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[1] We model branching channel patterns in short tidal basins with two methods. A
theoretical stability analysis leads to a relationship between the number of channels and
physical parameters of the tidal system. The analysis reveals that width and spacing of the
channels should decrease as the slope of the bottom profile and the Shields parameter
increase and as the mean water depth decreases. In general, the channel depth should halve
at every bifurcation. These theoretical results agree well with the field data from the Dutch
Wadden Sea. A numerical model based on Delft3D, a software system of WL/Delft
Hydraulics, is used to simulate the time evolution of a channel network in a geometrically
simplified basin of similar dimensions as the Wadden Sea basins. The resulting channel
network displays a three-times branching behavior, similar to the three- to four-times
branching patterns observed in the Wadden Sea. The simulated channel pattern satisfies
the relation derived from the theoretical analysis. The results of this pattern analysis
provide for additional validation of two-dimensional/three-dimensional process-based
morphodynamic models of tidal basins.
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1. Introduction

[2] Tidal embayments are found in many coastal areas all
around the world. A significant part of the world’s coastline
is formed by barrier island coasts, and many other tidal
coasts are interrupted by estuaries and lagoon inlets. These
tidally forced systems are important from an ecological,
economical and recreational point of view. Besides, they
have a considerable impact on the shorelines that they
interrupt, through their influence on the sediment budget
[Stive and Wang, 2003]. Therefore it is important to
understand and predict the morphodynamic behavior of
these complex systems.
[3] The geometric characteristics are strongly influ-

enced by the tidal and wind wave climate, possible river
inflow and the type of sediment available [Officer, 1976].
Besides a large variability in size and shape of embay-
ments, also the characteristics of the main elements, the
channels, tidal flats and salt marshes, differ widely.
Broadly speaking two different channel patterns can be
discerned, viz. braiding and branching patterns [van
Veen, 1950]. Braiding patterns are commonly found in

elongated, shallow embayments, such as the Western
Scheldt in the Netherlands [Jeuken, 2000], and the
Humber in the UK. Branching patterns typically occur
in short and wide tidal basins. The large inlet channel of
these tidal basins branches into smaller channels, which
branch in their turn into yet smaller ones. Many examples
of well-developed branching channel patterns are found in
salt marshes, e.g., the Venice Lagoon in Italy, on the
North Norfolk coast in the UK, and in San Francisco Bay
and Massachusetts Bays, USA. Tidal networks draining
unvegetated tidal flats are more scarce (e.g., Dutch and
German Wadden Sea [Oost, 1995]).
[4] Recent developments for automatic extraction of the

tidal channel network from digital terrain maps of marsh
and tidal flat lands [Fagherazzi et al., 1999] have
improved the possibilities to study these systems [Rinaldo
et al., 1999a, 1999b]. Using this technique, it was shown
that tidal networks exhibit great variety in their geomet-
rical and topological form, and channel networks in
different tidal basins exhibit quite different overall scaling
characteristics [Fagherazzi et al., 1999a; Rinaldo et al.,
1999a].
[5] Significant field-based descriptions concerning

branching patterns in salt marshes (see Allen [2000]
for a quite complete review and Friedrichs and Perry
[2001]) have added much to our knowledge of these
systems. New tools are now available for quantitative
and qualitative description of these patterns [Marani et
al., 2003].
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[6] On the contrary, despite the great amount of observa-
tional data, well-assessed analysis tools to quantitatively
describe characteristics of branching channel patterns in the
deeper, more sandy tidal environments are scarce. These
patterns are expected in basins that are short compared to
the tidal wave length and with comparable length and width.
Though this type of inlet is commonly observed around the
US coast, most of these lagoons are ‘‘drowned’’ inlets in
which the channel pattern outside the flood delta is poorly
developed (e.g., Redfish Pass, Florida and Shinnecock Inlet,
New York).
[7] The well-developed channel patterns in six basins of

the Dutch Wadden Sea were investigated by Cleveringa
and Oost [1999], who found that all systems in the
Wadden Sea consist of similar three- to four-times
branching networks. The branch lengths decrease loga-
rithmically, but do not continue below the 500 m scale in
the data considered.
[8] Besides observations, models are useful tools to study

these channel systems. Many models have been developed
for estuarine morphodynamics [see, e.g., De Vriend, 1996;
De Vriend and Ribberink, 1996]. These models are largely
semiempirical, or restricted to one-dimensional approxima-
tions. Fagherazzi and Furbish [2001] developed a model
that simulates aspects of initial channel formation in a salt
marsh and studied the evolution of the shape of a reference
cross section that includes an incipient channel zone and a
marsh surface zone. Lanzoni and Seminara [2002], using a
one-dimensional model, showed that a tidal channel in
equilibrium has a concave profile. However, for a two-
dimensional flow in a short tidal basin, the flow is directed
almost radially to and from the inlet and the resulting
equilibrium profile for the shallows and the channels can
be far different from the 1D case. Using a formally
integrated long-term model, Schuttelaars [2000] showed
that in areas with unvegetated tidal flats stable morphody-
namic equilibra exist. The bottom patterns resemble natural
branching channels. Furthermore, it is shown that multiple
equilibra can occur, i.e., under the same conditions different
morphodynamic equilibra can exist. In this approach the
temporal behavior of a finite number of fixed spatial
patterns is described by a nonlinear evolution equation.
The spatial patterns result from a linear stability analysis.
Owing to the limitation in the number of bottom patterns,
the morphodynamic behavior was only investigated for
values of the friction parameter much smaller than those
observed. In contrast, numerical simulation of tidal channel
network development based on numerical integration of
mass, momentum, and sediment balance equations is still
lacking.
[9] The main objective of this paper is to present a

numerical model based on a set of two-dimensional
equations for water motion, sediment transport and bed
level changes capable of reproducing branching channel
patterns. In addition, we present a linear stability analysis
of branching channel patterns in a tidal environment
based on a simplified set of equations derived from the
ones used in the numerical model. These models are
validated against each other, as well as against field data
available.
[10] The different approaches are described in the follow-

ing sections. First a linear stability analysis is introduced,

which leads to a relationship between the number of
channels per unit span width and some physical parameters
of the tidal system. The subsequent section describes the
setup of the process-based numerical model for a geomet-
rically simplified basin and the channel pattern resulting
from the simulation. Next the results of these two
approaches are compared mutually and with available
experimental data from the Dutch Wadden Sea. In the final
discussion, attention is paid to shortcomings of the theoret-
ical and model approaches, the sensitivity of the results to
physical parameters and how to ‘‘translate’’ model results to
field data. Finally, the main conclusions are summarized in
section 7.

2. Mathematical Formulations

[11] The water motion in the models is described by
the unsteady depth-averaged shallow water equations in
two dimensions. The depth and density averaged momen-
tum equations in x and y direction are given by
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[12] The corresponding mass balance equation is given
by
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in which

C Chézy coefficient [m1/2/s],
h water depth = zb + h [m],
h water level [m],
zb bed level [m],
f Corioli’s parameter [1/s],

Fx,y x and y component of external forces [N/m2],
u, v depth averaged velocity [m/s],
U absolute magnitude of total velocity, U = (u2 + v2)1/2

[m/s],
rW mass density of water [kg/m3],
n effective diffusion coefficient (eddy viscosity) [m2/s].
[13] The sediment transport is described using the

formulation of Engelund and Hansen [1967], where the
sediment rates are calculated as total load (s), according
to

s ¼ 0:05aU5

g0:5C3D
2d50
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; ð4Þ

where

a calibration coefficient;
D the relative density (rs � rw)/rw;
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d50 characteristic grain size [m];
x coordinate along-flow direction [m].
[14] Bottom level changes follows due to conservation of

sediment mass:
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in which

epor bed porosity;
sx, sy sediment transport in x and y direction [m3/m/s]:

sx ¼ s cosa sy ¼ s sina: ð6Þ

[15] The direction a of the sediment transport depends on
the direction of the bed shear stress d and the bed slope:
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; ð7Þ

where q is the Shields parameter and fs is an efficiency
factor for the downhill gravitational transport, having a
value between 1 and 2. For calculating the direction of the
bed shear stress d the influence of secondary flow is taken
into account:

d ¼ arctan
v

u
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h
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[16] The second term in this equation represents the
influence of the secondary flow. A is a coefficient and R
is the effective curvature [see Struiksma et al., 1985].

3. Theoretical Analysis

[17] The theoretical analysis presented here is presented
first in Wang [1992]. Because this publication is difficult to
obtain, the analysis is presented below. The starting point of
the theoretical stability analysis is the basic set of equations
governing the flow, sediment transport and morphological
development as given in equations (1)–(5). First a basic
state is defined as the zero-order solution. For this purpose
we use the situation as outlined in Figure 1, i.e., a plane

sloping bottom with vanishing depth at the end of the basin.
This situation is a quasi-equilibrium state under the assump-
tion that the length of the embayment is much smaller than
the tidal wave length. With this assumption the water level
is in phase throughout the model domain and becomes a
function of time only. The flow velocity at every point in
time is constant throughout the model domain:

u t; x; yð Þ ¼ 1

I

@h
@t

; ð9Þ

where I is the bottom slope in the basic state. Note that the
landward boundary is a moving boundary and its moving
velocity is equal to the expression given in equation (9). The
equilibrium condition is satisfied in the whole flooded area,
since
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[18] Only at the moving landward boundary can sedi-
mentation (during flood) or erosion (during ebb) occur. It is
noted that this is not always a true morphological equilib-
rium, because the residual sediment transport does not
necessarily vanish. The latter is only the case if the tide is
symmetric. Otherwise sedimentation or erosion will take
place on the intertidal area, while in the channels (submerged
during the whole tidal period) the bottom does not change.
For the present infinitesimal perturbation analysis, the plane
sloping bottom represents a near-equilibrium state and is
therefore used as a zero-order solution in the linear analysis.
On the basis of a more formal analysis, Schuttelaars and de
Swart [1996] derived a morphological equilibrium state for
short tidal embayments that appears to be almost linear [see
also Lanzoni and Seminara, 2002].
[19] The zero-order solution is thus

h ¼ h0 xð Þ; u ¼ u0 ¼
1

I

@h
@t

; v ¼ 0: ð11Þ

[20] Note that the zero-order solution for water depth h0 is
a function of x (Figure 1), whereas that for the longitudinal
velocity u0 is not. Using this zero-order solution implies that
the analysis only applies for short and semiclosed basins.
[21] The first-order solution is obtained by superimposing

a small perturbation (h0, u0, v0) onto the zero-order solution.
Here the same linearization is applied as in Struiksma et al.

Figure 1. Definition sketch used in the theoretical analysis.
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[1985]. Time derivatives in the equations have been
ignored, i.e., a quasi-steady state is considered:
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[22] In equation (12) the pressure term has been elimi-
nated by cross differentiating the two momentum equations
and subtracting the results. In the present case, h0 is a function
of x, which leads to an extra contribution to this last term on
the left hand side of the equation. In equation (13), an extra
term with the slope I appears, due to the plane sloping zero-
order bottom. Equation (14) is the same equation as in the
analysis of Struiksma et al. [1985]. It says that, also in
the perturbed situation, there are no transport gradients.
This means that the analysis investigates the possible exis-
tence of a perturbed equilibrium state. The term with fsq in
equation (14) originates from the bed slope effect on the
sediment transport (equation (7)). The parameter b is a
sediment transport parameter, which originates from the
linearization of the sediment transport formula:

b ¼ u0

s0

@s0
@u0

: ð15Þ

[23] It is assumed to be constant. It implies that the
sediment transport formula is approximated by a power of
the flow velocity (for equation (4)b is exactly equal to 5).
[24] Ignoring the time derivatives can be justified

as follows. The time derivative of the water level in
equation (3) is the driving force of the system and it is
balanced in the zero-order approximation. The time deriva-
tive in the perturbation to the mass balance equation for water
(equation (13)) will thus always vanish. The time derivatives
of the flow velocities in the momentum equations can be
neglected near maximum flood and maximum ebb flow.
This means that neglecting the time derivatives in these
equations is equivalent to assuming that the morphology of
the system is controlled by the periods with the highest flow
velocity.
[25] Substituting the following harmonic perturbation,

h0

u0

v0

0
@

1
A ¼

H

U

V

0
@

1
A exp ikxxþ ikyy

� �
; ð16Þ

into the system of equations leads to a relation between the
two complex wave numbers kx and ky:
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[26] As compared to the corresponding equation derived
by Struiksma et al. [1985], there are two important differ-
ences: (1) in the analysis of Struiksma et al. [1985] the
impermeable walls put constraints on the transverse wave
number ky, which is not the case here; (2) in the above
equation extra terms are present because of the bed slope I.
[27] The second difference has an important consequence.

For the case kx = 0, Struiksma et al. [1985] would find the
trivial solution ky = 0, but for the present case an additional
nontrivial solution is found for ky:

kyh0
� �2¼ Ifsq

2
: ð18Þ

[28] Note that in equations (17) and (18) the extra term
due to the bed slope in equation (12) is ignored. If this term
were included, the solution would read

kyh0
� �2¼ Ifsq

2
� I2

2
: ð19Þ

[29] However, the last term in this equation is negligible,
as I 	 fsq. Therefore equation (18) will be used henceforth.
[30] It is noted that kx = 0 means that the perturbation is

neither decreasing nor increasing in the x direction, i.e.,
along the channels (wave troughs of the ky waves). Such a
perturbation is more stable than any other one with kx 6¼ 0,
because the flow direction is continuously changing in tidal
regions. Therefore the transverse wave according to equa-
tion (18) is presumably a dominant mode and it should say
something about the channel configuration in tidal areas.
[31] The following observations are made from the ex-

pression of the dominant wave number: (1) the larger the
slope I, the smaller and more closely spaced the channels;
(2) the more morphologically active the region (larger
Shields parameter), the smaller and more closely spaced
the channels; (3) the larger the water depth the larger and
more widely spaced the channels.
[32] It is furthermore interesting to note that in a certain

area the undisturbed water depth varies continuously in
space, whereas the wave number does not, since only a
discrete number of waves may occur. Every time a bifur-
cation occurs the wave number is doubled. According to
equation (18), doubling of the wave number can happen if
the undisturbed water depth is halved. Note that this
conclusion does not depend on the assumption of constant
bed slope. For the constant bed slope, this means that the
channels beyond a bifurcation have half the length of the
channel before it. The lengths of the channels thus decrease
exponentially with the order of bifurcations, as shown in
Figure 2. The structure shown in Figure 2 is a Cantor’s tree,
which is an example of a fractal structure.
[33] Furthermore, it is important to note that the term

representing the influence of the secondary flow does not
influence the dominant wave number (equation (18)). This
implies that for reproducing the branching channel structure
it is not necessary to take into account the secondary flow
effects.

4. Numerical Model

4.1. Model Description

[34] The numerical modeling system used herein is
Delft3D, developed by WL/Delft Hydraulics [Roelvink
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and van Banning, 1994; Wang et al., 1991, 1995]. Delft3D
is a finite difference numerical modeling system composed of
a number of modules describing waves, currents, sediment
transport and bottom changes, which are linked in a steering
module. The flow module provides the hydrodynamic basis
for morphological computations. It computes the tidal flow
by solving the unsteady depth-averaged shallow water equa-
tions in two dimensions (equations (1)–(3)) with an
Alternating Direction Implicit (ADI) technique [Stelling,
1984]. In tidal areas, shallow parts can fall dry during part
of the tidal cycle. In the flow module, this flooding and
drying is represented by removing grid cells that become
dry when the tide falls, and reactivating cells that become
wet when the tide rises. If the total water depth in a
velocity point is below a certain threshold (0.1 m), this
point is set dry, which means that the local velocity is set
equal to zero.
[35] The transport computations, based on the time-

dependent flow fields, are carried out in the transport
module, which gives access to a variety of semiempirical
formulae. In this model the total sediment transport for-
mula of Engelund and Hansen (equation (4)) is applied. In
the bottom module, the bathymetry is updated from the
divergence of the tidally averaged sediment transport field
(equation (5)), using an explicit scheme of the Lax-Wendroff
type.
[36] In this study, the flow module is called for one tidal

period, with a time step of 1 min, followed by a transport
computation for this tidal period with a time step of 10 min.
The bottom module applies the averaged transport field over
the morphological time step, which is usually much larger
than one tidal period. The morphological updating is done

with an automatic time stepping procedure. This process
loop is repeated with every updated bathymetry, until the
prescribed stopping time is reached.

4.2. Model Setup

[37] The model uses a schematic representation of a tidal
basin. The simplifications make it possible to investigate the
development of channel patterns in general [cf. Hibma et
al., 2003a], and to make a comparison with the theoretical
analysis. Model parameters correspond with those in the
tidal basins in the Dutch Wadden Sea. Wind waves are not
accounted for and therefore this model represents a tide-
dominated basin in the mesotidal category of Hayes [1975].
[38] A rectangular model grid is used in the numerical

computation. In order to combine a manageable computa-
tion time with a sufficient resolution of the basin morphol-
ogy, a grid size of 100 m is adopted. The model covers an
area of 12 * 16 km and is composed of an offshore area
extending 4 km seaward and an inner basin of 8 * 16 km.
The areas are divided by thin dams, representing barrier
islands (see Figure 3).
[39] The cross-sectional area of the inlet channel (Ac)

between the islands fulfils O’Brien’s [1969] empirical
relationship with the tidal prism (P), Ac = c � P where c =
6.6 * 10�5 for the Wadden Sea [Biegel, 1991].
[40] The boundaries enclosing the inner basin are fixed

and impermeable. At the seaward boundary a harmonically
varying water level is imposed, with a constant phase along
the boundary. It represents a semidiurnal tidal fluctuation,
with an amplitude of 1 m. Higher-order components are
induced by friction and interaction during the propagation
of the tidal wave through the model area.
[41] The distribution of channels, flats and marshes inside

the basin can be described by the hypsometric curve of the
basin, which gives the surface area per bed level interval.
From the hypsometric distribution for the Wadden Sea an
initial bathymetry for the model simulation is derived, in
which channel and shoal patterns are not yet developed.
Figure 4 shows this hypsometry for a parabolic bottom
profile, which decreases from MSL �6 m in the inlet to
MSL +1 m at the landward boundary.
[42] In the offshore area there is initially a plane sloping

coast between MSL �8 m at the seaward boundary to MSL
�6 m at the inlet.
[43] The initial bed level in the basin is given random

small-amplitude perturbations, by adding a random value to
the depth value of each grid cell. These initial disturbances
maximally amount to plus or minus 15 cm.
[44] The bed material consists of uniform sand with D50 =

120 mm. For the bottom roughness, a Chézy value of
65 m1/2/s is used. The Corioli’s force is neglected, while
the three dimensional effect of secondary flow in the
two-dimensional depth-averaged simulation is accounted
for using a parametric secondary flow model.

4.3. Model Results

[45] The model simulation covers a time span of 100 years.
Owing to the equilibrium profile adopted, the first significant
changes in the bathymetry occur rapidly and after about
10 years the ebb-tidal delta in the offshore area is already
clearly recognizable. After 30 years, the flood-tidal delta also
developed: the scouring of the inlet has resulted in the

Figure 2. Theoretical tree structure or Cantor’s tree. The
lengths of the channels decrease exponentially with the
order of bifurcations.
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formation and deepening of a large ebb-dominated main
channel and of two lateral flood channels through the inlet,
which subsequently branch into smaller channels in their
turn.
[46] This initial channel network gradually evolves into a

complex branching channel shoal pattern that covers in
about one century the whole surface of the inner basin, as
shown in Figure 5. In this case we observe a well-developed
flood-tidal delta encompassing the entire basin, like in the
Wadden Sea and in the Venice Lagoon, for instance.
[47] During this evolutional stage the inlet has deepened

from an initial depth of 6 m below MSL to a maximum
depth of 18 m and the cross-sectional area has increased
from an initial value of 13 � 106 m2 to 18 � 106 m2. The
smallest recognizable channels have a mean depth of about
1.5 m below MSL draining an area with a depth of
approximately 0.5m.
[48] From a quantitative analysis of the cross-shore veloc-

ities averaged over a tidal cycle, it is possible to distinguish
the alternating ebb and flood dominance over the basin. The
inlet gorge turned out to be slightly ebb-dominated. This is
consistent with the overall erosion trend: the mean depth of
the basin increases from1mbelowMSL to 1.2mbelowMSL.
[49] From sensitivity simulations with the numerical

model it appeared that the initial bottom profile has an
essential influence on the development of the channel
pattern. If the initial sediment distribution over the basin
agrees with observations of basins in equilibrium (Figure 7),
the model yields a well-developed channel system. On the
other hand, deviations from this initial equilibrium hyp-
sometry lead to locally underdeveloped channel patterns. In
the case of a linear initial profile, for instance, an underde-
veloped flood delta emerges, characterized by a relatively
deep basin where channels are only formed in the shallower
areas along the watersheds (see Figure 6). This type of basin
is also observed in nature, e.g., Shinnecock Inlet, New York,

USA. Shinnecock Inlet was formed during a hurricane when
high waves and a storm surge overwashed the barrier. The
fact that the adjacent Shinnecock Bay was wide and
relatively deep aided the development of the inlet system
and the eroded barrier sand started washing into the inlet
enlarging the flood-tidal delta (from US Army Corps of
Engineers, http://www.oceanscience.net/inletsonline).
[50] The spatial development of channel structure can

also be related to the timescales involved. The adaptation of
the sediment budget over the entire basin, in order to
establish an equilibrium profile, is a spatially large-scale
process, which involves large timescales. The local forma-
tion of channel structures is associated with smaller time-
scales. However, for the development of a channel structure

Figure 3. Initial bathymetry for the model simulation (top view and cross sections). A parabolic bottom
profile represents a quasi-equilibrium configuration on which channel and shoal patterns are not yet
developed, according to the hypsometric distribution of the Wadden Sea.

Figure 4. Hypsometric curves of the model and some
representative basins in the Wadden Sea.
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sediment needs to be transported in the lateral direction. The
transport capacity in this direction is initially much smaller
than in the longitudinal direction. Therefore the process may
involve a long time if much sediment needs to be moved for
the large-scale adaptation of the hypsometry. Thus the
pattern formation is slowed down at locations where the
underlying profile strongly deviates from the equilibrium
state. Sensitivity analysis showed that parameters influenc-
ing the timescales of the model, like sediment grain size,
sediment transport formulation and amplitude of the im-
posed water level variation, have no discriminating influ-
ence in space and therefore do not determine the emerging
channel pattern.
[51] The channel pattern formed near the borders of the

basin, as observed in Figure 6, show that the channel
formation does not only originate from an ongoing branch-
ing starting from the main channel through the inlet, but
also develops from locally growing undulations merging
into a channel system. The latter process was also observed
for the emergence of braiding channel patterns in elongated
estuaries [Hibma et al., 2003a].

5. Validation of Model Results

[52] In this section the results of the theoretical analysis
and numerical model are validated by mutual comparison
and by comparison with field observations. First the agree-
ment between numerical model results and natural branch-
ing patterns is tested using Horton’s hierarchical analysis.
This analysis technique forms a simple tool to characterize
the properties of branching patterns. Then the theoretical
analysis is compared with field observations. Finally the
validity of the theoretical relation (equation (18)) for the
numerical model results is investigated, closing the loop of
intercomparison of all approaches presented.

5.1. Numerical Model Results and Field Data

[53] Horton [1945] devised geometric scaling relation-
ships between the stream numbers, lengths, and drainage

areas of channels in networks. Horton’s hierarchical analy-
sis starts with the definition of the smallest channels as first-
order channels. The confluence of two first-order channels
defines a second-order channel, and so on (Figure 7). The
confluence of a lower-order channel with a higher-order
channel does not change the order of either of them. The
analysis is accomplished by simply counting the number of
first-, second- and higher-order channels. According to
Horton’s theory the number of channel branches in fractal

Figure 5. Results of the model simulation after (a) 30 and (b) 100 years.

Figure 6. Results of the model simulation starting from a
linear profile after 100 years.
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patterns increases logarithmically with decreasing channel
order.
[54] Using Horton’s definition, the order of the channels in

the model result is determined. Figure 7 shows these first-,
second-, third-, and fourth-order branches. Subsequently, the
number of channels of each order is counted and plotted
logarithmically against their order number (see Figure 8). In
agreement with Horton’s hierarchical analysis the number of
channel branches increases logarithmically with decreasing
channel order. The theoretical three- and four-times branch-
ing networks are indicated, as well. The model simulation
displays a three-times branching pattern, as can be observed
from the slope of the curve in Figure 8 and from the channel
scheme in Figure 7 (right panel).

[55] Cleveringa and Oost [1999] applied Horton’s hier-
archical analysis to the channel networks of the Wadden
Sea. Their results are shown in Figure 8 (right panel). As in
the plot from model simulation data, all investigated chan-
nel systems display a similar logarithmic relation between
the channel order and the number of channels of that order,
as indicated by the similarity in the slope of the fits. The
position of the channel systems relative to each other is
determined by their size: small systems have fewer channels
than large ones. The curves of the Wadden Sea networks
vary between those for a three-times and a four-times
branching network, with a slight preference for the latter.
[56] The slopes of the lines representing the branching

pattern in the simulation and those in the Wadden Sea agree

Figure 7. Hierarchical analysis of model results using Horton structure orders. The smallest channels
are defined as first-order channels, then second, third, fourth, and fifth orders follow.

Figure 8. Number of channels of each order compared with (a) fits of the theoretical three- and four-
times branching networks and with (b) example basins of the Wadden Sea. The number of channel
branches increases logarithmically with decreasing channel order.
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well with the theoretical lines, irrespective of the size of the
systems, the tidal prism or the intertidal flats. This indicates
that the model is able to reproduce the branching patterns of
natural channel networks, satisfying Horton’s law. A com-
ment given on Horton’s hierarchical analysis is that it is not
very discriminating for fractality assessment, because prop-
erties proposed by Horton as bifurcation and length ratio of
successive stream orders have values that inevitably occur
for channel networks [Kirchner, 1993; Rodriguez-Iturbe et
al., 1994; Rinaldo et al., 1999a; see also Fagherazzi et al.,
1999]. Therefore we restrict the analysis to an indication of
the branching order.

5.2. Theoretical Analysis and Field Data

[57] The results from the theoretical analysis have been
tested against field data from the Dutch Wadden Sea
by Fokkink [1993]. For four basins (Friesche Zeegat,
Vlie, Eierlandse Gat and Born Diep) he derived the
channel structures from the bathymetric data, as shown in
Figure 9. Note that for the Friesche Zeegat two situations
have been considered, i.e., before (1957) and after (1987)
the closure of Lauwerszee in 1969 (see Figure 10). For each
of the channels indicated in these figures the channel width,
the channel depth and the averaged bottom slope along the
channel have been determined from the field data (Table 1).
[58] In Table 2 the statistics of two parameters have been

given for the five cases considered: the ratio between
channel depths after and before bifurcations, and the
parameter h2/B2I. Theoretically, the first parameter should

be constant and equal to 0.5. The second parameter should
be constant according to equation (18) if the channel width
is taken as a proxy of the wave length. It is further noted that
for the parameters h and I the values of the channels have
been used instead of those in the undisturbed condition,
because it is difficult to construct the undisturbed state from
the field data.
[59] The results shown in Table 2 indicate that the first

parameter is indeed about 0.5, i.e., the channel depth is
halved after each bifurcation. Only the case of the Friesche
Zeegat in 1987 shows a large deviation. Apparently this
indicates that this basin in 1987, i.e., 18 years after the
closure of the Lauwerszee, had not yet achieved its new
morphological equilibrium state. This is supported by the
fact that the deviations especially occur in those branches
where the largest morphological changes are still taking
place, i.e., branches 5, 8, 9, 10, 11. Similar conclusion can
be drawn about the second parameter, although the scatter is
much larger. Note that the channel width has been used in
this parameter instead of the wavelength. This is possibly an
explanation why the scatter in this parameter is larger.
Apparently the conclusion that the channel depth halves at
a bifurcation is best supported by the field data. It is noted
that this conclusion directly follows from the result of the
analysis (equation (18)). We note that this result of the
stability analysis concerning the initial pattern appears to
apply well to the natural state (beyond the linear domain). A
possible explanation is that the result of the analysis does
not concern the fastest growing (in t or x direction) mode,

Figure 9. Channel structure for four basins of the Wadden Sea ((a, b) Friesche Zeegat, (c) Vlie,
(d) Eierlandse Gat, and (e) Born Diep) derived from the bathymetric data.
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but the mode which does not grow nor decay in the x
direction.

5.3. Theoretical and Numerical Model Results

[60] The relationship between the number of channels per
unit span width and the physical parameters of the system as

given in equation (18) is investigated for the channel system
resulting from the numerical model.
[61] In the model a constant value of D50 is used.

The velocities over the basin are assumed to be uniform
for the equilibrium profile [Friedrichs and Aubrey, 1996;
Schuttelaars and de Swart, 1996; Lanzoni and Seminara,

Figure 10. Bathymetry of the Friesche Zeegat in 1957, i.e., (a) before, and in 1987, i.e., (b) after, the
1969 closure of the Lauwerszee [from Biegel, 1993]. See color version of this figure in the HTML.
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2002; Pritchard et al., 2002]. This implies a constant shape
factor and Shields parameter. Then equation (18) can be
expressed in the following form:

ky � h0
� �2

I
¼ fs � q

2
)

ky � h0
� �2

I
¼ f D50; rs; rw; g; u*ð Þ ¼ const:

ð20Þ

[62] For the validation of this relation with the channel
pattern after 100 years of simulation, the same hierarchical
classification of channel order as in the previous section
(Figure 7) has been used. For each order of channels, the
mean depth of the underlying initial undisturbed bottom is
defined as h0. For the same area of this initial bathymetry
the slope I is determined, which is not constant for the
different channel orders because the profile has a parabolic
shape. From the developed channel pattern, the wave
number ky is established for each order. The average
drainage width (W) is defined as the ratio between the
length of the ellipse arcs (Le) connecting the channels of a
certain order (Figure 7, right panel) and the corresponding
number of channels of the same order (N). Table 3 displays
the results. For each order of channels, equation (18) is
solved. The resulting values are approximately equal for all
orders, which means that the numerical model results are
consistent with the theoretical relation.

6. Discussion

[63] In the previous sections a theoretical and a numerical
model are presented which are able to describe branching
channel systems in a tidal embayment. In this section the
results and the model validation are discussed.

[64] The sensitivity computations with the numerical
model show that the initial profile influences the channel
development. As discussed in section 5, this is considered a
timescale issue, because where a pattern has formed, its
characteristics are not different from those starting from an
equilibrium state. Where no pattern has formed, the under-
lying profile still has to adapt further to its equilibrium
shape, before channels develop. The time needed for this
complete morphological process is beyond the present
scope of the computation. It should be noted that a static
equilibrium state, in the strict sense of zero bed level change
everywhere, cannot be obtained with this type of model [see
also Hibma et al., 2003b]. The basin profile is considered to
be in equilibrium when the morphological changes due to
the channel formation are much larger than due to the
adaptation of the underlying profile. The initial random
perturbations on the bed trigger the pattern formation.
Without these perturbations a similar pattern will form,
but the time needed for the formation will be larger.
[65] The fact that a well-developed pattern has emerged in

the simulation proves that the initial profile is sufficiently
close to the equilibrium state for the channel pattern to
develop. This supports deriving I and h0 from this initial
bathymetry, instead of the developed pattern, when analyz-
ing the model results.
[66] When checking the validity of the relationship for the

field data, a difficulty is encountered in the determination of
the underlying equilibrium profile. In this paper, use has
been made of the local depth and slope of the channels, but
this gives rise to scatter in the results. To verify this
approach, the relationship (18) is also evaluated using the
local values from the developed channel pattern of the
numerical model. The resulting values show slightly more

Table 1. Collected Data From Dutch Wadden Seaa

Channel

Friesche Zeegat 57 Friesche Zeegat 87 Vlie Eierlandse Gat Born Diep

B, m h, m I � 1000 B, m h, m I � 1000 B, m h, m I � 1000 B, m h, m I � 1000 B, m h, m I � 1000

1 1300 20 5 1500 18 2.5
2 800 8 2.3 750 7.5 2.6 2000 17 2.8 1500 5.5 1.6
3 600 5 7 250 6.5 3.2 1000 11 2 750 5 0.6
4 350 4 10 300 9.5 2.7 1000 9 1.5 750 6 1.3
5 1500 17 6 1500 11 1.5 1250 13 2.4 1500 7 2.5
6 1000 11 3 300 9 6 1500 11 2 500 2.5 4 750 7 3
7 500 5 8 350 3.5 4 2000 14 5.3 750 5 2.3 1000 5 3
8 500 4 2.3 1750 14 1.2 1000 6 2 1250 5 1.3
9 1000 3 4.9 750 11 1.2 750 6 1 1500 9.5 3
10 1000 13 4.5 300 8 2 500 2 1 1500 5.5 1.3
11 500 6 26 150 3 1.5 750 4.5 3 400 2 1 1000 7 1.7
12 1000 7 6.3 350 5 5 750 6.5 1.1 750 3.5 1.3
13 700 4 2.5 500 3 1.3
14 750 2.5 1.4
15 500 4 1.8 1000 6.5 3.5
16 250 5 1.8 800 5 4.4
17 250 3 2
aAfter Fokkink [1993]. Channel number in the first column is indicated in Figure 9. B, width of channel; h, depth of channel; I, slope along channel.

Table 2. Statistics of the Collected Data From Dutch Wadden Sea

Friesche Zeegat 57 Friesche Zeegat 87 Vlie Eierlandse Gat Born Diep

Depth ratio at bifurcation
Mean 0.5 0.69 0.53 0.59 0.54
Standard deviation 0.08 0.25 0.06 0.12 0.13

h2

B2I
Mean 0.02 0.17 0.04 0.03 0.02
Standard deviation 0.02 0.14 0.02 0.02 0.02
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variation now, but this variation remains sufficiently small
to suggest consistency with the relationship.
[67] The validation of the numerical model using Hor-

ton’s hierarchical analysis showed that Horton’s laws are
valid for the resulting channel pattern and indicate the
branching number of the system. The same approach was
applied to field data from the Wadden Sea [Cleveringa and
Oost, 1999]. They suggest that the channel patterns can be
regarded as a dynamic equilibrium configuration because of
the similarity in branching between so many investigated
systems. It is dynamic, because, despite constant boundary
conditions, the system will change continuously. Each tidal
channel system oscillates around this equilibrium. At all
scales, deviations from the three- or four-times branching
network will result in the reestablishment of the stable
configuration, either by silting up of superfluous channels,
or by the development of new ones.
[68] Considering morphological pattern properties when

validating numerical model results is rather unusual. Model
simulations are mostly validated by comparing point values.
Yet, pattern analysis appears to be a useful addition to the
validation process, especially for models simulating general
basin morphology instead of an individual inlet.
[69] A last remark on the features formed in the numerical

model concerns the ebb-tidal delta. Despite the absence of
wind waves, the overall shape of the outer delta looks rather
realistic.
[70] While the instability mechanisms leading to self-

organization are difficult to extract from the complex
numerical model, the theoretical analysis suggests the
important parameters straightforwardly. The bed slope,
water depth and Shields parameter, which is an indication
for the morphological activity, determine the resulting
channel pattern. This is in agreement with the controlling
parameters for river networks, where the hillslope and
threshold-dependent transport phenomena were found to
be essential [Rigon et al., 1994]. Furthermore, the theoret-
ical analysis shows that curvature-induced secondary flow
has no influence on the dominant wave number and
therefore does not have to be taken into account for the
reproduction of branching channel structures using a
numerical model. The negligible influence of secondary
flow in the feedback mechanisms leading to channel shoal
formation in elongated basins was also found by Coeveld et
al. [2003; also see Hibma et al., 2004].

7. Conclusion

[71] The theoretical analysis and the Delft3D numerical
model both reliably predict key properties of branching
channel patterns in tidal basins. Hence they provide new

tools to study tidal channel networks. The theoretical
analysis shows that the branching channel pattern in a tidal
basin is governed by the morphological properties (repre-
sented by the overall bottom slope and the water depth), the
tidal flow strength and the sediment properties (together
represented by the Shields parameter). A relation between
the number of channels per unit span and these physical
parameters of the basin is found. The relation shows smaller
and more closely spaced channels for larger overall bottom
slopes, for a morphologically more active system (larger
Shields parameter) and for smaller water depths. Quantita-
tively it implies that the water depth should halve at every
bifurcation. All these features agree well with field obser-
vations and the results of the numerical model.
[72] If the initial basin hypsometry is not too far from

equilibrium, the numerical model produces a well-developed
channel pattern. The resulting channel network displays a
three-times branching behavior that is similar to the three- to
four-times branching patterns observed in the Wadden Sea
basins. Moreover, we argue that the numerical and the
analytical models agree well with each other. The pattern
analysis presented herein provides for another validation test
for numerical models of this type of phenomena, in addition
to the conventional point-by-point comparison of model
results with data.
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