λ∗ the largest max-plus eigenvalue of
A. From [66] the following consequence can be deduced:

Lemma 3.1.3 Suppose that the largest max-plus eigenvalue λ∗ of the matrix A ∈ R
n×n
ε is finite.

Then, λ∗ is given by

λ∗ = max

{

[A⊗
k
]ii

k
: i, k ∈ N[1,n]

}

(3.5)

A matrix A ∈ R
n×m
ε is row-finite if for any row i ∈ N[1,n], maxj∈N[1,m]

Aij > ε. Matrix A is
column-finite if for any column j ∈ N[1,m], maxi∈N[1,n]

Aij > ε.
For any vector x ∈ R

n the ∞–norm is defined as ‖x‖∞ := maxi∈N[1,n]
{xi,−xi}. It is

known [66] that for any row-finite matrix A ∈ R
n×m
ε , the map R

m → R
n, x 7→ A ⊗ x is

nonexpansive, i.e. the following inequality holds:

‖(A⊗ x)− (A⊗ y)‖∞ ≤ ‖x− y‖∞ ∀ x, y ∈ R
m. (3.6)

We also introduce the following notations:

x⊕′ y := min{x, y} and x⊗′ y := x+ y

for all x, y ∈ R̄. The operations ⊗ and ⊗′ differ only in that (−∞) ⊗ (+∞) := −∞, while
(−∞)⊗′(+∞) := +∞. The matrix multiplication and addition for (⊕′,⊗′) are defined similarly
as to the case that we defined for (⊕,⊗).

2A max-plus permutation matrix is obtained by permuting the rows or the columns of the max-plus identity
matrix E.
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For any matrix A ∈ R
m×n
ε and any vectors x, y ∈ R

n, the following inequalities hold:

x ≤ y ⇒ A⊗ x ≤ A⊗ y and A⊗′ x ≤ A⊗′ y, (3.7)

where “≤” denotes the partial order defined by the nonnegative orthant R
n
+ := {x ∈ R

n : xi ≥
0 ∀i ∈ N[1,n]} (i.e. x ≤ y if and only if y − x ∈ R

n
+ or equivalently xi ≤ yi for all i ∈ N[1,n]). In

the following theorem we summarize some basic results from max-plus algebra [4, 37, 66]:

Lemma 3.1.4 (i) Suppose A ∈ R
m×n
ε and b ∈ R

m
ε . Then, the inequality

A⊗ x ≤ b

has the largest solution given by

x0 = (−AT )⊗′ b = −(AT ⊗ (−b)).

By the largest solution we mean that for all x satisfying A⊗ x ≤ b we have x ≤ x0.
(ii) Suppose C ∈ R

n×n
ε and b ∈ R

n
ε . Then, the equation

x = C ⊗ x⊕ d

has a solution x = C∗ ⊗ d. If Cij < 0 for all i, j ∈ N[1,n], then the solution is unique. ♦

3.1.2 Constrained max-plus-linear systems
We now introduce a class of constrained DES that can be modeled using the max-plus addition
⊕ (corresponding to the order of events: e.g. a new job starts as soon as all preceding jobs were
finished) and max-plus multiplication ⊗ (corresponding to durations: e.g. the finishing time of a
job equals the starting time plus the duration). As we have seen in Section 2.2.1, DES with only
synchronization and no concurrency, i.e. systems in which the sequence of events are fixed (for
instance repetitive production systems like Example 2.2.1), can be described by equations of the
form:

x̄(k + 1) = Ā⊗ x̄(k)⊕ B̄ ⊗ ū(k)
ȳ(k) = C̄ ⊗ x̄(k). (3.8)

Here, Ā ∈ R
n×n
ε , B̄ ∈ R

n×m
ε , C̄ ∈ R

p×n
ε and x̄ represents the state, ū the input and ȳ the output

vector. We refer to (3.8) as a max-plus-linear (MPL) system. In the context of DES, k is an
event counter while ū, x̄ and ȳ are times (feeding times, processing times and finishing times,
respectively).

We consider a reference (due date) signal {r(k)}k≥0 ⊂ R
p which the output of the MPL

system (3.8) may be required to “track” in the sense that, for instance, the tardiness max{ȳ−r, 0}
is penalized.

Since time is not scalable, examples of typical constraints for an MPL system are:

ȳ(k) ≤ r(k) + hy(k), ūi(k)− ūj(k) ≤ hu
ij(k), x̄i(k)− ūj(k) ≤ hxu

ij (k)
ū(k)− ū(k + 1) ≤ 0.

(3.9)

The constraint ū(k) − ū(k + 1) ≤ 0 appears in the context of DES, where the input represents
times, so it should be nondecreasing. The constraints in (3.9) can equivalently be written as:

H̄kx̄(k) + Ḡkū(k) + F̄kr(k) ≤ h̄k (3.10)
ū(k)− ū(k + 1) ≤ 0, (3.11)
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for some matrices H̄k, Ḡk, F̄k and a vector h̄k of appropriate dimensions.
Given a matrix H ∈ R

n×m, H is nonnegative if and only if Hij ≥ 0 for all i ∈ N[1,n], j ∈
N[1,m]. Mathematically, we use the notation:

H ≥ 0.

Similarly we define H ≤ 0.
From the previous discussion it follows that H̄k ≥ 0 for all k ≥ 0. Note that the constraint

(3.11) does not fit the form (3.10). However, we can include (3.11) into (3.10) as follows: we
introduce a new state vector x(k) = [x̄T (k) zT (k)]T with the dynamics

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)
y(k) = C ⊗ x(k) (3.12)

and the extra constraint3:
[0 I]x(k) ≤ u(k), (3.13)

where u(k) = ū(k), y(k) = ȳ(k) and the system matrices are given by

A =

[
Ā B̄
ε E

]

, B =

[
B̄
E

]

and C = [C̄ ε].

Given any initial conditions x̄(0) and u(−1) for the system (3.8) with the constraint (3.11) and
the initial condition x(0) = [x̄(0)T u(−1)T ]T for the new system (3.12) with the constraint
(3.13), then by applying the same input signal {u(k)}k≥0 to both systems we obtain that the
first n components of x(k) coincide with x̄(k) and the last m components of x(k) coincide with
u(k− 1) for all k ≥ 0. This can be proved by induction. For k = 0 the statement is obvious. Let
us assume that the statement is true for k, i.e.

[I 0]x(k) = x̄(k), z(k) = u(k − 1).

We prove that similar equalities hold for k + 1. But, z(k + 1) = z(k) ⊕ u(k) and from the
inequality (3.13) it follows that z(k + 1) = u(k). Moreover, from our induction hypothesis we
get that [I 0]x(k + 1) = Ā⊗ x̄(k)⊕ B̄ ⊗ z(k + 1) = x̄(k + 1). We also obtain that the output
signals of these two systems coincide, i.e.

ȳ(k) = y(k) ∀k ≥ 0.

Moreover, the constraints (3.10)–(3.11) corresponding to the MPL system (3.8) can be written
for the new system (3.12) as

[H̄k 0]x(k) + Ḡku(k) + F̄kr(k) ≤ h̄k

and the extra constraint (3.13)
[0 I]x(k)− u(k) ≤ 0,

i.e. combining them we obtain:

Hkx(k) +Gku(k) + Fkr(k) ≤ hk, (3.14)

where Hk =

[
H̄k 0
0 I

]

, Gk =

[
Ḡk

−I

]

, Fk =

[
F̄k

0

]

and hk =

[
h̄k

0

]

.

Note that the condition on H̄k (H̄k ≥ 0) is preserved under the previous transformation, i.e.
Hk ≥ 0. Therefore, in the rest of this chapter we consider MPL systems of the form (3.12)
subject to hard state and input constraints (3.14), where {r(k)}k≥0 is a due date signal that the
output should follow.

3Here, I denotes the identity matrix in conventional algebra of appropriate dimension.
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3.2 Finite-horizon optimal control

In the last two decades there has been an increase in the amount of research on DES that can
be modeled as MPL systems. Most of the earlier literature on this class of systems addresses
performance analysis [4, 32, 34, 37, 55, 66] rather than control. Several authors have developed
methods to compute optimal controllers for MPL systems [4, 33, 36, 85, 95, 109] using two main
ingredients: residuation theory [20] and input-output models. In general, these methods use the
residuation approach to design a just-in-time controller, i.e. so that the output of the controlled
system is, on the one hand, less than the desired reference signal but as close as possible to the
given reference and, on the other hand, the control is delayed as much as possible. However, the
residuation approach does not cope with input and state constraints and thus the resulting control
sequence is sometimes decreasing, i.e. it is not always physically feasible. Furthermore, the
residuation approach cannot solve tracking problems corresponding to the case when the outputs
do not occur before the chosen reference although these situations are often encountered in many
practical applications, when e.g. the output of the process is already delayed with respect to the
reference. Clearly, input-output models can easily be transformed into state-space models. The
state-space approach, in addition, allows the time-invariant control design methods to easily be
extended to the multi-input multi-output case and time-varying systems, and the initial state is
included explicitly.

In this section we provide a solution to a class of finite-horizon optimal control problems
for MPL systems where it is required that the closed-loop input and state sequence satisfy a
given set of linear inequality constraints and the performance is measured via a cost function
that may, in particular, be chosen to provide a trade-off between minimizing the due date error
and a just-in-time control. We follow here a similar approach as in Section 2.3.1 on the finite-
horizon optimal control of general nonlinear systems. Note that in [45] a finite-horizon optimal
control problem, under similar settings as in this section, is solved in a receding horizon fashion.
The main difference compared to [45] is that we determine sufficient conditions under which
the corresponding optimization problem is a linear program or even has an analytic solution.
Moreover, the analytic solution leads to a just-in-time controller. As an application of the finite-
horizon optimal control we compute the solution to the “time” optimal control problem for MPL
systems by solving a finite sequence of linear programs. The receding horizon implementation of
the finite-horizon optimal control problems discussed in this chapter will be presented in Chapter
4.

3.2.1 Problem formulation

Before proceeding with the problem formulation we introduce a class of functions that will be
used extensively in this chapter: Fmps denotes the set of max-plus-scaling functions, i.e. functions

g : R
n → R, x 7→ max

j∈N[1,l]

{αT
j x+ βj},

where αj ∈ R
n, βj ∈ R and l is a finite positive integer. Furthermore, F+

mps denotes the set
of max-plus-nonnegative-scaling functions, i.e. functions defined by g(x) = maxj∈N[1,l]

{αT
j x +

βj}, where αj ≥ 0 for all j ∈ N[1,l]. Note that the expression “max-plus-scaling function” is
an equivalent terminology for a convex PWA function. Similarly, the expression “max-plus-
nonnegative-scaling function” stands for a nondecreasing convex PWA function. We use these
definitions since they closely resemble the definition of an MMPS function.
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We consider the following MPL system:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k) (3.15)
y(k) = C ⊗ x(k), (3.16)

where A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

p×n
ε . Since the states represent times we assume they

can always be measured (see also Section 3.2.3 for a more elaborate discussion on this subject).
Note that the function (x, u) 7→ A⊗ x⊕B ⊗ u belongs to (F+

mps)
n.

We also consider a due date signal {r(k)}k≥0 ⊂ R
p which the output may be required to

track. For the finite-horizon optimal control problem defined below, the system is subject to hard
control and state constraints over a finite horizon N :

Hkx(k) +Gku(k) + Fkr(k) ≤ hk ∀k ∈ N[0,N−1], (3.17)

with the terminal constraint

HNx(N) + FNr(N) ≤ hN , (3.18)

where Hk ∈ R
nk×n, Gk ∈ R

nk×m, Fk ∈ R
nk×p, hk ∈ R

nk . We can now formulate the problem of
finite-horizon optimal control of a constrained MPL system. We will define the decision variable
in the optimal control problem, for a given initial condition x and the due dates

r := [rT
0 r

T
1 . . . r

T
N ]T ,

as a control sequence
u :=[uT

0 u
T
1 . . . u

T
N−1]

T .

Let φ(i;x,u) denote the state solution of (3.15) at event step i when the initial state is x at event
step 0 and the control is determined by u (i.e. u(i) = ui). By definition, φ(0;x,u) := x. The
cost function VN(x, r,u), for the initial condition x, the due dates r and the control sequence u,
is defined as:

VN(x, r,u) :=
N−1∑

i=0

`i(xi, ui, ri) + Vf(xN , rN), (3.19)

where the terminal cost is given by

Vf(xN , rN) = `N(xN , rN ),

and where xi := φ(i;x,u) (and thus x0 := x). We usually denote with Xf the terminal set, i.e.

Xf := {(x, r) : HNx+ FNr ≤ hN}.

For each initial condition x and due dates r we define the set of feasible control sequences u:

ΠN(x, r) := {u : Hixi +Giui + Firi ≤hi, (xN , rN) ∈ Xf ,∀i ∈ N[0,N−1]}. (3.20)

Also, let XN denote the set of initial states and reference signals for which a feasible input
sequence exists:

XN := {(x, r) : ΠN(x, r) 6= ∅}. (3.21)
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The finite-horizon optimal control problem for the MPL system (3.15)–(3.16) is defined as:

PN(x, r) : V 0
N(x, r) := inf

u∈ΠN (x,r)
VN(x, r,u). (3.22)

Let u0
N(x, r) =: [(u0

0(x, r))T (u0
1(x, r))T · · · (u0

N−1(x, r))T ]T denote a minimizer of the optimiza-
tion problem PN(x, r) (as defined in (2.18)), i.e.

u0
N(x, r) ∈ arg min

u∈ΠN (x,r)
VN(x, r,u). (3.23)

The following key assumptions will be used throughout this chapter:

A1: The matrices Hi in (3.17)–(3.18) are nonnegative (i.e. Hi ≥ 0) for all i ∈ N[0,N ].

A2: The time-varying stage costs `i satisfies `i(·, u, r) ∈ F+
mps for each fixed (u, r) and `i ∈

Fmps for all i ∈ N[0,N ].

The conditions from assumptions A1-A2 are not too restrictive and are often met in applications.
Note that typical constraints for MPL systems satisfy assumption A1 (see Section 3.1). A typical
example of a stage cost that satisfies A2 is the following:

`i(xi, ui, ri) =

p
∑

j=1

max
{[

(C ⊗ xi)− ri

]

j
, 0
}
− γ

m∑

j=1

[ui]j (3.24)

for all i ∈ N[0,N−1]. Here, [vi]j denotes the jth component of a vector vi and γ ≥ 0. In the context
of manufacturing systems, this stage cost has the following interpretation: the first term penalizes
the delay of the output with respect to the due dates, while the second term tries to maximize the
feeding times, i.e. to feed the raw material as late as possible. The trade-off between these two
terms is given by the size of γ. Clearly,

`N(xN , rN) =

p
∑

j=1

max
{[

(C ⊗ xN)− rN

]

j
, 0
}
. (3.25)

For more examples of stage costs satisfying assumption A2 see [45].

3.2.2 Linear programming solution
We now show that under the previous assumptions A1-A2, the optimization problem PN(x, r)
can be recast as a linear program. We denote with

x := [xT
0 x

T
1 · · · xT

N ]T .

Then, it follows that:

x = Θ⊗ x⊕ Φ⊗ u, (3.26)

where

Θ :=








E
A
...

A⊗
N







,Φ :=








ε ε · · · ε
B ε · · · ε
...

... . . . ...
A⊗

N−1 ⊗B A⊗
N−2 ⊗B · · · B







. (3.27)
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The constraints (3.17)–(3.18) can be written more compactly as:

Hx + Gu + Fr ≤ h

for some matrices H,G,F and a vector h of appropriate dimensions. Note that H has non-
negative entries (according to assumption A1).

The next lemma states that some basic properties of max-plus-scaling functions are preserved
under addition, composition and multiplication with a non-negative scalar.

Lemma 3.2.1 Suppose the functions g1, g2 and g3 = [g31, . . . , g3n]T with g1, g2, g3j of the form
g : Z ×W → R, (z, w) 7→ g(z, w) have the property that for each w ∈ W , gi(·, w), g3j(·, w) ∈
F+

mps and for each z ∈ Z, gi(z, ·), g3j(z, ·) ∈ Fmps for all i, j. Then, for any scalar λ ≥ 0,
(λg1)(·, w), (g1 + g2)(·, w), g1(g3(·, w), w) ∈ F+

mps for any fixed w ∈ W , and (λg1)(z, ·),
(g1 + g2)(z, ·), g1(g3(z, ·), ·) ∈ Fmps for any fixed z ∈ Z.

Proof : The proof is straightforward and uses some basic properties of the max operator:

λmax{a, b} = max{λa, λb} ∀λ ≥ 0,

max{a, b}+ max{c, d} = max{a+ c, a+ d, b+ c, b+ d}
max{max{a, b}, c} = max{a, b, c}.

♦

Since f ∈ (F+
mps)

n, from Lemma 3.2.1 and assumption A2 it follows that the cost function VN

can be written as:

VN(x, r,u) = max
j∈J
{αT

j x + βT
j u + δj(x, r)},

where x is given by (3.26), αj are non-negative vectors (i.e. αj ≥ 0 for all j ∈ J ), δj(x, r) are
affine expressions in (x, r) and J is a finite index set. Define:

V (x, r,u, x) := max
j∈J
{αT

j x + βT
j u + δj(x, r)}.

We introduce the following relaxed set:

Πrel(x, r) = {u : ∃x s. t. Hx + Gu + Fr ≤ h, x ≥ Θ⊗ x⊕ Φ⊗ u}

and the following optimization problem

V 0
rel(x, r) = inf

u∈Πrel(x,r)
VN(x, r,u). (3.28)

Let us define

Π(x, r) = {(u, x) : Hx + Gu + Fr ≤ h, x ≥ Θ⊗ x⊕ Φ⊗ u}.

Given a set Z ⊆ R
n × R

m, the operator Projn denotes the projection on R
n, defined by

ProjnZ := {x ∈ R
n : ∃y ∈ R

m s. t. (x, y) ∈ Z}. (3.29)

Clearly,

Πrel(x, r) = ProjNmΠ(x, r) (3.30)
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We consider the following optimization problem

V 0(x, r) = inf
(u,x)∈Π(x,r)

V (x, r,u, x) (3.31)

and its minimizer is denoted with:

(u0(x, r), x0(x, r)) ∈ arg min
(u,x)∈Π(x,r)

V (x, r,u, x).

The next theorem is a consequence of Theorem 2 in [45].

Theorem 3.2.2 The optimization problem (3.31) is a linear program. Moreover, V 0
N(x, r) =

V 0
rel(x, r) = V 0(x, r) and u0(x, r) ∈ arg minu∈ΠN (x,r) VN(x, r,u) for all (x, r) ∈ XN .

Proof : Let (x, r) ∈ XN . The feasible set Π(x, r) is a polyhedron and V is a convex PWA
function. From basic results in convex optimization [25] it follows that the optimization problem
(3.31) can be recast as a linear program.

Let u ∈ Πrel(x, r). Since H ≥ 0, it follows that u ∈ ΠN(x, r) (we can take x = Θ⊗x⊕Φ⊗u)
and thus Πrel(x, r) ⊆ ΠN(x, r). On the other hand let u ∈ ΠN(x, r), then clearly u ∈ Πrel(x, r).
Therefore, ΠN(x, r) ⊆ Πrel(x, r). It follows that

ΠN(x, r) = Πrel(x, r)

Then, the optimization problem (3.22) is equivalent with the optimization problem (3.28), i.e.
V 0

N(x, r) = V 0
rel(x, r). Moreover, the following inequalities are valid:

V 0
rel(x, r) ≥ V 0(x, r) ≥ VN(x, r,u0(x, r)) ≥ V 0

rel(x, r)

and thus V 0
rel(x, r) = V 0(x, r). The first and the last inequality follows from (3.30) (which in

particular implies that u0(x, r) ∈ Πrel(x, r)) and the second inequality follows from the fact that
αj ≥ 0 for all j ∈ J . This concludes our proof. ♦

The following corollary can also be proved

Corollary 3.2.3 The sets ΠN(x, r) for each (x, r) ∈ XN and XN are polyhedra.

Proof : Note that ΠN(x, r) = Πrel(x, r) = ProjNmΠ(x, r) and since Π(x, r) is a polyhedron, it
follows that ΠN(x, r) is also a polyhedron. Moreover, the set

X̃N = {(x, r,u, x) : Hx + Gu + Fr ≤ h, x ≥ Θ⊗ x⊕ Φ⊗ u}

is a polyhedron and XN = Projn+NpX̃N . Thus, XN is also a polyhedron. ♦

3.2.3 Timing: deterministic case
Discrete event MPL systems are different from conventional time-driven systems in the sense
that the event counter k is not directly related to a specific time, as we saw in Section 2.2. In
this chapter and the next one we will use extensively the assumption that at event step k the state
x(k) is available. However, in general not all components of x(k) are known at the same time
instant (recall that x(k) contains the time instants at which the internal activities or processes
of the system start for the kth cycle). Therefore, we will now present a method to address the
availability issue of the state at a certain time t0 of a deterministic MPL system.
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We consider the case of full state information. This is possible due to the following fact. Let
us note that in practical applications the entries of the system matrices are nonnegative or take the
value ε. Since the components of x correspond to event times, they are in general easy to measure.
Also note that measurements of occurrence times of events are in general not as susceptible to
noise and measurement errors as measurements of continuous-time signals involving variables
such as temperature, speed, pressure, etc. Let t0 be the time when an optimal control problem is
performed. We can define the initial cycle k0 as follows:

k0 := arg max{k : xi(k) ≤ t0 ∀i ∈ N[1,n]}.

Hence, the state x(k0) is completely known at time t0 and thus u(k0 − 1) it is also available.
Note that at time t0 some components of the forthcoming states and of the forthcoming inputs
might be known, i.e. xi(k0 + l̄) ≤ t0 and uj(k0 + l̃) ≤ t0 for some positive integers i, j, l̄ and
l̃. Due to causality, the information about some components of the forthcoming states can be
recast as linear equality and inequality constraints on some forthcoming inputs: G l̄u(k0 + l̄) = hl̄

and Gl̃u(k0 + l̃) ≤ hl̃ for some matrices Gl̄, Gl̃ of appropriate dimensions and for some positive
integers l̄, l̃. Therefore, these linear equality and inequality constraints on the inputs must be
taken into account by the optimal control problem that has to be solved at time t0. Note that
linear equality and inequality constraints on inputs fit in the formulation (3.14).

3.2.4 “Time” optimal control
As an application of the finite-horizon optimal control problem previously discussed, we consider
the MPL counterpart of the conventional time optimal control problem: given a maximum hori-
zon length Nmax we consider the problem of ensuring that the completion times after N events
(with N ∈ N[1,Nmax]) are less than or equal to a specified target time T (i.e. y(N) ≤ T), using
the latest controller that satisfies the input and state constraints (3.17)–(3.18). Note that such
a problem, but without taking constraints into account, was considered also in [4] in terms of
lattice theory. The time optimal control problem in our setting is different from the classical one
(we want to maximize4 N instead of minimizing it; so in fact a better term would be “throughput-
optimal” control). Since we want the maximal N , the time optimal control problem can be posed
in the framework of the finite-horizon optimal control problem considered in Section 3.2.1.

One proceeds by defining

N0(x,T) := max
(N,u)
{N ∈ N[1,Nmax] : u ∈ ΠT

N(x, [0 0 . . . 0 TT ]T )},

where ΠT
N(x, [0 0 . . . 0 TT ]T ) = ΠN(x, [0 0 . . . 0 TT ]T ) but with the substitutions HN ←

[HT
N I]T ≥ 0, FN ← [F T

N 0]T and hN ← [hT
N ((−CT )⊗′ T)T ]T (note that r = [0 0 · · · 0 TT ]T

and thus Firi = 0 for all i ∈ N[0,N−1] and rN = T). It follows that

N0(x,T) = max
N
{N ∈ N[1,Nmax] : (x, r) ∈ XT

N}, (3.32)

where XT
N = {(x, r) : ΠT

N(x, r) 6= ∅}. Since we want to feed the raw material as late as possible
(see [4]), a suitable choice of stage cost is `i(xi, ui, ri) := −∑m

j=1[ui]j . Note that under these
settings the assumptions A1-A2 are still valid. The time optimal controller is implemented as
follows:

4For a manufacturing system this requirement corresponds to producing as many products as possible by the
target time.
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1. For each N ∈ N[1,Nmax], solve the optimization problem (3.22) or equivalently the linear
program (3.31) where r is defined as r = [0 0 · · · 0 TT ]T ∈ R

Np.

2. Determine N 0(x,T) according to (3.32).

3. Let rN = [0 0 · · · 0 TT ]T ∈ R
Np, with N = N 0(x,T).

4. Apply the control sequence u0
N(x, rN).

The time optimal control problem involves solving Nmax linear programs in step 1 above.
The set XT

N has the following interpretation: the boundary of the polyhedron XT
N represents the

latest starting times such that after N events the output is below the target time T.

3.2.5 Just-in-time control for unconstrained MPL systems
We now study the finite-horizon optimal control problem for unconstrained MPL systems where
the performance index (cost function) is designed to provide a trade-off between minimizing
the due date error and a just-in-time production. By employing results in max-plus algebra,
we provide sufficient conditions such that one can compute the analytic solution of the optimal
control problem. For the MPL system (3.15)–(3.16) we consider the particular stage cost defined
in (3.24)–(3.25). In this case, the finite-horizon optimal control problem (3.22) without state and
input constraints can be written explicitly as:

V 0
N(x, r) = inf

u∈R̄Nm
VN(x, r,u), (3.33)

where now the cost function has the particular form5

VN(x, r,u) =
N−1∑

i=0

(
p
∑

j=1

max{[yi − ri]j, 0} − γ
m∑

j=1

[ui]j

)

+

p
∑

j=1

max{[yN − rN ]j, 0}.

Here,
yi := C ⊗ xi

denotes the output at event step i. It is obvious that the size of γ provides the trade-off between
the delay of the finishing products with respect to the due dates and the feeding time. If γ > 0,
then it follows that the optimizer of (3.33) satisfies u0

N(x, r) > ε (i.e. each component of the
vector u0

N(x, r) is larger than ε = −∞).
We define the matrices

Θ̄ :=








C
C ⊗ A

...
C ⊗ A⊗

N







, Φ̄ :=








ε ε · · · ε
C ⊗B ε · · · ε

...
... . . . ...

C ⊗ A⊗
N−1 ⊗B C ⊗ A⊗

N−2 ⊗B · · · C ⊗B








and
y := [yT

0 yT
1 · · · yT

N ]T .

5So, the assumption A2 still holds in this section. However, we do not assume any constraints on inputs and
states.
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Clearly,

y = Θ̄⊗ x⊕ Φ̄⊗ u. (3.34)

We introduce
ȳ := Θ̄⊗ x⊕ r

and the following linear program

max
u∈R̄Nm

{
N−1∑

i=0

m∑

j=1

[ui]j : Φ̄⊗ u ≤ ȳ

}

(3.35)

with the maximizer (as defined in (2.18))

u∗(x, r) ∈ arg max
u∈R̄Nm

{
N−1∑

i=0

m∑

j=1

[ui]j : Φ̄⊗ u ≤ ȳ

}

.

From Lemma 3.1.4 (i) it follows that u∗(x, r) = (−Φ̄T )⊗′ ȳ or explicitly as a function of x and r

u∗(x, r) = (−Φ̄T )⊗′ (Θ̄⊗ x⊕ r). (3.36)

Since r is finite it follows that ȳ is also finite and thus u∗(x, r) > ε.
The following theorem, which is the extension to the multivariable case of a result in [158],

provides sufficient conditions for which an analytic solution exists for the optimization problem
(3.33).

Theorem 3.2.4 Suppose 0 < γ < 1
mN

, then u∗(x, r) is a minimizer of (3.33).

Proof : Let (x, r) ∈ R
n ×R

Np be fixed. For simplicity, we drop out the dependence on (x, r) of
u∗(x, r). We will prove this theorem by contradiction. Define ỹ := Θ̄⊗ x, then ȳ := ỹ⊕ r.

First, let uf = [(uf
0)

T (uf
1)

T · · · (uf
N−1)

T ]T > ε be feasible for (3.35) such that uf 6= u∗.
Then, from Lemma 3.1.4 (i) it follows:

N−1∑

i=0

m∑

j=1

[uf
i]j <

N−1∑

i=0

m∑

j=1

[u∗i ]j.

Define yf = [(yf
0)

T (yf
1)

T · · · (yf
N)T ]T as yf := Θ̄ ⊗ x ⊕ Φ̄ ⊗ uf . Then, for each i ∈ N[0,N ] and

j ∈ N[1,p] it follows that

max{[yf
i ]j, [ri]j} = max{[ỹi]j, Φ̄ip+j. ⊗ uf , [ri]j} = max{[ȳi]j, Φ̄ip+j. ⊗ uf} = [ȳi]j,

where we recall that Φ̄ip+j. denotes the (ip+ j)th row of Φ̄. It follows that

VN(x, r,uf) =
N∑

i=0

p
∑

j=1

max{[yf
i − ri]j, 0} − γ

N−1∑

i=0

m∑

j=1

[uf
i]j =

N∑

i=0

p
∑

j=1

([ȳi]j − [ri]j)− γ
N−1∑

i=0

m∑

j=1

[uf
i]j >

N∑

i=0

p
∑

j=1

([ȳi]j − [ri]j)− γ
N−1∑

i=0

m∑

j=1

[u∗i ]j = VN(x, r,u∗)
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and thus uf cannot be the optimizer of (3.33).
Next, let us consider u† > ε that does not satisfy the inequality Φ̄ ⊗ u ≤ ȳ (i.e. u† is

infeasible for the optimization problem (3.35)). Define

δ := max
i∈N[0,N ],j∈N[1,p]

{Φ̄ip+j. ⊗ u† − [ȳi]j} > 0.

Taking y† = Θ̄⊗ x⊕ Φ̄⊗ u†, then there exist i0, j0 such that [y†i0 ]j0 = Φ̄i0p+j0.⊗ u† = [ȳi0 ]j0 + δ
and thus

N∑

i=0

p
∑

j=1

max{[y†i ]j − [ri]j, 0} ≥
N∑

i=0

p
∑

j=1

max{[ȳi]j − [ri]j, 0}+ δ.

Note that u‡ = u† − δ satisfies the constraint Φ̄ ⊗ u ≤ ȳ (i.e. u‡ is feasible for (3.35)) and
using the first part of the proof it follows that the corresponding cost satisfies:

VN(x, r,u‡) ≤
N∑

i=0

p
∑

j=1

max{[y†i ]j − [ri]j, 0} − δ − γ
(

N−1∑

i=0

m∑

j=1

[u†i ]j −Nmδ
)

=

VN(x, r,u†) + (γNm− 1)δ < VN(x, r,u†)

and thus u† cannot be the optimizer of (3.33). This proves that u∗ is also the optimizer of the
original optimization problem (3.33). ♦

Remark 3.2.5 (i) From Theorem 3.2.4 it follows that the optimal control sequence u∗(x, r) is a
just-in-time control since given the desired output r we search for the latest input dates u such
that the output dates occur at times as close as possible to the desired ones or at the latest before
the desired ones (see (3.35)). Note that our state-space expression of the just-in-time controller
(3.36) resembles the expression of the just-in-time controller in [109] obtained from an input-
output model using residuation theory. The main differences consist in the fact that we take
the initial state into account and we obtain a state-space formula compared to an input-output
expression.

(ii) The reader might ask if the control sequence u∗(x, r) is a nondecreasing input sequence.
The original system is given by (3.8). Nevertheless, the just-in-time control sequence should
satisfy the constraint (3.11). If we use the extended state approach from Section 3.1.2 we re-
place the constraint (3.11) with the constraint (3.13). Therefore, the optimization problem (3.33)
should take into account the constraint (3.13). In this particular case however (i.e. when the con-
straints (3.10) are not present), a better approach is to use another extending state for the original
system (3.8), as explained next: we introduce a new input vector u(k) and a new state vector
x(k) = [x̄T (k) ūT (k)]T with the dynamics

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)
y(k) = C ⊗ x(k), (3.37)

where the system matrices are given by

A =

[
Ā B̄
ε E

]

, B =

[
B̄
E

]

and C = [C̄ ε].

Recall that Ā, B̄ and C̄ denote the system matrices and x̄, ū denote the state and the input for the
original system (3.8). It is clear that ū(k + 1) = ū(k) ⊕ u(k) and thus ū(k + 1) ≥ ū(k) (i.e.
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the constraint (3.11) is satisfied for the original system). Therefore, we compute u∗(x, r) for the
extended system (3.37) as explained in this section, while the actual input applied to the original
system (3.8) is given by

ū(k) = u∗k(x, r)⊕ ū(k − 1) (3.38)

for all k ∈ N[0,N−1]. Using similar arguments as in Section 3.1.2 we can easily verify via induc-
tion that by applying the input signal u∗(x, r) to the extended system (3.37) and {ū(k)}k∈N[0,N−1]

given by (3.38) to the original system (3.8) we obtain that the first n components of state cor-
responding to the extended system coincide with the state of the original system at each step k.
Moreover, the output signals corresponding to these two systems coincide, i.e. ȳ(k) = y(k) for
all k ≥ 0. ♦

3.3 Finite-horizon min-max control

As we have seen in the previous sections of this chapter considerable progress has been made
in the synthesis of optimal controllers for deterministic MPL systems. However, progress has
been slower for the more difficult problem of designing robust controllers for uncertain MPL
systems. In robust control the goal is to expand the optimization problem to consider a class of
models instead of a single, nominal model. Of course, the synthesis and analysis of robust con-
trollers are more difficult than the corresponding deterministic counterpart since now we have
to take into consideration an infinite number of realizations for the plant. The main approaches
in designing robust controllers for MPL systems are based on either a min-max framework (e.g.
open-loop min-max model predictive control [155]) or residuation theory [93, 102, 109]. Note
that [93,102,109] do not take constraints into account. For instance in [102] closed-loop control
based on residuation theory is derived that also guarantees nominal stability. However, the resid-
uation approach used in [102] does not cope with input and state constraints and moreover the
uncertainty is not taken into account. In [93] uncertainty is considered in terms of interval trans-
fer functions, which is a particular case of our uncertainty description considered in this thesis.
In [109] an adaptive control method is derived that takes into account possible mismatch between
the system and its model. The open-loop min-max approach of [155] does not take mixed state
and input constraints into account and does not incorporate feedback in the optimization problem.
Moreover, the solution of the min-max control problem is obtained by resorting to computation
of the vertexes of the uncertainty set. This makes in general difficult the computation of the
optimal solution.

In this section we use a game-based or min-max approach. We analyze the solutions to
three classes of finite-horizon min-max control problems for uncertain MPL systems, each class
depending on the nature of the control sequence over which we optimize: open-loop control
sequences, disturbance feedback policies, and state feedback policies. We assume that the un-
certainty lies in a bounded polytope, and that the closed-loop input and state sequence should
satisfy a given set of linear inequality constraints for all admissible disturbance realizations. De-
spite the fact that the controlled system is nonlinear, we provide sufficient conditions that allow
to preserve convexity of the optimal value function and its domain. As a consequence, the min-
max control problems can be either recast as a linear program or solved via N multi-parametric
linear programs, where N is the prediction horizon. In some particular cases of the uncertainty
description (e.g. interval matrices), by employing results from dynamic programming, we show
that a min-max control problem can be recast as a deterministic optimal control problem. The
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main advantage of our approach compared to existing results on robust control of MPL sys-
tems [93, 102, 109, 155] is the fact that we also optimize over feedback policies, not only over
open-loop input sequences, and that we incorporate state and input constraints directly into the
problem formulation. In general, this results in increased feasibility and a better performance.

It is important to note that the assumptions A1-A2 hold also in this section. Because MPL
systems are nonlinear, non-convexity is clearly a problem if one seeks to develop “efficient”
methods for solving min-max control problems for MPL systems. Based on the assumptions
A1-A2 and employing also recent results in polyhedral algebra and multi-parametric linear pro-
gramming, we provide constructive proofs that allow one to compute robust optimal controllers
for MPL systems in an efficient way. Robust performance and robust constraint fulfillment are
considered with respect to all possible realizations of the disturbance in a worst-case framework
(i.e. the opponent “nature” can pick a disturbance to maximally increase our cost). This section
proceeds now by introducing the uncertainty description for an MPL system.

3.3.1 Uncertain MPL systems

Before giving the dynamical equations of an uncertain MPL system let us recall Example 2.2.1.
In this example we have considered a production system with three units. The notation and the
functioning rules are given in Section 2.2.1. The main difference is that now the processing times
pi and the transportation times tj are not fixed but they are varying with each cycle. Let us write
down explicitly the dynamical equations corresponding to this situation:







x1(k + 1) = max{x1(k) + p1(k − 1), u(k) + t1(k)}
x2(k + 1) = max

{
x1(k) + p1(k − 1) + p1(k) + t3(k), x2(k) + p2(k − 1),

u(k) + max{t2(k), t1(k) + p1(k) + t3(k)}
}

x3(k + 1) = max
{
x1(k) + max{p1(k − 1) + p1(k) + t4(k),

p1(k − 1) + p1(k) + t3(k) + p2(k) + t5(k)},
x2(k) + p2(k − 1) + p2(k) + t5(k), x3(k) + p3(k − 1),

u(k) + max{p1(k) + t4(k) + t1(k), t2(k) + p2(k) + t5(k),

t1(k) + p1(k) + t3(k) + p2(k) + t5(k)}
}

y(k) = p3(k − 1) + t6(k − 1) + x3(k).

(3.39)

As we have seen from this example, the entries of the system matrices of a given MPL
system depend on the transportation times and the processing times. In practical applications,
these parameters are uncertain since they can vary from one cycle to another, making the system
matrices also event varying. In contrast to conventional linear systems, where the uncertainty
and disturbances are usually modeled as an additive term, the uncertainty and disturbances in
an MPL system enter max-plus multiplicative rather than max-plus additive. Indeed, from the
mathematical description (3.39) of Example 2.2.1, we see that the uncertain parameters pi and tj
appear in the entries of the system matrices (i.e. f(x, u, w) = A(w)⊗x⊕B(w)⊗u) rather than
as an max-plus additive term (i.e. f(x, u, w) = A⊗ x⊕B ⊗ u⊕ E ⊗ w).

We gather in the vector w all the uncertainty caused by disturbances and errors in the estima-
tion of the parameters pi and ti, i.e.

w(k) := [p1(k) . . . pl(k) t1(k) . . . tl̃(k)]
T ,
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such that l + l̃ = q. Therefore, we consider the following uncertain MPL system:

x(k + 1) = A(w(k − 1), w(k))⊗ x(k)⊕B(w(k − 1), w(k))⊗ u(k) (3.40)
y(k) = C(w(k − 1))⊗ x(k). (3.41)

Note that x(k) depends on w(k − 1) and thus y(k) = h(x(k)), i.e. (3.41) is in the form (2.25).
Since the system matrices of a DES modeled as an MPL system usually consist of sums or
maximization of internal process times and transportation times it follows that A ∈ F n×n

mps , B ∈
Fn×m

mps and C ∈ Fp×n
mps (it is important to note that these matrix functions are nonlinear). We

frequently use the short-hand notation

fMPL(x, u, wp, wc) := A(wp, wc)⊗ x⊕B(wp, wc)⊗ u, (3.42)

and it is easy to verify that fMPL ∈ Fn
mps and fMPL(·, u, wp, wc) ∈ (F+

mps)
n for each fixed

(u,wp, wc). We also assume that the uncertain MPL system (3.40)–(3.41) is subject to hard
control and state constraints (3.17)–(3.18) defined in Section 3.2.1.

As in previous sections, we assume that at event step k the state x(k) is available, i.e. it can
be measured or it can be computed (see Section 3.3.5 below for more details about timing issues
in the disturbance case). However, the value of the disturbance w(k) is unknown, but is assumed
to be event-varying and to take on values from a polytope

W = {w ∈ R
q : Ωw ≤ s},

where Ω ∈ R
nΩ×q and s ∈ R

nΩ . We consider that w(k−1) and w(k) are independent. Moreover,
at event step k we assume that the disturbance w(k−1) can be also measured or computed. Note
that since the past states x(0), · · · , x(k) are assumed to be known at event step k (we recall that
they represent starting times of some activities), the past disturbances w(0), · · · , w(k − 1) can
also be measured or computed (we recall that w denotes processing and transportation times).
This follows from the fact that if we are able to measure the state x(k), then we are also able to
measure the disturbance w(k − 1).

In the sequel, we will characterize the solutions to different min-max control problems and
their main properties will be studied.

3.3.2 Open-loop min-max control
We start with the open-loop min-max control problem for an uncertain MPL system (3.40)–
(3.41), i.e. when the optimization is performed over open-loop input sequences.

Let u :=[uT
0 u

T
1 . . . u

T
N−1]

T be an open-loop input sequence and let

w := [wT
0 w

T
1 . . . w

T
N−1]

T

denote a realization of the disturbance over the prediction horizonN . Also, let φ(i;x,w,u,w) de-
note the solution of (3.40) at event step iwhen the initial state is x at event step 0, the initial value
of the disturbance is w (i.e. w(−1) = w or in other words w−1 = w), the control is determined
by u (i.e. u(i) = ui) and the disturbance sequence is w. By definition, φ(0;x,w,u,w) := x.

Given the initial state x, the initial disturbance w, the reference signal r := [rT
0 rT

1 · · · rT
N ]T ,

the control sequence u, and the disturbance realization w, the cost function VN(x,w, r,u,w) is
defined as:

VN(x,w, r,u,w) :=
N−1∑

i=0

`i(xi, ui, ri) + Vf(xN , rN), (3.43)

where xi := φ(i;x,w,u,w) (and thus x0 := x).
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Remark 3.3.1 The notations for the terminal cost and the terminal set correspond to those from
Section 3.2.1. Recall that the assumptions A1-A2 are assumed to hold also in this section. ♦

For each initial condition x, initial disturbance w and due dates r we define the set of feasible
open-loop input sequences u:

Πol
N(x,w, r) := {u : Hixi +Giui + Firi ≤ hi ∀i ∈ N[0,N−1], (xN , rN ) ∈ Xf ,

∀w ∈ W}, (3.44)

where we recall that
W := WN .

Also, let Xol
N denote the set of initial states and reference signals for which a feasible input

sequence exists:
Xol

N := {(x,w, r) : Πol
N(x,w, r) 6= ∅}. (3.45)

The finite-horizon open-loop min-max control problem is defined as:

P
ol
N(x,w, r) : V 0,ol

N (x,w, r) := inf
u∈Πol

N
(x,w,r)

max
w∈W

VN(x,w, r,u,w), (3.46)

with the optimizer (whenever the infimum is attained)

u0,ol
N (x,w, r) ∈ arg min

u∈Πol
N

(x,w,r)
max
w∈W

VN(x,w, r,u,w). (3.47)

Note that VN is a continuous function and W is a compact set. Therefore, the maximum is
attained in (3.46) and it is finite and thus we use “inf max” instead of “inf sup”.

We define x := [xT
0 x

T
1 · · · xT

N ]T . It follows that:

x=








E
Θ(1, 1;w,w)

...
Θ(N, 1;w,w)







⊗ x⊕








ε ε · · · ε
B(w,w0) ε · · · ε

...
... . . . ...

Φ(N, 1;w,w) Φ(N, 2;w,w) · · · B(wN−2, wN−1)







⊗ u,

where Θ(k, 1;w,w) := A(wk−2, wk−1)⊗ · · ·⊗A(w,w0) and Φ(k, j;w,w) := A(wk−2, wk−1)⊗
· · · ⊗ A(wj−1, wj) ⊗ B(wj−2, wj−1) (recall that w−1 = w). Therefore, x can be written more
compactly as:

x = Θ(w,w)⊗ x⊕ Φ(w,w)⊗ u, (3.48)

where Θ(w,w) and Φ(w,w) are appropriately defined. We recall to the reader (see also Section
3.2.2) that the inequalities (3.17)–(3.18) can be written as Hx + Gu + Fr ≤ h and that H ≥ 0
since assumption A1 is assumed to hold also in this section. Now, the set of admissible open-loop
input sequences Πol

N(x,w, r) can be rewritten more compactly as:

Πol
N(x,w, r)={u : H(Θ(w,w)⊗x⊕Φ(w,w)⊗u)+Gu+Fr≤ h, ∀w∈W}. (3.49)

After some manipulations we obtain that the set of feasible u is given by:

Πol
N(x,w, r) = {u : Fu + Ψw ≤ c(x,w, r), ∀w ∈ W}, (3.50)

where F ∈ R
nF×Nm,Ψ ∈ R

nF×Nq and c(x,w, r) ∈ R
nF is an affine expression in (x,w, r).
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Proposition 3.3.2 The sets Xol
N and Πol

N(x,w, r) are polyhedra.

Proof : Note that Πol
N(x,w, r) = {u : Fu ≤ c(x,w, r) − ψ0}, where the ith component of the

vector ψ0 is given by ψ0
i := maxw∈W Ψi.w (recall that Ψi. denotes the ith row of Ψ). Since W is

a compact set it follows that ψ0 is a finite vector. Therefore, Πol
N(x,w, r) is a polyhedron.

Similarly Xol
N = {(x,w, r) : ∃u s. t. Fu ≤ c(x,w, r) − ψ0} and since c(x,w, r) is an

affine expression in (x,w, r) it follows that Xol
N is the projection of the polyhedron {(x,w, r,u) :

Fu− c(x,w, r) ≤ ψ0} onto a suitably-defined subspace. Therefore, Xol
N is a polyhedron. ♦

Since `i(·, u, r) ∈ F+
mps for all (u, r) (according to assumption A2), it follows that:

VN(x,w, r,u,w) = max
j∈J
{αT

j x + βT
j u + γT

j w + δj(x,w, r)}, (3.51)

where J is a finite index set, αj ≥ 0, and δj(x,w, r) are affine expressions in (x,w, r), for all
j ∈ J .

Remark 3.3.3 Note that if the entries of matrix functionsA,B and C are max-plus-nonnegative-
scaling functions (i.e. Aij, Bil and Ckl are in F+

mps for all i, j, l and k), then the vectors γj are
also nonnegative. We will make use of this property in Section 3.4.2. ♦

Equivalently, we can write VN(x,w, r,u,w) as:

VN(x,w, r,u,w) = max
i∈I
{pT

i u + qT
i w + si(x,w, r)} (3.52)

for some finite index set I, some vectors pi, qi of appropriate dimensions and si(x,w, r) are
affine expressions in (x,w, r) for all i ∈ I. We define:

JN(x,w, r,u) := max
w∈W

VN(x,w, r,u,w). (3.53)

Proposition 3.3.4 The function (x,w, r,u) 7→ JN(x,w, r,u) is convex.

Proof : From (3.52) we remark that VN(x,w, r,u,w) is a convex function in (x,w, r,u) since
z 7→ maxi{zi} is a convex map and convexity is preserved under composition of a convex
function with affine maps. Since the point-wise supremum of an arbitrary, infinite set of convex
functions is convex [144], it follows that JN(x,w, r,u) is a convex function. ♦

If we denote with q0
i = maxw∈W qT

i w (note that q0
i are finite sinceW is a compact set), then the

open-loop min-max optimization problem (3.46) can be recast as a linear program:

min
(µ,u)
{µ : Fu ≤ c(x,w, r)− ψ0, pT

i u− µ ≤ −q0
i − si(x,w, r) ∀i ∈ I}. (3.54)

A finite-horizon open-loop min-max problem with only input constraints is also solved in
[155] in a receding horizon fashion. The receding horizon implementation of the optimization
problem P

ol
N(x,w, r) will be studied in the next chapter. Note that in [155] a solution is obtained

by first computing the vertexes of W . Let nv be the number of vertexes of W . In the worst-
case the number of vertexes ofW may be exponential: nN

v ≥ 2qN . Therefore, the computational
complexity of our approach is better than the approach of [155], since in the corresponding linear
program of [155] we have |I|(nN

v −1) more inequalities and also more variables than in our linear
program (3.54).
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3.3.3 Disturbance feedback min-max control
Effective control in the presence of disturbance requires one to optimize over feedback poli-
cies [16, 91, 103] rather than open-loop input sequences. A feedback controller prevents the
trajectory from diverging excessively and also the performance is improved compared to the
open-loop case. One way of including feedback is to consider semi-feedback control sequences,
i.e. to search over the set of event-varying max-plus-scaling (or convex piecewise affine) state
feedback control policies with memory of prior states [36, 102, 110]:

ui =
i⊕

j=0

Li,j ⊗ xj ⊕ gi ∀i ∈ N[0,N−1], (3.55)

where each Li,j ∈ R
m×n
ε and gi ∈ R

m
ε . We can also consider the affine approximation of (3.55),

i.e. event-varying affine state feedback control policies with memory of prior states:

ui =
i∑

j=0

L̃i,jxj + g̃i ∀i ∈ N[0,N−1], (3.56)

where each L̃i,j ∈ R
m×n and g̃i ∈ R

m,
It is known [60, 97], even for linear systems, that given an initial state x and an initial dis-

turbance w, the set of gains L̃i,j and g̃i such that the control sequence given by (3.56) satisfies
the constraints (3.17)–(3.18) is a non-convex set (and thus a similar result holds for max-plus-
scaling state feedback control policies (3.55)). Therefore, finding admissible Li,j and gi (L̃i,j

and g̃i) given the current state x and current disturbance w is a very difficult problem. The state
feedback policy (3.55) can be written more compactly as:

u = L⊗ x⊕ g, (3.57)

where L and g have appropriate dimensions. Replacing the expression of u in (3.48) one gets
that: x = Φ(w,w)⊗L⊗ x⊕Θ(w,w)⊗x⊕Φ(w,w)⊗ g. It follows from Lemma 3.1.4 (ii) that:

x =
(
Φ(w,w)⊗ L

)∗ ⊗
(
Θ(w,w)⊗ x⊕ Φ(w,w)⊗ g

)
.

Therefore, u can be rewritten as:

u =L⊗
(
Φ(w,w)⊗ L

)∗ ⊗
(
Θ(w,w)⊗ x⊕ Φ(w,w)⊗ g

)
⊕ g =

(
L⊗ Φ(w,w)

)∗ ⊗ L⊗
(
Θ(w,w)⊗ x⊕ Φ(w,w)⊗ g

)
⊕ g =

(
L⊗Φ(w,w)

)∗⊗
(
L⊗Φ(w,w)⊗g

)
⊕g⊕

(
L⊗Φ(w,w)

)∗⊗L⊗Θ(w,w)⊗x =
(
L⊗ Φ(w,w)

)∗ ⊗ g⊕
(
L⊗ Φ(w,w)

)∗ ⊗ L⊗Θ(w,w)⊗ x=
(
L⊗ Φ(w,w)

)∗ ⊗
(
L⊗Θ(w,w)⊗ x⊕ g

)
,

where in the second equality we used the following relation valid in max-plus algebra

A⊗ (X ⊗ A)∗ = (A⊗X)∗ ⊗ A.

Define
u(w,w) := (L⊗ Φ(w,w))∗ ⊗ (L⊗Θ(w,w)⊗ x⊕ g),

then the function (w,w) 7→ u(w,w) is in FNm
mps (i.e. it is a convex piecewise affine function).

Recall that we assume that at each step k the previous disturbances w,w0 . . . wk−1 are known
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(they can be computed or measured). Since L and Φ(w,w) are lower triangular matrices, it
can be proved after some long but straightforward computations that ui(w,w) is a max-plus-
scaling function depending only on the previous disturbances w,w0 . . . wi−1 for all i ∈ N[0,N−1].
It follows that the class of time-varying max-plus-scaling state feedback policies with memory
of the prior states defined in (3.55) is included in the class of max-plus-scaling disturbance
feedback policies with memory of the prior disturbances. Therefore, an alternative approach to
state feedback policies (3.55) is to parameterize the control policy as a max-plus-scaling function
of the previous disturbances. Unfortunately, this parametrization of the control will lead to non-
convex inequalities as well. As an alternative, we propose to approximate the convex piecewise
affine function u(w,w) with an affine one, i.e. to parameterize the controller as an affine function
of the past disturbances:

ui =
i−1∑

j=0

Mi,jwj + vi ∀i ∈ N[0,N−1], (3.58)

where each Mi,j ∈ R
m×q and vi ∈ R

m. A similar feedback policy was used in [14, 60, 97] in
the context of robust control for linear systems. We will show in the sequel that contrary to state
feedback policies (3.55) or (3.56), the set of gains Mi,j and vi such that the control sequence
(3.58) satisfies the constraints (3.17)–(3.18) is a convex set.

Let us denote with

v := [vT
0 vT

1 · · · vT
N−1]

T (3.59)

and

M :=








0 0 · · · 0
M1,0 0 · · · 0

...
... . . . ...

MN−1,0 MN−1,1 · · · 0








(3.60)

so that the disturbance feedback policy becomes

u = Mw + v.

Note that for M = 0, (3.56) reduces to an open-loop control sequence. So, the extra degree of
freedom given by the matrix M leads in general to a better performance and increased feasibility
compared to the open-loop case.

For a given initial condition x, initial disturbance w and due dates r we define the set of
feasible pairs (M, v):

Πdf
N (x,w, r) = {(M, v) : M as in (3.60), ui =

i−1∑

j=0

Mi,jwj + vi, Hixi +Giui + Firi ≤ hi,

∀i ∈ N[0,N−1], (xN , rN) ∈ Xf , ∀w ∈ W}.

Also, let Xdf
N denote the set of initial states for which a solution to the optimization problem

(3.61) exists, i.e.
Xdf

N = {(x,w, r) : Πdf
N (x,w, r) 6= ∅}.

In this case, the finite-horizon disturbance feedback min-max control problem becomes:

P
df
N (x,w, r) : V 0,df

N (x,w, r) := inf
(M,v)∈Πdf

N
(x,w,r)

max
w∈W

VN(x,w, r,Mw+v,w) (3.61)
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and its optimizer is
(
M0,df

N (x,w, r), v0,df
N (x,w, r)

)
∈ arg min

(M,v)∈Πdf
N

(x,w,r)
max
w∈W

VN(x,w, r,Mw + v,w). (3.62)

We now show that the set Πdf
N (x,w, r) is polyhedral and moreover the optimization problem

(3.61) is a linear program, for all (x,w, r) ∈ Xdf
N .

From (3.48) it follows that x can be written as :

x = Θ(w,w)⊗ x⊕ Φ(w,w)⊗ (Mw + v).

The set of admissible affine disturbance feedback parameters Πdf
N (x,w, r) can be rewritten

more compactly as follows:

Πdf
N (x,w, r) = {(M, v) : M as in (3.60), H(Θ(w,w)⊗ x⊕ Φ(w,w)⊗ (Mw + v))+

G(Mw + v) + Fr ≤ h,∀w ∈ W}.

Using (3.50) we obtain:

Πdf
N (x,w, r)={(M, v) : M as in (3.60), Fv + (FM + Ψ)w≤ c(x,w, r), ∀w ∈ W}.

Proposition 3.3.5 The sets Xdf
N and Πdf

N (x,w, r) are polyhedra.

Proof : We can write Πdf
N (x,w, r) equivalently as:

Πdf
N (x,w, r) =

{
(M, v) : M as in (3.60), Fv + max

w∈W
{(FM + Ψ)w} ≤ c(x,w, r)

}
,

where maxw∈W{(FM + Ψ)w} is the vector defined as follows

max
w∈W
{(FM + Ψ)w} :=

[
max
w∈W
{[FM + Ψ]1.w} · · ·max

w∈W
{[FM + Ψ]nF .w}

]T
,

and where [FM +Ψ]i. denotes the ith row of the matrix FM +Ψ. SinceW is a polytope, we can
compute an admissible pair (M, v) using dual optimization, by solving a single linear program
(see also [14]). It is clear that

W = {w ∈ R
Nq : Ωw ≤ s}, (3.63)

where6
Ω = diag(Ω) and s = [sT · · · sT ]T . The dual problem [147] of the linear program

max
w
{[FM + Ψ]i.w : Ωw ≤ s}

is the following linear program

min
di

{sTdi : ΩTdi = [FM + Ψ]Ti. , di ≥ 0}.

In conclusion, we can write:

Πdf
N (x,w, r)={(M, v) : ∃D ≥ 0,M as in (3.60), Fv + DT s ≤ c(x,w, r), FM + Ψ = DT

Ω},
6diag(Ω) denotes the block diagonal matrix having the entries on the diagonal equal to Ω and the rest equal to 0.
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where D ∈ R
NnΩ×nF is defined as D.j = dj for all j ∈ N[1,nF ] (recall that D.j denotes the jth

column of the matrix D).
It is clear that Πdf

N (x,w, r) is a polyhedron, since it is the projection of the polyhedron

{(M, v,D) : M as in (3.60), D ≥ 0, Fv + DT s ≤ c(x,w, r), FM + Ψ = DT
Ω}

onto a suitably defined subspace.
Similarly Xdf

N = {(x,w, r) : ∃(M, v), M as in (3.60), D ≥ 0, Fv + DT s ≤
c(x,w, r), FM + Ψ = DT

Ω} and since c(x,w, r) is an affine expression in (x,w, r) it fol-
lows that Xdf

N is also the projection of a polyhedron onto a suitably-defined subspace and thus
Xdf

N is a polyhedron. ♦

From (3.52) it follows that, as a function of (M, v), VN(x,w, r,u,w) can be expressed as:

VN(x,w, r,Mw + v,w) = max
i∈I
{pT

i v + (pT
i M + qT

i )w + si(x,w, r)}. (3.64)

We define:
JN(x,w, r,M, v) := max

w∈W
VN(x,w, r,Mw + v,w).

Proposition 3.3.6 The function (x,w, r,M, v) 7→ JN(x,w, r,M, v) is convex.

Proof : We use the same arguments as in the proof of Proposition 3.3.4. ♦

Theorem 3.3.7 The robust optimal control problem (3.61) can be recast as a linear program.

Proof : Note that JN(x,w, r,M, v)=maxi∈I
{
pT

i v + maxw∈W{(pT
i M + qT

i )w} + sj(x,w, r)
}

.
Using again duality for linear programming it follows that

max
w∈W
{(pT

i M + qT
i )w} = min

zi

{sT zi : ΩT zi = (pT
i M + qT

i )T , zi ≥ 0}.

Therefore, the robust optimal control problem (3.61) can be recast as the linear program:

min
(µ,M,v,D,Z)

{
µ : M as in (3.60), Fv + DT s ≤ c(x,w, r), FM + Ψ = DT

Ω,

D ≥ 0, P T M +QT = ZT
Ω, P T v + ZT s + S(x,w, r) ≤ µ̄, (3.65)

Z ≥ 0, µ̄ = [µ . . . µ]T , D ∈ R
NnΩ×nF , Z ∈ R

NnΩ×|I|},

where P.j = pj, Q.j = qj, Sj(x,w, r) = sj(x,w, r) and Z.j = zj for all j ∈ I. ♦

In the particular case when M = 0 we obtain the open-loop control sequence u0,ol
N (x,w, r)

derived in Section 3.3.2 and thus

Xol
N ⊆ Xdf

N , V 0,df
N (x,w, r) ≤ V 0,ol

N (x,w, r) ∀(x,w, r) ∈ Xol
N .
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3.3.4 State feedback min-max control
In this section we consider full state feedback policies. Therefore, we will define the decision
variable in the optimal control problem, for a given initial state x, initial disturbance w and the
reference signal r as a control policy

π := (µ0, µ1, . . . , µN−1),

where each µi : R
n × R

q × R
Np → R

m is a state feedback control law. Also, let
xi = φ(i;x,w, π,w) denote the solution of (3.40) at event step i when the initial state is x
at event step 0, the initial disturbance is w, the control is determined by the policy π, i.e.
u(i) = µi(φ(i− 1;x,w, π,w), wi−1, r), and the disturbance sequence is w (where w−1 := w).

For each initial condition x, initial disturbance w and due dates r we define the set of feasible
policies π:

Πsf
N(x,w, r) := {π : Hixi +Giµi(xi−1, wi−1, r) + Firi ≤ hi ∀i ∈ N[0,N−1],

(xN , rN) ∈ Xf , ∀w ∈ W}. (3.66)

Also, let X sf
N denote the set of initial states and reference signals for which a feasible policy

exists, i.e.
Xsf

N := {(x,w, r) : Πsf
N(x,w, r) 6= ∅}. (3.67)

The finite-horizon state feedback min-max control problem considered here is:

P
sf
N(x,w, r) : V 0,sf

N (x,w, r) := inf
π∈Πsf

N
(x,w,r)

max
w∈W

VN(x,w, r, π,w), (3.68)

with the optimizer (as defined in (2.18)),

π0
N(x,w, r) ∈ arg min

π∈Πsf
N

(x,w,r)
max
w∈W

VN(x,w, r, π,w). (3.69)

We will proceed to show how for the assumptions A1–A2, in conjunction with the convexity
and monotonicity of the system dynamics (3.40)–(3.41), an explicit expression of the solution
to the state feedback problem (3.68) can be computed using results from polyhedral algebra and
multi-parametric linear programming. We use dynamic programming (DP) to derive the explicit
solution.

DP [15, 103] is a well-known method for solving sequential, or multi-stage, decision prob-
lems. In DP the decision problem is broken into stages that are solved sequentially, where the
solution of one stage is used to construct the solution of the subsequent stage. More specifically,
one computes sequentially the partial return functions {V 0

i }Ni=1, (as defined in (3.68) for i = N ),
the associated set-valued optimal control laws {κi}Ni=1 (such that µ0

N−i(x,wp, r) ∈ κi(x,wp, r))
and their domains {Xi}Ni=1; here i ∈ N[1,N ] denotes “time-to-go”. If we define

Ji(x,wp, r, u) := max
wc∈W

{`N−i(fMPL(x,u, wp, wc), u, rN−i)+

V 0
i−1(fMPL(x, u, wp, wc), wc, r)} (3.70a)

for all (x,wp, r, u) ∈ Zi, where

Zi := {(x,wp,r, u) : HN−ifMPL(x, u, wp, wc) +GN−iu+ FN−irN−i ≤ hN−i,

wp ∈W, (fMPL(x, u, wp, wc), wc, r) ∈ Xi−1, ∀wc ∈W}, (3.70b)
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then we can compute {V 0
i , κi, Xi}Ni=1 recursively as follows [16, 103]:

V 0
i (x,wp, r) := inf

u
{Ji(x,wp, r, u) : (x,wp, r, u) ∈ Zi}, ∀(x,wp, r) ∈ Xi, (3.70c)

κi(x,wp, r) := arg min
u
{Ji(x,wp, r, u) : (x,wp, r, u) ∈ Zi}, (3.70d)

Xi := {(x,wp, r) : (x, r) ∈ X (x,r)
i , wp ∈W}, XN := Projn+q+pNZN , (3.70e)

where for all i ∈ N[1,N−1]

X
(x,r)
i := {(x, r) : (x,wp, r) ∈ Projn+q+pNZi,∀wp ∈W}, (3.70f)

with the boundary conditions

X0 := {(x,wp, r) : (x, rN) ∈ Xf , wp ∈W}, (3.70g)
V 0

0 (x,wp, r) := Vf(x, rN), ∀(x,wp, r) ∈ X0. (3.70h)

From the principle of optimality of DP [16] it follows that

Xsf
N = XN , V

0,sf
N (x,w, r) = V 0

N(x,w, r) ∀(x,w, r) ∈ XN .

Moreover, the optimal solution is given by

π0
N = (κN , κN−1, · · · , κ1).

Note that at stage N of the DP recursion (i.e. i = N ) one has wp = w, where w is the initial
disturbance.

To simplify notation in the rest of this section, we define two prototype problems and we
study their properties. The prototype maximization problem Pmax is defined as:

Pmax : J(x,wp, r, u) := max
wc∈W

{`(fMPL(x, u,wp, wc), u, r)+

V (fMPL(x, u, wp, wc), wc, r)}, (3.71)

for all (x,wp, r, u) ∈ Z, where the domain of J is

Z := {(x,wp, r, u) : HfMPL(x, u, wp, wc) +Gu+ Fr ≤ h, wp ∈W,
(fMPL(x, u, wp, wc), wc, r) ∈ Ω,∀wc ∈W}, (3.72a)

X := {(x,wp, r) : (x, r) ∈ X (x,r), wp ∈ W} or X := Projn+q+pNZ. (3.72b)

with X(x,r) := {(x, r) : (x,wp, r) ∈ Projn+q+pNZ,∀wp ∈ W}, ` : R
n+m+p → R, V : Ω → R,

r has the form r = [. . . rT . . .]T (i.e., ∃k : rk = r). The prototype minimization problem Pmin is
defined as:

Pmin : V 0(x,wp, r) := inf
u
{J(x,wp, r, u) : (x,wp, r, u) ∈ Z}, (3.73a)

κ(x,wp, r) := arg min
u
{J(x,wp, r, u) : (x,wp, r, u) ∈ Z}, (3.73b)

for all (x,wp, r) ∈ X .
In terms of these prototype problems, it is easy to identify the DP recursion (3.70) by setting

r ← rN−i, ` ← `N−i, V ← V 0
i−1, V 0 ← V 0

i , X ← Xi, Z ← Zi and Ω ← Xi−1. Moreover,
H,G, F, h are identified with HN−i, GN−i, FN−i, hN−i, respectively.

Clearly, we can now proceed to show, via induction, that a certain set of properties is pos-
sessed by each element in the sequence {V 0

i , κi, Xi}Ni=1 by showing that if {V,Ω} has a given set
of properties, then {V 0, X} also has these properties, with the properties of κ being the same as
those of each of the elements in the sequence {κi}Ni=1. In the sequel, constructive proofs of the
main results are presented, so that the reader can develop a prototype algorithm for computing
the sequence {V 0

i , κi, Xi}Ni=1.
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Properties of X

The following lemma states that any set described by linear inequalities obtained from multi-
plication of fMPL with a nonnegative matrix is a polyhedral set, a property that is crucial to the
derivation of the rest of the results from this section, in particular Proposition 3.3.10.

Lemma 3.3.8 The set Z = {(x,wp, r, u) : H̄fMPL(x, u, wp, wc) + Ḡu+ F̄wp + Ēr ≤ h̄,∀wc ∈
W} with H̄ ≥ 0, can be written equivalently as Z = {(x,wp, r, u) : H̃x+G̃u+ F̃wp +Ẽr ≤ h̃}
with H̃ ≥ 0.

Proof : Recall that fMPL ∈ Fmps and fMPL(·, u, wp, wc) ∈ (F+
mps)

n for each (u,wp, wc). From
Lemma 3.2.1 it follows that the function x 7→ H̄fMPL(x, u, wp, wc) is in (F+

mps)
nH̄ for any

(u,wp, wc). Moreover, given any finite set of scalar-valued functions {ϕj}j∈I we have that

{z : max
j∈I
{ϕj(z)} ≤ α} = {z : ϕj(z) ≤ α,∀j ∈ I}.

Hence, it is easy to verify that the set Z has the equivalent representation Z = {(x,wp, r, u) :
H̃x + G̃u + F̃wp + Ẽr + K̃wc ≤ h,∀wc ∈ W}, where H̃ ≥ 0. If we define k̃0

i :=
maxwc∈W{K̃i.wc} (since W is a compact set it follows that k̃0

i is finite) then the result follows by
letting h̃ := h− k̃0, where k̃0 := [k̃0

1 k̃
0
2 . . .]

T . ♦

Note that k̃0 can be computed by solving a set of linear programs (recall that W is a polytope).
The next lemma shows that some useful properties of a class of polyhedra are inherited by its

projection.

Lemma 3.3.9 Let Z = {(x, r, t, u) ∈ R
n×R

p×R
q×R

m : H̄x+ F̄ r+K̄t+ Ḡu ≤ h̄} be given,
where H̄ ≥ 0 and K̄ ≤ 0. The set X := {(x, r, t) : ∃u s.t. (x, r, t, u) ∈ Z} is a polyhedral set of
the form X = {(x, r, t) : H̃x+ F̃ r + K̃t ≤ h̃}, where H̃ ≥ 0 and K̃ ≤ 0.

Proof : Since X = Projn+p+qZ , it is clear that X is a polyhedron. We begin by considering the
case m = 1. The proof for this case will lead to a solution for the case m > 1.

Note that for m = 1, Ḡ is a vector. Define the following index sets: I+ := {i ∈ N[1,nH̄ ] :
Ḡi > 0}, I− := {i ∈ N[1,nH̄ ] : Ḡi < 0} and I0 := {i ∈ N[1,nH̄ ] : Ḡi = 0}. We have the following
cases:

1. i ∈ I0 ⇒ H̄i.x+ F̄i.r + K̄i.t ≤ hi and H̄i. ≥ 0, K̄i. ≤ 0.

2. j ∈ I+ ⇒ u ≤ − 1
Ḡj
H̄j.x− 1

Ḡj
F̄j.r − 1

Ḡj
K̄j.t+

h̄j

Ḡj
and 1

Ḡj
H̄j. ≥ 0, 1

Ḡj
K̄j. ≤ 0.

3. l ∈ I− ⇒ u ≥ − 1
Ḡl
H̄l.x− 1

Ḡl
F̄l.r − 1

Ḡl
K̄l.t+ h̄l

Ḡl
and − 1

Ḡl
H̄l. ≥ 0, − 1

Ḡl
K̄l. ≤ 0.

It is then straightforward to combine the above and show that the set X is described by the
following inequalities:

H̄i.x+ F̄i.r + K̄i.t ≤ h̄i ∀i ∈ I0,

(− 1

Ḡl

H̄l. +
1

Ḡj

H̄j.)x+ (− 1

Ḡl

F̄l. +
1

Ḡj

F̄j.)r + (− 1

Ḡl

K̄l. +
1

Ḡj

K̄j.)t ≤ −
h̄l

Ḡl

+
h̄j

Ḡj

,

∀j ∈ I+, l ∈ I−
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The result follows, since the rows of H̃ are composed of the vectors H̄i. ≥ 0 and − 1
Ḡl
H̄l. +

1
Ḡj
H̄j. ≥ 0 for all i ∈ I0, j ∈ I+, l ∈ I−, while the rows of K̃ are composed of the vectors

K̄i. ≤ 0 and − 1
Ḡl
K̄l. +

1
Ḡj
K̄j. ≤ 0 for all i ∈ I0, j ∈ I+, l ∈ I−.

When m > 1, the previous reasoning implemented for the case m = 1 can be repeated m
times, eliminating one component of the vector u at a time. ♦

It usually turns out that the matrix [H̃ F̃ K̃ h̃] obtained using the previous procedure contains
many redundant rows that are not needed to represent the set X . A row may be tested for
redundancy by solving a linear programming problem in which the tested row determines the
cost and the remaining rows form the constraints.

We are now in a position to show that X has the same structural properties as Ω.

Proposition 3.3.10 Suppose Ω is a polyhedral set given by Ω = {(x,w, r) : Γx+ Φr ≤ γ, w ∈
W} with Γ ≥ 0, and assume that H in (3.72a) satisfies H ≥ 0. Then, the set X defined in
(3.72b) is a polyhedron given by either X = {(x,wp, r) : Ĥx + Êr ≤ ĥ, wp ∈ W} or
X = {(x,wp, r) : Ĥx+ F̂wp + Êr ≤ ĥ}, where Ĥ ≥ 0.

Proof : The set Z is described as follows:

Z={(x,wp, r, u) : H̄fMPL(x, u, wp, wc)+Ḡu+F̄wp+Ēr ≤ h̄, ∀wc ∈ W}, (3.74)

where H̄ = [HT ΓT 0]T ≥ 0, Ḡ = [GT 0 0]T , F̄ = [0 0 ΩT ]T , Ē = [(Fr)T (Φr)T 0]T

and h̄ = [hT γT sT ]T . From Lemma 3.3.8 it follows that Z can be written equivalently as
Z = {(x,wp, r, u) : H̃x + G̃u + F̃wp + Ẽr ≤ h̃} where H̃ ≥ 0. By applying a particular case
of Lemma 3.3.9 it follows that

Projn+q+pNZ = {(x,wp, r) : Ĥx+ F̂wp + Êr ≤ ĥ}, H̄ ≥ 0.

The rest follows immediately. ♦

Note that the set X0 in (3.70g) is of the form given in Proposition 3.3.10 (since we assume that
assumption A1 holds). The reason for introducing assumption A1 is now clear, since H,Γ ≥ 0
are crucial in the proof of Proposition 3.3.10; it would not be possible to convert the expression
for Z into a set of linear inequalities if some components of H or Γ were negative.

Properties of Pmax

This section derives an invariance property of the prototype maximization problem Pmax.

Proposition 3.3.11 If `, V ∈ Fmps and `(·, u, r), V (·, wp, r) ∈ F+
mps for any fixed (wp, r, u),

then J possesses the same properties, i.e. J ∈ Fmps and J(·, wp, r, u) ∈ F+
mps, for any fixed

(wp, r, u).

Proof : It follows from Lemma 3.2.1 that one can write `(fMPL(x, u, wp, wc), u, r) +
V (fMPL(x, u, wp, wc), wc, r) = maxj∈J {αT

j x+βT
j wp +µT

j wc +γT
j u+ δT

j r + θ̃j}, where αj ≥ 0
for all j ∈ J , so that

J(x,wp, r, u) = max
wc∈W

{
max
j∈J
{αT

j x+ βT
j wp + µT

j wc + γT
j u+ δT

j r + θ̃j}
}

=

max
j∈J

{
max
wc∈W

{αT
j x+ βT

j wp + µT
j wc + γT

j u+ δT
j r + θ̃j}

}
=

max
j∈J
{αT

j x+ βT
j wp + γT

j u+ δT
j r + θj},
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where θj := θ̃j + maxwc∈W{µT
j wc} for all j ∈ J . Note that {θj}j∈J can be computed by

solving a sequence of linear programs. Moreover, the coefficients of the variable x in J are the
nonnegative vectors αj . ♦

Recall that `i and V 0
0 given in (3.24) and (3.70h) satisfy the conditions of Proposition 3.3.11.

If assumption A2 did not hold, then one cannot guarantee that the cost function and value function
of the maximization problem will be convex.

Properties of Pmin

This section derives the main properties of V 0 and κ. Before proceeding, we show that if V 0

is proper, then V 0 is finite everywhere on X . Note that since we always have that u(0) should
be larger than the current time instant, i.e. the time instant at which we start performing the
computations, u(0) is bounded from below and V 0 will always be proper.

Lemma 3.3.12 Suppose Ω is a polyhedral set given by Ω = {(x,w, r) : Γx+ Φr ≤ γ, w ∈ W}
with Γ ≥ 0, and assume that H in (3.72a) satisfies H ≥ 0. Suppose also that Z 6= ∅ and J ∈
Fmps. There exists an (x̄, w̄p, r̄) ∈ X such that V 0(x̄, w̄p, r̄) is finite if and only if V 0(x,wp, r) is
finite for all (x,wp, r) ∈ Projn+q+pNZ and thus for all (x,wp, r) ∈ X .

Proof : From the proof of Proposition 3.3.10 it follows that Z is a non-empty polyhedron: Z =
{(x,wp, r, u) : H̃x + G̃u + F̃wp + Ẽr ≤ h̃}, with H̃ ≥ 0. Since J ∈ Fmps, we can write
J(x,wp, r, u) = maxj∈J {αT

j x+βT
j wp +γT

j u+ δT
j r+ θj}. The prototype minimization problem

Pmin(x, r) becomes:

V 0(x,wp, r) = inf
u

{
max
j∈J
{αT

j x+ βT
j wp + γT

j u+ δT
j r + θj} : (x,wp, r, u) ∈ Z

}
=

min
(µ,u)
{µ : αT

j x+ βT
j wp + γT

j u+ δT
j r + θj ≤ µ ∀j ∈ J , (x,wp, r, u) ∈ Z}, (3.75)

i.e. we have obtained a feasible linear program for any (x,wp, r) ∈ Projn+q+pNZ.
Note that the feasible set of the dual of (3.75) does not depend on (x,wp, r). Assume that

V 0(x̄, w̄p, r) is finite. From strong duality for linear programs [144, 147] it follows that the dual
problem of (3.75) is feasible, independent of (x,wp, r). Using again strong duality for linear
programs, we conclude that V 0(x,wp, r) is finite if (x,wp, r) ∈ Projn+q+pNZ and V 0(x,wp, r) =
+∞ if (x,wp, r) /∈ Projn+q+pNZ. From the definition of X in (3.72b) it follows that V 0 takes
finite values on X as well. The reverse implication is obvious. ♦

The following proposition gives a characterization of the solution and of the optimal value of
the prototype minimization problem Pmin.

Proposition 3.3.13 Suppose Ω is a polyhedral set given by Ω = {(x,w, r) : Γx+ Φr ≤ γ, w ∈
W} with Γ ≥ 0, and assume that H in (3.72a) satisfies H ≥ 0. Suppose also that Z 6= ∅,
J ∈ Fmps and V 0 is proper. Then, the value function V 0 ∈ Fmps and has domain X , where
X is a polyhedral set. The (set-valued) control law κ(x,wp, r) is a polyhedron for a given
(x,wp, r) ∈ X . Moreover, it is always possible to select a continuous and PWA control law µ
such that µ(x,wp, r) ∈ κ(x,wp, r) for all (x,wp, r) ∈ X .

Proof : It follows from the proof of Lemma 3.3.12 (i.e. equation (3.75)) that Pmin is a multi-
parametric linear program as the one defined in Section 2.3.1. The properties stated above follow
from Theorem 2.3.2. ♦
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Now we can state the following key result, which, together with Propositions 3.3.10–3.3.13,
allow one to deduce, via induction, some important properties of the sequence {V 0

i , κi, Xi}Ni=1:

Theorem 3.3.14 Suppose that the same assumptions as in Proposition 3.3.13 hold. If, in addi-
tion, J(·, wp, r, u) ∈ F+

mps for any fixed (wp, r, u), then the value function V 0(·, wp, r) ∈ F+
mps

for any fixed (wp, r).

Proof : Using Proposition 3.3.10 it follows that Z = {(x,wp, r, u) : H̃x+G̃u+F̃wp+Ẽr ≤ h̃},
with H̃ ≥ 0. The function J can be written as: J(x,wp, r, u) = maxj∈J {αT

j x+ βT
j wp + γT

j u+
δT
j r + θj}, where αj ≥ 0 for all j. From Proposition 3.3.13 and the fact that V 0 is proper, it

follows that V 0 ∈ Fmps and its domain is Projn+q+pNZ. The epigraph of V 0 is given by:

epiV 0 :={(x,wp, r, t) : V 0(x,wp, r) ≤ t, (x,wp, r) ∈ Projn+q+pNZ} =

{(x,wp, r, t) : ∃u s.t. (x,wp, r, u) ∈ Z, J(x,wp, r, u) ≤ t} =

{(x,wp, r, t) : ∃u s.t. H̃x+ G̃u+ F̃wp + Ẽr ≤ h̃,

αT
j x+ βT

j wp + γT
j u+ δT

j r + θj ≤ t ∀j ∈ J } =

{(x,wp, r, t) : ∃u s.t. H̄x+ Ḡu+ F̄wp + Ēr + K̄t ≤ h̄},

where H̄ = [H̃T αT
1 · · · αT

l ]T ≥ 0 and K̄ = [0 − 1 . . .− 1]T ≤ 0. From Lemma 3.3.9 we obtain
that the epigraph of V 0 is a polyhedral set given by epi V 0 = {(x,wp, r, t) : Ĥx+ F̂wp + Êr +

K̂t ≤ ĥ}, where Ĥ ≥ 0, K̂ ≤ 0. Let l = nĤ be the number of inequalities describing epi V 0.
We arrange the indexes i ∈ N[1,l] such that K̂i < 0 for i ∈ N[1,v] but K̂i = 0 for i ∈ N[v+1, l]

(possibly v = 0, i.e. K̂i = 0 for all i). Taking ai = −Ĥi./K̂i, bi = −F̂i./K̂i, ci = −Êi./K̂i and
di = −ĥi/K̂i for all i ∈ N[1,v], we get that the epigraph of V 0 is expressed as:

epiV 0 = {(x,wp, r, t) :aix+ biwp + cir− di ≤ t ∀i ∈ N[1,v],

Ĥi.x+ F̂i.wp + Êi.r ≤ ĥi ∀i ∈ N[v+1, l]}. (3.76)

But V 0 is proper and thus v > 0. Since V 0 ∈ Fmps, (3.76) gives us a representation of V 0 as
V 0(x,wp, r) = maxi∈N[1,v]

{aix + biwp + cir− di}, where ai = −Ĥi./K̂i ≥ 0, for all i ∈ N[1,v],
i.e. V 0(·, wp, r) ∈ F+

mps for any fixed (wp, r). Moreover, we can derive also the domain where
V 0 takes finite values: Projn+q+pNZ= {(x,wp, r) : Ĥi.x+ F̂i.wp + Êi.r ≤ ĥi ∀i ∈ N[v+1, l]}. ♦

Based on the invariance properties of the two prototype problems Pmax and Pmin, we can now
derive the properties of V 0

i , κi and Xi for all i ∈ N[1,N ]. The following follows by applying
Propositions 3.3.10–3.3.13 and Theorem 3.3.14 to the DP equations (3.70):

Theorem 3.3.15 Suppose that A1 and A2 hold, Zi is non-empty and V 0
i is proper for all i ∈

N[1,N ]. The following holds for each i ∈ N[1,N ]:

(i) Xi is a non-empty polyhedron,

(ii) V 0
i is a convex, continuous PWA function with domain Xi,

(iii) V 0
i (·, wp, r) ∈ F+

mps for any fixed (wp, r),

(iv) There exists a continuous PWA function µ0
N−i such that µ0

N−i(x,wp, r) ∈ κi(x,wp, r) for
all (x,wp, r) ∈ Xi.
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Since the proofs of all the above results are constructive, it follows that the sequences
{V 0

i , κi, Xi}Ni=1 and {µ0
i }Ni=1 can be computed iteratively, without gridding, by noting the fol-

lowing:

• Given Xi−1, one can compute Xi by first computing Zi, as in the proof of Proposition
3.3.10, followed with a projection operation,

• Given V 0
i−1, a max-plus-scaling expressions of Ji can be computed by referring to the proof

of Proposition 3.3.11,

• Given Ji andZi, one can compute V 0
i , κi and a µ0

N−i as in the proof of Proposition 3.3.13 or
Theorem 3.3.14, either by using multi-parametric linear programming algorithms [23,152]
or projection algorithms [76].

It follows that X sf
N = XN and V 0,sf

N (x,wp, r) = V 0
N(x,wp, r) for all (x,wp, r) ∈ XN . Note

that in order to get the state feedback solution we have to solve exactlyN multi-parametric linear
programs as in the linear case (see [7]). It is clear that:

Xol
N ⊆ Xdf

N ⊆ Xsf
N

V 0,sf
N (x,w, r) ≤ V 0,df

N (x,w, r) ≤ V 0,ol
N (x,w, r) ∀(x,w, r) ∈ Xol

N .
(3.77)

Note that if r is known in advance, then the only parameter in the multi-parametric linear pro-
grams is the initial state x.

3.3.5 Timing: disturbance case

In Section 3.2.3 we have discussed the timing issues for deterministic MPL systems. We now
consider the deterministic counterpart in the presence of disturbances. We recall that in practical
applications the entries of the system matrices are nonnegative or take the value ε. It follows that
if x(k) is completely available, then u(k − 1) and w(k − 1) are also available. The reader might
ask how we determine the initial cycle k0. Let t0 be the time when one of the robust optimal
control problems discussed in Sections 3.3.2–3.3.4 is solved. We can define the initial cycle k0

as follows:

k0 = arg max{k : xi(k) ≤ t0 ∀i ∈ N[1,n]}.

This means that at time t0 the state x(k0) is completely available and also u(k0 − 1), w(k0 − 1)
are completely known. However, at time t0 also some components of the forthcoming inputs and
states might be known. Due to causality, the information about the components of the forthcom-
ing inputs and states can be recast as linear equality and inequality constraints on some inputs
and disturbances, which thus fits in the framework presented in Sections 3.3.2–3.3.4.

In the open-loop case at time ui(k) ≥ t0, where k ≥ k0 and ui(k) = [u0
k−k0

(x(k0), w(k0 −
1), [rT (k0) · · · rT (k0+N)]T )]i, the ith input is activated for the kth cycle (e.g. for a manufacturing
system at time ui(k) the raw material is fed to input i for the kth cycle). In the disturbance or state
feedback case ui(k) = [µ0

k−k0
(x(k), w(k0−1), · · · , w(k−1), [rT (k0) · · · rT (k0 +N)]T )]i, where

µ0
k is either the disturbance feedback policy computed in Section 3.3.3 or the state feedback

policy computed in Section 3.3.4.
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Figure 3.1: The tardiness max{y − r, 0} for the feedback controller (full) and the open-loop
controller (dotted).

N 1 2 3 4 5 6 7 8 9 10
nR 2 7 7 10 13 15 19 23 25 25

Table 3.1: The number of regions in the multi-parametric linear programs as a function of N .

3.3.6 Example
We consider an example where we compare the three robust optimal control approaches pre-
sented in Sections 3.3.2– 3.3.4:

x(k + 1)=

[
−w1(k) + w2(k) + 2 ε
−w1(k)− w2(k) + 5 w1(k)− 2

]

⊗ x(k)⊕
[
−w1(k) + 3
−w2(k) + 2

]

⊗ u(k)

y(k) = [0 ε]⊗ x(k)

We assume a bounded disturbance set: W =
{
w ∈ R

n : w1 ∈ [2 3], w2 ∈ [1 2], w1 +w2 ≤ 4
}

.
We choose N = 10, the due date signal is r = [3.4 5 7 9.5 11.8 14 16.7 19.4 21.6 23.8 26]T and
the initial state is x(0) = [6 8]T . The system is subject to input-state constraints: x2(k)−u(k) ≤
2, x1(N) + x2(N) ≤ 2rN ,−6 + rk ≤ u(k) ≤ 6 + rk. We use the stage cost defined in (3.24)–
(3.25) with γ = 0.1 and a random sequence of disturbances.

In this particular example we observe that the disturbance feedback controller from Section
3.3.3 coincides with the state feedback controller from Section 3.3.4. Moreover, the number of
regions of the computed multi-parametric linear programs corresponding to the state feedback
approach, as a function of the prediction horizon N , is given in Table 3.1.

Figure 3.1 shows the tardiness (i.e. the signal max{y − r, 0}) for the open-loop controller
derived in Section 3.3.2 and for the state feedback controller derived in Section 3.3.4. As we
expected, the performance with respect to the feedback approach is better than the open-loop ap-
proach. The plot shows that the feedback controller gives a lower tardiness (i.e. better “tracking”)
than the open-loop controller. We conclude that the state and disturbance feedback approach out-
perform the open-loop approach. More simulation examples will be provided in the next chapter.

3.3.7 Robust “time” optimal control
As a direct application of the robust control problems discussed above, we consider the robust
counterpart of the “time” optimal control problem presented in Section 3.2.4: given a maximum
horizon length Nmax we consider the problem of ensuring that the completion times after N
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events (with N ∈ N[1,Nmax]) are less than or equal to a specified target time T (i.e. y(N) ≤ T),
using the latest controller that satisfies the input and state constraints (3.17)–(3.18) regardless
the values of the disturbance. The robust time optimal control problem can be posed in the
framework of the finite-horizon min-max control problems considered in the previous section.

One proceeds by defining

N0(x,w,T) := max
N,π
{N ∈ N[1,Nmax] : π ∈ ΠT

N(x,w, [0 . . . 0 TT ]T )}, (3.78)

where ΠT
N(·) is either Πol

N(·) or Πdf
N (·) or Πsf

N(·) depending whether π is an open-loop input
sequence or a disturbance feedback policy or a state feedback policy, respectively, but with the
substitutions HN ← [HT

N I]T ≥ 0, FN ← [F T
N 0]T and hN ← [hT

N ((−CT ) ⊗′ T)T ]T (note that
Firi = 0, for all i ∈ N[0,N−1] and rN = T). It follows that

N0(x,w,T) = max
N
{N ∈ N[1,Nmax] : (x,w, r) ∈ XT

N}, (3.79)

where r = [0 0 · · · 0 TT ]T and XT
N = {(x,w, r) : ΠT

N(x,w, r) 6= ∅}. As a stage cost we consider
`i(xi, ui, ri) := −∑m

j=1(ui)j . Clearly, the assumptions A1–A2 also hold in this particular case.
The robust time-optimal controller is implemented as follows:

1. For each N ∈ N[1,Nmax], solve problem (3.46) or (3.61) or (3.68) where r is defined as
r = [0 0 · · · 0 TT ]T ∈ R

pN . Determine N 0(x,w,T) according to (3.79).

2. Let rN = [0 0 · · · 0 TT ]T ∈ R
pN , with N = N 0(x,w,T).

3. Let the optimal control policy be given by π0
N(x,w,T), with N = N 0(x,w,T).

4. Apply the control policy u(k) = κ0
N−k(x(k − 1), wp, rN) for k = 1, 2, . . . , N 0(x,w,T),

where at step k, wp = w(k − 1).

The robust time optimal control problem involves solving either Nmax linear programs or
∑Nmax

N=1 N multi-parametric linear programs off-line in step 1 above. Steps 2–4 are implemented
on-line.

3.4 Computational complexity

3.4.1 Worst-case computations

The main drawback of the min-max optimization problems described in Sections 3.3.2–3.3.4 is
the computational complexity. Although the open-loop control problem (3.46) can be recast as a
linear program (3.54) withNm+1 variables, the number of inequalities that describe the feasible
set in this linear program is |I| + nF , which, in the worst case, may be very large, i.e. in the
worst case we have:

|I| ≥ |J |
N∏

i=1

(ni + ni−1m+ . . .+m)n ≥ |J |(n+m)Nn

nF ≥
N∑

i=1

ni(n
i + ni−1m+ . . .+m)n ≥ nnN .
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In the disturbance feedback approach (3.61), we still have to solve a linear program (3.65), as in
the open-loop case, but the improvement in performance and feasibility compared to the open-
loop case is obtained at the expense of introducing N(N − 1)mq/2 + NnFnΩ + |I|NnΩ extra
variables and nF + |I| extra inequalities.

For the state feedback approach (3.68) the solution is computed off-line, but the number of re-
gions generated by the multi-parametric linear programming algorithm is also, in the worst case,
exponential (see also Section 5.3 for more details about complexity of multi-parametric linear
programming algorithms). In the next section we show that the computational complexity of the
three min-max control problems considered in Sections 3.3.2–3.3.4 can be reduced significantly
if the disturbance set has a certain description.

3.4.2 “Deterministic” min-max control

Now we assume a particular description of the uncertainty for an MPL system. From example
(3.39) we have seen that the system matrices of an MPL system (3.40)–(3.41) depend on the
consecutive disturbances w(k − 1) and w(k). However, there are situations when the system
matrices depend only on the disturbance w(k). One possibility is described next. We could
redefine the uncertainty as

w(k) := [p1(k − 1) . . . pl(k − 1) p1(k) . . . pl(k) t1(k) . . . tl̃(k)]
T , (3.80)

but in this case we introduce some conservatism since we do not take into account that some
components of w(k − 1) and w(k) coincide.

A second possibility is the following. Note that in the context of MPL systems, the uncer-
tainty comes from the parameters pi and ti. Moreover, only the parameters pi depend on k − 1.
So. let us consider the situation where the parameters pi are known and only the parameters ti
are uncertain. In this case the uncertainty vector becomes

w(k) := [t1(k) · · · tq(k)]T . (3.81)

In these two situations it follows that the MPL system (3.40)–(3.41) can be rewritten as

x(k + 1) = A(w(k))⊗ x(k)⊕B(w(k))⊗ u(k)
y(k) = C(w(k))⊗ x(k). (3.82)

Moreover, we assume that there exists a w ∈ W such that

A(w) ≤ A, B(w) ≤ B, C(w) ≤ C ∀w ∈W, (3.83)

where A := A(w), B := B(w), C := C(w).
Under the previous two situations described above, the inequalities in (3.83) typically hold

since the parameters pi and tj denote processing times and transportation times and thus we can
assume that each of them varies in some intervals: pi ∈ [p

i
pi] and tj ∈ [tj tj]. Then, the

uncertainty set W is given by a box in R
q, W := [w w], where

W =
(
[p

1
p1]× · · · × [p

l
pl]
)2 × [t1 t1]× . . .× [tl̃ tl̃]

corresponds to the case (3.80), and where
W = [t1 t1]× . . .× [tq tq]



62 3 Finite-horizon optimal control for constrained max-plus-linear systems

corresponds to the case (3.81). Moreover, the entries of the system matrices corresponding to an
MPL system are given by sums or maximization of processing times pi and transportation times
tj and thus the entries of matrices A,B and C are max-plus-nonnegative-scaling functions:

Aij, Bil, Ckl ∈ F+
mps ∀ i, j, l, k, (3.84)

i.e. each entry is a function defined as w 7→ maxj{ξT
j w + ηj}, where ξj are vectors with entries

0 and 1 (and thus ξj ≥ 0) and ηj ≥ 0. Since for any vector ξ ≥ 0, it follows that ξTw ≤ ξTw ≤
ξTw for all w ∈ W (= [w w]), we can conclude that the inequalities (3.83) hold. Note that
interval transfer functions for DES were also considered in [93] in an input-output framework.

We will show in the sequel a quite interesting result, namely that under the previous hypoth-
esis (i.e. we assume that (3.82), (3.83) and (3.84) are valid) the finite-horizon min-max control
problems discussed in Sections 3.3.2–3.3.4 reduce to an optimal control problem for a particular
deterministic MPL system. It is straightforward to show that the following inequality holds in
the max-plus algebra:

C1 ≤ D1, C2 ≤ D2 ⇒ C1 ⊗ C2 ≤ D1 ⊗D2, (3.85)

for any matrices C1, C2, D1 and D2 of appropriate dimensions.
First let us consider the open-loop min-max case from Section 3.3.2. For an uncertain MPL

system in the form (3.82), we do not have dependence on w anymore (e.g. Θ(w,w) becomes
in this new settings Θ(w), etc). Let us define w := [wT . . . wT ]T ∈ W , Θ := Θ(w) and7

Φ := Φ(w). From (3.85) it follows that

Θ(w)⊗ x⊕ Φ(w)⊗ u ≤ Θ(w)⊗ x⊕ Φ(w)⊗ u = Θ⊗ x⊕ Φ⊗ u ∀w ∈ W .

Since H ≥ 0, it follows from (3.49) that

Πol
N(x, r) = {u : H(Θ⊗ x⊕ Φ⊗ u) + Gu + Fr ≤ h},

which coincides with the set of feasible input sequences over the horizon N corresponding to the
deterministic MPL system

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k), y(k) = C ⊗ x(k). (3.86)

Moreover, since in this section we assume that (3.84) hold, then according to Remark 3.3.3 it
follows that αj, γj ≥ 0 in (3.51) for all j. From (3.53) we conclude that

JN(x, r,u) = VN(x, r,u,w). (3.87)

We now consider an optimal control problem for the deterministic system (3.86) over an horizon
window of length N :

P
upper
N (x, r) : V 0,upper

N (x, r) := inf
u∈Πol

N
(x,r)

VN(x,u, r,w), (3.88)

with a minimizer u0
N(x, r) whenever the infimum is attained. From the previous discussion it

follows that:

Lemma 3.4.1 Suppose that (3.82), (3.83) and (3.84) hold. Then, the open-loop min-max control
problem P

ol
N(x, r) is equivalent with the deterministic optimal control problem P

upper
N (x, r) for

all (x, r) ∈ Xol
N . ♦

7The reader should make distinction between Θ defined above and Θ̄ defined in Section 3.2.5.
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Let us now show that the state feedback min-max control problem P
sf
N(x, r) from Section

3.3.4 is equivalent with the same deterministic optimal control problem P
upper
N (x, r). Indeed,

since `i(·, u, r) ∈ F+
mps and using also Theorem 3.3.15 (iii), it follows that:

V 0
i (fMPL(x, u, w), r) ≤ V 0

i (A(w)⊗ x⊕B(w)⊗ u, r) = V 0
i (A⊗ x⊕B ⊗ u, r) ∀w ∈ W

`i(fMPL(x, u, w), u, r)≤`i(A(w)⊗ x⊕B(w)⊗ u, u, r)=`i(A⊗ x⊕B ⊗ u, u, r) ∀w ∈ W.

Therefore, Ji(x, r, u) as defined in (3.70a) is given by:

Ji(x, r, u) = `N−i(A⊗ x⊕B ⊗ u, u, rN−i) + V 0
i−1(A⊗ x⊕B ⊗ u, r)

and the corresponding feasible set Zi reduces to

Zi = {(x, r, u) : HN−i(A⊗ x⊕B ⊗ u) +GN−iu+ FN−irN−i ≤ hN−i,

A⊗ x⊕B ⊗ u ∈ Xi−1}.

The next result follows:

Theorem 3.4.2 Suppose that (3.82), (3.83) and (3.84) hold then X ol
N = Xdf

N = Xsf
N and the

robust control problems considered in Sections 3.3.2–3.3.4, i.e. P
ol
N(x, r), P

df
N (x, r) and P

sf
N(x, r)

are reduced to the optimal control problem P
upper
N (x, r) corresponding to the deterministic system

(3.86) for each (x, r) ∈ X sf
N .

Proof : From the previous discussion (note that the optimal input sequence of the deterministic
optimal control problem (3.88) can also be computed via dynamic programming approach) and
using Bellman’s principle of optimality for DP [15], it follows that the optimal problems P

sf
N(x, r)

and P
upper
N (x, r) are equivalent. Therefore, from Lemma 3.4.1 and the inclusions (3.77) it follows

that Xol
N = Xdf

N = Xsf
N and robust control problems P

ol
N(x, r), P

sf
N(x, r) reduce to P

upper
N (x, r).

Let u0
N(x, r) be the optimal solution of these problems for an (x, r) ∈ X sf

N . Then, using now
the inequalities from (3.77) it follows that the disturbance feedback control problem P

df
N (x, r)

reduces to the same deterministic optimal control problem P
upper
N (x, r) (an optimal solution for

the disturbance feedback approach is M0,df
N (x, r) = 0 and v0,df

N (x, r) = u0
N(x, r)). ♦

Using the relaxation from Theorem 3.2.2, the optimization problem (3.88) can be recast as a
linear program with Nv = Nn+Nm+ 1 variables and Nc = |J |+∑N

i−1 ni + n
∑N

i=1(im+ 1)
constraints (recall that |J | is the number of affine terms in (3.51)). Thus there is a significant
advantage in solving the linear program (3.88) that has fewer constraints and fewer number of
variables than the linear program (3.54).

Remark 3.4.3 We can remark that the results presented in this chapter are in fact valid for a class
of systems for which the MPL systems are a subclass, namely the class of max-plus-nonnegative-
scaling systems, i.e. systems of the form

x(k + 1) = f(x(k), u(k)) y(k) = h(x(k)),

where f(·, u) ∈ (F+
mps)

n for any fixed u, f ∈ Fn
mps and h ∈ (F+

mps)
p. In the disturbance case, the

results hold when f(·, u, w) ∈ (F+
mps)

n for any fixed (u,w), f ∈ Fn
mps and h ∈ (F+

mps)
p. ♦
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3.5 Conclusions
In this chapter we have extended the finite-horizon optimal control framework to a class of non-
linear DES that models only the synchronization aspects, called MPL systems.

In Section 3.2 we have discussed finite-horizon optimal control for deterministic MPL sys-
tems subject to mixed state and input linear inequality constraints. We have provided sufficient
conditions such that one can employ results from linear programming to compute an optimal
control sequence over a finite horizon. In the unconstrained case and for a particular stage cost
we have computed the analytic solution of the corresponding optimization problem, deriving
bounds on the design parameters that lead to a just-in-time controller.

In Section 3.3 we have considered robust control for uncertain MPL systems. We have pro-
vided solutions to three types of finite-horizon min-max control problems, depending on the
nature of the control input over which we optimize: open-loop input sequences, disturbances
feedback policies, and state feedback policies. We have assumed that the uncertainty lies in a
polytope and the state and input sequences should satisfy a given set of linear inequality con-
straints. Although the MPL system is nonlinear, we have shown that the open-loop and the
disturbance feedback min-max problems can be recast as linear programs while the state feed-
back min-max problem can be solved exactly, without gridding, via N multi-parametric linear
programs, where N is the prediction horizon. The main assumptions that allow us to preserve
convexity in the min-max problems that we have considered, were that the stage cost be a max-
plus-nonnegative-scaling expression in the state and the matrices associated with the state con-
straints have nonnegative entries. Finally, for a particular case of the uncertainty description we
have proved that all three min-max problems are equivalent with a deterministic one. We have
provided also an example illustrating that the performance is improved by including feedback in
the min-max control problem.

Note that the finite-horizon optimal control problems presented in this chapter can be solved
in a receding horizon fashion resulting in an infinite-horizon controller (also called MPC). The
main properties of the MPC will be studied in the next chapter.



Chapter 4

Model predictive control for
max-plus-linear systems

In this chapter we extend the conventional MPC framework to the class of discrete event MPL
systems. We define the notion of stability (i.e. Lyapunov stability) and of positively invariant set
for discrete event MPL systems, and their main features are derived. We provide here sufficient
conditions that guarantee a priori stability of the closed-loop system obtained from applying an
MPC law based on one of the finite-horizon optimal control problems derived in the previous
chapter. We also provide a stabilizing MPC scheme for switching MPL systems.

4.1 Analysis of MPL systems

4.1.1 Introduction

In the previous chapter we have studied the solutions of different finite-horizon optimal control
problems for MPL systems. The optimal control sequence, whenever it exists, steers the system
towards the terminal set Xf in a finite number of steps while also satisfying the performance
specifications. We can obtain an infinite-horizon feedback controller using the MPC framework.
In MPC the current control action is obtained by solving on-line a finite-horizon optimal control
problem. The current state of the plant is used as an initial state in the optimization problem. Only
the first input of the optimal control sequence is applied to the system. The remaining optimal
inputs are discarded, and the whole procedure is repeated at the next step. The prediction horizon
denotes the length of the predictions of the future system behavior. This procedure, called also
the receding horizon philosophy, defines an implicit (state feedback) MPC law. For more details
on this topic the reader is referred to Section 2.3.2.

Relevant topics in the MPC literature are the issues of feasibility and stability of the closed-
loop system. In general, for a finite prediction horizon closed-loop stability cannot be guaranteed
a priori unless additional conditions are imposed. In [101] some tuning rules are given for the
prediction horizon and for the weighting factors of the stage cost in order to achieve closed-loop
stability. Common for many MPC schemes is the use of two “ingredients” in order to guarantee
stability: a terminal set and a terminal cost. In this case the cost function serves as a Lyapunov
function for the closed-loop system (according to Section 2.3.2). For an historic overview of
different formulations of MPC and of different methods used to prove closed-loop stability a
good reference is the survey paper [105].

In this chapter we focus on MPC for MPL systems obtained by repeatedly solving one of

65
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the finite-horizon optimal control problems defined in Chapter 3. We first define stability for
DES and in particular for MPL systems: stability in terms of boundedness of the buffer levels
and Lyapunov stability. Our main concern is to provide sufficient conditions such that we can
guarantee a priori closed-loop stability in terms of Lyapunov and/or in terms of boundedness of
the normalized state. In Section 4.2 we show that by a proper tuning of the design parameters
the unconstrained model predictive controller is asymptotically stabilizing. In Section 4.3 the
stabilizing properties of the model predictive controller in the constrained case are enforced
through the introduction of an appropriate terminal inequality constraint derived from a positively
invariant set and a terminal cost. In Section 4.4 we derive the main properties of a robust MPC
scheme for constrained MPL systems with disturbances, in particular robust stability. Finally,
in Section 4.5 we provide sufficient conditions for an MPC scheme to guarantee a priori closed-
loop stability in terms of boundedness of a switching MPL system. Although stability in terms of
boundedness and asymptotic stability are equivalent for linear systems, this equivalence does not
hold anymore for MPL systems. In this chapter however, we show that under some additional
assumptions both notions of stability hold for the closed-loop MPC. This chapter combines and
extends the work of [123, 128, 159].

4.1.2 Stability for MPL systems
In this section we adopt the formulation developed in [4, 133] to the study of stability of MPL
systems. We consider the following MPL system:

x̄(k + 1) = Ā⊗ x̄(k)⊕ B̄ ⊗ ū(k)
ȳ(k) = C̄ ⊗ x̄(k). (4.1)

Let λ∗ be the largest eigenvalue of Ā (see Section 3.1.1 for an appropriate definition). In
classical linear system theory, the asymptotic behavior of the autonomous linear system z(k +
1) = Az(k) is characterized by the eigenvalues of the matrix A. A similar interpretation can be
given to a max-plus eigenvalue. Let us consider the autonomous system defined over the max-
plus algebra z(k+1) = Ā⊗z(k). Initially, we assume that the matrix Ā ∈ R

n×n
ε is row finite and

has the largest max-plus eigenvalue λ∗ > ε and the corresponding max-plus eigenvector v ∈ R
n

(i.e. v is finite). For the initial condition z(0) = v we see that φ(k; v) = (λ∗)⊗
k ⊗ v = kλ∗ + v

(where φ(k; z) denotes the solution at step k associated to the system of difference equations
z(k + 1) = Ā ⊗ z(k) with the initial state z(0) = v). Therefore, limk→∞ φ(k; v)/k = λ∗.
Moreover, from (3.6) it follows that for each initial state z ∈ R

n we have

lim
k→∞

φ(k; z)/k = λ∗.

We conclude that λ∗ gives the maximum growth rate of the system. When v is not finite it can
be shown that only some components of the vector φ(k; z)/k converge towards λ∗ (see Theorem
3.17 in [66] for more details).

In order to study stability for MPL systems we consider a particular expression for the refer-
ence (due date) signal {r(k)}k≥0 ⊂ R

p which the output may be required to “track”:

r(k) = yt + ρk, (4.2)

where yt ∈ R
p and ρ ∈ R. Note that we can consider a more general reference signal {r(k)}k≥0

such that there exists a finite positive integer kr for which r(k) = yt + ρk for all k ≥ kr. The
subsequent derivations remain the same. Since through the term B̄ ⊗ ū it is only possible to
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create delays in the starting times of activities, we should choose the growth rate ρ of the due
dates such that it is larger than the maximum growth rate of the system, i.e. ρ ≥ λ∗ (if ρ < λ∗,
then stability for MPL systems, as it will be defined below, is not well-posed).

In conventional system theory stability is concerned with boundedness of the states. How-
ever, in MPL systems k is an event counter and x̄i(k) refers to the occurrence time of event
i. Therefore, the sequence {x̄i(k)}k≥0 should always be nondecreasing and usually grows un-
bounded. We now show that by an appropriate change of coordinates stability for MPL systems
can be posed in terms of boundedness of the states.

We assume that λ∗ > ε (λ∗ = ε does not make sense in practical applications). From Lemma
6.3.8 in [41], it follows that there exists an invertible matrix P in the max-plus algebra such that
[P⊗

−1⊗Ā⊗P ]ij ≤ λ∗ for all i, j ∈ N[1,n]. Let us consider the following change of coordinates:

x(k)← P⊗
−1 ⊗ x̄(k)− ρk, y(k)← ȳ(k)− ρk, u(k)← ū(k)− ρk.

Then, the new system matrices become:

A← P⊗
−1 ⊗ Ā⊗ P − ρ, B ← P⊗

−1 ⊗ B̄, C ← C̄ ⊗ P.

We refer to the new system as the normalized MPL system:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k) (4.3)
y(k) = C ⊗ x(k). (4.4)

Note that in the new coordinates the output should be regulated to the constant target yt. We may
assume without loss of generality that B is column-finite and C is row-finite since otherwise the
corresponding inputs and outputs can be eliminated from the description model. Let us define
the properties of controllability and observability for the MPL system (4.3)–(4.4).

Definition 4.1.1 The MPL system (4.3) is controllable if and only if each state is connected to
some input, i.e. the matrix

Γn := [B A⊗B · · ·A⊗
n−1 ⊗B]

is row-finite. ♦

Note that the definition of controllability can be interpreted as follows: each component of the
state can be made arbitrarily large by applying an appropriate controller to the system initially at
rest.

Definition 4.1.2 The system (4.3)–(4.4) is observable if and only if each state is connected to
some output, i.e. the matrix

Υn := [CT (C ⊗ A)T · · · (C ⊗ A⊗
n−1

)T ]T

is column-finite. ♦

One can remark that these definitions are similar with the controllability and observability def-
initions given in [4, 56]. Moreover, controllability and observability are intrinsic properties of
an MPL system and thus they do not depend on the choice of coordinates. Therefore, the nor-
malized MPL system (4.3)–(4.4) is controllable and observable if and only if the original system
(4.1) also possesses these properties.

The following assumption will be used throughout this chapter
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A3: The MPL system (4.3)–(4.4) is controllable and observable, and ρ > λ∗ > ε.

Note that in practical applications the assumption A3 is almost always satisfied because we can
choose ρ arbitrarily close to λ∗. Although λ∗ = ρ is an interesting case from a theoretical point
of view, in this thesis we do not discuss it. However, from a practical point of view, due to the
presence of disturbances in the plant, it is almost never possible to design a controller such that
the controlled system has the growth rate λ∗.

Since A = P⊗
−1 ⊗ Ā ⊗ P − ρ and [P⊗

−1 ⊗ Ā ⊗ P ]ij ≤ λ∗ for all i, j ∈ N[1,n], it follows
from assumption A3 that the matrix A satisfies:

Aij < 0 ∀i, j ∈ N[1,n].

Because Aij < 0 for all i, j ∈ N[1,n], we have A∗ = En⊕A⊕· · ·⊕A⊗
n−1 (according to Lemma

3.1.1 (ii)). Note that for any finite vector u there exists a state equilibrium x corresponding to the
normalized MPL system (4.3)–(4.4), i.e. x = A⊗ x⊕ B ⊗ u, given by x = A∗ ⊗ B ⊗ u. Note
that x is unique, according to Lemma 3.1.4 (ii), and finite since Γn is row-finite. We associate
to yt the largest1 equilibrium pair (xe, ue) satisfying C ⊗ xe ≤ yt. From the previous discussion
and taking into account that Υn is also column-finite it follows that (xe, ue) is unique, finite, and
given by:

ue = (−(C ⊗ A∗ ⊗B))T ⊗′ yt, xe = A∗ ⊗B ⊗ ue. (4.5)

Now we consider a state feedback law κ : R
n → R

m (e.g. an MPC law) and the closed-loop
system:

x(k + 1) = A⊗ x(k)⊕B ⊗ κ(x(k)) (4.6)
y(k) = C ⊗ x(k), (4.7)

i.e. the input at event step k is given by u(k) = κ(x(k)). Let {φ(k;x, κ)}k≥0 denote the closed-
loop state trajectory, i.e. φ(k;x, κ) represents the state solution of (4.6) at event step k when
the initial state is x and the feedback law κ is employed. Note that φ(0;x, κ) = x. In [4, 133]
stability for DES is defined in terms of boundedness of the buffer levels. Given a set X ⊆ R

n for
the closed-loop system (4.6)–(4.7) this requirement can be translated mathematically as follows:
for each x ∈ X

‖φ(k;x, κ)− xe‖∞, ‖y(k)− yt‖∞, ‖u(k)− ue‖∞ (4.8)

should be bounded for all k ≥ 0. Let us note that for a controllable and observable system the
boundedness of {φ(k;x, κ)−xe}k≥0 is sufficient to guarantee also boundedness of {y(k)−yt}k≥0

and {u(k) − ue}k≥0. Therefore, under the controllability and observability assumption A3, the
conditions (4.8) can be replaced with: for each x ∈ X

‖φ(k;x, κ)− xe‖∞ (4.9)

should be bounded for all k ≥ 0.

Remark 4.1.3 The stability condition (4.8) (or equivalently (4.9) for a controllable and observ-
able MPL system) can be written for the original system (4.1) as: for each x ∈ X

‖x̄(k)− ρk‖∞, ‖ȳ(k)− ρk‖∞, ‖ū(k)− ρk‖∞ (4.10)

are bounded for all k ≥ 0 (i.e. we have stability in terms of boundedness of the buffer levels as
was defined in [4, 133]). ♦

1By the largest we mean that any other feasible equilibrium pair (x, u) satisfies x ≤ xe and u ≤ ue.
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Recall Definition 2.3.3 of a positively invariant set corresponding to the autonomous system
(4.6):

Definition 4.1.4 The set Xe is called positively invariant (PI) for the closed-loop system (4.6) if
for all x ∈ Xe it follows that φ(k;x, κ) ∈ Xe for all k ≥ 0. ♦

The distance from a point x to a set X induced by the∞-norm is defined as:

d∞(x,X ) := inf
y∈X
‖x− y‖∞.

We now introduce the notion of Lyapunov stability for the normalized MPL system (4.6)–(4.7).

Definition 4.1.5 A PI set Xe is called stable with respect to the closed-loop system (4.6)–(4.7)
if for any2 ε > 0 there exists a δ > 0 such that for all x satisfying d∞(x,Xe) ≤ δ we have
d∞(φ(k;x, κ), Xe) ≤ ε for all k ≥ 0.

If limk→∞ d∞(φ(k;x, κ), Xe) = 0 for all x ∈ X , then the set Xe is asymptotically attractive
with respect to the closed-loop system (4.6)–(4.7) with a region of attraction X .

When both conditions are satisfied we refer to Xe as asymptotically stable with respect to the
system (4.6)–(4.7) with a region of attraction X . When the convergence is attained in a finite
number of steps we refer to Xe as finitely stable. ♦

In the sequel we will study different MPC strategies for normalized MPL systems correspond-
ing to one of the finite-horizon optimal control problems defined in Chapter 3. We will derive
sufficient conditions that guarantee a priori closed-loop stability either in terms of Lyapunov
and/or in terms of boundedness of the normalized state (as defined in (4.9)). It is well-known
that stability in terms of boundedness and asymptotic stability are equivalent for linear systems.
However, this equivalence does not hold anymore for MPL systems, but in this chapter we show
that under some additional assumptions both notions of stability hold for the closed-loop MPC.

4.2 MPC for unconstrained MPL systems
First, we study the receding horizon implementation of the finite-horizon optimal control prob-
lem defined in Section 3.2.5. In this case we will prove that by appropriately tuning the design
parameters the set Xe = {xe} is finitely stable with respect to the normalized MPL system
(4.3)–(4.4) in closed-loop with the corresponding MPC law.

4.2.1 Problem formulation
We consider the following setting. Assumption A3 holds and thus the normalized system

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k) (4.11)
y(k) = C ⊗ x(k) (4.12)

satisfies Aij < 0 for all i, j ∈ N[1,n], the matrices Γn and Υn are row-finite and column-finite, re-
spectively (i.e. the system is controllable and observable), and the finite equilibrium pair (xe, ue)
is given by (4.5). The reference signal corresponding to the normalized system is constant, i.e.
yt.

2The reader should make distinction between ε = −∞ and ε used in stability contexts.
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Although in general the MPC framework allows us to deal with state and input constraints,
in this section we consider an unconstrained formulation of the MPC. The main advantage of
the MPC scheme derived in this section compared to most of the results on optimal control and
MPC for MPL systems [4,33,36,45,85,95,109] is the fact that we guarantee a priori closed-loop
stability in terms of Lyapunov and in terms of boundedness of the buffer levels. We recall that
in the absence of constraints by making the transformation given in Remark 3.2.5 the constraint
(3.11), which expresses that the input should be nondecreasing, is satisfied automatically. There-
fore, the MPC scheme derived below provides also a physical control sequence while most of
the optimal control schemes based on residuation and input-output models found in the literature
may provide a non-increasing control sequence.

We derive sufficient conditions such that one can employ results from max-plus algebra to
compute a stabilizing model predictive controller for MPL systems. The usual approach for
proving stability of the closed-loop MPC is to use a terminal cost and a terminal set such that the
optimal cost is employed as a Lyapunov function (see Section 2.3.2). In this section however,
we do not follow this classical proof for stability, but rather by taking advantage of the special
properties, especially monotonicity, that MPL systems possess, we show that by a proper tuning
of the MPC design parameters stability can still be guaranteed even in a finite number of event
steps.

At event pair (k, x) (i.e. x(k) = x) we consider the optimization problem (3.33):

V 0
N(x) = inf

u∈R̄Nm
VN(x, r,u), (4.13)

where now the reference sequence has a particular expression, i.e. r = xe with xe defined as

xe := [xT
e x

T
e · · · xT

e ]T ∈ R
n(N+1),

the cost function is given by

VN(x, r,u) :=
N−1∑

i=0

(
n∑

j=1

max{[xi − xe]j, 0}−γ
m∑

j=1

[ui]j

)

+
n∑

j=1

max{[xN − xe]j, 0},

and xi = φ(i;x,u). Recall that φ(i;x,u) denotes the state solution of (4.11) at event step i when
the initial condition is x and the control sequence u = [uT

0 uT
1 · · · uT

N−1]
T is applied. Clearly,

φ(0;x,u) = x. Let
u0

N(x) = [(u0
0(x))

T (u0
1(x))

T · · · (u0
N−1(x))

T ]T

be an optimizer of (4.13) (as defined in (2.18)). If γ > 0, then clearly u0
N(x) > ε. The MPC law

is given by
κN(x) := u0

0(x) (4.14)

and the closed-loop system becomes

x(k + 1) = A⊗ x(k)⊕B ⊗ κN(x(k)), (4.15)
y(k) = C ⊗ x(k). (4.16)

Since r = xe at each event step k, we drop out the dependence on r of V 0
N , etc in order to

simplify the notation in this section.
Note that we assume that at event step k the state x(k) is available or can be measured. In

Sections 3.2.3 and 3.3.5 we have provided some procedures to compute x(k) at a certain time t0
when the MPC optimization problem is performed. The reader might ask how to determine the
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next time instant when a new MPC optimization should be done. In principle, the appropriate
input sequence u should be recomputed as soon as a new measurement of the state xi(k) becomes
available or new information arrives. We can even refine this last statement in the following
sense: if at a certain time a “lot” of new information (data) becomes available then we can
stop the optimization problem and we restart a new one which takes into account all this new
information available. The new data can be recast as linear inequalities on the input which thus
fits the framework presented in this chapter. However, if new information is not available an
optimization is superfluous and the already computed input sequence will be optimal.

We can consider also a time-driven approach, i.e. using a sampling time T we compute an
optimal control problem at each t0 + jT . If we have multiple inputs, (and so u(k) is a vector),
we will activate the ith input at time ui(k) = [κN(x(k))]i. Let us assume that at time t0 + jT we
solve an MPC optimization problem and we obtain ui(k) = t and let us consider an optimization
of u for the next time, i.e. t0 + (j + 1)T > t. An event in the past cannot be changed any more,
and so we will do the optimization of u subject to an additional equality constraint [u0]i = t.

We will show in the sequel that under certain conditions the set Xe = {xe} is finitely stable
with respect to the closed-loop system (4.15)–(4.16).

4.2.2 Feedback controllers
For the normalized MPL system (4.11)–(4.12) we define two feedback controllers and we study
their stabilizing properties: a feedback controller

κub(x) := (−BT )⊗′ (A⊗ x⊕ xe) (4.17)

and a “constant” controller:

κf(x) := ue. (4.18)

for all x ∈ R
n. Note that for the original system the constant controller has the following

expression: κf(x(k)) = ue + ρk. Later on, we will show that under some conditions the MPC
law κN lies in between these two controllers. Here, {φ(k;x, κub)}k≥0 denotes the closed-loop
state trajectory corresponding to the feedback law κub. Similarly, we define {φ(k;x, κf)}k≥0.

Lemma 4.2.1 For all initial states x ∈ R
n the following inequalities hold:

φ(k;x, κf) ≤ φ(k;x, κub), κf(φ(k;x, κf)) ≤ κub(φ(k;x, κub)) ∀k ≥ 0. (4.19)

Proof : We prove the lemma by induction. For k = 0 we have that φ(k;x, κf) = φ(k;x, κub) = x
and from the monotonicity property of the min operator (3.7) it follows that κub(x) ≥ (−BT )⊗′

xe ≥ ue = κf(x) (the second inequality follows from the definition of ue given in (4.5)). Let us
assume that the inequalities of the lemma are valid for a given k. Now we prove that they also
hold for k+1. We have κub(φ(k+1;x, κub)) ≥ (−BT )⊗′ xe ≥ ue = κf(φ(k+1;x, κf)). More-
over, using the induction hypothesis and the monotonicity property (3.7) of the max operator it
follows that:

φ(k + 1, x, κub) = A⊗ φ(k, x, κub)⊕B ⊗ κub(φ(k;x, κub))

≥ A⊗ φ(k;x, κf)⊕B ⊗ κub(φ(k;x, κub))

≥ A⊗ φ(k;x, κf)⊕B ⊗ κf(φ(k;x, κf)) = φ(k + 1, x, κf).

This concludes our proof. ♦
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The stabilizing properties of the two controllers defined above are summarized in the next
theorem.

Theorem 4.2.2 Suppose that assumption A3 holds. Then, we have the following statements:
(i) For any initial state x ∈ R

n there exists a finite positive integer kf(x) such that
φ(k;x, κf) = xe for all k ≥ kf(x).

(ii) For any initial state x ∈ R
n there exists a finite positive integer kub(x) such that

φ(k;x, κub) = xe for all k ≥ kub(x).
(iii) The set Xe = {xe} is finitely stable with respect to the closed-loop system (4.6)–(4.7)

corresponding to the feedback laws κub and κf , with a region of attraction R
n. Moreover, the

closed-loop state trajectory is bounded.

Proof : (i) Note that for all k ≥ 0 the following equality holds:

φ(k;x, κf) = A⊗
k ⊗ x⊕

(
k⊕

t=1

A⊗
k−t ⊗B ⊗ ue

)
.

Recall that Aij < 0 for all i, j ∈ N[1,n] (according to assumption A3). Then, from Lemma 3.1.1
(i) it follows that for all x ∈ R

n:
lim

k→∞
A⊗

k ⊗ x = ε.

Since xe =
⊕n

t=0A
⊗

n−t ⊗B ⊗ ue, it follows that there exists a finite kf(x) ≥ n (i.e. the positive
integer kf depends on the initial state x) such that φ(k;x, κf) = xe for all k ≥ kf(x). In fact an
upper bound on kf(x) can be determined. Indeed, since Aij < 0 for all i, j, then if kf(x) ≥ pn

for some finite nonnegative integer p, it follows that [A⊗
kf (x)

]ij is either ε or the largest path from
i to j of length kf(x) contains at least p cycles (see Section 3.1.1 for an appropriate definition
of a path and of a cycle). Note that for any cycle (i1, i2, · · · , ik+1), where i1 = ik+1, we have
Ai1i2 +Ai2i3 + · · ·Aikik+1

≤ λ∗−ρ < 0. Since [A⊗
k⊗x]i = maxj∈N[1,n]

{[A⊗
k
]ij +xj}, it follows

that by choosing3 p = bmaxi,j∈N[1,n]

[xe]i−xj

λ∗−ρ
c we get A⊗

pn ⊗ x ≤ xe and therefore pn is an upper
bound on kf(x).

(ii) First let us note that φ(k+ 1;x, κub) ≤ A⊗ φ(k;x, κub)⊕ xe for all k ≥ 0. By induction
it is straightforward to prove that:

φ(k;x, κub) ≤ A⊗
k ⊗ x⊕ xe ∀k ≥ 0.

Recall that for all x ∈ R
n, A⊗

k ⊗ x → ε as k → ∞. Therefore, for any x there exists a finite
integer k′ub(x) such that A⊗

k ⊗ x ≤ xe for any k ≥ k′ub(x). In conclusion, φ(k;x, κub) ≤ xe for
all k ≥ k′ub(x). Combining this inequality with first part of the theorem and with Lemma 4.2.1 it
follows that there exists a finite kub(x) = max{k′ub(x), kf(x)} such that φ(k;x, κub) = xe for all
k ≥ kub(x).

(iii) From (i) and (ii) we conclude that we have finite convergence of the closed-loop state
trajectories towards the equilibrium state xe. Let us now prove stability in the sense of Lyapunov.
Let ε > 0 and consider ‖x− xe‖∞ ≤ ε (i.e. δ = ε).

Note that xe = A⊗
k ⊗ xe ⊕ (

⊕k
t=1A

⊗
k−t ⊗B ⊗ ue), for all k ≥ 1. The following inequality

is an immediate consequence of (3.6): for all x, y, u, v ∈ R
n

‖(A⊗ x⊕B ⊗ u)−(A⊗ y ⊕B ⊗ v)‖∞ ≤ ‖x− y‖∞ ⊕ ‖u− v‖∞. (4.20)

3bxc is the largest integer less than or equal to x.
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Using (4.20) it follows that

‖φ(k;x, κf)− xe‖∞ ≤ ‖x− xe‖∞ ≤ ε ∀k ≥ 0. (4.21)

Let us define zk = A⊗
k ⊗ x. From φ(k;x, κf) ≤ φ(k;x, κub) ≤ zk ⊕ xe it follows that:

‖φ(k;x, κub)− xe‖∞ = max
i∈N[1,n]

{[φ(k;x, κub)− xe]i, [xe − φ(k;x, κub)]i} ≤

max
i∈N[1,n]

{[(zk ⊕ xe)− xe]i, [xe − φ(k;x, κf)]i} ≤ max
i∈N[1,n]

{[zk − xe]i, ε} ≤

max
i∈N[1,n]

{[A⊗
k ⊗ x− xe]i, ε} ≤ max

i∈N[1,n]

{[A⊗
k ⊗ x− A⊗

k ⊗ xe]i, ε} ≤

max
i∈N[1,n]

{[x− xe]i, ε} = ε ∀k ≥ 0,

where for the last inequality we have used the following formula4: aT ⊗ x − aT ⊗ y ≤
maxi∈N[1,n]

{xi − yi}, for any a ∈ R
n
ε and x, y ∈ R

n.
It follows immediately that both closed-loop systems are also stable in terms of boundedness

of the state (i.e. as defined in (4.9)). ♦
An immediate consequence of Theorem 4.2.2 is the following corollary:

Corollary 4.2.3 Suppose that the state feedback law κ satisfies κf(φ(k;x, κf)) ≤
κ(φ(k;x, κ)) ≤ κub(φ(k;x, κub)) for all k ≥ 0 and x ∈ R

n. Then the corresponding closed-
loop state trajectory satisfies φ(k;x, κf) ≤ φ(k;x, κ) ≤ φ(k;x, κub) for all k ≥ 0 and x ∈ R

n,
i.e. the set Xe = {xe} is finitely stable with respect to the corresponding closed-loop system.
Moreover, the closed-loop state trajectory is bounded. ♦

4.2.3 Unconstrained MPC: closed-loop stability
Let us now consider the MPC law κN(x) := u0

0(x) defined in (4.14).

Lemma 4.2.4 Suppose assumption A3 holds. Then, we have the following inequalities:

κf(φ(k;x, κf)) ≤ κN(φ(k;x, κN)), φ(k;x, κf) ≤ φ(k;x, κN)

for all k ≥ 0 and for all initial state x ∈ R
n.

Proof : Define
ue := [uT

e u
T
e · · · uT

e ]T ∈ R
Nm.

First, let us show that u0
N(x) ≥ ue for all x ∈ R

n. The optimal state trajectory corresponding to
u0

N(x) is denoted with:
x0 = [xT (x0

1)
T · · · (x0

N)T ]T .

Note that x0 = Θ ⊗ x ⊕ Φ ⊗ u0
N(x), where Θ and Φ are defined in (3.27). Let us assume that

u0
N(x) 6≥ ue. Define u† = u0

N(x)⊕ ue and x† = Θ⊗ x⊕ Φ⊗ u†. Since A⊗
j ⊗B ⊗ ue ≤ xe for

all j ≥ 0, we have x† = x0 ⊕ Φ⊗ ue ≤ x0 ⊕ xe. It follows that:

VN(x, r,u†) ≤
N∑

j=0

n∑

j=1

max{[x0
i − xe]j, 0} − γ

N−1∑

i=0

m∑

j=1

[u†i ]j

<

N∑

i=0

n∑

j=1

max{[x0
i − xe]j, 0} − γ

N−1∑

i=0

m∑

j=1

[u0
i (x)]j = V 0

N(x)

4Recall that by definition ε− ε = ε.
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and thus we get contradiction with the optimality of u0
N(x). Consequently, κN(x) ≥ ue for all

x ∈ R
n.

Now we go on with the proof of the lemma using induction. For k = 0 we have φ(k;x, κf) =
φ(k;x, κN ) = x and κN(x) ≥ ue = κf(x). We assume that κf(φ(k;x, κf)) ≤ κN(φ(k;x, κN))
and φ(k;x, κf) ≤ φ(k;x, κN ) and we prove that these inequalities also hold for k + 1. From the
first part of the proof it follows that κ(φ(k + 1;x, κN )) ≥ ue = κf(φ(k + 1;x, κf)). Moreover,
from the monotonicity property of the max operator (3.7) and from the induction hypothesis it
follows that φ(k + 1;x, κf) = A⊗ φ(k;x, κf)⊕ B ⊗ κf(φ(k;x, κf)) ≤ A⊗ φ(k;x, κN)⊕ B ⊗
κN(φ(k;x, κN )) = φ(k + 1;x, κN ). ♦

The following corollary is an immediate consequence of Theorem 3.2.4:

Corollary 4.2.5 : Suppose 0 < γ < 1
mN

, then u0
N(x) = (−ΦT )⊗′ (Θ⊗ x⊕ xe).

From Corollary 4.2.5 we conclude that the MPC controller is a continuous piecewise affine
(or equivalently a max-min-plus-scaling) function of the state: κN(x) = mini∈I maxj∈J {ζij +
xj, βij +(xe)j}, where I and J are two finite index sets. It is important to note that although the
controlled system is nonlinear, the continuity and piecewise affine properties of our MPC law are
similar to the ones corresponding to the linear case [7].

The next theorem characterizes the stabilizing properties of the MPC. Contrary to the con-
ventional MPC where stability is proved using the optimal value cost as a Lyapunov func-
tion [7, 101, 105], here the proof is based on the particular properties of the max-plus algebra,
especially the monotonicity property (3.7).

Theorem 4.2.6 Suppose 0 < γ < 1
mN

and assumption A3 holds. Then,
(i) The following inequalities hold:

κf(φ(k;x, κf)) ≤ κN(φ(k;x, κN)) ≤ κub(φ(k;x, κub)) (4.22)
φ(k;x, κf) ≤ φ(k;x, κN ) ≤ φ(k;x, κub) (4.23)

for all k ≥ 0 and x ∈ R
n. Therefore, Xe = {xe} is finitely stable with respect to the closed-loop

system (4.15)–(4.16). Moreover, the closed-loop state trajectory is bounded for each x ∈ R
n.

(ii) If N = 1, then κ1(x) = κub(x) for all x ∈ R
n. For two prediction horizons N1 < N2 the

following inequalities hold:

κN1(φ(k;x, κN1)) ≥ κN2(φ(k;x, κN2)), φ(k;x, κN1) ≥ φ(k;x, κN2) (4.24)

for all k ≥ 0 and for all x ∈ R
n.

Proof : (i) From Corollary 4.2.5 it follows that for all x

κN(x) ≤ (−BT )⊗′ (A⊗ x⊕ xe). (4.25)

The left-hand side of inequalities (4.22)–(4.23) follows from Lemma 4.2.4. The right-hand side
is proved using induction. For k = 0 we have that φ(k;x, κub) = φ(k;x, κN) = x and κN(x) ≤
κub(x) (according to (4.25)). Let us assume that κN(φ(k − 1;x, κN )) ≤ κub(φ(k − 1;x, κub))
and φ(k;x, κN ) ≤ φ(k;x, κub) are valid and we prove that they also hold for k + 1. From (4.25)
and our induction hypothesis we have:

B ⊗ κN(φ(k;x, κN)) ≤A⊗ φ(k;x, κN )⊕ xe ≤ A⊗ φ(k;x, κub)⊕ xe.
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On the other hand, κub(φ(k;x, κub)) is the largest solution of the inequality

B ⊗ u ≤ A⊗ φ(k;x, κub)⊕ xe.

From Lemma 3.1.4 (i) it follows that κN(φ(k;x, κN)) ≤ κub(φ(k;x, κub)). Moreover, φ(k +
1;x, κN ) = A⊗φ(k;x, κN)⊕B⊗κN (φ(k;x, κN)) ≤ A⊗φ(k;x, κub)⊕B⊗κub(φ(k;x, κub)) =
φ(k + 1;x, κub).

The rest follows from Corollary 4.2.3.
(ii) For N = 1 the result follows from Corollary 4.2.5. For two prediction horizons

N1 < N2, we denote with Φ(N1), Θ(N1) the matrices Φ,Θ, respectively, from (3.27) corre-
sponding to the prediction horizon N = N1. Similarly, we define Φ(N2),Θ(N2). Note that

Φ(N2) =

[
Φ(N1) ε
∗ ∗

]

and Θ(N2) =

[
Θ(N1)

∗

]

(where ∗ stands for appropriate matrix blocks).

Define xe(N1) = [xT
e · · · xT

e ]T ∈ R
n(N1+1) and the optimizer of (4.13) corresponding to the pre-

diction horizon N = N1 as u0
N1

(x) = [(u0
0,(N1)(x))

T · · · (u0
N1−1,(N1)(x))

T ]T . Similarly, we define
xe(N2) and u0

N2
(x).

We prove the inequalities (4.24) by induction. For k = 0 we have φ(k;x, κN1) =
φ(k;x, κN2) = x. From Corollary 4.2.5 it follows that:

Φ(N2) ⊗ u0
(N2)(x) =

[
Φ(N1) ε
∗ ∗

]

⊗
[

[(u0
0,(N2)(x))

T · · · (u0
N1−1,(N2)(x))

T ]T

∗

]

≤

Θ(N2) ⊗ x⊕ xe(N2) ≤
[

Θ(N1) ⊗ x⊕ xe(N1)

∗

]

.

It follows that Φ(N1) ⊗ [(u0
0,(N2)(x))

T · · · (u0
N1−1,(N2)(x))

T ]T ≤ Θ(N1) ⊗ x ⊕ xe(N1) and thus
[(u0

0,(N2)(x))
T · · · (u0

N1−1,(N2)(x))
T ]T ≤ u0

(N1)(x). Therefore, u0
0,(N2)(x) = κN2(x) ≤ κN1(x).

Using exactly the same reasoning we can prove that the inequalities (4.24) hold for all k ≥ 0. ♦

In this section we have considered MPC for state regulation. In the next section we extend these
results to output regulation.

4.2.4 Output regulation
In the case of output regulation for normalized MPL systems, the goal is to bring the output as
close as possible to the desired target yt. We discuss two options that allow us to achieve this
goal. In the first option we can solve the optimal control problem (3.33) in a receding horizon
fashion: at event pair (k, x) we solve

V 0
N(x) = inf

u∈R̄Nm
VN(x, r,u), (4.26)

where now r = yt and yt = [yT
t yT

t · · · yT
t ]T . This means that the cost function has the following

form

VN(x, r,u) =
N−1∑

i=0

(
p
∑

j=1

max{[yi − yt]j, 0} − γ
m∑

j=1

[ui]j

)

+

p
∑

j=1

max{[yN − yt]j, 0},

where yi = C ⊗ xi (recall that xi = φ(i;x,u)). However, in this case stability cannot be
guaranteed a priori (see Example 4.2.5 presented at the end of this section). Therefore, we will



76 4 Model predictive control for max-plus-linear systems

present in the sequel another approach to bring the system as close as possible to the desired
target yt that also guarantees a priori stability of the closed-loop system.

First let us prove that by regulating the output to the desired target we are also effectively
regulating the state towards the corresponding equilibrium. Let u0

N(x) be the optimizer of (4.26).
Using similar arguments as in the proof of Lemma 4.2.4 we can prove that u0

N(x) ≥ ue for all
x ∈ R

n. Note that we use the same notation as in the previous section (e.g. κN(x) = u0
0(x),

etc.). It follows that for all x ∈ R
n

κN(x) ≥ ue. (4.27)

Lemma 4.2.7 Suppose that for any x ∈ R
n there exists a finite k0(x) such thatC⊗φ(k;x, κN ) ≤

yt for all k ≥ k0(x). Then, there exists a finite k′0(x) such that φ(k;x, κN) = xe for all
k ≥ k′0(x).

Proof : Denote k0(x) = k0. For all j ≥ 0 we have:

C ⊗ φ(k0;x, κN) ≤ yt

C ⊗ A⊗ φ(k0;x, κN )⊕ C ⊗B ⊗ κN(φ(k0;x, κN )) ≤ yt

C⊗A⊗
2⊗φ(k0;x, κN )⊕C⊗A⊗B⊗ κN(φ(k0;x, κN ))⊕ · · · ≤yt

· · ·
C⊗A⊗

j⊗ φ(k0;x, κN )⊕C⊗A⊗
j−1⊗B⊗ κN(φ(k0;x, κN))⊕ · · ·≤yt

So,
⊕

j≥0C ⊗ A⊗
j ⊗ B ⊗ κN(φ(k0;x, κN )) ≤ yt. From the definition of ue given in (4.5) it

follows that κN(φ(k0;x, κN )) ≤ ue. From (4.27) it follows that κN(φ(k0;x, κN)) ≥ ue and thus
κN(φ(k0;x, κN )) = ue. Using similar arguments it can be proved that κN(φ(k0 + j;x, κN)) =
ue for all j ≥ 0. We can conclude that there exists a finite positive integer k ′

0(x) such that
φ(k;x, κN ) = xe for all k ≥ k′0(x) := k0(x) + kf(x) (where kf(x) is defined as in Theorem 4.2.2
(i)). We remark that once the output is below the desired target yt, the state and the input will
reach some steady-state (i.e. the equilibrium pair (xe, ue)). ♦

Therefore, regulating the output towards the desired target is equivalent with regulating the state
towards the corresponding equilibrium. As a consequence, we can apply the receding horizon
controller from Section 4.2.1 in order to regulate the output to the desired target.

4.2.5 Example
The next example shows us that instability is really an issue when designing controllers for MPL
systems. We consider the following example:

x̄(k + 1)=







ε 0 ε 9
4 3 4 5
8 ε 2 8
0 1 ε ε






⊗x̄(k)⊕







0
5
2
8






⊗ū(k), ȳ(k)=[6 5 8 ε]⊗x̄(k). (4.28)

Note that using the extended state discussed in Remark 3.2.5 the constraint ū(k)− ū(k+ 1) ≤ 0
will be satisfied. The largest max-plus eigenvalue of the system matrix Ā of (4.28) is λ∗ = 5.25.
We choose the following reference signal r(k) = 5 + 1.2λ∗k (i.e. ρ = 1.2λ∗). The initial
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Figure 4.1: The closed-loop MPC simulations: unconstrained case.

conditions are given by x̄(0) = [6 12 9 14]T and ū(−1) = 6. The closed-loop MPC simulations
are given in Figure 4.1.

First, we choose the following values for the MPC design parameters: N = 5 and γ = 0.6.
We solve the optimal control problem (4.13) in a receding horizon fashion. The corresponding
MPC law makes the closed-loop system unstable as we see from the plots (the line marked by
stars).

Next, we take N = 5 and γ = 0.1. The conditions from Theorem 4.2.6 are fulfilled. There-
fore, solving the optimal control problem (4.13) in a receding horizon fashion, the corresponding
MPC law makes the closed-loop system stable (see the line marked by diamonds).

4.3 MPC for constrained MPL systems
In this section we design a stabilizing MPC law for the normalized MPL system (4.11)–(4.12),
where the input and state sequence must satisfy a given set of linear inequality constraints. We
follow here a similar finite-horizon MPC approach as the one described in Section 2.3.2 for con-
ventional, time-driven nonlinear systems and that uses a terminal set and a terminal cost as basic
ingredients. However, the extension from classical time-driven systems to discrete-event MPL
systems is not trivial since many concepts from system theory have to be adapted adequately. One
of the key results of this section is to provide sufficient conditions based on a terminal set and a
terminal cost framework such that one can compute an MPC law that guarantees a priori stability
in terms of Lyapunov and in terms of boundedness, and constraint satisfaction for discrete-event
MPL systems. The main difference between our approach and other methods that compute opti-
mal controllers for MPL systems [4,33,36,45,85,95,102,109] is that in those papers the optimal
controller does not fulfill both requirements: a priori stability of the closed-loop system and the
closed-loop input and state sequence should satisfy a given set of inequality constraints.
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4.3.1 Problem formulation
We consider the same settings as in Section 4.2. However, we now assume that the normalized
MPL system (4.11)–(4.12) is subject to hard control and state constraints:

Hx(k) +Gu(k) ≤ h. (4.29)

In the rest of this chapter we also consider that the following assumption holds:

A4: The matrix H in (4.29) is nonnegative, i.e. H ≥ 0.

Recall that typical constraints for MPL systems (3.9) can be rewritten, after normalization, as
in (4.29), with H ≥ 0. Note that assumption A4 is a particular case of assumption A1. We
frequently use the short-hand notation

fMPL(x, u) := A⊗ x⊕B ⊗ u.

We may assume that the equilibrium pair (xe, ue) defined in (4.5) belongs to the set {(x, u) :
Hx+Gu ≤ h}. Otherwise, (xe, ue) is determined as the optimal solution of the following linear
programming problem:

max
u
{

m∑

i=1

ui : x = A∗ ⊗B ⊗ u,C ⊗ x ≤ yt, Hx+Gu ≤ h}. (4.30)

We now give a lemma that will be used in the sequel:

Lemma 4.3.1 (i) Let X = {x ∈ R
n : Px ≤ q}, where P ≥ 0. Then,

d∞(x0,X ) := min
x∈X

max
i∈N[1,n]

{[x0 − x]i, 0}.

(ii) In particular if X := {x ∈ R
n : x ≤ ζ}, then

d∞(x0,X ) = max
i∈N[1,n]

{[x0 − ζ]i, 0}.

Proof : (i) It is straightforward to see that the statement is true when x0 ∈ X . Therefore, we
consider the case when x0 /∈ X , i.e. d∞(x0,X ) > 0. We prove this case by contradiction. Let
x∗ ∈ X be the optimal solution, i.e. 0 < d∞(x0,X ) = ‖x0 − x∗‖∞. We define the set I ⊆ N[1,n]

as follows: if i ∈ I, then ‖x0−x∗‖∞ = [x∗−x0]i > 0 and for any j ∈ N[1,n] \I : ‖x0−x∗‖∞ >
[x0 − x∗]j; otherwise, if such I does not exist, then define I = ∅.

Assume that I 6= ∅. Then, we define xfeas as: [xfeas]i = [x0]i, if i ∈ I and [xfeas]i = x∗i ,
if i /∈ I. Since P ≥ 0 and xfeas ≤ x∗, xfeas 6= x∗, it follows that xfeas ∈ X . Moreover,
0 < d∞(x0,X ) = ‖x0 − x∗‖∞ = maxi∈N[1,n]

{[x∗ − x0]i, [x0 − x∗]i} ≤ ‖xfeas − x0‖∞ =
maxi/∈I{[x∗− x0]i, [x0− x∗]i, 0} < maxi∈N[1,n]

{[x∗− x0]i, [x0− x∗]i} = ‖x0− x∗‖∞ i.e. we get
a contradiction. Therefore, I = ∅ and thus ‖x0 − x∗‖∞ = maxi∈N[1,n]

{[x0 − x∗]i}.
(ii) If x0 /∈ X and x ≤ ζ , the following inequality is valid: maxi∈N[1,n]

{[x0 − x]i} ≥
maxi∈N[1,n]

{[x0−ζ]i}. We conclude that minx∈X maxi∈N[1,n]
{[x0−x]i} ≥ maxi∈N[1,n]

{[x0−ζ]i}.
From (i) it follows that d∞(x0,X ) ≥ maxi∈N[1,n]

{[x0 − ζ]i} = maxi∈N[1,n]
{[x0 − ζ]i} (according

to the first part of this lemma). But d∞(x0,X ) ≤ maxi∈N[1,n]
{[x0 − ζ]i} since ζ ∈ X . It follows

that d∞(x0,X ) = maxi∈N[1,n]
{[x0 − ζ]i}. ♦



4.3 MPC for constrained MPL systems 79

Let Xf be an appropriate terminal set. Note that in the next section we provide a method to
construct such a set. For a given set Xe such that xe ∈ Xe ⊆ Xf we define a continuous stage
cost `(x, u, r), where now r = xe, with the following properties:
P1: `(x, u, r) = 0 if and only if x ∈ Xe and u = ue.
P2: `(x, u, r) ≥ α(d∞(x,Xe)) for all x, where α is a K function.
Some examples of such stage costs are:

`(x, u, r) = ‖x− xe‖∞ + γ‖u− ue‖∞ (4.31)
`(x, u, r) = max

i∈N[1,n]

{xi − [xe]i, 0}+ γ‖u− ue‖∞ (4.32)

`(x, u, r) = d∞(x,Xf) + γ‖u− ue‖∞, (4.33)

where γ > 0. For the stage cost (4.31) Xe = {xe}, for (4.32) Xe = {x : x ≤ xe} (according
to Lemma 4.3.1 (ii)) and for (4.33) Xe = Xf . Note that the first term in the stage cost (4.31)
penalizes the deviation from the state equilibrium xe while in the stage costs (4.32)–(4.33) the
first term penalizes the tardiness with respect to the boundary of the set Xe. The second term in
these stage costs penalizes the deviation from the input equilibrium ue.

We consider a prediction horizon N ≥ 1. For event pair (k, x) (i.e. x(k) = x) the following
optimal control problem is considered:

V 0
N(x) := inf

u∈ΠN (x)
VN(x, r,u), (4.34)

where the reference sequence r = xe and the set of feasible input sequences is defined as

ΠN(x) := {u : Hxi +Gui ≤ h ∀i ∈ N[0,N−1], xN ∈ Xf},

and where u = [uT
0 u

T
1 · · · uT

N−1]
T and xi = φ(i;x,u).

The cost criterion is defined as:

VN(x, r,u) =
N−1∑

i=0

`(xi, ui, r) + Vf(xN , r).

The terminal cost is determined as follows:

Vf(x, r) :=

kf(x)
∑

j=1

`(xj, ue, r) ∀x ∈ Xf

with kf(x) defined as in the proof of Theorem 4.2.2 (i) and xj = φ(j;x, κf). Typically Xf ⊆ {x :
x ≤ a} (see e.g. Remark 4.3.6) and then an upper bound on kf(x) is kf(a), where kf(a) can be
determined as in the proof of Theorem 4.2.2. Note that for the stage cost (4.33) we do not have
a terminal cost, i.e. Vf(x, r) = 0 for all x ∈ Xf . For consistency with the previous chapter the
reader should note that r = xe at each event step k and we drop out the dependence on xe of V 0

N ,
etc for simplicity in notation.

The optimal control problem (4.34) yields an optimal control sequence u0
N(x) =

[(u0
0(x))

T (u0
1(x))

T · · · (u0
N−1(x))

T ]T and an optimal state trajectory x0 = [xT (x0
1)

T · · · (x0
N)T ]T .

The first control u0
0(x) is applied to the system (4.11)–(4.12) (at step k) according to the receding

horizon principle. This defines an implicit MPC law κN(x) := u0
0(x). Let XN denote the set of

finite initial states for which a feasible input sequence exists, i.e.

XN := {x ∈ R
n : ΠN(x) 6= ∅}.
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4.3.2 Positively invariant (PI) sets for MPL systems

In this section we introduce the notion of PI set for a discrete event MPL system and we derive
sufficient conditions that allow us to determine efficiently the maximal PI set. We consider the
following closed-loop MPL system:

x(k + 1) = A⊗ x(k)⊕B ⊗ κf(x(k)), y(k) = C ⊗ x(k). (4.35)

We have seen in Theorem 4.2.2 that the set Xe = {xe} is finitely stable with respect to (4.35)
with a region of attraction R

n. Recall that κf(x) = ue for all x ∈ R
n.

We define the input-state admissible set associated to the closed-loop system (4.35):

O0 := {x ∈ R
n : Hx+Gue ≤ h}. (4.36)

We want to compute the maximal PI set contained in the input-state admissible setO0. Therefore,
we define recursively the sets :

Ok := {x ∈ O0 : fMPL(x, κf(x)) ∈ Ok−1} (4.37)

for all k ≥ 1. It is trivial to see that Ok ⊆ Ok−1 ⊆ · · · ⊆ O1 ⊆ O0. Then, the limit of Ok exists
and we have

O∞ :=
⋂

k≥0

Ok = lim
k→∞
Ok. (4.38)

By induction we can prove that xe ∈ Ok for all k ≥ 0 and thus xe ∈ O∞, i.e. O∞ is a non-empty
set.

Lemma 4.3.2 Suppose assumptions A3 and A4 hold. Then, the setsOk are polyhedra described
by

Ok = {x ∈ R
n : Skx ≤ νk} (4.39)

for some matrix Sk ≥ 0 and vector νk.

Proof : For k = 0 the statement holds according to assumption A4 (S0 = H and ν0 = h−Gue).
Let us assume that Ok−1 = {x ∈ R

n : Sk−1x ≤ νk−1}, with Sk−1 ≥ 0 and we prove that Ok has
a similar form. Since A⊗ x⊕B ⊗ ue is a max expression in x, it is straightforward to show that
the inequality Sk−1fMPL(x, κf(x)) = Sk−1(A⊗x⊕B⊗ue) ≤ νk−1 can be rewritten in the form
S̄kx ≤ ν̄k, with S̄k ≥ 0. Then, Sk = [ST

k−1 S̄
T
k ]T ≥ 0 and νk = [νT

k−1 ν̄
T
k ]T . ♦

From the previous lemma it is clear that the set O∞ is convex (it is a countable intersection of
polyhedral sets). We derive now conditions when O∞ is a polyhedron.

Definition 4.3.3 The set O∞ is finitely determined if there exists a finite positive integer t∗ such
that O∞ = Ot∗ . ♦

Proposition 4.3.4 (i) If there exists a finite positive integer t∗ such that Ot∗ = Ot∗+1, then O∞
is finitely determined and thus a polyhedral set.

(ii) The set O∞ is the maximal PI set for (4.35) contained in O0.
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Proof : (i) Let us assume that there exists a t∗ such that Ot∗ = Ot∗+1. It is obvious that Ot∗+2 ⊆
Ot∗+1. Moreover, for any x ∈ Ot∗+1 it follows that fMPL(x, κf(x)) ∈ Ot∗ = Ot∗+1, i.e. x ∈
Ot∗+2. In conclusion, Ot∗+1 ⊆ Ot∗+2 and thus Ot∗+2 = Ot∗+1 = Ot∗ . Iterating this procedure
and using (4.38) we conclude that O∞ = Ot∗ . Since Ot∗ is a polyhedron it follows that O∞ is
also a polyhedron.

(ii) Let O ⊆ O0 be a PI set for (4.35) and let x ∈ O. Then from the definition of a PI set
we have S0fMPL(x, κf(x)) ≤ ν0. This implies that x ∈ O1 (according to the recursion (4.37)).
Therefore, O ⊆ O1. By iterating this procedure we obtain that O ⊆ Ok for all k ≥ 0. In
conclusion, for any PI set O it follows that O ⊆ O∞ and thus O∞ is maximal. ♦

From Proposition 4.3.4 we have obtained that if O∞ is finitely determined, then O∞ is a
polyhedron of the form O∞ = {x ∈ R

n : S∞x ≤ ν∞}, where S∞ ≥ 0. Now, we give sufficient
conditions under which the set O∞ is finitely determined. Note that the recursive relation (4.37)
can be written equivalently as:

Ok = {x ∈ Ok−1 : Hφ(k;x, κf) +Gue ≤ h}, (4.40)

where explicitly φ(k;x, κf) = A⊗
k ⊗ x⊕ A⊗

k−1 ⊗B ⊗ ue ⊕ · · · ⊕B ⊗ ue.

Theorem 4.3.5 Suppose that there exists a finite positive integer t0 and a vector a ∈ R
n such that

Ot0 ⊆ {x ∈ R
n : x ≤ a}, and assumptions A3 and A4 hold. Then, O∞ is finitely determined.

Proof : Since Aij < 0 for all i, j, it follows that for all x ∈ R
n: A⊗

k ⊗ x → ε as k → ∞.
Moreover, for any b ∈ R

n we have: b ⊕ A ⊗ b ⊕ · · · ⊕ A⊗
k+n ⊗ b = A∗ ⊗ b for all k ≥ 0.

Since xe = A∗ ⊗ B ⊗ ue is finite, there exists a finite positive integer t∗ ≥ max{n, t0} such that
A⊗

k ⊗ a ≤ xe for all k ≥ t∗. We now show that Ot∗ = Ot∗+1. Since Ot∗+1 ⊆ Ot∗ , to complete
the proof we now show that the other inclusion is also valid, i.e. Ot∗ ⊆ Ot∗+1.

Let x ∈ Ot∗ ⊆ Ot0 ⊆ {x ∈ R
n : x ≤ a}. Then, A⊗

t∗+1 ⊗ x ≤ A⊗
t∗+1 ⊗ a ≤ xe. It follows

that: H(A⊗
t∗+1 ⊗ x ⊕ A⊗

t∗ ⊗ B ⊗ ue ⊕ · · · ⊕ B ⊗ ue) = H(A⊗
t∗+1 ⊗ x ⊕ A∗ ⊗ B ⊗ ue) =

Hxe ≤ h−Gue, i.e. x ∈ Ot∗+1. The rest follows from Proposition 4.3.4. ♦

Remark 4.3.6 It is often the case (see the constraints (3.9)) that the set O0 can be written as
O0 = {x ∈ R

n : xi ≤ a0
i , for i ∈ N[1,n]}, where a0

i is either a finite number or +∞ (when there
are no restrictions on xi). Then, we can prove that all the setsOk can be written in a similar form
Ok = {x ∈ R

n : xi ≤ ak
i ∀i ∈ N[1,n]}, where ak

i is either a finite number or +∞ (i.e. every Ok

is described by at most n inequalities).
We prove this by induction. For k = 0 this statement is true. Let us assume that Ok =

{x ∈ R
n : xi ≤ ak

i ∀i ∈ N[1,n]} and we prove that Ok+1 has a similar form. We denote with
ak = [ak

1 · · · ak
n]T . From the recursive relation (4.37) we have:

Ok+1 = {x ∈ R
n : x ≤ ak, A⊗ x ≤ ak}

= {x ∈ R
n : x ≤ ak, x ≤ (−AT )⊗′ ak} = {x ∈ R

n : x ≤ ak+1},

where ak+1 = min{ak, (−AT )⊗′ak}. We conclude thatO∞ is described by at most n inequalities
and in fact O∞ = {x ∈ R

n : x ≤ a∞}, where a∞i is either in R or equal to +∞ for all
i ∈ N[1,n]. ♦

Note that the results obtained in this section concerning the maximal PI set O∞ for the MPL
system (4.35) are similar to the ones obtained in [57] for conventional, time-driven linear sys-
tems.
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4.3.3 Constrained MPC: closed-loop stability
The main advantage of MPC is that it can accommodate constraints on inputs and states. In this
section it is assumed that the PI set O∞ = {x ∈ R

n : S∞x ≤ ν∞} is available, where S∞ ≥ 0.
We also recall that assumptions A3 and A4 hold in the rest of this chapter.

The following theorem is a simple extension of Corollary C.1.4 given in Appendix C from
an equilibrium point to a PI set Xe.

Theorem 4.3.7 Let V be a function defined on a PI set X for the closed-loop system (4.6)–(4.7)
satisfying the following properties:

(i) V (x) = 0 for all x ∈ Xe, where Xe is a PI set for (4.6)–(4.7) satisfying Xe ⊆ int(X)
and V is continuous on a neighborhood of Xe.

(ii) V (x) ≥ α(d∞(x,Xe)) for all x ∈ X , where α is a K function.
(iii) V (fMPL(x, κ(x))− V (x) ≤ −β(d∞(x,Xe)) for all x ∈ X , where β is a K function.
Then, Xe is asymptotically stable with respect to the closed-loop system (4.6)–(4.7) with a

region of attraction X . ♦

Here, a neighborhood of a set Xe is defined as N (Xe, δ) := {x : d∞(x,Xe) < δ}.
We define the terminal set

Xf := O∞.

The next theorem shows that the closed-loop system obtained from applying to the MPL
system the feedback law derived in Section 4.3.1 enjoys some stabilizing properties.

Theorem 4.3.8 Suppose that Xe ⊆ int(XN) and assumptions A3 and A4 hold.
(i) The set Xe is asymptotically stable for the closed-loop system (4.15)–(4.16) with a region

of attraction XN .
(ii) If there exists an a ∈ R

n such that Xe ⊆ {x ∈ R
n : x ≤ a}, then for each x ∈ XN the

closed-loop state trajectory of the system (4.15)–(4.16) is bounded.

Proof : (i) We consider the function V 0
N : XN → R. We will show that V 0

N satisfies the condi-
tions from Theorem 4.3.7.

First note that the terminal set Xf = O∞ and the local controller κf(x) = ue for all
x ∈ Xf satisfy the conditions F1–F3 from Section 2.3.2. From Theorem 2.3.4 it follows
that the set XN is PI for the closed-loop system (4.15). As a consequence we have that for
any initial state x ∈ XN we can guarantee feasibility of the MPC-MPL optimization prob-
lem (4.34) at each step. Note that at the next step a feasible input sequence is given by
uf = [(u0

1(x))
T · · · (u0

N−1(x))
T κf(x

0
N)]T .

From the properties of the stage cost P1–P2, convexity of the function fMPL and linearity
of the constraints we can easily see that the first two conditions from Theorem 4.3.7 are satisfied
by V 0

N (in particular continuity of V 0
N for the stage cost (4.31) follows from (4.20) while for the

stage costs (4.32) and (4.33) continuity of V 0
N follows from multi-parametric linear programming

arguments). It remains to prove the third condition:

V 0
N(fMPL(x, κN(x)))− V 0

N(x) ≤ VN(fMPL(x, κN(x)), r,uf)− V 0
N(x) =

− `(x, κN(x), r) ≤ −α(d∞(x,Xe)) (4.41)

according to the property P2 of the stage cost. We obtain that the conditions from Theorem 4.3.7
are satisfied. Therefore, Xe is asymptotically stable for (4.15)–(4.16) with a region of attraction
XN .
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(ii) For any finite initial state x ∈ XN , from (4.41) it follows that the sequence
{V 0

N(φ(k;x, κN))}k≥0 is non-increasing and bounded from below and thus convergent. More-
over, `(φ(k;x, κN), κN(φ(k;x, κN)), r) ≤ V 0

N(φ(k;x, κN )) − V 0
N(φ(k + 1;x, κN )). Therefore,

limk→∞ `(φ(k;x, κN), κN(φ(k;x, κN )), r) = 0. Using continuity arguments and the property
P1 of the stage cost we conclude that

lim
k→∞

κN(φ(k;x, κN)) = ue (4.42)

lim
k→∞

d∞(φ(k;x, κN), Xe) = 0. (4.43)

Since the system is controllable and observable (according to assumption A3), we can-
not have finite escape, i.e. there does not exist a finite k0 such that either φ(k0;x, κN ) or
κN(φ(k0;x, κN )) or y(k0) = C ⊗ φ(k0;x, κN ) take infinite values. From (4.43) it follows that
the sequence {d∞(φ(k;x, κN), Xe)}k≥0 is bounded for each finite initial state x ∈ XN . If the
set Xe is bounded (e.g. Xe = {xe} in (4.31)), then ‖φ(k;x, κN ) − xe‖∞ is also bounded for all
k ≥ 0 (it follows from triangle inequality) and therefore the buffer levels remain bounded.

If Xe is not bounded, then from (4.42) we conclude that for any finite initial state x ∈ XN

there exists a finite lower bound u(x) such that κN(φ(k;x, κN)) ≥ u(x) for all k ≥ 0. From the
monotonicity property of the max operator (3.7) it follows that there exists a finite lower bound5

on the corresponding state trajectory φ(k;x, κN) ≥ m(x) for all k ≥ 0. Since Xe ⊆ {x ∈
R

n : x ≤ a}, it follows that the set Xe ∩ {z : z ≥ m(x)} is bounded and then using the same
arguments as before we conclude that ‖φ(k;x, κN)− xe‖∞ is also bounded for all k ≥ 0 and so
the buffer levels remain bounded. ♦

Remark 4.3.9 (i) For the constraints (4.29), H ≥ 0, and for the terminal set Xf , S∞ ≥ 0, it
follows that ΠN(x) and XN are polyhedra (according to Section 3.2.2). From Lemma 4.3.1 it
follows that the stage costs (4.32) and (4.33) satisfy assumption A2 and thus the optimization
problem (4.34) can be recast as a linear program (according to Theorem 3.2.2). For the stage
cost (4.31) the optimization problem (4.34) can be recast as a mixed-integer linear program.

(ii) If Xe ⊂ int(Xf) then from (4.43) it follows that the trajectory enters the terminal set Xf

in a finite number of steps. Inside Xf , we can use the feasible local controller κf(x) = ue (since
Xf is a PI set for the system (4.35)) and so we can steer the trajectory towards the equilibrium
xe in finite number of steps as well (see Theorem 4.2.2). In conclusion, using such a dual-mode
approach [105], we can guarantee that for any finite initial state x ∈ XN the trajectory reaches
the steady-state in finite number of steps.

(iii) Note that by increasing the prediction horizon N , the region of attraction increases as
well, i.e. for N1 < N2 it follows that XN1 ⊆ XN2 . Indeed, let x ∈ XN1 , then there exists a fea-
sible u = [uT

0 · · · uT
N1−1]

T ∈ ΠN1(x) and we can construct uf = [uT
0 · · · uT

N1−1 uT
e · · · uT

e
︸ ︷︷ ︸

N2−N1 times

]T ∈

ΠN2(x) and thus x ∈ XN2 . ♦

4.3.4 Output regulation
For a given set Ye such that ye := C ⊗ xe ∈ Ye, we define a stage cost `(x, u, r), where now
r = yt, with the following properties:
P1′: `(x, u, r) = 0 if and only if C ⊗ x ∈ Ye and u = ue.
P2′: `(x, u, r) ≥ α(d∞(y, Ye)) for all y = C ⊗ x, where α is a K function.

5m(x) := A∗ ⊗ x⊕A∗ ⊗B ⊗ u(x) which is a finite vector since A∗ exists and Γn is row-finite.
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Examples of such stage costs are (see [45] for more examples):

`(x, u, r) = ‖y − ye‖∞ + γ‖u− ue‖∞ (4.44)
`(x, u, r) = max

j∈N[1,m]

{yj − [yt]j, 0}+ γ‖u− ue‖∞ (4.45)

`(x, u, r) =
m∑

j=1

max{yj − [yt]j, 0}+ γ‖u− ue‖∞, (4.46)

where γ > 0 and y = C⊗x. Note that for the stage cost (4.44) Ye = {ye} and for (4.45) or (4.46)
Ye = {y : y ≤ yt}. In the stage cost (4.44) the first term penalizes the deviation from the due
dates while in the stage costs (4.45)–(4.46) the first term penalizes the tardiness with respect to
the due dates. The second term in these stage costs penalizes the deviation from the equilibrium
input ue. It is clear that now r = yt.

We obtain the following consequence:

Corollary 4.3.10 Suppose assumptions A3 and A4 hold and there exists a b ∈ R
p such that

Ye ⊆ {y ∈ R
p : y ≤ b}. Then, using as stage cost in the optimal control problem (4.34) one

satisfying P1′−P2′ we obtain an MPC law κN for which the corresponding closed-loop buffers
are bounded.

Proof : With the same arguments as in the proof of Theorem 4.3.8 it follows that

lim
k→∞

κN(φ(k;x, κN)) = ue

lim
k→∞

d∞(C ⊗ φ(k;x, κN ), Ye) = 0

and that ‖φ(k;x, κN )−xe‖∞ is bounded for all k ≥ 0 and thus the buffer levels remain bounded
for any finite initial state x ∈ XN . ♦

Note that the stage costs (4.45)–(4.46) satisfy assumption A2 and thus the corresponding opti-
mization problem (4.34) can be recast as a linear program (according to Theorem 3.2.2). For the
stage cost (4.44) the optimization problem (4.34) can be recast as a mixed-integer linear program.

4.3.5 Example: production system

Consider the production system of Figure 2.1 with the dynamical equations (2.5):

x̄(k + 1) =





1 ε ε
2 2 ε
5 4 2



⊗ x̄(k)⊕





1
2
5



⊗ ū(k), ȳ(k) = [ε ε 2]⊗ x̄(k).

For this example the largest max-plus eigenvalue of the system matrix Ā is λ∗ = 2. We
consider the reference signal for the output r(k) = 5 + 1.5λ∗k (i.e. ρ = 1.5λ∗). The initial
conditions are x̄(0) = [9 13 14]T and ū(−1) = 6. We take the following constraints:

ū(k)− ū(k + 1) ≤ 0 (4.47)
x̄2(k)− ū(k) ≤ 2.5 (4.48)
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We now apply MPC. We choose the prediction horizon N = 10. We consider the stage cost
(4.46) and we apply the MPC approach of Section 4.3.4. In this case the MPC optimization prob-
lem (4.34) can be recast as a linear program. The normalized system, obtained from extending
the state as in Section 3.1.2 and normalization as in Section 4.1.2, becomes:

x(k + 1)=







−2 ε ε −3
−1 −1 ε −2
−1 −2 −1 −2
ε ε ε −3






⊗x(k)⊕







0
1
1
0






⊗u(k), y(k)=[ε ε 6 ε]⊗x(k).

For the normalized system the PI set O∞ is determined after 4 iterations:

O∞ = O4 = {x ∈ R
4
ε : I4x ≤ [0.5 − 0.5 0 − 2]T}.

We solve the linear program corresponding to (4.34) in a receding horizon fashion. For the
original system the MPC sequence takes the following values:

{κN + ρk}14k=−1 =6, 12.5, 14.5, 16.5, 18.5, 20.5, 22.5, 24.5, 26.5, 28.5,

30.5, 32.5, 34.5, 37, 40, 43.

The results of the closed-loop simulations are displayed in Figure 4.2. We observe from
the first plot that although we start later than the initial due date the closed-loop output is able
to track the due date signal after a finite transient behavior, i.e. we have closed-loop stability.
The second plot displays the MPC input. We see that the MPC input reaches the steady-state
behavior in a finite number of steps and that it is nondecreasing. The input-state constraints
(4.48) are depicted in the third plot. Note that the MPC keeps the system behavior as close as
possible to the constraints.

Let us now compare our MPC method with some other control design methods found in
the literature. The max-plus control approaches proposed in [4, 36, 94, 102, 107] typically in-
volve an open-loop optimal control problem over a simulation horizon and for a given due
date signal r such that the output y of the system must satisfy y ≤ r. The solution of this
optimal control problem is computed using residuation, resulting in a just-in-time control in-
put. The main disadvantage of these approaches is that it cannot cope with tracking prob-
lems where the outputs do not occur before the due dates and that the resulting control in-
put sequence is sometimes decreasing, i.e. the constraint (4.47) might be violated. For in-
stance, if we apply the method of [94] we get the following just-in-time control sequence
{ū(k)}14k=−1 = 6, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43. This sequence
is not feasible since we have ū(0) = 1 < ū(−1) = 6, i.e. the constraint (4.47) is violated.
This infeasibility is caused by the fact that the optimal input aims to fulfill the constraint y ≤ r,
which cannot be met using a nondecreasing input sequence. So, other control design methods
that also include this constraint such as [4, 36, 102, 107] would also yield a non-increasing – and
thus infeasible – input sequence. However, the MPC approach can cope with this constraint.

These issues are overcome in [109] by considering a residuation-based adaptive control that
results in nondecreasing input sequences and allows violations of the due dates. However, the
approach in [109] cannot cope with more complex state and input constraints, such as (4.48).
For instance, using the adaptive control approach of [109] we obtain the following optimal input
sequence {ū(k)}14k=−1 = 6, 6, 6, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43. Note that
applying this control the constraint (4.48) is violated (e.g. x̄(0)− ū(0) = 9 6≤ 2.5).

The MPC approach of [45] can cope with state–input constraints. However, this approach
cannot guarantee a priori stability of the closed-loop system. Note that stability is really an issue
when designing controllers for MPL systems, as we have seen in Example 4.2.5.
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Figure 4.2: The closed-loop MPC simulations: constrained case.

4.4 Robust MPC for constrained MPL systems
In this section we propose a robustly stable MPC scheme for uncertain MPL systems based on
solving one of the min-max control problems studied in Section 3.3. We consider the uncertain
MPL system:

x̄(k + 1) = Ā(w(k − 1), w(k))⊗ x̄(k)⊕ B̄(w(k − 1), w(k))⊗ ū(k)
ȳ(k) = C̄(w(k − 1))⊗ x̄(k).

Recall that the largest eigenvalue λ∗ of a matrix A gives also the maximum growth rate of the
system z(k + 1) = A ⊗ z(k). We introduce the notion of worst-case growth rate (according to
(3.5)):

λ∗W = max
j∈N[1,n]

max
wj∈W j+1

max
((i1i2)···(iji1))

(Āi1i2(w0, w1) + · · ·+ Āiji1(wj−1, wj))/j,

where wj = [wT
0 wT

1 · · ·wT
j ]T . Since Āij ∈ Fmps, the maximum6 is attained in a vertex of

W j+1 for some j ∈ N[1,n]. We still assume that the slope of the reference signal (4.2) satisfies
Assumption A3, i.e. ρ > λ∗

W .
We now consider a normalized uncertain MPL system obtained by subtracting in the con-

ventional algebra from all entries of x̄, ū, ȳ and of Ā the values ρk and ρ, respectively, i.e.
x(k) ← x̄(k) − ρk, u(k) ← ū(k) − ρk, y(k) ← ȳ(k) − ρk, A(wp, wc) ← Ā(wp, wc) − ρ
and B(wp, wc)← B̄(wp, wc), C(wp)← C̄(wp):

x(k + 1) = A(w(k − 1), w(k))⊗ x(k)⊕B(w(k − 1), w(k))⊗ u(k)
y(k) = C(w(k − 1))⊗ x(k). (4.49)

6We used the fact that the maximum of a convex function over a polytope is attained in a vertex of the polytope
[144].
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We also consider a nominal value of the disturbance wn and the corresponding nominal sys-
tem is denoted with xn(k + 1) = An ⊗ xn(k) ⊕ Bn ⊗ un(k), yn(k) = Cn ⊗ xn(k) (where
An := A(wn, wn), Bn := B(wn, wn) and Cn := C(wn)). Let (xe, ue) be a finite equilibrium pair
corresponding to the nominal system and to the desired target yt, satisfying also the state-input
constraints (4.29). It can be determined as the solution of the linear program (4.30).

Remark 4.4.1 Recall that κf(x) = ue for all x ∈ R
n. From Theorem 4.2.2 (i) it follows

that the set {xe} is asymptotically stable with respect to the closed-loop system xn(k + 1) =
An ⊗ xn(k) ⊕ Bn ⊗ κf(xn(k)). Moreover, the closed-loop state trajectory is bounded for any
finite initial condition. ♦

4.4.1 Robustly positively invariant (RPI) sets for uncertain MPL systems

We consider the normalized closed-loop system:

x(k + 1) = A(w(k − 1), w(k))⊗ x(k)⊕B(w(k − 1), w(k))⊗ κf(x(k))
y(k) = C(w(k − 1))⊗ x(k) (4.50)

subject to the state-input constraints

Hx(k) +Gu(k) ≤ h, (4.51)

where H ≥ 0 and thus the constraints (4.51) satisfy assumption A4.

Definition 4.4.2 [82] A set Z ⊆ {x : Hx + Gue ≤ h} is a robustly positively invariant (RPI)
set for the system (4.50) if for all initial states x ∈ Z the subsequent state trajectories remain in
Z for all possible disturbances. The maximal (minimal) RPI set for the system (4.50) is defined
as the largest (smallest, non-empty) with respect to inclusion RPI set for (4.50) contained in
{x : Hx+Gue ≤ h}. ♦

Recall that fMPL(x, u, wp, wc) = A(wp, wc) ⊗ x ⊕ B(wp, wc) ⊗ u. The maximal RPI set is
computed iteratively as follows [82]: define

O0 = {x : Hx+Gue ≤ h}

and recursively

Ok = {x ∈ O0 : fMPL(x, ue, wp, wc) ∈ Ok−1, ∀wp, wc ∈ W}.

It is trivial to see that Ok ⊆ Ok−1 ⊆ · · · ⊆ O1 ⊆ O0 for all k ≥ 1. Therefore, the limit of Ok

exists and we have
O∞ =

⋂

k≥0

Ok = lim
k→∞
Ok.

Using similar arguments as in Lemma 4.3.2 (note that H ≥ 0) it is easy to prove that Ok is a
polyhedral set having the form Ok = {x : Tkx ≤ τk}, where the matrix Tk ≥ 0. Moreover, if
there exists a t∗ such that Ot∗ = Ot∗+1 then O∞ = Ot∗ . In this case it follows that O∞ = {x ∈
R

n : T∞x ≤ τ∞}, where T∞ ≥ 0.
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4.4.2 Min-max MPC for MPL systems: closed-loop stability
We assume that the polyhedral RPI set O∞ is available, where T∞ ≥ 0. Before proceeding
to derive sufficient conditions for robust stability of an uncertain MPL system we recall some
definitions (see Section 2.3.3). Let κ be a state feedback law and consider the closed-loop system

x(k + 1) = A(w(k − 1), w(k))⊗ x(k)⊕B(w(k − 1), w(k))⊗ κ(x(k)) (4.52)
y(k) = C(w(k − 1), w(k))⊗ x(k). (4.53)

Let φ(k;x,w, κ,w) denote the state solution of (4.52) at event step k when the initial state is x,
the initial disturbance w, w is a realization of the disturbance signal and the feedback law κ is
employed. We now introduce the notion of robust stability for the class of discrete event MPL
systems with disturbances (see also Section 2.3.3).

Definition 4.4.3 The RPI set Xf is robustly stable with respect to the closed-loop system
(4.52)–(4.53) if for all ε > 0 there exists a δ > 0 such that d∞(x,Xf) ≤ δ implies
d∞(φ(k;x,w, κ,w), Xf) ≤ ε for all k ≥ 0 and all admissible disturbance sequences (w,w).

If d∞(φ(k;x, κ,w), Xf)→ 0 as k →∞ for all admissible disturbance sequences (w,w) and
for all x ∈ X , then the set Xf is robustly asymptotically attractive with a region of attraction X
with respect to the system (4.52)–(4.53).

When both conditions are satisfied we refer to Xf as robustly asymptotically stable with
respect to the system (4.52)–(4.53) with a region of attraction X . ♦

In this section we consider the following stage cost:

`(x, u, r) = d∞(x,Xf) + γ‖ue − u‖∞, (4.54)

where now r = yt, Xf := O∞, and γ > 0. Usually Xf = {x : x ≤ a∞} and then from Lemma
4.3.1 it follows that in the context of DES the stage cost has the following significance: the first
term expresses the tardiness with respect to a∞ while the second term penalizes the deviations
of the feeding times from the input equilibrium ue. A similar stage cost was proposed in [80]
in the context of min-max MPC for uncertain linear systems. From Lemma 4.3.1 it follows that
this stage cost satisfies assumption A2. Note that in this case r is fixed for all k ≥ 0, i.e. r = yt

at each step k, where we recall that yt = [yT
t yT

t · · · yT
t ]T . Therefore, we can omit r.

The MPC formulation of the min-max optimal control problems discussed in Section 3.3 is
as follows: at event triple (k, x, w) (i.e. for x(k) = x, w(k − 1) = w) we consider

V 0
N(x,w) = inf

π∈ΠN (x,w)
max
w∈W

VN(x,w, π,w), (4.55)

where ΠN(x,w) = {π : Hxi + Gui ≤ h ∀i ∈ N[0,N−1], xN ∈ Xf} and π is either the
open-loop input sequence u (Section 3.3.2) or the disturbance feedback policy (M, v) (Sec-
tion 3.3.3) or the state feedback policy (µ0, µ1, · · · , µN−1) (Section 3.3.4). Let π0(x,w) =
(µ0

0(x,w), µ0
1(x,w), · · · , µ0

N−1(x,w)) be the optimal solution at step k (µ0
i are either vectors

or control laws) and x0(w) = [xT (x0
1(w))T · · · (x0

N(w))T ]T be the optimal state trajectory for
a certain realization of the disturbance w. Then, only the first control in this sequence (i.e.
κN(x,w) := µ0

0(x,w)) is applied to the uncertain MPL system at step k. Since assumptions A1
and A2 hold in this particular case (H ≥ 0 according to A4, T∞ ≥ 0 and ` in (4.54) satisfies
assumption A2 according to Lemma 4.3.1), the solution to the min-max problem (4.55) can be
obtained by solving either a linear program or N parametric linear programs. Note that with
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some abuse of terminology we use the term “MPC” even when we optimize over state feedback
policies in (4.55) and thus the solution is computed off-line via multi-parametric linear program-
ming.

The next theorem summarizes the main properties of this min-max MPC scheme.

Theorem 4.4.4 The open-loop controller, the disturbance feedback controller and the state feed-
back controller obtained from (4.55), applied to the normalized system in a receding horizon
fashion, make the set Xf robustly asymptotically stable with respect to the closed-loop system
(4.52) (where now κ = κN ) and having a region of attraction XN , where XN is either Xol

N or
Xdf

N or Xsf
N , respectively.

Proof : Feasibility: Suppose that (x,w) ∈ XN . The MPC input u = κN(x,w) steers x to
x0

1(w) and the disturbance takes a certain value w+. Since Xf is an RPI set and since the final
state x0

N(w) ∈ Xf for all w ∈ W , a feasible solution for (4.55) at the next step is given by
πf = (µ0

1(x,w), · · · , µ0
N−1(x,w), κf(x

0
N(w))).

Robustly asymptotically stable: From the first part of the proof it follows that 0 ≤
V 0

N(x0
1(w), w+) ≤ VN(x0

1(w), w+, πf ,w) ≤ V 0
N(x,w) − `(x, κN(x,w), r) for all w ∈ W . We

conclude that `(φ(k;x,w, κN ,w), κN(φ(k;x,w, κN ,w), w), r) → 0 as k → ∞. From (4.54) it
follows that

d∞(φ(k;x,w, κN ,w), Xf)→ 0, κN(φ(k;x,w, κN ,w), w)→ ue as k →∞, (4.56)

i.e. Xf is robustly asymptotically attractive with domain of attraction XN . Robust stability
follows from the fact that the conditions F1w −F3w and S1w from Section 2.3.3 are verified in
this case for Xf = O∞, κf(x) = ue and the stage cost ` defined in (4.54). Note that `(x, u, r) ≥
α(d∞(x,Xf)) for all x, where α is a K function and `(x, u, r) = 0 for all x ∈ Xf , u = ue. ♦

4.4.3 Example: production system with disturbances
Let us consider again the production system from Figure 2.1. In Example 2.2.1 or in Section
4.3.5 we have assumed that the processing and transportation times are fixed. We now assume
that the parameters p1, p2, t2, t4 and t6 are fixed at each cycle, taking the values p1 = 1, p2 =
1, t2 = 1, t4 = 3 and t6 = 0, while the rest of the parameters are varying with each cycle:
p3(k) ∈ [1.5 2.5], t1(k) ∈ [0 2], t3(k) ∈ [0 1] and t5(k) ∈ [0 1] for all k ≥ 0. We define the
uncertainty as w(k) = [p3(k − 1) t1(k) t3(k) t5(k)]. Then, the uncertainty set is described by
the following box W = [1.5 2.5] × [0 2] × [0 1] × [0 1]. Moreover, the dynamical equations
of the process (3.39) can be written in matrix form as in (3.82). There exists a feasible value of
the uncertainty w = [2.5 2 1 1] ∈ W for which the inequalities (3.83) hold. We assume the
following constraints

ū(k)− ū(k + 1) ≤ 0 (4.57)
x̄2(k)− ū(k) ≤ 5. (4.58)

We can easily remark that the conditions from Theorem 3.4.2 are fulfilled and that the corre-
sponding deterministic system is given by

x(k+1)=





1 ε ε
3 1 ε
5 3 2.5



⊗x(k)⊕





2
4
6



⊗u(k), y(k) = [ε ε 2.5]⊗x(k). (4.59)
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Figure 4.3: Robust MPC: closed-loop simulations.

We choose the following reference signal r(k) = 5 + 1.5λ∗k (i.e. ρ = 1.5λ∗, where λ∗ = 2.5),
the prediction horizon N = 8 and the initial conditions are x̄(0) = [13 14.5 17] and ū(−1) = 6.
Note that by extending the state as in Section 3.1.2 the constraint (4.57) is automatically satisfied.
We obtain the following expression for Xf : Xf = {x ∈ R

4 : I4x ≤ [1.75 0.5 5.5 − 3.5]T}.
Therefore, the optimization problem (4.55) corresponding to one of the optimal control problems
P

ol
N (Section 3.3.2) or P

df
N (Section 3.3.3) or P

sf
N (Section 3.3.4) are reduced to the deterministic

optimal control problem P
upper
N (i.e. (3.88) from Section 3.4.2) associated to the deterministic

system (4.59).
Using the stage cost defined in (4.54) with γ = 0.1, the deterministic optimal control problem

(3.88) applied in a receding horizon fashion yields the following optimal input sequence: {κN +
ρk}10k=−1 = 6, 11, 12, 13, 14, 15.2, 19, 22.7, 26.5, 30.2, 34, 37.7. The results are displayed
in Figure 4.3 using a feasible sequence of random disturbances.

We observe from the first plot that although we start later than the initial due date, the closed-
loop output is able to track the due dates signal after a finite transient behavior. The second plot
displays the MPC input. The input-state constraint (4.58) are depicted in the third plot. Note that
sometimes the constraints are active.

Let us now compare our method with some other control design methods found in the
literature. The adaptive control approach proposed in [109] has the most features in com-
mon with our approach in the sense that the approach of [109] allows violations of the due
dates and tries to minimize this violations by updating the model at each step of the computa-
tion of the optimal control sequence. However, the approach in [109] cannot cope with state
and input constraints. For instance, using the same disturbance realization as in our method
and the adaptive control approach of [109] we obtain the following optimal input sequence
{ū(k)}10k=−1 = 6, 6, 6.3, 8.8, 12.7, 17.3, 21.3, 25, 28.1, 31.6, 35.4, 39.2. Note that
x̄2(0) − ū(0) = 9.5 6≤ 5. In [155] an open-loop min-max MPC scheme is derived using only
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input constraints and without guaranteeing a priori robust stability. However, the extension to
mixed input and state constraints is straightforward according to Section 3.3.2. Moreover, from
Section 3.3.2 we see that the optimal input sequence can be found without having to resort to
computations of vertexes of W , as was done in [155] and stability is guaranteed a priori. Note
that in this particular example, the open-loop approach discussed in Section 3.3.2 is equivalent
with the state feedback approach derived in Section 3.3.4. However, from Example 3.3.6 we see
that the state feedback approach outperforms the open-loop approach, in general.

4.5 MPC for switching MPL systems
As discussed previously, the class of MPL systems can only characterize synchronization and
no concurrency or choice. However, the switching MPL framework allows us to break syn-
chronization and to change the order of events. We recall from Section 2.2.2 or from the pa-
pers [156, 157, 159] that switching MPL systems are DES that can switch between different
modes of operation. In each mode the switching MPL system is described by an MPL state
equation with different system matrices for each mode:

x̄(k + 1) = Āi ⊗ x̄(k)⊕ B̄i ⊗ ū(k)
ȳ(k) = C̄i ⊗ x̄(k) if ψ(x̄(k), z(k), ū(k), ν(k)) ∈ Ci, (4.60)

where the switching mechanism is determined by a variable z ∈ R
nz
ε which is given by z(k+1) =

ψ(x̄(k), z(k), ū(k), ν(k)) and i ∈ I. We now provide sufficient conditions for the stability of
switching MPL systems in terms of boundedness of the buffer levels (see also Section 4.1.2).

4.5.1 Sufficient conditions for stability of switching MPL systems

In this section we will concentrate on switching MPL systems with random mode switching, i.e.
we do not take into account any knowledge of the mode switching function ψ. Note that if we are
able to derive a stabilizing controller for a switching MPL system with random mode switching,
the same controller will also be stabilizing if the mode switching is determined by some mode
switching function ψ. A drawback however is that we will ignore the mode control signal ν for
the purpose of control and concentrate fully on controlling the system with input signal u. We
now give the definition for the maximum growth rate of a switching MPL system:

Definition 4.5.1 For the switching MPL system (4.60) the maximum growth rate is defined as
the smallest λ∗ > ε for which there exists an invertible matrix P in max-plus algebra such that
the matrices Ai = P⊗

−1 ⊗ Āi ⊗ P − λ∗ satisfy [Ai]lj ≤ 0 for all l, j ∈ N[1,n] and i ∈ I.

Note that for any switching MPL system the maximum grow rate λ∗ exists and is finite. This fact
is easily verified by noting that for λ′ = max(i∈I;l,j∈N[1,n]){[Āi]lj} and using the max-plus identity
matrix P = E the inequalities from the definition are fulfilled. Therefore, λ∗ ≤ λ′. We can easily
see that λ∗ can be determined by solving a sequence of linear programs. Indeed, from Section
3.1.1 we know that a matrix P ∈ R

n×n
ε is invertible in max-plus algebra if and only if it can be

factorized as P = D ⊗ T , where D = diag(d1, d2, · · · , dn) is a max-plus diagonal matrix with
non-ε diagonal entries (i.e. di 6= ε for all i ∈ N[1,n]) and T ∈ R

n×n
ε is a max-plus permutation

matrix. Note that once a permutation matrix T is fixed, Pij = di if Tij 6= ε and Pij = ε if Tij = ε.
Moreover, P⊗

−1

ij = −dj if Tij 6= ε and P⊗
−1

ij = ε if Tij = ε. In conclusion, once T is fixed, we
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have to solve the following linear program: min(λ,d){λ : P⊗
−1

qk + [Āi]kl + Plj ≤ λ ∀q, k, i, l, j
and d = [d1 · · · dn]T} and thus in order to determine λ∗ we must solve n! linear programs.

We consider the reference signal (4.2). Given a feedback controller κ̄ for the switching
MPL system (4.60), we define stability for the corresponding closed-loop system in terms of
boundedness of the buffer levels (see Remark 4.1.3), i.e. ‖x̄(k) − ρk‖∞, ‖ȳ(k) − ρk‖∞ and
‖ū(k)− ρk‖∞ are bounded for all k ≥ 0.

We make the same change of coordinates as in Section 4.1.2:

x(k)← P⊗
−1 ⊗ x̄(k)− ρk, y(k)← ȳ(k)− ρk, u(k)← ū(k)− ρk.

Then, the system matrices become:

Ai ← P⊗
−1 ⊗ Āi ⊗ P − ρ, Bi ← P⊗

−1 ⊗ B̄i, Ci ← C̄i ⊗ P.

The normalized free switching MPL system is defined as:

x(k + 1) = Ai(k) ⊗ x(k)⊕Bi(k) ⊗ u(k)
y(k) = Ci(k) ⊗ x(k)

i(k + 1) ∈ I,
(4.61)

where i(·) is a switching signal in IN, i.e. any mode i(k) ∈ I can be active at event step k. We
introduce now the definition of controllability for the normalized free switching system (4.61).

Definition 4.5.2 The system (4.61) is controllable if there exists a finite positive integer ñ such
that the matrices

Γ(
i(1),i(2),··· ,i(ñ)

) = [Bi(ñ) Ai(ñ) ⊗Bi(ñ−1) · · · Ai(ñ) ⊗ · · · ⊗ Ai(2) ⊗Bi(1)]

are row-finite for all
(
i(1), i(2), · · · , i(ñ)

)
∈ I ñ.

Observability is defined in a similar fashion, i.e. there exists a finite positive integer ñ such that
the matrices

Υ(
i(1),i(2),··· ,i(ñ)

) = [(Ci(1))
T (Ci(2) ⊗ Ai(1))

T · · · (Ci(ñ) ⊗ Ai(ñ−1) ⊗ · · · ⊗ Ai(1))
T ]T

are column-finite for all
(
i(1), i(2), · · · , i(ñ)

)
∈ I ñ. Note that the controllability property means

that each state is connected to some input, while the observability property means that each state
is connected to some output (see also Definition 4.1.1 of controllability and Definition 4.1.2 of
observability for MPL systems). We consider that the assumption A3 also holds in this section,
i.e. the slope of the reference signal (4.2) still satisfies ρ > λ∗ > ε and the system (4.61) is
controllable and observable.

Since ρ > λ∗, it follows that [Ai]lj < 0 for all l, j ∈ N[1,n] and i ∈ I (according to the
definitions of λ∗ and Ai). Let us consider a feedback controller κ : R

n → R
m for the normalized

free switching system (4.61). If we can show that the corresponding closed-loop state, output and
input trajectories of the normalized free switching system are bounded, then the feedback con-
troller κ(·)+ρk stabilizes the original switching MPL system (4.60). The following lemma gives
sufficient conditions for closed-loop stability of the normalized free switching system (4.61):

Lemma 4.5.3 Suppose that the feedback controller κ is bounded, i.e. κmin ≤ κ(x) ≤ κmax for
all x ∈ R

n, where κmin and κmax are given finite vectors. Then, the closed-loop normalized free
switching system is stable in terms of boundedness of state, input and output trajectories.
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Proof : Let φ(k;x, κ) represent the state solution of (4.61) at event step k when the state at
event step 0 is x and the feedback law κ is employed. Define xmax(k) = maxl∈N[1,n]

{φl(k;x, κ)}
and bmax = max(i∈I;l,j∈N[1,n]){[Bi]lj + (κmax)j}. Since [Ai]lj < 0 for all l, j ∈ N[1,n] and i ∈
I and using the monotonicity property of the max operator (3.7), it follows immediately that
φl(k + 1;x, κ) ≤ max{xmax(k), bmax}. Therefore,

xmax(k + 1) ≤ max{xmax(k), bmax} ≤ max
l∈N[1,n]

{xl, bmax}.

This means that the closed-loop state trajectory {φ(k;x, κ)}k≥0 is bounded from above. From the
controllability assumption and using again the monotonicity property of the max operator (3.7) it
follows that the closed-loop state trajectory {φ(k;x, κ)}k≥0 is also bounded from below. Using
now the observability property of the system, it follows that the corresponding output trajectory
is also bounded. This concludes our proof. ♦

4.5.2 MPC for switching MPL systems: closed-loop stability
We assume that the switching MPL system (4.60) is subject to state and input constraints:

Hkx̄(k) +Gkū(k) + Ḡkν(k) + Fkr(k) ≤ hk,

where we recall that r(k) = yt + ρk. We consider a stage cost `(x, u, ν, r) and we define a cost
function over the prediction horizon N as

VN(x, r,u,ν) =
N−1∑

i=0

`(xi, ui, νi, ri) + Vf(xN , rN ),

where xi denotes the state solution of (4.60) at event step iwhen the initial condition of the state is
x (and thus x0 = x) and the control sequences u = [uT

0 u
T
1 · · · uT

N−1]
T and ν = [νT

0 νT
1 · · · νT

N−1]
T

are employed, r = [rT
0 rT

1 · · · rT
N ]T denotes a reference sequence, and Vf is a terminal cost. The

MPC optimization problem at event pair (k, x̄) (i.e. x̄(k) = x̄) is defined as:

V 0
N(x̄) = inf

(u,ν)∈ΠN (k,x̄)
VN(x̄, [rT (k) · · · rT (k +N)]T ,u,ν), (4.62)

where

ΠN(k, x̄) = {(u,ν) : Hk+ixi +Gk+iui + Ḡk+iνi + Fk+ir(k + i) ≤ hk+i,

κmin ≤ ui − ρ(k + i) ≤ κmax, ∀i ∈ N[0,N−1]}

and κmin, κmax are chosen appropriately.
Let (u0

N(x̄),ν0
N(x̄)) be an optimizer of (4.62). The MPC law is given by κN(x̄) =

(u0
0(x̄), ν

0
0(x̄)). Note that we imposed the stability constraint κmin ≤ ui − ρ(k + i) ≤ κmax.

Then, the next theorem is a straightforward consequence of Lemma 4.5.3:

Theorem 4.5.4 Suppose that the MPC optimization problem (4.62) is feasible at each event step
k. Then, the MPC law κN stabilizes the switching MPL system (4.60) in terms of boundedness
of the closed-loop state, input and output trajectories. ♦
In general, the stage cost ` satisfies ` ∈ Fmps (e.g. the stage cost (3.24) or if a 1-norm or ∞-
norm is used). Moreover, we assume that the switching function ψ is linear. In this case, the
MPC optimization problem (4.62) is a mixed-integer linear program or, as we will see in the
next chapter, the optimal solution can be found by solving a finite set of linear programs.
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4.5.3 Example: production system with concurrency
Consider the production system of Example 2.2.2. The input u is the control variable in this
example (ν is not applicable here). We use the stage cost (3.24), i.e. `(x̄, ū, r) = max{ȳ −
r, 0} − γu, where ȳ = [ε ε ε ε 0] ⊗ x̄ and the terminal cost Vf = 0. The prediction horizon
is N = 3, γ = 0.1 and the initial state is x̄(0) = [4 6 3 7 8]T . Moreover, the maximum
growth rate is λ∗ = 6, we choose the reference signal r(k) = 8 + 6.5k (i.e. ρ = 6.5) and
κmin = −2, κmax = 2. We solve the MPC optimization problem (4.62) as explained above and
we end up with a mixed-integer linear program that has to be solved on-line at each event step k.
We observe in Figure 4.4 that the signal ȳ− r is zero or negative, which means that our products
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Figure 4.4: Due date error for a production system with concurrency

are delivered in time, and the MPC controller is stabilizing.

4.6 Conclusions
We have applied the MPC framework to some special classes of DES: MPL systems and switch-
ing MPL systems. The main goal of this chapter was to provide sufficient conditions that guar-
antee a priori that the MPC based on a finite-horizon optimal control problem discussed in the
previous chapter stabilizes the closed-loop system. We have introduced the notions of stability
in terms of Lyapunov and of PI set for MPL systems together with their main features.

In Section 4.2 we have considered unconstrained MPC for MPL systems and we have derived
tuning rules for the MPC design parameters that guarantee stability of the equilibrium point with
respect to the closed-loop system. The key assumptions that allow us to guarantee stability were
that the growth rate of the due dates be larger than the growth rate of the system and that the cost
function be designed to provide a just-in-time controller.

In Section 4.3 we have extended the MPC framework to the constrained MPL systems. We
have derived an MPC law based on a terminal inequality constraint (obtained from a PI set) and a
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terminal cost approach that guarantee a priori stability for the closed-loop systems and the states
and inputs sequences satisfy a given set of linear inequality constraints. We have extended the
notion of PI set from classical time-driven systems to discrete-event MPL systems and the main
properties have been demonstrated. Moreover, under additional assumptions we have proved that
besides asymptotic stability, stability in terms of boundedness of the state also holds.

We have studied robust stability of the closed-loop MPC corresponding to uncertain MPL
systems in Section 4.4. The main assumptions were that an RPI set is available and it is a
polyhedron and that the stage cost has a certain representation.

Finally, sufficient conditions for guaranteeing stability of the closed-loop MPC correspond-
ing to a switching MPL system have been derived in Section 4.5. We have shown that under
the controllability and observability assumptions the boundedness of the MPC controller guar-
antees also boundedness of the closed-loop state trajectory. Each section is accompanied by an
illustrative example.
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Chapter 5

Model predictive control for uncertain
max-min-plus-scaling systems

In the previous two chapters we have studied optimal control and in particular MPC for MPL
systems. We have seen that MPL systems model discrete event phenomena with synchronization
but no choice. The occurrence of choice could involve switching between different modes of
operations, each mode being described by an MPL system, or could lead to the appearance of
the minimum operator. This results in switching MPL systems or max-min-plus systems. A
further extension is obtained by adding scalar multiplication which yields the class of MMPS
systems. MMPS systems are also equivalent to certain classes of hybrid systems such as general
continuous PWA systems. In this chapter we extend the classical min-max MPC framework to
the class of uncertain MMPS systems. Provided that the stage cost is an MMPS expression (e.g.
1/∞-norm) and considering only linear input constraints we show that the open-loop min-max
MPC problem for MMPS systems can be transformed into a finite sequence of linear programs,
which can be solved efficiently. As an alternative to the open-loop MPC framework a feedback
min-max MPC optimization problem over disturbance feedback policies is presented, which
leads to improved performance compared to the open-loop approach.

5.1 MMPS systems

MMPS systems are dynamical systems whose evolution equations can be described using the
operations maximization, minimization, addition, and scalar multiplication (see Section 2.1.2
for a formal definition). Typical examples of MMPS systems can be found in the area of both
DES and hybrid systems, e.g. manufacturing plants, traffic networks, digital circuits, computer
networks, etc.

In this thesis the class of MMPS systems constitutes the “bridge” that connects the last two
chapters on control for some special classes of DES to the rest of the thesis. The present chapter
unifies our previous results on optimal control for MPL systems (Chapter 3) and MPC for MPL
systems and switching MPL systems (Chapter 4), since these classes of DES are in fact special
subclasses of MMPS systems. However, the class of MMPS systems also encompasses bilinear
max-plus systems, polynomial max-plus systems and min-max-plus systems. In addition, from
Section 2.1.2 we have seen that the class of MMPS systems is equivalent, under some bound-
edness assumptions, to the class of general PWA systems and other important classes of hybrid
systems. Therefore, MMPS systems form an interesting and relevant subclass of hybrid systems
and thus this chapter anticipates the content of the rest of this thesis, namely optimal control (in

97
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particular MPC) for some special classes of hybrid systems.
This section proceeds now by introducing the canonical forms of MMPS systems. In Section

5.2 we present two min-max MPC algorithms for uncertain MMPS systems: in the first algorithm
we optimize over open-loop input sequences while in the second one we introduce feedback by
optimizing over disturbance feedback policies. Computational complexity of the two algorithms
is discussed in Section 5.3 and in Section 5.4 we present a typical hybrid system (temperature
control system in a room) where our approach is compared with other existing algorithms from
the literature. This chapter is an extended version of [118, 119].

5.1.1 Canonical forms of MMPS systems
We recall from Definition 2.1.8 that an MMPS expression g of the variables x1, x2, · · · , xn is
defined recursively as:

g :=xi|α|max{gj, gl}|min{gj, gl}|gj + gl|βgj,

where gj, gl are again MMPS expressions. Now we provide some easily verifiable properties of
the max and min operators that will be used extensively in this chapter:

M1 : the min operator is distributive with respect to the max operator, i.e.

min
{
α,max{β, γ}

}
= max

{
min{α, β},min{α, γ}

}
∀α, β, γ ∈ R

n.

Similarly, the max operator is distributive with respect to the min operator.

M2 : If θ ∈ R+, then

θmax{α, β} = max{θα, θβ},
θmin{α, β} = min{θα, θβ}.

M3 : The min and max operator are related as follows:

max{α, β} = −min{−α,−β}.

M4 : Since addition is distributive with respect to the max and min operator, we have

max{α, β}+ max{γ, δ} = max{α + γ, α + δ, β + γ, β + δ},
min{α, β}+ min{γ, δ} = min{α + γ, α + δ, β + γ, β + δ}.

In the following we summarize the main result of [46,131], which follows from the properties
of the max and min operators mentioned above:

Lemma 5.1.1 Any scalar-valued MMPS function g : R
n → R can be written into min-max

canonical form
g(x) = min

i∈I
max
j∈Ji

{αT
ijx+ βij}, (5.1)

or into max-min canonical form

g(x) = max
i∈Ĩ

min
j∈J̃i

{α̃T
ijx+ β̃ij}, (5.2)

where I,Ji, Ĩ and J̃i are finite index sets and αij, α̃ij ∈ R
n, βij, β̃ij ∈ R for all i, j. ♦
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Using Lemma 5.1.1 it follows that any MMPS system can be written as (see Section 2.1.2)

x(k + 1) = fMMPS(x(k), u(k))
y(k) = hMMPS(x(k)),

(5.3)

where x ∈ R
n, u ∈ R

m, y ∈ R
p and fMMPS, hMMPS are vector-valued MMPS functions in min-

max canonical form (5.1) or max-min canonical form (5.2).
From the results of [9, 64] we can conclude that MMPS systems are equivalent to other

interesting classes of hybrid systems such as general PWA systems, MLD systems, LC systems,
ELC systems under some mild assumptions related to boundedness of the states and of the inputs
(see Lemma 2.1.7). This result is relevant since tools developed for a certain class can be used for
the investigation of other classes of hybrid systems mentioned above. However, Lemma 2.1.11
allows us to conclude that a general continuous PWA system can be written equivalently as
an MMPS system without imposing any additional assumptions concerning boundedness of the
states and of the inputs, as was done in Lemma 2.1.7. Therefore, the MMPS models constitute
an alternative modeling framework for hybrid systems. In that case k is a discrete time index.

On the other hand, many relevant subclasses of DES can be modeled using the MMPS frame-
work, as it will be explained in the next section. In that case k becomes an event counter. There-
fore, depending on the application, the state x, the input u, the output y and the index k can have
different interpretations: they can represent either physical quantities or times of occurrence of
some event (for x, u and y), and either a time step counter or an event step counter (for k).

5.1.2 MMPS systems and other classes of DES
In this section we will show that the MMPS model (5.3) can be considered as a generalized
framework that encompasses several subclasses of DES such as MPL systems, max-plus-bilinear
systems, max-plus-polynomial systems, switching MPL systems, max-min-plus systems.

MPL systems

From the definition of an MPL system (see e.g. Section 2.2.1) it follows that the MPL model

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)
y(k) = C ⊗ x(k)

can be rewritten as

xi(k + 1) = max
{

max
j∈N[1,n]

{aij + xj(k)}, max
j∈N[1,m]

{bij + uj(k)}
}

for i ∈ N[1,n],

yi(k) = max
j∈N[1,n]

{cij + xj(k)}, for i ∈ N[1,p],

which is clearly a special case of an MMPS system.

Max-plus-bilinear systems

Max-plus-bilinear systems are DES that can be described by a state space model of the following
form:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)⊕
m⊕

i=1

Li ⊗ ui(k)⊗ x(k)

y(k) = C ⊗ x(k)



100 5 Model predictive control for uncertain max-min-plus-scaling systems

with Li ∈ R
n×n
ε for all i ∈ N[1,m]. This description is the max-plus algebraic equivalent of

conventional bilinear discrete-time systems. Max-plus-bilinear systems could arise when some
of the inputs of an MPL system are used as a switch to control the entries of the system matrix A,
i.e. the constant system matrixA is replaced by the input-dependent system matrixA⊕L1⊗u1⊕
· · · ⊕ Lm ⊗ um. Clearly, max-plus-bilinear systems are also a subclass of the MMPS systems.

Max-plus-polynomial systems

A max-plus-polynomial p of the variables v1, v2, · · · , vn can be written as

p(v1, v2, · · · , vn) =

q
⊕

i=1

ci ⊗ v1
⊗

ri,1 ⊗ v2
⊗

ri,2 ⊗ · · · ⊗ vn
⊗

ri,n

, (5.4)

where ci and ri,j are scalars.
Max-plus-polynomial systems are a further extension of MPL and max-plus-bilinear DES.

They can be described by a state space model of the following form:

x(k + 1) = fpol(x(k), u(k))

y(k) = hpol(x(k)),

where fpol and hpol are max-plus-polynomial functions. In [162] a subclass of max-plus-
polynomial systems has been used in the design of traffic signal switching schemes.

Since (5.4) can be rewritten as

p(v1, v2, . . . , vn) = max
i=1,...,q

(ci + ri,1v1 + ri,2v2 + · · ·+ ri,nvn),

which is an MMPS expression, it follows that a max-plus-polynomial system is also an MMPS
system.

Switching MPL systems

It can be easily verified that switching MPL systems (see Section 2.2.2)

x(k + 1) = Ai ⊗ x(k)⊕Bi ⊗ u(k)
y(k) = Ci ⊗ x(k) if ψ(x(k), z(k), u(k), v(k)) ∈ Ci, (5.5)

where {Ci}i∈I is a polyhedral partition of R
nz
ε and the switching function ψ is linear and depends

only on (x, u) is a particular subclass of the MMPS systems. One simple proof is given next:
under the previous assumptions on the switching function ψ and assuming that the set of feasible
states and inputs is bounded it follows that (5.5) is a particular case of a general PWA system and
thus can be written as an MMPS system according to Lemma 2.1.7.

Max-min-plus systems

Max-min-plus systems (or max-min systems as they are called in [129]) are described by the
model

x(k + 1) = fmmp(x(k), u(k))

y(k) = hmmp(x(k)),
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where fmmp, hmmp are max-min-plus expressions, i.e. expressions defined recursively by

f := xi|fk + α|max(fk, fl)|min(fk, fl),

where α is a scalar, and fk and fl are again max-min-plus expressions. So max-min-plus expres-
sions are special cases of MMPS expressions. This implies that max-min-plus systems are also
a subclass of the MMPS systems.

5.1.3 Multi-parametric MMPS programming
In Section 2.3.1 we have briefly introduced multi-parametric programming (in particular, multi-
parametric linear programming) and the main properties of the optimal value function and of
the optimizer were presented. Multi-parametric MMPS programs are an extension of multi-
parametric linear programs, as it will be proved next. Consider the multi-parametric linear pro-
gram

J0(x) = max
u∈Rm
{cTu : Hx+ Gu+ ω ≤ 0}, (5.6)

where the vector of parameters x lies in R
n. Since sup and inf are related as follows

sup
u∈U

g(u) = − inf
u∈U
−g(u),

from Theorem 2.3.2 we have that the set of parameters x such that the linear program (5.6) is
feasible, i.e.

X = {x ∈ R
n : ∃u s. t. Hx+ Gu+ ω ≤ 0}

is a closed polyhedral set, the optimal value function J 0 is a concave continuous PWA function
and we can select a continuous PWA optimizer u0, provided that there exists an x0 ∈ X such that
J0(x0) ∈ R. It is well known [25] that any concave continuous PWA function can be written as:

J0(x) = min
i∈I
{αT

i x+ βi},

where I is a finite index set and αi ∈ R
n, βi ∈ R. We conclude that J0 : X → R is an MMPS

function (in fact J0 is a min-plus-scaling function1 having domain X ). Moreover, from Lemma
2.1.11 we conclude that we can always select an MMPS optimizer u0.

The following lemma deals with the special case of a multi-parametric program having as
cost function an MMPS function. Note that related results were obtained in [81] for continuous
PWA functions, but our proof is somewhat more intuitive and easier and moreover we obtain
that the optimal value function J 0 is also continuous and an MMPS function (a property that is
crucial in this chapter).

Lemma 5.1.2 Let J : R
n × U → R be an MMPS function and consider the following multi-

parametric program:

J0(x) = max
u∈U
{J(x, u) : Hx+ Gu+ ω ≤ 0}, (5.7)

1A min-plus-scaling function is described by an expression defined recursively as

xi|α|min{gj , gl}|gj + gl|βgj ,

where gj , gl are again min-plus-scaling expressions.
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where U is a polytope. Then, the solution of the multi-parametric MMPS program (5.7) can
be obtained by solving a set of multi-parametric linear programs. Moreover, the optimal value
function J0 is an MMPS function and the optimizer u0 is a PWA function having domain X =
{x ∈ R

n : ∃u ∈ U s. t. Hx+ Gu+ ω ≤ 0}.

Proof : Since J is an MMPS function and thus continuous and U is a polytope, from Theorem
2.3.1 it follows that the optimal value function J 0 is continuous on X . Using the max-min
canonical representation (5.2) of J , we have

J(x, u) = max
i∈I

min
j∈Ji

{αT
ijx+ βT

iju+ γij}.

Then, the multi-parametric MMPS program (5.7) can be written as:

max
u∈U

{
max
i∈I

min
j∈Ji

{αT
ijx+ βT

iju+ γij} : Hx+ Gu+ ω ≤ 0
}

=

max
i∈I

max
u∈U

{
min
j∈Ji

{αT
ijx+ βT

iju+ γij} : Hx+ Gu+ ω ≤ 0
}
.

Therefore, for each i ∈ I we must solve the following multi-parametric program:

max
u∈U

{
min
j∈Ji

{αT
ijx+ βT

iju+ γij} : Hx+ Gu+ ω ≤ 0
}
.

The last multi-parametric program can be recast as a multi-parametric linear program:

J0
i (x) = max

(u,µi)
{µi : αT

ijx+ βT
iju+ γij ≥ µi ∀j ∈ Ji,Hx+ Gu+ ω ≤ 0, u ∈ U}.

It follows that J0
i is a min-plus-scaling expression in the variable the parameter x. In conclusion,

we have to solve |I| multi-parametric linear programs and then J 0(x) = maxi∈I J
0
i (x), i.e. J0

is an MMPS function having domain X . Similarly, we can prove that the optimizer u0 is a PWA
function on X . However, in general nothing can be said about the continuity of the optimizer. ♦

5.2 Robust MPC for MMPS systems
Different control strategies (e.g. MPC) can be found in the literature for some specific subclasses
of DES or hybrid systems [11,29], in particular for MPL systems [4,36,45,108] or PWA systems
[46, 81, 138]. Using the work of [46] in which MPC for MMPS (and equivalently for general
continuous PWA) systems for the deterministic case without disturbances is proposed, we further
extend MPC for the cases with bounded disturbances. We consider uncertain MMPS systems,
and thus also uncertain general continuous PWA systems. We model disturbances by including
extra additive terms in the system equations of the MMPS system.

Note that there are some results in the literature on specific classes of uncertain DES and
hybrid systems [81, 138] but to the authors’ best knowledge this is the first time when the min-
max optimal control approach is used for uncertain MMPS systems. The papers [81, 138] focus
on worst-case approach. In [81, 138] dynamic programming was used to solve the min-max
state feedback MPC problem for continuous PWA systems with bounded disturbances. The core
difficulty with the dynamic programming approach is that optimizing over feedback policies
with arbitrary nonlinear functions is in general a computationally hard problem. Moreover, in the
dynamic programming approach it is difficult to take into consideration variable input constraints,
(e.g. bounded rate variationm ≤ u(k+1)−u(k) ≤M ). In Chapter 4 we have shown that robust
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MPC for MPL systems is a convex problem if the stage cost has a particular representation in
which the coefficients corresponding to the state vector are nonnegative and the matrix associated
with the state constraints is also nonnegative. The main difficulty in this case is represented by
the - in the worst case - exponential number of constraints, that result from the transformation of
max constraints in linear constraints. The approach proposed in this section addresses some of
these issues. This section proceeds now with the problem formulation of the open-loop min-max
MPC-MMPS.

5.2.1 Problem formulation

Let us define the class of uncertain MMPS systems. As in conventional linear systems, we model
the uncertainty by including an extra term in the system equations for MMPS systems:

x(k + 1) = fMMPS(x(k), u(k), w(k))
y(k) = hMMPS(x(k)),

(5.8)

where fMMPS, hMMPS are vector-valued MMPS functions. The uncertainty caused by distur-
bances in the estimation of the real system and measurements is gathered in the uncertainty
vector w. As in previous chapters, we assume that this uncertainty is included in a polytope

W = {w ∈ R
q : Ωw ≤ s}

and if consecutive disturbance samples w(k),...,w(k + j) are related (which is typically the case
in the context of DES2), we assume that this relation is linear (e.g. a system of linear equalities
or inequalities).

Using the link between MMPS and general continuous PWA systems, the uncertain MMPS
system (5.8) can also be written as an uncertain general continuous PWA system:

x(k + 1) = fPWA(x(k), u(k), w(k))
y(k) = hPWA(x(k)),

where fPWA, hPWA are continuous vector-valued PWA functions. Therefore, the algorithms
derived in this section can also be applied to uncertain general continuous PWA systems. Note
that in conventional uncertain PWA systems [74,81,138] the partition that generates the system is
independent on the disturbance w. In our definition of an uncertain MMPS system and uncertain
general continuous PWA system the partition will, in general, also depend on the disturbance
(note that this is necessary to guarantee continuity of the system). Therefore, our modeling
approach is more general than in [74, 81, 138].

As in previous chapters, we consider a reference signal {r(k)}k≥0 which the output is re-
quired to track. Moreover, we assume that the stage cost `(x, u, r) and the terminal cost Vf(x, r)

2From Example 3.39 we see that we could define the disturbance vector as w(k) = [p1(k − 1) · · · pl(k −
1) p1(k) · · · pl(k) t1(k) · · · tl̃(k)]T and then there exists a linear relation between w(k) and w(k + 1) given by the
equalities wi(k) = wj(k + 1) for all i ∈ N[1,l] and j ∈ N[l+1, 2l]. In this case we can rewrite the uncertain MPL
system (3.40)–(3.41) as follows:

x(k + 1) = A(w(k))⊗ x(k)⊕B(w(k))⊗ u(k)

y(k) = C(w(k − 1))⊗ x(k).
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are MMPS (or equivalently continuous PWA) functions: e.g. the stage cost (3.24)–(3.25) or if a
1-norm and∞-norm is used

`(x, u, r) = ‖Q(y − r)‖1 + ‖Ru‖1, Vf(x, r) = ‖P (y − r)‖1
`(x, u, r) = ‖Q(y − r)‖∞ + ‖Ru‖∞, Vf(x, r) = ‖P (y − r)‖∞,

where y = hMMPS(x) denotes the output of the system andQ ∈ R
nQ×p, R ∈ R

nR×m, P ∈ R
nP×p.

For z ∈ R we have that its absolute value is given by |z| = max{z,−z} and for all x ∈ R
n we

recall that 1-norm and∞-norm are given by

‖x‖1 :=
n∑

i=1

|xi|, ‖x‖∞ := max
i∈N[1,n]

|xi|,

i.e. these norms are defined by MMPS expressions.
Let u = [uT

0 uT
1 . . . u

T
N−1]

T be a control sequence and w = [wT
0 wT

1 . . . w
T
N−1]

T denote a
realization of the disturbance over the prediction horizon N . Also, let φ(k;x,u,w) denote the
state solution of (5.8) at step k when the initial state is x at step 0, the control is determined
by u and the disturbance sequence is w. As in previous chapters φ(0;x,u,w) = x. Using the
properties M1 −M4 of the min and max operators it follows that φ(k;x,u,w) is an MMPS
expression of the variables (x,u,w) for all k ≥ 0.

The cost function VN(x, r,u,w) is defined as:

VN(x, r,u,w) =
N−1∑

i=0

`(xi, ui, ri) + Vf(xN , rN ),

where xi = φ(i;x,u,w) (and thus x0 = x) and r = [rT
0 r

T
1 · · · rT

N ]T denotes a reference sequence.

5.2.2 Open-loop min-max MPC for MMPS systems

Because the uncertainty vector w is in the polytope W and if w0, · · · , wj are related then this
relation is linear, we conclude that w will also be in a bounded polyhedral set

W̃ = {w ∈ R
Nq : Ωw ≤ s} ⊆ W ,

where Ω ∈ R
NΩ×Nq, s ∈ R

NΩ and we recall thatW = WN .
We now assume that at each step k the state x(k) is available. The open-loop min-max MPC-

MMPS problem at event (k, x) (i.e. x(k) = x) is defined as follows:

V 0,ol
N (x, r) = inf

u∈Πol
N

(k)
max
w∈W̃

VN(x, r,u,w), (5.9)

and we assume that at each step k the uncertain MMPS system (5.8) is subject only to variable
input constraints

Πol
N(k) = {u ∈ R

Nm : Hku ≤ hk}
with Hk ∈ R

nH×Nm and hk ∈ R
nH . As in (2.18) we define

u0
N(x, r) ∈ arg min

u∈Πol
N

(k)
max
w∈W̃

VN(x, r,u,w)
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to be an optimizer (whenever the infimum is attained). Then, according to the receding horizon
philosophy the actual control applied to the process at step k is the first sample in u0

N(x, r), i.e.
u0

0(x, r). The MPC law is given by

κN(x, r) = u0
0(x, r).

Since the stage cost ` and the terminal cost Vf are MMPS expressions and since xi are also
MMPS expressions for all i ∈ N[0,N ] (recall that φ(k;x,u,w) is an MMPS expression of the
variables (x,u,w) for all k ≥ 0), using again the propertiesM1 −M4 it follows that VN is an
MMPS expression. From Lemma 5.1.1 we conclude that VN can be written in max-min canonical
form:

VN(x, r,u,w) = max
i∈I

min
j∈Ji

{αT
ijx+ βT

ijr + γT
iju + δijw + θij}. (5.10)

5.2.3 Solution based on multi-parametric MMPS programming
In this section we provide a solution to the open-loop min-max MPC-MMPS problem (5.9) based
on multi-parametric MMPS programming. For a given (x, r,u) we define the inner min-max
MPC-MMPS problem

JN(x, r,u) = max
w∈W̃

VN(x, r,u,w) (5.11)

and the optimizer is denoted with

w0(x, r,u) ∈ arg max
w∈W̃

VN(x, r,u,w). (5.12)

The following lemma provides a method to compute the optimal solution to the inner min-max
MPC-MMPS problem:

Lemma 5.2.1 For a given (x, r,u) the optimizer w0(x, r,u) given by (5.12) can be computed by
solving a set of linear programming problems.

Proof : We determine for any fixed (x, r,u) the optimizer w0(x, r,u) using the max-min canon-
ical form (5.10) of VN , by solving the following optimization problem:

max
w∈W̃

max
i∈I

min
j∈Ji

{αT
ijx+ βT

ijr + γT
iju + δT

ijw + θij}, (5.13)

which is equivalent with:

max
i∈I

max
w

{
min
j∈Jj

{αT
ijx+ βT

ijr + γT
iju + δT

ijw + θij} : Ωw ≤ s
}
.

Now, for each i ∈ I we have to solve the following optimization problem:

max
w

{
min
j∈Jj

{αT
ijx+ βT

ijr + γT
iju + δT

ijw + θij} : Ωw ≤ s
}
,

which is equivalent with the following linear program:

max
(w,µi)
{µi : αT

ijx+ βT
ijr + γT

iju + δT
ijw + θij ≥ µi ∀j ∈ Ji, Ωw ≤ s}. (5.14)

To obtain the optimizer corresponding to (5.13) we solve the linear program (5.14) for each
i ∈ I, with the optimizer (w0

i (x, r,u), µ0
i (x, r,u)) and then we select as w0(x, r,u) the optimal

solution w0
i∗(x, r,u), where the index i∗ is given by µ0

i∗(x, r,u) = maxi∈I µ
0
i (x, r,u). ♦
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Theorem 5.2.2 The function (x, r,u) 7→ JN(x, r,u) is described by an MMPS expression.

Proof : First, let us note that VN is an MMPS function. Next, W̃ is a polytope. Let us consider
the multi-parametric MMPS program (5.11), where the vector of parameters is (x, r,u). The
conditions from Lemma 5.1.2 are fulfilled and thus JN is an MMPS function. ♦

Note that we can compute the expression of JN explicitly as follows: for each i ∈ I we
know from multi-parametric linear programming (see Section 5.1.3) that µ0

i (x, r,u) is a min-
plus-scaling expression, i. e.

µ0
i (x, r,u) = min

j∈J̃
{ξT

ijx+ ζT
ijr + ηT

iju + νij}.

It follows that JN is given by:

JN(x, r,u) = maxi∈I µ
0
i (x, r,u)

= maxi∈I minj∈J̃ {ξT
ijx+ ζT

ijr + ηT
iju + νij}. (5.15)

We thus obtain directly the max-min canonical expression of JN . Furthermore, w0
i (x, r,u) is

a continuous PWA function and w0(x, r,u) = w0
i (x, r,u) if µ0

i (x, r,u) ≥ µ0
i′(x, r,u) for all

i′ ∈ I \ {i}. This implies that w0(x, r,u) is a PWA function. Note that w0(x, r,u) is not
necessarily continuous.

The outer min-max MPC-MMPS problem is now defined as:

V 0,ol
N (x, r) = inf

u∈Πol
N

(k)
JN(x, r,u). (5.16)

Note that u0
N(x, r) ∈ arg minu∈Πol

N
(k) JN(x, r,u).

Theorem 5.2.3 For given (x, r) the outer min-max MPC-MMPS problem can be solved via a set
of linear programming problems.

Proof : From (5.15) we know that JN is an MMPS function. Using Lemma 5.1.1 the max-min
canonical form of JN in (5.15) can be used to determine the equivalent min-max canonical form
of JN , i.e.

JN(x, r,w) = min
i∈Ī

max
j∈J̄
{ξ̄T

ijx+ ζ̄T
ijr + η̄T

iju + ν̄ij}.

Then, the outer min-max MPC-MMPS problem (5.16) becomes

V 0,ol
N (x, r) = inf

u∈Πol
N

(k)
min
i∈Ī

max
j∈J̄
{ξ̄T

ijx+ ζ̄T
ijr + η̄T

iju + ν̄ij}

= min
i∈Ī

inf
u∈Πol

N
(k)

max
j∈J̄
{ξ̄T

ijx+ ζ̄T
ijr + η̄T

iju + ν̄ij}.

For each i ∈ Ī we must solve the following linear programming problem:

min
(u,µ̄i)
{µ̄i : ξ̄T

ijx+ ζ̄T
ijr + η̄T

iju + ν̄ij ≤ µ̄i ∀j ∈ J̄ , Hku ≤ hk}. (5.17)

In order to obtain the expression of the optimizer u0
N(x, r) we solve the linear program (5.17)

that yields the optimal solution (u0,i(x, r), µ̄0
i (x, r)) for each i ∈ Ī and then we select the op-

timal u0
N(x, r) as the optimal solution u0,i∗(x, r), where the index i∗ is given by µ̄0

i∗(x, r) =
mini∈Ī µ̄

0
i (x, r). ♦
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The following algorithm describes the main steps in computing the solution of the open-loop
min-max MPC-MMPS problem (5.9):

Algorithm 5.2.4

(i) Compute the max-min expression of VN . Solve off-line the inner min-max MPC-MMPS
problem (5.11) using multi-parametric MMPS programming. According to Theorem 5.2.2
JN is an MMPS function. Compute also off-line the min-max canonical form of JN .

(ii) Compute on-line (at each step k) the solution3 of the outer min-max MPC-MMPS problem
(5.16) according to Theorem 5.2.3. ♦

Remark 5.2.5

(i) The second step of the Algorithm 5.2.4 consists in solving a set of linear programming
problems of the form (5.17) according to Theorem 5.2.3.

(ii) It is clear from Theorem 5.2.3 that the outer min-max MPC-MMPS problem can also be
solved off-line, using again multi-parametric MMPS programming. From Lemma 5.1.2 it
follows that the MPC controller κN(x, r) has a PWA expression. Then, the second step of
Algorithm 5.2.4 consists in solving off-line the outer min-max MPC-MMPS problem and
then on-line at each step k we need only to evaluate a PWA function corresponding to the
MPC controller. ♦

5.2.4 Solution based on duality for linear programming
In Algorithm 5.2.4 we have to solve off-line the inner min-max MPC-MMPS problem using
multi-parametric MMPS programming. In the case when the reference signal r is not constant we
have to include r as additional vector of parameters in the multi-parametric MMPS program when
we want to solve the inner min-max MPC-MMPS problem off-line, because the cost function
depends also on r. Of course, the computational complexity increases in that case because the
dimension of the vector of parameters (x,u, r) is much larger than (x,u), corresponding to the
case r is constant at each step k. An alternative method is to use the duality theory of linear
programming [132, 147]. For each i ∈ I the primal problem (5.14) can be written as:

P : max
(w,µi)
{µi : −δT

ijw + µi ≤ αT
ijx+ βT

ijr + γT
iju + θij ∀j ∈ Ji, Ωw ≤ s}.

We denote with cij(x, r,u) = αT
ijx+ βT

ijr + γT
iju + θij , which is an affine expression in (x, r,u).

In matrix notation the primal problem becomes:

P : max
(w,µi)







µi :








−δT
i1 1

...
...

−δT
i|Ji| 1

Ω 0








[
w
µi

]

≤








ci1(x, r,u)
...

ci|Ji|(x, r,u)
s














,

where we recall that |Ji| denotes the cardinality of the index set Ji. The corresponding dual
problem has the following form:

D : min
yi≥0

{

cTi (x, r,u)yi :

[
−δi1 · · · −δi|Ji| Ω

T

1 · · · 1 0

]

yi =

[
0
1

]}

,

3We assume that at step k, the state x = x(k) and r = [rT (k) rT (k + 1) · · · rT (k + N)]T are available.
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where ci(x, r,u) = [ci1(x, r,u) · · · ci|Ji|(x, r,u) s1 · · · snΩ
]T and we recall that nΩ denotes the

number of rows of the matrix Ω.
There are algorithms (e.g. the double description method of [113]) to compute a compact

explicit description of the elements of the polyhedral set:

Ki =
{

yi ≥ 0 :

[
−δi1 · · · −δi|Ji| Ω

T

1 · · · 1 0

]

yi =

[
0
1

]}

.

These elements can be expressed as follows (according to the finite basis theorem [147]):

yi =

Ni∑

i=1

αijy
j
i +

Mj∑

i=1

βijz
j
i

with
∑

i αij = 1, αij ≥ 0 and βij ≥ 0. The yj
i are called vertexes and the zj

i are called extremal
rays (using the definitions of [132,147]). Note that the lines (i.e. linear subspaces) are not present
in the description of the polyhedron Ki since yi ≥ 0. Assuming that the primal problem P has
a finite optimum, we are interested only in the vertexes (as extremal rays give rise to infinite
solutions):

{y1
i , ..., y

Ni

i }.
Note that the vertexes y1

i , ..., y
Ni

i do not depend on the reference signal r, since r appears in the
expressions of cij but not in the expression of the polyhedral set Ki. According to strong duality
theorem for linear programming we have:

µ0
i (x, r,u) = min{cTi (x, r,u)y1

i , · · · , cTi (x, r,u)yNi

i }
Then,

JN(x, r,u) = max
i∈I

µ0
i (x, r,u) = max

i∈I
min{cTi (x, r,u)y1

i , · · · , cTi (x, r,u)yNi

i }.

Therefore, we obtain directly the max-min canonical form of JN . Algorithm 5.2.4 of the previous
section can also be applied for this case. Clearly, after we eliminate the redundant terms the max-
min expression of JN obtained applying duality coincides with the max-min expression of JN

obtained from solving a multi-parametric MMPS program. Note however that the computational
complexity of the two approaches may differ (see Section 5.3).

5.2.5 Disturbance feedback min-max MPC for MMPS systems
We recall from the previous chapters that in the presence of disturbances a feedback controller
performs better than an open-loop controller. Without imposing any structure on the feedback
controller the state feedback solution to the min-max control problem (5.9) can be determined
using tools from dynamic programming and multi-parametric MMPS programming as was done
for continuous PWA systems with bounded disturbances in [81]. However, optimizing over
feedback policies described by arbitrary nonlinear functions is computationally a hard problem.
So, another approach to controlling an uncertain MMPS system different from the open-loop
approach presented in Section 5.2.2 is to include feedback by searching over the set of affine
functions of the past disturbances as it was done in Section 3.3.3 for uncertain MPL systems.
Therefore, we consider disturbance feedback policies of the form (3.58):

ui =
i−1∑

j=0

Mi,jwj + vi ∀i ∈ N[0,N−1], (5.18)
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where each Mi,j ∈ R
m×q and vi ∈ R

m. Recall that a similar feedback policy was used in
[14, 60, 97] for robust control of uncertain linear systems. Using the same notation as in Section
3.3.3 the disturbance feedback policy becomes

u = Mw + v, (5.19)

where v and M are defined as in (3.59) and (3.60).
Under this type of policy we define the disturbance feedback min-max MPC-MMPS problem

at event (k, x) as:
V 0,df

N (x, r) = inf
(M,v)∈Πdf

N
(k)

max
w∈W̃

VN(x, r,Mw+v,w), (5.20)

where the disturbance feedback policy (5.19) satisfies the input constraints

Πdf
N (k) = {(M, v) : M as in (3.60), Hk(Mw + v) ≤ hk ∀w ∈ W̃} (5.21)

and its optimizer is
(
M0

N(x, r), v0
N(x, r)

)
∈ arg min

(M,v)∈Πdf
N

(k)
max
w∈W̃

VN(x, r,Mw + v,w), (5.22)

whenever the infimum is attained. Note that for M = 0 the disturbance feedback min-max
problem (5.20) reduces to the open-loop case (5.9). It follows that

V 0,df
N (x, r) ≤ V 0,ol

N (x, r) ∀(x, r) ∈ R
n × R

Np, (5.23)

i.e. the performance in the disturbance feedback approach will in general be better than the
open-loop approach, since we have more degrees of freedom through the matrix M.

We also split the optimization problem (5.20) into two subproblems, as it was done in Section
5.2.3. The inner min-max MPC-MMPS problem is formulated as:

JN(x, r,M, v) = max
w∈W̃

VN(x, r,Mw + v,w)

or equivalently using (5.10) as

JN(x, r,M, v) = max
w∈W̃

max
i∈I

min
j∈Ji

{αT
ijx+ βT

ijr + γT
ijv + (γT

ijM + δT
ij)w + θij}.

Using similar arguments as in Lemma 5.2.1 we conclude that for a given (x, r,M, v),
JN(x, r,M, v) can be computed efficiently using a set of linear programming problems. Note
that in this particular case we cannot obtain an explicit expression for JN(x, r,M, v) as in the
open-loop case (see (5.15)) since the function (M,w) 7→ γT Mw, for some fixed γ, is neither
convex nor concave.

The outer min-max MPC-MMPS problem becomes:

inf
(M,v)∈Πdf

N
(k)
JN(x, r,M, v). (5.24)

It is clear that
(
M0

N(x, r), v0
N(x, r)

)
∈ arg min(M,v)∈Πdf

N
(k) JN(x, r,M, v).

Note that the feasible set Πdf
N (k) defined in (5.21) is not described by linear inequalities in

(M, v). However, in the sequel we show that the feasible set can be recast as a polyhedron. We
can rewrite the input constraints as

HkMw ≤ −Hkv + hk ∀w ∈ W̃
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or equivalently as

[max
w∈W̃

(HkM)1w · · ·max
w∈W̃

(HkM)nHk
w]T ≤ −Hkv + hk,

where nHk
denotes the number of rows of Hk and that (HkM)i denotes the ith row of the matrix

HkM. Therefore, using duality for linear programming and the fact that W̃ = {w : Ωw ≤ s} is
a polytope, it follows that (recall that we dealt with a similar problem in Section 3.3.3)

Πdf
N (k) = {(M, v) : ∃Z ≥ 0, M as in (3.60), HkM = ZT

Ω, ZT s + Hkv− hk ≤ 0},

where we recall that by Z ≥ 0 we mean Zij ≥ 0 for all i, j. It follows that the outer worst-case
problem can be written as:

inf
(M,v,Z)

{
JN(x, r,M, v) : ∃Z ≥ 0, M as in (3.60), HkM = ZT

Ω, ZT s + Hkv− hk ≤ 0
}
.

Note that now the feasible set is described by linear inequalities in (M, v,Z). The following algo-
rithm provides a solution to the disturbance feedback min-max MPC-MMPS problem formulated
in this section:

Algorithm 5.2.6

(i) Compute the max-min expression of JN(x, r,M, v)

(ii) Solve (5.20) using a standard nonlinear optimization algorithm for nonlinear optimization
problems with linear constraints (e.g., a gradient projection algorithm4 [132]). ♦

Note that in each iteration step l of the algorithm for the outer problem the function values of JN

(and its gradient, which can be obtained using numerical approximation) have to be computed
in the current iteration point (Ml, vl). This involves solving the inner problem for the given
(Ml, vl). This can be done efficiently by solving a set of linear programming problems as was
shown before.

5.3 Computational complexity
From a computational point of view, both approaches that we have derived before (the open-loop
scheme and the disturbance feedback scheme) consist in two steps. In the first step we have to
solve the maximization problem corresponding to the worst-case uncertainty. This can be done
off-line solving a set of multi-parametric MMPS programs as in Section 5.2.3 (or alternatively by
computing the vertexes of some polyhedral set as in Section 5.2.4). In the second step we have
to solve on-line a set of linear programming problems or to apply an iterative procedure based
on solving a set of linear programming problems in order to determine the MPC input. The
main advantage of the second approach is that by introducing feedback the corresponding MPC
controller will perform equal or better than the open-loop MPC controller. This improvement in
performance is obtained at the expense of introducing N(N−1)

2
m q + nHk

nΩ extra variables and
nHk

+ nΩ extra inequalities (recall that nHk
and nΩ denote the number of rows of the matrices

Hk and Ω, respectively). Note that the number of min terms in the max-min canonical form of

4Note that sequential quadratic programming is less suited due to the PWA nature of the objective function.
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the cost is the same in both approaches. See also Table 5.1 for a comparison of computational
times for different methods applied to an example.

From Table 5.1 we see that in the case of open-loop min-max MPC, the CPU time corre-
sponding to the dual approach (Section 5.2.4) is less than the CPU time corresponding to the
multi-parametric MMPS approach (Section 5.2.3). Theoretically, it is known [23] that the num-
ber of partitions nR generated by a multi-parametric linear program (see (5.6)) is less than or
equal to the number of vertexes nv corresponding to the polyhedron generated by the associated
dual (i.e. Ki). The complexity of algorithms [113, 132] for enumerating the vertexes of Ki with
n0 = nΩ + 1 rows and n1 columns is O(n2

0n1nv). An upper bound on the number of vertexes is
given by [59]:

Nr ≤ nv ≤
(
n0 + n1 − bn1/2c

bn1/2c

)

+

(
n0 + n1 − 1− b(n1 − 1)/2c

b(n1 − 1)/2c

)

,

where bxc is the largest integer less or equal to x and
(

m
n

)
= m!

n!(m−n)!
. This means that in the

worst-case the number of vertexes nv can be of the orderO((n0 +n1)
bn1/2c) if n0 +n1 � n1. Of

course, we need extra computations in order to compute the optimal value in the case of multi-
parametric MMPS programming approach. Since the execution time of a multi-parametric linear
programming algorithm depends on many factors, it is difficult to give a net characterization of
the computational complexity as a function of the number of variables, parameters and inequali-
ties. But, after elimination of the redundant terms both approaches produce the same number of
affine expressions, i.e. we get the same MMPS function for JN . Moreover, when the reference
signal r is not a constant vector, the dimension of the vector of parameters (x, r,u) is larger
than the case when r is constant, which makes the computation of a multi-parametric MMPS
programming solution more difficult.

The worst-case complexity of the approaches presented above is largely determined by the
number of linear terms in the equivalent max-min canonical forms. In the worst case scenario
this number increases rapidly as the prediction horizon, the number of states of the MMPS sys-
tem, or the number of min-max nestings in the state equations or the objective function increases.
However, although the number of terms in the full max-min canonical expression may be very
large, this number can sometimes be reduced significantly (in [46] the authors provide an ex-
ample where the full canonical form contains 216 max-terms, of which only 4 are necessary).
Although to the authors’ best knowledge there are currently not yet any efficient algorithms for
the simplification and reduction to a minimal canonical form (i.e., the canonical form with the
minimal number of terms), some ad-hoc methods can be used [46, 66] to reduce the number
of min terms significantly. Furthermore, the complexity of the reduction process can also be
reduced by already eliminating redundant terms during the intermediate steps of the transforma-
tions. In conclusion, although the reduction to canonical form is computationally intensive, it
can be done off-line (for both the inner and the outer worst-case MPC-MMPS problems).

If we consider reference tracking (the reference signal r 6= 0) or if consecutive disturbances
are related, using the dynamic programming approach [81] we must include r or w as param-
eters in the multi-parametric program (see also Chapter 3), which increases the computational
complexity. Note that these issues can be easily handled with our approaches (open-loop or dis-
turbance feedback MPC). From the above we can conclude however that also our algorithms
(Algorithm 5.2.4 and 5.2.6) are not well suited for large problems with many states, inputs
and inequalities. This is not surprising since the computation of optimal control laws for PWA
systems reduces to mixed-integer linear/quadratic optimization problems, which are difficult to
solve [11].
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Figure 5.1: Temperature control system in a room.

5.4 Example: temperature control system in a room
In this section we present a typical example of a hybrid process for which we apply the methods
described in this chapter. Consider a room with a basic heat source and an additional controlled
heat source (see Figure 5.1). Let u be the contribution to the increase in room temperature per
time unit caused by the controlled heat source (so u ≥ 0). For the basic heat source, this value
is assumed to be constant and equal to 1. The temperature in the room is assumed to be uniform
and obeys the first-order differential equation

Ṫ (t) = α(T (t))T (t) + u(t) + 1 + e1(t),

the disturbance being gathered in the scalar variable e1. We assume that the temperature coef-
ficient has a hybrid form, depending on a logic rule given by the following piecewise constant
expression:

α(T ) =

{

−1/2 if T < 0

−1 if T ≥ 0.

We assume that the temperature is measured, but the measurement is noisy: y(t) = T (t) + e2(t).
Using the Euler discretization scheme, with a sample time of 1 time unit and denoting the state
x(k) = T (k), we get the following continuous discrete-time PWA system:

x(k + 1) =

{

1/2 x(k) + u(k) + e1(k) + 1 if x(k) < 0

u(k) + e1(k) + 1 if x(k) ≥ 0

y(k) = x(k) + e2(k).

(5.25)

We definew(k) = [e1(k) e2(k+1)]T and assume that−2 ≤ w1(k), w2(k) ≤ 2, w1(k)+w2(k) ≤
1, i.e. the uncertainty set is given by the polytope

W =
{
w ∈ R

2 : −2 ≤ w1, w2 ≤ 2, w1 + w2 ≤ 1
}
.

The equivalent MMPS representation of (5.25) is given by:

x(k + 1) = min{1/2 x(k) + u(k) + w1(k) + 1, u(k) + w1(k) + 1}
y(k) = x(k) + w2(k − 1).

We take the prediction horizon N = 3. We consider the following constraints on the input5:

−4 ≤ ∆u(k) ≤ 4, u(k) ≥ 0 ∀ k ≥ 0, (5.26)
5Because we have only heating, a physical constraint on input is u(k) ≥ 0. Furthermore we assume that the rate

of heating is bounded.
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off-line on-line
N 2 3 4 2 3 4

Nr. of param. LPs/LPs 7 12 18 4 8 16
Time param. LP saved (s) 10.2 45 130 0.12 0.35 0.79

Time dual (s) 0.35 0.9 2 0.06 0.08 0.1
Time dist. feedback (s) 0.65 2.3 7.5 0.09 0.3 0.95
Time param. LP ref. (s) 2 6.8 32 0.06 0.08 0.1

Table 5.1: The CPU time forN ∈ {2, 3, 4} with different methods: param. LP saved=computes
off-line and stores the controller for different values of r; dual=computes off-line the controller
based on Section 5.2.4; dist. feedback=computes the controller based on Section 5.2.5; param.
LP ref= the reference signal is considered as an extra parameter [81].

where ∆u(k) = u(k + 1)− u(k). As stage cost we take

`(x, u, r) = ‖y − r‖∞ + γ‖u‖1
and the terminal cost is Vf(x, r) = ‖y− r‖∞. The first term of the stage cost ` expresses the fact
that we penalize the maximum difference between the reference and the output signal, while the
second term penalizes the absolute value of the control effort. Because u ≥ 0, we have ‖u‖1 = u
and therefore we get the following max-min canonical form for the cost function VN :

VN(x, r,u,w) = max
{

min{t1, t2}, t3, t4,min{t5, t6, t7}, t8, t9, t10
}
,

where tj are appropriately defined affine functions of (x, r,u,w).
We compute now the closed-loop MPC controller where γ = 0.1, ini-

tial state x(0) = −6, u(−1) = 0 and the reference signal {r(k)}19k=0 =
−5,−5,−5,−5,−5,−3,−3, 1, 3, 3, 8, 8, 8, 8, 10, 10, 10, 7, 7, 7, 4, 3, 1, 1, 6, 7, 8, 9, 11,
11 using the methods given in Sections 5.2.3–5.2.5.

After we compute off-line the max-min canonical form of JN and after elimination of the
redundant terms, we obtain a min-max canonical form of JN , which gives rise to only 4 linear
programs that must be solved on-line at each sample step k in the open-loop approach.

In Table6 5.1 we provide the CPU time7 for different steps of the algorithms and for different
methods, where the values for the prediction horizon N are 2, 3 and 4. Note that the number of
multi-parametric MMPS programs or linear programs increases with N (see the third row). Note
that in this example the computational time for the approach from Section 5.2.4 is less than the
computational time for the multi-parametric MMPS programming approach from Section 5.2.3.
Since the reference signal is not constant, we have to include r as an extra parameter when we
apply the approach of [81], which results in a larger CPU time.

In Figure 5.2, the top plot represents the reference signal (dashed line) and the output of
disturbance feedback approach (full line) and the open-loop approach (star line). We see that
the MPC controller obtained using disturbance feedback policies performs the tracking better
than the open-loop MPC controller. In the second plot we show the optimal input: we can see
that always u(k) ≥ 0. The third plot shows the absolute value of the tracking error. Note
that the error from the open-loop approach is substantially above the error from disturbance
feedback approach. Finally, we plot the input constraints (5.26). We can see that the constraint
|∆u(k)| ≤ 4 is also fulfilled, and that at some moments this constraint is indeed active.

6LP stands for linear program. Moreover, the off-line times do not include computation of the canonical forms
and the reduction of the redundant terms since these operations were performed manually for this example.

7On a 1.5 GHz Pentium 4 PC with 512 MB RAM.
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Figure 5.2: Illustration of the closed-loop MPC simulations for an uncertain MMPS system: full
line-disturbance feedback approach, star line-open-loop approach, dashed line-reference signal
r.

5.5 Conclusions
In this chapter we have extended the MPC framework for MMPS (or equivalently for general
continuous PWA) systems to include also bounded disturbances. This allowed us to design a
worst-case MPC-MMPS controller for such systems based on optimization over open-loop in-
put sequences and disturbance feedback policies. We have shown that the resulting optimization
problems can be computed efficiently using a two-step optimization approach that basically in-
volves solving a set of linear programming problems. In the first step we have to solve off-line
a multi-parametric MMPS program (or alternatively, we can compute the vertexes of some poly-
hedral set) and next we have to write the min-max expression of the worst-case performance
criterion. In the second step we solve only a set of linear programming problems in both ap-
proaches. As we expected and was also illustrated in an example, the disturbance feedback based
MPC controller performs better than the open-loop MPC controller, at the expense of introducing
extra variables.



Chapter 6

Model predictive control for piecewise
affine systems

Model predictive control (MPC) strategies for discrete time piecewise affine (PWA) systems
are developed, which incorporate sufficient conditions to guarantee nominal and robust closed-
loop stability. It is demonstrated how the structure of the PWA model can be exploited, both for
designing an MPC strategy that is based on the combined use of a terminal set and a terminal cost,
and for a robust MPC strategy that uses the dual-mode paradigm and the benefits of feedback.
The MPC algorithms are illustrated with a couple of numerical examples.

6.1 Introduction

Hybrid systems model the interaction between continuous and logic components (see Section
2.1). Recently, hybrid systems have attracted the interest of both academia and industry [26,
49, 63, 151, 161], but tractable general analysis and control design methods for hybrid systems
are not yet available. For this reason, several authors have studied special subclasses of hybrid
systems for which analysis and control techniques are currently being developed: DES [29],
(general) PWA systems [9–11,75,139,151], MMPS systems [21,44,61], etc. A typical example
of a hybrid system is the temperature control system in a room, discussed in Section 5.4.

Recently, research has been focused on developing stabilizing controllers for hybrid systems
and in particular for PWA systems. PWA models are very popular, since they represent a pow-
erful tool for approximating nonlinear systems with arbitrary accuracy and since a rich class of
hybrid systems can be described by PWA systems. PWA systems are defined by partitioning only
the state space of the system in a finite number of polyhedra and associating to each polyhedron
a different affine dynamic. Several results about stability of PWA systems and MPC schemes for
such systems can be found in the literature, see [11, 75, 89, 104, 112] and the references therein.
For example, in [112] a piecewise linear (PWL) state feedback controller and also a quadratic
Lyapunov function are derived, based on linear matrix inequalities (LMIs) that guarantees stabil-
ity of the closed-loop PWA system. One of the first results in guaranteeing closed-loop stability
of the MPC for PWA systems is obtained in [11], where a terminal equality constraint approach
is employed. This type of constraint is rather restrictive, since in order to guarantee feasibility of
the optimal problem we need a long prediction horizon, which leads to an optimization problem
that is very demanding from a computational point of view. In [104] a terminal set and a ter-
minal cost approach is presented to guarantee stability of the MPC scheme for continuous PWA
systems in which the origin (i.e. the state equilibrium) lies in the interior of one of the polyhedra

115



116 6 Model predictive control for piecewise affine systems

of the partition. In [89,90] this approach is extended to PWA systems where the origin lies at the
intersection of some polyhedra of the partition.

In this chapter we continue in the same line of research. In Section 6.1.2 we derive LMI con-
ditions for stabilization of a PWL system using a PWL feedback controller and also a piecewise
quadratic Lyapunov function. We also take into account the structure of the system, introducing
less conservatism in the LMIs than in [112]. Moreover, from these LMIs we derive a static feed-
back controller that guarantees asymptotic stability of the closed-loop system on some region of
attraction. We also derive LMI conditions that assure the static feedback controller satisfies given
constraints on the inputs and outputs on that region. In general this region is small, therefore we
will show in Section 6.2.1 that applying MPC we can also guarantee asymptotic stability, and we
prove that this controller is better than the original static feedback controller, i.e. by this method
the region of attraction increases such that for an infinite prediction horizon we obtain the max-
imal region of attraction. We derive a stable MPC strategy for PWA systems with an ellipsoidal
terminal set and an upper bound on the infinite-horizon quadratic cost is used as a terminal cost.
The terminal set and the terminal cost correspond to the PWL dynamics of the PWA system. It is
important to note that although the PWA system may be discontinuous we will show that the op-
timal value function of the MPC optimization problem is continuous at the origin and can serve
as a Lyapunov function for the closed-loop system. If the terminal set is small, we need a long
prediction horizon. Therefore, we present in Section 6.2.3 an algorithm for enlarging this set
based on backward procedure and then we show that a certain inner polytope approximation of
this set can be used also as a polyhedral terminal set in Section 6.2.4. In this way this algorithm
removes the drawback of the algorithms based on infinite recursive methods for constructing a
terminal set. By enlarging the terminal set the prediction horizon can be chosen shorter and thus
the computational complexity decreases.

Since disturbances are always present in the system, it is important that the designed con-
troller be robust. In applications where safety and reliability are important requirements a ro-
bust controller designed on a worst-case scenario is in general preferable to other controllers.
Some of the contributions in the literature on robust control for uncertain PWA systems include
optimal control and min-max optimal control of continuous PWA systems with additive distur-
bances [50,81,138]. In [50] the H∞ robust control problem for uncertain PWA systems is solved
via LMIs. In [81, 138] robust control for the class of continuous PWA systems with additive
disturbances is considered in the min-max framework, the optimal control problem being solved
using dynamic programming (DP). In Chapter 5 of this thesis a min-max MPC strategy for the
class of general continuous PWA systems with disturbances (i.e. systems whose dynamic equa-
tions are described by a PWA expression in the state and input space) is derived and the optimal
problem is recast as a set of linear programs using the equivalent max-min canonical representa-
tion of a general continuous PWA system.

In Section 6.3 we consider the class of PWA systems with additive disturbances. We derive a
stabilizing state feedback min-max MPC scheme based on a dual-mode approach and on the as-
sumption that the mode is known. These allow us to preserve convexity of the state set evolution
and thus to consider only the extreme disturbance realizations. We also provide an MPC strategy
for PWL systems with additive disturbances in Section 6.4 where we remove this assumption
on the mode. In this strategy we use the so-called closed-loop paradigm [145] by considering
a semi-feedback policy that combines a local control law with an open-loop correction in order
to guarantee satisfaction of the constraints. This scheme therefore renounces some degrees of
freedom which in principle are available within a general state feedback policy formulation. On
the other hand, it allows to well balance increased computational burden (that is met in the state
feedback min-max framework) and reduction of conservativeness.
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We recall from Section 2.1.1 the definition of a PWA system:

x(k + 1) = Aix(k) +Biu(k) + ai

y(k) = Cix(k) + ci
if x(k) ∈ Ci, (6.1)

where Ai ∈ R
n×n, Bi ∈ R

n×m, Ci ∈ R
p×n and ai ∈ R

n, ci ∈ R
p. Here, {Ci}i∈I is a

polyhedral partition of the state space R
n and I is a finite index set. We may assume, without

loss of generality that the origin is an equilibrium state for the PWA system (6.1). We denote
with I0 ⊆ I the set of indexes for the polyhedral sets Ci that contain the origin in their closure.
It follows that |I0| ≥ 1 and that ai = 0, ci = 0 for all i ∈ I0. Each polyhedral cell is given by:
Ci = {x ∈ R

n : E1
i x+ e1

i ≥ 0, E2
i x+ e2

i > 0}, but the closure of Ci satisfies

C̄i ⊆ {x ∈ R
n : Eix+ ei ≥ 0}, (6.2)

where ei = 0 for all i ∈ I0.
The PWA system (6.1) is subject to hard input and output constraints:

X = {x ∈ R
n : |yj| ≤ yj,max, ∀j ∈ N[1,p]} (6.3)

U = {u ∈ R
m : |uj| ≤ uj,max, ∀ j ∈ N[1,m]}, (6.4)

where yj = [Cix + ci]j if x ∈ Ci, and yj,max, uj,max > 0, i.e. X,U are compact sets, containing
the origin in their interior.

This section proceeds now with the computation of lower and upper bounds on the infinite-
horizon quadratic cost for the corresponding PWL dynamics of the system (6.1) based on a
static PWL state feedback controller using an approach as in [75, 139] for continuous time PWA
systems. It is important to note that in order to avoid the issues in connection with the existence
of a stabilizing PWL state feedback controller we use the PWA formulation (6.1) (i.e. a system
whose dynamic equations are described by a PWA expression only in the state space) instead of a
general PWA system (i.e. a system whose dynamic equations are described by a PWA expression
in the state and input space). The present chapter is an extension of [35, 114, 120].

6.1.1 Lower bound for the infinite-horizon quadratic cost
In this section we consider a generalization of the standard linear quadratic control for the discrete
time PWL system obtained from the PWA system (6.1) corresponding to those modes i ∈ I0:

x(k + 1) = Aix(k) +Biu(k),
y(k) = Cix(k)

if x(k) ∈ Ci. (6.5)

Throughout this chapter we assume that

0 ∈ int(∪i∈I0Ci).
Let φ(k;x,u) denote the state solution of the PWL system (6.5) at step k when the initial state is
x and the control sequence u is employed. We also use the short hand notation:

fPWL(x, u) = Aix+Biu if x ∈ Ci.

The goal is to bring the system (6.5) to the origin from an arbitrary initial state x, satisfying
the constraints on the inputs and outputs (6.3)–(6.4), limiting also the infinite-horizon quadratic
cost:

V∞(x,u) =
∞∑

k=0

`(xk, uk), (6.6)
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where the stage cost is given by the quadratic expression

`(x, u) = xTQx+ uTRu, (6.7)

such that Q = QT � 0, R = RT � 0 (i.e. Q,R are positive definite matrices as defined in
Appendix B), u = [uT

0 uT
1 · · · ]T is an infinite control sequence and xk = φ(k;x,u) (and thus

x0 = x). Note that the sets X and U can be written explicitly as:

X ∩ Ci = {x ∈ R
n : Hix+ hi ≥ 0}

U = {u ∈ R
m : Gu+ g ≥ 0}. (6.8)

Using similar arguments as in [139] for continuous PWA systems the next theorem provides a
lower bound on V∞:

Theorem 6.1.1 Suppose that there exists infinite control sequence u that asymptotically stabi-
lizes the PWL system (6.5).

(i) If there exist symmetric matrices P i, U ij such that U ij ≥ 0 (i.e. all entries of U ij are
nonnegative) and that verify the following LMIs1

[
R +BT

i P jBi BT
i P jAi

∗ AT
i P jAi − P i + Q̄− ET

i U ijEi

]

< 0 (6.9)

for all i, j ∈ I0, then the infinite-horizon quadratic cost verifies for every asymptotically stable
trajectory with initial state x ∈ Ci0 , where i0 ∈ I0, the lower bound

V∞(x,u) ≥ sup
(P i,U ij)

{xTP i0x : P i, U ij solution of (6.9)}. (6.10)

(ii) If there exist symmetric matrices P i, U ij such that U ij ≥ 0 and that verify the following
LMIs





R +BT
i P jBi BT

i P jAi 0
∗ AT

i P jAi − P i +Q 0
∗ ∗ 0



−



 ∗





T

U ij

[
G 0 g
0 Hi hi

]

< 0 (6.11)

for all i, j ∈ I0, then the infinite-horizon quadratic cost verifies for every asymptotically stable
trajectory with initial state x ∈ Ci0 , where i0 ∈ I0, such that the input and the output constraints
(6.3)–(6.4) are satisfied the lower bound (6.10).

Proof : (i) We define the following piecewise quadratic function:

V (x) = xTP ix if x ∈ Ci,

where P i are symmetric matrices for all i ∈ I0. Using a similar reasoning as in [75, 139] for
continuous PWA systems it follows from (6.2) that

Ci ⊆ Ei := {x ∈ R
n : xTET

i WEix ≥ 0}

for any symmetric matrix W ≥ 0.

1In the sequel the symbol ∗ is used to induce a symmetric structure in an LMI.
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We search for the matrices P i, where i ∈ I0, such that V satisfies the following inequality:

V (x)− V (fPWL(x, u)) ≤ `(x, u) ∀x ∈ ∪i∈I0Ci, u ∈ R
m. (6.12)

If we assume that x ∈ Ci and fPWL(x, u) ∈ Cj , then from (6.12) it follows that the matrices
P i must satisfy:

xTP ix− (Aix+Biu)
TP j(Aix+Biu) ≤ xTQx+ uTRu ∀x ∈ Ci, u ∈ R

m (6.13)

for all i, j ∈ I0. Note that (6.13) can be replaced by the more conservative requirement: find the
matrices P i and the sets Eij := {x ∈ R

n : xTET
i U ijEix ≥ 0}, where U ij ≥ 0, satisfying

xTP ix− (Aix+Biu)
TP j(Aix+Biu) ≤ xTQx+ uTRu ∀x ∈ Eij, u ∈ R

m (6.14)

for all i, j ∈ I0. Applying the S-procedure to (6.14) (note that in this case the S-procedure is
exact, provided that2 int(Eij) 6= ∅, according to Section B.3 in Appendix B) we get: find P i and
U ij ≥ 0 satisfying

xTP ix− (Aix+Biu)
TP j(Aix+Biu) ≤ xTQx+ uTRu− xTET

i U ijEix (6.15)

for all x ∈ R
n, u ∈ R

m and for all i, j ∈ I0. The last inequalities lead us to the LMIs (6.9).
Furthermore, since we assume that x∞ := limk→∞ xk = 0, from (6.12) we obtain

(
V (x0)− V (x1)

)
+
(
V (x1)− V (x2)

)
+ · · · ≤ `(x0, u0) + `(x1, u1) + · · ·

or equivalently (recall that x0 = x)

V (x) ≤ V∞(x,u)

which leads us to the lower bound (6.10) on V∞.
(ii) We now take into account the constraints (6.3)–(6.4). In this case (6.12) becomes:

V (x)− V (fPWL(x, u)) ≤ `(x, u) ∀x ∈ Ci ∩X, u ∈ U.

From (6.8) the constraints on the input can be written as [G hu][u
T 1]T ≥ 0 and the constraints

on the output as [Hi hi][x
T 1]T ≥ 0 for all x ∈ Ci. Then, by applying the S-procedure as in the

first part of this proof we obtain: find P i and U ij ≥ 0 satisfying

V (x)− V (fPWL(x, u)) ≤ `(x, u)−





u
x
1





T 

 ∗





T

U ij

[
G 0 g
0 Hi hi

]




u
x
1





for all u ∈ R
m, x ∈ R

n and for all i, j ∈ I0. Using the equivalence (B.4)–(B.5) (see Appendix
B) it follows immediately that we must replace the LMIs (6.9) with the LMIs (6.11). The rest
follows from (i). ♦

Remark 6.1.2

• Note that first, we can consider a quadratic function V (x) = xT P̄ x (i.e. P1 = P2 = · · · =
P ) and check if there exists a symmetric matrix P satisfying the LMIs (6.9) or (6.11). If
such a matrix P does not exist, the next step is to consider a piecewise quadratic function
as in the proof of Theorem 6.1.1.

2Recall that int(·) denotes the interior of a certain set.
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• We can define a set Λ = {(i, j) ∈ I2
0 : ∃ x ∈ Ci, u ∈ U s.t. fPWL(x, u) ∈ Cj} that gives us

all possible transitions from one region to another and then to restrict (i, j) ∈ Λ only. The
set Λ can be determined via reachability analysis [9].

• We can search for tighter outer approximations with ellipsoids Ēij for each polytope Ci

than Eij , i.e. Ci ⊆ Ēij ⊆ Eij . In that case, in the inequalities (6.14) the conditions x ∈ Eij

will be replaced by the less conservative conditions x ∈ Ēij . ♦

6.1.2 Upper bound for the infinite-horizon quadratic cost
In order to obtain an upper bound for V∞ we could consider a particular control law that asymp-
totically stabilizes3 the PWL system (6.5). Our first impulse would be to take the ordinary linear
quadratic control

κ0(x) = F 0
i x if x ∈ Ci, (6.16)

where F 0
i = −(R+BT

i P iBi)
−1BiP iAi. Note that the PWL control law (6.16) cannot guarantee

stability for (6.5). However, if the closed loop-system x(k + 1) = fPWL(x(k), κ0(x(k))), which
explicitly can be written as

x(k + 1) = (Ai +BiF
0
i )x(k) if x(k) ∈ Ci, (6.17)

where i ∈ I0, is asymptotically stable, then we can choose the controller κ0 in order to obtain an
upper bound for the infinite-horizon quadratic cost. We can check stability via LMI feasibility
as we will see in the sequel. Indeed, similarly as in the proof of Theorem 6.1.1 we introduce the
piecewise quadratic function:

V (x) = xTPix if x ∈ Ci,

where Pi are symmetric matrices such that

xTPix � 0 ∀x ∈ Ci \ {0} (6.18)

and
V (fPWL(x, κ0(x)))− V (x) ≤ −`(x, κ0(x)) ∀x ∈ ∪i∈I0Ci. (6.19)

Lemma 6.1.3 Suppose that fPWL(∪i∈I0Ci, κ0) ⊆ ∪i∈I0Ci and the piecewise quadratic function
V satisfies the inequalities (6.18)–(6.19). Then the origin is asymptotically stable with respect to
the closed-loop system (6.17) with a region of attraction ∪i∈I0Ci.
Proof : First, let us note that if the piecewise quadratic function V satisfies the inequalities
(6.18)–(6.19), then V is a Lyapunov function (see Definition C.1.3) for the closed-loop system
(6.17). Indeed, V (0) = 0 and V is continuous at the origin (recall that we have assumed 0 ∈
int(∪i∈I0)Ci.). Then, from (6.18) it follows that there exists ζ > 0 sufficiently small such that
V (x) ≥ ζ‖x‖22 for all x ∈ ∪i∈I0Ci. Furthermore, `(x, u) > 0 for all x ∈ R

n \ {0}, u ∈ R
m \ {0}

and thus V decreases along the trajectories of (6.17) starting in ∪i∈I0Ci. From Theorem C.1.2 it
then follows that the origin is stable with respect to the system (6.17). In fact, we have that

V (fPWL(x, κ0(x)))− V (x) ≤ −λmin(Q)‖x‖22
for all x ∈ ∪i∈I0Ci, where λmin(Q) is the smallest eigenvalue of the positive definite matrix Q
(this means that λmin(Q) > 0). We conclude that the conditions from Corollary C.1.4 are also
satisfied (here α(z) = ζz2, β(z) = λmin(Q)z2 are the required K functions), which also proves
attractiveness and thus asymptotic stability. ♦

3For a brief introduction to Lyapunov stability the reader is referred to Appendix C.
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Remark 6.1.4 Note that V is not continuous on ∪i∈I0Ci, but only in the origin. So, in the discrete
time case we do not have to impose continuity everywhere for the function V as in the continuous
time case [75, 139]. ♦

If x ∈ Ci and fPWL(x, κ0(x)) ∈ Cj , then (6.19) can be written explicitly as:

xT (Ai+BiF
0
i )TPj(Ai+BiF

0
i )x−xTPix≤−xTQx− xTF 0,T

i RF 0
i x ∀x ∈ Ci (6.20)

for all i, j ∈ I0. We can relax (6.18), (6.20) to the following inequalities: for all i, j ∈ I0 the
following inequalities hold

xTPix > 0 ∀x ∈ Ei \ {0}
xT (Ai+BiF

0
i )TPj(Ai+BiF

0
i )x−xTPix+xTQx+xTF 0,T

i RF 0
i x≤0 ∀x ∈ Eij,

where Ei := {x ∈ R
n : xTET

i WiEix ≥ 0}, Eij := {x ∈ R
n : xTET

i UijEix ≥ 0}, and Wi, Uij ≥
0. Using a similar reasoning as in the proof of Theorem 6.1.1 we relax these inequalities to: find
Pi,Wi, Uij such that Wi, Uij ≥ 0 and that satisfy the following inequalities for all i, j ∈ I0

xTPix > xTET
i WiEix

xT (Ai +BiF
0
i )TPj(Ai +BiF

0
i )x−xTPix ≤−xTQx−xTF 0,T

i RF 0
i x−xTET

i UijEix

for all x ∈ R
n, x 6= 0. We obtain the following LMIs in Pi, Uij ,Wi:

Pi � ET
i WiEi,

(Ai +BiF
0
i )TPj(Ai +BiF

0
i )− Pi +Q+ F 0,T

i RF 0
i + ET

i UijEi 4 0,
(6.21)

whereWi, Uij ≥ 0, for all i, j ∈ I0. As a consequence of the Lemma 6.1.3 we conclude that if the
LMIs (6.21) are feasible, then the origin is asymptotically stable with respect to the closed-loop
system (6.17). Furthermore, from (6.21) it follows that (6.19) is still valid and thus

(
V (x1)− V (x0)

)
+
(
V (x2)− V (x1)

)
+ · · · ≤ −`(x0, κ0(x0))− `(x1, κ0(x1))− · · · ,

where xk = φ(k;x, κ0) for all k ≥ 0 and we recall that φ(k;x, κ0) denotes the state solution of
(6.17) at step k when the initial state is x (i.e. the linear quadratic control κ0 is applied to the
PWL system (6.5)). It follows that for all x ∈ Ci0 with i0 ∈ I0

V∞(x, κ0) ≤ inf
(Pi,Uij ,Wi)

{xTPi0x : Pi, Uij,Wi solution of (6.21)}.

If the linear quadratic controller (6.16) is not stabilizing for (6.17), i.e. the LMIs (6.21) do not
have a feasible solution, or if the controller κ0 does not satisfy the constraints on output and
input (6.3)–(6.4), we have to look for another state feedback controller. In the sequel we provide
methods to find such a controller. Let us consider the PWL state feedback controller

κf(x) = Fix if x ∈ Ci (6.22)

for the PWL system (6.5). The closed-loop system becomes

x(k + 1) = fPWL(x(k), κf(x(k))). (6.23)

We want to determine the gains Fi such that the origin is asymptotically stable with respect to
(6.23) and the piecewise quadratic function V defined as

V (x) = xTPix if x ∈ Ci (6.24)

satisfies the following inequalities

V (x) > 0
V (fPWL(x, κf(x)))− V (x) ≤ −`(x, κf(x))

∀x ∈ ∪i∈I0Ci \ {0}. (6.25)
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Remark 6.1.5

• It is important to note that the inequalities (6.25) are sufficient to guarantee that V is a
Lyapunov function and the origin is asymptotically stable with respect to the closed-loop
system (6.23) (according to Lemma 6.1.3).

• First, we can search for a common linear feedback controller κf(x) = Fx and a common
quadratic Lyapunov function candidate V (x) = xTPx, where P � 0, such that the in-
equalities (6.25) are satisfied. If such matrices F and P do not exist, then we search for
a PWL feedback controller κf and a piecewise quadratic function V . Piecewise quadratic
Lyapunov function candidates were also used in [75, 139] for continuous time PWA sys-
tems. ♦

The inequalities (6.25) can be written explicitly as: for all i, j ∈ I0 (assuming that x ∈ Ci

and fPWL(x, κf(x)) ∈ Cj)

xTPix > 0
xT (Ai+BiFi)

TPj(Ai+BiFi)x−xTPix+xTQx+xTF T
i RFix≤0

∀x∈Ci\{0} (6.26)

The inequalities (6.26) are implied by the more conservative inequalities:

xTPix > 0 ∀x ∈ Ei \ {0}
xT (Ai +BiFi)

TPj(Ai +BiFi)x−xTPix+xTQx+xTF T
i RFix<0 ∀x ∈ Eij \ {0}

for all i, j ∈ I0. Now, applying the S-procedure we obtain the following matrix inequalities in
Pi, Fi, Uij,Wi:

Pi � ET
i WiEi ∀i ∈ I0 (6.27)

(Ai +BiFi)
TPj(Ai +BiFi)− Pi +Q+ F T

i RFi + ET
i UijEi ≺ 0 ∀i, j ∈ I0, (6.28)

where Wi, Uij ≥ 0. The following theorem gives a solution to (6.27)-(6.28):

Theorem 6.1.6 The matrix inequalities (6.27)–(6.28) have a solution if and only if the following
matrix inequalities in Pi, Fi, Uij,Wi and θ have a solution

[
BT

i PjBi + θR− I BT
i PjAi + Fi

∗ AT
i PjAi − Pi + ET

i UijEi + θQ− F T
i Fi

]

≺ 0

Pi > ET
i WiEi

(6.29)

for all i, j ∈ I0, where Uij,Wi ≥ 0 and θ > 0.

Proof : It is easy to see that (6.28) can be written as:
[
Fi

I

]T [
BT

i PjBi +R BT
i PjAi

∗ AT
i PjAi − Pi + ET

i UijEi + Q̄

] [
Fi

I

]

≺ 0.

Here, M⊥ denotes the orthogonal complement of the matrix M . Furthermore, ker(M) and
Im(M) denote the kernel and the image of M , respectively (see Section B.4 for appropriate
definitions). In our case we have that

ker([−I Fi]) = Im(

[
Fi

I

]

).
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It is known [72] that the orthogonal complement of the column space of M is the null space of

MT . Let us note that the following equality holds
[
−I
F T

i

]⊥
=

[
Fi

I

]T

. Therefore, the previous

matrix inequalities can be written as:

[
−I
F T

i

]⊥
Qij

[
−I
F T

i

]⊥,T

≺ 0, (6.30)

where Qij =

[
BT

i PjBi +R BT
i PjAi

∗ AT
i PjAi − Pi + ET

i UijEi +Q

]

. Using now the elimination

lemma (see Section B.4) we obtain that (6.30) is equivalent to

Qij ≺ σij

[
−I
F T

i

]
[
−I Fi

]
(6.31)

with σij ∈ R. Of course (6.31) has a solution if and only if

Qij ≺ σ

[
−I
F T

i

]
[
−I Fi

]
(6.32)

with σ > 0 has a solution (take σ > maxi,j{0, σij} for the implication “(6.31) ⇒ (6.32)”; the
other implication is obvious). Now if we divide (6.32) by σ > 0 and denote with Pi ← 1/σPi,
Uij ← 1/σUij , Wi ← 1/σWi and θ ← 1/σ, we obtain (6.29). ♦

The matrix inequalities (6.29) are not LMIs due to the terms F T
i Fi. Therefore, we have to

use standard algorithms for solving bilinear matrix inequalities (BMIs) (see Section B.5 for an
appropriate definition). The algorithms for solving BMIs cover both local and global approaches.
Local approaches are computationally less intensive, and they consist in searching a feasible
solution: if it exists then we have solved the problem, otherwise one cannot tell whether there is
a feasible solution or not. Global algorithms are able to find a solution if the problem is feasible.
The branch-and-bound algorithm derived in [154] can be used to solve globally our problem,
although in this case the computational time is increasing in comparison with the local approach.

Since the sets X,U contain the origin in their interiors, there exists a sufficiently small set
containing the origin in its interior such that the PWL state feedback controller κf defined in
(6.22) satisfies the output and input constraints. However, since the matrices Pi are not positive
definite, this set is not convex in general and it is difficult to determine such a set. Thus, we now
discuss some possible relaxations for (6.27)–(6.28) such that the output and input constraints are
satisfied on a convex set and the obtained matrix inequalities are easier to solve than the matrix
inequalities (6.29).

The first relaxation is to replace (6.27) with Pi � 0 for all i ∈ I0. In this case we can apply
the Schur complement (Section B.2) to (6.28). Note that (6.28) is equivalent to

(Ai +BiFi)
TS−1

j (Ai +BiFi)− Pi +Q+ F T
i RFi + ET

i UijEi ≺ 0
0 ≺ Pi 4 S−1

i ,
(6.33)

for all i, j ∈ I0. In this way we also take into account the case Si = P−1
i . We now give a sketch

of the proof for this equivalence: it is clear that if (6.28) has a solution, then there exists an ε > 0
such that (Ai+BiFi)

TPj(Ai+BiFi)−Pi+Q+F T
i RFi+E

T
i UijEi ≺ −ε(Ai+BiFi)

T (Ai+BiFi).
Then, we can take S−1

i = Pi + εI and thus we obtain (6.33). The other implication is obvious.
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Now using the Schur complement, (6.33) is equivalent to




Pi −Q− ET
i UijEi (Ai +BiFi)

T F T
i

∗ Sj 0
∗ ∗ R−1



 � 0 (6.34)

0 ≺ Pi 4 S−1
i . (6.35)

We give an algorithm for finding a solution for (6.34)–(6.35) based on an idea from [73]:

Algorithm 6.1.7 We want to solve the feasibility problem: find Pi, Si, Fi, where i ∈ I0, that
satisfy the following matrix inequalities

LMI(Si, Pi, Fi) ≺ 0
0 ≺ Pi 4 S−1

i

∀i ∈ I0,

where LMI(Si, Pi, Fi) ≺ 0 are the LMIs (6.34). It is clear that 0 ≺ Pi 4 S−1
i is equivalent to

0 ≺ Si 4 P−1
i or λmax(PS) ≤ 1 (λmax(PS) denotes4 the largest eigenvalue of the matrix PS in

the conventional algebra). We take 0 < θ < 1. The algorithm consists of three steps.
Step 1
Solve LMI(Si, Pi, Fi) ≺ 0 for all i ∈ I0. Therefore, we have available a solution P 0

i , S
0
i , F

0
i .

If P 0
i 4 (S0

i )
−1, then we stop because we have found a solution. Otherwise, choose β0

i >
λmax(P

0
i S

0
i ).

Step 2
For all k ≥ 0 fix P k

i . Solve the following LMIs:

LMI(Si, P
k
i , Fi) ≺ 0

0 ≺ Si ≺ βk
i (P k

i )−1 ∀i ∈ I0.

We obtain {Sk+1
i }i∈I0 and we define αk

i = (1− θ)λmax(S
k+1
i P k

i ) + θβk
i .

Step 3
Fix Sk+1

i . Solve the following LMIs:

LMI(Sk+1
i , Pi, Fi) ≺ 0

0 ≺ Pi ≺ αk
i (S

k+1
i )−1 ∀i ∈ I0.

We obtain P k+1
i , F k+1

i and we define βk+1
i = (1− θ)λmax(P

k+1
i Sk+1

i ) + θαk
i . ♦

Properties of the algorithm:

1. If Step 1 is feasible then Step 2 and 3 are feasible for all k ≥ 0.

2. If there exists a k such that αk
i ≤ 1 in Step 2 or βk

i ≤ 1 in Step 3 for all i ∈ I0, then we
stop the algorithm. We have found a solution.

3. 0 < βk+1
i < αk

i < βk
i for all i ∈ I0. Therefore, there exists β∗

i = limk→∞ βk
i for all i ∈ I0.

If β∗
i < 1 for all i ∈ I0, then the algorithm yields a solution.

4Note that the eigenvalues of the matrix PS are the same as the eigenvalues of the symmetric matrix S1/2PS1/2

and thus they are real.
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We may assume that ∪i∈I0Ci is a polytope (otherwise we can take an inner approximation
with a polytope of this set) given by:

∪i∈I0Ci = {x ∈ R
n : Dx ≤ 1},

where D ∈ R
nD×n (since the origin is assumed to lie in the interior of ∪i∈I0Ci).

Theorem 6.1.8 (i) If the following LMIs in Pi, Si, Fi, Uij: Pi � 0, Si � 0, Uij ≥ 0,




Pi −Q− ET
i UijEi (Ai +BiFi)

T F T
i

∗ Sj 0
∗ ∗ R−1



 � 0 (6.36)

and the following BMIs
SiPi + PiSi ≤ 2I (6.37)

have a solution for all i, j ∈ I0, then this solution is also a solution of the matrix inequalities
(6.34)–(6.35).

(ii) If the following additional LMIs
[

1/ρ Dl.

∗ Pi

]

< 0 (6.38)

are satisfied for all l ∈ N[1,nD ], i ∈ I0, where Dl. denotes the lth row of D, then the set Xf =
{x ∈ R

n : xTPix ≤ ρ, i ∈ I0}, where ρ > 0, is a positively invariant (PI) set for the closed-loop
system (6.23), convex, compact, containing the origin in its interior.

(iii) If the following additional LMIs
[

Λ− ET
i WiEi Fi

∗ Pi

]

< 0, Λjj ≤ u2
j,max/ρ ∀j ∈ N[1,m] (6.39)

are satisfied for all i ∈ I0, where the matrices Wi have all entries non-negative, then the state
feedback controller κf satisfies the input constraints (6.4) for all x ∈ Xf .

(iv) If the following additional LMIs
[

Γ− ET
i W̃iEi Ci(Ai +BiFi)
∗ Pi

]

< 0, Γjj ≤ y2
j,max/ρ ∀j ∈ N[1,p], (6.40)

are satisfied for all i ∈ I0, where the matrices W̃i have all entries non-negative, then the output
of (6.23) satisfies the output constraints (6.3) for all initial states x ∈ Xf . Taking γ = 1/ρ all
formulas (6.36)–(6.40) are LMIs except (6.37).

Proof : (i) The BMIs (6.37) imply5 (see e.g. [150]) that

0 ≺ Si 4 P−1
i or equivalently 0 ≺ Pi 4 S−1

i

Applying the Schur complement to (6.36) and using the last inequality we get:

0 ≺ Pi −Q− ET
i UijEi − (Ai +BiFi)

TS−1
j (∗)− F T

i RFi

4 Pi −Q− ET
i UijEi − (Ai +BiFi)

TPj(∗)− F T
i RFi,

5However, there is no equivalence between (6.37) and (6.35) as it is shown in [150].
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i.e. the LMIs (6.28) are valid with the requirement that Uij has all entries non-negative.
(ii) An ellipsoid {x ∈ R

n : xTPx ≤ ρ} is contained in a half space {x ∈ R
n : dTx ≤ 1} if

and only if [168]

ρ dTP−1d ≤ 1.

Using this remark and the Schur complement formula we obtain the LMIs (6.38). Furthermore,
if x ∈ Xf ∩ Ci0 for some io ∈ I0, then xTPi0x ≤ ρ and fPWL(x, κf(x)) = (Ai0 + Bi0Fi0)x.
Therefore, for any j ∈ I0 we have:

xT (Ai0 +Bi0Fi0)
TPj(Ai0 +Bi0Fi0)x ≤ xTPi0x ≤ ρ,

i.e. fPWL(x, κf(x)) ∈ Xf . It follows that Xf is a PI set for (6.23). The set Xf is convex6, compact
and contains the origin in the interior since it is the intersection of a finite number of ellipsoids
(each ellipsoid {x ∈ R

n : xTPix ≤ ρ} is a convex, compact set, containing the origin in the
interior because Pi � 0).

(iii) The constraint on the input (6.4) is equivalent to u2
j ≤ u2

j,max for all j ∈ N[1,m]. We have
Xf ⊆ {x ∈ R

n : xTPix ≤ ρ} and if x ∈ Ci, then

[κf(x)]
2
j ≤max

x∈Xf

[Fix]
2
j ≤ max

xT Pix≤ρ
[Fix]

2
j ≤ max

xT Pi/ρx≤1
[Fix]

2
j ≤ ‖

√
ρ[FiP

−1/2
i ]j‖22 =

ρ[FiP
−1
i F T

i ]jj = ρ[FiP
−1
i F T

i ]jj ≤ ρΛjj ≤ u2
j,max.

Taking Wi with all entries non-negative, and applying the S-procedure, the last inequality trans-
lates into:

Λ− FiP
−1
i F T

i − ET
i WiEi ≥ 0

and Λjj ≤ u2
j,max/ρ, i.e. the LMIs (6.39), once we define γ := 1/ρ.

(iv) The LMIs (6.40) are derived in the same way. ♦

We propose now a second relaxation that is based on solving only LMIs. If we do not apply
the S-procedure, i.e. we replace in (6.26) the condition “x ∈ Ci” with the more conservative
condition “x ∈ R

n”, then we obtain the following matrix inequalities:

Pi � 0
(Ai +BiFi)

TPj(Ai +BiFi)− Pi +Q+ F T
i RFi 4 0

(6.41)

for all i, j ∈ I0. We use the following linearization of (6.41):

Pi = S−1
i , Fi = YiG

−1.

Using this change of variables we see that the determination of the control law does not depend
explicitly on the Lyapunov matrices Pi. The extra degree of freedom introduced by the matrix G
which is not considered symmetric, is incorporated in the control variable, removing the special
structure of Pi to G. A similar linearizing method was used in [39] in the context of stabilizing
linear parametric varying systems. Another method to linearize (6.41) can be found in [83], i.e.
S = P−1, Fi = YiS. Let us consider an inner approximation with an ellipsoid of the polytope
∪i∈I0Ci, i.e.

E(L) = {x ∈ R
n : xTL−1x ≤ 1} ⊆ ∪i∈I0Ci, (6.42)

where L � 0. The computation of a maximal volume ellipsoid included in a polytope can be
done using convex optimization as we saw in the proof of Theorem 6.1.8 (ii).

6We observe that Xf is in particular a PI set for the free switching system with the modes i ∈ I0.



6.1 Introduction 127

Theorem 6.1.9 (i) If the following LMIs in G, Yi, Si: Si � 0 and






G+GT − Si (AiG+BiYi)
T (Q1/2G)T (R1/2Yi)

T

∗ Sj 0 0
∗ ∗ I 0
∗ ∗ ∗ I






� 0 (6.43)

have a solution for all i, j ∈ I0, then Fi = YiG
−1, Pi = S−1

i are solutions of (6.41).
(ii) If the following additional LMIs

[
λL− Si 0
∗ −λ+ 1/ρ

]

< 0 (6.44)

are satisfied for all i ∈ I0, where λ > 0, then the set Xf = {x ∈ R
n : xTPix ≤ ρ, i ∈ I0},

where ρ > 0, is a PI set for the closed-loop system (6.23), convex, and compact, containing the
origin in its interior.

(iii) If the following additional LMIs
[

Λ Yi

∗ G+GT − Si

]

< 0, Λjj ≤ u2
j,max/ρ ∀j ∈ N[1,m] (6.45)

are satisfied for all i ∈ I0, then the state feedback controller κf satisfies the input constraints
(6.4) for all x ∈ Xf .

(iv) If the following additional LMIs
[

Γ Ci(AiG+BiYi)
∗ G+GT − Si

]

< 0, Γjj ≤ y2
j,max/ρ ∀j ∈ N[1,p]. (6.46)

are satisfied for all i ∈ I0, then the output of (6.23) satisfies the output constraints (6.3) for all
initial states x ∈ Xf . Taking γ = 1/ρ all previous matrix inequalities become LMIs.

Proof : (i) From (6.43) using the Schur complement, we observe first that G is a nonsingular
matrix because

G+GT � Si

and also
0 ≺ Si ⇒ (Si −G)TS−1

i (Si −G) < 0.

Therefore we get the following relation:

G+GT − Si 4 GTS−1
i G

and

0 ≺ G+GT − Si − (AiG+BiYi)
TS−1

j (∗)−GTQG− Y T
i RYi

4 GTS−1
i G− (AiG+BiYi)

TS−1
j (∗)−GTQG− Y T

i RYi

= GT
(
S−1

i − (Ai +BiYiG
−1)TS−1

j (∗)−Q−G−TY T
i RYiG

−1
)
G.

Since G is nonsingular, taking Fi = YiG
−1, Pi = S−1

i , from the last inequality we obtain (6.41).
(ii) The LMIs (6.44) express the fact that

{x : xTS−1
i x ≤ ρ} ⊆ E(L)
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since S−1
i = Pi (see [164] for a detailed discussion about inclusion of ellipsoids) and the rest of

the proof is similar to the proof of Theorem 6.1.8 (ii).
(iii) The constraint on the input (6.4) is equivalent to u2

j ≤ u2
j,max. We have Xf ⊆ {x :

xTPix ≤ ρ} and if x ∈ Ci, then

[κf(x)]
2
j ≤ max

x∈Xf

[YiG
−1x]2j ≤ max

xT Pix≤ρ
[YiG

−1x]2j ≤ max
xT Pi/ρx≤1

[YiG
−1x]2j

≤ ‖√ρ[YiG
−1S

1/2
i ]j‖22 = ρ[YiG

−1SiG
−TY T

i ]jj ≤ ρΛjj ≤ u2
j,max.

Making use again of the S-procedure we obtain (6.45). We recall that Pi = S−1
i .

(iv) This proof is similar to (iii). ♦

Note that for simplicity of the presentation we have considered that the ellipsoids EL and
{x ∈ R

n : xTPix ≤ ρ} are centered at the origin although we can choose the centers of these
ellipsoids any appropriate points. The results still hold.

Corollary 6.1.10 Suppose that the matrices P i from Theorem 6.1.1 are available. Suppose also
that the matrices Fi, Pi are available. Then

(i) The infinite-horizon quadratic cost is bounded:

sup
(P i,U ij)

xT
0 P̄i0x0 ≤ V∞(x0, κf) ≤ inf

(Pi,Fi,Uij)
xT

0 Pi0x0 ∀x0 ∈ Ci0 , i ∈ I0. (6.47)

(ii) The origin is asymptotically stable with respect to the closed-loop system (6.23) with a
region of attraction

E := ∪i∈I0

(
{x ∈ R

n : xTPix ≤ ρ} ∩ Ci

)

and the closed-loop outputs and inputs satisfy the constraints (6.3)–(6.4) on E . Moreover, the
infinite-horizon quadratic cost is bounded from above by:

V∞(x0, κf) ≤ ρ ∀x0 ∈ E .

Proof : (i) Since Fi, Pi are available, it follows that the function

V (x) = xTPix if x ∈ Ci

is a piecewise quadratic Lyapunov function for the closed-loop system (6.23). Contrary to the
continuous time case the Lyapunov function can be discontinuous across cell boundaries for
discrete time case.

(ii) We know that Xf is a convex PI set. However, a larger PI set is E (note that Xf ⊆ E),
which is a union of convex sets. From the LMIs (6.39) or (6.45) it follows that the controller
κf satisfies the input constraints on E . The output constraints are satisfied on E due to the LMIs
(6.40) or (6.46). Asymptotic stability is proved using the same Lyapunov function V . Moreover,
V∞(x0, κf) ≤ V (x0) ≤ ρ for all x0 ∈ E . ♦

6.2 MPC for PWA systems
In the previous section we have provided methods to derive a PWL feedback controller

κf(x) = Fix if x ∈ Ci
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that stabilizes only the PWL dynamics (6.5) corresponding to the PWA system (6.1). Moreover,
the closed-loop output and input trajectories corresponding to the PWL dynamics satisfy the
constraints (6.3)–(6.4) on the convex PI set

Xf = {x ∈ R
n : xTPix ≤ ρ, i ∈ I0}.

In general, this set is small in comparison with X∞ defined as the largest domain of attraction
achievable by a control law that asymptotically stabilizes the PWA system (6.1) and that makes
the closed-loop output and input trajectories to satisfy the constraints (6.3)–(6.4). In this section
we prove that using an MPC law the corresponding domain of attraction approximates X∞ arbi-
trarily closely. The MPC scheme derived in this section also uses the terminal set and terminal
cost framework.

The following assumption is assumed to hold in the remainder of this chapter:

A5: The PWL feedback controller κf and the piecewise quadratic function V satisfy (6.25).
Moreover, the convex PI set Xf ⊆ X and it contains the origin in its interior.

The matrices Fi and Pi that define κf and V are determined using one of the methods dis-
cussed in Section 6.1.2.

6.2.1 Problem formulation

We use similar notations as in the previous chapters: φ(k;x,u) denotes the state solution of the
PWA system (6.1) at step k when the initial state is x and the control sequence u is applied. We
consider a prediction horizon of length N . We choose the following cost function:

VN(x,u) =
N−1∑

i=0

`(xi, ui) + Vf(xN), (6.48)

where ` is the quadratic stage cost defined in (6.7), u = [uT
0 uT

1 · · · uT
N−1]

T and xi = φ(i;x,u).
For the terminal cost Vf(x) ideally we should take the infinite-horizon value cost V∞(x, κf) (in
this way a stable MPC strategy for linear systems is constructed in [105]), but due to the nonlin-
earity of our PWA system, this cannot be computed explicitly as in the linear case. Therefore,
we replace the infinite-horizon value cost with its upper bound that we have derived in Section
6.1.2, i.e. Vf(x) = V (x) or explicitly

Vf(x) = xTPix if x ∈ Ci.

From Corollary 6.1.10 it follows that Vf(x) ≤ ρ for all x ∈ Xf . We assume that at each step k
the state x(k) is available (i.e. can be measured or estimated).

For each initial condition x we define the set of feasible control sequences u:

ΠN(x) = {u : xi ∈ X, ui ∈ U ∀i ∈ N[0,N−1], xN ∈ Xf}. (6.49)

Note that additionally to the output and input constraints (6.3)–(6.4) we impose also a terminal
constraint xN ∈ Xf . Also, let XN denote the set of initial states for which a feasible input
sequence exists:

XN = {x : ΠN(x) 6= ∅}. (6.50)
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The MPC law is obtained as follows. At event (x, k) (i.e. the state of the PWA system (6.1)
at step k is x) the following optimal control problem is solved:

V 0
N(x) = inf

u∈ΠN (x)
VN(x,u). (6.51)

Let u0
N(x) = [(u0

0(x))
T (u0

1(x))
T · · · (u0

N−1(x))
T ]T denote a minimizer of the optimization prob-

lem (6.51) (as defined in (2.18)), i.e.

u0
N(x) ∈ arg min

u∈ΠN (x)
VN(x,u) (6.52)

and let x0 = [xT (x0
1)

T · · · (x0
N)T ]T denote the optimal state trajectory (i.e. x0

i = φ(i;x,u0
N(x))).

We obtain an implicit MPC law:
κN(x) = u0

0(x).

Similar quasi-infinite (we use this terminology since Vf approximates the infinite-horizon value
cost) MPC strategies have been employed also in [30, 83, 98] in the context of MPC for linear
parametric varying systems with polytopic uncertainty or nonlinear systems.

6.2.2 MPC for PWA systems: closed-loop stability
We now study the behavior of the PWA system (6.1) in closed-loop with the MPC law κN :

x(k + 1) = Aix(k) +BiκN(x(k)) + ai

y(k) = Cix(k) + ci
if x(k) ∈ Ci (6.53)

Theorem 6.2.1 Suppose that the assumption A5 holds. Then, we have:
(i) The set XN is a PI set for the closed-loop system (6.53) and Xf ⊆ XN for all N > 0.
(ii) The origin is asymptotically stable with respect to the closed-loop system (6.53) with a

region of attraction XN .
(iii) The following inclusions holdXN ⊆ XN+1 for allN and limN→∞XN = X∞. Moreover,

if there exists an N ∗ such that XN∗ = XN∗+1, then X∞ = XN∗ .

Proof : (i) Since we assume that assumption A5 holds, it follows that the PWL feedback con-
troller κf and the terminal set Xf satisfy the conditions F1–F3 given in Section 2.3.2 for the
system (6.53). From Theorem 2.3.4 it follows that XN is a PI set for the closed-loop system
(6.53). Moreover, for all N > 0 and for all x ∈ Xf a feasible input sequence ut ∈ ΠN(x) is
given by

ut = [(κf(x))
T (κf(φ(1;x, κf)))

T · · · (κf(φ(N − 1;x, κf)))
T ]T .

Therefore, ΠN(x) 6= ∅ and thus x ∈ XN . We conclude that Xf ⊆ XN .
(ii) We will show that V 0

N satisfies the conditions from Theorem 2.3.5, i.e. V 0
N is a Lyapunov

function. First let us note that the terminal cost Vf defined above satisfies the condition S1 given
in Section 2.3.2, according to (6.25). Moreover, from the first part of this proof we see that the
conditions F1–F3 are fulfilled. It remains to show that V 0

N is continuous at the origin. It is clear
that V 0

N(x) ≥ λmin(Q)‖x‖22 for all x ∈ Xf , where λmin(Q) ≥ 0 (we recall that Vf(x) ≥ 0 for all
x ∈ Xf). For all x ∈ Xf we have that

V 0
N(x) ≤ VN(x,ut).

We denote with AFi
= Ai + BiFi for all i ∈ I0. Since for all x ∈ Xf only the PWL

dynamics of the PWA system are active (recall that Xf is a PI set for the PWL dynamics), it



6.2 MPC for PWA systems 131

follows that φ(k;x,ut) = AFi(k)
...AFi(1)

x for all k ∈ N[1,N ], where i(1), ..., i(k) is a feasible
switching sequence. It follows that the function x 7→ VN(x,ut) is piecewise quadratic on Xf .
Moreover, after some long but straightforward computations it can be proved that there exists a
symmetric matrix P̃ satisfying VN(x,ut) ≤ xT P̃ x for all x ∈ R

n and P̃ has at least one positive
eigenvalue (otherwise, 0 < V 0

N(x) ≤ VN(x,ut) ≤ xT P̃ x ≤ 0 for all x ∈ Xf , x 6= 0, i.e. we
obtain a contradiction). It follows that VN(x,ut) ≤ xT P̃ x ≤ λmax(P̃ )‖x‖22 for all x ∈ Xf , where
λmax(P̃ ) > 0. We obtain that

λmin(Q)‖x‖22 ≤ V 0
N(x) ≤ VN(x,ut) ≤ λmax(P̃ )‖x‖22 ∀x ∈ Xf .

Since Xf contains a ball centered at the origin (according to assumption A5), it follows that V 0
N

is continuous at the origin. Asymptotic stability follows now from Theorem 2.3.5. Note that we
do not need V 0

N be continuous on XN but rather be continuous at the origin.
(iii) If x ∈ XN , then there exists an u0

N(x) ∈ ΠN(x). Therefore, [(u0
N(x))T (κf(x

0
N))T ]T ∈

ΠN+1(x). So, x ∈ XN+1, i.e. XN ⊆ XN+1. Let us define X̄∞ = limN→∞XN = ∪N≥0XN . We
prove that X̄∞ = X∞. It is clear that X̄∞ ⊆ X∞. It remains to prove that X∞ ⊆ X̄∞. Let x ∈
X∞. Then, from the definition of X∞ there exists a feasible input sequence u∞

0 = [uT
0 uT

1 · · · ]T
such that the state trajectory starting from x satisfies limk→∞ φ(k;x,u∞

0 ) = 0, and the input
and the output constraints are also satisfied. Now, since the set Xf contains the origin in its
interior and since limk→∞ φ(k;x,u∞

0 ) = 0, there exists a finite N such that φ(N ;x,u∞
0 ) ∈ Xf .

Therefore, x ∈ XN ⊆ X̄∞, i.e. X∞ ⊆ X̄∞.
Furthermore, from the equality XN∗ = XN∗+1 it follows that there does not exist a state

x 6∈ XN∗ such that with a feasible input u ∈ U the next state fPWA(x, u) ∈ XN∗ . Therefore,
X∞ = XN∗ . ♦

Remark 6.2.2

• Note that although the PWA system may be discontinuous we have shown that the optimal
value function V 0

N of the MPC optimization problem is continuous at the equilibrium and
can serve as a Lyapunov function for the closed-loop system (see the proof of Theorem
6.2.1 (ii)). This result is important since most of the literature on MPC for general nonlin-
ear systems assumes that V 0

N is continuous on XN , which is a conservative requirement in
the hybrid case.

• Point (i) is essential in order to ensure that it is worth replacing the auxiliary controller κf

with the MPC controller. Point (iii) shows that at the cost of an increasing computational
effort associated with the optimization problem (6.51), the domain of attraction can be
enlarged towards the maximum achievable one. Therefore, N is a tuning parameter that
realizes a trade-off between complexity and performance.

• When N = 1 we have to solve at each step k a convex optimization problem. If N > 1,
the optimization problem (6.51) is a non-convex optimization problem: the objective func-
tion is convex subject to linear and convex inequality constraints and nonlinear equality
constraints. In Section 6.2.4 we construct another PI set, different from Xf , that is given
by linear inequalities. In that case we can solve (6.51) using mixed-integer quadratic pro-
gramming, which is also a nonlinear optimization problem but using branch-and-bound
methods it is more tractable. ♦
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6.2.3 Enlargement of the terminal set
In the previous section we have derived a stable MPC strategy for PWA systems using a terminal
cost and a terminal set approach. For the terminal cost we have chosen the piecewise quadratic
Lyapunov function V corresponding to the PWL dynamics of the system, while the terminal
set was given by a certain sub-level set of V . The resulting optimization problem that we have
to solve on-line at each sample step k is non-convex, the computational time increasing with
the prediction horizon N . If the terminal set is small, then we need a long prediction horizon
in order to enlarge the domain of attraction XN . Therefore, the optimization problem will be
computationally intensive. In the sequel we develop a method to enlarge the terminal set based
on backward procedure. This procedure can be performed off-line, and thus we can efficiently
implement on-line the stable MPC scheme derived previously using a shorter prediction horizon
N .

The backward procedure consists of three steps:

Algorithm 6.2.3
Step 1
Suppose that the LMIs from Theorem 6.1.9 are feasible. For simplicity we consider ρ = 1.

Solve the following convex optimization problem:

min
(G,Yi,Si)

−
∑

i∈I0

log detSi

subject to:






G+GT−Si (AiG+BiYi)
T (Q1/2G)T (R1/2Yi)

T

∗ Sj 0 0
∗ ∗ I 0
∗ ∗ ∗ I






� 0, 0 ≺ Si 4 λL (6.54)

[
Λ Yi

∗ G+GT − Si

]

< 0,

[
Γ Ci(AiG+BiYi)
∗ G+GT − Si

]

< 0, (6.55)

with Λjj ≤ u2
j,max, Γjj ≤ y2

j,max, 0 < λ ≤ 1 for all i, j ∈ I0 and define

Fi,1 = YiG
−1, Pi,1 = S−1

i , E1 = {x ∈ R
n : xTPi,1x ≤ 1, i ∈ I0}.

Recall that the matrix L represents the ellipsoid defined in (6.42). From Corollary 6.1.10 it
follows that the origin is asymptotically stable with respect to the closed-loop system (6.23) and
the closed-loop outputs and inputs satisfy the constraints (6.3)–(6.4) on E 1.

Step 2
Using the previous terminal set Eprev = {x ∈ R

n : xTPi,prevx ≤ 1 ∀i ∈ I0}, we construct
a new larger terminal set Enew = {x ∈ R

n : xTPi,newx ≤ 1 i ∈ I0} based on a PWL feedback
controller κ(x) = Fi,newx if x ∈ Ci, that steers the system from Enew but not within Eprev

to the last terminal set Eprev. The new set Enew is computed by solving the following convex
optimization problem:

min
(G,Yi,Si)

−
∑

i∈I0

log detSi

subject to
[
G+GT − Si (AiG+BiYi)

T

∗ P−1
j,prev

]

� 0, λ1P
−1
i,prev 4 Si 4 λ2L (6.56)
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and the LMIs (6.55) for all i, j ∈ I0, where λ1 ≥ 1, 0 < λ2 ≤ 1.
We sketch the proof. We denote with Pi,new = S−1

i , Fi,new = YiG
−1. The second LMI in

(6.56) is equivalent with Eprev ⊆ Enew ⊆ E(L). The first LMI in (6.56), after applying the Schur
formula, expresses the fact that:

Pi,new = S−1
i < (Ai +BiFi,new)TPj,prev(Ai +BiFi,new),

i.e. if x ∈ (Enew ∩ Ci) − Eprev and applying the input u = Fi,newx, then fPWL(x, u) = (Ai +
BiFi,new)x ∈ Eprev. The LMIs (6.55) guarantee that the input and output constraints are satisfied
on Enew.

Step 2 is an iterative procedure, i.e. we repeat it as long as we want, let us say M times
(e.g. we stop when there is no more increase in the volume of the set E new or when Enew is not
contained in E(L)) and we obtain the sets E 1 ⊆ E2 ⊆ · · · ⊆ EM .

Therefore, we have available a sequence of feedback controllers

κ(x) = Fi,lx if x ∈ (E l \ E l−1) ∩ Ci

for all i ∈ I0 and l ∈ N[1,M ]. By definition E0 is the empty set. We define the terminal set
Xf = EM .

Step 3
At this stage we want to find a piecewise quadratic terminal cost

Vf(x) = xTPix if x ∈ Ci

such that stability is guaranteed when we use the MPC strategy derived in the previous section
with the terminal set Xf = EM . The matrices Pi � 0 are determined by solving the following
LMIs:

Pi � 0
(Ai +BiFi,l)

TPj(Ai +BiFi,l)− Pi +Q+ F T
i,lRFi,l + ET

i UijEi 4 0
(6.57)

for all i, j ∈ I0, l ∈ N[1,M ], where Uij ≥ 0. The reader should note that the LMIs (6.57)
guarantee that the terminal cost Vf defined above satisfies the condition S1 given is Section 2.3.2
for the closed-loop system

x(k + 1) = (Ai +BiFi,l)x(k) if x(k) ∈ (E l − E l−1) ∩ Ci. (6.58)

The following consequence follows:

Corollary 6.2.4 (i) The feedback controller κ(x) = Fi,lx if x ∈ (E l \ E l−1)∩Ci asymptotically
stabilizes the closed-loop system (6.58).

(ii) The convex set Xf = EM is a PI set for the closed-loop system (6.58).
(iii) Using Xf = EM as a convex terminal set and the piecewise quadratic terminal cost

Vf(x) = xTPix if x ∈ Ci, with Pi solution of (6.57), Theorem 6.2.1 still holds.

Proof : It is obvious that the origin is asymptotically stable with respect to the closed-loop
system (6.58), because for any x ∈ EM in at most M steps the state trajectory of (6.58) reaches
E1 and then according to Corollary 6.1.10 it converges asymptotically towards zero. Moreover,
the input and output constraints are satisfied on EM .

For the last part we observe that if x ∈ (E l ∩ Ci) ⊆ EM , then we have (Ai + BiFi,l)x ∈
E l−1 ⊆ EM . Therefore, Xf = EM is a PI set for the closed-loop system (6.58). Furthermore,
the LMIs (6.57) guarantee stability for the MPC scheme derived in the previous section with the
new terminal set Xf and the new terminal cost Vf defined before. ♦
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Remark 6.2.5 In the first two steps of the backward procedure defined in Algorithm 6.2.3 we
could also use the matrix inequalities defined in Theorem 6.1.8. This means that in Step 1 we
should solve an optimization problem subject to the LMIs and BMIs from Theorem 6.1.8, i.e.
a non-convex optimization problem. Similarly, we could proceed in Step 2, namely we should
solve the optimization problem:

min
(Fi,Pi,Uij)

∑

i∈I0

log detPi

subject to:
[
Pi − ET

i UijEi (Ai +BiFi)
∗ P−1

j,prev

]

� 0, 0 ≺ Pi 4 λPi,prev,

and the LMIs (6.39)–(6.40), where Uij ≥ 0 for all i, j ∈ I0 and 0 < λ ≤ 1. ♦

6.2.4 Polyhedral terminal set
In Section 6.2.3 we have presented an algorithm to enlarge an ellipsoidal terminal set. For this
type of terminal sets the optimal control problem (6.51) is non-convex (except the case when
N = 1) and thus difficult to solve on-line.

In this section we provide a method to construct a polyhedral terminal set. Note that if
Xf = ∪i∈I0Pi, where each Pi is a polyhedral set, then the optimization problem (6.51) becomes
a mixed-integer quadratic program [11] that can be solved using branch-and-bound algorithms.
Our method is based on the backward procedure presented in Algorithm 6.2.3. Let us assume
that we have available E1 ⊆ E2 ⊆ · · · ⊆ EM . Note that

EM−1 ={x ∈ R
n : xTPi,M−1x ≤ 1 ∀i∈I0}, EM ={x ∈ R

n : xTPi,Mx ≤ 1 ∀i∈I0}

and

{x ∈ R
n : xTPi,M−1x ≤ 1} ⊆ {x ∈ R

n : xTPi,Mx ≤ 1} ∀i ∈ I0. (6.59)

We consider the case when the inclusions in (6.59) are strict. In this case we can derive a poly-
hedral terminal set as follows: we define the polyhedral sets

Pi = {x ∈ R
n : H ix ≤ hi}

satisfying the following inclusions

{x : xTPi,M−1x ≤ 1} ⊆ Pi ⊆ {x : xTPi,Mx ≤ 1}.

Then, the polyhedral terminal set is defined as:

Xf = ∪i∈I0(Pi ∩ Ci). (6.60)

Using similar arguments as in the proof of Corollary 6.2.4 we obtain that

• The union of polytopes Xf defined in (6.60) is a PI set for the closed-loop system (6.58).

• Using the union of polytopes Xf defined in (6.60) as a terminal set and the piecewise
quadratic terminal cost Vf(x) = xTPix if x ∈ Ci, with Pi the solution of (6.57), Theorem
6.2.1 still holds. Moreover, the optimization problem (6.51) becomes a mixed-integer
quadratic program.
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Note that in the case of a common matrix the determination of a polytope P is much simpler
since it must satisfy {x : xTPM−1x ≤ 1} ⊆ P ⊆ {x : xTPMx ≤ 1}.

Now, we provide a method to construct the polytopes Pi:

(i): Choose s points {v1, v2, · · · , vs} on the ellipsoid {x ∈ R
n : xTPi,Mx ≤ 1}. Take Pi =

conv{v1, v2, · · · , vs} (i.e. the convex hull of the set {v1, v2, · · · , vs}).
(ii): Check whether {x ∈ R

n : xTPi,M−1x ≤ 1} ⊆ Pi via the LMI condition (6.38). If the last
inclusion does not hold increase the number of points s and repeat (i)–(ii).

6.2.5 Examples
Example 6.2.6 We consider the following PWL system taken from [6]:

x(k + 1) =

{

A1x(k) +B1u(k) if E1x(k) ≥ 0

A2x(k) +B2u(k) if E2x(k) ≥ 0

The matrices of the system take the following values

A1 =

[
0.35 −0.6062

0.6062 0.35

]

, A2 =

[
0.35 0.6062
−0.6062 0.35

]

B1 = B2 =

[
0
1

]

, E1 = [1 0], E2 = [−1 0]

X = {x ∈ R
2 : |x1| ≤ 5, |x2| ≤ 5}, U = {u ∈ R : |u| ≤ 1}.

Furthermore, we select Q = I, R = 0.1.
We now apply MPC. We construct a terminal set and a terminal cost using the backward

procedure defined in Algorithm 6.2.3. For this system the LMIs from Step 1 have a solution for
a common matrix P but with a PWL feedback controller:

P1,1 = P2,1 =

[
1.3593 0

0 1.967

]

,

F1,1 = [−0.4646 − 0.1423], F2,1 = [0.4646 − 0.1423].

Iterating Step 2 for M = 3 we obtain the following terminal set:

Xf = E3 = {x ∈ R
2 : xT

[
0.0441 0

0 0.0627

]

x ≤ 1}

and applying then Step 3 we obtain the following quadratic terminal cost:

Vf(x) = xT

[
6.7534 0

0 9.2863

]

x.

If we apply the MPC strategy derived in Section 6.2.1 for the terminal ellipsoidal set given by
P1,1 (i.e. {x ∈ R

2 : xTP1,1x ≤ 1}) and the terminal cost xTP1,1x we need at least a pre-
diction horizon N = 4 in order to have feasibility of the optimization problem (6.51) for all
x ∈ [−5 5] × [−5 5]. Therefore, we have to solve on-line a non-convex optimization problem,
which is computationally intensive. However, using the terminal set Xf and the terminal cost Vf

defined above, for N = 1 the optimization problem (6.51) is feasible for all x ∈ [−5 5]× [−5 5].
So, at each step we have to solve a convex optimization problem. Figure 6.1 displays the ellip-
soids found in Step 2 of the backward procedure and the closed-loop state trajectory obtained
from using the MPC law κ1. We observe that the state trajectory converges towards the origin,
i.e. we have asymptotic stability.
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Figure 6.1: Enlargement of ellipsoidal terminal set and the closed-loop state trajectory corre-
sponding to the MPC law κ1 for the initial state x = [4.5 4.5]T .

Example 6.2.7 We now give an example of a PWL system for which the LMIs from Theorem
6.1.9 are infeasible, while the LMIs from Theorem 6.1.8 are feasible:

x(k + 1) =







A1x(k) +B1u(k) if E1x(k) ≥ 0

A2x(k) +B2u(k) if E2x(k) ≥ 0

A3x(k) +B3u(k) if E3x(k) ≥ 0

A4x(k) +B4u(k) if E4x(k) ≥ 0

The matrices of the system are given by

A1 =

[
0.5 0.61
0.9 1.345

]

, A2 =

[
−0.92 0.644
0.758 −0.71

]

A3 = A1, A4 = A2, Bi = [1 0]T ∀i ∈ N[1,4].

The partitioning is given by:

E1 =

[
−1 1
−1 −1

]

, E2 =

[
−1 1
1 1

]

, E3 = −E1, E4 = −E2.

The tuning parameters Q and R are chosen as: Q = 10−4I, R = 10−3. We consider the
following constraints: X = {x ∈ R

2 : |x1| ≤ 6, |x2| ≤ 6}, U = {u ∈ R : |u| ≤ 2}.
For this example the LMIs from Theorem 6.1.9 are infeasible (using the Matlab LMI tool-

box). We obtain conclusive results only if we are looking for a piecewise quadratic Lyapunov
function and only if we apply the relaxations (i.e. the S-procedure) from Theorem 6.1.8. We
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Figure 6.2: The terminal setXf given by the intersection of the two ellipsoids and the closed-loop
state trajectory corresponding to the MPC law κ3 for the initial state x = [3.5 4.5]T .

obtain the following feasible solution (applying Algorithm 6.1.7):

F1,1 = F3,1 = [−0.7162 − 0.9662], F2,1 = F4,1 = [0.7657 − 0.4762]

P1,1 = P3,1 =

[
0.1589 0.1235
0.1235 0.1408

]

, P2,1 = P4,1 =

[
0.0834 −0.0207
−0.0207 0.0815

]

S1 = S3 =

[
19.5829 −17.1677
−17.1677 22.1358

]

, S2 = S4 =

[
12.1854 2.9662
2.9662 12.9486

]

U11 =

[
0.0046 0.0265
0.0265 0.0122

]

, U12 =

[
0.0040 0.0301
0.0301 0.0065

]

,

U22 =

[
0.0001 0.0010
0.0010 0.0158

]

, U21 =

[
0.0001 0.0022
0.0022 0.0154

]

.

We note that the terminal set E1 = {x ∈ R
2 : xTPi,1x ≤ 1, i = 1, 2} is small. Therefore, we

use again the backward procedure to enlarge the terminal set. Using Remark 6.2.5, we obtain for
M = 4 the following terminal set: Xf = {x ∈ R

2 : xTPi,4x ≤ 1, i = 1, 2}, where

P1,4 = P3,4 =

[
0.1405 0.1125
0.1125 0.1228

]

, P2,4 = P4,4 =

[
0.0687 −0.0292
−0.0292 0.0689

]

.

The terminal cost has the following expression: Vf(x) = xTPix if x ∈ Ci, where

P1 = P3 =

[
4.8284 1.5050
1.5050 0.8351

]

, P2 = P4 =

[
4.4540 0.4351
0.4351 1.2127

]

.

Applying the MPC for this terminal set and cost we obtain the trajectory from Figure 6.2. We
have again asymptotic stability.
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6.3 Robust MPC for PWA systems
In the previous sections we have considered deterministic PWA systems. However, in practice
disturbances are always present and thus the designed controller must be robust. As in conven-
tional linear systems we assume that the disturbances enter additively in the system equations. A
PWA system with additive disturbance is defined as:

x(k + 1) = Aix(k) +Biu(k) + ai + w(k)
y(k) = Cix(k) + ci

if x(k) ∈ Ci, (6.61)

where i ∈ I and the disturbance w takes on values from a polytope W = {w ∈ R
q : Ωw ≤ s}.

Moreover, we assume that 0 ∈ W . We should note that if the nominal PWA system correspond-
ing to (6.61) (i.e. w = 0) is continuous and Bi = B for all i ∈ I, then the uncertain PWA system
(6.61) can be written equivalently as an uncertain MMPS system (5.8) and MPC as was done in
Section 5.2 can be applied to this class of systems.

Although the assumption of knowing the nominal model might seem restrictive, the descrip-
tion of the uncertainty by additive terms that are known to lie in a bounded set is a reasonable
choice, as shown in the recent literature on robust control and identification [12, 105]. We use
the notation:

fPWA(x, u, w) = Aix+Biu+ ai + w if x ∈ Ci.

We also assume that the state and the input are constrained in some polytopes X and U that
contain the origin in their interior. However, we do not restrict the polytopes X and U to have
necessarily the form (6.3)–(6.4). Note that we can consider also mixed state-input constraints
{[xT uT ]T : Hx+Gu ≤ h}. The partition {Ci}i∈I is defined as in Section 6.1.

The PWL dynamics of the uncertain PWA system (6.61) are given by

x(k + 1) = Aix(k) +Biu(k) + w(k)
y(k) = Cix(k)

if x(k) ∈ Ci, (6.62)

where i ∈ I0 (we recall that I0 ⊆ I).
The objective of this section is to design a feedback min-max MPC law that steers the state of

the uncertain PWA system (6.61) as close as possible to the origin while satisfying the state and
input constraints for all admissible disturbances. Clearly, the presence of a bounded disturbance
acting on the system means that it is not possible to guarantee asymptotic stability and the most
that can be achieved is to steer the state trajectory of the closed-loop system to a neighborhood
of the origin and to keep it there.

6.3.1 RPI sets for uncertain PWL systems
In the sequel we assume that we have determined a PWL feedback controller (see Assumption
A5)

κf(x) = Fix if x ∈ Ci

that asymptotically stabilizes the nominal PWL dynamics

x(k + 1) = Aix(k) +Biu(k)
y(k) = Cix(k)

if x(k) ∈ Ci.

The matrices Fi can be computed using the approach described in Section 6.1.2. We recall that
AFi

= Ai + BiFi for all i ∈ I0. Using the feedback controller κf the PWL system with additive
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disturbance (6.62) becomes:

x(k + 1) = AFi
x(k) + w(k)

y(k) = Cix(k)
if x(k) ∈ Ci. (6.63)

We define the following set:

XF = ∪i∈I0{x ∈ Ci : x ∈ X, Fix ∈ U}.
We recall the Definition 4.4.2 of an RPI set adapted to the class of systems (6.63): a set Z ⊆ XF

is an RPI set for the system (6.63) if for all x ∈ Z ∩ Ci, AFi
x + w ∈ Z for all i ∈ I0 and

w ∈W . The maximal (minimal) RPI set for the system (6.63) is defined as the largest (smallest,
non-empty) with respect to inclusion RPI set for (6.63) contained in XF .

It can be easily seen that both the minimal and the maximal RPI set associated to the system
(6.63) is non-convex in general (it is a union of polyhedral sets [79]). Our aim is to compute a
polyhedral RPI set, since we want to obtain only linear constraints for the robust MPC schemes
that we propose in the sequel. For the PWL system (6.63) the evolution of the mode i = i(k)
depends on the state x(k). Nevertheless, for ease of computation of a convex (polyhedral) RPI
set for (6.63) this relation mode-state will be disregarded and we will consider that i(k) evolves
independently of x(k) (i.e. any mode i(k) ∈ I0 can be active at any sample step k):

x(k + 1) = AFi(k)
x(k) + w(k)

y(k) = Ci(k)x(k)
i(k + 1) ∈ I0,

(6.64)

where i(·) is a switching signal in IN

0 . Note however that all trajectories of the PWL system
(6.63) are still covered by the trajectories of the free switching system (6.64). Moreover, this
relaxation is considered only in this section, in the next section where we design an MPC strategy,
we consider again the standard PWA system (6.61). We recall that this type of relaxation was
also used in Section 4.5.1 in order to derive a stabilizing MPC law for switching MPL systems.
Similar relaxations were used in [31, 89] in the context of MPC for deterministic systems.

Definition 6.3.1 A set Ω ⊆ XF is an RPI set for system (6.64) if for all x ∈ Ω we have that
AFi

x+ w ∈ Ω for all possible switchings i ∈ I0 and all admissible disturbances w ∈ W . ♦

In the sequel we will use the following notations: given two sets Y, Z ⊆ R
n, the Minkowski

sum of Y and Z is defined as

Y � Z := {y + z : y ∈ Y, z ∈ Z}
and the Pontryagin difference as

Y � Z = {y ∈ R
n : y � Z ⊆ Y }.

In the sequel we construct the maximal RPI set for the system (6.64). Let XFi
denote the set

of states that satisfy the state and input constraints:

XFi
= {x ∈ ∪i∈I0Ci : x ∈ X,Fix ∈ U}.

Recall that ∪i∈I0Ci is assumed to be a polytope and thus XFi
are polytopes for all i ∈ I0. It

follows that
⋂

i∈I0
XFi
⊆ XF . We define the following set recursion:

Oi
0 = XFi

Oi
k = {x ∈ XFi

: AFi
x�W ⊆ ∩j∈I0Oj

k−1}
(6.65)
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for all i ∈ I0 and k ≥ 1. The set Oi
k represents the set of initial states x(0) for which under

the closed-loop dynamics (6.64) the state and input constraints are satisfied up to sample step k
assuming that initially i(0) = i. It is clear from the recursion (6.65) that Oi

k+1 ⊆ Oi
k. Therefore,

Oi
k converges to the set Oi

∞, i.e.

Oi
∞ = limk→∞Oi

k = ∩k≥0Oi
k

O∞ = ∩i∈I0Oi
∞.

(6.66)

Theorem 6.3.2 (i) The maximal RPI set included in ∩i∈I0XFi
for the system (6.64) is the convex

set O∞.
(ii) Any RPI set for the system (6.64) is also an RPI set for the PWL system (6.63). In

particular O∞ is an RPI set for the PWL system (6.63).

Proof : (i) It is easy to observe that since the setsX, U andW are polytopes (described by linear
inequalities), all the sets Oi

k are described by a finite number of linear inequalities. Therefore,
all Oi

k are polyhedra for all i ∈ I0 and k ≥ 0. Since O∞ is the intersection of polyhedra (i.e.
intersection of convex sets), it follows that O∞ is convex.

For all x ∈ O∞ we have x ∈ Oi
k+1 for all i ∈ I0 and k ≥ 0. According to (6.65) we have

AFi
x � W ⊆ ∩j∈I0Oj

k for all i ∈ I0 and k ≥ 0. Hence AFi
x � W ⊆ O∞ for all i ∈ I0. It

follows that O∞ is an RPI set for the system (6.64).
It is well-known [19, 82] that the maximal RPI set contained in ∩i∈I0XFi

for a system is the
set of all initial states in ∩i∈I0XFi

for which the evolution of the system remains in ∩i∈I0XFi
.

Due to the recursion (6.65) it is clear that O∞ is the maximal RPI set for system (6.64) included
in ∩i∈I0XFi

. Indeed, let T ⊆ ∩i∈I0XFi
be an RPI set for the system (6.64) and let x ∈ T .

Then, from the definition of an RPI set for the system (6.64) (see Definition 6.3.1) we have
AFi

x � W ⊆ T ⊆ ∩i∈I0XFi
= ∩i∈I0Oi

0 for all i ∈ I0. This implies that x ∈ Oi
1 for all i ∈ I0

(according to the recursion (6.65)). Therefore, T ⊆ Oi
1 for all i ∈ I0. By iterating this procedure

we obtain that T ⊆ Oi
k for all k ≥ 0 and i ∈ I0. In conclusion T ⊆ O∞, i.e. O∞ is maximal.

(ii) First we have that O∞ ⊆ ∩i∈I0XFi
⊆ XF . If x ∈ O∞ ∩ Cj , then AFj

x � W ⊆ O∞ for
all j ∈ I0. In particular for j = i we have AFi

x � W ⊆ O∞. Therefore, O∞ is an RPI set for
the system (6.63). For a general RPI set for the system (6.64) the reasoning is similar. ♦

Because the sets Oi
k are described by a finite number of linear inequalities, it is important to

know whether the set O∞ can be finitely determined (see Definition 4.3.3), i.e. whether there
exists a finite t∗ such that Oi

t∗ = Oi
t∗+1 for all i ∈ I0. Then, O∞ = ∩i∈I0Oi

t∗ and thus O∞ is
a polyhedral set. In the sequel we give necessary conditions for finite determination. Using the
recursion (6.65) and the commutativity property of intersection, we have:

O0 = ∩i∈I0Oi
0, Ok = ∩i∈I0Oi

k ∀k ≥ 1.

Note that Ok+1 ⊆ Ok and O∞ = ∩k≥0Ok. Now, Ok can be written in terms of Pontryagin
differences as:

Y0 = ∩i∈I0XFi
, O0 = Y0

Y1 = Y0 �W, O1 = ∩i∈I0{x ∈ O0 : AFi
x ∈ Y1}

Yk = ∩(i1,...ik−1)∈Ik−1
0

(Yk−1 � AFi1
...AFik−1

W )

Ok = ∩(i1,...ik)∈Ik
0
{x ∈ Ok−1 : AFi1

...AFik
x ∈ Yk}.

(6.67)

It is clear that Yk+1 ⊆ Yk (since 0 ∈ W ). We denote with Y∞ = ∩k≥0Yk. We have the following
theorem:
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Theorem 6.3.3 Suppose the system (6.64) is asymptotically stable. Suppose also that there exists
an index t0 ≥ 0 such that Ot0 is bounded and that 0 ∈ int(Y∞). Then, O∞ is a polyhedral set.

Proof : Since (6.64) is asymptotically stable, it follows that for all (i1, · · · , ik) ∈ Ik
0 we have

{

AFi1
· · ·AFik

x→ 0 as k →∞ ∀x ∈ R
n

Ot0 is bounded, 0 ∈ int(Y∞).

Then, there exists a t∗ ≥ t0 such that for all (i1, · · · , it∗+1) ∈ It∗+1
0 :

AFi1
· · ·AFit∗+1

x ∈ Y∞ ⊆ Yt∗+1 ∀x ∈ Ot0 .

Since Ot∗ ⊆ Ot0 , we have :

AFi1
· · ·AFit∗+1

x ∈ Yt∗+1 ∀x ∈ Ot∗ .

Therefore, according to the recursion (6.67) Ot∗ ⊆ Ot∗+1. But Ot∗+1 ⊆ Ot∗ . In conclusion, we
have the equality Ot∗ = Ot∗+1 and thus O∞ is finitely determined, i.e. O∞ = Ot∗ . Since Ot∗ is
described by a finite number of linear inequalities, it follows that O∞ is a polyhedral set. ♦

The conditions from Theorem 6.3.3 are similar with those corresponding to the linear case
[82]. The algorithm for computingO∞ stops once the following condition is met: there exists an
index t∗ such that Ot∗ = Ot∗+1.

If t∗ is large, the procedure for the computation of O∞ might require too many iterations.
We now propose an alternative check whether or not a given polyhedral set is an RPI set for the
system (6.63). Let Z = {x ∈ R

n : hT
j x ≤ 1 ∀j ∈ N[1,nZ ]} ⊆ XF be a polytope that contains the

origin in its interior. Then, Z is an RPI set for the system (6.63) if for all x ∈ Z ∩ Ci and i ∈ I0

we have AFi
x � W ⊆ Z. This condition can be translated in terms of computing some linear

programs. We denote with h0
j = maxw∈W hT

j w (this is a linear program, because we assumed
that W is a polytope) for all j ∈ N[1,nZ ]. For all i ∈ I0 and j ∈ N[1,nZ ] we consider the following
linear program:

σj
i = max

x
{hT

j AFi
x+ h0

j − 1 : hT
k x ≤ 1 ∀k ∈ N[1,nZ ], x ∈ Ci}

From the above discussion we have the following consequence:

Corollary 6.3.4 If for all i ∈ I0 and j ∈ N[1,nZ ] the optimal values σj
i ≤ 0, then Z is an RPI set

for the system (6.63).

Proof : For a fixed i ∈ I0, the condition σj
i ≤ 0 for all j ∈ N[1,nZ ] expresses the fact that

AFi
x�W ⊆ Z for all x ∈ Z ∩ Ci. Therefore, Z is an RPI set for the system (6.63). ♦

If after a certain number of iterations kmax the algorithm for computing O∞ does not stop,
then we have available the set Okmax = {x : Hkmaxx ≤ hkmax}. Therefore, a starting point in
searching for a set Z in Corollary 6.3.4 might be to take Z = {x : Htmaxx ≤ h}, and h should
be chosen appropriately, i.e. such that σj

i ≤ 0.
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6.3.2 Feedback min-max MPC for PWA systems
In the sequel we develop a robustly stabilizing MPC scheme for the uncertain PWA system (6.61)
based on a feedback min-max approach. In general, for deterministic systems an MPC strategy
contains two ingredients: a terminal set and a terminal cost (see Section 2.3.2 or Section 6.2). If
the system is uncertain, the stability and also the feasibility may be lost. In order to achieve robust
stability the MPC must stabilize the system for all possible realizations of the disturbance along
the prediction horizon. Different robust MPC schemes have been proposed for linear systems:
some of them are based on a nominal prediction [5, 111], others are based on the worst-case
disturbance as in dual-mode feedback min-max MPC formulation [80, 148].

In this section we also use a dual-mode feedback min-max MPC approach. We assume that
we have computed a stabilizing controller for the nominal PWL dynamics κf(x) = Fix if x ∈ Ci

(where the matrices Fi are determined as in Section 6.1.2) and also we have available a polyhedral
RPI set Xf (e.g. Xf = O∞, where O∞ is obtained according to Section 6.3.1).

Let w = [wT
0 w

T
1 · · ·wT

N−1]
T denote a realization of the disturbance over the prediction hori-

zon N . In this section we define the decision variable in the optimal control problem for a given
initial condition x as a control policy π = (µ0, µ1, . . . , µN−1), where each µi : R

n → R
m is a

state feedback law. Also, let xk = φ(k;x, π,w) denote the state solution of the uncertain PWA
system (6.61) at step k when the initial state is x at step 0, the control is determined by the policy
π and the disturbance sequence is w. For each initial condition x we define the set of feasible
policies π:

Πfb
N(x) = {π : µi ∈ U, xi ∈ X ∀i ∈ N[0,N−1], xN ∈ Xf , ∀w ∈ W}, (6.68)

where we recall thatW = WN . Also, let X fb
N denote the set of initial states for which a feasible

policy exists, i.e.
X fb

N = {x : Πfb
N(x) 6= ∅}. (6.69)

For a given initial state x, control policy π and disturbance realization w, the cost VN(x, π,w)
is:

VN(x, π,w) =
N−1∑

i=0

`(xi, µi), (6.70)

where the stage cost ` is assumed to be convex and satisfies

`(x, u) ≥ α(d(x,Xf)) if x 6∈ Xf

`(x, u) = 0 if x ∈ Xf ,

with α a K function. Here, d(x,Xf) denotes the distance from x to the set Xf induced by the
1/2/∞-norm. Some examples of such stage cost are:

`(x, u) =

{

‖Qx‖+ ‖Ru‖ if x 6∈ Xf

0 if x ∈ Xf

(6.71)

with the matrices Q � 0, R � 0. Another stage cost was proposed in [80] (recall that in Section
4.4.2 we use a similar stage cost (4.54) in the context of robust MPC for MPL systems):

`(x, u) = inf
z∈Xf

‖Q(x− z)‖+ ‖R(u− κf(x))‖. (6.72)

Note that the stage cost (6.72) is continuous on R
n × R

m while the stage cost defined in (6.71)
is discontinuous. The reader should note that in this robust MPC scheme we consider a zero
terminal cost, i.e. Vf = 0.
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The finite-horizon feedback min-max MPC problem for the class of uncertain PWA systems
(6.61) is defined as:

V 0,fb
N (x) = inf

π∈Πfb
N

(x)
max
w∈W

VN(x, π,w). (6.73)

For linear systems the optimization problem (6.73) can be solved efficiently using the extreme
disturbance realizations [80, 148]. In our settings, due to the nonlinearities of the PWA system,
this approach cannot be applied directly. To overcome this problem we propose a new method,
namely to restrict the admissible control policies π to only those that guarantee that for every
value of the disturbance the mode of the system i(k) is the same at each sample step k, i.e. for
all k and x there exists an i(k) such that

φ(k;x, π,w) ∈ Ci(k) ∀w ∈ W . (6.74)

Therefore, we restrict the PWA system only to the admissible control policies that guarantee the
mode of the system is “certain” at sample step k while the state is not known exactly. This extra
constraint (6.74), which expresses the fact that i(k) is independent of the disturbance realization
is not too restrictive since a cautious action may avoid uncertainty in the mode (at least in the case
where the disturbances are not too large and the control inputs are not constrained too much). It
can be easily observed that imposing (6.74) to the system (6.61) the state set generated by the
disturbance at each sample step k is convex:

φ(k;x, π,W k) = φ(k;x, π, 0) �X(k; i(0), · · · , i(k − 1),W k), (6.75)

where the first term expresses the nominal trajectory corresponding to the PWA system (6.61)
(i.e. w = 0) and the second term represents a convex uncertainty set associated with the state,
which depends on the switching mode sequence i(0), · · · , i(k − 1) and on the set W k. In this
new setting, i.e. with the extra constraints (6.74), the set of feasible policies becomes:

Πkm
N (x) := {π : constraint (6.74), xi ∈ X,µi ∈ U ∀i ∈ N[0,N−1], xN ∈ Xf , ∀w ∈ W}.

Now, the finite-horizon feedback min-max MPC problem becomes:

V 0,km
N (x) = inf

π∈Πkm
N

(x)
max
w∈W

VN(x, π,w). (6.76)

The optimization problem (6.76) has infinite dimension, but in the sequel we will show that
(6.76) can be reduced to a finite dimensional optimization problem. Since W is a polytope with
nv vertexes, we denote with LN

v the set of indexes l such that wl = [(wl
0)

T (wl
1)

T · · · (wl
N−1)

T ]T

takes values only on the vertexes of W . It is clear that LN
v is a finite set with the cardinality

nN
v . Further, let ul = [(ul

0)
T (ul

1)
T · · · (ul

N−1)
T ]T denote a control sequence associated with the

lth disturbance realization wl and let xl
k = φ(k;x,ul,wl) be the solution of the PWA system

(6.61) with the additional constraint (6.74). We consider a variable horizon N ∈ N[1,Nmax], where
Nmax is a positive integer. Since the stage cost ` is convex in (x, u) and since the state set (6.75)
generated by the disturbance is also convex (by imposing the constraint (6.74)), the optimization
problem (6.76) is reduced to the following finite dimensional optimization problem which con-
siders only the disturbance realizations that take on values at the vertexes of the disturbance set
(see also [148]):

V 0,km
N (x) = inf

(ul,N∈N[1,Nmax])
max
l∈LN

v

VN(x,ul,wl)

subject to :
{

constraint (6.74); xl
0 = x; xl

i ∈ X ∀i ∈ N[1,N−1]; x
l
N ∈ Xf ∀l ∈ LN

v

ul
i ∈ U ∀i ∈ N[0,N−1], l ∈ LN

v ; xl1
i = xl2

i ⇒ ul1
i = u`2

i ∀l1, l2 ∈ LN
v .

(6.77)
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The last constraint is the causality constraint [148] and expresses the fact that the control law at
step i for the state xl

i is independent of the control and disturbance sequence taken to reach that
state. The constraint (6.74) is imposed only to the states xl

i with i ∈ N[1,N−1] and not to xl
N . The

only constraint on the final state xl
N is the terminal constraint: xl

N ∈ Xf .
Let (u0,l(x), N 0(x)) be an optimizer of (6.77) whenever the infimum is attained, where

u0,l(x) = [(u0,l
0 (x))T (u0,l

1 (x))T · · · (u0,l
N−1(x))

T ]T . Note that u0,l
0 (x) = u0

0(x) for all l ∈ LN
v

(according to the causality constraint). At event step (k, x) we denote with Nk = N0(x).
We define an MPC scheme using a dual-mode approach. At event step (k, x) the MPC law is

given by the following algorithm:

Algorithm 6.3.5

(i) if x ∈ Xf ∩ Ci, then κNk
(x) = Fix ∀i ∈ I0

(ii) otherwise, solve (6.77) and set κNk
(x) = u0

0(x).

We now study robust stability for the closed-loop system:

x(k + 1) = Aix(k) +BiκNk
(x(k)) + ai + w(k)

y(k) = Cix(k) + ci
if x(k) ∈ Ci, (6.78)

where i ∈ I. We show in the sequel that Xf is robustly asymptotically stable with respect to
the closed-loop system (6.78). We first recall the definition of robust stability (see also Section
2.3.3). The set Xf is robustly stable with respect to (6.78) if for all ε > 0 there exists a δ > 0
such that d(x,Xf) ≤ δ implies d(φ(k;x, κNk

,w), Xf) ≤ ε for all k ≥ 0 and all admissible dis-
turbance sequences w. The set Xf is robustly asymptotically (finite time) attractive with domain
of attraction X if for all x ∈ X , limk→∞ d(φ(k;x, κNk

,w), Xf) = 0 (there exists a finite time kT

such that φ(k;x, κNk
,w) ∈ Xf for all k ≥ kT ) for all admissible disturbance sequences. The set

Xf is robustly asymptotically (finite) time stable with the domain of attraction X if it is robustly
stable and robustly asymptotically (finite time) attractive with domain of attraction X .

Theorem 6.3.6 (i) The set Xf is robustly asymptotically stable with respect to the closed-loop
system (6.78) with a region of attraction XNmax .

(ii) Suppose that `(x, u) ≥ α(‖x‖) for all x 6∈ Xf , where α is a K function. Then, the set
Xf is robustly finite time stable with respect to the closed-loop system (6.78) with a region of
attraction XNmax .

Proof : (i) First let us show robust feasibility. Let x ∈ XNmax ∩Ci0 for some i0 ∈ I0. Then, there
exists an N ∈ N[1,Nmax] such that the optimization problem (6.77) has an optimal input sequence
u0,l(x) = [(u0,l

0 (x))T (u0,l
1 (x))T · · · (u0,l

N−1(x))
T ]T for the lth disturbance realization, satisfying

the constraints (6.74), therefore producing the fixed switching sequence i0, i1, · · · , iN−1. Let
x0,l = [xT (x0,l

1 )T · · · (x0,l
N )T ]T be the corresponding optimal state trajectory. We recall that

from the causality constraints we have: u0,l1
0 (x) = u0,l2

0 (x) = u0
0(x) for all l1 6= l2 ∈ LN

v .
Now, according to the receding horizon principle the input κN(x) = u0

0(x) is applied and the
disturbance takes a certain value w =

∑

`∈LN
v
ηlw

l ∈ W , where wl is a vertex of W and ηl are
appropriate convex scalar weights. Therefore, the next state is given by

fPWA(x, κN(x), w) = Ai0x+Bi0κN(x) + ai0 + w =
∑

l∈LN
v

ηlx
l
1,
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where xl
1 := Ai0x+Bi0κN(x)+ai0 +w

l, i.e. fPWA(x, κN(x), w) lies in the convex hull conv{xl
1 :

l ∈ LN
v }. Now, at the next step we consider the prediction horizonN−1 and the following control

sequence:
uf =

[
(
∑

l∈LN−1
v

ηlu
0,l
1 (x))T · · · (

∑

l∈LN−1
v

ηlu
0,l
N−1(x))

T
]T
. (6.79)

Under this control policy, the state and input predictions over a prediction window of length N −
1 evolve in the convex hulls generated by [(x0,l

1 )T · · · (x0,l
N )T ]T and [(u0,l

1 (x))T · · · (u0,l
N−1(x))

T ].
Moreover, the switching sequence i1, ..., iN−1 is fixed (we used here that all sets X,U,Xf and W
are polytopes). In conclusion, fPWA(x, κN(x), w) ∈ XNmax , i.e. we have robust feasibility.

Robust asymptotic stability follows from the fact that the conditions F1w − F3w and S1w

given in Section 2.3.3 are satisfied in this case for κf , Xf and ` defined in this section (see also
[80, 148]).

(ii) Since Xf is bounded, there exist an η > 0 such that ‖x‖ ≥ η for all x ∈ X \ Xf . Then,
for all x ∈ XNmax we have

V 0
Nk+1

(φ(x; k + 1, κNk+1
,w))− V 0

Nk
(φ(x; k, κNk

,w)) ≤
− `(φ(x; k, κNk

,w), κNk
(φ(x; k, κNk

,w))) ≤ −α(‖φ(x; k, κNk
,w)‖) ≤ −α(η)

if φ(x; k, κNk
,w) 6∈ Xf . Now, assume that for k → ∞, φ(x; k, κNk

,w) 6∈ Xf . Then, 0 ≤
V 0

Nk
(φ(x; k, κNk

,w)) ≤ V 0
N0

(x)− kα(η)→ −∞ as k →∞, i.e. a contradiction. Therefore, the
state trajectory enters Xf in finite time and then the subsequent trajectory is maintained in this
set according to Algorithm 6.3.5. ♦

Remark 6.3.7 An interesting case is when I0 contains only one element I0 = {1}, i.e. the
origin is contained in the interior of C1 (this implies that we have only one PWL dynamic defined
on a polyhedral set that contains the origin in its interior). As it is done in the linear case, we
can construct a stabilizing controller and an RPI set for the PWL dynamic (i.e. for the linear
subsystem). Then, we can formulate the feedback min-max MPC problem (6.77) with a fixed
prediction horizon N , since in that case the control sequence defined as:

uf = [(
∑

l∈LN−1
v

ηlu
0,l
1 (x))T · · · (

∑

l∈LN−1
v

ηlu
0,l
N−1(x))

T (
∑

l∈LN−1
v

ηlF1x
0,l
N )T ]T

is feasible for the next step in the proof of Theorem 6.3.6 and it keeps the next N modes fixed.
The same robust properties are valid in this particular case as in Theorem 6.3.6. ♦

From computational point of view, the optimization problem (6.77) can be recast as a mixed-
integer linear program, provided that the stage cost is piecewise affine (e.g. for stage costs (6.71)
or (6.72) based on 1/∞-norm).

6.4 Robust MPC for PWL systems
In this section we derive an MPC law for the uncertain PWL system (6.62), i.e.

x(k + 1) = Aix(k) +Biu(k) + w(k)
y(k) = Cix(k)

if x(k) ∈ Ci, (6.80)
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where now i ∈ I0 = I and C̄i = {x ∈ R
n : Eix ≥ 0}. As in the previous sections, we assume

that there is available a stabilizing PWL controller

κf(x) = Fix if x ∈ Ci,

where the matrices Fi are computed as in Section 6.1.2, and a polyhedral RPI set Xf (e.g. Xf =
O∞, where O∞ is obtained according to Section 6.3.1).

The maximal RPI set Õ∞ included in XF associated to the PWL system (6.63) is in general
not a convex set. Given an initial state x ∈ Õ∞, it follows that the subsequent state trajectory of
the system (6.63) remains in this set, as close as possible to the origin. However, the maximal
RPI set Õ∞, for which the PWL controller κf is feasible, is in general small. Now, we derive
a robustly stable MPC scheme that uses in the MPC optimization problem control sequences
that do not correspond to fixed state feedback control laws. Therefore, we enlarge the set of
initial states that can be steered to a target set. We introduce a new control variable v using the
so-called closed-loop paradigm [145] by considering a semi-feedback control which combines
a local control law with an open-loop correction in order to guarantee that the constraints are
satisfied, i.e.

κ(x) = Fix+ v if x ∈ Ci. (6.81)

6.4.1 Semi-feedback MPC for PWL systems
We now provide a new MPC strategy for perturbed PWL systems such that we solve on-line a
single quadratic optimization problem. It consists of two steps:

Off-line step: In this step we compute off-line the set of initial states and input correction
sequences that steer these states to the RPI set Xf = O∞ in N steps, using the controller (6.81),
where N is the prediction horizon. This set is obtained recursively as follows:

X i
0 = Oi

∞ ∀i ∈ I,

X i
k+1 =











x
v
ṽ



 ∈ R
n+m(k+1) :

[
AFi

x+Biv �W
ṽ

]

∈ ⋂j∈I X j
k

x ∈ X, Fix+ v ∈ U







(6.82)

for all k ∈ N[0,N−1] and i ∈ I. Note that a similar recursion was proposed also in [31] in the
context of gain scheduling for nonlinear systems. The dimension of the sets X i

k increases as k
increases. Clearly X i

N ⊆ R
n+mN . We denote with X i

k = ProjnX i
k, i.e. the projection of X i

k into
the state space R

n. In conclusion, the set of initial states for the PWL system (6.80) that can
be steered to Xf in N steps while satisfying the constraints, using the semi-feedback controller
(6.81), is given by:

XN = ∪i∈I(X
i
N ∩ Ci).

Because X,U and W are polytopes and initially X i
0 = Oi

∞ (recall that Oi
∞ are polytopes) we

obtain that the sets X i
k are also polytopes for all k ≥ 0. As a consequence, the sets X i

N are
polytopes for all i ∈ I. Therefore, XN is a union of polytopes, but not necessarily convex.

On-line step: At event step (k, x), where x ∈ Ci solve the following quadratic program:

V 0
N(x) = inf

vN

{vT
NvN : [xT vT

N ]T ∈ X i
N}, (6.83)

where vN = [vT
0 vT

1 · · · vT
N−1]

T . Note that the infimum is attained in (6.83) (since
the cost function is continuous and the feasible set is compact) and let v0

N(x) =
[(v0

0(x))
T (v0

1(x))
T · · · (v0

N−1(x))
T ]T be an optimizer. The MPC law is given by

κN(x) = Fix+ v0
0(x) if x ∈ Ci.
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Note that this MPC law has the form (6.81). We now study the behavior of the closed-loop
system obtained from applying this MPC law to the PWL system (6.80), i.e.

x(k + 1) = AFi
x(k) +Biv

0
0(x(k)) + w(k)

y(k) = Cix(k)
if x(k) ∈ Ci. (6.84)

Theorem 6.4.1 (i) The maximal RPI set Õ∞ is asymptotically attractive for (6.84) with a domain
of attraction XN .

(ii) Suppose that the matrices AFi
are asymptotically stable for all i ∈ I. Then, the RPI set

Xf = O∞ is asymptotically attractive for (6.84) with a domain of attraction XN .

Proof : (i) If x ∈ XN , then the quadratic program (6.83) has an optimal solution
v0

N(x). Moreover, there exists an i0 ∈ I such that x ∈ Ci0 . Let us denote with
vf = [(v0

1(x))
T (v0

2(x))
T · · · (v0

N−1(x))
T 0T ]T . Since Xf is an RPI set, it follows imme-

diately that for each w ∈ W there exists a j ∈ I such that fPWL(x, κN(x) ∈ Cj and
[(fPWL(x, κN(x), w))T (vf)T ]T ∈ X j

N . Therefore, vf is feasible at the next step. Moreover,
the following inequality holds:

V 0
N(fPWL(x, κN(x), w))− V 0

N(x) ≤ −(v0
0(x))

Tv0
0(x) ∀w ∈ W. (6.85)

Let φ(k;x, κN ,w) denote the state solution of (6.84) at step k when the initial state is
x, the MPC law κN is employed and w is a disturbance sequence. Then, the sequence
{V 0

N(φ(k;x, κN ,w))}k≥0 is non-increasing and bounded from below by 0 and thus it is con-
vergent for all admissible disturbance sequences w. Summing the relation (6.85) from k = 0
to∞ we obtain that the series

∑

k≥0(v
0
0(φ(k;x, κN ,w)))Tv0

0(φ(k;x, κN ,w)) is also convergent.
This leads to:

lim
k→∞

v0
0(φ(k;x, κN ,w)) = 0 (6.86)

for all admissible disturbance sequences w. As a consequence, it follows that
d(φ(k;x, κN ,w), Õ∞) → 0 as k → ∞, because Õ∞ is the maximal set of states for which
the PWL feedback controller κf is feasible and the closed-loop state trajectory satisfies the state
constraints.

(ii) We now show that d(φ(k;x, κN ,w),O∞)→ 0 as k →∞, provided that the matrices AFi

are asymptotically stable for all i ∈ I. First, let us note that the closed-loop state trajectory is
given by:

φ(k + 1;x, κN ,w) =AFi(k)
...AFi(0)

x+ (6.87)
k+1∑

j=1

AFi(k+1)
...AFi(j)

(Bi(j−1)v
0
0(φ(j − 1;x, κN ,w)) + wj−1),

where AFi(k+1)
= I and i(0), ..., i(k) is a feasible switching sequence. Now, given x ∈ XN

there exists an xo
0 ∈ O∞ such that d(x,O∞) = ‖x− xo

0‖ (recall that O∞ is a compact set). Now
φ(1;x, κN ,w) = AFi(0)

x+Bi(0)v
0
0(x)+w0. Let us define xo

1 = AFi(0)
xo

0+w0. From the definition
of O∞ it is clear that xo

1 ∈ O∞. Therefore, we obtain:

d(φ(1;x, κN ,w),O∞) ≤ ‖φ(1;x, κN ,w)− xo
1‖ ≤ ‖AFi(0)

‖ ‖x− xo
0‖+ ‖Bi(0)v

0
0(x)‖,
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where ‖A‖ denotes the induced norm of the matrix A. By induction, using (6.87), we can prove
that

d(φ(k + 1;x, κN ,w),O∞) ≤ ‖φ(k + 1;x, κN ,w)− xo
k+1‖ ≤ (6.88)

‖AFi(k)
‖...‖AFi(0)

‖ ‖x− xo
0‖+

k+1∑

j=1

‖AFi(k+1)
‖...‖AFi(j)

‖‖Bi(j−1)v
0
0(φ(j−1;x, κN ,w))‖,

where xo
k+1 := AFi(k)

xo
k + wk ∈ O∞. Since AFi

are asymptotically stable for all i ∈ I, there
exists a constant 0 < δ < 1 and L > 0 such that

‖AFi(k)
‖...‖AFi(j)

‖ ≤ Lδk−j. (6.89)

Using now (6.89) and (6.86) in (6.88), we obtain

lim
k→∞

d(φ(k;x, κN ,w),O∞) = 0.

♦

Note that we are able to show asymptotic attractiveness. But, in general, nothing can be said
about robust stability. The MPC scheme derived in this section is more difficult to be imple-
mented to PWA systems, due to the special construction of the set XN in the off-line step. Of
course, if we are able to construct a polyhedral RPI set for all dynamics of the PWA system (not
only for the PWL dynamics), then the MPC scheme presented in this section can be extended
also to PWA systems with additive disturbances.

6.4.2 Example

We consider the following example taken from [11], but this time with an additive term to take
also into account disturbances:

x(k + 1) = 0.8

[
cosα(k) − sinα(k)
sinα(k) cosα(k)

]

x(k) +

[
0
1

]

u(k) + w(k),

α(k) =

{

π/3 if x(k) ∈ C1
−π/3 if x(k) ∈ C2,

where C1 = {x ∈ R
n : [1 0]x(k) ≥ 0}, C2 = {x ∈ R

n : [1 0]x(k) < 0} and the following
constraints:

X = {x ∈ R
2 : ‖x‖∞ ≤ 10}, U = {u ∈ R : |u| ≤ 1}.

We assume that the disturbance set is given by:

W = {w ∈ R
2 : w1 = w2, ‖w‖∞ ≤ 0.1}.

We get the following PWL feedback controller: κf(x) = Fix if x ∈ Ci, where I = {1, 2} and
the matrices Fi are determined in Section 6.1.2, i.e.

F1 = [−0.692 − 0.4], F2 = [0.866 − 0.5].
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Figure 6.3: The closed-loop state trajectories corresponding to the robust MPC scheme from
Section 6.3.2 (full line) and from Section 6.4.1 (dotted line). The inner polytope represents the
RPI set O∞ and the outer polygon is the maximal RPI set Õ∞.

We see that the matrices AFi
are strictly stable. Therefore, we can apply Theorem 6.3.3, the

RPI set O∞ being determined after 2 iterations (i.e. t∗ = 2):

O∞=







x ∈ R
2 :















−0.866 −0.5
0.866 0.5
0.866 −0.5
−0.866 0.5
0.499 −0.866
−0.499 0.866
0.500 0.866
−0.500 −0.866




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

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
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

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













1.25
1.25
1
1

1.3906
1.3906
1.1125
1.1125





















which is a polytope that contains the origin in its interior.
Applying the robust feedback min-max MPC scheme with known mode proposed in Section

6.3.2, with initial state x = [3 2.1], Q = I, R = I , together with the stage cost (6.71) defined
by the∞-norm, initial prediction horizon N = 3 and the terminal set being O∞, we get the full
line in Figure 6.3. We also apply the robust MPC scheme proposed in Section 6.4.1 for the initial
state x = [1.5 2.1] with the same prediction horizon N = 3, the corresponding closed-loop state
trajectory is displayed as dotted line. The inner polytope represents the RPI setO∞ and the outer
polygon is the maximal RPI set Õ∞. We remark that once the trajectory enters O∞ it remains
there in both schemes.

6.5 Computational complexity
In this section we discuss the computational complexity of the MPC schemes derived in this
chapter. The mixed logical dynamical framework represents one of the main tools for comput-
ing optimal control for PWA systems [11]. First let us note that the deterministic MPC scheme
proposed in Section 6.2.1 using an ellipsoidal terminal set is based on solving on-line the non-
convex optimization problem (6.51): the objective function is convex subject to linear and convex
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inequality constraints and nonlinear equality constraints (except the case N = 1 when the opti-
mization problem (6.51) becomes a convex optimization problem). In [104] an algorithm based
on feasible switching sequences is proposed that can be adapted to solve (6.51). Using a poly-
hedral terminal set determined as in Section 6.2.4 the optimization problem (6.51) becomes a
mixed-integer quadratic program.

In the case of the feedback min-max MPC scheme derived in Section 6.3.2 the optimization
problem (6.77) can be recast as a mixed-integer linear program, provided that the stage cost
is piecewise affine (e.g. for stage costs (6.71) or (6.72) based on 1/∞-norm). The result is
not surprising, since in Chapter 5 the min-max MPC law for perturbed MMPS systems, using
similar stage costs, is also computed by solving a set of linear programs that can be seen as a
mixed-integer linear program. For the semi-feedback MPC scheme proposed in Section 6.4.1 we
have to solve on-line only a quadratic program. This is possible since we have removed some
computations in the off-line step.

6.6 Example: adaptive cruise controller for a Smart
This application was motivated by the design of an adaptive cruise controller for a Smart. The
objective is to follow as well as possible a leading vehicle in a highway environment. In order to
meet realistic conditions several constraints on kinematic and dynamical entities are introduced,
fulfilling safety, comfort and environmental issues. We assume that the reference trajectory,
transmitted by the leading vehicle, will eventually reach a stationary speed, around which we
guarantee stability and feasibility of the controller, even in presence of bounded disturbances. In
general this stationary value is arbitrary, but to make the problem interesting in the hybrid frame-
work we choose it along the switching manifold. Additionally piecewise constant references
may be tracked under mild additional assumptions.

The design of the control law is split into two phases: during the transient of the reference tra-
jectory we consider tracking of the speed of the leading vehicle. When the reference has reached
its steady state we enforce stability of the closed-loop system (which is not guaranteed a priori)
in the regulation. To this aim we compute a terminal cost and a terminal set, by means of the
methods described in Sections 6.1.2 and 6.2. The disturbance w, due to the PWA approximation
of the real system and to the measurement errors, may give rise to infeasibilities. For this reason
we also implement robust MPC as derived in Section 6.3.

6.6.1 Cruise controller setup and simulations
The goal of a cruise controller for a road vehicle is to track the velocity of the vehicle in front,
to guarantee secure driving, smoothness of platoons traffic [58], comfort and optimal usage of
the engine/brake system. The descriptive scenario is shown in Figure 6.5.a, where two cars are
driving after another in a string. We consider here platoons formed of only two vehicles, but
the extension to the general case is also possible. We first describe the general setup, then we
implement deterministic MPC as proposed in Section 6.2. We observe that due to disturbances,
infeasibilities occur, motivating thus the use of robust MPC described in Section 6.3. When
the reference reaches a stationary value we implement for both cases the stabilizing methods
described in Section 6.2 and 6.3, by plugging into the MPC scheme the corresponding terminal
cost and terminal set.

Model We consider a nonlinear viscous friction and a road-tire static friction, proportional
to the mass m of the vehicle. Braking will be simulated by applying a negative input. The



6.6 Example: adaptive cruise controller for a Smart 151

m Mass of vehicle 800 kg
c Viscous coefficient 0.5 kg/m
µ Coulomb friction coefficient (dry asphalt) 0.01
b Traction force 3700 N
g Gravity acceleration 9.8 m/s2

Table 6.1: Definitions and values of the entries of equation (6.90).
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Figure 6.4: (a) Adaptive cruise control set up and (b) nonlinear to PWA approximation.

differential equation for positive velocity of the following vehicle is:

mẋ(t) + cx2(t) + µmg = bu(t), (6.90)

where x(t) is the speed of the following vehicle, bu(t) is the traction/brake force, proportional to
the input u(t). Numerical values are listed in Table 6.6.1.

A least squares approximation (Figure 6.4.b) of the nonlinear friction curve V (v) = cv2 leads
to the continuous-time PWA system:

mẋ(t) + c1x(t) + f1 = bu(t) if x < α

mẋ(t) + c2x(t) + f2 = bu(t) if x ≥ α,

where the coefficients c1, c2, f1, f2 are derived using the data shown in Figure 6.4.b7. The sam-
pling time is T = 1s and the discrete time uncertain PWA model has the following form:

x(k + 1) = A1x(k) +B1u(k) + a1 + w(k) if x < α
x(k + 1) = A2x(k) +B2u(k) + a2 + w(k) if x ≥ α

(6.91)

with

A1 = 0.9912, B1 = 4.6047, a1 = −0.0976, A2 = 0.9626, B2 = 4.5381, a2 = 0.4428.

Comparing the true model with its PWA approximation we chose the disturbance set W =
[−0.5 0.5].

Constraints Safety, comfort and economy or environmental issues result in defining con-
straints on the state x and the control input u. In particular we consider limitations on the veloc-
ity, acceleration, on the control input u(k) and on its variation u(k + 1) − u(k). We require for
all k

xmin ≤ x(k) ≤ xmax

−umax ≤ u(k) ≤ umax

adecT ≤ x(k + 1)− x(k) ≤ aaccT
−∆uT ≤ u(k + 1)− u(k) ≤ ∆uT.

(6.92)

7A finer approximation is also possible, by setting more than one breakpoint.
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T Sampling time 1 s
xmin Minimum velocity 5.0 m/s
xmax Maximum velocity 37.5 m/s
aacc Comfort acceleration 2.5 m/s2

adec Comfort deceleration -1 m/s2

umax Maximum throttle/brake 1
∆u Maximum throttle/brake variation 0.2
α Switching velocity 18.75 m/s

Table 6.2: Values of the parameters specifying the constraints.

PSfrag replacements

u(k) x(k)

r(k)

w(k)MPC

PWA model

Figure 6.5: MPC controller setup: PWA prediction model versus nonlinear simulation model and distur-
bance injection.

Numerical values are listed in Table 6.6.1. Note that the first three constraints in (6.92) can
be recast as constraints of the form (6.3)–(6.4). Therefore, we determine a feedback controller
satisfying the first three constraints using the methods from Section 6.1.2 and then we check
whether this controller fulfills also the fourth constraint. Note that although some of these con-
straints may be violated without causing major damages, i.e. collision or engine breakdown, we
decided to consider all of them as hard constraints.

Tracking and regulation The weight matrices are chosen as Q = 1 and R = 0.01. The
length of the prediction horizon is set to N = 4. The overall goal is to tune an on-line con-
troller κN that tracks the reference velocity depicted in Figure 6.6.a (dashed), and within the
constraints (6.92). The initial velocity is x = 6 m/s. Figure 6.5 shows a block diagram of
the simulation setup. At each step k the controller receives the N steps ahead prediction of the
reference speed of the front vehicle.

Then, by measuring the speed, the MPC scheme computes the best control action using
the prediction model (6.91) and feeds the first sample to the car’s actuators, modeled here by
equation (6.90). In the framework of the hybrid systems it is relevant to study the behavior of the
stabilizing controller around the switching velocity xe = α, which becomes the state equilibrium.
For this reason, without loss of general applicability, we use a reference signal the steady state
of which is xe = α.
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Figure 6.6: Simulation results for deterministic MPC without external noise. (a) System (solid) and
reference (dashed) velocities, (b) Control input and constraints, (c) Acceleration and constraint (note the
violations), (d) Variation of control input and constraints.

6.6.2 Simulations using deterministic MPC
The stabilizing controller obtained via the Lyapunov arguments described in Section 6.1.2 is
κf(x) = −0.072x+ 1.411, and we observe that it is common for both subsystems. Additionally,
we obtain the terminal cost Vf(x) = 1.766(x − xe)

2 and a polyhedral PI set corresponding to
the controller κf and the constraints (6.92) given by Xf = {x ∈ R : 16.01 ≤ x ≤ 21.48}.
We use these terminal values only when the reference signal of the front vehicle has reached its
stationary value. This decision is taken by computing the standard deviation and the average of
the last reference samples and by establishing some thresholds.

We show first the results obtained when the disturbance w(k) = 0. In Figure 6.6.(a-d) we
show velocity, control, acceleration and ∆u, obtained with the 2-norm used in the stage cost.
From these figures we wish to point out that even in the absence of external disturbances there is
a minor violation of the acceleration constraints. This is in fact due to the mismatch between the
prediction and the simulation model.

In Figure 6.7 we show the solution offered by the deterministic MPC when the disturbance
signal is active8. The large infeasibilities motivate the use of the robust MPC.

6.6.3 Simulations using robust MPC
We show in Figure 6.8 the results obtained, under the same scenario of the previous simulations,
with the use of robust MPC described in Section 6.3. This robust MPC scheme is implemented
using the stage cost (6.71) induced by the 1-norm, leading to a mixed-integer linear program. We
immediately observe the benefits of applying robust MPC which eliminates the infeasibilities due
to disturbances. For this robust rejection we use the terminal cost Vf = 0 along all simulation

8The disturbance signal w(k) is generated randomly, but we use the same one in all simulations.
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Figure 6.7: Simulation results for deterministic MPC with external noise. (a) System (solid) and ref-
erence (dashed) velocities, (b) Control input and constraints, (c) Acceleration and constraints (note the
significant violations), (d) Variation of control input and constraints.
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Figure 6.8: Simulation results for robust MPC. (a) System (solid) and reference (dashed) velocities,
(b) Control input and constraints, (c) Acceleration and constraints, (d) Variation of control input and
constraints. Note that no infeasibilities occur and we also have robust stability.

time. By means of the arguments of Section 6.3, we construct, in the vicinity of the reference
stationary state, an RPI set which serves as a terminal set Xf = {x : 16.9 ≤ x ≤ 20.63}, that
guarantees robust asymptotic stability of the closed-loop system despite the added disturbances.
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6.7 Conclusions
In the first part of this chapter we have derived a local PWL feedback controller corresponding
to the PWL dynamics of a PWA system by means of LMIs. We have taken into account the
piecewise linear structure of the system by using a relaxation procedure called the S-procedure.
We have derived a stabilizing MPC strategy for the class of PWA systems that uses the standard
ingredients: a terminal cost constructed from an upper bound on the infinite-horizon quadratic
cost and a terminal set derived from the backward procedure which can be either convex or
polyhedral. It is worth to note that although the PWA system might be discontinuous we have
shown that the optimal value function of the MPC optimization problem is continuous at the
equilibrium and can serve as a Lyapunov function for the closed-loop system.

In the second part we have developed a robustly stable MPC strategy for the class of PWA
systems with additive disturbances. We use the dual-mode paradigm and the benefits of incor-
porating feedback to derive a robust MPC law based on solving a min-max control problem. In
order to preserve convexity we have imposed that the mode is fixed at each step over the predic-
tion horizon. This allows us to consider only the disturbance realizations that take on values at the
vertexes of the disturbance polytope. Finally, for uncertain PWL systems we have derived a ro-
bust MPC scheme which removes the constraint that the mode is known and uses semi-feedback
control policies. This scheme combines a local control law with an open-loop correction in order
to guarantee satisfaction of the constraints. As an application, we have studied the problem of
designing an adaptive cruise controller by means of MPC, which enabled us to tackle the con-
trol problem in a mixed-integer linear/quadratic program formulation. Once the reference speed
has reached a steady state value we have also considered the problem of guaranteeing stability,
via the construction of terminal cost and terminal set as explained in Section 6.2. Moreover we
have considered the robust MPC as in Section 6.3 that allowed us to prevent infeasibility due to
disturbances and still preserve robust stability.
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Chapter 7

Conclusions and future research

In this final chapter we present a summary of the contributions that have been made in the pre-
ceding chapters. We also discuss some interesting open problems and possible future directions
that are related to the research presented in this thesis.

7.1 Conclusions

The main focus of this Ph.D. thesis was to develop structured control design methods for specific
classes of hybrid systems and DES that are industrially relevant. Among different existing control
methods we chose the optimal control framework and its receding horizon implementation often
referred to as the MPC due to their attractive features that make these control approaches also
interesting and relevant for extension to hybrid systems and DES. The classes of systems studied
in this thesis are MPL systems and switching MPL systems (corresponding to DES), MMPS
systems (corresponding to DES and hybrid systems) and PWA systems (corresponding to hybrid
systems). The main contributions of this thesis are summarized below.

Optimal control for MPL systems

• We have derived a solution to a class of finite-horizon optimal control problems for con-
strained MPL systems where the performance is measured via a cost function that may,
in particular, be chosen to provide a just-in-time controller. We have determined suffi-
cient conditions under which the optimization problem becomes a linear program. In the
absence of constraints and for a particular stage cost, that provides a trade-off between
minimizing the due date error and a just-in-time control, we have obtained an analytic
solution for the optimal control problem.

• The robustification of the finite-horizon optimal control problem has been also considered.
We have analyzed the solutions to three classes of finite-horizon min-max control prob-
lems for uncertain MPL systems subject to hard state and input constraints, depending on
the nature of the control sequence over which we optimize: open-loop control sequences,
disturbance feedback policies, and state feedback policies. Despite the fact that the con-
trolled system is nonlinear, we were able to provide sufficient conditions, that are usually
satisfied in practice, such that convexity of the optimal value function and its domain is pre-
served and consequently, the min-max control problems can be recast as a linear program
or solved via N parametric linear programs, where N is the prediction horizon.

157
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MPC for MPL systems

• We have introduced the notion of Lyapunov stability for MPL systems and we have found
connections with the classical definition of stability for DES in terms of boundedness of
the buffer levels. We have designed an MPC strategy for unconstrained MPL systems that
guarantees a priori stability of the closed-loop system. In this particular case for proving
stability we did not follow the classical approach based on a terminal set and a terminal
cost, but rather taking advantage of the special properties that MPL systems posses, we
have shown that by a proper tuning of the design parameters stability can be guaranteed.

• We have further extended the MPC framework to the class of constrained MPL systems.
We have followed a similar finite-horizon MPC approach as for conventional, time-driven
systems that uses a terminal set and a terminal cost as basic ingredients. However, the
extension from classical time-driven systems to discrete event MPL systems is not trivial
since many concepts from system theory have to be adapted adequately. In particular, we
have introduced the notion of positively invariant set for a normalized MPL systems and
the main properties were derived for such a set. Closed-loop stability was demonstrated
using Lyapunov arguments.

• We have also considered robust stability of the MPC law corresponding to an uncertain
MPL system. Based on the assumptions that a robustly positively invariant set is available
and the stage cost has a particular representation we were able to prove robust stability of
the closed-loop system.

• Finally, sufficient conditions for guaranteeing closed-loop stability for an MPC law applied
to a switching MPL system have been derived. We have shown that under the boundedness
assumption on the MPC law, the closed-loop state trajectory is also bounded.

MPC for MMPS systems

• We have derived an efficient algorithm for solving an open-loop MPC optimization prob-
lem for uncertain MMPS systems subject to hard input constraints and an MMPS (or PWA)
stage cost, based on solving a set of linear programs.

• We have extended the feedback min-max MPC framework to the class of uncertain MMPS
systems using disturbances feedback policies and we have derived an efficient algorithm
for solving the corresponding min-max control problem.

MPC for PWA systems

• We have derived LMI conditions for the stabilization of a PWL system using a PWL feed-
back controller and a piecewise quadratic Lyapunov function. We have taken into ac-
count the structure of the system and different levels of conservatism from applying the
S-procedure have been discussed. We have given a detailed discussion to the solution of
the LMIs.

• We have extended the MPC formulation for PWA systems with a terminal equality con-
straint to a new MPC strategy based on a terminal inequality constraint corresponding to
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the PWL dynamics. Using an upper bound on the infinite-horizon quadratic cost as a termi-
nal cost and deriving also a convex terminal set we have proved the stabilizing properties
of the MPC law applied to a PWA system subject to input and output constraints. Note
that although the PWA system might be discontinuous we have shown that the optimal
value function of the MPC optimization problem is continuous at the origin and can serve
as a Lyapunov function for the closed-loop system. We have derived an algorithm for en-
larging the terminal set based on backward procedure, which in particular provides also a
method to derive a polyhedral terminal set. In this way we overcome the drawback of the
algorithms based on infinite recursive methods for constructing a terminal set.

• The robustification of the standard MPC via the addition of a robustness constraint was
discussed. A new sufficient condition that enables us to preserve convexity of the state set
evolution is presented and a state feedback min-max MPC scheme based on a dual-mode
approach, which incorporates this condition, is derived together with its main features, in
particular robust stability.

Examples

• As applications we have considered the design of a controller for a temperature control
system in a room and of an adaptive cruise controller for a road vehicle by means of MPC
strategies developed in this thesis. The main message resulting from these applications
is the need for robust hybrid control and for efficient algorithms for solving such optimal
control problems.

Structural properties of a traffic model

• In Appendix A we will present some work that has been done in the first year of the
Ph.D. research. The central idea behind this chapter is to study the main properties of a
macroscopic traffic flow model, called Helbing traffic flow model. For the first time it has
been shown that this model does not give rise to negative flow and density. We will also
derive the main properties such as the formulas for the shock and rarefaction waves, and
the solution of the Riemann problem for the Helbing traffic flow model.

7.2 Directions for future research
Some possible suggestions for future research are outlined below. First we discuss some neces-
sary improvements of our results and then we list several relevant research problems, which can
be considered as future work.

Optimal control and MPC for MPL systems

• The number of inequalities that describe the feasible set of a min-max control problem
from Section 3.3 is, in the worst case, exponential. The relaxation introduced in Section
3.2.2 for the deterministic case is not applicable for the robust case. Therefore, finding
new relaxation methods that reduce the number of inequalities need to be developed. Some
initial steps in this direction were already made in Section 3.4.2 where in some particular
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cases of the uncertainty description the robust control problem is recast as a deterministic
one.

• Possible extensions of the robust control results obtained in Section 3.3 to a larger class of
systems than the class of MPL systems should be investigated. We conjecture that these
results can be extended to the class of monotone convex systems extensively used in system
biology.

• Efficient algorithms for solving robust optimal control problems for MPL systems with
stochastic disturbances need to be developed.

• Timing issues, i.e. availability of the state of an MPL system at a certain time, need to be
investigated in more detail. Some initial ideas were already presented in Sections 3.2.3 and
3.3.5.

• The case of stability and feasibility of MPC with output feedback needs to be investigated.
The simultaneous design of an observer and model predictive controller might prove ben-
eficial in enlarging the region of attraction of the closed-loop MPL system.

• An interesting topic in the context of DES is the investigation of different notions of sta-
bility (e.g. Lyapunov stability, boundedness in terms of buffer levels, etc.) and their con-
nections.

Optimal control and MPC for PWA systems

• The RPI sets for PWA systems are in general non-convex. We have proposed an algorithm
for computing an RPI set for the PWL dynamics of the PWA system. Extension of this
algorithm to the full PWA dynamics can be a challenge.

• Efficient robust MPC strategies for uncertain PWA systems by means of robustness con-
straints and more results regarding the robust stability and feasibility of these strategies
need to be developed. Contraction constraints can be considered as an alternative to ro-
bustly invariant terminal sets.

• Extension of the MPC framework, for both deterministic and uncertain PWA systems, to
output tracking should also be investigated. A first step in extending the results of Chapter
6 is to consider proving a tracking MPC strategy is stabilizing.

• Characterization of robust stability using less restrictive criteria need to be investigated.
Integral quadratic constraints could be embedded in robust MPC schemes in order to keep
the performance as close as possible to the optimal performance while still guaranteeing
robust stability. Other types of stability criteria could be considered, e.g. input-to-state
stability.

Other research topics

• The theoretical problems tackled in this Ph.D. thesis are “hard” in a mathematical sense,
i.e. the computational complexity – in the worst case – grows exponentially with the
problem size. This motivates further research for developing approximate control schemes
(e.g. MPC) which provides good, not necessarily optimal answers for control problems
with specific structures and where the computational complexity grows only polynomially.
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• Relaxation procedures in robust control and characterization of the conservatism, in par-
ticular verification of the relaxation exactness are interesting topics. There exists a strong
need to exploit the system theoretic structure in computations.

• Extension of the MPC framework to other classes of hybrid systems that are practically
relevant should be considered: e.g. systems with uncertain switching surfaces, continuous
PWA systems with state reset, PWA systems with interval uncertainty, etc.

• Extension of MPC strategies to complex stochastic nonlinear and hybrid systems using
randomized algorithms or Markov chain Monte-Carlo methods could also be an interesting
topic for future research.

• Extensive case studies, in particular focusing on implementation aspects in industrial en-
vironments need to be performed in more depth.

• Distributed control for large-scale systems. Up to now, most control methods for hybrid
and discrete event system are based on a centralized control paradigm and/or on ad-hoc
techniques. However, centralized control of large-scale systems is often not feasible in
practice due to computational complexity, communication overhead, and lack of scalabil-
ity. Furthermore, a structured control design method is also lacking. Therefore, there is
a need for developing structured and tractable design methodologies for control of large-
scale hybrid and discrete event systems.

Hoc erat in votis!
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Appendix A

Structural properties of the Helbing traffic
flow model

In the first year of my Ph.D. I was involved in a project whose main topic was traffic control. In
this appendix we present some results obtained during that year on this topic.

We analyze the structural properties of the shock and rarefaction wave solutions of a macro-
scopic, second-order non-local continuum traffic flow model, namely the Helbing model. We
will show that this model has two families of characteristics for the shock wave solutions: one
characteristic is slower, and the other one is faster than the average vehicle speed. Corresponding
to the slower characteristic we have 1-shocks and 1-rarefaction waves, the behavior of which is
similar to that of shocks and rarefaction waves in the first-order model of Lighthill-Whitham-
Richards. Corresponding to the faster characteristic there are 2-shocks and 2-rarefaction waves,
which behave differently from the previous one, in the sense that the information in principle
travels faster than average vehicle speed, but – as we shall see – in the Helbing model this in-
consistency is solved via the addition of a non-local term. We also proved that for the Helbing
model the shocks do not produce negative states as other second-order models do. Moreover, we
derive the formulas for the solution of the Riemann problem associated with this model in the
equilibrium case.

A.1 Introduction

Many researchers consider that traffic behavior on a freeway at a given point in time-space is only
affected by the conditions of traffic in a neighborhood of that point, proposing different models
based on partial differential equations. In this context, one of the most well known traffic flow
models is the Lighthill-Whitham-Richards (LWR) model [96, 142, 166], which is a first-order
model. In [135, 166] a second-order traffic model is proposed. In this appendix we discuss yet
another macroscopic second-order model, which is based on gas-kinetic equations with a non-
local term as proposed in [67,69,70,78]. In this model, traffic is described macroscopically as if
it were a fluid with the cars as molecules, obtaining the traffic equations from a gas-kinetic level
of description. The Helbing model is based on statistical kinetic theory, where macroscopic laws
are obtained from integration of molecular properties such as positions, collisions, overtaking,
and velocities.

As an introduction to our discussion and to make the appendix self-contained, a brief review
of the Helbing model is presented in the next section. The new contributions start with Section
A.3, where we discuss the structural properties of the shock wave solution. In Section A.4 we
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present the structural properties of the rarefaction waves solution, and in Section A.5 we discuss
the solution of the Riemann problem associated with the Helbing model. This appendix is based
on [116].

A.2 Helbing traffic flow model
In general, continuum macroscopic traffic models contain two independent variables: location x,
and time t. There usually are three states: density ρ, average speed V , and flow Q with Q = ρV .
Because the number of vehicles is conserved, all macroscopic traffic flow models are based on
the continuity equation, which expresses the relation between the rates of change of the density
ρ(x, t) with respect to t and of the flow Q(x, t) with respect to x:

∂ρ

∂t
+
∂Q

∂x
= 0.

Here, ∂ρ
∂t

denotes the partial derivatives of ρ with respect to t. To describe time-varying and
spatially varying average velocities V (x, t) such as those that occur in traffic jams or stop-and-go
traffic we need a dynamic velocity equation. Gas-kinetic equations for the average velocity have
been proposed in a number of publications such as [71, 134, 136]. Because we are interested in
macroscopic quantities we can integrate those equations to derive formulas for the first moment.
For all these models after integration, the equation for average velocity can be written as

∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂P

∂x
=
Ve − V
τ

,

where P is the traffic pressure, defined as P (x, t) = ρ(x, y)θ(x, t) with θ the velocity variance
(see also equation (A.2) below), and where Ve is the dynamical equilibrium velocity towards
which the average velocity of vehicles relaxes. The macroscopic traffic equations of the Hel-
bing model are based on the gas-kinetic traffic equations of [134] and a method analogous to
the derivation of the Euler equations for ordinary fluids (i.e. the Chapman-Enskog expansion).
Compared to the other models, in the Helbing model the dynamical equilibrium velocity Ve also
depends on the density and average velocity at an interaction point that is advanced by about the
safe distance. More specifically, the following Euler-like equation with a non-local term for the
average vehicle velocity is considered:

∂V

∂t
+ V

∂V

∂x
︸ ︷︷ ︸

transport

+
1

ρ

∂P

∂x
︸ ︷︷ ︸

pressure

=
V0 − V
τ

︸ ︷︷ ︸

acceleration

− V0(θ + θa)

τA(ρmax)

(
ρaT

1− ρa/ρmax

)2

B(δv)

︸ ︷︷ ︸

braking

. (A.1)

So, the change in time of the average velocity V is given by: a transport term originating from
the propagation of the velocity profile with the average velocity V , a pressure term that has a
dispersion effect due to a finite variance of the vehicle velocities, an acceleration term describing
the acceleration towards the average desired velocity V0 of the drivers with relaxation time τ , and
finally a braking term: this is a non-local term that models braking in response to traffic situation
downstream at the interaction point xa = x+γ(1/ρmax+TV ) with 1 < γ < 2 a model parameter,
ρmax is the maximum density, and T is the average time headway. In equation (A.1) we also have
a Boltzmann factor of the form

B(δv, S) = δv
e−z2/2

√
2π

+ (1 + δ2
v)

∫ δv

−∞

e−z2/2

√
2π

dz,
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with δv = V −Va√
θ−θa

, which takes into account the velocity and variance at the actual position x and
the interaction point xa respectively. This non-local term around location xa expresses that inter-
actions between vehicles are forwardly directed, since drivers mainly react to the traffic situation
in front of them until a certain distance. In this way the Helbing model remedies an inconsistency
of previous models that was criticized in [40], namely that although the fluid particles respond
to stimuli from ahead and from behind, a car is an anisotropic particle that responds to frontal
stimuli (i.e. we require an anisotropic model). The shift term d = γ(1/ρmax +TV ) is taken from
a car-following model and expresses the velocity-dependent safe distance.

Based on empirical data it was observed that the velocity variance θ (which appears in the
definition of the traffic pressure P = ρθ) is a density-dependent fraction A(ρ) of the squared
velocity:

θ(x, t) = A(ρ(x, t))V 2(x, t), (A.2)

where A(ρ) is the Fermi function:

A(ρ) = A0 + ∆A

(

1 + tanh
(ρ− ρc

∆ρ

))

, (A.3)

where A0 and A0 + 2∆A are about the variance factors for free and congested traffic, ρc is of the
order of the critical density for the transition from free to congested traffic, and ∆ρ is the width
of the transition.

To summarize, the equations of the Helbing model are:

∂ρ

∂t
+
∂Q

∂x
= 0 (A.4)

∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂P

∂x
=
Ve − V
τ

(A.5)

Q = ρV, (A.6)

where the equilibrium velocity is written as

Ve = V0

(

1− θ + θa

A(ρmax)

(
ρaT

1− ρa/ρmax

)2

B(δv)

)

. (A.7)

Readers interested in an empirical validation of this model are referred to [68].

A.3 Hugoniot locus and shocks
In this section we show that the Helbing model can be written in a conservative form, and then
we study the shocks arising from this model and we derive conditions under which a pair of
states can be connected by a shock (i.e. we determine the Hugoniot locus). We will show that the
shocks do not produce negative states as other second-order models do (see e.g. [40]). Therefore,
for this model the Riemann problem is physically well-posed, as we will see in Section A.5.

Using Q = ρV and P = ρθ = ρA(ρ)V 2, we can write

ρV 2 + P =
Q2

ρ
(1 + A(ρ)).
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Then using previous formulas we see that a desirable property of the Helbing model equations
(A.4)–(A.7) is that they can be formulated in terms of a system of conservation equations (i.e. a
time-dependent system of nonlinear partial differential equations with a particular simple struc-
ture) but with a source term:

∂u

∂t
+
∂f(u)

∂x
= S(u) (A.8)

with state variables

u =

[
ρ

Q

]

,

flux function

f(u) =

[

Q
Q2

ρ
(1 + A(ρ))

]

,

and source term

S(u) =

[

0
ρVe−Q

τ

]

.

In matrix representation using the Jacobian J(u) := ∂f(u)
∂u

we have:

∂

∂t

[
ρ

Q

]

+

[

0 1

−Q2

ρ2 + ∂P
∂ρ

2Q
ρ

+ ∂P
∂Q

]

︸ ︷︷ ︸

J(u)

∂

∂x

[
ρ

Q

]

=

[

0
ρVe−Q

τ

]

.

In our case pressure has the form P = ρA(ρ)V 2 = Q2

ρ
A(ρ), which implies that

J(u) =





0 1

−Q2

ρ2

(

1 + A(ρ)− ρ d
dρ
A(ρ)

)

2Q
ρ
(1 + A(ρ))



 .

When we compute the eigenvalues of the Jacobian, and using again the relation V = Q
ρ

, we
get

λ1,2(u) = V

(

1 + A(ρ)±
√

A2(ρ) + A(ρ) + ρ
d

dρ
A(ρ)

)

. (A.9)

Using the fact that A(ρ) is a Fermi function, it can be proved that for physical values of ρ the
radical in equation (A.9) is well-defined, and that the eigenvalues are real and distinct. Therefore,
we have a strictly hyperbolic system (since for any value of u the eigenvalues of the Jacobian are
real and distinct). We see that λ1 is smaller than the average vehicle velocity V , but λ2 is larger
than V . This is a drawback of this kind of models because this means that information travels
faster than average vehicles speed, which was criticized in [40, 47]. However, note that V is an
average vehicle speed, so there may exist vehicles that travel faster or slower than V .

Corresponding to the two distinct eigenvalues given by equation (A.9) we have two linearly
independent eigenvectors

r1,2(u) =

[
1

λ1,2(u)

]

,
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which makes the Jacobian matrix diagonalizable.
A6: As recommended in [69] for qualitative considerations, A(ρ) can be chosen to be con-

stant. We adopt this assumption henceforth because it simplifies our computations. We choose
for A(ρ) the value c := A0 + ∆A ≈ 0.028 (which is the value around critical density where we
have large oscillations of the speed). ♦

Remark A.3.1 We would like to stress that using this assumption the model re-
mains anisotropic since we do not change the structure of the non-local term Ve =

V0

(

1− (V 2 + V 2
a )
(

ρaT
1−ρa/ρmax

)2

B(δv)

)

(cf. equation (A.7)) and since δv, which is the argu-

ment of Boltzmann factor, also depends on the interaction point xa through Va. ♦

With assumption A6 the formulas for pressure P , flux f , and the eigenvalues λp (p = 1, 2)
are

P = cρV 2 = c
Q2

ρ

f(u) =

[

Q
Q2

ρ
(1 + c)

]

λ1,2(u) = V
(

1 + c±
√
c2 + c

)

= c1,2V,

where we denote c1 := 1 + c −
√
c2 + c ∈ (0, 1) and c2 := 1 + c +

√
c2 + c > 1. Note that

λ1 < λ2. Using the weak formulation [92] we can expand the class of solutions of the hyperbolic
system (A.8) so as to include discontinuous solutions called shocks. Now let us study different
kinds of shocks arising from the system and determine and characterize the conditions under
which a pair of states û = [ρ̂ Q̂]T , ũ = [ρ̃ Q̃]T can be connected by a single shock.

First, note that in short time intervals the shocks arising from (A.8) are the same as those
arising from

∂

∂t

[
ρ
Q

]

+

[

0 1

−Q2

ρ2 (1 + c) 2Q
ρ
(1 + c)

]

∂

∂x

[
ρ
Q

]

= 0, (A.10)

i.e. the source term becomes zero (this can be done when traffic operations are in equilibrium
but also because the relaxation term ρVe−Q

τ
is finite, so that its effect in short time intervals can

be neglected in comparison with the effect caused by the infinite space derivatives of ρ and Q at
the shock). However, the cumulative effect of the source term in long term cannot be ignored,
this having smooth properties similar to those of a viscosity term therefore when t → ∞ the
solutions of (A.8) approach those of (A.10).

Because we have two characteristics (eigenvalues), two kinds of shocks arise from (A.10):
we call them 1-shock and 2-shock respectively. Let us fix a state û = [ρ̂ Q̂]T , and determine the
set of states ũ that can be connected by a discontinuity (called Hugoniot locus) to the point û.
For this, the Rankine-Hugoniot jump condition [92] must hold:

f(ũ)− f(û) = s(ũ− û), (A.11)

where s is the propagation speed of the discontinuity along the road (known in traffic flow engi-
neering as congestion velocity). The condition (A.11) expresses the fact that the propagation of
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a shock depends on both flow and density in the neighboring (upstream and downstream) region
of a shock.

Furthermore, we should also take into account whether a given discontinuity is physically
relevant. To this extent in [88] an entropy condition is introduced: the jump in the pth field (from
state û to ũ) is admissible only if

λp(û) > s > λp(ũ).

Let us consider the Rankine-Hugoniot jump condition (A.11). Filling out the expression for
f results in the following system of equations:

Q̃− Q̂ = s(ρ̃− ρ̂)
Q̃2

ρ̃
(1 + c)− Q̂2

ρ̂
(1 + c) = s(Q̃− Q̂).

Writing down the solutions in terms of ρ̃ yields

Q̃1,2 = Q̂
1± (ρ̃− ρ̂)

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃

(1 + c)
, (A.12)

and the corresponding shock speed

s1,2 = Q̂

1+c
ρ̃
±
√

c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃

(1 + c)
, (A.13)

where the ± signs give two solutions, one for each family of characteristic fields.
Now let us see what sign we should choose in formula (A.12) for the 1-shock and for the

2-shock respectively. Since Q̃ can be expressed in terms of ρ̃, we can parameterize these curves
by taking, e.g. ρ̃p(ξ; û) = ρ̂(ξ + 1) for p = 1, 2 with ξ > −1. Then from equations (A.12) and
(A.13) we obtain:

ũp(ξ; û) =





ρ̂(1 + ξ)

Q̂
1±ξ

q

c2+c
ξ+1

1− ξ(c+1)
ξ+1



 , sp(ξ; û) =
Q̂

ρ̂

1+c
1+ξ
±
√

c2+c
1+ξ

1− ξ(1+c)
1+ξ

.

The choice of sign for each family is determined by the behavior as ξ → 0 where the following
relations must hold (see [92] for details):

1.
∂

∂ξ
ũp(0; û) is a scalar multiple of the eigenvector rp(û): so ∂

∂ξ
ũp(0; û) = ρ̂rp(û) in our

case;

2. sp(0; û) = λp(û) for p = 1, 2.

Using these relations we find that for the 1-shock we must choose the minus sign and for the
2-shock the plus sign.

Remark A.3.2 We can see that each of the characteristic fields is genuinely nonlinear, which
means that

∇Tλp(u) · rp(u) = cp(cp − 1)
Q

ρ2
6= 0 ∀u = [ρ Q]T 6= 0,



A.3 Hugoniot locus and shocks 169

where

∇λp :=







∂λp

∂ρ

∂λp

∂Q







is the gradient of λp (p = 1, 2). ♦

Now suppose we connect û to ũ by a 1-shock and using the entropy condition mentioned
above, we get:

c1
Q̂

ρ̂
> s > c1

Q̃

ρ̃
.

Replacing s = Q̃−Q̂
ρ̃−ρ̂

in the above inequality and using c1 = 1 + c−
√
c2 + c, we obtain

Q̂

ρ̂
− s+ (c−

√
c2 + c)

Q̂

ρ̂
> 0 >

Q̃

ρ̃
− s+ (c−

√
c2 + c)

Q̃

ρ̃
,

which after few steps leads to

Q̂ρ̃− Q̃ρ̂
ρ̃− ρ̂ < −Q̃(c−

√
c2 + c)

Q̂ρ̃− Q̃ρ̂
ρ̃− ρ̂ > −Q̂(c−

√
c2 + c).

Combining the last two inequalities we obtain

−Q̂(c−
√
c2 + c) < −Q̃(c−

√
c2 + c) and thus Q̂ < Q̃.

So for the 1-shock we have obtained the following: Q̂ < Q̃, and we should take the minus sign
in formulas (A.12) and (A.13). Combining these two conditions we can show that we must have
ρ̃ > ρ̂. Indeed, we distinguish two cases:

1. The denominator in (A.12) is positive: 1− ρ̃−ρ̂
ρ̃

(1 + c) > 0. Hence, ρ̃ < ρ̂(1 + 1
c
) and thus

Q̃ = Q̂
1−(ρ̃−ρ̂)

q

c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃

(1+c)
> Q̂ if and only if (ρ̃− ρ̂)

√
c2+c
ρ̃ρ̂

< ρ̃−ρ̂
ρ̃

(1 + c) or ρ̃ > ρ̂, since for the

inverse inequality we get a contradiction;

2. The denominator is negative: 1 − ρ̃−ρ̂
ρ̃

(1 + c) < 0, or ρ̃ > ρ̂(1 + 1
c
) > ρ̂, and thus ρ̃ > ρ̂,

and we can check that also Q̃ > Q̂ is satisfied.

We obtain the following conditions for a 1-shock:

S1 : Q̃ = Q̂
1− (ρ̃− ρ̂)

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃

(1 + c)
, ρ̃ > ρ̂, Q̃ > Q̂ (A.14)

with the corresponding speed of propagation

s1 = Q̂

1+c
ρ̃
−
√

c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃

(1 + c)
. (A.15)
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Now let us see what the interpretation is of a 1-shock. Do the drivers on the average really behave
as described by S1 in equation (A.14)?

If we consider the fundamental diagram that relates speed and density then we see that the
condition ρ̃ > ρ̂ implies that Ṽ < V̂ , i.e. the drivers that enter that shock reduce their speed
abruptly, which coincides with real-life behavior (see also [2]).

In a similar way as for the 1-shock we can show that for a 2-shock we have:

S2 : Q̃ = Q̂
1 + (ρ̃− ρ̂)

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃

(1 + c)
, ρ̃ < ρ̂, Q̃ < Q̂

and the corresponding speed of propagation

s2 = Q̂

1+c
ρ̃

+
√

c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃

(1 + c)
.

Let us now study the sign for the propagation speeds s1 and s2 of the discontinuity. We
distinguish two cases:

1. If the denominator 1 − ρ̃−ρ̂
ρ̃

(1 + c) is larger than 0, then ρ̃ < ρ̂(1 + 1
c
), and we obtain that

0 < s1 < s2, i.e. the speed of propagation of the 1-shock is less than the speed of the
2-shock, but both are positive (since the discontinuity moves downstream).

2. If the denominator is less than 0, then ρ̃ > ρ̂(1 + 1
c
) and s2 < 0 < s1, i.e. the speed for

the 1-shock is positive and it moves downstream, but the speed for the 2-shock is negative,
and it moves upstream.

Now we can sketch the Hugoniot locus in the phase plane, retaining only the points ũ that
can be connected to û by an entropy-satisfying shock, discarding the entropy-violating shocks
(dotted lines in Figure A.1). Any right state ur = [ρr Qr]

T can be connected to a left state
ul = [ρl Ql]

T by a 1-shock if the right state falls on the S1 curve that passes through [ρl Ql]
T

and similarly by a 2-shock if the right state falls on the S2 curve that passes through [ρl Ql]
T . We

can see from Figure A.1 that the Hugoniot locus terminates at the origin and there are no states
with ur < 0 that can be connected to ul by a propagating discontinuity; therefore, the model does
not produce negative density and flow at the point of discontinuity (as others models that do so,
see [40] for details), so it makes physical sense to discuss about Riemann problem associated
with this model (as we will do in Section A.5).

A.4 Rarefaction waves
For the LWR model it is known that when the left characteristic is slower than the right charac-
teristic a fan of rarefaction waves results. In this section we show that the Helbing model also
has this property, deriving the rarefaction curves corresponding to this model. We will see again
that we cannot connect negative states through this kind of rarefaction waves. We will use this
result when we discuss about Riemann problem.

If the two characteristic fields satisfy

λp(ul) < λp(ur) for p = 1, 2 , (A.16)
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ul

S1

S2

1−shock

2−shock

ρ

Q

Feasible 
 region  

Figure A.1: Representation of the states ur that can be connected to ul by an entropy-satisfying
shock. State ur can be connected to ul by a 1-shock if ur lies on curve S1 passing through ul, and
by a 2-shock if ur lies on curve S2 passing through ul. The dotted and dashed curves represent
entropy-violating points.

two families of smooth solutions, called 1-rarefaction waves and 2-rarefaction waves exist. Simi-
lar to the analysis of shock curves we shall derive the phase curves for both families of rarefaction
waves. One can write equation (A.10) as:

∂u

∂t
+ J(u)

∂u

∂x
= 0 with u = [ρ Q]T , f =

[

Q
Q2

ρ
(1 + c)

]T

, J(u) =
∂f

∂u
. (A.17)

If u(x, t) is a solution of the system (A.17), then we can show that u(ax, at) is also a solution,
where a is a scalar, i.e. the solutions are scaling-invariant. Therefore, the solution depends on
(x, t) in the form ξ = x/t. A rarefaction wave solution to the system of equations takes the form:

u(x, t) =







ul if x ≤ ξ1t

w(x/t) if ξ1t < x < ξ2t

ur if x ≥ ξ2t ,
(A.18)

with w(·) smooth and w(ξ1) = ul and w(ξ2) = ur. We will now prove that starting at each point
ul there are two curves consisting of points ur that can be connected to ul by a rarefaction wave,
namely a subset of the integral curve of rp(ul). An integral curve for rp(u) is a curve that has
the property that the tangent to the curve at any point u lies in the direction rp(u). In order to
determine explicitly the function w(x/t) we differentiate u(x, t) = w(x/t):

∂u

∂t
(x, t) = − x

t2
w′(x/t)

∂u

∂x
(x, t) =

1

t
w′(x/t),
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wherew′(·) represents the derivative ofw(·). Replacing these expressions in (A.17) with ξ = x/t
we get

J(w(ξ))w′(ξ) = ξw′(ξ), (A.19)

which means that w′(ξ) is proportional to some eigenvector rp(w(ξ)) of the Jacobian J(w(ξ)):

w′(ξ) = α(ξ)rp(w(ξ)),

i.e. w(ξ) lies along some integral curve of rp and ξ is an eigenvalue of the Jacobian.
Let us compute w, using the fact that our model is genuinely nonlinear, as was shown in

Section A.3. Recall that (A.19) implies that ξ is an eigenvalue of J(w(ξ)). Differentiating
ξ = λp(w(ξ)) with respect to ξ results in

1 = ∇Tλp(w(ξ))w′(ξ) = ∇Tλp(w(ξ))α(ξ)rp(w(ξ)).

Hence,

α(ξ) =
1

∇Tλp(w(ξ))rp(w(ξ))
,

which results in the differential equation

w′(ξ) =
rp(w(ξ))

∇Tλp(w(ξ))rp(w(ξ))
for ξ1 ≤ ξ ≤ ξ2

with initial condition
w(ξ1) = ul, ξ1 = λp(ul) < ξ2 = λp(ur).

For 1-rarefaction we have:

λ1 = c1
Q

ρ
= c1V, r1 =

[

1 c1
Q

ρ

]T

, ∇Tλ1r1 = c1(c1 − 1)
Q

ρ2
6= 0,

and thus

d

dξ
ρ(ξ) =

ρ2(ξ)

Q(ξ)

1

c21 − c1
with ρ(ξ1) = ρl (A.20)

d

dξ
Q(ξ) = ρ(ξ)

1

c1 − 1
with Q(ξ1) = Ql, ξ1 = λ1(ul) = c1

Ql

ρl

, (A.21)

which is a system of two ordinary nonlinear differential equations. We see that (A.20) can be
written as

d

dξ

(
1

ρ

)

= − 1

Q

1

c21 − c1
.

Denoting η = 1
ρ

we get the system

Q
dη

dξ
= − 1

c21 − c1
η
dQ

dξ
=

1

c1 − 1
.
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We add both equations obtaining a relation between states: Q(ξ) = 1
c1
ξρ(ξ), and finally after

some computations we obtain the following solution:

ρ(ξ) =

(
ρc1

l

c1Ql

ξ

) 1
c1−1

Q(ξ) =
ξ

c1

(
ρc1

l

c1Ql

ξ

) 1
c1−1

.

If we want to obtain an explicit expression for the integral curves in the phase plane, we eliminate
ξ:

ρc1−1 = ξ
ρc1

l

c1Ql

⇒ ξ =
c1Ql

ρc1
l

ρc1−1 ⇒ Q(ρ) = Ql

(
ρ

ρl

)c1

.

We can construct the 2-rarefaction wave in exactly the same manner obtaining

ρ(ξ) =

(
ρc2

l

c2Ql

ξ

) 1
c2−1

Q(ξ) =
ξ

c2

(
ρc2

l

c2Ql

ξ

) 1
c2−1

,

and in the phase plane 2-rarefaction is given by

Q(ρ) = Ql

(
ρ

ρl

)c2

.

Now two states ul and ur can be connected by a rarefaction wave provided that they lie on the
same integral curve and λp(ul) < λp(ur), which for 1-rarefaction results in

c1
Ql

ρl

< c1
Qr

ρr

, c1 ∈ (0, 1),

with

Qr = Ql

(
ρr

ρl

)c1

,

and thus
1

ρl

<
ρc1−1

r

ρc1
l

.

Hence, ρc1−1
l < ρc1−1

r or ρr < ρl since c1 ∈ (0, 1). Therefore, we obtain the following expression
for the 1-rarefaction curve:

R1 : Qr = Ql

(
ρr

ρl

)c1

, ρr < ρl. (A.22)

The 2-rarefaction curve is given by

R2 : Qr = Ql

(
ρr

ρl

)c2

, ρr > ρl. (A.23)

Figure A.2 shows the states ur that can be connected to ul by a 1-rarefaction wave, namely
the states lying on the curve R1 passing through ul. Furthermore, the states ur lying on the curve
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ρ

Q

ul

R2

R1

2−rarefaction

1−rarefaction

Figure A.2: Representation of the states ur that can be connected to ul by a rarefaction wave.
State ur can be connected to ul by a 1-rarefaction if ur lies on curve R1 passing through ul, and
by a 2-rarefaction wave if ur lies on curve R2 passing through ul. The dotted and dashed curves
represent points that do not satisfy the rarefaction condition (A.16).

R2 passing through ul can be connected to ul by a 2-rarefaction wave. We can observe that the
integral curves R1 and R2 are very similar to the Hugoniot locus. Moreover, locally near the
point ul they must in fact be very close to each other, because each of these curves is tangent
to rp(ul) at ul. Therefore, locally around ul the rarefaction waves are similar with the shock
waves (we can see that a 1-rarefaction wave is similar to a 2-shock wave, and that a 2-rarefaction
is similar to a 1-shock wave). Note that this does not imply non-existence of rarefaction wave
solutions for the Helbing model, because this similarity is valid only locally and when we solve
Riemann problem the intermediate states um can be given by the intersection of a shock curve
with a rarefaction curve (see also Section A.5). Again we see that we do not connect negative
states to ul, which is a very important feature of the Helbing model, and we will use this result
when we discuss the Riemann problem. An interpretation in terms of driver behavior of the
rarefaction waves is similar with that of entropy-satisfying shock.

A.5 General solution of the Riemann problem
In this section we discuss the Riemann problem associated with the Helbing model, and based on
the results of the two previous sections we will show that solutions of the Riemann problem with
density and flow non-negative in the initial condition on either side of the discontinuity cannot
give rise to negative flows or densities later on. Also we will see that for Riemann problem we can
find more than one solution, and the condition for uniqueness is to select the entropy-satisfying
weak solution, which results in a unique, physically valid solution.

A conservation law together with piecewise constant initial data having a single discontinuity
results in a so-called Riemann problem (see [92, 130, 153] for more details). For instance, the
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Q

ρ

S1

S2

R2

R1

ul

ur

S1

S2

R2

R1

ρ

Q

Figure A.3: Representation of the states ur that can be connected to ul by a shock or a rarefaction
wave (top), and of the states ul that can be connected to ur by a shock or a rarefaction wave
(bottom).

system (A.17) with initial condition

u(x, 0) =

{

ul if x < 0

ur if x > 0,

where ul and ur are given constants, is a Riemann problem.
If we combine Figures A.1 and A.2 we obtain a plot that shows us all points ur that can be

connected to a given point ul by an entropy-satisfying wave (see Figure A.3 – top), either a shock
wave or a rarefaction wave (ur lies on one of the curves S1, S2, R1 or R2), and the states ul that
can be connected to a given ur (see Figure A.3 – bottom). Therefore, when initial data ul and ur

both lay on these curves then this discontinuity simply propagates with speed s = Qr−Ql

ρr−ρl
along

the road.
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But what happens if ur does not reside on one of those curves passing through ul? To solve
this question, just as in the linear case, we can attempt to find a way to split this jump as a
sum of two jumps, across each of which the Rankine-Hugoniot condition holds, i.e. we must
find an intermediate state um such that ul and um are connected by a discontinuity satisfying the
Rankine-Hugoniot condition and so are um and ur, which intuitively means to superimpose the
appropriate plots and look for the intersections. When we want to determine analytically the
intermediate state um, we must first determine whether each wave is a shock or a rarefaction, and
then use the expressions relating ρ and Q determined in Sections A.3 and A.4 along each curve
to solve for the intersection. When we solve the equation given by the intersection, we can get
more than one solution for um, but only one gives a physically valid solution to the Riemann
problem since the jump from ul to um must travel more slowly than the jump from um to ur (due
to λ1 < λ2), therefore the condition for uniqueness is to pick up the weak solution that satisfies
the above condition. Using the same parametrization ρl = ρm(1 + ξ1) and ρr = ρm(1 + ξ2), and
replacing in equation (A.13) we get that the speeds of shock from ul to um and from um to ur are
given by:

sl,m =
Qm

ρm

1+c
1+ξ1
±
√

c2+c
1+ξ1

1− ξ1(1+c)
1+ξ1

, sm,r =
Qm

ρm

1+c
1+ξ2
±
√

c2+c
1+ξ2

1− ξ2(1+c)
1+ξ2

.

Now depending on what values we choose for ul and ur we can determine the sign in the previous
formulas such that sl,m < sm,r and thus we know what waves (1-wave or 2-wave) give the
intersection. We can distinguish the following cases:

Case 1: Both curves are shocks.
Graphically this means to draw the Hugoniot locus for each of the states ul and ur and to
look for the intersection. To obtain the correct value for um = [ρm Qm]T we have to
impose sl,m < sm,r. Let us consider an example; e.g. assume that um is connected to ul by
a 1-shock and to ur by a 2-shock:

Qm = Ql

1− (ρm − ρl)
√

c2+c
ρmρl

1− ρm−ρl

ρm
(1 + c)

, Qm = Qr

1 + (ρm − ρr)
√

c2+c
ρmρr

1− ρm−ρr

ρm
(1 + c)

. (A.24)

Equating the two right-hand sides gives a single equation for ρm. If we set y =
√
ρm, we

get a 4th degree polynomial equation in y, which can either be solved analytically (using
Ferrari’s method) or numerically (using, e.g. Newton’s method or Laguerre’s algorithm).
After we obtain ρm we replace it in one of the previous equalities (A.24) to obtain Qm.
Using a reasoning that is similar to the one of [88], it can be shown that the equation in ρm

always has a solution when ul and ur are sufficiently close.

Remark A.5.1 We may wonder whether the equation in ρm has a solution anyway? The
answer is always positive when ul and ur are sufficiently close. The idea of proof is given
here, following [88]. We know that from ul we can reach an intermediate state um(ξ1)
through a 1-shock. From um(ξ1) we can reach another state um(ξ1, ξ2) through a 2-shock.
Moreover, we know that:

∂um

∂ξp
(0, 0) = α(ul) · rp(ul) for p = 1, 2.

where α is a scalar. But our system is hyperbolic, which means these vectors are linearly
independent and hence the Jacobian of the map um : R

2 → R
2, (ξ1, ξ2) → um(ξ1, ξ2) is
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nonsingular. Therefore, from the inverse function theorem it follows that the map um is
bijective in a neighborhood of the origin. Hence, for any ur sufficiently close to ul there is
a unique set of parameters ξ1, ξ2 such that ur = um(ξ1, ξ2) and um = um(ξ1, 0).
When um is connected to ul by a 2-shock and to ur by a 1-shock we proceed similarly. We
would like to point out that in general not for all ul and ur the weak solution previously
constructed is a physically correct solution as it may be possible that one of the result-
ing shocks violate the entropy condition. In particular, for any ul the feasible ur lie in a
bounded region formed by horizontal axis (ρ) and the curves S1 and S2 (indicated by the
hashed region in Figure A.1. ♦

Case 2: Both curves are rarefactions.
If we assume that the intermediate state is connected to ul by a 1-rarefaction and to ur by
a 2-rarefaction, then um must satisfy

Qm = Ql

(
ρm

ρl

)c1

, Qm = Qr

(
ρm

ρr

)c2

. (A.25)

Equating again we get an equation in ρm with solution

ρm =

(
Ql

Qr

ρc2
r

ρc1
l

) 1
c2−c1

,

and then we obtain Qm from (A.25). We proceed similarly when we consider the opposite
case: um is connected to ul by a 2-rarefaction and to ur by a 1-rarefaction.

Case 3: The solution consist of one shock and one rarefaction wave.
Again if we consider the case when the intermediate state um is connected to ul by a 1-
rarefaction and to ur by a 2-shock, then we must solve for ρm and Qm from the equations:

Qm = Ql

1 + (ρm − ρl)
√

c2+c
ρmρl

1− ρm−ρl

ρm
(1 + c)

, Qm = Qr

(
ρm

ρr

)c1

.

We would like to point out that in general not for all ul and ur the weak solution previously
constructed is a physically correct solution as it may be possible that one of the resulting shocks
violate the entropy condition. In particular, for any ul the feasible (i.e. entropy-satisfying) ur lie
in a bounded region formed by horizontal axis (ρ) and the curves S1 and S2 (indicated by the
hashed region in Figure A.1).

Figure A.4 shows a plot for the Riemann problem with initial conditions ul = [140 400]T

and ur = [5 50]T , which corresponds, e.g. to a scenario such as the situation of traffic in front
of a semaphore when it was red and then becomes green. The full curves represent the states that
can be connected to ul, and the dotted curves represent the states that can be connected to ur. The
intersection gives two points: the intermediate state um is obtained by intersection of R1 with
S2, and u∗m by intersection of R2 with S1. So, the Riemann problem has more than one solution
in this case (this happens also for other traffic flow models), but only one is a physically valid
solution because we should have sl,m < sm,r (due to λ1 < λ2). If we do the computations, we get
that in this case u∗m is the solution that satisfies the entropy condition, i.e. u∗

m is the physically
valid solution.
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ul

ur

um*

Q

ρ

S2

um

R1

R2

S1

Figure A.4: Construction of the solution for the Riemann problem. We obtain two intermediate
states um and u∗m, but only u∗m is a physically valid solution.

Remark A.5.2 Note that the model presented above is in continuous form, and an analytic
solution cannot be obtained explicitly (even for the Riemann problem). Of course, if one wants
to use it in practice (for simulation or control purposes) one needs to approximate the solution
using numerical schemes. In the literature many researchers many different kinds of schemes
to approximate the solution of a hyperbolic system have been proposed. It is known that for
hyperbolic systems with the eigenvalues having the same sign (in our case both are positive)
upwind methods give good results. However, when we have discontinuities (e.g. when we
want to solve a Riemann problem considered in Section A.5), these methods do not perform
well, they produce oscillations in the neighborhood of shocks which is not in accord with real
traffic. In that case, Godunov-type methods [153] can be applied since they are based on the
exact or approximate solution of a Riemann problem at cell interfaces (like the van Leer splitting
scheme [153, 163] or the Harten-Lax-van Leer scheme [62], which approximate the Riemann
problem using Roe’s approximation). ♦

A.6 Conclusions
In this appendix we have discussed some properties of the Helbing traffic flow model. More
specifically, we have derived the formulas for shocks and rarefaction waves. By selecting the
states that satisfy the Lax entropy condition, we saw that we cannot connect to negative states.
Finally, we have considered the Riemann problem associated with the Helbing model, based on
the results in connection with the shocks and rarefaction waves. In particular, we have proved
that when we have a Riemann problem with non-negative densities and flows on either side of
discontinuity in the initial condition, the Helbing model cannot give rise to negative flows and
density later on.



Appendix B

Linear matrix inequalities

In this chapter we collect some basic results in linear matrix inequalities (LMIs) [24], such as the
Schur complement, the S-procedure and the elimination lemma.

B.1 Introduction
We define the subspace of symmetric matrices in R

n×n:

S
n := {Q ∈ R

n×n : Q = QT}
and the semidefinite cone1

S
n
+ := {Q ∈ S

n : xTQx ≥ 0 ∀x ∈ R
n}.

A matrix Q ∈ S
n is called positive semidefinite, denoted as Q < 0, when Q ∈ S

n
+. A matrix

Q ∈ S
n is called positive definite, denoted as Q � 0, when Q ∈ int(Sn

+), where int(·) denotes
the interior of a set. In other words Q � 0 if and only if xTQx > 0 for all x ∈ R

n \ {0}. For a
symmetric matrix Q ∈ S

n the following are equivalent:

(i): Q < 0

(ii): Q has only nonnegative eigenvalues

(ii): Q = RTR for some R (not necessarily square).

A linear matrix inequality is an expression of the form

Q0 + x1Q1 + · · ·+ xmQm < 0, (B.1)

where

• x = [x1 · · · xm]T ∈ R
m are the decision variables

• Q0, · · · , Qm ∈ S
n (i.e. they are symmetric matrices)

An LMI can be formulated as a convex optimization problem, referred to as semidefinite pro-
gram:

inf
x
{cTx : Q0 + x1Q1 + · · ·+ xmQm < 0}.

Semidefinite programs can be regarded as an extension of linear programming where the
component-wise inequalities between vectors are replaced by matrix inequalities, or, equiva-
lently, the nonnegative orthant is replaced by the semidefinite cone.

1For a finite-dimensional normed space Y a set K ⊆ Y is a cone if y ∈ K implies αy ∈ K for all α ≥ 0.
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B.2 The Schur complement formula
The Schur complement formula is a very useful tool for manipulating matrix inequalities. It
is often used to transform nonlinear matrix inequalities into LMIs. Let Q ∈ S

n, R ∈ S
m and

S ∈ R
n×m. The Schur complement formula for positive semidefinite matrices reads as follows.

The following matrix inequalities are equivalent:

(a)

[
Q S
ST R

]

< 0

(b) R < 0, Q− SR†ST < 0, S(I −RR†) = 0
(c) Q < 0, R− STQ†S < 0, ST (I −QQ†) = 0,

(B.2)

where R† and Q† denote the pseudo-inverse of R and Q, respectively.
For the positive definite case, the following are equivalent:

(i)

[
Q S
ST R

]

� 0

(ii) R � 0, Q− SR−1ST � 0
(iii) Q � 0, R− STQ−1S � 0

(B.3)

Note that the last two formulas (ii) − (iii) in (B.3) are nonlinear matrix inequalities in S while
the first formula (i) is an LMI in S.

B.3 The S-procedure
The S-procedure is frequently use in system theory to derive stability and performance results
for certain classes of nonlinear systems. First, let us recall a basic LMI result. Let us consider
the quadratic function q(x, y) = xTQx+ 2sTxy + ry2, where Q ∈ S

n, s ∈ R
n and r ∈ R. Then

q(x, y) ≥ 0 for all x ∈ R
n and y ∈ R if and only if q(x, 1) ≥ 0 for all x ∈ R

n. In matrix notation
this means that

[
Q s
sT r

]

< 0 (B.4)

if and only if
[
x
1

]T [
Q s
sT r

] [
x
1

]

≥ 0 ∀x ∈ R
n. (B.5)

We use a continuity argument to prove this equivalence. It is clear that (B.4) implies (B.5). Let
us show the other implication. Since q(x, 1) ≥ 0 for all x ∈ R

n, it follows that2

q(x, y) ≥ 0 ∀x ∈ R
n, y ∈ R, y 6= 0 (B.6)

It remains to prove that q(x, 0) = xTQx ≥ 0 for all x ∈ R
n. Let us assume that there exists

an x0 ∈ R
n such that xT

0Qx0 < 0. Since the function g : R → R, g(y) = 2sTx0y + ry2 is
continuous and g(0) = 0 it follows that we can choose y0 arbitrarily close to 0 but y0 6= 0 such
that q(x0, y0) < 0. But this is a contradiction with (B.6). Note that the equivalence does not hold
if we replace the inequalities (B.4)– (B.5) with strict inequalities (since the continuity argument
cannot be used anymore).

The basic idea behind the S-procedure is trivial (see also [77]): let qk : R
n → R, k ∈ N[0,N ]

be real valued functions and consider the following two conditions
2We can divide q(x, y) by y and by redefining x/y as x we obtain q(x, 1).
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C1 : q0(x) ≥ 0 for all x ∈ F , where F = {x ∈ R
n : qk(x) ≥ 0 ∀k ∈ N[1,N ]}

C2 : There exist scalars λk ≥ 0 for all k ∈ N[1,N ] such that q0(x) −
∑N

k=1 λkqk(x) ≥ 0 for all
x ∈ R

n.

It is clear that C2 implies C1. Therefore, the condition C1 is relaxed3 to a more conservative
condition C2. When qk are quadratic functions condition C2 can be recast as an LMI. Indeed, we
consider

qk(x) = xTQkx+ 2sT
k x+ rk,

where Qk ∈ S
n, sk ∈ R

n and rk ∈ R for all k ∈ N[0,N ]. If the functions qk are non-convex,
then C1 reduces at checking if the minimum of a non-convex function over a non-convex set is
nonnegative (a NP hard problem in general). But, condition C2 reduces at solving an LMI (a
convex optimization problem). Indeed, C2 can be written equivalently as: there exist λk ≥ 0 for
all k ∈ N[1,N ] such that

[
x
1

]T [
Q0 +

∑N
k=1 λkQk s0 +

∑N
k=1 λksk

sT
0 +

∑N
k=1 λks

T
k r0

∑N
k=1 λkrk

] [
x
1

]

≥ 0 ∀x ∈ R
n.

or in matrix notation (using the equivalence (B.4)– (B.5)) as: there exists λk ≥ 0 for all k ∈ N[1,N ]

such that
[
Q0 +

∑N
k=1 λkQk s0 +

∑N
k=1 λksk

sT
0 +

∑N
k=1 λks

T
k r0 +

∑N
k=1 λkrk

]

< 0.

It is well known [77] that for N = 1 and quadratic functions q0 and q1 such that there exists
an x0 ∈ R

n satisfying4 q1(x0) > 0 the S-procedure is exact (i.e. there is no conservatism by
replacing condition C1 by condition C2).

It often happens (see Chapter 5) that we require strict inequality for q0. In that case the
following implication holds:

C1′ : q0(x) > 0 for all x ∈ F , x 6= 0, where F = {x ∈ R
n : qk(x) ≥ 0 ∀k ∈ N[1,N ]}

C2′ : There exist scalars λk ≥ 0 for all k ∈ N[1,N ] such that q0(x) −
∑N

k=1 λkqk(x) > 0 for all
x ∈ R

n, x 6= 0.

Then, C2′ implies C1′. Moreover, the S-procedure is exact (i.e. C1′ is equivalent to C2′) provided
that N = 1, q0(x) = xTQ0x, q1(x) = xTQ1x and there exists an x0 ∈ R

n such that q1(x0) > 0.
The reason for requiring that q0, q1 contain only quadratic terms is clear since the equivalence
(B.4)–(B.5) does not hold for strict inequalities, as we mentioned before.

B.4 Elimination lemma
Given a matrix S ∈ R

n×m then the kernel of S is defined as

ker(S) = {x ∈ R
m : Sx = 0}

and the column space of S is defined as the image of S, i.e.

Im(S) = {Sx : x ∈ R
m}.

3Note that the S-procedure is a consequence of Lagrange duality [25].
4This is similar to Slater’s constraint qualification from Lagrange duality.
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Let as assume that the rank of S is r. The orthogonal complement of S is the matrix S⊥ ∈
R

(n−r)×n such that S⊥S = 0 and S⊥S⊥,T � 0. Note that such a matrix S⊥ exists if and only if
S has linearly dependent rows (i.e. r < n). It is known [72] that the orthogonal complement of
the column space of S is the null space of ST . We give here a simple version of the elimination
lemma. Given a symmetric matrix Q ∈ S

n, the following two relations are equivalent:

(i) S⊥QS⊥,T ≺ 0
(ii) Q ≺ λ0 SS

T for some λ0 ∈ R.
(B.7)

B.5 Bilinear matrix inequalities
A bilinear matrix inequality (BMI) is an expression of the form

Q0 +
m∑

i=1

xiQi +
m∑

i,j=1

xixjQij < 0, (B.8)

where

• x = [x1 · · · xm]T ∈ R
m are the decision variables

• Q0, Qi, Qij ∈ S
n for all i, j ∈ N[1,m].

A BMI can be formulated as a non-convex optimization problem:

inf
x
{cTx : Q0 +

m∑

i=1

xiQi +
m∑

i,j=1

xixjQij < 0},

which, in general, is an NP-hard problem.



Appendix C

Lyapunov stability

We summarize some basic results on Lyapunov stability. Our presentation here follows a similar
approach as in [146, 165], but we try to be as general as possible.

C.1 Lyapunov stability for general nonlinear systems
We consider the autonomous discrete-time system

x(k + 1) = f(x(k)), (C.1)

where f : R
n → R

n satisfying f(0) = 0 (i.e. the origin is an equilibrium point for (C.1)). Let
φ(k;x) denote the solution of (C.1) at step k when the initial state at step 0 is x. In the sequel the
symbol ‖ · ‖ denotes a norm on R

n.
We now introduce the so-called K functions: a continuous function α : R+ → R+ is said to

be a K function if: (1) α(0) = 0, (2) α(z) > 0 for all z > 0, and (3) α is strictly increasing.
Recall the definition of a positively invariant (PI) set given in Section 2.3.2: the setX is PI set

for the dynamic system (C.1) if every system trajectory which starts from a point in X remains
in X for all future times. In other words f(X ) ⊆ X . An example of such a set for the system
(C.1) is the zero solution X = {0}.

We now give the definition of stability in terms of Lyapunov:

Definition C.1.1 The origin is stable with respect to the system (C.1) if for any ε > 0 there exists
a δ > 0 (depending on ε) such that ‖x‖ ≤ δ implies ‖φ(k;x)‖ ≤ ε for all k ≥ 0.

If limk→∞ φ(k;x) = 0 for all x ∈ X , then the origin is asymptotically attractive with respect
to the system (C.1) with a region of attraction X .

When both conditions are satisfied we refer to the origin as asymptotically stable with respect
to the system (C.1) with a region of attraction X . ♦

Note that stability implies automatically that f should be continuous at the origin.

Theorem C.1.2 Let X be a bounded PI set for the system (C.1) containing the origin in its
interior. Then, the origin is stable with respect to the system (C.1) if and only if there exists a
function V : R

n → R such that

(i): V (0) = 0, V continuous at the origin,

(ii): V (x) ≥ α(‖x‖) for all x ∈ X , where α is a K function,
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(iii): V (f(x))− V (x) ≤ 0 for all x ∈ X .

Proof : (Sufficiency) Let ε > 0. Since V is continuous at the origin, there exists a δ > 0 such
that for any x satisfying ‖x‖ ≤ δ we have:

V (x) ≤ α(ε).

Moreover, since X contains the origin in its interior, we can choose δ such that the ball {x ∈
R

n : ‖x‖ ≤ δ} ⊆ X . Suppose there exists an x0 satisfying ‖x0‖ ≤ δ and k0 a finite index such
that:

‖φ(k0;x0)‖ = ε′ > ε.

Since V is decreasing along the trajectories starting in X and α is a strictly increasing function,
the following inequalities can be deduced:

α(ε) < α(ε′) ≤ V (φ(k0;x0)) ≤ V (x0) ≤ α(ε)

which is a contradiction.
(Necessity) For any x ∈ R

n we define

V (x) = sup
k≥0
{‖φ(k;x)‖}.

We show that V defined above satisfies conditions (i)–(iii). First, it is clear that V (0) = 0
(since 0 = f(0)) and V is continuous at the origin (since the system (C.1) is stable). Second,
V (x) ≥ ‖x‖ and thus we can choose the K function α as α(y) = y. Third, for any x ∈ X ,
V (x) is finite since X is a bounded PI set and thus

V (f(x))− V (x) = sup
k≥1
{‖φ(k;x)‖} − sup

k≥0
{‖φ(k;x)‖} ≤ 0

♦

Definition C.1.3 The function V satisfying the conditions (i)–(iii) from Theorem C.1.2 is called
a Lyapunov function.

The following corollary, which is a simple consequence of Theorem C.1.2, provides sufficient
conditions for asymptotic stability:

Corollary C.1.4 Let X be a PI set for the system (C.1) containing the origin in its interior.
Assume that there exists a function V : R

n → R such that

(i): V (0) = 0, V continuous at the origin,

(ii): V (x) ≥ α(‖x‖) for all x ∈ X , where α is a K function,

(iii’): V (f(x))− V (x) ≤ −β(‖x‖) for all x ∈ X , where β is a K function.

Then the origin is asymptotically stable with respect to the system (C.1) with a region of attraction
X .
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Proof : Stability follows from Theorem C.1.2. Note that for proving sufficiency in Theorem
C.1.2 we do not need X to be a bounded set. It remains to prove attractiveness. Let us note that
V is bounded from below by 0, i.e. V (x) ≥ α(‖x‖) ≥ 0. Moreover, from (iii’) it follows that
V decreases along the trajectories starting in X . We conclude that for all x ∈ X the sequence
{V (φ(k;x))}k≥0 is convergent:

lim
k→∞

V (φ(k;x)) = V ∗(x),

where V ∗(x) is a nonnegative but finite constant. It follows that

lim
k→∞

V (φ(k;x))− V (φ(k + 1;x)) = 0 ∀x ∈ X .

On the other hand, we have:

0 ≤ β(‖φ(k;x)‖) ≤ V (φ(k;x))− V (φ(k + 1;x)) ∀x ∈ X .

We conclude that
lim
k→∞

β(‖φ(k;x)‖) = 0 ∀x ∈ X .

From the definition of a K function it follows that

lim
k→∞

φ(k;x) = 0 ∀x ∈ X .

This concludes our proof. ♦

It is important to note that we require for the Lyapunov function V to be continuous only
at the origin and not on the entire set X as it is necessary in the continuous time case. This
requirement has proved to be crucial in our results on stability for PWA systems.
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Notation

Here we list some of the symbols and acronyms that occur frequently in this thesis and with
which the reader might not be familiar.

List of Symbols

Sets
∅ empty set
|X| cardinality of the set X
X̄ closure of the set X
int(X) interior of the set X
Z \X complement of X contained in Z: Z \X := {x ∈ Z : x 6∈ X}
X ⊆ Z X is a subset of Z
X ⊂ Z X is a proper subset of Z
R set of real numbers
R+ set of nonnegative real numbers
N set of nonnegative integers: N = {0, 1, 2, . . .}
N[k,l] set of integers: N[k,l] = {k, k + 1, . . . , l} 14
Ok kth iteration in the computation of positively invariant sets 80
I,J finite index sets 10
Xf terminal set 19
N prediction horizon 19
ΠN(x) set of feasible input sequences for the initial state x 20
XN set of feasible initial states: XN = {x : ΠN(x) 6= ∅} 20
bxc largest integer less than or equal to x 111

Functions
f :D → T function with domain D and co-domain T
domf effective domain of the function f 10
Fmps set of max-plus-scaling functions 34
F+

mps set of max-plus-nonnegative-scaling functions 34
` stage cost 20
VN cost function 20
Vf terminal cost 20
u control sequence 20
w disturbance sequence 25
φ(k;x,u) the state solution of a dynamic system at step k, when the initial state is

x and the control sequence u is applied
19

199



200 Notation

Matrices and Vectors
R

m×n set of m by n matrices with real entries
R

n set of real column vectors with n components: R
n = R

n×1

AT transpose of the matrix A
I identity matrix of appropriate dimensions
0 zero matrix of appropriate dimensions
ai ith component of the vector a
Aij entry of the matrix A on the ith row and the jth column
Ai. ith row of the matrix A
A.j jth column of the matrix A
‖A‖ induced norm of the matrix A
‖x‖ norm of the vector x
x ≥ y inequality over the nonnegative orthant R

n
+, i.e. xi ≥ yi ∀i ∈ N[1,n]

H ≥ 0 nonnegative matrix, i.e. Hij ≥ 0 ∀i, j 33
Q < 0 inequality over the semidefinite cone, i.e. xTQx ≥ 0 ∀x 118

Max-Plus Algebra
⊕ max-plus addition: x⊕ y = max{x, y} 14
⊗ max-plus multiplication: x⊗ y = x+ y 14
ε zero element for ⊗: ε = −∞ 14

E max-plus identity matrix of appropriate dimensions 30
ε max-plus zero matrix of appropriate dimensions 30

A⊗
k

kth max-plus power of the matrix A 30
Rε Rε = R ∪ {−∞} 14
⊕′ min-plus operator: x⊕′ y = min{x, y} 31
A∗ A∗ := limk→∞E ⊕ A⊕ · · · ⊕ A⊗

k 30
λ∗ the largest max-plus eigenvalue of the matrix A 31

Miscellaneous
(
n

k

)

binomial coefficient:
(
n

k

)

=
n!

(n− k)! k! 111

We use 3 to indicate the end of a proof or an example, etc.

Remark: The notation we use for the max-plus algebraic symbols corresponds to a large extent
to that of [4], which is one of the basic references in the field of the max-plus algebra. Never-
theless, there are a few differences that are mainly caused by the fact that we use concepts from
both conventional algebra and max-plus algebra in this thesis. The main differences are:

• We use A⊗
r instead of Ar to denote the max-algebraic power. Furthermore, we never omit

the ⊕,⊗ signs in all equations.

• The operations ‘+’ and ‘·’ denote the conventional summation and multiplication operators
(only the conventional multiplication operator is omitted).
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Acronyms
DES Discrete event system 13
DP Dynamic programming 52
LMIs Linear matrix inequalities 115
MMPS Max-min-plus-scaling 4
MPC Model predictive control 3
MPL Max-plus-linear 4
PWA Piecewise affine 4
PWL Piecewise linear 8
PI Positively invariant 23
RPI Robustly positively invariant 87





Summary

Model Predictive Control for Max-Plus-Linear and
Piecewise Affine Systems

Increasing demands on modern technology have caused a significant interest in the study of
nonlinear dynamical systems that are capable of exhibiting continuous dynamics and/or discrete
event dynamics: hybrid systems and discrete event systems (DES). This type of systems abound
in nature and they are not limited to engineering systems with logic controllers but they also
arise naturally in manufacturing, planning, chemistry, biology, etc. The need for efficiency,
safety, reliability makes it necessary to design controllers that ensure these systems meet certain
requirements. Even though the academic community and industry recognize that a large number
of engineering systems are hybrid or evolve in time by occurrence of events, these systems have
been traditionally analyzed and designed using a purely continuous or a purely discrete formula-
tion. The explanation for this fact is that only recently a theory is taking shape that captures the
interaction between the continuous dynamics and the discrete events.

This Ph.D. thesis considers the development of new analysis and control techniques for spe-
cial classes of hybrid systems and DES. Two particular classes of hybrid systems (piecewise
affine (PWA) systems and max-min-plus-scaling (MMPS) systems), and two particular classes
of DES (max-plus-linear (MPL) systems and switching MPL systems) are studied. Using the op-
timal control framework, model predictive control (MPC) schemes are designed that make use of
the special structure of these systems and that incorporate conditions to guarantee a priori closed-
loop asymptotic stability. Stability is obtained by deriving bounds on the tuning parameters or by
imposing a terminal set constraint and using an appropriate terminal cost. Since the main topic
of this thesis is optimal control and its receding horizon implementation called MPC, the thesis
starts with an overview of optimal control, MPC, and some possible solutions to the main issues
in MPC for general nonlinear systems (feasibility, robustness, and closed-loop stability).

Optimal control and MPC for MPL systems
Classical optimal control for MPL systems is based on two main ingredients, residuation theory
and input-output models, and they lead to a just-in-time controller. Besides being based on an
input-output model, in general the residuation approach is not able to cope with input and output
constraints, the initial state is not included explicitly in the optimization problem, and stability
cannot be guaranteed a priori.

To overcome these limitations new optimal control methods based on state-space models
have been derived. Because MPL systems are nonlinear, non-convexity is clearly a problem
if one seeks to develop efficient methods for solving optimal control problems for MPL sys-
tems. However, by employing recent results in polyhedral algebra and multi-parametric linear
programming, we provide sufficient conditions that allow to preserve convexity of the optimal
value function and its domain, and thus to compute optimal controllers for MPL systems in an
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efficient way. Moreover, in the unconstrained case we show that for an appropriate cost function
the just-in-time controller can be recovered and that it is also physically feasible compared to
residuation-based just-in-time controller, which sometimes may be physically infeasible.

We also introduce the notion of Lyapunov stability for MPL systems, and we show connec-
tions with the classical definition of stability for DES in terms of boundedness of the buffer levels.
Furthermore, we design new MPC strategies that guarantee a priori asymptotic stability for the
corresponding closed-loop system. A similar finite-horizon MPC approach as for conventional,
time-driven systems is followed. However, the extension from time-driven systems to discrete
event MPL systems is not trivial since many concepts from system theory have to be adapted
adequately. In particular, we introduce the notion of positively invariant set for a normalized
MPL system, and the main properties are derived for such a set. The stability results are obtained
either by deriving bounds on the tuning parameters or by using a terminal cost and a terminal set
approach.

Min-max MPC for MMPS systems
MMPS systems represent a more general framework for modeling DES (e.g. MPL systems are a
particular subclass), but they are also equivalent to some relevant subclasses of hybrid systems. In
the literature on robust control for hybrid systems, a min-max framework and dynamic program-
ming are used to derive a robust controller, in particular a feedback min-max MPC. However, the
dynamic programming solution may be computationally intensive and is not able to cope with
variable constraints on inputs, states and disturbances.

We present two alternative approaches to design a min-max MPC for uncertain MMPS sys-
tems that remove some of these drawbacks, depending on the nature of the input over which it
is optimized: open-loop input sequences and disturbance feedback policies. We show that the
corresponding min-max control problems can be recast as a finite sequence of linear programs or
can be solved using an iterative procedure based on solving a finite sequence of linear programs.

MPC for PWA systems
Most of the literature on stability of the closed-loop MPC for PWA systems uses a terminal
equality constraint approach. An Achilles’ heel in this approach is that we need a long prediction
horizon in order to guarantee feasibility of the optimization problem, which leads to an increased
computational burden.

We extend the MPC formulation for PWA systems with a terminal equality constraint to a
new MPC strategy based on a terminal inequality constraint corresponding to the piecewise linear
dynamics. We use an upper bound on the infinite-horizon quadratic cost as a terminal cost and
we also construct a convex terminal set, taking into account the structure of the system. Based on
these two ingredients we derive an MPC scheme for PWA systems and we prove asymptotic sta-
bility for the closed-loop MPC. Despite the fact that the PWA system might be discontinuous, we
are able to prove that the optimal value function of the MPC optimization problem is continuous
at the origin and can serve as a Lyapunov function for the closed-loop system. We also derive an
algorithm for enlarging the terminal set based on backward procedure, which in particular also
provides a method to construct a polyhedral terminal set. Therefore, the drawback of the algo-
rithms based on recursive methods for constructing a positively invariant set, which theoretically
might require an infinite number of recursions, is overcome by this algorithm. By enlarging the
terminal set the prediction horizon can be chosen shorter and thus the computational complexity
decreases.

The robustification of the standard MPC via the addition of a robustness constraint is also
discussed. We present a new sufficient condition that enables us to preserve convexity of the
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state set evolution for an uncertain PWA system. Making use of this condition we propose a
state feedback min-max MPC scheme based on a dual-mode approach. We also derive the main
features of this robust MPC scheme, in particular robust stability.

We conclude the Ph.D. thesis with a summary of the main contributions and an outlook on
open problems and possible future research topics in the field.
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Samenvatting

Modelgebaseerd Voorspellend Regelen van
Max-Plus-Lineaire en Stuksgewijs-Affiene Systemen

De steeds stringenter wordende eisen ten aanzien van moderne technologie hebben een grote we-
tenschappelijke interesse gecreëerd in niet-lineaire dynamische systemen, die continue dynamica
en/of discrete-gebeurtenissen dynamica vertonen: zogenaamde hybride systemen en discrete-ge-
beurtenissystemen (DGS). Dit type van systemen komen veelvuldig voor in de natuur en zijn
niet alleen aanwezig in technische systemen met op logica gebaseerde regelaars, maar komen
ook naar voren in productieprocessen, planning, chemie, biologie, enz. De roep om efficiëntie,
veiligheid en betrouwbaarheid maakt het noodzakelijk om regelaars te ontwerpen die garanderen
dat deze systemen aan bepaalde eisen voldoen. Hoewel de academische wereld en de indu-
strie beide erkennen dat een groot aantal technische systemen verandert doorheen de tijd door
toedoen van discrete gebeurtenissen, wordt dit type systemen gewoonlijk geanalyseerd en ont-
worpen vanuit een puur continu, of juist een puur discreet perspectief. De reden hiervan is dat a
theorie die de interactie tussen continue en discrete gebeurtenissen kan vatten, pas sinds kort in
volle ontwikkeling is.

Dit proefschrift beschouwt de ontwikkeling van nieuwe analyse- en regelmethoden voor een
aantal specifieke klassen van hybride systemen en DGS. Twee klassen hybride systemen, met na-
me stuksgewijs-affiene (afgekort als PWA (piecewise affine)) systemen en max-min-plus-scaling
(MMPS) systemen, en twee specifieke klassen DGS, met name max-plus-lineaire (MPL) syste-
men en schakelende MPL systemen, worden hier onderzocht. Wij ontwikkelen methoden voor
modelgebaseerde voorspellende regeling (afgekort als MPC (model predictive control)) binnen
het kader van de optimale regeling. Deze MPC methoden houden expliciet rekening met de
specifieke structuur van deze systemen en bevatten condities die asymptotische stabiliteit van
de gesloten lus a priori garanderen. Stabiliteit wordt verkregen door het afleiden van grenzen
op de MPC-instelparameters, of door het opleggen van een eindpuntbeperking. Omdat optimale
regeling, en de verplaatsende-horizon implementatie ervan, d.w.z. MPC, de hoofdonderwerpen
van dit proefschrift zijn, start het proefschrift met een overzicht van optimale regeling, MPC en
enkele mogelijke oplossingen voor de belangrijke onderwerpen op het gebied van MPC voor ge-
nerieke niet-lineaire systemen zoals oplosbaarheid, robuustheid en stabiliteit van het gesloten-lus
systeem.

Optimale regeling en MPC voor MPL systemen
De klassieke optimale regeltheorie omvat twee componenten, met name residuatie-theorie en
ingangs-uitgangsmodellen. Beide componenten leiden tot een zogenaamde just-in-time regelaar.
Naast het feit dat de residuatie-theorie met ingangs-uitgangsmodellen werkt, is deze techniek niet
in staat om rekening te houden met beperkingen op de ingangs- en uitgangsvariabelen. Daarnaast
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wordt de begintoestand niet expliciet in het optimalisatieprobleem meegenomen en kan stabiliteit
niet a-priori worden gegarandeerd.

Om deze beperkingen te overwinnen zijn nieuwe optimale regelmethoden afgeleid die zijn
gebaseerd op toestandsruimte-modellen. Omdat MPL systemen niet-lineair zijn, is het gebrek
aan convexiteit een centraal aspect in de zoektocht naar efficiënte methoden voor het oplossen
van optimale regelproblemen voor deze systemen. Door toepassen van recente resultaten uit
de polyhedrale algebra en het multi-parametrisch programmeren, kunnen we echter voldoende
voorwaarden opstellen voor het behoud van convexiteit van de optimale-waarde functie en haar
domein, zodanig dat we op efficiënte wijze optimale regelaars voor MPL systeem kunnen uit-
rekenen. Daarnaast kunnen we, in het geval er geen beperkingen op de ingangen en uitgangen
aanwezig zijn, aantonen dat met een geschikte kostenfunctie een just-in-time regelaar kan wor-
den berekend, die ook fysisch realiseerbaar is, terwijl de op residuatie gebaseerde just-in-time
regelaar daarentegen niet altijd fysisch realiseerbaar is.

We introduceren ook het begrip Lyapunov stabiliteit voor MPL systemen en laten we de
relatie zien tot de klassieke definitie van stabiliteit voor DGS in termen van de begrenzing van
de bufferniveaus. Daarnaast ontwerpen we nieuwe MPC strategieën met een a-priori garantie
voor stabiliteit van het gesloten-lus systeem. Daarbij wordt een soortgelijke aanpak gekozen als
voor conventionele continue-dynamica systemen. Echter, de uitbreiding van continue dynamica
naar een discrete-gebeurtenissen dynamica is geen triviale kwestie, omdat tal van concepten uit
de systeemtheorie op adequate wijze aangepast dienen te worden. In het bijzonder introduceren
we het concept van de positief-invariante verzameling voor een genormaliseerd MPL systeem en
worden de eigenschappen van dergelijke verzamelingen afgeleid. De resultaten inzake stabiliteit
kunnen worden verkregen door het afleiden van grenzen voor de MPC-instelparameters of door
het gebruiken van een aanpak gebaseerd op de kostenfunctie in het eindpunt of op een eindpunt-
verzameling.

Min-max MPC voor MMPS systemen
MMPS systemen vertegenwoordigen een meer algemeen raamwerk voor het modeleren van DGS
(MPL systemen zijn bijvoorbeeld een bijzondere subcategorie binnen de MMPS systemen), maar
ze zijn ook equivalent aan sommige relevante subklassen van hybride systemen. In de literatuur
over robuust regelen van hybride systemen, worden een min-max aanpak en dynamisch pro-
grammeren toegepast om een robuuste regelaar af te leiden, in het bijzonder een min-max MPC
regelaar gebaseerd op terugkoppeling. De oplosmethode die gebruik maakt van dynamisch pro-
grammeren kan echter leiden tot aanzienlijke rekentijden en kan daarnaast geen rekening houden
met variabele grenzen op de ingangsvariabelen, toestanden en verstoringen.

Wij stellen twee alternatieve manieren voor om een robuuste MPC regelaar te ontwerpen voor
onzekere MMPS systemen die enkele van de genoemde bezwaren oplossen, afhankelijk van het
type ingangssignaal dat geoptimaliseerd wordt: open-lus ingangssignalen en het terugkoppelen
van verstoringen. We laten zien dat het overeenkomstige min-max regelprobleem kan worden
vertaald in een eindige reeks van lineaire-programmeringsproblemen, of dat het probleem kan
worden opgelost door gebruik te maken van een iteratieve aanpak die is gebaseerd op een eindige
reeks lineaire-programmeringsproblemen.

MPC voor PWA systemen
Het overgrote deel van de literatuur met betrekking tot de stabiliteit van gesloten-lus MPC voor
PWA systemen maakt gebruik van een strikte eindpuntbeperking. De Achilleshiel van deze aan-
pak is dat een lange horizon voor de voorspelling nodig is om de realiseerbaarheid van het regel-
probleem te kunnen garanderen, hetgeen leidt tot een groei van de rekentijd.
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Wij breiden de formulering van het MPC probleem voor PWA op basis van een eindpunt-
beperking uit naar een nieuwe aanpak, die is gebaseerd op een eindpuntongelijkheid die over-
eenstemt met de stuksgewijs-lineaire dynamica. We maken daarbij gebruik van een bovengrens
op de oneindige-horizon kwadratische kost als eindpuntkostenfunctie. We construeren eveneens
een convexe eindpuntverzameling en houden daarbij rekening met de structuur van het systeem.
Met deze twee ingrediënten leiden we een MPC aanpak af voor PWA systemen en bewijzen we
de stabiliteit van het gesloten-lus systeem. Ondanks het feit dat het PWA systeem discontinu
kan zijn, kunnen we bewijzen dat de optimale-waarde functie van het systeem continu is in de
oorsprong en daarmee kan dienen als een Lyapunov functie voor het gesloten-lus systeem. Daar-
naast leiden we een algoritme af voor het vergroten van de eindpuntverzameling gebaseerd op
een achterwaartse procedure, die op haar beurt weer een methode biedt om een polyhedrale eind-
puntverzameling te construeren. Dit algoritme lost het probleem op van de recursieve methoden
voor het construeren van een positief-invariante verzameling, die theoretisch gezien oneindig
veel recursies kunnen vergen. Door het vergroten van de eindpuntverzameling kan de voorspel-
lingshorizon korter worden gekozen en daalt bijgevolg de complexiteit van de berekeningen.

Het robuust maken van standaard MPC-technieken door de toevoeging van een robuustheids-
conditie is ook onderwerp van dit proefschrift. We presenteren een nieuwe voldoende voorwaar-
de die het mogelijk maakt om de convexiteit van de evolutie van de verzameling van toestanden
voor een onzeker PWA systeem te behouden. Door gebruik te maken van deze voorwaarde
kunnen we een min-max MPC aanpak gebaseerd op toestandsterugkoppeling presenteren die is
gebruik maakt van een twee-mode benadering. Tevens leiden we de belangrijkste eigenschappen
van deze robuuste MPC aanpak af, in het bijzonder de robuuste stabiliteit.

Het proefschrift wordt afgesloten met een samenvatting van de belangrijkste bijdragen en een
blik voorwaarts op open problemen en toekomstige onderzoeksonderwerpen in het gebied.
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