
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Combining Micro-Blogging
and IDE Interactions

to Support Developers in their Quests

Anja Guzzi, Martin Pinzger and Arie van Deursen

Report TUD-SERG-2010-021

SERG



TUD-SERG-2010-021

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note:

c© copyright 2010, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Combining Micro-Blogging and IDE Interactions
to Support Developers in their Quests

Anja Guzzi Martin Pinzger Arie van Deursen
Delft University of Technology – The Netherlands
{a.guzzi, m.pinzger, arie.vandeursen}@tudelft.nl

Abstract

Software engineers spend a considerable amount of time on program
comprehension. Although vendors of Integrated Development Environments
(IDEs) and analysis tools address this challenge, current support for storing
and sharing program comprehension knowledge is limited. As a conse-
quence, developers have to go through the time-consuming programing
understanding phase multiple times, instead of recalling the knowledge from
their past or other’s program comprehension activities.

In this paper, we aim at making the knowledge gained during the
program comprehension process accessible, by combining two sources of
information. Inspired by the success of Twitter, we first of all encourage
developers to micro-blog about their activities, telling their team mates
(as well as themselves) what they are working on. Second, we combine
these short messages with automatically collected interaction data on, e.g.,
classes, methods, and work products inspected or modified by developers.
We present the underlying approach, as well as its client-server implemen-
tation in an Eclipse plugin called James. We conduct a first evaluation of its
effectiveness, assessing the nature and usefulness of the collected messages,
as well as the added benefit of combining them with interaction data.

1. Introduction

In order to be able to conduct a software maintenance task,
software developers need to build up a substantial amount
of knowledge about the software being changed [1]. For ex-
ample, developers need to understand dependencies between
classes, the impact of changes to particular methods, or the
ways in which two services interact.

Once the maintenance task is completed, most of the
knowledge built up during the process of conducting the
task will “disappear”: the only permanent result is the
modified software, and, optionally, some updates made to
the requirements or (UML) design documentation.

This is an unfortunate situation, since the knowledge built
up this way may be valuabe for future maintenance tasks,
possibly conducted by different developers. Therefore, in
this paper we seek ways to avoid this loss of precious
knowledge built up during software maintenance activities.

A solution that would require the developer to extensively
document her findings while working on the system is
likely to fail: this would slow down the completion of the
maintenance task substantially, which is usually unaccetable.
Therefore, we must seek for light-weight, unobtrusive forms
of information recording. In this paper, we will investigate
two such forms, micro-blogging and IDE interaction collec-
tion, and study their combination in particular.

In Web 2.0 applications such as Twitter, Facebook, and
LinkedIn, users provide status updates to their friends and
followers, informing them about what they are doing. These
applications are tremendously successful, and one of the
questions that we try to answer in this paper is to what
extent similar forms of micro-blogging can be used to update
team members in a software development project about what
is happening in the project. To that end we propose to
extend the Integrated Development Environment (IDE) with
a (Twitter-like) micro-blogging facility.

Furthermore, we propose to combine the status updates
provided by developers with interaction data automatically
collected from the IDE. Thus, one could say that we add
“location awareness” to the messages: we record which
classes, methods, packages, etc. the developer is working
on and connect her activities to the status updates she is
providing.

In this paper, we propose a way to collect user actions,
group them into cohesive interactions, and combine them
with status updates into what we call a quest (Section 2).
We describe a tool we built called James, which includes
an Eclipse plugin allowing developers to update their status,
view status updates, and which collects IDE events triggered
by the developer (Section 3). Furthermore, we conduct an
explorative pre-experimental user study (Section 4), in which
we evaluate (1) to what extent developers are willing to
provide status updates; (2) the sort of information they
typically provide in status updates; and (3) the quality
of the connections between messages and interactions as
established by our algorithms.

Natural next steps for our work are to share the knowledge
thus collected with among all the team mebmers, to integrate
other elements of social networks into the IDE, such as the
ability to (un)follow team mates, specific projects, packages,
or classes, and the adoption of recommender systems based
on interaction and micro-blogging histories [2]. We briefly
discuss these subsequent steps of our work in Section 5.
The focus of the present paper is on the messages them
selves and their connections to IDE interactions, providing a
necessary first step towards such a collaborative development
environment.

SERG Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests

TUD-SERG-2010-021 1



James Core

navigation 

data

status 

messages

status 

messages 

collector

interaction 

traces builder

knowledge 
builder

DB

Visualizations

Recommenders

Statistics

...

Figure 1. Repository merging status updates and navigation
data

2. Approach: Quest = Message + Interactions

In this paper we aim at combining messages and IDE
interactions in order to record knowledge built up during
software maintenance tasks. We discuss how we can collect
and group interaction data, and how we expect developers
to report on their status.

The overall approach is illustrated in Figure 1. Developers
interact with their IDE as they normally do, resulting in nav-
igation data collected as interaction traces by an IDE plugin.
Furthmore, developer provide status messages also collected
by the IDE. Both data sources are merged into quests stored
in the repository. The stored data can subsequently be used
in visualizations, recommendations, and other presentation
forms helpful to the developer. The schema used in the
repository is illustrated in Figure 2.

2.1. Capturing IDE Interactions

We want to capture a fine granularity model of how
developers interact with the IDE. Our minimal independent
unit capturing user interaction within the environment (the
IDE) is called Action. Actions refer to IDE features that can
be executed by the user , such as opening a file, changing tab,
selecting text, performing an editing operation, closing a file,
running a test case, etc. As illustrated in Figure 2, for every
action detected, we record the developer who performed it,
the IDE entity involved (i.e., Java file X , Package Explorer
view, etc.), the type of action (i.e., opening/closing of a view,
editing, etc.) and the date and time at which the action has
been performed.

Figure 3 shows a time line of actions a developer performs
interacting with an IDE, while working on an ordinary task.
On the time line we draw a vertical mark for every action
detected, with more recent actions on the right. Actions
are automatically collected and then processed. We group
actions into interactions, according to their time proximity.

Action
actionType: Enum
timePerformed: Time

User

IDE Entity
viewName: String
file: String
...

1 1..*
triggers

0..*

1

Interaction0..*

0..1

0..n

0..1

conductedIn

Quest

Message
test: String
timeWritten: Time

1

0..*

writes

1

1

goal

Context
name: String

0..1
0..*

0..1

0..*

Figure 2. Data model used in the repository

t

t

t

Figure 3. Example of user actions within the IDE on a timeline.

Actions at a short time distance apart from each other will
be part of a single interaction, modeling the fact that people
take a few instants to decide on what to focus on. As an
example: if a user closes a number of files one after the other
(which is recorded as three distinct actions), we consider this
a single interaction with the IDE (which would be described
as “closing files X, Y, Z”). Our heuristics is based on the
time elapsed between one action and the next one. After
the initial action, every other action in the same interaction
has been performed within x ≤ ∆t from the previous one.
From observations during our initial experiments, we set
∆t = 3 seconds.

t

t

t

Figure 4. Example of 5 user interaction with the IDE on a
timeline.

As an exmaple, Figure 4 visually depicts the grouping the
actions previously presented into five interactions. We can
also notice that single interactions can differ from each other
by various factors and degrees. Some interactions group
few actions, while some others are bigger, grouping more
actions. Moreover the distance between one action and the
other in the same set can vary, however it is never greater
than ∆t = 3s.

2.2. Micro-blogging within the IDE

Users are requested to explicitly tell what they are doing
in the form of a short, Twitter-like, message. Developers are
encouraged to contribute in first person, discussing the things
they care about in their code. For every message, we record
the developer who wrote it and the date and time at which the

Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests SERG

2 TUD-SERG-2010-021



message has been written. To encourage developers to keep
their messages short, we propose a (Twitter-like) message
length indicator, suggesting a maximum message length of
140 characters.

?

James Core

status messages

!
!

?

!

!

James Core

status messages

!

!

Figure 5. Developers sending status messages

Figure 5 depicts the micro-blogging scenario with a team
of developers. Developers send a series of short status
messages, in which they can express questions, remarks
or any other information related to the software project.
Status messages are collected and then analyzed and stored
into a central database. The analysis of messages includes
their identification into categories (i.e., questions vs answers)
and the identification of keywords and concepts from the
message.

2.3. Quests: building a knowledge base

In our approach we combine a micro-blogging message
and series of interactions into a quest. We refer to the
message as the quest goal, and the interactions as the quest
trace. Messages and interactions are furthermore connected
by the context: an identification of the current project or
maintenance task the developer is working on.

Figure 6 depicts how quests act as “containers” for a series
of interactions. Micro-blogging messages are shown as taller
lines with respect to actions, while the domain of a quest is
represented as a rectangle.

t

t

t

Figure 6. An example of quests on a timeline.

3. Implementation

We imlemented the proposed approach in a tool named
James. James follows a client-server architecture displayed
in Figure 7. Our current implementation provides an Eclipse
client, in the form of the James plugin. In the future
we anticipate clients for, e.g., IBM Jazz, Microsoft Visual

James (Server)

James for 

Eclipse James for 

Jazz

James for 

VisualStudio James 

web client

James (Client)

implements

interactions

Model

DB

micro-blogging

recommendations

analysis

Visualizations Statistics

Reccomenders

Figure 7. Architecture of James

Studio, and a fully web-based client. Note that our approach
is language-independent, and thus can be applied to any IDE.

The Eclipse James plugin currently simply allows users to
update their quest goal, and collects navigation information
through the use of listeners. The Eclipse view provided for
entering messages and for following the messages sent so
far is displayed in Figure 8. Both micro-blogging messages
and actions are sent to the server in order to be analyzed
and stored.

Figure 8. James Client for Eclipse

The James server provides a (MySQL) database and
functionality for analyzing and combining messages and
interactions from multiple developers using a James client
(i.e., the James Eclipse plugin). The schema adopted is based
on Figure 2. The current prototype is primarily intended for
gaining experience with the type of messages developers
are willing and able to send, and how these relate to actual
interactions. With the results of the present paper in place,
our next project will be to extend James with functionality
for, e.g., recommendations and visualizations based on the
collected information.

4. Evaluation

We conducted an explorative study to evaluate our ap-
proach. Developers installed the James Eclipse plug-in,
which collected their quest messages and IDE interactions.
Our evaluation involved 7 developers working in 5 different
settings. We manually analyzed the gathered messages to

SERG Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests

TUD-SERG-2010-021 3



identify and understand developers habits in updating status
messages while working. In the analysis of the gathered
data, we focused on understanding whether and to which
degree our approach has a valid foundation. We analyzed
quest messages from all the involved developers to evaluate
their willingness to share their status and we categorize
messages according to information they provide. We first
present statistical information, such as frequency and length,
on the collected messages and interactions. Secondly, we
report on initial findings from our manual examination of
quests.Furthermore, we exemplify the potential benefit of
the link between messages and interaction traces.

4.1. Evaluation Setup

We distinguish two group of users: Group I used James
while performing their typical working activities (both
in academic and industrial settings), while developers in
Group II worked on a given task on a small sized (4,500
lines of code) Java system.

The set of software systems on which Group I worked
comprise:
• an industrial project, consisting of approximately

200,000 lines of code;
• Crawljax1: an open source Java tool for automatically

crawling and testing Ajax web applications. The Crawl-
jax core consists of approximately 19,000 lines of Java
code;

• JPacman, a 4,000 lines of Java code academic project;
• an academic software project to profile plug-ins exe-

cutions running in the Eclipse workspace.
Developers working on these projects used James during

their typical activities during two weeks, and shared the
database of collected messages and interactions with us.

The three developers in Group II had to perform a given
task on James itself (4,500 lines of Java code). The task
took approximately 4 hours. We provided a working version
of the system where quest messages entered by users are
directly shown in the view and then stored into a database.
The given task was: Implement the retrieval of messages
from the database. Messages from different users must be
properly displayed in the James view.. We also provided a
mock class with some comments as guideline. In order to
implement the requested feature, knowledge about part of
the system was needed (database connection, messaging..).
Every user had good high level knowledge of the underlying
model and of the functionality provided by the artifact.

We deliberately chose James as a artifact for our experi-
ment. A very good knowledge of the underlying code was
fundamental to asses the quality of the information provided
by messages and interactions during the analysis of the
collected data.

1. http://crawljax.com/

4.2. The Data Set

Table 1 reports on the total number of messages, interac-
tions and actions collected for each user during the whole
duration of the study.

user project # messages # interactions #actions
user 1 industrial 34 2,829 12,584
user 2 Crawljax 73 1,768 2,471
user 3 JPacman 66 478 763
user 4 academic 14 3,781 10,352
user A James 36 381 572
user B James 41 424 769
user C James 36 221 319
7 users 5 projects 300 9,882 27,830

Table 1. Data collected in our preliminary study

We manually examined the data about users to identify
development sessions. We consider a development session
as a period of time when the developer is working in a
continuous manner (i.e., with only short breaks). To separate
one session from the other we looked at the time differ-
ence between user’s messages and gaps between recorded
interactions. To distinguish between development sessions
as faithfully as possible, we used a threshold of 30 minutes,
and manually checked quest messages and relative traces
to better understand if the session was finished or not. For
Group I, the group of users working on their daily activities,
we identified a total of 32 sessions most of which count
between 3 and 9 messages. For Group II, there was a
larger number of messages (35-40) in a single continuous
development session. Distinguishing between development
sessions gives a different, finer, granularity of details about
consecutive quests, with respect to considering all the mes-
sages from one user as linearly consecutive. This has impact,
for example, on the analysis of the frequency of messages.

4.3. Data analysis

4.3.1. How often do developers change quest? More than
half of the messages have been set within 5 minutes from the
previous one. This evidence is shown in Figure 9, where it is
also possible to observe a particular trend in the distribution
of messages frequency.

0% 

25% 

50% 

75% 

0:05 0:10 0:15 0:20 0:25 0:30 1:00 >1:00 

Figure 9. Frequency of messages [h]

Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests SERG

4 TUD-SERG-2010-021



We can observe that messages that are not set within 5
minutes from the previous one, are likely to be set either
within a short (10 minutes) or after a longer (1 hour or
more) delay. Few messages or no messages have been set
with distance of 20-30 minutes one from the other. Further
inspection evidenced that such trend is common to both
groups of users, thus both when performing ordinary mainte-
nance work (either in an academic or industrial projects) and
when participating in the experiment. This indicates that the
frequency at which developers update their quest message is
probably independent from the setting in which they work.

More details and confidence on the distribution of mes-
sages frequency is given by the box-plot in Figure 10: half
of the quest messages have actually been set between 45
seconds and 12:30 minutes after the previous one, with most
of them being set after 3 minutes.

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 

fr
e
q
 t
o
ta

l 

Figure 10. Frequency of messages per session [h] (upper
value is 5:19)

The number and frequency of collected messages are a
first suggestion that users are willing to share what they are
doing.

4.3.2. What about interactions? We collected a total of
9,882 interactions, grouping more than 27 thousand actions
performed by developers. Analyzing interactions in the
context of the quest they belong to, we notice that most
quests count a handful of interactions. Figure 11 depicts the
frequency of the number of interactions per quest, taking
into account all the collected quests. We can observe that
more than half of the quests have less than 10 interactions
associated to them: 2% of quests count one interaction, 13%
count 2, 10% comprise 3 interactions. Of the remaining 75%
quests, the 31% count between 4 and 10 interactions, while
the remaining 43% more than 10.

0% 

10% 

20% 

30% 

40% 

5 10 15 20 25 30 35 40 45 50 >50 

tot 

Figure 11. Interactions per Quest [count]

Considering the frequency at which developers updated
their quest messages, we roughly collected 2.7 interaction

per minute (8 interactions every 3 minutes). Furthermore,
the large majority of interactions (66%) comprise only one
action.We also analyzed the total number of actions in one
quest. We observe that users exploit more than 10 features of
the IDE (leading to actions) in one minute (see Figure 12).

0 10 20 30 40 50 60 70 80 90 

Figure 12. Actions per Quest [count]

4.3.3. What do developers write in messages? Some users
are more prone to write a message as they are about to start
a task, while others are more inclined to write a message in
which they report the success/failure of what they have been
doing in the last minutes. Furthermore, some messages were
expressed in the form of questions. In a number of quests,
developers are “talking to themselves” in the micro-blogging
messages.

Categorization of messages We notice that we can dis-
tinguish quest messages expressing activities (i.e., what
they are going to do and what they did) and messages
commenting on (part of) the code. Some users also wrote
to do’s. We manually inspected the content of messages,
categorizing them between messages expressing: intentions
(“Now I am going to..”), ongoing activities (“I am..”) and
reports on a finished activity (“I just did...”), as well as
comments (“this is like so”) and to-do’s (“later I will need
to..”). Figure 13 visually describes the result we obtained
from such categorization. We can see that only a minor part
of messages does not fall into one of the proposed categories.

intention (future) 

33% 

ongoing activity 

23% 

report (past) 

21% 

comment 

16% 

todo 

6% 

remaining 

1% 
total 

intention 

(future) 

ongoing 

activity 

report (past) 

comment 

Figure 13. (About) what do developers write in messages?

We observe that 33% of the messages are about future,
21% concerns on the past activity, while 22% covers ongoing
activity, about which the status message has been updated
after the developer started working on her (sub)task. The

SERG Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests

TUD-SERG-2010-021 5



remaining of the messages is divided between comments
(16%), todo’s (6%) and other sentences.

By inspecting messages very close to each other (within
30 seconds), we can notice that quest messages as close to
each other as 30 seconds, are either directly correlated, with
the second message acting as “annotation” for the previous
quest message, or it is the case that the first message states
the end of the previous activity. An example of the first case
are the following messages: “so let’s check, whether the SQL
query works”, together with: “first figure out where the job
is invoked ;-)”. While “First run finished” followed by “now
switching to CrawlQueue” is an example of the later.

Keywords Some words occurring in messages, together with
the verb tense used, have been determinant to establish in
which category each message was falling into. We therefore
tried to identify a set of such keywords recurring in messages
from different users. It turns out that words such as: now,
going (to), test, seems, starting, checking, trying, etc. are
recurring in many messages and among different users.
Note that they can often be found directly at the start
of messages. Figure 14 illustrates the 20 most frequent
identified keywords in a word cloud2, which also displays
their frequency (as size of the words). Furthermore, two
users explicitly expressed to-do’s using an hash (#) in front
of the keyword “todo”, simulating hashtags in Twitter.

Figure 14. What keywords can we find in messages?

Content of Messages Content of messages in a development
session seem to be sufficient to have an idea of what the
developer have been working on during the session. As an
example, Figure 15 shows a word cloud with words (except
keywords) from messages set by user A, who worked on the
given task, implementing the retrieval of messages from a
database. To give a better feeling about the content of quest
messages set by developers, in Section 4.3.3 we present a
collection of messages in our data set.

Talking about code elements We observe that a fair share
(28%) of the collected messages mention a code element
(package, class, method or attribute). We can observe that
such messages mentioning code elements are distributed
across all the message categories and that the portion of

2. Images created by Wordle.net (http://www.wordle.net/).

Figure 15. Words most frequent in messages by User A.

quest messages mentioning classes, methods, etc. is inter-
estingly similar for every user. This fact, together with the
similarity in the frequency of messages, further suggest that
developers have similar habits when communicating (about)
what they are doing.

Messages length Regarding the length of messages, we
observe that more than half of the messages (58%) have
length between 20 and 80 characters, with an average of 54.5
character per message. On average, users wrote 8.6 words
per message. This indicate that the limit suggested by James
of 140 character per message is sufficient to express what
they are doing.

Examples of Messages Following, a subset of the messages
collected during our experiment:

1) “first figuring out how to connect to the server”
2) “testing to see the importance of the synchronized

statecompartor”
3) “Investigating failing error in JETsGenerator”
4) “Trying to figure out how to create a proper UUID

from an int in the database.”
5) “No real significant differences found between

CrawlQueue / SpeedQueue”,
6) “Finding out that ’blue’ actually means green here”
7) “seems that QuestMessageCapsule has all the info I

need to get the right fields out of my query”
8) “MoveTest.testApply actually only tests moving to-

wards an empty cell.”
9) “where is the code that is sending a message to the

database?”
10) “Quests should be kept into a sorted list. #todo”

4.3.4. How can quests support programming activities
in multi developer projects? We manually analyzed inter-
actions combined with a subset of the quest with messages
mentioning code elements, in particular class names. Our
finding is that most of those interactions involved navigation
of the mentioned class file. In particular, as we might
expect, when the message express an intention. Furthermore,
analyzing quests from users in Group II, we noticed that a
portion of the relative messages refers to common problems
faced by the developers.

We hypothesize that accessibility to the knowledge base
about the system could have helped (latter) developers in

Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests SERG

6 TUD-SERG-2010-021



their programming activity. To evaluate this hypothesis we
inspected interactions associated to quest goals with similar
content from developers in Group I. We report on 3 cases.

Case 1: Solution found by user B can be useful to user C.

User B: “quickly check how to iterate over a ResultSet”
User C: “Looking for an example how to use a resultset.”

Both users eventually inspected the same file before
setting a new quest message. This gives an insight into the
usefulness of interactions associated to messages, at least for
messages stating intentions and ongoing activities.

Case 2: user C has the information user A is looking for.

User C: “How do I turn a timestamp from SQL into a Java
timestamp?”

User A: “need to check online on how to include opera-
tions on the timestamps in the query (i.e., ≥)”

Interactions from user A does not include navigation to
any class file in the project. Her following quest messages
indicates that she found the wanted information after 10
minutes. On the other hand, user C has been inspecting the
code: in particular he has been browsing classes relative
to the quest object representation, eventually terminating
his journey on the class which contains an example SQL
query involving a time stamp. User C sets a new message
after 10 minutes, which suggests the issue was solved. The
Knowledge gained by user C during his quest could have
been “reused” by user A.

Case 3: Message from User A is the solution to the
struggling of User B.

User A: “I think startPlugin() and stopPlugin() are good
places to start/stop the job.” (Q5)

User B: “first figure out where the job is invoked ;-)” (Q6)
User B: “postponed starting - have to figure out first

where to start the job” (Q7, 16 minutes after Q6)

We can see that the answer to Q6 is directly embedded
in Q5. However, not having access to this information, user
B spent quite some time browsing class files in the project
before eventually reaching the same conclusion than user A
(2 minutes after setting Q7). Almost 20 minutes could have
been saved to user B by having access to the quest message
previously expressed in Q5 by user A.

5. Discussion

5.1. Summary of findings

The number, frequency and content of collected messages
indicate that developers are willing and incline to share what
they are doing by means of a short micro-blogging status

message, regardless from the setting in which they work.
Developers perform approximately 10 actions per minute,
which are grouped into 2-3 interactions. A new quest goal
is set, in most cases, every 5 minutes.

We categorized the content of messages into 5 categories
and that observe that one third of them express future
intentions. Status update referring to concluded and ongoing
activities each account for one fifth. Remaining messages
includes comments and todo’s. Roughly one third among all
the collected quest contain an explicit reference to a code
element (i.e., a class name) in their message.

We analyzed how messages connect to interactions and
we try to assess whether these connections are in principle
meaningful. By manually comparing quest goals expressed
in similar messages, we observe that quests provide infor-
mation that is meaningful to different developers working on
similar tasks, both in the associated traces and in the goal
themselves.

From the conducted exploratory evaluation, we can con-
clude that knowledge about the software being changed,
constantly built up by developers, can be captured in the
form of quests. Accessibility to this knowledge base can
support developers in their maintenance tasks.

5.2. Interpretation of our findings

Impact of message sharing on message frequency De-
velopers participating to our experiment updated their quest
message once every three minutes. This paper motivates the
usefulness of such status messages with other developers
within the same team. We wonder and plan to study to what
extent the sharing of messages between developers impacts
the messages frequency.

We hypothesize that the frequency of messages would
slightly decrease because a developer might “filter out” those
messages in which she mainly “talks to herself”. We will
evaluate this hypothesis by comparing the finding reported
in this paper with those obtained by the analysis of messages
from future experiments conducted in a similar setting that
the one involving Group II. We will try to quantify the
variation in the frequency of messages when developers in
the same team (1) can see each others messages and (2)
receive recommendations based on their current quest goal.

Interaction Resolution Our Eclipse James plugin captures
actions modeling navigation information in the IDE, such
as browsing through projects files. However, other program-
ming activities, such as writing code, are not currently
monitored. From the conducted study, we observed that
with a timer on interactions of 3 seconds, two thirds of
the collected interactions are limited to one action. Since
our heuristics groups actions into interactions based on
the time elapsed between one action and the next one,
we estimate that modeling changes to the source code as

SERG Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests

TUD-SERG-2010-021 7



interaction activities in the IDE, would significantly affect
traces associated to quests involving writing code, whereas
traces relative to quests with a program comprehension
activity as goal would resemble to the one currently collected
by James.

We plan to further investigate our current algorithm to
clustering actions into interactions, as well as alternatives.
We intend to both extensively analyze the collected actions
and to monitor other developer activities (such as editing or
browsing code) in order to determine a better approach into
building interaction traces.

Code completion in messages Developers referring to code
elements in quest messages and the correlation we encoun-
tered between mentioned class files and browsed class files,
suggest that James should furnish support to developers, for
example in the form of auto-completion program elements
such as names of packages, classes, methods and attributes.
Such support will be convenient for the users and in partic-
ular way useful during the analysis of status messages. Such
a feature will not only avoid spelling mistakes, but “mark”
program elements as such, establishing a direct link between
the messages and the code itself.

Connecting messages to interactions We obtained promis-
ing results from the first analysis of traces correlated to
quest goals about future intentions and we are confident that
associating interactions to micro-blogging messages have
great potential. While our heuristics associating to a quest
all the interaction between the setting of its goal and the next
one seems to be valid for such quests expressing intentions,
we need to evaluate its quality in regards of quests with
messages falling in the other categories.

As future work, we will research how to ameliorate the
heuristics to attribute the appropriate interactions to a quest.
We hypothesize that categorization of messages can help
refining our heuristics to determine which interactions are
to be associated with a quest. For example: when the quest
goal reports about the completion of a task, it is likely
that at least part of the interactions preceding it are linked
with it. We will try to evaluate whether and to which
extent categorizations of messages can help determining an
appropriate association between quests and interactions.

Messaging conventions such as hashtags and emoticons
We observed that in some of the collected messages users
used the hash symbol in front of the todo keyword, forming
an hashtags (#todo), as Twitter. We can notice in some of
the messages that users try to express their feeling with
(informal) onomatopoeic words such as yes!, mmh, grr,
oops, yu-uh, etc. Users also included emoticons (e.g., :-))
in status messages. We believe those information could be
valuable to understand the value of the quests they belong
to. For example: a message such as “Messages are nicely

stored in the fresh mysql database :-)” leaks out that the
user is happy with the solution he found/implemented.

We intend to further investigate the use of (hash)tags and
other methods people use to enrich their status messages and
whether we can benefit from these findings, for example for
a more detailed or different categorization of messages.

Furthermore, we envision that in addition to actively
indicate quest goals, in our approach, users will have the
possibility tell the IDE whether their journey through the
code (the trace) has been successful and the quest goal is
accomplished. By capturing the “enlightenment moment”
when pursuing a quest goal, additional value is added to
the user’s navigation (since it means that the quest has
been accomplished while following those particular steps).
This information is particularly important when sharing this
knowledge with other developers.

5.3. Applications of James data

Our purpose is to build a shared knowledge base with
information from developers, which captures information
concerning developer’s knowledge. Such knowledge base
can then be used to support development activities. We pro-
pose two applications: (1) sharing micro-blogging messages
to increase members awareness and (2) sharing navigation
data in the form of (targeted) recommendations to improve
the proces of software comprehension.

Increasing Knowledge Awareness Micro-blogging is an
asynchronous approach on information exchanging. How-
ever, such status messages are often seen by other users
in a semi-synchronous fashion (usually within the day or
within a few days at most). James takes care of transmitting
the messages to interested users. With interested users we
mean both users that actively want to “follow” (in a Twitter-
like manner) another user, a project, a file, a concept, etc.
and also users for which the message can be relevant.
We can determine the relevance of a message for a user,
given his previous messages and navigation data. James will
point out related status messages, when this is relevant to
improve the user’s work. For example, it will direct the
user to another developer who previously faced a same or
similar concern than expressed in her status message. In this
way the users can actively take advantage of knowledge of
others(by contacting other users to directly ask them about
their findings). Establishing in this way a foundation for
collaborative program comprehension.

Figure 16 depicts the sharing of micro-blogging messages,
previously collected within the development team. A user
is notified with a subset of the status messages previously
collected and analyzed by James. Twitter like messages are
redirected only to those users, for which they can be relevant
(e.g., to solve the concerns they expressed in their quest
message).

Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests SERG

8 TUD-SERG-2010-021



?

James Core

status messages

!
!

?

!

!

James Core

status messages

!

!

Figure 16. Micro-blogging⇐ within james

Recommending Comprehension Paths Combining quest
messages and navigation data, we can recommend users
where to look in the code, given their quest goal (this can
be done when we captured how others solved the same
or a similar issue). The information gathered is processed
(interaction traces are built), and then used to build a
general knowledge about the system, which can be used for
a number of applications. For example, James can suggest
where to look in the code, given a developer’s goal and
his/hers private navigation history, as shown in Figure 17.
The collected knowledge about the system is filtered by
James, so only relevant information to the individual en-
gineer is reported.

navigation 

data

status 

messages James 

Recommender

DB

Figure 17. James recommendation approach schema

Among the challenges to be addressed when building such
a recommendation system, one important issue is finding
meaningful criteria for the identification of information
relevant to the user’s goal (as opposed to “noise” generated
by browsing irrelevant parts of the system). Once the infor-
mation is filtered, it needs to be merged with the previously
recorded data (collected from many users). The merging
of the data gathered from different users is another point
of investigation (e.g., traces from different users working
toward the same goal, can have a different importance,
based on some yet to be defined metrics, such as developer
experience on the code, shorter path to solution, etc.). as
well as the scalability of the tool due to the possibly huge
amount of data collected.

Another important research question to be tackled is how

the collected data can survive code refactoring, maintaining
its valuable information.

6. Related Work

In this paper we have looked at how developers can inform
their team about their status, and how these status messages
relate to what they actually do in the IDE.

Our research builds upon several (software engineering)
disciplines. First, there is related work concerning studies of
what developers do, and what information they need from
the IDE. As an example, Sillito et al. provide a study of
questions asked during programming change tasks [3], and
Ko et al. report on an etnographic study of how developers
work at Microsoft and what their information needs are [4].

Software development and maintenance are inherently
collaborative activities: a survey of research in the area
of collaborative software engineering is provided by [5].
Web 2.0 provides new ways of collaboration and infor-
mal communication [6], and the incorporation of Web 2.0
techniques in software development is attracting more and
more attention both in industry and academia [7], [2]. As
an example, IBM’s Jazz3 incorporates the possibility of
adding tags to work items, and its use by IBM developers
has been studied extensively by Treude and Storey [8].
Another example of the integration of Web 2.0 into the
software development process is the work by Begel et al.
on Codebook (inspired by Facebook) to integrate several
repositories relevant to software development [9] and by
DeLine on bookmarking in code (inspired by Delicious)
[10]. Micro-blogging is an important element of Web 2.0,
and thanks to the massive success of, e.g., Twitter, an active
area of research itself4 [11]. We are not aware of other papers
studying the potential of micro-blogging during software
development. Similar to some extent to micro-blogging,
however, are Internet Relay Chat (IRC) discussions, and
their use during the development of the Linux Gnome code
has recently been analyzed by Shihab [12].

A number of existing studies report on the meaningfulness
of navigation traces and their potential. Fritz et al. conducted
an empirical study assessing the relationship between pro-
grammers activity and what a programmer knows about a
code base [13] and DeLine et al. report results of two studies
which demonstrate that sharing navigation data can improve
program comprehension “and is subjectively preferred by
users” [14]. Both Mylyn [15] and NavTracks [16] are
navigation aids based on what the programmer is currently
looking at in the IDE, to recommend other entities to look at.
Additionally, a study by Robbes on recommender systems
based on recorded interactions [17], recognizes the lack of
support for interaction annotations.

3. http://jazz.net/projects/content/project/plans/jia-overview/
4. See also the bibliography at http://www.danah.org/researchBibs/

twitter.html

SERG Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests

TUD-SERG-2010-021 9



7. Concluding Remarks

During the process of trying to understand a piece of code,
developers build up a substantial body of knowledge on the
code they are inspecting — knowledge that often evaporates
after the corresponding maintenance task is finished. In this
paper, we propose a method to stop this loss of valuable
knowledge, by recording how developers interact with the
source code, and by encouraging developers to tell their team
members what they are doing.

The key contributions of this paper are as follows:
• A novel method for recording program comprehension

knowledge by combining micro-blogs expressed by
developers with interaction data collected by the IDE;

• A client-server implementation of this approach by
means of the James Eclipse plugin;

• An empirical evaluation of the proposed approach,
giving initial evidence that developers are willing to
micro-blog on their activities, and that the combined
interaction and micro-blogging data is helpful in sub-
sequent maintenance tasks.

Based on our first experiments, we consider the combi-
nation of micro-blogging data and automatically collected
interaction data a highly promising route for recording and
sharing knowledge built up in the program comprehension
process. Future research directions include enriching the
tool suite with additional mechanisms such as providing
the ability to follow specific developers, projects, or work
products, enhance quest visualizations, and carrying out
larger scale case studies in which teams will be using James
for a longer period of time.

References

[1] T. A. Corbi, “Program understanding: Challenge for the
1990s,” IBM Systems Journal, vol. 28, no. 2, pp. 294–306,
1989.

[2] A. van Deursen, A. Mesbah, B. Cornelissen, A. Zaidman,
M. Pinzger, and A. Guzzi, “Adinda: A knowledgeable,
browser-based IDE,” in 23d International Conference on
Software Engineering; New Ideas and Emerging Results Track
(ICSE NIER). ACM, 2010.

[3] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and
answering questions during a programming change task,”
IEEE Transactions on Software Engineering, vol. 34, no. 4,
pp. 434–451, 2008.

[4] A. J. Ko, R. DeLine, and G. Venolia, “Information needs
in collocated software development teams,” in ICSE ’07:
Proceedings of the 29th international conference on Software
Engineering. Washington, DC, USA: IEEE Computer Soci-
ety, 2007, pp. 344–353.

[5] J. Whitehead, “Collaboration in software engineering: A
roadmap,” in FOSE ’07: 2007 Future of Software Engineer-
ing. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 214–225.

[6] T. O’Reilly, “What is Web 2.0: Design patterns and busi-
ness models for the next generation of software,” Or-
eillynet, 2005, http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html.

[7] C. Treude, M.-A. Storey, K. Ehrlich, and A. van Deursen,
“Web2se: First workshop on web 2.0 for software engineer-
ing,” in Companion to the Proceedings of the International
Conference on Software Engineering. ACM, 2010.

[8] C. Treude and M.-A. Storey, “How tagging helps bridge the
gap between social and technical aspects in software develop-
ment,” in Proceedings of the 31st International Conference on
Software Engineering (ICSE’09). IEEE Computer Society,
2009.

[9] A. Begel and R. DeLine, “Codebook: Social networking
over code,” in 31st International Conference on Software
Engineering, ICSE Companion Volume. IEEE Computer
Society, 2009, pp. 263–266.

[10] R. DeLine, “Del.icio.us development tools,” in CHASE ’08:
Proceedings of the 2008 international workshop on Coopera-
tive and human aspects of software engineering. New York,
NY, USA: ACM, 2008, pp. 33–36.

[11] J. H. Grace, D. Zhao, and d. boyd, Eds., Proceedings of
the CHI Workshop on Microblogging: What and How can
We Learn from It? ACM, 2010, http://www.cs.unc.edu/ ju-
lia/chi2010.html.

[12] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of
Internet Relay Chat (IRC) meetings by developers of the
GNOME GTK+ project,” in Proceedings of the 6th IEEE
Working conference on Mining Software Repositories (MSR).
IEEE, 2009.

[13] T. Fritz, G. C. Murphy, and E. Hill, “Does a programmer’s
activity indicate knowledge of code?” in ESEC-FSE ’07:
Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. New
York, NY, USA: ACM, 2007, pp. 341–350.

[14] R. DeLine, M. Czerwinski, and G. Robertson, “Easing pro-
gram comprehension by sharing navigation data,” in VLHCC
’05: Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 241–248.

[15] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in SIGSOFT ’06/FSE-14: Proceed-
ings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering. New York, NY, USA:
ACM, 2006, pp. 1–11.

[16] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting
navigation in software,” in IWPC ’05: Proceedings of the
13th International Workshop on Program Comprehension.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
173–175.

[17] R. Robbes, “On the evaluation of recommender systems with
recorded interactions,” in SUITE ’09: Proceedings of the
2009 ICSE Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 45–48.

Guzzi, Pinzger & van Deursen – Combining Micro-Blogging and IDE Interactions to Support Developers in their Quests SERG

10 TUD-SERG-2010-021





TUD-SERG-2010-021
ISSN 1872-5392 SERG


