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 A B S T R A C T

This paper presents a deep learning framework for analyzing on-board vibration response signals in in-
frastructure health monitoring. The proposed WaveletInception–BiGRU network uses a Learnable Wavelet 
Packet Transform (LWPT) for early spectral feature extraction, followed by one-dimensional Inception-Residual 
Network (1D Inception-ResNet) modules for multi-scale, high-level feature learning. Bidirectional Gated 
Recurrent Unit (BiGRU) modules then integrate temporal dependencies and incorporate operational conditions, 
such as the measurement speed. This approach enables effective analysis of vibration signals recorded at 
varying speeds, eliminating the need for explicit signal preprocessing. The sequential estimation head further 
leverages bidirectional temporal information to produce an accurate, localized assessment of infrastructure 
health. Ultimately, the framework generates high-resolution health profiles spatially mapped to the physical 
layout of the infrastructure. Case studies involving track stiffness regression and transition zone classification 
using real-world measurements demonstrate that the proposed framework significantly outperforms state-of-
the-art methods, underscoring its potential for accurate, localized, and automated on-board infrastructure 
health monitoring.
1. Introduction

Efficient maintenance is fundamental to the sustainability, safety, 
and cost-effectiveness of transportation infrastructure. In 2020, for 
example, maintenance and renewal for railway infrastructure in Eu-
rope amounted to e10.47 billion and e11.24 billion, respectively, 
accounting for 52% of total infrastructure-related expenditures (Euro-
pean Commission, 2023). An effective maintenance strategy heavily 
relies on its underlying monitoring techniques. Early and accurate fault 
detection is crucial for minimizing downtime, extending service life, 
and reducing overall life cycle and maintenance costs. Traditionally, 
railway infrastructure health monitoring has relied on expert visual in-
spections or deploying sensing devices in strategic locations. However, 
these methods are often time-consuming, labor-intensive, and limited 
in scale. By overcoming such challenges, vehicle-based monitoring tools 
have gained significant attention (Fernández-Bobadilla and Martin, 
2023). On-board vibration response analysis is a powerful and widely 
adopted vehicle-based monitoring technique that enables cost-effective 
and frequent health assessments across the entire infrastructure net-
work under operational conditions. In particular, in the context of 
railway track and bridge infrastructures, vibration signals collected by 
accelerometers mounted on operational vehicles offer a cost-effective 
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and scalable means of assessing infrastructure conditions (Sansiñena 
et al., 2025; Phusakulkajorn et al., 2025a).

Several approaches have been reported in the literature for the 
analysis of on-board vibration response signals (Phusakulkajorn et al., 
2023). At the core of this analysis lies feature extraction, a crucial 
step that involves identifying damage-sensitive features that can reflect 
the health status of the infrastructure. These features may be derived 
from the time and frequency domain Lederman et al. (2017), time–
frequency domain Shen et al. (2023), Lamprea-Pineda et al. (2024), 
and space–frequency domain Unsiwilai et al. (2023), with the latter 
often utilizing wavelet transforms to capture spectral information. Once 
extracted, these features are commonly fed into machine learning 
classifiers for classifying vibration signals or employed for developing 
track quality indices (Shen et al., 2023; Unsiwilai et al., 2023). While 
these approaches offer physical interpretations, they are often limited 
by the complexity of selecting the most relevant features and requiring 
experts’ experience in defining handcrafted features, which can hinder 
an automated process with high performance.

In recent years, deep learning methods for analyzing on-board 
vibration responses have gained significant attention. However, they 
still encounter key challenges. Most notably, existing approaches often 
https://doi.org/10.1016/j.engappai.2026.113976
Received 17 July 2025; Received in revised form 30 December 2025; Accepted 25 
vailable online 2 February 2026 
952-1976/© 2026 The Authors. Published by Elsevier Ltd. This is an open access ar
January 2026

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://orcid.org/0000-0003-3778-2387
https://orcid.org/0000-0001-5610-6689
https://orcid.org/0000-0001-9867-6196
mailto:r.riahisamani@tudelft.nl
https://doi.org/10.1016/j.engappai.2026.113976
https://doi.org/10.1016/j.engappai.2026.113976
http://creativecommons.org/licenses/by/4.0/


R.R. Samani et al. Engineering Applications of Artiϧcial Intelligence 168 (2026) 113976 
struggle to effectively capture the multi-scale, non-stationary character-
istics of on-board vibration signals. Wavelet-inspired neural networks 
can decompose signals into time–frequency components, presenting a 
promising solution for extracting physically meaningful features from 
this data. Nonetheless, there is currently no fully automated, super-
vised learning framework that integrates these capabilities. Moreover, 
existing deep learning frameworks overlook the incorporation of op-
erational factors, such as measurement speed, rail profile, or track 
alignment, when analyzing on-board vibration data, failing to account 
for the influence of these factors. Specifically, current methods typically 
have difficulty accommodating varying measurement speeds, which 
limits their generalization in real-world applications under diverse 
operational conditions. To address these research gaps, this paper in-
troduces a novel deep learning methodology for monitoring the health 
of railway infrastructure using on-board vibration responses. The key 
contributions of this work include:

• A WaveletInception network is proposed for extracting features 
from vibration signals. It combines a learnable wavelet transform 
with one-dimensional Inception-Residual Network (1D Inception-
ResNet) blocks to capture multi-scale information. The stem mod-
ule directly incorporates spectral information, allowing the model 
to learn meaningful kernels in the early stages of learning. In the 
deeper layers, 1D Inception-ResNet blocks extract more nuanced 
features. This approach improves both accuracy and computa-
tional efficiency compared to existing feature extraction methods.

• A feature fusion strategy is proposed to integrate operational con-
ditions, such as measurement speed, rail profile, and track align-
ment, into vibration signal analysis. These conditions strongly 
influence excitation levels, signal length, and spatial frequency 
content. To explicitly model their interaction with learned fea-
tures, a bidirectional Gated Recurrent Unit (BiGRU) module is 
introduced within the feature extraction network, enabling mid-
level fusion of operational information and bidirectional tem-
poral dependencies, thereby enabling analysis under different 
operational conditions.

• The model processes time-domain signals of varying speeds and 
lengths without preprocessing, making it broadly applicable and 
suitable for automated monitoring.

• A bidirectional sequential modeling strategy is employed in the 
estimation stage to exploit contextual information from neighbor-
ing signal segments. By leveraging bidirectional temporal depen-
dencies in on-board vibration responses, the proposed framework 
achieves more accurate infrastructure condition estimation and 
finer localized assessment compared with unidirectional recurrent 
architectures.

• The WaveletInception-BiGRU network improves estimation accu-
racy and computational cost over existing deep learning models 
for on-board vibration analysis.

The remainder of this paper is organized as follows. Section 2 
reviews related work on on-board vibration signal analysis and recent 
deep learning advances. Section 3 presents the preliminaries. Section 4 
describes the proposed model architecture. Section 5 evaluates the 
model using two case studies, including one based on real-world rail-
way measurements. Sections 6 and 7 discuss the results, summarize key 
findings, and outline future research directions.

2. Related work

Infrastructure health monitoring using on-board vibration response 
requires methodologies for extracting meaningful information from the 
vibration signals. Modal parameters, such as natural frequencies, mode 
shapes, and damping ratios, are widely recognized as damage-sensitive 
features (Yang and Yang, 2018). In addition, stiffness is often estimated 
for structural health monitoring purposes. Papers like (Quirke et al., 
2 
2017; Zhu et al., 2018) have used optimization techniques, including 
cross-entropy and adaptive regularization, to estimate railway track 
stiffness by matching vehicle–track interaction models to vibration 
data. However, these inverse identification methods are computation-
ally intensive. For instance, estimating track stiffness for a 140-meter 
segment can take up to 11 h (Quirke et al., 2017), which makes them 
impractical for (pseudo) real-time monitoring. Although advancements 
in computational power have reduced simulation times, solving inverse 
problems in railway infrastructure remains time-consuming due to the 
numerous possible parameter combinations, structural configurations, 
operational scenarios, and the distributed nature of railway tracks. This 
complexity significantly limits the feasibility of using inverse methods 
for (pseudo) real-time monitoring.

Other approaches have focused on extracting informative features 
from vibration signals for infrastructure monitoring. These features, 
often compact representations of the original signals, are mostly spec-
tral features derived from Fourier transforms (Caprioli et al., 2007), 
wavelet transforms (Shen et al., 2021, 2023; Unsiwilai et al., 2023), 
Kalman filters (Hoelzl et al., 2023), or Hilbert transforms (Malekjafar-
ian et al., 2019a), which are sensitive to structural health conditions. 
For example, features can be extracted in the time domain Mao et al. 
(2025), time–frequency (Shen et al., 2023), or space–frequency do-
main Unsiwilai et al. (2023) by employing synchro-squeezed wavelet 
transforms, and continuous wavelets transform to construct localized 
wavelet power spectra. These approaches leverage the strength of 
wavelets to localize features along the signal. Moreover, statistical 
features derived from the power spectrum in the space domain are also 
robust to spatial frequency variations, making them practical for signals 
obtained at diverse measurement speeds. These features are used as 
health condition indicators, such as track quality indices (Unsiwilai 
et al., 2023), or as inputs to machine learning models like Gaussian pro-
cess regression (Shen et al., 2023) for estimating stiffness parameters. 
Papers like (Zhang et al., 2025, 2024, 2022a; Peng et al., 2025; Kho-
dadoost et al., 2025) further discuss the challenges and opportunities of 
data-driven and machine learning approaches in vibration-signal-based 
infrastructure monitoring.

While frameworks based on feature engineering effectively capture 
the spectral characteristics of signals, they heavily rely on carefully se-
lected hyperparameters, such as window type, length, stride, and trans-
formations (e.g., using log-mel spectrograms, which apply a logarithmic 
scale to Mel-frequency features). This reliance can pose challenges, as 
these hyperparameters significantly impact analysis accuracy, compli-
cate full automation, and require time-consuming tuning (Cho et al., 
2021; Zhang et al., 2022b). Additionally, the frequency components 
extracted do not directly provide physical insights and typically ne-
cessitate further modeling or expert interpretation to connect them 
to specific structural behaviors (Unsiwilai et al., 2024; Phusakulka-
jorn et al., 2023). However, supervised deep learning methods allow 
models to learn patterns from labeled data by minimizing prediction 
errors, leading to superior performance. These models can directly 
learn features and generalize more effectively than fixed wavelet coef-
ficients, without the need for extensive fine-tuning and manual feature 
engineering.

Recent studies have increasingly investigated the use of supervised 
deep learning methodologies for monitoring the health of infrastructure 
through on-board vibration responses. These frameworks have been 
applied to various tasks related to infrastructure monitoring, including 
track stiffness estimation (Shen et al., 2023, 2021; Riahi Samani et al., 
2025; Huang et al., 2022), as instantaneous decreases in moment 
of inertia for bridge elements (Locke et al., 2020), model bridge’s 
dynamic changes due to additional weight (Hajializadeh, 2023), iden-
tification of seized bearings and cracking in the bridge beams (Corbally 
and Malekjafarian, 2024), and detecting transition zone characteris-
tics (Phusakulkajorn et al., 2025b). Due to the high performance of 
deep learning methods in terms of computational efficiency and pre-
diction accuracy, the literature indicates a growing application of these 
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techniques for on-board vibration-based monitoring (Phusakulkajorn 
et al., 2023; Zhang et al., 2025; Hajializadeh, 2023).

Deep learning frameworks for the on-board vibration signal analysis 
are typically CNN-based (Huang et al., 2022; Locke et al., 2020; Hajial-
izadeh, 2023; Corbally and Malekjafarian, 2024; Phusakulkajorn et al., 
2025c) or LSTM-based and hybrid architectures (Phusakulkajorn et al., 
2025b; Samani et al., 2024). For instance, Locke et al. (2020) utilized 
a multi-layer CNN to classify bridge damage from simulated vehicle 
vibration signals. The model input includes the frequency response 
spectrum, adjusted to a spectral resolution of 0.1 Hz, combined with 
operational conditions like ambient temperature, speed, and vehicle 
mass. Locke et al. (2020) also demonstrated the robustness of CNNs 
to environmental and operational noise. Huang et al. (2022) employed 
a dilated CNN to analyze simulated axle-box acceleration (ABA) signals 
for predicting railway track dynamic stiffness. By training models with 
three input window sizes in the time domain and with measurement 
speed variations (60–120 km/h), the approach estimates track stiff-
ness over different infrastructure lengths. The dilated CNN required 
much less computation time compared to standard CNNs without any 
significant enhanced accuracy (Huang et al., 2022). Transfer learning 
was explored in Hajializadeh (2023), which adapted GoogLeNet to 
classify vibration response spectrograms and to identify the location 
and intensity of damage. The model uses continuous wavelet transforms 
to generate time–frequency spectrograms from train-borne acceleration 
signals at varying speeds, followed by image resizing to standardize 
input dimensions for the 2-D GoogLeNet architecture, enabling the 
classification of vibration responses across different speeds. In Corbally 
and Malekjafarian (2024), an auto-calibrated vehicle–bridge interac-
tion model is proposed to generate training data for damaged bridge 
scenarios and to train a CNN to classify damage type and location. The 
frequency spectrum from a laboratory-scale vehicle–bridge interaction 
model was interpolated and resampled at 0.05 Hz intervals using a cu-
bic spline function to standardize input sizes. The algorithm accurately 
detected seized bearings and cracks in bridge beams, though crack 
location accuracy decreases at lower damage levels. In our previous 
work (Riahi Samani et al., 2025), we developed an LSTM-BiLSTM 
network to estimate track stiffness parameters from on-board vibration 
signals. The model was trained on simulated vehicle–track interactions 
at a single speed in the time domain and demonstrated accurate stiff-
ness parameter estimation. It was also highlighted that the importance 
of incorporating temporal relationships in feature extraction and health 
condition estimation architectures of deep learning models for on-board 
vibration response analysis (Riahi Samani et al., 2025).

Most deep learning frameworks, particularly those based on convo-
lutional neural networks (CNNs), require fixed input sizes. However, in 
on-board measurements, varying operational speeds result in signals of 
different lengths and spatial sampling frequencies for the same infras-
tructure segment. This necessitates preprocessing steps such as spec-
trogram generation, followed by spectrogram resizing or resampling, 
which can introduce limitations. Generating a spectrogram involves 
careful selection of hyperparameters, such as window type, length, 
and stride, all of which can influence the performance of the model. 
Additionally, the resizing or resampling of spectrograms may lead to 
information loss or the creation of synthetic data points, which can 
degrade the resolution of spectral features and affect overall accuracy. 
To address these challenges, the current paper proposes a fully auto-
mated methodology that processes data directly in the time domain. 
This approach effectively handles the variable-length inputs caused by 
different measurement speeds. Papers (Michau et al., 2022; Frusque 
and Fink, 2024) already introduced DeSpaWN and learnable wavelet 
packet transform (LWPT) networks for unsupervised high-frequency 
signal reconstruction, which can accommodate variable-length inputs. 
However, these methods do not specifically address the root cause of 
the variations, measurement speed. In contrast, our supervised learn-
ing framework not only incorporates wavelet-based analysis but also 
explicitly integrates measurement speed into the analysis.
3 
Wavelet-inspired deep learning architectures are increasingly uti-
lized to integrate spectral information into models across various fields. 
For example, Liu et al. (2019) introduced a multilevel Wavelet-CNN for 
image restoration, leveraging the Discrete Wavelet Transform for down-
sampling and the Inverse Wavelet Transform for up-sampling. In Li 
et al. (2022), WaveletKernelNet CNN architectures were proposed for 
industrial diagnosis, where a continuous wavelet convolutional layer 
replaces the first standard CNN convolutional layer. This can provide 
a physically meaningful input layer, improving training performance 
and model accuracy (Li et al., 2022). Wavelet-informed deep learning 
frameworks have been applied to a variety of tasks in several applica-
tion fields, such as ECG signal classification (bouny et al., 2020), image 
classification (Yao et al., 2022), and time series analysis (Wang et al., 
2018a). These papers demonstrate that incorporating spectral analysis 
techniques, such as wavelet transforms, can enhance deep learning 
performance by providing physically meaningful information derived 
from wavelet decompositions. In the current paper, we propose a novel 
WaveletInception which integrates spectral information in the early 
stages via an LWPT module and ensures multi-scale feature extraction 
with 1D Inception-ResNet modules. We further employ BiGRU networks 
to account for operational conditions, particularly measurement speed, 
and to capture temporal dependencies in the analysis of vibration 
response signals. Sections 3 and 4 provide methodological preliminaries 
and further details.

3. Preliminaries

3.1. Discrete wavelet transform

The wavelet transform is a powerful mathematical tool for analyzing 
signals in the time and frequency domains (Mallat, 1999). Unlike 
the Fourier transform, which provides only a frequency-domain rep-
resentation, the wavelet transform offers a multi-resolution analysis by 
decomposing signals into components at various scales. This capability 
makes it particularly effective for analyzing non-stationary signals, such 
as on-board vibration signals.

The Discrete Wavelet Transform (DWT) is a computationally effi-
cient version of the wavelet transform, widely used for signal and image 
processing. The basic operation of DWT is the convolution operation of 
a low-pass and a high-pass filter, followed by a downsampling by a 
factor of two, which can be denoted as 
{

(𝑥l)𝑛 = (𝑓 l ∗ 𝑥)2𝑛
(𝑥h)𝑛 = (𝑓 h ∗ 𝑥)2𝑛

(1)

where 𝑥l and 𝑥h correspond to the low-pass (approximation) and high-
pass (details) filtered input data with a downsampling rate of 2, 𝑓 l and 
𝑓 h are low-pass and high-pass filters, ∗ is the convolution operation, 𝑥 is 
the input signal with the signal length of 2𝑛. The perfect reconstruction 
and orthogonality property of the DWT ensure that all information is 
retained in its coefficients despite the downsampling (Liu et al., 2019; 
Mallat, 1999).

3.2. Discrete wavelet packet transform and LWPT

The Discrete Wavelet Packet Transform (WPT) provides a multi-
resolution analysis by decomposing a signal into uniform frequency 
bands through a hierarchical, tree-like structure (Mallat, 1999). At each 
level 𝐿, the signal is convolved with low-pass and high-pass filters 
(Eq. (1)), splitting the spectrum into finer sub-bands. While this process 
doubles the frequency resolution at each step, it reduces the temporal 
resolution by half. The result is a comprehensive decomposition where 
each leaf node in the WPT tree (see Fig.  1) represents a specific 
frequency interval.

The Learnable Wavelet Packet Transform (LWPT), originally intro-
duced in Michau et al. (2022), Frusque and Fink (2024), initializes its 
filters using standard DWT bases, such as Haar or Daubechies (𝑑𝑏4), 
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but refines them dynamically via backpropagation1. Unlike traditional 
WPT, which relies on fixed coefficients that may not align with the 
complex transients of railway vibrations, LWPT learns the optimal 
filter bank directly from the data. This approach leverages the perfect 
reconstruction and orthogonality of wavelets to downsample high-
frequency vibration signals without the information loss typical of 
standard pooling layers (Michau et al., 2022; Frusque and Fink, 2024). 
Furthermore, the LWPT incorporates an adaptive denoising mechanism 
that exploits coefficient sparsity; by utilizing a differentiable double 
sharp sigmoid activation function, the model applies learnable thresh-
olds to suppress stochastic noise while preserving salient structural 
transients (Michau et al., 2022). Compared to the DWT and WPT, 
this adaptive capability ensures that refined, noise-reduced mechanical 
signatures are effectively propagated through the network.

In the current paper, the LWPT module is coupled with a 1 × 1 
channel-projection layer to adapt the spectral output to a supervised 
learning framework effectively. Furthermore, the model is evaluated 
both with and without the denoising function to empirically assess the 
impact of adaptive thresholding on health-condition estimation.

3.3. 1DCNN

A Convolutional Neural Network (CNN) is a deep learning archi-
tecture designed to extract spatial and temporal features from input 
data using convolutional operations with filter banks (Aggarwal et al., 
2018). While CNNs are commonly associated with image data, their 
1D variants are particularly effective for processing sequential or time-
series data, such as vibration and audio signals. A 1D CNN operates 
on one-dimensional signals, with convolutional kernels in a filter bank 
sliding along the temporal dimension. These networks are designed to 
capture local patterns or dependencies in the input signal. This process 
generates feature maps that capture abstract representations of the 
input and highlight different aspects of the input data. The formula for 
a typical convolutional layer is 
𝑦𝑓 = conv1D(𝑊𝑓 , 𝑥) + 𝑏𝑓 (2)

where 𝑦𝑓 , 𝑊𝑓 , and 𝑏𝑓  denote the output vector, weight vector, and 
bias parameter of filter 𝑓 , respectively; 𝑥 is the input time sequence; 
and conv1D represents the one-dimensional convolution operator. The 
𝑖th output of the convolution is computed as: 

[conv1D(𝑊𝑓 , 𝑥)]𝑖 = [𝑊𝑓 ∗ 𝑥]𝑖 =
𝑁𝑓−1
∑

𝑗=0
𝑤𝑓,𝑗 ⋅ 𝑥𝑖+𝑗 (3)

where 𝑁𝑓  is the length of the filter 𝑓 , 𝑤𝑓𝑗 is the 𝑗th element of the 
vector 𝑊𝑓 , and 𝑖 is the starting index in the input for each convolution 
window.

3.4. Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs) are a streamlined variant of Re-
current Neural Networks designed to capture temporal dependencies 
while mitigating the vanishing gradient problem (Cho et al., 2014; 
Chung et al., 2014). Unlike the LSTM, the GRU achieves an efficient 
information flow using a simplified architecture that merges the forget 
and input gates into a single update gate and utilizes a reset gate to 
regulate the integration of previous hidden states.

Given an input sequence {𝑥𝑡}𝑇𝑡=1, the GRU updates its hidden state 
ℎ𝑡 at each time step 𝑡 by combining the current input 𝑥𝑡 with the 
previous hidden state ℎ𝑡−1. The update gate determines how much of 
the previous information is carried over to the current hidden state, 
while the reset gate decides how much of the past context should be 
discarded when computing the new candidate state. This mechanism 
allows the model to retain long-term dependencies effectively with 
fewer parameters than traditional LSTMs.

While a standard GRU processes data in a forward direction, a 
Bidirectional GRU (BiGRU) adds a backward pass, capturing both past 
4 
Fig. 1. Tree-like structure of the Wavelet Packet Transform (WPT).

and future signal context. This comprehensive temporal perspective is 
especially valuable for vibration-based infrastructure health monitor-
ing (Riahi Samani et al., 2025).

3.5. Multi-modal data fusion

Multi-modal data fusion combines data from different modalities, 
such as vibration signals, LiDAR, audio, and speed measurements, each 
of which provides complementary insights into the same phenomenon. 
Integrating multiple data sources can result in more robust, accurate, 
and generalizable models (Lahat et al., 2015). Existing multi-modal 
fusion methods can be categorized into three main types: feature-level 
fusion, decision-level fusion, and hybrid fusion (Lahat et al., 2015). 
Feature-level fusion entails extracting features from each modality and 
merging them into a unified representation. In contrast, decision-level 
fusion combines the outputs of separate models trained on individ-
ual modalities. Hybrid fusion integrates feature and decision levels, 
leveraging the strengths of each approach (Lahat et al., 2015).

Feature fusion is widely used across various domains to exploit 
correlations among multiple input modalities, sensors, or extracted 
features. This method leverages inherent correlations among features 
across modalities, thereby enhancing training. However, it does face 
challenges related to temporal synchronization, as features from closely 
related modalities may be sampled at different time instants (Zhang 
et al., 2019). For instance, in Dang et al. (2021), a hybrid 1D CNN-LSTM 
network is proposed that combines autoregressive features, discrete 
wavelet features, and empirical mode decomposition features from 
multiple sensors into a unified representation for model training. Sim-
ilarly, Mou et al. (2021) utilized an attention mechanism to integrate 
features extracted by a CNN-LSTM network from three distinct input 
sources: environmental data, vehicle data, and driver eye data.

In the current paper, we propose a feature-fusion approach that 
combines features from vibration-response signals and operational-
condition embeddings. We use a BiGRU layer to capture temporal 
and interrelated dependencies within the feature-extraction network, 
as explained below.

4. WaveletInception-BiGRU networks

4.1. Problem statement

Effective Structural Health Monitoring (SHM) via on-board vibra-
tion signals requires multi-resolution analysis to  identify defects across 
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various frequency bands (Shen et al., 2023; Lamprea-Pineda et al., 
2024). Standard CNNs, while excellent at spatial pattern recognition, 
lack an inherent mechanism for multi-resolution spectral decomposi-
tion, and their effectiveness in performing spectral analysis is still not 
well understood (bouny et al., 2020). Furthermore, real-world measure-
ment conditions — specifically varying measurement speeds — induce 
non-stationarity in vibration signals, leading to inconsistent excitation 
levels and varying signal lengths. Conventional preprocessing, such as 
fixed-ratio resampling or rigid resizing, often leads to information loss 
or fails to account for the physical relationship between measurement 
speed and vibration intensity. Additionally, most existing infrastructure 
health monitoring frameworks provide aggregated health indices over 
long segments (e.g., 30–200 m) (Unsiwilai et al., 2023, 2024). Such 
coarse resolution hinders localized maintenance and component-level 
defect identification.

To address these challenges, we propose the WaveletInception-
BiGRU framework, which integrates three key components: a Wavelet-
Inception module for learnable spectral decomposition and multi-scale 
feature extraction from vibration signals; a feature fusion technique to 
incorporate operational conditions; and a BiGRU network for sequential 
modeling and capturing temporal relationships. This combination en-
ables high-resolution, component-level health estimation by leveraging 
both physical and operational insights.

4.2. WaveletInception-BiGRU

The proposed architecture consists of two main stages: (I) a Wavelet-
Inception stage for multi-scale spatial feature extraction, and (II) a 
BiGRU-based temporal head for multi-modal fusion and sequential 
health conditions estimation. This design handles variable-length inputs 
while maintaining a physically meaningful relationship between the 
signal features and the infrastructure’s spatial layout. Fig.  3 shows an 
overview of the proposed WaveletInception-BiGRU networks

4.2.1. WaveletInception feature extraction networks
The WaveletInception stage serves as the primary feature extractor, 

designed to handle the high sampling rates characteristic of vibration 
signals. It comprises an LWPT followed by a channel projection layer, 
and Inception-ResNet networks.

The WaveletInception network begins with an LWPT stem that 
hierarchically decomposes the raw vibration signal into 2𝐿 sub-bands 
(where 𝐿 denotes the decomposition level). This process utilizes learn-
able high- and low-pass filters to extract multi-resolution features while 
simultaneously downsampling the temporal dimension by a factor of 
two at each level. Thanks to its orthogonality, LWPT enables high-
frequency signals to be downsampled without information loss (Michau 
et al., 2022). The filters are initialized with Discrete Wavelet Transform 
(DWT) bases, such as Haar or Daubechies db4 (Frusque and Fink, 
2024), and are then refined through backpropagation. This initializa-
tion provides a physically grounded starting point for time–frequency 
decomposition, where db4 filters, in particular, offer smoother signal 
boundary handling for zero-padded regions compared to Haar filters.

Since the diagnostic relevance of wavelet sub-bands varies signif-
icantly across different operational conditions, a 1 × 1 convolution 
layer is implemented as a learned channel projection. This layer re-
places manual sub-band selection by serving as an automated weighting 
mechanism that identifies and prioritizes the most informative spectral 
components while suppressing noisy channels. By learning these projec-
tions during training, the network adaptively optimizes the integration 
of disparate frequency information. Following this projection, two se-
quential 1D convolutional layers further refine the spatial–spectral 
features and downsample the temporal dimension. This process op-
timizes the feature density and ensures that only the most salient 
local patterns are propagated to the subsequent 1D Inception-ResNet 
backbone.
5 
Fig. 2. 1D Inception block structure.

The 1D Inception-ResNet network efficiently extracts high-level 
features from on-board vibration signals. As shown in Fig.  2, these 
blocks utilize parallel convolutional branches to capture varied signal 
patterns while leveraging residual connections to stabilize training in 
deep architectures. To minimize computational overhead, bottleneck 
layers are integrated, which effectively refine fine-grained features 
without excessive parameterization. Unlike conventional 2D models 
that require complex signal-to-image transformations, these 1D mod-
ules operate directly on the temporal axis. This not only improves 
efficiency but also ensures physical interpretability, as the learned 
filters act as adaptive digital signal processors that correspond to the 
time-domain characteristics (Borghesani et al., 2023) of the on-board 
vibration response.

The hyperparameters of the WaveletInception networks consist of 
the number of decomposition levels (𝐿) for the LWPT, the number 
of Inception-ResNet blocks, and the number of output channels of 
the convolution layers. Table  2 shows the fine-tuned WaveletInception 
networks after hyperparameter optimization for the two case studies 
conducted.

4.2.2. BiGRU networks, feature fusion and temporal modeling
Our proposed BiGRU networks consist of two BiGRU modules as 

shown in Fig.  3. First, the BiGRU module extracts bidirectional tem-
poral features from the concatenated vibration signal features and the 
operational-condition embedding, in particular, the speed embedding. 
The vibration features are the outputs of the WaveltInception net-
work, and the measurement speed is processed through a lightweight 
Multi-Layer Perceptron (MLP). This transforms the scalar speed into a 
high-dimensional speed embedding that matches the temporal length 
of the vibration features.

The first BiGRU layer fuses the vibration features with the speed em-
bedding. This layer integrates temporal dependencies into the feature-
extraction process and captures interrelationships in the concatenated 
features of the vibration signal and operational conditions, such as sig-
nal length variation and excitation level. Additionally, the BiGRU layer 
accounts for the relationships among measurement speed, signal length, 
and padding length, thereby further refining the learned features.

To achieve component-level resolution, we implement a distributed 
sampling strategy designed to extract 𝑁 feature vectors from the BiGRU 
outputs for sequential modeling. In this approach, both the value of 𝑁
and the specific indices for feature extraction are determined by the 
physical layout of the infrastructure. For instance, if an infrastructure 
segment contains 30 equidistant sleepers, 𝑁 is set to 30, and feature 
vectors are extracted at uniform intervals from the temporal sequence 
to align with the sleeper positions. This physical-temporal mapping 
ensures that each network output corresponds to a distinct structural 
component. By incorporating prior knowledge of the infrastructure 
configuration, the model maintains a one-to-one correspondence with 
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Fig. 3. Overview of the WaveletInception-BiGRU architecture, including WaveletInception vibration signal feature extraction, operational conditions feature 
fusion, and BiGRU sequential health conditions estimation.
the physical layout, thereby significantly improving the accuracy of 
high-resolution estimation. The selected feature vectors pass through 
a dropout layer before being fed into the final temporal modeling in 
the health estimation head.

Finally, these selected vectors pass through a dropout layer prior to 
temporal modeling in the health estimation head.

The second BiGRU module serves as a sequential model for the 
estimation head in monitoring infrastructure health conditions. In this 
context, sequential modeling captures spatial dependencies across a 
sequence of beams along the infrastructure, with each beam corre-
sponding to a single time step. The BiGRU layer processes the input 
at each time step and captures temporal dependencies along the se-
quences. The BiGRU outputs are passed through fully connected layers 
to map the learned representations onto specific health-condition in-
dicators, such as regression (as in Case Study I) and classification 
(as in Case Study II) tasks. This sequential modeling enables detailed 
predictions at the component level, corresponding to the structure’s 
physical layout. Consequently, this method improves the resolution of 
health condition estimations and facilitates comprehensive assessment 
of individual components, providing valuable insights for maintenance 
planning.

The proposed framework utilizes BiGRU to capture comprehensive 
temporal context by concatenating hidden states from both forward and 
backward passes. Physically, the health condition of infrastructure ele-
ments — like railway sleepers or bridge beams — is characterized not 
only by their local dynamic response but also by mechanical signatures 
propagated through adjacent components. This mechanism enables the 
model to identify complex, long-range dependencies between fused 
vibration features and operational conditions, such as the measurement 
speed. By integrating multi-modal inputs from both preceding and 
succeeding spatial steps, the BiGRU layers effectively capture the global 
context inherent in on-board vibration data. Consequently, this bidirec-
tional awareness markedly improves estimation performance relative to 
unidirectional models, which fail to incorporate future signatures from 
downstream vibration signals to refine the current health-condition 
assessment.

The hyperparameters of the temporal modeling and estimation head 
network include the size of the operational condition embedding mod-
ule, the number of BiGRU units in the BiGRU layer, the size of the fully 
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connected layers, and the dropout ratio. Table  2 shows the parameters 
fine-tuned in the two case studies.

5. Illustrative case study of railway track health monitoring

The Axle-Box Acceleration (ABA) measurement system is a cost-
effective drive-by inspection method used on operational trains to 
capture vibration signals through accelerometer sensors mounted on 
axle boxes (Phusakulkajorn et al., 2025d; Molodova et al., 2014). This 
system allows for the development of a fully automated framework to 
analyze ABA vibrations, enhancing railway infrastructure monitoring 
over time and space.

To demonstrate this methodology, we present two case studies: 
(I) railway track stiffness estimation and (II) railway transition zone 
identification. In both cases, time-domain ABA signals serve as inputs to 
our deep learning architecture, which integrates preprocessing, feature 
extraction, and estimation.

5.1. Case study I: Railway track stiffness estimation

Railway track stiffness is a key indicator of infrastructure health, 
primarily influenced by the stiffness of the ballast substructure and 
fastening components like bolts, clamps, and rail pads. Estimating the 
stiffness of these components offers insights into track condition. For 
instance, defects in railway sleepers, such as hanging sleepers or ballast 
crushing, can significantly reduce track stiffness (Shi et al., 2023).

In this paper, we use simulated ABA vibration responses to estimate 
track stiffness parameters, characterized by rail pad stiffness and ballast 
stiffness, represented as the vector 𝑘 = [𝑘p, 𝑘b]⊺.

5.1.1. Data
We simulate vehicle–track interactions over segments of 10 sleepers 

at speeds of 35 km/h, 50 km/h, 65 km/h, 80 km/h, and 90 km/h, 
under four stiffness variation scenarios. The dataset is generated us-
ing a finite-element vehicle–track interaction model implemented in 
MATLAB, where the rail and sleepers are modeled as Timoshenko beam 
elements supported by rail pads and ballast with stiffness and damping 
properties. The vehicle is represented as a wheelset with Hertzian 
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Fig. 4. The layout of the 10-sleeper track segment.

Fig. 5. Representation of the simulated ABA signals in four different measurement speeds. ABA signals obtained over the stiffness range sets R1, R2, and R3 are 
plotted in green, yellow, and red, respectively.
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Fig. 6.  Impact of local stiffness reduction on long-range ABA signal power, showing average signal power for three sleepers with stiffness range R1 reduced to 
ranges R2 (light green) and R3 (dark green), alongside original ranges R2 (yellow) and R3 (red).
contact for wheel–rail interaction. Further details on the model can be 
found in Shen et al. (2023). Fig.  4 shows a schematic of the track seg-
ment and the corresponding ABA measurements for each combination 
of speed and stiffness scenario. 

The four stiffness scenarios include:
(I) Uniform track stiffness: Normal conditions with stiffness values 

randomly sampled from either the nominal (R1) or moderate (R2) 
stiffness ranges in Table  1.

(II) Local stiffness reduction in one sleeper: Simulates a defect like 
a hanging sleeper, with stiffness values set to R3 representing varying 
fault severities.

(III) Local stiffness reduction in three sleepers: Models reduced 
support over a longer section, with values sampled uniformly from R1 
to R2 or R3.

(IV) Transition zones: Simulates stiffness variations between the two 
halves of segments, with values randomly sampled from R1 and R2.

Fig.  5 illustrates the ABA signals across stiffness ranges (R1, R2, 
R3) and speeds. Lower stiffness correlates with lower signal amplitude, 
whereas higher speeds increase signal amplitude. Fig.  6 illustrates 
the average signal power across different stiffness ranges, specifically 
in the context of localized stiffness reductions at three sleepers. The 
8 
figure focuses on stiffness range R1 while examining adjacent re-
ductions in either range R2 (light green) or range R3 (dark green). 
The figure shows that a local reduction in stiffness affects the ABA 
signals recorded in nearby sections, even when those sections remain 
within the stiffness range R1. This observation supports our choice of 
methodology: employing a sequential BiGRU-based model to capture 
long-range dependencies within the data effectively.

The dataset comprises 12500 records, with 2500 for each mea-
surement speed across different scenarios. To simulate real-world con-
ditions, Gaussian noise, modeled as ∼ 𝑁(0, 𝜎2), is added to the ABA 
signals, achieving a noise-to-signal ratio of 5%. This noise variance 
accounts for 5% of the ABA signal power, replicating measurement 
noise from environmental factors and vehicle disturbances (González 
et al., 2023; Malekjafarian et al., 2019b). The dataset is divided into 
training (70%), validation (15%), and testing (15%) sets (Bishop and 
Bishop, 2023).

5.2. Case study II: Transition zones identification using real-world data

Transition zones near viaducts, bridges, tunnels, and level cross-
ings are critical parts of railway infrastructure. They often experience 
abrupt changes in track stiffness, e.g., when shifting from ballast to 
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Fig. 7. Case Study II map, four transition zone sites selected from the Romania test ring. Maps are adapted from Google Maps 2025.
Table 1
Range of parameter values used for railpad and ballast stiffness.
 Range sets 𝑘p (N∕m) 𝑘b (N∕m)  
 R1 2.0 ⋅ 108 –  3.0 ⋅ 108 1.6 ⋅ 107 –  2.2 ⋅ 107 
 R2 1.0 ⋅ 108 –  2.0 ⋅ 108 1.0 ⋅ 107 –  1.6 ⋅ 107 
 R3 0.1 ⋅ 108 –  1.0 ⋅ 108 0.4 ⋅ 107 –  1.0 ⋅ 107 

slab track (Phusakulkajorn et al., 2025b; Wang et al., 2018b; Wang 
and Markine, 2018). These stiffness variations can lead to increased 
dynamic loads, differential settlements, and accelerated track degra-
dation, posing challenges for maintenance and safety (Wang et al., 
2018b). Accurate identification and monitoring of these zones are vital 
for the reliability of railway networks. In this case study, we apply our 
proposed framework to pinpoint regions within transition zones at a 
sleeper-level resolution, using real-world measurements of ABA signals 
collected at different speeds.

5.2.1. Data
This case study uses data from the Făurei testing ring in Romania, 

operated by the Romanian Railway Authority (AFER). ABA measure-
ments are collected over transition zones near crossing levels and 
viaducts during dynamic testing at speeds ranging from 20 km/h to 
140 km/h. Fig.  7 shows the test ring map and the four selected 
transition zones for this paper.

The ABA system on the measurement train collects 16 vibration 
responses from the two wheelsets during each round. These signals are 
extracted over 18-m track segments, focusing specifically on transition 
zones. Data from sites 1–3 are utilized for model training (85%) and 
validation (15%), totaling 7000 ABA samples. To rigorously assess 
generalization, site four is reserved as an entirely unseen test set. This 
set, comprising 107 transition-zone and 110 normal-track samples, is 
used exclusively for final evaluation and deployment. Such a separa-
tion ensures an unbiased estimate of model performance (Bishop and 
Bishop, 2023). 

Fig.  8 presents the average short-time Fourier transform (STFT) 
spectrograms of the ABA signals from three consecutive segments, 
before, during, and after the viaduct, at Site 4. The left spectrogram 
covers the interval from 1.2102 km to 1.2282 km. The middle segment 
includes the viaduct located between 1.2348 km and 1.2402 km. The 
right segment extends from 1.2462 km to 1.2642 km.
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Each spectrogram illustrates the changes in vibration frequency 
content below 100 Hz. The plots indicate that the dominant frequency 
components associated with variations in substructure stiffness are 
primarily concentrated around 10 Hz. This frequency range in the 
figures representing conditions before and after the viaduct suggests 
that changes in track stiffness can influence ABA responses over a 
distance, highlighting the presence of long-range spatial dependencies.

These findings highlight the necessity of modeling ABA signals 
as sequential data with long-range dependencies, which allows the 
learning framework to capture both localized features and their broader 
impact on the characteristics of ABA signals along the track.

5.3. Training, validation, and test design

Fixed training, validation, and test sets are used to evaluate the 
models. The mean squared error (MSE) loss for Case Study I and 
the binary cross-entropy with logits loss (BCEWithLogitsLoss) for Case 
Study II are minimized using the Adam optimizer (Kingma and Ba, 
2017). To enhance loss convergence, we implemented a learning rate 
warm-up, followed by a scheduler with a factor of 0.5 and a pa-
tience of 6. For example, Fig.  9 shows the loss convergence of the 
models on the training and validation sets in Case Study I. We tuned 
hyperparameters — including the number of layers, units, dropout 
rates, and learning rates — during the validation process. In par-
ticular, random search in Weights& Biases (Biewald, 2020) is used 
to explore 50 hyperparameter configurations for each architecture, 
efficiently covering high-dimensional spaces without the combinatorial 
cost of exhaustive grid search (Bergstra and Bengio, 2012). Table  2 
shows the configuration of the fine-tuned architectures for both case 
studies.

A systematic comparison of the proposed WaveletInception-BiGRU 
model is conducted across external baselines and its own ablations. The 
analysis mainly consists of three key components: preprocessing (stem), 
speed-data fusion, and temporal feature extraction. In the preprocess-
ing phase, several techniques are evaluated to handle variable-length 
input signals. These techniques include interpolation-based representa-
tions using the Continuous Wavelet Transform (CWT) and Short-Time 
Fourier Transform (STFT), as well as zero-padding the signals followed 
by the LWPT, STFT, and length-aware modules. For speed integration, 
two mid-level data fusion techniques, early and late fusion, are ex-
amined. Temporal feature extraction is compared across LSTM, GRU, 
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Fig. 8. Influence of the local change in track stiffness on a longer range of SFTF spectrogram in the low frequency. The viaduct is located between 1.2348 km 
and 1.2402 km.
Table 2
Wavelet–Inception–BiGRU architecture fine-tuned for Case Studies I and II.
 Network stage Output tensor size (Batch × Channels × Length)
 Case Study I Case Study II  
 Input vibration signal 32 × 1 × 16460 32 × 1 × 78150  
 LWPT stem (level 𝐿) 32 × 64 × 258 32 × 128 × 611  
 Channel projection (Conv1D, 
𝑘 = 1)

32 × 96 × 258 32 × 128 × 611  

 Conv1D1 32 × 96 × 258 32 × 96 × 306  
 Conv1D2 32 × 96 × 258 32 × 96 × 306  
 Inception–ResNet module 1 32 × 64 × 258 32 × 128 × 306  
 Inception–ResNet module 2 32 × 98 × 258 32 × 128 × 306  
 Max pooling 32 × 98 × 128 32 × 128 × 152  
 Inception–ResNet module 3 32 × 160 × 128 32 × 256 × 152  
 Inception–ResNet module 4 32 × 256 × 128 32 × 380 × 152  
 Max pooling 32 × 256 × 63 32 × 380 × 75  
 Speed fusion (channel 
concatenation)

32 × 320 × 63 32 × 444 × 75  

 Temporal modeling (BiGRU1) 32 × 256 × 63 32 × 256 × 75  
 Uniform temporal sampling 32 × 256 × 10 32 × 256 × 30  
 Temporal modeling (BiGRU2) 32 × 196 × 10 32 × 192 × 30  
 Fully connected layer 1 32 × 98 × 10 32 × 96 × 30  
 Fully connected layer 2 (output) 32 × 2 × 10 32 × 1 × 30  

BiLSTM, and BiGRU architectures. Our architecture — including a vari-
ant without auxiliary speed fusion — is benchmarked against literature 
baselines: VGG (Locke et al., 2020), LSTM-BiLSTM (Riahi Samani et al., 
2025), Laplace-Inception (Li et al., 2022), GoogLeNet (Hajializadeh, 
10 
2023), and WaveletInception networks. Variants of LWPT, including 
Haar-WaveletInception and db4-WaveletInception, with and without 
the denoising module, are explored. Optimal hyperparameters are se-
lected via validation, and test set performance is reported. For repro-
ducibility, code is available on GitHub (Riahi Samani et al., 2025). 
The Case Study I dataset is available online (Samani, 2025); the Case 
Study II dataset is proprietary but available upon request from the 
corresponding author.

5.4. Results

Our analysis of the proposed model architecture begins with the 
stem module, which handles data preprocessing. This step is essential 
for analyzing drive-by vibration signals measured at different speeds, 
as varying signal lengths pose challenges for deep learning methods—
particularly for CNNs, which require fixed-size inputs. To address this 
issue, Table  3 compares four preprocessing strategies: resizing the Con-
tinuous Wavelet Transform (CWT) and the Short-Time Fourier Trans-
form (STFT) spectrograms to a standard size, zero-padding followed 
by the STFT, zero-padding followed by the LWPT stem module, and 
zero-padding combined with masking and length-aware components. 
The proposed zero-padding-based LWPT preprocessing achieves the 
best performance, yielding the lowest overall mean absolute percentage 
error (MAPE) of 5.56% in Case Study I and the highest classification 
accuracy of 93.29% in Case Study II. The length-aware LWPT variant 
ranks second, with an overall MAPE of 6.41% in Case Study I and an 
accuracy of 91.78% in Case Study II. In contrast, zero-padding followed 
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Table 3
Comparison of data preprocessing strategies for handling variable-length vibration signals in the proposed framework.
 Model types Case Study 1 (MAPE %) Case Study 2 (Classification %)
 𝑘p 𝑘b Overall Prec. F1 Recall Acc.  
 CWT – resizing 8.94 3.42 6.18 78.82 85.61 95.19 87.91  
 STFT – resizing 9.85 3.62 6.73 77.28 83.31 93.73 85.96  
 Padding – STFT 9.67 4.07 6.87 69.75 74.88 79.97 84.78  
 Padding – LWPT (Length-aware) 9.08 3.75 6.41 81.05 87.39 97.43 91.78  
 Padding – LWPT (ours) 7.94 3.17 5.56 82.60 89.80 98.37 93.29  
Table 4
Impact of the learnable signal denoising module on LWPT performance.
 Model type Case Study 1 (MAPE %) Case Study 2 (Classification %)
 𝑘p 𝑘b Overall Prec. F1 Recall Acc.  
 Haar 9.68 3.78 6.73 74.19 80.19 88.47 87.91  
 db4 8.41 3.39 5.90 74.48 82.41 92.24 88.19  
 Haar + Denoising 8.89 3.43 6.16 76.78 83.66 91.89 89.23  
 db4 + Denoising (ours) 7.94 3.17 5.56 82.60 89.80 98.37 93.29  
Fig. 9. Training and validation Loss convergence for the proposed model and 
baselines.

by STFT exhibits the weakest performance, with the highest overall 
MAPE of 6.87 in Case Study I and the lowest accuracy of 84.78% in 
Case Study II.

Table  4 analyzes the performance of different LWPT configurations 
with and without the learnable denoising module. The proposed db4-
based LWPT with denoising achieves the best performance, yielding 
the lowest overall MAPE of 5.56% in Case Study I and the highest 
accuracy of 93.23% in Case Study II. Removing the denoising module 
degrades performance, with the db4 wavelet reaching an overall MAPE 
of 5.90% and an accuracy of 88.19%. Haar-based configurations show 
consistently higher estimation errors and lower classification accuracy, 
with the non-denoising Haar variant exhibiting an overall MAPE of 
6.73% and an accuracy of 87.91%.

Table  5 compares the proposed framework with existing baseline 
models across both case studies. For a fair comparison with baseline 
feature extractors, the WaveletInception–BiGRU model without speed 
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fusion is considered. This model achieves the best overall performance 
among all compared methods, with an overall MAPE of 6.09% in Case 
Study I and an accuracy of 91.53% in Case Study II. The WaveletIncep-
tion model, corresponding to our variant without recurrent temporal 
modeling, follows with an overall MAPE of 6.46% and an accuracy 
of 90.32%. Among other deep learning baselines, GoogLeNet (Hajial-
izadeh, 2023) exhibits the strongest performance, achieving an overall 
MAPE of 7.47% and an accuracy of 88.93%, followed by the Laplace–
Inception model (Lamprea-Pineda et al., 2024) with an overall MAPE 
of 8.72% and an accuracy of 86.49%. LSTM-based (Riahi Samani et al., 
2025) and VGG (Locke et al., 2020) models rank lower, respectively, 
with overall MAPEs of 10.56% and 13.08% and accuracies of 81.03% 
and 78.77%, respectively.

Table  6 presents the computational efficiency of the proposed 
framework compared with baseline models. The WaveletInception–
BiGRU model achieves a balanced trade-off between model size and 
inference speed. It requires only 1.01 M and 1.20 M parameters for 
Case Study I and Case Study II, respectively, making it substantially 
lighter than GoogLeNet (Hajializadeh, 2023), which has a comparable 
accuracy. In terms of inference time per sample, the WaveletInception-
BiGRU model ranks in the middle, slightly slower than the Wavelet-
Inception and Laplace–Inception (Li et al., 2022) models. However, 
WaveletInception-BiGRU, with 0.99 and 3.14 ms, respectively, in Case 
Study I and II, remains significantly faster than GoogLeNet (Hajial-
izadeh, 2023) and LSTM Network (Riahi Samani et al., 2025) models.

To incorporate operational conditions such as measurement speed, 
two mid-level fusion strategies, early and late, are evaluated. In early 
fusion, the encoded speed tensor is concatenated with vibration signal 
features before processing by the 1D Inception-ResNet modules for 
deep feature extraction. In late fusion, this concatenation occurs after 
high-level vibration features are extracted, as designed in our proposed 
architecture. Table  7 compares six fusion designs, including CNN-, 
BiLSTM-, and BiGRU-based speed fusion modules. The proposed late 
BiGRU-based fusion achieves the best overall performance, with the 
lowest overall MAPE of 5.56% in Case Study I and the highest accuracy 
of 93.29% in Case Study II. The late BiLSTM-based fusion is the 
second-best configuration, achieving an overall MAPE of 5.81% and an 
accuracy of 91.52%. These results indicate that late fusion consistently 
outperforms early fusion, while BiGRU-based designs provide addi-
tional performance gains. In contrast, CNN-based fusion approaches 
exhibit the lowest performance across both fusion stages, with overall 
MAPE exceeding 6.49% and accuracy below 85.41%, highlighting their 
limited ability to capture temporal dependencies and fuse auxiliary 
speed information.

We further evaluate the performance of LSTM- and GRU-based 
modules for capturing temporal dependencies in our model architec-
ture. Table  8 compares LSTM, GRU, BiLSTM, and BiGRU networks for 
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Table 5
Performance comparison of the proposed framework against state-of-the-art baseline models.
 Model types Case Study 1 (MAPE %) Case Study 2 (Classification %)
 𝑘p 𝑘b Overall Prec. F1 Recall Acc.  
 VGG (Locke et al., 2020) 18.88 7.28 13.08 62.82 69.27 78.19 78.77  
 LSTM Network (Riahi Samani et al., 2025) 15.10 6.02 10.56 67.19 72.06 80.29 81.03  
 Laplace-Inception (Li et al., 2022) 12.33 5.11 8.72 72.38 79.79 88.88 86.49  
 GoogLeNet (Hajializadeh, 2023) 11.17 3.76 7.47 77.82 82.67 92.17 88.93  
 WaveletInception 9.07 3.84 6.46 76.89 86.93 97.41 90.32  
 WaveletInception-BiGRU (ours, without speed fusion) 8.64 3.54 6.09 81.22 88.56 98.02 91.53  
Table 6
Comparison of computational efficiency and model size between the proposed framework and baseline models from the literature.
 Model types Case Study 1 Case Study 2
 Time (ms) Model size (M) Time (ms) Model size (M) 
 VGG (Locke et al., 2020) 3.09 2.23 4.69 2.69  
 LSTM Network (Riahi Samani 
et al., 2025)

6.69 2.88 7.70 3.32  

 Laplace-Inception (Li et al., 
2022)

2.16 2.1 2.46 2.29  

 GoogLeNet (Hajializadeh, 
2023)

2.93 6.45 8.27 5.61  

 WaveletInception 0.93 1.25 2.24 1.65  
 WaveletInception-BiGRU (ours, 
without speed fusion)

0.99 1.01 3.14 1.2  
Table 7
Ablation study of six fusion modules for incorporating measurement speed as auxiliary information in the proposed 
WaveletInception-BiGRU model.
 Model types Case Study 1 (MAPE %) Case Study 2 (Classification)
 𝑘p 𝑘b Overall Prec. F1 Recall Acc.  
 Early CNN-based 9.63 3.86 6.74 70.86 76.02 82.57 83.84  
 Early BiLSTM-based 8.91 3.69 6.30 76.03 82.87 93.44 87.67  
 Early BiGRU-based 8.67 3.63 6.15 77.55 85.29 95.69 89.18  
 Late CNN-based 9.24 3.74 6.49 71.67 77.75 84.95 85.41  
 Late BiLSTM-based 8.28 3.35 5.81 78.96 87.61 98.09 91.52  
 Late BiGRU-based (ours) 7.94 3.17 5.56 82.60 89.80 98.37 93.29  
Table 8
Ablation study comparing unidirectional and bidirectional GRU and LSTM networks for temporal feature extraction in the proposed 
WaveletInception-BiGRU model.
 Model types Case Study 1 (MAPE %) Case Study 2 (Classification %)
 𝑘p 𝑘b Overall Size (M) Prec. F1 Recall Acc. Size (M) 
 LSTM 9.38 4.08 6.73 1.11 68.87 76.84 90.29 85.61 1.30  
 BiLSTM 8.28 3.35 5.81 1.22 78.96 87.61 98.09 91.52 1.57  
 GRU 8.97 3.66 6.31 1.02 73.13 82.34 94.21 87.88 1.26  
 BiGRU (ours) 7.94 3.17 5.56 1.03 82.60 89.80 98.37 93.29 1.41  
temporal feature extraction. The BiGRU model achieves the best overall 
results, with the lowest MAPE of 5.56% in Case Study I and the highest 
accuracy of 93.29% in Case Study II. BiLSTM follows, with an overall 
MAPE of 5.81% and an accuracy of 91.52%, outperforming its unidi-
rectional counterpart. Among unidirectional models, GRU outperforms 
LSTM, with a MAPE of 6.31% versus 6.73% and an accuracy of 87.88% 
versus 85.61%. Bidirectional variants introduce only a modest increase 
in the number of parameters while consistently improving performance 
over unidirectional architectures.

We evaluate the proposed WI-BiGRU model for estimating track 
stiffness variations under four scenarios in Case Study I. Table  9 sum-
marizes the RMSE and MAPE for both 𝑘p and 𝑘b. The WI-BiGRU model 
achieves the best results in the uniform stiffness scenario, with MAPEs 
of 5.11 for 𝑘p and 1.86% for 𝑘b. The most challenging case is the 
single-sleeper stiffness drop, which results in the highest errors (overall 
MAPE of 7.81%). The three-sleeper drop scenario yields moderate 
performance (overall MAPE of 6.19%), while transition-zone changes 
are estimated more accurately (overall MAPE of 4.56%). Across all 
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scenarios, the model finds 𝑘p harder to estimate than 𝑘b, with overall 
MAPEs of 7.94% and 3.17%, respectively.

Fig.  10 shows examples of railpad and ballast stiffness estimations 
compared to their ground truth values. The blue lines represent the 
ground truth, while the orange lines represent the model’s estimations. 
These examples illustrate the model’s capability to estimate both pa-
rameters under various scenarios, including uniform stiffness, localized 
reductions, and transition zones.

Furthermore, we evaluate the WI-BiGRU performance for the tran-
sition zone identification in Case Study II. Table  10 summarizes the 
model’s performance in identifying sleepers on the normal track and 
above the viaduct at Site 4 in Case Study II. The model achieves an 
overall accuracy of 93.29% in both scenarios, demonstrating high and 
balanced classification performance. For the viaduct stiffness scenario, 
the model achieves 82.60% precision, 98.37% recall, and 89.80% F1-
score, indicating strong detection of transition-zone sleepers with min-
imal false negatives. In the normal track scenario, the model achieves 
a precision of 99.24%, a recall of 91.12%, and an F1-score of 95.00%, 
reflecting reliable identification with few false positives.
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Table 9
WI-BiGRU estimation accuracy performance across four track stiffness scenarios (Case Study I).
 Case Study I Scenarios 𝑘p 𝑘b Overall MAPE (%) 
 RMSE (MN/m) MAPE (%) RMSE (MN/m) MAPE (%)  
 (I) Uniform 15.29 5.11 0.65 1.86 3.36  
 (II) Drops in 1 sleeper 21.99 10.76 1.81 4.66 7.81  
 (III) Drops in 3 sleepers 19.34 8.98 1.22 3.41 6.19  
 (IV) Transition zone changes 17.01 6.62 0.86 2.54 4.56  
 All scenarios 18.21 7.94 1.13 3.17 5.56  
Table 10
WaveletInception-BiGRU model estimation accuracy performance on the track 
transition zone identification (Case Study II).
 Scenarios Prec. (%) Recall (%) F1 (%) Accuracy (%) 
 (I) Normal Track Stiffness 99.24 91.12 95.00 93.29  
 (II) Viaduct Stiffness 82.60 98.37 89.80 93.29  

6. Discussion

This paper presents two case studies demonstrating the effectiveness 
of the WaveletInception-BiGRU deep learning framework for on-board 
vibration response analysis. Our model outperforms four external base-
line models and its own ablations in both track stiffness estimation 
and railway transition zone identification. In the first case study, the 
WaveletInception-BiGRU model achieves a MAPE of 7.94% for railpad 
stiffness and 3.17% for ballast stiffness across different scenarios of 
track stiffness reduction (see Table  9). In the second case study, it yields 
an accuracy of 93.29% for transition zone identification (see Table  10). 
Compared to baseline models in the literature, our framework demon-
strates notable accuracy (see Table  5) and computational efficiency (see 
Table  6), supported by insights from our ablation studies (see Tables 
3–4 and Tables  7–8).

At the core of the proposed architecture is the WaveletInception 
network, which integrates an LWPT stem with 1D Inception-ResNet 
blocks. The LWPT stem decomposes input vibration signals into multi-
resolution components while preserving all original signal information 
due to its orthogonality. This decomposition provides physically in-
formative features in the early stages of the network and enables 
downsampling without information loss.

The results in Table  3 demonstrate that the proposed LWPT-based 
stem module significantly outperforms conventional preprocessing
techniques. Standard resizing techniques, such as those used for CWT 
and STFT, rely on interpolation and averaging, which introduce non-
physical values and spectro-temporal decimation. This resolution loss 
is particularly detrimental in rail health monitoring, where accurately 
localized, transient signatures — such as rail squats or fastening failures 
— are obscured by the smoothing effects of frequency-bin averaging 
and reduced temporal resolution.

Furthermore, the LWPT stem addresses the critical challenge of 
handling variable signal lengths via zero padding. While essential 
for CNN-based deep learning architectures, padding often introduces 
artificial discontinuities and spectral leakage, leading to the degraded 
performance observed in STFT-based preprocessing (Accuracy: 84.78%; 
MAPE: 6.87%). In contrast, the proposed LWPT stem mitigates these 
artifacts through multi-resolution analysis, adaptively resolving fre-
quency components without the constraints of rigid windowing. Specif-
ically, utilizing 𝑑𝑏4 filters over the Haar variant proves superior; the 
higher-order 𝑑𝑏4 wavelets provide smoother boundary transitions, ef-
fectively distributing padding-induced distortions and allowing the 
model to isolate the low-frequency features essential for accurate defect 
mapping.

Empirical evidence (Table  4) also highlights the effectiveness of the 
employed learnable denoising function (Michau et al., 2022). Given 
that stochastic noise is inherent in real-world vibration data, these 
results suggest that integrating adaptive thresholding directly into the 
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architectural stem is more effective than static preprocessing (no de-
noising).

Since not all frequency decomposition bins of the LWPT are equally 
relevant for the subsequent deeper layer, our analysis showed the 
significance of a channel projection layer to adapt the LWPT for a 
supervised deep learning architecture effectively. This can boost the 
architecture to prioritize frequency decompositions, which are more 
informative for the task-specific monitoring. However, a primary lim-
itation of the current LWPT implementation is its sequential recursive 
structure, which precludes parallel computation across nodes. As the 
decomposition depth 𝐿 increases, the exponential growth of the num-
ber of nodes (2𝐿) can significantly increase computational overhead. 
Furthermore, a physical interpretation of our stem module, particularly 
the LWPT and its channel projection layer, remains an open question 
for future research.

The WaveletInception network offers both representational and 
computational benefits for vibration-based feature extraction. It inte-
grates spectral information directly into the deep learning architecture. 
The 1D Inception–Residual network has multi-scale parallel branches 
that capture informative patterns across temporal scales, essential for 
track condition monitoring (Shen et al., 2023; Lamprea-Pineda et al., 
2024; Shen et al., 2021). The Inception-ResNet blocks use filters of 
varying sizes to extract multi-scale, high-level features from the outputs 
of the stem module.

Moreover, the residual connections support stable learning and an 
efficient gradient flow, helping deeper models converge and avoid 
degradation. Bottleneck convolutions further reduce parameter count 
and computational cost while preserving discriminative power.

The proposed 1D convolutional network avoids the computational 
overhead of 2D convolutions over time–frequency representations (see 
Table  6). This design not only reduces processing time but also can 
preserve the physical interpretability of the extracted features, as they 
remain closely linked to the original signal. While 2D networks (Ha-
jializadeh, 2023) can capture complex time–frequency interactions, 
their features are often more abstract and computationally demanding. 
Indeed, they convolve over frequency bins, which may not be physically 
interpretable. By focusing on 1D convolutions, the WaveletInception-
BiGRU model can achieve an efficient balance between performance, 
interpretability, and computational cost.

The proposed framework leverages Bi-directional Gated Recurrent 
Unit (BiGRU) layers to model the long-range temporal dependencies 
inherent in on-board vibration responses. As shown in Table  8 and 
motivated by Figs.  6- 8, the inclusion of bidirectional context is critical 
for capturing interrelated dependencies between measurement speed, 
excitation levels, and modal characteristics. By processing the signal 
in both forward and backward paths, the architecture captures the 
neighboring context of vibrations, which is essential for the accurate 
health-condition estimation of individual infrastructure components.

The proposed BiGRU-based architecture captures the relationships 
between onboard vibrations and operational-condition embeddings. As 
shown in Table  7, the late-fusion BiGRU strategy significantly out-
performs CNN and LSTM counterparts, particularly in the real-world 
scenarios of Case Study II (93.29% accuracy). This advantage arises 
from the BiGRU’s ability to effectively model interactions between 
speed embeddings and spectral features extracted by the WaveletIncep-
tion network. By capturing bidirectional temporal dependencies, the 
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Fig. 10. WI-BiGRU model predictions on the Case Study I test set. Ground-truth values are shown in blue, and model estimates in orange.
network adaptively manages variable signal lengths, mitigates zero-
padding artifacts, and adjusts the extracted vibration features under 
operational conditions, ensuring consistent health-condition estima-
tion. Furthermore, the high precision observed in Case Study II, which 
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includes environmental noise and sensor interference typical of real-
world conditions, demonstrates the framework’s practical robustness. 
While this paper confirms the model’s reliability across diverse op-
erational conditions, future work should systematically stress-test the 
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model under extreme signal-to-noise ratios to further assess the noise 
robustness of our proposed model architecture.

A distinctive feature of our architecture is the distributed temporal-
sampling strategy that generates 𝑁 feature vectors for the correspond-
ing 𝑁 structural beams. Recurrent models, such as LSTM and GRU mod-
ules, often employ a many-to-one architecture, collapsing the entire 
sequence into a single terminal hidden state (the last time step). This 
can create an information bottleneck, particularly for high-resolution 
vibration signals, in which local transient features are lost during global 
compression. In contrast, our strategy performs distributed selection 
across the temporal dimension, maintaining a direct mapping between 
features and the physical, spatial distribution of the target component 
within the infrastructure.

This hierarchical sequence modeling approach offers significant 
practical advantages for on-board monitoring. By selecting 𝑁 equidis-
tant points in the temporal domain, the model effectively aligns with 
the physical layout of the infrastructure without requiring high
-precision spatial positioning. This is particularly advantageous when 
measurement speed varies; while precise GPS-based positioning be-
comes challenging under fluctuating speeds, the number of structural 
targets within a segment remains constant. Consequently, the dis-
tributed sampling preserves temporally localized features and global 
context, enabling finer localized health assessments while mitigating 
the representation loss inherent in standard length-aware or packing-
based sequence modules (see Table  3).

By processing vibration responses directly in the time domain, 
the proposed architecture eliminates the necessity for manual fea-
ture engineering. Unlike traditional diagnostic frameworks that rely 
on hand-crafted statistical or spectral indicators, the proposed stem 
module enables the network to automatically derive sensitive features 
directly from vibration signals collected at varying speeds. This process 
is further enhanced by the BiGRU-based integration of operational 
data, which facilitates the internal modeling of vibration signatures 
across varying speed profiles. Consequently, this end-to-end approach 
establishes a fully automated monitoring system that maintains high 
diagnostic precision despite fluctuations in measurement speed.

The WI-BiGRU model demonstrates high precision across all sce-
narios in Case Study I (Table  9), though performance varies with the 
localization of defects. While the overall MAPE is 5.56%, the highest 
misestimation occurs in Scenario (II) (single sleeper drop), where the 
𝑘p error reaches 10.76%. This indicates that highly localized, tran-
sient stiffness changes are more difficult to isolate than the sustained 
signatures found in 3-sleeper drops or transition zones. Furthermore, 
rail pad stiffness (𝑘p) exhibits higher error rates than ballast stiffness 
(𝑘b), likely because 𝑘b has a more dominant influence on the global 
track vibration response. In Case Study II (Table  10), the model ac-
curately identifies transition zones but reveals a lower precision for 
the viaduct stiffness class (82.60%). This suggests that some normal 
sleepers near the transition boundary are misclassified as viaduct sleep-
ers due to mechanical coupling and boundary blurring across different 
track structures. These findings indicate that, although the model is 
highly effective for mapping structural conditions, its sensitivity can 
still be improved for single-point defects and boundary regions. 

The dataset in Case Study I is based on a vehicle–track interaction 
model from Shen et al. (2023) to demonstrate our deep learning frame-
work. Simulated drive-by responses may not capture all real-world 
environmental and operational factors. Phenomena like weld effects, 
temperature changes in rail stiffness, and rail neutral temperature are 
not modeled. The simulation uses a single vehicle–track setup, while 
real railways have varying profiles, welds, fastenings, sleepers, and 
structures that could affect results (Shen et al., 2023). Case Study II 
shows that our framework can identify transition zones in real-world 
conditions. Transition zones may exhibit additional degradation mech-
anisms, such as ballast fouling and differential settlement, suggesting 
that expanding the model to include additional health indicators, such 
as track geometry degradation and differential settlement, is essential 
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for future research. Additionally, the framework can also be applied to 
various track types, including ballast and ballastless tracks, and broader 
transportation infrastructure, such as railway and road bridges and 
tunnels.

7. Conclusions and future work

In this paper, we have proposed a novel deep learning frame-
work, Wavelet-Inception-BiGRU, for estimating infrastructure health 
condition monitoring using onboard vibration signals. The core of our 
methodology is a new feature-extraction network, called WaveletIncep-
tion, that integrates a Learnable Wavelet Packet Transform (LWPT) 
and 1D Inception-ResNet blocks to effectively extract multi-scale, high-
level representations from vibration signals. Furthermore, the feature 
extraction network incorporates operational conditions, in particular 
measurement speed, through feature-level fusion with a bidirectional 
Gated Recurrent Unit (BiGRU) layer. This enables the model to learn 
interrelated features across different measurement conditions. For the 
health condition estimation head, we have proposed a sequential model 
using BiGRU networks. The model leverages temporal information from 
both the forward and backward directions of on-board measurements. 
Additionally, the sequential modeling approach enables more detailed 
estimation at the beam or component level, enabling comprehensive 
assessments of different segments of infrastructure.

Future research will focus on three main directions. First, this 
paper is one of the first to include operational conditions of on-board 
vibration response in a deep learning model. The BiGRU layer captures 
temporal dependencies and fuses vibration and operational data. In the 
future, other temporal encoders, like attention mechanisms, can be ex-
plored to improve feature extraction. Second, our results show that the 
proposed model works well for health indicators with low-frequency 
features. Next, the framework can be adapted for high-frequency ap-
plications, such as defect detection in superstructures and rails, using 
advanced sensors like laser Doppler vibrometers. Third, to support 
large-scale, automated, cloud-based monitoring, future research will 
systematically test the framework’s stability when signal-to-noise ratios 
and operational conditions vary.
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