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Generative CoLearn: steering and cost prediction with generative
adversarial nets in kinodynamic RRT

Nick Tsutsunava∗, Wouter J. Wolfslag†, Carlos Hernández Corbato∗, M. Bharatheesha∗, Martijn Wisse∗

Abstract— Kinodynamic planning is motion planning in state
space and aims to satisfy kinematic and dynamic constraints.
To reduce its computational cost, a popular approach is to use
sampling based methods such as RRT with off-line machine
learning for estimating the steering cost and inputs. However,
scalability and robustness are still open challenges in these type
of Learning-RRT algorithms. We propose the use of generative
adversarial networks (GAN) for learning of the steering cost
and inputs. Furthermore, a novel data generation method is
introduced, which is easy to learn and, in terms of parameter
count, scales linearly to higher degrees of freedom. In our
experiments, we show that the GAN has excellent generali-
sation capabilities, resulting in a considerable improvement in
performance compared to the state-of-the-art. Consequently, we
show that our method can scale to a planar arm and is robust
to data dimensionality.

I. INTRODUCTION

In robotics and motion planning, generating a trajectory
that satisfies both kinematic and dynamic constraints is
regarded as a computationally heavy problem [1]. Solving
the required two-point boundary value problem (2PBVP)
makes implementation increasingly prohibitive for real-time
applications where computation time is crucial. Kinodynamic
planning, path planning in state space, and sampling based
methods, i.e., Rapidly-exploring Random Trees (RRT), are
believed to be the most viable solution in overcoming this
computational burden.

In kinodynamic planning, the RRT algorithm expands a
tree of nodes in state-space, randomly exploring permissible
states until the goal is reached, up to a desired tolerance.
Since the Euclidean distance between nodes in state space
is not appropriate, kinodynamic RRT algorithms typically
require a metric that also takes the system dynamics into
account. Due to the computational burden, this distance is
approximated with pseudo-metrics, which generally under-
utilise the non-linear dynamics of the system, resulting in
inefficient state space exploration [2], [3]. Another standing
challenge is efficiently steering the robot from one state to
another. This involves finding a reachable set of trajectories,
i.e. dynamically feasible, after which the steering inputs are
computed for the trajectory with the lowest cost.

Recently, promising methods in the literature for kin-
odynamic planning propose offline machine learning for
improved approximation of the steering input, distance met-
ric and reachable set, resulting in faster online planning
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[2], [4], [5]. These types of Learning-RRT algorithms use
datasets that contain short segments of optimal trajectories
and corresponding costs and steering inputs. The two main
open questions for this approach is how to generate the
dataset, and how to learn the steering input from the dataset,
and doing so for a broad class of robots. In this paper, we
address both questions within the context of RRT-CoLearn,
the state-of-the-art algorithm proposed in [5].

The primary challenge in RRT-CoLearn is scaling from a
pendulum to a system with more degrees of freedom, which
was difficult due to the following issues.

• The k-nearest neighbour (KNN) algorithm used for
online prediction stores the entire dataset in a tree. This
results in poor generalisation for small datasets and slow
computation as the dimensionality of data increases.

• KNN is not appropriate for extrapolation and can only
predict meaningful results for queries that lie within
some reachable boundary. This boundary parameter
requires manual tuning.

• The generated data contains overlapping trajectories
with different costs and steering inputs. A cleaning
algorithm reduces the amount of such trajectories and
improves the predictions of the learning algorithm. This
cleaning algorithm requires careful tuning and reduces
the amount of data to learn from.

We propose Generative CoLearn, an extension to RRT-
CoLearn, which leverages a novel data generation method
and new developments in machine learning that enable us to
train a deep generative model on the data. We hypothesise
that replacing the deterministic KNN algorithm with a gener-
ative model will result in improved generalisation and scal-
ability, faster convergence and stable run-time performance.
Additionally, we eliminate the necessity for data cleaning.
To demonstrate our approach, we plan a path in state space
for two systems: a pendulum and a 2-DoF planar arm. Due
the high dimensional parameter space of the planar arm, we
perform the majority of our analysis on the pendulum. In
our method, outlined in Algorithm 1, we tackle the machine
learning aspect to improve generalisation and robustness
to data dimensionality and its parameterisation. This paper
presents the following contributions.

• We propose a more general data sampling strategy that
can be used for all fully-actuated serial chain robots, in
a time optimal control setting with input bounds.

• We propose the use of the GAN framework for learning
the steering costs and inputs, resulting in improved
generalisation and robustness.



• We show that we can effectively use the discriminator
of the GAN as a classifier for trajectory feasibility,
replacing the reachable bound, which scales poorly with
system size.

The paper is organised as follows. In Section II, we present
the data sampling strategy used in Generative CoLearn. In
Section III we discuss our reasoning for using GAN and
its implementation. Our evaluation metrics are presented in
Section IV with the experimental method in Section V. The
results and a discussion with future work are presented in
sections, VI and VII, respectively. Finally, we conclude our
findings in section VIII.

II. DATA GENERATION

A main step in RRT-CoLearn algorithms is to generate
optimal trajectories using the optimal equations of motions
obtained via the maximum principle of Pontryagin [6]. The
dataset is generated by randomly sampling the initial state
and costate, and integrating the equations of motion. For
the type of problem under study, the initial state and costate
must satisfy a constraint. An ad-hoc approach to solving that
constraint for the pendulum swing up was used in [5]. This
solution was complex, even for this simple system. As a
result, the scalability of this method is not obvious.

In this section, a sampling procedure that results in feasible
initial state-costate combinations is presented. This sampling
procedure is valid for a large class of problems: time optimal
control of fully actuated serial chain robotic manipulators.

For the class of fully actuated open chain robots, the equa-
tions of motions are represented by the following differential
equation:

M(q)q̈ = C(q, q̇) +G(q) + τ (1)

Where q are the generalised coordinates, M is a positive def-
inite mass matrix, C represents the convective acceleration
terms, G the forces due to potential energy and finally τ are
the motor torques. Note that friction losses are neglected.

The optimal equations of motions are found by first
specifying the cost function. For time optimal control, the
cost J is simply the final time, which can be expressed as:

J =

∫
1dt (2)

The next step is to define the Hamiltonian, which is the
sum of the integrand of the cost function, J , and the inner
product of the costate with the state derivative. Here we split
the costate into two parts λ, which is multiplied with velocity,
and µ which is multiplied with the acceleration. As a result,
we obtain the Hamiltonian

H = 1 + λ⊤q̇ + µ⊤M−1(q)(C(q, q̇) +G(q) + τ) (3)

where Equation 1 was used to find the derivative of velocity.
The optimal input is found by minimising the Hamiltonian

subject to the input constraints. In our case, each motor
torque is bounded by a constant: |τi| ≤ τ̂i, where i is the in-
dex of each motor, and τ̂i is the torque bound for that motor.

This results in the optimal torque: τ∗ = −sign(M−⊤µ)⊙ τ̂ ,
where ⊙ signifies the element-wise product, and τ̂ is the
vector of bounds on the motor torques.

We obtain the optimal Hamiltonian by filling in the
optimal motor torque in the Hamiltonian:

H∗ = 1+λ⊤ q̇+µ⊤M−1(q)(C(q, q̇)+G(q))−|M−⊤µ|E⊙τ̂
(4)

From this optimal Hamiltonian, the optimal equations of
motion are derived by taking appropriate derivatives, as in:

q̈ =
∂H
∂µ

, λ̇ = −∂H
∂q

, µ̇ = −∂H
∂q̇

(5)

To generate the data for Generative CoLearn, these optimal
equations of motion are numerically integrated, starting from
randomly sampled initial states and costates. For free final
time, but otherwise time-independent problems, the value of
the optimal Hamiltonian is constrained to be 0 at t = 0.
This effectively is a constraint on the initial state-costate
combination.

For sampling initial states and costates while taking into
account that constraint, the following approach is proposed.
First, sample the initial states uniformly over their domain
(q0 and q̇0). Second, sample a costate uniformly over the unit
sphere, resulting in λ̂0 and µ̂0. The costate used in simulation
will be a positive constant (α) times that unit costate vector.
By restricting α to be positive, the optimal Hamiltonian is
linear in α, meaning we can solve the constraint:

α =
−1

H∗(q0, q̇0, λ̂0, µ̂0)− 1
(6)

The value computed for α might not be positive, meaning it
is invalid. We use rejection sampling to sample λ̂0 and µ̂0

such that a valid α is obtained. Due to the structure of the
optimal Hamiltonian, if a sampled initial costate is invalid,
its negative must be valid. This is due to fact the only term
in Equation 4 that is non-linear in the costates is always
negative. As a result, at most half of the sampled costates
are expected to be rejected, making rejection sampling an
effective approach.

Note that the state equations will remain unchanged when
multiplying the costate with a positive constant α. The
costate equations of motion will simply scale when multi-
plying the costate with α. As a result, the state equations
will behave exactly the same over time, when multiplying
the initial costate by a positive factor. We therefore sample
the initial costate while verifying a positive α as described
above, and directly use that costate.

The time-optimal control problem results in a bang-bang
type torque signal, with the sign of the torque signal the
opposite of that of the costate µ. Due to this bang-bang
nature, the state trajectory for simulations with a different
costate (µ and λ) is the same, at least until µ has switched
sign. When unbiasedly sampling costates from the complete
unit sphere, many sample trajectories will not contain a
switching µ. As a result, the final states of the trajectory
will be lumped together, as shown in Fig 1. The data of this



figure is generated for a pendulum swing up, with the initial
state at the origin.

To more evenly distribute the data, we bias the costate
sampling to only include the regions of the unit sphere that
will cause µ to switch in time. The region from which to
sample the costate is computed by approximating the time
derivative of µ (Eq. 5) as µ̇ = −λ̂0. For a given λ̂0 and final
time, this differential equation provides bounds for values of
µ̂0 that will likely contain a switch. Due to the bounds being
derived from an approximation, we symmetrically adjust the
bounds, such that the region they contain is doubled in size.
As seen in Fig. 1, the resulting final states are more evenly
spread out.
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Fig. 1: Biasing the costate sampling results in an improved
state space coverage.

III. MACHINE LEARNING

Deep generative models have become popular in un-
supervised learning. These models attempt to capture the
probability distribution of given data in order to generate
new but similar samples. Currently, the two most popular
frameworks are the variational autoencoder and generative
adversarial networks (GAN) [7], [8]. In this research, the
GAN in particular seems more suitable as it does not make
assumptions on the latent model of the data and has superior
generation quality [9]. Aside from image generation, GANs
have seen applications in medical data analysis, robotics and
autonomous driving [10]–[12].

Learning in the unsupervised GAN framework consists of
two loss functions, typically implemented with neural nets,
playing a minimax game. The generator G(z) samples a
latent vector z and aims to fool the discriminator D(x) with
generated samples. In turn, the discriminator learns to discern
real samples x from generated samples. The feedback pro-
vided by the discriminator improves the generated samples.
Another approach is to use these type of generative models
in a supervised manner in conjunction with real continuous
data, where the model is conditioned on some auxiliary
information [13]. In our case, we use the costates and steering
cost as target data and the trajectories as conditioning labels
for the model. At run-time we can query the generative model
with trajectories to predict the costates and cost. We outline
our reasoning for using GAN in learning-based kinodynamic
planning.

• Based on promising results in literature on image gen-
eration with GANs, it is reasonable to assume that the
GAN can resolve the non-linearities in our dataset.

• The GAN implicitly learns a continuous probability
distribution from which it can sample the target data.
This makes it more suitable for problems with multiple
solutions, resulting in improved generalisation [14].

• The discriminator can be used in run-time to classify
which trajectories are feasible, eliminating the need of
the reachable bound.

• Neural network time complexity is not dependent on
data dimensionality making it much faster than a tree
lookup for large amounts of data.

The original formulation of the GAN is notoriously diffi-
cult to optimise [15]. Recently, a new adversarial objective
was proposed by implementing a least squares loss on the
networks, resulting in stable training dynamics and slower
saturation [16]. We combine this least squares objective with
the conditioning approach proposed by [13] and formalise
the conditional networks with:

min
D

V (D) =
1

2
Ex∼pdata(x)[(D(x|y)− 1)2]

+
1

2
Ez∼pz(z)[D(G(z|y)))2]

min
G

V (G) =
1

2
Ez∼pz(z)[(D(G(z|y))− 1)2]

(7)

By concatenating the label y to the input of the generator
and the discriminator during training, both networks are
conditioned on the extra information provided. At run-time
we query the networks with the same concatenation step.
As a result, the trained discriminator is able to classify the
feasibility of the generated costates and trajectories with
D(G(z|y)) > 0 where 0 is the decision boundary.

IV. METRICS

We propose a set of metrics for analysing the performance
of GAN and KNN in Generative CoLearn. For measuring the
online RRT performance, 1) the steering error, 2) node count,
3) failure rate, 4) and planning time are used as the metrics,
which are standard in similar literature [2], [5]. The steering
error is used as a measure for accuracy and is computed as
the mean squared error (MSE) between the target and final
state. It gives insight to the robustness and generalisation
capacity of the learning algorithm when queried with unseen
data at run-time. This error affects the node count, which
is therefore an indirect measure of the model performance.
For example, a high node count results from poor costate
predictions leading to the final state constantly diverging
from the target state. This predominantly occurs near the
goal when the required trajectory is extremely short, resulting
in a probability of the algorithm getting stuck. Therefore,
we terminate the planning and regard it as a failure once
a critical amount of nodes is reached. Finally, the planning
time is dependent on the amount of nodes but is also affected
by external factors such as implementation efficiency, model
sampling speed and available computing power. We note



that these experiments were run on a shared machine with
a suboptimal implementation. Therefore, the planning time
between the planar arm and pendulum is not comparable.

Good generalisation is typically achieved if the learning
algorithm is able to generate samples with the same features
as the ground truth. One of the main features is that the
costates are sampled from the unit sphere. Therefore we
require the norm of the costates to approach unity. In
addition, if the learning algorithm has been conditioned well,
the error of the states should be low relative to their domain.
This can be tested by generating costates from a test set and
running a forward simulation to observe the error between
true and final states. Therefore, we validate the models with
1) the proximity of generated costates to the unit sphere
measured as the norm of the generated costates, 2) and given
a test set, the mean squared error between target and final
states, for each state θ and ω.

V. EXPERIMENTS

A. Data Generation and Learning

In this section we follow the approach as outlined in
Algorithm 1 and implement the pendulum and planar arm
with Eq. (1) for data generation. For simplicity, the masses,
torque bounds and link lengths are set to unity. The pendulum
task involves a swing-up for which we bound the torque to
τmax = 0.5, instead. Similar to the pendulum dataset in [5],
we generate 40000 samples by uniformly sampling an initial
position, measured in rad, from θ ∼ U(−3π

2 , π
2 ) and the

initial velocity, in rad s−1, from ω ∼ U(−π, π). This dataset
covers the state-space for a swing up from state equilibrium
(θ, ω) = (−π, 0) to the unstable equilibrium at (0, 0). For
the planar arm we simplify the problem to reduce the data
size and plan a path from (θ0, θ1, ω0, ω1) = (−π

4 , 0, 0, 0)
to (π4 , 0, 0, 0). The initial states are sampled from θ ∼
U(−π

2 ,
π
2 ) and ω ∼ U(−1, 1) to generate 1 million points.

Additionally, we generate 100,000 points at the start and goal
where the initial states are sampled normally with σ2 = 0.1.
We improve the state space coverage by setting half of the
initial states as final states and simulating backwards in time.

For testing and validation we use 20% of the dataset. We
run 10 epochs where during each epoch we generate the
data, fit the model and run the RRT algorithm 100 times.
For the planar arm we generate the data only once across all
epochs. The experiment either is complete if the Euclidean
distance to the goal is within 0.15, or times out and restarts
after 1000 nodes. The epoch is terminated after 200 RRT
attempts, resulting in a 50% fail rate. The GAN is trained
for 30000 epochs with a batch size of 100. The generator
and discriminator are trained equally. The noise vector has
size 32 and is sampled from z ∼ U(−1, 1). The generator
has 5 hidden ReLU layers with (32, 64, 128, 256, 512) units
whereas the discriminator has 5 hidden Leaky ReLU layers
with (512, 256, 128, 64, 32) units and batch normalisation
for each hidden layer. For the planar arm both networks have
3 hidden layers with each 256 units. The output layer for
the generator is split and constrained to the range of the
data using appropriate activation functions (e.g. tanh for the

Algorithm 1 Generative Colearn
data ← generate data()
G,D ← train network(data)
node tree ← xstart
while not goal() do

xrandom ← random state()
Nreachable ← empty()
for i in node tree do

T ← {xi, xrandom}
û, cost← G(T )
if D(û, T ) > 0 then

append(Nreachable, {xrandom, û, cost})
end if

end for
xnear, û← min cost(Nreachable)
xfinal ← simulate(xnear, û)
append(node tree,xfinal)

end while

costates and ReLU for the cost). The discriminator output
has linear activation. Similar to RRT-CoLearn, we use the
KNN algorithm [17] with k = 3 and the Euclidean distance
metric. The leaf size is set to 10.

All the experiments are run in Ubuntu 16.04 on an Intel(R)
Xeon(R) CPU E5-2697 v4 and an NVIDIA Titan Xp. The
code for Generative CoLearn1 is written in Python 3, Julia
0.6 and Tensorflow 1.8.

B. Reachability and Planning

In kinodynamic applications it is not trivial to expand the
nearest node to a randomly sampled state as this problem
involves solving a 2PBVP to determine which trajectories
are dynamically feasible [18]. Similar to [5], this difficulty
exposes itself via limitations of the generalisation capability
of the learning algorithm. For non-parametric algorithms
such as KNN, this generalisation is limited and depends
on interpolation in Euclidean space. Therefore, queries that
are not within some reachable bound δmax to the data
stored within KNN result in invalid predictions. Since our
parametrisation for steering is different from RRT-CoLearn,
we run a parameter sweep with 100 runs for each δmax
sampled from linspace(0.1,1.0,10) and choose the
value resulting in the most balanced performance in terms
of fail rate, steering error and node count. We find for GAN,
δmax = 0.4 and for KNN, δmax = 0.3.

At run-time, we uniformly sample a random node within
the bounds the data was generated in and build a matrix,
T , of trajectories from the nodes in the tree. The matrix
contains entries (θi, ωi, θrand, ωrand) for i nodes in the tree.
For each trajectory in T , we find nearest neighbours in the
dataset and store the nodes (θi, ωi) in a set Nreachable if
the Euclidean distance is within δmax. If an empty set is
returned, a new random node is sampled. For the planar
arm experiments we use the trained discriminator to find the
reachable set. As shown in Algorithm 1, we feed the output
of the generator into the discriminator along with the queried
trajectory. We append the nodes in the tree to Nreachable

1https://github.com/ortix/generative-colearn

https://github.com/ortix/generative-colearn
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Fig. 2: The GAN predicts costates on the correct half of the
unit circle (2a). Stars indicate the true costates. Clustering
of the costates (green star) occurs if µ switches sign during
simulation. The KNN algorithm interpolates over the nearest
neighbours resulting in predictions inside the unit circle (2b).

TABLE I: We show that cleaning of the dataset is not
necessary as reducing the amount of overlapping trajectories
has a detrimental effect on KNN.

d 0 0.1 0.2 0.3 0.4 0.5

Error 0.09 0.09 0.12 0.16 0.17 0.21
Nodes 156 166 270 327 447 549

Fail rate 40% 43% 32% 24% 14% 24%

if the corresponding trajectories result in a positive output
from the discriminator. We justify this approach with the
following reasons. First, using the trained discriminator as a
classifier eliminates tuning the reachable bound. Second, and
more critically, we eliminate the need to perform a nearest
neighbour lookup, which is computationally expensive as the
dataset grows.

With the reachable set of nodes, the cost and steering
inputs for the corresponding trajectories is predicted. The
predicted cost is clipped to a lower bound at 10−5 times
the euclidean trajectory distance ensuring that 0 cost nodes
in Nreachable are not constantly expanded from. When the
trajectory involves the goal state, the costates are sampled
from a normal distribution with the mean as the predicted
value and σ2 = π/2, improving the algorithm performance
near the goal. We only perform this sampling step for the
pendulum experiments. Finally, the node with the lowest
cost is expanded by running a forward simulation. The final
state is then appended as a node to the tree. This process is
repeated until the final state is within a Euclidean distance
of 0.15 to the goal.

VI. RESULTS

To evaluate2 the learning performance, we initially feed
GAN and KNN a set of trajectories from the test set and
generate costates. From Fig. 2 we find that GAN generates
costates from the unit circle whereas KNN’s prediction lie
within the circle as a result of averaging nearest neighbours.
Additionally, we fit the norm of the costates to a normal dis-
tribution and show that GAN has a lower variance. Further-

2We report all metrics as median values over all epochs.
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Fig. 3: Reachability has a profound effect on KNN while
GAN is less sensitive. The fail rate is shown at the top.

more, GAN outperforms KNN with lower errors for the cost
and the states after simulation with predicted costates. We
summarise these results in Table II. A more thorough analysis
for GAN with three queries reveals two distinct features in
the predictions. First, the generated costates always have the
correct sign for µ, which indicates that the algorithm is able
to uncover the relationship between torque and trajectory.
Second, some costates result in a close clustering to the
ground-truth. This is due to longer trajectories with a switch
in torque sign resulting in a one-to-one relationship between
µ and λ. For shorter trajectories with no switch, any value
for λ is valid. When KNN is queried in the same way, each
predicted costate lies on the same location within the unit
circle as a result of interpolation and deterministic nature
of the algorithm. Consequently, costates generated from the
entire test set are scattered within the unit circle as seen
in Fig. 2b. The predicted costates that lie nearest to the
ground truth on the unit circle are not necessarily the nearest
in the dataset. These nearest-neighbours lie on different
locations on the unit circle and are interpolated, resulting
in the prediction to lie within the unit circle.

To gain a better insight on the effect of the parame-
terisation of the costates, we investigate the necessity for
cleaning. We follow the cleaning algorithm outlined in [5]
with variations in the cleaning parameter d and find in Table I
that cleaning has a detrimental effect on KNN. Therefore, we
do not clean the dataset in our experiments. Furthermore we
investigate the effect of reachability parameter δmax. From
Fig. 3 we see a profound effect on KNN. An increase
in reachability is detrimental for KNN while GAN is less
sensitive, confirming our hypothesis that GAN is robust and
performs significantly better in generalisation. As opposed to
KNN, GAN has a low fail rate with 0 terminations and a low
variability in node count. The steering error does increase
with an increase in δmax for both algorithms but does so at
a slower rate for GAN and remains lower than KNN.

We run our planning algorithm for both the pendulum and



TABLE II: The top rows show the results for the pendulum.
The bottom row is for the planar arm results with only GAN.

RRT Results Model Validation

Error Time Nodes Fail Proximity θE ωE CostE

GAN 0.15 0.85 s 92 13% 1.0± .09 .240 .713 .006
KNN 0.11 0.81 s 132 50% .85± .50 .250 .723 .012

2DOF 0.16 8.80 s 94 0.1% 1.0± .10 .006 .049 .005
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Fig. 4: This path generated by the GAN shows the natural
evolution of the pendulum dynamics.

planar arm and summarise the results in Table II. For the pen-
dulum, GAN outperforms KNN in terms of stability and node
count. The steering error is slightly higher for GAN, caused
by the relatively low state space coverage. However, this is a
reasonable trade-off for the end performance. The planning
time for both models is similar, yet depends strongly on data
dimensionality for KNN. The prediction time for KNN and
GAN is 5 ms and 1.1 ms, respectively. Finally, we show the
path planned by GAN in Fig. 4, with the natural evolution of
the dynamics of the pendulum in state space. This particular
path requires 3 swings, where on the final swing the goal is
reached. We clearly observe a switch in torque between the
second and third node resulting in a rapid deceleration.

Finally, we test our approach on a planar arm. We dis-
regard KNN for this experiment as the dataset size makes
computation time impractical. Our algorithm is able to
converge 99.9% of the time. The median node count is 94
with a steering error of 0.16. We note a prediction time of
1.1 ms, which is the same for the pendulum experiments. In
terms of model validation, we observe extremely low errors
for the final states after simulation and for cost prediction.
We attribute the discrepancy in performance between the
two systems to the following. First, we use a much larger
dataset for the planar arm compared to the pendulum. This
results in GAN generalising better. Second, the proposed task
is relatively simple and does not take gravity into account.
However, given enough state-space coverage in the dataset,
it should be possible to perform more complex tasks.

VII. DISCUSSION AND FUTURE WORK

We have introduced a novel application of a GAN, which
shows promising results for learning the steering cost and

inputs in kinodynamic planning.
The proposed data-sampling strategy is general, in the

sense that it is valid for all fully actuated serial chain
robots in a time-optimal control setting with input bounds.
The method also applies when including a squared torque
cost term to the problem, which represents the energy
consumption of the movement. The trick of multiplying a
sampled unit length costate with a positive factor α still
applies. The difference is that the Hamiltonian becomes a
continuous piecewise polynomial with respect to α (Eq. 6).
Because the polynomials are of degree one and two, the
roots of the Hamiltonian can still be readily found. The
property also remains in this case that at least half of the
sampled costate will have a positive α for a root of the
Hamiltonian. Care must be taken to multiply the sampled
costate with α, as the resulting trajectory is not invariant
to this multiplication when including a squared torque cost.
Evaluating the effectiveness of the sampling method for
higher degrees of freedom systems, and when including a
squared torque term, is important for real-world applications
of the techniques.

Supervised learning in deep generative models such as
GANs is still an active field of research and no consensus
exists on how to properly condition the networks on auxiliary
information. Therefore, we propose several points for inves-
tigation. First, minibatch discrimination or feature matching
can be used to improve the quality of the generated samples
and discriminator classification performance, respectively
[15]. Second, the data size requirement can be reduced by
improving generalisation with structured and disentangled
latent space. This has the benefit of enabling meaningful
interpolation over a latent feature and can be achieved with
an additional inference network or information maximisation
between mutual latent variables [19], [20].

VIII. CONCLUSION

We presented Generative CoLearn, an extension to RRT-
CoLearn using the GAN framework for predicting the re-
quired costates and steering cost in kinodynamic path plan-
ning. This approach solves two issues in the original RRT-
CoLearn implementation. First, robustness and generalisation
are improved. We show that GAN achieves a higher success
rate and lower node count compared to KNN, attributed to
the implicitly learned probability distribution from which
the target data is sampled. Second, we demonstrate that
our method scales robustly to a 2-DoF planar arm, which
is impractical with KNN due to the large amount of data
necessary. We show that the discriminator is a suitable
classifier for feasible trajectories. The large amount of data
necessary for complex systems is still a challenge. However,
we believe deep generative models are good candidates to
tackle this problem and can ultimately open new doors in
kinodynamic RRT in terms of performance and scalability.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Cor-
poration for donating a Titan Xp GPU for this research.



REFERENCES

[1] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” J. ACM, vol. 40, pp. 1048–1066, nov 1993.

[2] M. Bharatheesha, W. Caarls, W. J. Wolfslag, and M. Wisse, “Distance
metric approximation for state-space RRTs using supervised learning,”
in 2014 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 252–257, IEEE,
sep 2014.

[3] T. Kunz and M. Stilman, “Probabilistically complete kinodynamic
planning for robot manipulators with acceleration limits,” in 2014
IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 3713–3719, IEEE, sep
2014.

[4] R. Allen and M. Pavone, “A Real-Time Framework for Kinodynamic
Planning with Application to Quadrotor Obstacle Avoidance,” in AIAA
Guid. Navig. Control Conf., (Reston, Virginia), American Institute of
Aeronautics and Astronautics, jan 2016.

[5] W. J. Wolfslag, M. Bharatheesha, T. M. Moerland, and M. Wisse,
“RRT-CoLearn: Towards Kinodynamic Planning Without Numerical
Trajectory Optimization,” IEEE Robot. Autom. Lett., vol. 3, pp. 1655–
1662, jul 2018.

[6] D. S. Naidu and S. Naidu, Optimal Control Systems. Boca Raton, FL,
USA: CRC Press, Inc., 2002.

[7] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
arXiv Prepr. arXiv1312.6114, dec 2013.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
in Adv. Neural Inf. Process. Syst. 27 (Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.), pp. 2672–
2680, Curran Associates, Inc., 2014.
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