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This paper presents a deep learning framework for analyzing on-board vibration response signals in in-
frastructure health monitoring. The proposed WaveletInception-BiGRU network uses a Learnable Wavelet
Packet Transform (LWPT) for early spectral feature extraction, followed by one-dimensional Inception-Residual
Network (1D Inception-ResNet) modules for multi-scale, high-level feature learning. Bidirectional Gated
Recurrent Unit (BiGRU) modules then integrate temporal dependencies and incorporate operational conditions,
such as the measurement speed. This approach enables effective analysis of vibration signals recorded at
varying speeds, eliminating the need for explicit signal preprocessing. The sequential estimation head further
leverages bidirectional temporal information to produce an accurate, localized assessment of infrastructure
health. Ultimately, the framework generates high-resolution health profiles spatially mapped to the physical
layout of the infrastructure. Case studies involving track stiffness regression and transition zone classification
using real-world measurements demonstrate that the proposed framework significantly outperforms state-of-
the-art methods, underscoring its potential for accurate, localized, and automated on-board infrastructure
health monitoring.

1. Introduction and scalable means of assessing infrastructure conditions (Sansifiena

et al., 2025; Phusakulkajorn et al., 2025a).

Efficient maintenance is fundamental to the sustainability, safety,
and cost-effectiveness of transportation infrastructure. In 2020, for
example, maintenance and renewal for railway infrastructure in Eu-
rope amounted to €10.47 billion and €11.24 billion, respectively,
accounting for 52% of total infrastructure-related expenditures (Euro-
pean Commission, 2023). An effective maintenance strategy heavily
relies on its underlying monitoring techniques. Early and accurate fault
detection is crucial for minimizing downtime, extending service life,
and reducing overall life cycle and maintenance costs. Traditionally,
railway infrastructure health monitoring has relied on expert visual in-
spections or deploying sensing devices in strategic locations. However,
these methods are often time-consuming, labor-intensive, and limited
in scale. By overcoming such challenges, vehicle-based monitoring tools
have gained significant attention (Ferndndez-Bobadilla and Martin,
2023). On-board vibration response analysis is a powerful and widely
adopted vehicle-based monitoring technique that enables cost-effective
and frequent health assessments across the entire infrastructure net-
work under operational conditions. In particular, in the context of
railway track and bridge infrastructures, vibration signals collected by
accelerometers mounted on operational vehicles offer a cost-effective
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Several approaches have been reported in the literature for the
analysis of on-board vibration response signals (Phusakulkajorn et al.,
2023). At the core of this analysis lies feature extraction, a crucial
step that involves identifying damage-sensitive features that can reflect
the health status of the infrastructure. These features may be derived
from the time and frequency domain Lederman et al. (2017), time—
frequency domain Shen et al. (2023), Lamprea-Pineda et al. (2024),
and space-frequency domain Unsiwilai et al. (2023), with the latter
often utilizing wavelet transforms to capture spectral information. Once
extracted, these features are commonly fed into machine learning
classifiers for classifying vibration signals or employed for developing
track quality indices (Shen et al., 2023; Unsiwilai et al., 2023). While
these approaches offer physical interpretations, they are often limited
by the complexity of selecting the most relevant features and requiring
experts’ experience in defining handcrafted features, which can hinder
an automated process with high performance.

In recent years, deep learning methods for analyzing on-board
vibration responses have gained significant attention. However, they
still encounter key challenges. Most notably, existing approaches often
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struggle to effectively capture the multi-scale, non-stationary character-
istics of on-board vibration signals. Wavelet-inspired neural networks
can decompose signals into time-frequency components, presenting a
promising solution for extracting physically meaningful features from
this data. Nonetheless, there is currently no fully automated, super-
vised learning framework that integrates these capabilities. Moreover,
existing deep learning frameworks overlook the incorporation of op-
erational factors, such as measurement speed, rail profile, or track
alignment, when analyzing on-board vibration data, failing to account
for the influence of these factors. Specifically, current methods typically
have difficulty accommodating varying measurement speeds, which
limits their generalization in real-world applications under diverse
operational conditions. To address these research gaps, this paper in-
troduces a novel deep learning methodology for monitoring the health
of railway infrastructure using on-board vibration responses. The key
contributions of this work include:

» A WaveletInception network is proposed for extracting features
from vibration signals. It combines a learnable wavelet transform
with one-dimensional Inception-Residual Network (1D Inception-
ResNet) blocks to capture multi-scale information. The stem mod-
ule directly incorporates spectral information, allowing the model
to learn meaningful kernels in the early stages of learning. In the
deeper layers, 1D Inception-ResNet blocks extract more nuanced
features. This approach improves both accuracy and computa-
tional efficiency compared to existing feature extraction methods.
A feature fusion strategy is proposed to integrate operational con-
ditions, such as measurement speed, rail profile, and track align-
ment, into vibration signal analysis. These conditions strongly
influence excitation levels, signal length, and spatial frequency
content. To explicitly model their interaction with learned fea-
tures, a bidirectional Gated Recurrent Unit (BiGRU) module is
introduced within the feature extraction network, enabling mid-
level fusion of operational information and bidirectional tem-
poral dependencies, thereby enabling analysis under different
operational conditions.

The model processes time-domain signals of varying speeds and
lengths without preprocessing, making it broadly applicable and
suitable for automated monitoring.

A bidirectional sequential modeling strategy is employed in the
estimation stage to exploit contextual information from neighbor-
ing signal segments. By leveraging bidirectional temporal depen-
dencies in on-board vibration responses, the proposed framework
achieves more accurate infrastructure condition estimation and
finer localized assessment compared with unidirectional recurrent
architectures.

The WaveletInception-BiGRU network improves estimation accu-
racy and computational cost over existing deep learning models
for on-board vibration analysis.

The remainder of this paper is organized as follows. Section 2
reviews related work on on-board vibration signal analysis and recent
deep learning advances. Section 3 presents the preliminaries. Section 4
describes the proposed model architecture. Section 5 evaluates the
model using two case studies, including one based on real-world rail-
way measurements. Sections 6 and 7 discuss the results, summarize key
findings, and outline future research directions.

2. Related work

Infrastructure health monitoring using on-board vibration response
requires methodologies for extracting meaningful information from the
vibration signals. Modal parameters, such as natural frequencies, mode
shapes, and damping ratios, are widely recognized as damage-sensitive
features (Yang and Yang, 2018). In addition, stiffness is often estimated
for structural health monitoring purposes. Papers like (Quirke et al.,
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2017; Zhu et al., 2018) have used optimization techniques, including
cross-entropy and adaptive regularization, to estimate railway track
stiffness by matching vehicle-track interaction models to vibration
data. However, these inverse identification methods are computation-
ally intensive. For instance, estimating track stiffness for a 140-meter
segment can take up to 11 h (Quirke et al., 2017), which makes them
impractical for (pseudo) real-time monitoring. Although advancements
in computational power have reduced simulation times, solving inverse
problems in railway infrastructure remains time-consuming due to the
numerous possible parameter combinations, structural configurations,
operational scenarios, and the distributed nature of railway tracks. This
complexity significantly limits the feasibility of using inverse methods
for (pseudo) real-time monitoring.

Other approaches have focused on extracting informative features
from vibration signals for infrastructure monitoring. These features,
often compact representations of the original signals, are mostly spec-
tral features derived from Fourier transforms (Caprioli et al., 2007),
wavelet transforms (Shen et al., 2021, 2023; Unsiwilai et al., 2023),
Kalman filters (Hoelzl et al., 2023), or Hilbert transforms (Malekjafar-
ian et al., 2019a), which are sensitive to structural health conditions.
For example, features can be extracted in the time domain Mao et al.
(2025), time—frequency (Shen et al., 2023), or space-frequency do-
main Unsiwilai et al. (2023) by employing synchro-squeezed wavelet
transforms, and continuous wavelets transform to construct localized
wavelet power spectra. These approaches leverage the strength of
wavelets to localize features along the signal. Moreover, statistical
features derived from the power spectrum in the space domain are also
robust to spatial frequency variations, making them practical for signals
obtained at diverse measurement speeds. These features are used as
health condition indicators, such as track quality indices (Unsiwilai
et al., 2023), or as inputs to machine learning models like Gaussian pro-
cess regression (Shen et al., 2023) for estimating stiffness parameters.
Papers like (Zhang et al., 2025, 2024, 2022a; Peng et al., 2025; Kho-
dadoost et al., 2025) further discuss the challenges and opportunities of
data-driven and machine learning approaches in vibration-signal-based
infrastructure monitoring.

While frameworks based on feature engineering effectively capture
the spectral characteristics of signals, they heavily rely on carefully se-
lected hyperparameters, such as window type, length, stride, and trans-
formations (e.g., using log-mel spectrograms, which apply a logarithmic
scale to Mel-frequency features). This reliance can pose challenges, as
these hyperparameters significantly impact analysis accuracy, compli-
cate full automation, and require time-consuming tuning (Cho et al.,
2021; Zhang et al., 2022b). Additionally, the frequency components
extracted do not directly provide physical insights and typically ne-
cessitate further modeling or expert interpretation to connect them
to specific structural behaviors (Unsiwilai et al., 2024; Phusakulka-
jorn et al., 2023). However, supervised deep learning methods allow
models to learn patterns from labeled data by minimizing prediction
errors, leading to superior performance. These models can directly
learn features and generalize more effectively than fixed wavelet coef-
ficients, without the need for extensive fine-tuning and manual feature
engineering.

Recent studies have increasingly investigated the use of supervised
deep learning methodologies for monitoring the health of infrastructure
through on-board vibration responses. These frameworks have been
applied to various tasks related to infrastructure monitoring, including
track stiffness estimation (Shen et al., 2023, 2021; Riahi Samani et al.,
2025; Huang et al.,, 2022), as instantaneous decreases in moment
of inertia for bridge elements (Locke et al., 2020), model bridge’s
dynamic changes due to additional weight (Hajializadeh, 2023), iden-
tification of seized bearings and cracking in the bridge beams (Corbally
and Malekjafarian, 2024), and detecting transition zone characteris-
tics (Phusakulkajorn et al., 2025b). Due to the high performance of
deep learning methods in terms of computational efficiency and pre-
diction accuracy, the literature indicates a growing application of these
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techniques for on-board vibration-based monitoring (Phusakulkajorn
et al., 2023; Zhang et al., 2025; Hajializadeh, 2023).

Deep learning frameworks for the on-board vibration signal analysis
are typically CNN-based (Huang et al., 2022; Locke et al., 2020; Hajial-
izadeh, 2023; Corbally and Malekjafarian, 2024; Phusakulkajorn et al.,
2025c) or LSTM-based and hybrid architectures (Phusakulkajorn et al.,
2025b; Samani et al., 2024). For instance, Locke et al. (2020) utilized
a multi-layer CNN to classify bridge damage from simulated vehicle
vibration signals. The model input includes the frequency response
spectrum, adjusted to a spectral resolution of 0.1 Hz, combined with
operational conditions like ambient temperature, speed, and vehicle
mass. Locke et al. (2020) also demonstrated the robustness of CNNs
to environmental and operational noise. Huang et al. (2022) employed
a dilated CNN to analyze simulated axle-box acceleration (ABA) signals
for predicting railway track dynamic stiffness. By training models with
three input window sizes in the time domain and with measurement
speed variations (60-120 km/h), the approach estimates track stiff-
ness over different infrastructure lengths. The dilated CNN required
much less computation time compared to standard CNNs without any
significant enhanced accuracy (Huang et al., 2022). Transfer learning
was explored in Hajializadeh (2023), which adapted GoogLeNet to
classify vibration response spectrograms and to identify the location
and intensity of damage. The model uses continuous wavelet transforms
to generate time—frequency spectrograms from train-borne acceleration
signals at varying speeds, followed by image resizing to standardize
input dimensions for the 2-D GoogLeNet architecture, enabling the
classification of vibration responses across different speeds. In Corbally
and Malekjafarian (2024), an auto-calibrated vehicle-bridge interac-
tion model is proposed to generate training data for damaged bridge
scenarios and to train a CNN to classify damage type and location. The
frequency spectrum from a laboratory-scale vehicle-bridge interaction
model was interpolated and resampled at 0.05 Hz intervals using a cu-
bic spline function to standardize input sizes. The algorithm accurately
detected seized bearings and cracks in bridge beams, though crack
location accuracy decreases at lower damage levels. In our previous
work (Riahi Samani et al.,, 2025), we developed an LSTM-BiLSTM
network to estimate track stiffness parameters from on-board vibration
signals. The model was trained on simulated vehicle-track interactions
at a single speed in the time domain and demonstrated accurate stiff-
ness parameter estimation. It was also highlighted that the importance
of incorporating temporal relationships in feature extraction and health
condition estimation architectures of deep learning models for on-board
vibration response analysis (Riahi Samani et al., 2025).

Most deep learning frameworks, particularly those based on convo-
lutional neural networks (CNNs), require fixed input sizes. However, in
on-board measurements, varying operational speeds result in signals of
different lengths and spatial sampling frequencies for the same infras-
tructure segment. This necessitates preprocessing steps such as spec-
trogram generation, followed by spectrogram resizing or resampling,
which can introduce limitations. Generating a spectrogram involves
careful selection of hyperparameters, such as window type, length,
and stride, all of which can influence the performance of the model.
Additionally, the resizing or resampling of spectrograms may lead to
information loss or the creation of synthetic data points, which can
degrade the resolution of spectral features and affect overall accuracy.
To address these challenges, the current paper proposes a fully auto-
mated methodology that processes data directly in the time domain.
This approach effectively handles the variable-length inputs caused by
different measurement speeds. Papers (Michau et al., 2022; Frusque
and Fink, 2024) already introduced DeSpaWN and learnable wavelet
packet transform (LWPT) networks for unsupervised high-frequency
signal reconstruction, which can accommodate variable-length inputs.
However, these methods do not specifically address the root cause of
the variations, measurement speed. In contrast, our supervised learn-
ing framework not only incorporates wavelet-based analysis but also
explicitly integrates measurement speed into the analysis.
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Wavelet-inspired deep learning architectures are increasingly uti-
lized to integrate spectral information into models across various fields.
For example, Liu et al. (2019) introduced a multilevel Wavelet-CNN for
image restoration, leveraging the Discrete Wavelet Transform for down-
sampling and the Inverse Wavelet Transform for up-sampling. In Li
et al. (2022), WaveletKernelNet CNN architectures were proposed for
industrial diagnosis, where a continuous wavelet convolutional layer
replaces the first standard CNN convolutional layer. This can provide
a physically meaningful input layer, improving training performance
and model accuracy (Li et al., 2022). Wavelet-informed deep learning
frameworks have been applied to a variety of tasks in several applica-
tion fields, such as ECG signal classification (bouny et al., 2020), image
classification (Yao et al., 2022), and time series analysis (Wang et al.,
2018a). These papers demonstrate that incorporating spectral analysis
techniques, such as wavelet transforms, can enhance deep learning
performance by providing physically meaningful information derived
from wavelet decompositions. In the current paper, we propose a novel
WaveletInception which integrates spectral information in the early
stages via an LWPT module and ensures multi-scale feature extraction
with 1D Inception-ResNet modules. We further employ BiGRU networks
to account for operational conditions, particularly measurement speed,
and to capture temporal dependencies in the analysis of vibration
response signals. Sections 3 and 4 provide methodological preliminaries
and further details.

3. Preliminaries
3.1. Discrete wavelet transform

The wavelet transform is a powerful mathematical tool for analyzing
signals in the time and frequency domains (Mallat, 1999). Unlike
the Fourier transform, which provides only a frequency-domain rep-
resentation, the wavelet transform offers a multi-resolution analysis by
decomposing signals into components at various scales. This capability
makes it particularly effective for analyzing non-stationary signals, such
as on-board vibration signals.

The Discrete Wavelet Transform (DWT) is a computationally effi-
cient version of the wavelet transform, widely used for signal and image
processing. The basic operation of DWT is the convolution operation of
a low-pass and a high-pass filter, followed by a downsampling by a
factor of two, which can be denoted as

{(x'u = (/" % %),

(), = (1 x)y,

@

where x! and x" correspond to the low-pass (approximation) and high-
pass (details) filtered input data with a downsampling rate of 2, f! and
f™ are low-pass and high-pass filters, « is the convolution operation, x is
the input signal with the signal length of 2n. The perfect reconstruction
and orthogonality property of the DWT ensure that all information is
retained in its coefficients despite the downsampling (Liu et al., 2019;
Mallat, 1999).

3.2. Discrete wavelet packet transform and LWPT

The Discrete Wavelet Packet Transform (WPT) provides a multi-
resolution analysis by decomposing a signal into uniform frequency
bands through a hierarchical, tree-like structure (Mallat, 1999). At each
level L, the signal is convolved with low-pass and high-pass filters
(Eq. (1)), splitting the spectrum into finer sub-bands. While this process
doubles the frequency resolution at each step, it reduces the temporal
resolution by half. The result is a comprehensive decomposition where
each leaf node in the WPT tree (see Fig. 1) represents a specific
frequency interval.

The Learnable Wavelet Packet Transform (LWPT), originally intro-
duced in Michau et al. (2022), Frusque and Fink (2024), initializes its
filters using standard DWT bases, such as Haar or Daubechies (db4),
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but refines them dynamically via backpropagationl. Unlike traditional
WPT, which relies on fixed coefficients that may not align with the
complex transients of railway vibrations, LWPT learns the optimal
filter bank directly from the data. This approach leverages the perfect
reconstruction and orthogonality of wavelets to downsample high-
frequency vibration signals without the information loss typical of
standard pooling layers (Michau et al., 2022; Frusque and Fink, 2024).
Furthermore, the LWPT incorporates an adaptive denoising mechanism
that exploits coefficient sparsity; by utilizing a differentiable double
sharp sigmoid activation function, the model applies learnable thresh-
olds to suppress stochastic noise while preserving salient structural
transients (Michau et al., 2022). Compared to the DWT and WPT,
this adaptive capability ensures that refined, noise-reduced mechanical
signatures are effectively propagated through the network.

In the current paper, the LWPT module is coupled with a 1 x 1
channel-projection layer to adapt the spectral output to a supervised
learning framework effectively. Furthermore, the model is evaluated
both with and without the denoising function to empirically assess the
impact of adaptive thresholding on health-condition estimation.

3.3. 1IDCNN

A Convolutional Neural Network (CNN) is a deep learning archi-
tecture designed to extract spatial and temporal features from input
data using convolutional operations with filter banks (Aggarwal et al.,
2018). While CNNs are commonly associated with image data, their
1D variants are particularly effective for processing sequential or time-
series data, such as vibration and audio signals. A 1D CNN operates
on one-dimensional signals, with convolutional kernels in a filter bank
sliding along the temporal dimension. These networks are designed to
capture local patterns or dependencies in the input signal. This process
generates feature maps that capture abstract representations of the
input and highlight different aspects of the input data. The formula for
a typical convolutional layer is

vy =conviD(W,,x) + b 2)

where Vs Wr, and b, denote the output vector, weight vector, and
bias parameter of filter f, respectively; x is the input time sequence;
and conv1D represents the one-dimensional convolution operator. The
ith output of the convolution is computed as:
Ny-1
[convID(W, x); = [Wy * x]; = Z Wp i Xiyj 3)
j=0
where N, is the length of the filter f, w,; is the jth element of the
vector W, and i is the starting index in the input for each convolution
window.

3.4. Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs) are a streamlined variant of Re-
current Neural Networks designed to capture temporal dependencies
while mitigating the vanishing gradient problem (Cho et al., 2014;
Chung et al., 2014). Unlike the LSTM, the GRU achieves an efficient
information flow using a simplified architecture that merges the forget
and input gates into a single update gate and utilizes a reset gate to
regulate the integration of previous hidden states.

Given an input sequence {x,}IT= \» the GRU updates its hidden state
h, at each time step ¢ by combining the current input x, with the
previous hidden state h,_,. The update gate determines how much of
the previous information is carried over to the current hidden state,
while the reset gate decides how much of the past context should be
discarded when computing the new candidate state. This mechanism
allows the model to retain long-term dependencies effectively with
fewer parameters than traditional LSTMs.

While a standard GRU processes data in a forward direction, a
Bidirectional GRU (BiGRU) adds a backward pass, capturing both past
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Fig. 1. Tree-like structure of the Wavelet Packet Transform (WPT).

and future signal context. This comprehensive temporal perspective is
especially valuable for vibration-based infrastructure health monitor-
ing (Riahi Samani et al., 2025).

3.5. Multi-modal data fusion

Multi-modal data fusion combines data from different modalities,
such as vibration signals, LiDAR, audio, and speed measurements, each
of which provides complementary insights into the same phenomenon.
Integrating multiple data sources can result in more robust, accurate,
and generalizable models (Lahat et al., 2015). Existing multi-modal
fusion methods can be categorized into three main types: feature-level
fusion, decision-level fusion, and hybrid fusion (Lahat et al., 2015).
Feature-level fusion entails extracting features from each modality and
merging them into a unified representation. In contrast, decision-level
fusion combines the outputs of separate models trained on individ-
ual modalities. Hybrid fusion integrates feature and decision levels,
leveraging the strengths of each approach (Lahat et al., 2015).

Feature fusion is widely used across various domains to exploit
correlations among multiple input modalities, sensors, or extracted
features. This method leverages inherent correlations among features
across modalities, thereby enhancing training. However, it does face
challenges related to temporal synchronization, as features from closely
related modalities may be sampled at different time instants (Zhang
etal., 2019). For instance, in Dang et al. (2021), a hybrid 1D CNN-LSTM
network is proposed that combines autoregressive features, discrete
wavelet features, and empirical mode decomposition features from
multiple sensors into a unified representation for model training. Sim-
ilarly, Mou et al. (2021) utilized an attention mechanism to integrate
features extracted by a CNN-LSTM network from three distinct input
sources: environmental data, vehicle data, and driver eye data.

In the current paper, we propose a feature-fusion approach that
combines features from vibration-response signals and operational-
condition embeddings. We use a BiGRU layer to capture temporal
and interrelated dependencies within the feature-extraction network,
as explained below.

4. WaveletInception-BiGRU networks

4.1. Problem statement

Effective Structural Health Monitoring (SHM) via on-board vibra-
tion signals requires multi-resolution analysis to identify defects across
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various frequency bands (Shen et al., 2023; Lamprea-Pineda et al.,
2024). Standard CNNs, while excellent at spatial pattern recognition,
lack an inherent mechanism for multi-resolution spectral decomposi-
tion, and their effectiveness in performing spectral analysis is still not
well understood (bouny et al., 2020). Furthermore, real-world measure-
ment conditions — specifically varying measurement speeds — induce
non-stationarity in vibration signals, leading to inconsistent excitation
levels and varying signal lengths. Conventional preprocessing, such as
fixed-ratio resampling or rigid resizing, often leads to information loss
or fails to account for the physical relationship between measurement
speed and vibration intensity. Additionally, most existing infrastructure
health monitoring frameworks provide aggregated health indices over
long segments (e.g., 30-200 m) (Unsiwilai et al., 2023, 2024). Such
coarse resolution hinders localized maintenance and component-level
defect identification.

To address these challenges, we propose the WaveletInception-
BiGRU framework, which integrates three key components: a Wavelet-
Inception module for learnable spectral decomposition and multi-scale
feature extraction from vibration signals; a feature fusion technique to
incorporate operational conditions; and a BiGRU network for sequential
modeling and capturing temporal relationships. This combination en-
ables high-resolution, component-level health estimation by leveraging
both physical and operational insights.

4.2. Waveletinception-BiGRU

The proposed architecture consists of two main stages: (I) a Wavelet-
Inception stage for multi-scale spatial feature extraction, and (II) a
BiGRU-based temporal head for multi-modal fusion and sequential
health conditions estimation. This design handles variable-length inputs
while maintaining a physically meaningful relationship between the
signal features and the infrastructure’s spatial layout. Fig. 3 shows an
overview of the proposed WaveletInception-BiGRU networks

4.2.1. WaveletInception feature extraction networks

The WaveletInception stage serves as the primary feature extractor,
designed to handle the high sampling rates characteristic of vibration
signals. It comprises an LWPT followed by a channel projection layer,
and Inception-ResNet networks.

The WaveletInception network begins with an LWPT stem that
hierarchically decomposes the raw vibration signal into 2. sub-bands
(where L denotes the decomposition level). This process utilizes learn-
able high- and low-pass filters to extract multi-resolution features while
simultaneously downsampling the temporal dimension by a factor of
two at each level. Thanks to its orthogonality, LWPT enables high-
frequency signals to be downsampled without information loss (Michau
et al., 2022). The filters are initialized with Discrete Wavelet Transform
(DWT) bases, such as Haar or Daubechies db4 (Frusque and Fink,
2024), and are then refined through backpropagation. This initializa-
tion provides a physically grounded starting point for time—frequency
decomposition, where db4 filters, in particular, offer smoother signal
boundary handling for zero-padded regions compared to Haar filters.

Since the diagnostic relevance of wavelet sub-bands varies signif-
icantly across different operational conditions, a 1 x 1 convolution
layer is implemented as a learned channel projection. This layer re-
places manual sub-band selection by serving as an automated weighting
mechanism that identifies and prioritizes the most informative spectral
components while suppressing noisy channels. By learning these projec-
tions during training, the network adaptively optimizes the integration
of disparate frequency information. Following this projection, two se-
quential 1D convolutional layers further refine the spatial-spectral
features and downsample the temporal dimension. This process op-
timizes the feature density and ensures that only the most salient
local patterns are propagated to the subsequent 1D Inception-ResNet
backbone.
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Fig. 2. 1D Inception block structure.

The 1D Inception-ResNet network efficiently extracts high-level
features from on-board vibration signals. As shown in Fig. 2, these
blocks utilize parallel convolutional branches to capture varied signal
patterns while leveraging residual connections to stabilize training in
deep architectures. To minimize computational overhead, bottleneck
layers are integrated, which effectively refine fine-grained features
without excessive parameterization. Unlike conventional 2D models
that require complex signal-to-image transformations, these 1D mod-
ules operate directly on the temporal axis. This not only improves
efficiency but also ensures physical interpretability, as the learned
filters act as adaptive digital signal processors that correspond to the
time-domain characteristics (Borghesani et al., 2023) of the on-board
vibration response.

The hyperparameters of the WaveletInception networks consist of
the number of decomposition levels (L) for the LWPT, the number
of Inception-ResNet blocks, and the number of output channels of
the convolution layers. Table 2 shows the fine-tuned WaveletInception
networks after hyperparameter optimization for the two case studies
conducted.

4.2.2. BiGRU networks, feature fusion and temporal modeling

Our proposed BiGRU networks consist of two BiGRU modules as
shown in Fig. 3. First, the BiGRU module extracts bidirectional tem-
poral features from the concatenated vibration signal features and the
operational-condition embedding, in particular, the speed embedding.
The vibration features are the outputs of the WaveltInception net-
work, and the measurement speed is processed through a lightweight
Multi-Layer Perceptron (MLP). This transforms the scalar speed into a
high-dimensional speed embedding that matches the temporal length
of the vibration features.

The first BiGRU layer fuses the vibration features with the speed em-
bedding. This layer integrates temporal dependencies into the feature-
extraction process and captures interrelationships in the concatenated
features of the vibration signal and operational conditions, such as sig-
nal length variation and excitation level. Additionally, the BiGRU layer
accounts for the relationships among measurement speed, signal length,
and padding length, thereby further refining the learned features.

To achieve component-level resolution, we implement a distributed
sampling strategy designed to extract N feature vectors from the BIGRU
outputs for sequential modeling. In this approach, both the value of N
and the specific indices for feature extraction are determined by the
physical layout of the infrastructure. For instance, if an infrastructure
segment contains 30 equidistant sleepers, N is set to 30, and feature
vectors are extracted at uniform intervals from the temporal sequence
to align with the sleeper positions. This physical-temporal mapping
ensures that each network output corresponds to a distinct structural
component. By incorporating prior knowledge of the infrastructure
configuration, the model maintains a one-to-one correspondence with



R.R. Samani et al.

Engineering Applications of Artificial Intelligence 168 (2026) 113976

WaveletInception-BiGRU

Stem Operational Conditions ;
g - A N Embedding i
g 1 Vibration o : |
b - Signal Input -—>| LWPT | —> Proiecti —»|Speed MLP|{
g o rojection '
= (B,1,L) ; <
M  odoBodohaod ; 3
= (e}
= =%
LGI.-) ~\\ g
§ ! 2
£ . ! £
2 Multi-scale Backbone : 3
3 A~ :
= ] ] |
< Initial Convs [__J| 1D Inception-ResNet || 5. § 1D Inception-ResNet g_ § : @
§ (Convl, Conv2) Modules 1 & 2 RS Modules 3 & 4 RNl

Temporal Feature Extraction & Estimation Head

A
r—————"~"7— 1
FC Head [ Stere |
Output «<— | Regression \ |«— | Bi-directional GRU 2 | «— lDlsmbl.lted | «— ( Bi-directional GRU 2 | <
: . I Sampling |
Classification | J|

Fig. 3. Overview of the WaveletInception-BiGRU architecture, including WaveletInception vibration signal feature extraction, operational conditions feature

fusion, and BiGRU sequential health conditions estimation.

the physical layout, thereby significantly improving the accuracy of
high-resolution estimation. The selected feature vectors pass through
a dropout layer before being fed into the final temporal modeling in
the health estimation head.

Finally, these selected vectors pass through a dropout layer prior to
temporal modeling in the health estimation head.

The second BiGRU module serves as a sequential model for the
estimation head in monitoring infrastructure health conditions. In this
context, sequential modeling captures spatial dependencies across a
sequence of beams along the infrastructure, with each beam corre-
sponding to a single time step. The BiGRU layer processes the input
at each time step and captures temporal dependencies along the se-
quences. The BiGRU outputs are passed through fully connected layers
to map the learned representations onto specific health-condition in-
dicators, such as regression (as in Case Study I) and classification
(as in Case Study II) tasks. This sequential modeling enables detailed
predictions at the component level, corresponding to the structure’s
physical layout. Consequently, this method improves the resolution of
health condition estimations and facilitates comprehensive assessment
of individual components, providing valuable insights for maintenance
planning.

The proposed framework utilizes BiGRU to capture comprehensive
temporal context by concatenating hidden states from both forward and
backward passes. Physically, the health condition of infrastructure ele-
ments — like railway sleepers or bridge beams — is characterized not
only by their local dynamic response but also by mechanical signatures
propagated through adjacent components. This mechanism enables the
model to identify complex, long-range dependencies between fused
vibration features and operational conditions, such as the measurement
speed. By integrating multi-modal inputs from both preceding and
succeeding spatial steps, the BiGRU layers effectively capture the global
context inherent in on-board vibration data. Consequently, this bidirec-
tional awareness markedly improves estimation performance relative to
unidirectional models, which fail to incorporate future signatures from
downstream vibration signals to refine the current health-condition
assessment.

The hyperparameters of the temporal modeling and estimation head
network include the size of the operational condition embedding mod-
ule, the number of BiGRU units in the BiGRU layer, the size of the fully

connected layers, and the dropout ratio. Table 2 shows the parameters
fine-tuned in the two case studies.

5. Illustrative case study of railway track health monitoring

The Axle-Box Acceleration (ABA) measurement system is a cost-
effective drive-by inspection method used on operational trains to
capture vibration signals through accelerometer sensors mounted on
axle boxes (Phusakulkajorn et al., 2025d; Molodova et al., 2014). This
system allows for the development of a fully automated framework to
analyze ABA vibrations, enhancing railway infrastructure monitoring
over time and space.

To demonstrate this methodology, we present two case studies:
(I) railway track stiffness estimation and (II) railway transition zone
identification. In both cases, time-domain ABA signals serve as inputs to
our deep learning architecture, which integrates preprocessing, feature
extraction, and estimation.

5.1. Case study I: Railway track stiffness estimation

Railway track stiffness is a key indicator of infrastructure health,
primarily influenced by the stiffness of the ballast substructure and
fastening components like bolts, clamps, and rail pads. Estimating the
stiffness of these components offers insights into track condition. For
instance, defects in railway sleepers, such as hanging sleepers or ballast
crushing, can significantly reduce track stiffness (Shi et al., 2023).

In this paper, we use simulated ABA vibration responses to estimate
track stiffness parameters, characterized by rail pad stiffness and ballast
stiffness, represented as the vector k = [kps kpT.

5.1.1. Data

We simulate vehicle-track interactions over segments of 10 sleepers
at speeds of 35 km/h, 50 km/h, 65 km/h, 80 km/h, and 90 km/h,
under four stiffness variation scenarios. The dataset is generated us-
ing a finite-element vehicle-track interaction model implemented in
MATLAB, where the rail and sleepers are modeled as Timoshenko beam
elements supported by rail pads and ballast with stiffness and damping
properties. The vehicle is represented as a wheelset with Hertzian
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contact for wheel-rail interaction. Further details on the model can be
found in Shen et al. (2023). Fig. 4 shows a schematic of the track seg-
ment and the corresponding ABA measurements for each combination
of speed and stiffness scenario.

The four stiffness scenarios include:

(I) Uniform track stiffness: Normal conditions with stiffness values
randomly sampled from either the nominal (R1) or moderate (R2)
stiffness ranges in Table 1.

(II) Local stiffness reduction in one sleeper: Simulates a defect like
a hanging sleeper, with stiffness values set to R3 representing varying
fault severities.

(III) Local stiffness reduction in three sleepers: Models reduced
support over a longer section, with values sampled uniformly from R1
to R2 or R3.

(IV) Transition zones: Simulates stiffness variations between the two
halves of segments, with values randomly sampled from R1 and R2.

Fig. 5 illustrates the ABA signals across stiffness ranges (R1, R2,
R3) and speeds. Lower stiffness correlates with lower signal amplitude,
whereas higher speeds increase signal amplitude. Fig. 6 illustrates
the average signal power across different stiffness ranges, specifically
in the context of localized stiffness reductions at three sleepers. The

figure focuses on stiffness range R1 while examining adjacent re-
ductions in either range R2 (light green) or range R3 (dark green).
The figure shows that a local reduction in stiffness affects the ABA
signals recorded in nearby sections, even when those sections remain
within the stiffness range R1. This observation supports our choice of
methodology: employing a sequential BiGRU-based model to capture
long-range dependencies within the data effectively.

The dataset comprises 12500 records, with 2500 for each mea-
surement speed across different scenarios. To simulate real-world con-
ditions, Gaussian noise, modeled as ~ N(0,¢2), is added to the ABA
signals, achieving a noise-to-signal ratio of 5%. This noise variance
accounts for 5% of the ABA signal power, replicating measurement
noise from environmental factors and vehicle disturbances (Gonzalez
et al., 2023; Malekjafarian et al., 2019b). The dataset is divided into
training (70%), validation (15%), and testing (15%) sets (Bishop and
Bishop, 2023).

5.2. Case study II: Transition zones identification using real-world data
Transition zones near viaducts, bridges, tunnels, and level cross-

ings are critical parts of railway infrastructure. They often experience
abrupt changes in track stiffness, e.g., when shifting from ballast to
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Fig. 7. Case Study II map, four transition zone sites selected from the Romania test ring. Maps are adapted from Google Maps 2025.

Table 1

Range of parameter values used for railpad and ballast stiffness.
Range sets k, (N/m) ki, (N/m)
R1 20-10%- 3.0- 108 1.6-107- 22107
R2 1.0-10%- 2.0-10° 1.0-10"- 1.6- 10
R3 0.1-10%- 1.0-10° 0.4-107- 1.0-107

slab track (Phusakulkajorn et al., 2025b; Wang et al., 2018b; Wang
and Markine, 2018). These stiffness variations can lead to increased
dynamic loads, differential settlements, and accelerated track degra-
dation, posing challenges for maintenance and safety (Wang et al.,
2018b). Accurate identification and monitoring of these zones are vital
for the reliability of railway networks. In this case study, we apply our
proposed framework to pinpoint regions within transition zones at a
sleeper-level resolution, using real-world measurements of ABA signals
collected at different speeds.

5.2.1. Data

This case study uses data from the Faurei testing ring in Romania,
operated by the Romanian Railway Authority (AFER). ABA measure-
ments are collected over transition zones near crossing levels and
viaducts during dynamic testing at speeds ranging from 20 km/h to
140 km/h. Fig. 7 shows the test ring map and the four selected
transition zones for this paper.

The ABA system on the measurement train collects 16 vibration
responses from the two wheelsets during each round. These signals are
extracted over 18-m track segments, focusing specifically on transition
zones. Data from sites 1-3 are utilized for model training (85%) and
validation (15%), totaling 7000 ABA samples. To rigorously assess
generalization, site four is reserved as an entirely unseen test set. This
set, comprising 107 transition-zone and 110 normal-track samples, is
used exclusively for final evaluation and deployment. Such a separa-
tion ensures an unbiased estimate of model performance (Bishop and
Bishop, 2023).

Fig. 8 presents the average short-time Fourier transform (STFT)
spectrograms of the ABA signals from three consecutive segments,
before, during, and after the viaduct, at Site 4. The left spectrogram
covers the interval from 1.2102 km to 1.2282 km. The middle segment
includes the viaduct located between 1.2348 km and 1.2402 km. The
right segment extends from 1.2462 km to 1.2642 km.

Each spectrogram illustrates the changes in vibration frequency
content below 100 Hz. The plots indicate that the dominant frequency
components associated with variations in substructure stiffness are
primarily concentrated around 10 Hz. This frequency range in the
figures representing conditions before and after the viaduct suggests
that changes in track stiffness can influence ABA responses over a
distance, highlighting the presence of long-range spatial dependencies.

These findings highlight the necessity of modeling ABA signals
as sequential data with long-range dependencies, which allows the
learning framework to capture both localized features and their broader
impact on the characteristics of ABA signals along the track.

5.3. Training, validation, and test design

Fixed training, validation, and test sets are used to evaluate the
models. The mean squared error (MSE) loss for Case Study I and
the binary cross-entropy with logits loss (BCEWithLogitsLoss) for Case
Study II are minimized using the Adam optimizer (Kingma and Ba,
2017). To enhance loss convergence, we implemented a learning rate
warm-up, followed by a scheduler with a factor of 0.5 and a pa-
tience of 6. For example, Fig. 9 shows the loss convergence of the
models on the training and validation sets in Case Study I. We tuned
hyperparameters — including the number of layers, units, dropout
rates, and learning rates — during the validation process. In par-
ticular, random search in Weights& Biases (Biewald, 2020) is used
to explore 50 hyperparameter configurations for each architecture,
efficiently covering high-dimensional spaces without the combinatorial
cost of exhaustive grid search (Bergstra and Bengio, 2012). Table 2
shows the configuration of the fine-tuned architectures for both case
studies.

A systematic comparison of the proposed WaveletInception-BiGRU
model is conducted across external baselines and its own ablations. The
analysis mainly consists of three key components: preprocessing (stem),
speed-data fusion, and temporal feature extraction. In the preprocess-
ing phase, several techniques are evaluated to handle variable-length
input signals. These techniques include interpolation-based representa-
tions using the Continuous Wavelet Transform (CWT) and Short-Time
Fourier Transform (STFT), as well as zero-padding the signals followed
by the LWPT, STFT, and length-aware modules. For speed integration,
two mid-level data fusion techniques, early and late fusion, are ex-
amined. Temporal feature extraction is compared across LSTM, GRU,
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Average STFT of the ABA Signals Collected at site 4 under Operational Speed of 35 km/h (top) and 48 km/h (bottom), Segments before, during, and after Viaduct
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Fig. 8. Influence of the local change in track stiffness on a longer range of SFTF spectrogram in the low frequency. The viaduct is located between 1.2348 km

and 1.2402 km.

Table 2
Wavelet-Inception-BiGRU architecture fine-tuned for Case Studies I and II.

Network stage Output tensor size (Batch x Channels x Length)

Case Study I Case Study II

Input vibration signal 32 x 1 x 16460 32x1x 78150

LWPT stem (level L) 32 x 64 x 258 32x 128 x 611
Channel projection (Conv1D, 32 %96 x 258 32x128x611
k=1)

Conv1lD,; 32 %96 x 258 32 %96 x 306
ConvlD, 32 %96 x 258 32 %96 x 306
Inception-ResNet module 1 32X 64 X 258 32 x 128 x 306
Inception-ResNet module 2 32x 98 x 258 32 x 128 x 306
Max pooling 32x98 % 128 32x 128 x 152

32x 160 x 128
32256 x 128

32 %256 x 152
32 x380x 152

Inception-ResNet module 3
Inception-ResNet module 4

Max pooling 32 X256 X 63 32x380x75
Speed fusion (channel 32x320% 63 32x444 x75
concatenation)

Temporal modeling (BiGRU,) 32X 256 % 63 32x256 %75
Uniform temporal sampling 32 %256 % 10 32 %256 x 30
Temporal modeling (BiGRU,) 32x 196 x 10 32x192 %30
Fully connected layer 1 32x98x% 10 32x96 x 30
Fully connected layer 2 (output) 32x2x10 32x1x30

BiLSTM, and BiGRU architectures. Our architecture — including a vari-
ant without auxiliary speed fusion — is benchmarked against literature
baselines: VGG (Locke et al., 2020), LSTM-BiLSTM (Riahi Samani et al.,
2025), Laplace-Inception (Li et al., 2022), GoogLeNet (Hajializadeh,
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2023), and WaveletInception networks. Variants of LWPT, including
Haar-WaveletInception and db4-WaveletInception, with and without
the denoising module, are explored. Optimal hyperparameters are se-
lected via validation, and test set performance is reported. For repro-
ducibility, code is available on GitHub (Riahi Samani et al., 2025).
The Case Study I dataset is available online (Samani, 2025); the Case
Study II dataset is proprietary but available upon request from the
corresponding author.

5.4. Results

Our analysis of the proposed model architecture begins with the
stem module, which handles data preprocessing. This step is essential
for analyzing drive-by vibration signals measured at different speeds,
as varying signal lengths pose challenges for deep learning methods—
particularly for CNNs, which require fixed-size inputs. To address this
issue, Table 3 compares four preprocessing strategies: resizing the Con-
tinuous Wavelet Transform (CWT) and the Short-Time Fourier Trans-
form (STFT) spectrograms to a standard size, zero-padding followed
by the STFT, zero-padding followed by the LWPT stem module, and
zero-padding combined with masking and length-aware components.
The proposed zero-padding-based LWPT preprocessing achieves the
best performance, yielding the lowest overall mean absolute percentage
error (MAPE) of 5.56% in Case Study I and the highest classification
accuracy of 93.29% in Case Study II. The length-aware LWPT variant
ranks second, with an overall MAPE of 6.41% in Case Study I and an
accuracy of 91.78% in Case Study II. In contrast, zero-padding followed
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Comparison of data preprocessing strategies for handling variable-length vibration signals in the proposed framework.

Model types Case Study 1 (MAPE %) Case Study 2 (Classification %)
k, ky, Overall Prec. F1 Recall Acc.
CWT - resizing 8.94 3.42 6.18 78.82 85.61 95.19 87.91
STFT - resizing 9.85 3.62 6.73 77.28 83.31 93.73 85.96
Padding — STFT 9.67 4.07 6.87 69.75 74.88 79.97 84.78
Padding — LWPT (Length-aware) 9.08 3.75 6.41 81.05 87.39 97.43 91.78
Padding — LWPT (ours) 7.94 3.17 5.56 82.60 89.80 98.37 93.29
Table 4
Impact of the learnable signal denoising module on LWPT performance.
Model type Case Study 1 (MAPE %) Case Study 2 (Classification %)
k, ky Overall Prec. F1 Recall Acc.
Haar 9.68 3.78 6.73 74.19 80.19 88.47 87.91
db4 8.41 3.39 5.90 74.48 82.41 92.24 88.19
Haar + Denoising 8.89 3.43 6.16 76.78 83.66 91.89 89.23
db4 + Denoising (ours) 7.94 3.17 5.56 82.60 89.80 98.37 93.29
o Training Loss per Epoch fusion is considered. This model achieves the best overall performance
) VGG among all compared methods, with an overall MAPE of 6.09% in Case
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Fig. 9. Training and validation Loss convergence for the proposed model and
baselines.

by STFT exhibits the weakest performance, with the highest overall
MAPE of 6.87 in Case Study I and the lowest accuracy of 84.78% in
Case Study II.

Table 4 analyzes the performance of different LWPT configurations
with and without the learnable denoising module. The proposed db4-
based LWPT with denoising achieves the best performance, yielding
the lowest overall MAPE of 5.56% in Case Study I and the highest
accuracy of 93.23% in Case Study II. Removing the denoising module
degrades performance, with the db4 wavelet reaching an overall MAPE
of 5.90% and an accuracy of 88.19%. Haar-based configurations show
consistently higher estimation errors and lower classification accuracy,
with the non-denoising Haar variant exhibiting an overall MAPE of
6.73% and an accuracy of 87.91%.

Table 5 compares the proposed framework with existing baseline
models across both case studies. For a fair comparison with baseline
feature extractors, the WaveletInception-BiGRU model without speed

11

of 8.72% and an accuracy of 86.49%. LSTM-based (Riahi Samani et al.,
2025) and VGG (Locke et al., 2020) models rank lower, respectively,
with overall MAPEs of 10.56% and 13.08% and accuracies of 81.03%
and 78.77%, respectively.

Table 6 presents the computational efficiency of the proposed
framework compared with baseline models. The WaveletInception—
BiGRU model achieves a balanced trade-off between model size and
inference speed. It requires only 1.01 M and 1.20 M parameters for
Case Study I and Case Study II, respectively, making it substantially
lighter than GoogLeNet (Hajializadeh, 2023), which has a comparable
accuracy. In terms of inference time per sample, the WaveletInception-
BiGRU model ranks in the middle, slightly slower than the Wavelet-
Inception and Laplace-Inception (Li et al.,, 2022) models. However,
WaveletInception-BiGRU, with 0.99 and 3.14 ms, respectively, in Case
Study I and II, remains significantly faster than GoogLeNet (Hajial-
izadeh, 2023) and LSTM Network (Riahi Samani et al., 2025) models.

To incorporate operational conditions such as measurement speed,
two mid-level fusion strategies, early and late, are evaluated. In early
fusion, the encoded speed tensor is concatenated with vibration signal
features before processing by the 1D Inception-ResNet modules for
deep feature extraction. In late fusion, this concatenation occurs after
high-level vibration features are extracted, as designed in our proposed
architecture. Table 7 compares six fusion designs, including CNN-,
BiLSTM-, and BiGRU-based speed fusion modules. The proposed late
BiGRU-based fusion achieves the best overall performance, with the
lowest overall MAPE of 5.56% in Case Study I and the highest accuracy
of 93.29% in Case Study II. The late BiLSTM-based fusion is the
second-best configuration, achieving an overall MAPE of 5.81% and an
accuracy of 91.52%. These results indicate that late fusion consistently
outperforms early fusion, while BiGRU-based designs provide addi-
tional performance gains. In contrast, CNN-based fusion approaches
exhibit the lowest performance across both fusion stages, with overall
MAPE exceeding 6.49% and accuracy below 85.41%, highlighting their
limited ability to capture temporal dependencies and fuse auxiliary
speed information.

We further evaluate the performance of LSTM- and GRU-based
modules for capturing temporal dependencies in our model architec-
ture. Table 8 compares LSTM, GRU, BiLSTM, and BiGRU networks for
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Performance comparison of the proposed framework against state-of-the-art baseline models.

Model types Case Study 1 (MAPE %) Case Study 2 (Classification %)
k, ky, Overall Prec. F1 Recall Acc.

VGG (Locke et al., 2020) 18.88 7.28 13.08 62.82 69.27 78.19 78.77
LSTM Network (Riahi Samani et al., 2025) 15.10 6.02 10.56 67.19 72.06 80.29 81.03
Laplace-Inception (Li et al., 2022) 12.33 5.11 8.72 72.38 79.79 88.88 86.49
GoogLeNet (Hajializadeh, 2023) 11.17 3.76 7.47 77.82 82.67 92.17 88.93
WaveletInception 9.07 3.84 6.46 76.89 86.93 97.41 90.32
WaveletInception-BiGRU (ours, without speed fusion) 8.64 3.54 6.09 81.22 88.56 98.02 91.53

Table 6

Comparison of computational efficiency and model size between the proposed framework and baseline models from the literature.

Model types Case Study 1 Case Study 2

Time (ms) Model size (M) Time (ms) Model size (M)
VGG (Locke et al., 2020) 3.09 2.23 4.69 2.69
LSTM Network (Riahi Samani 6.69 2.88 7.70 3.32
et al., 2025)
Laplace-Inception (Li et al., 2.16 21 2.46 2.29
2022)
GoogLeNet (Hajializadeh, 2.93 6.45 8.27 5.61
2023)
WaveletInception 0.93 1.25 2.24 1.65
WaveletInception-BiGRU (ours, 0.99 1.01 3.14 1.2

without speed fusion)

Table 7

Ablation study of six fusion modules for incorporating measurement speed as auxiliary information in the proposed

WaveletInception-BiGRU model.

Model types Case Study 1 (MAPE %)

Case Study 2 (Classification)

ky ky Overall Prec. F1 Recall Acc.
Early CNN-based 9.63 3.86 6.74 70.86 76.02 82.57 83.84
Early BiLSTM-based 8.91 3.69 6.30 76.03 82.87 93.44 87.67
Early BiGRU-based 8.67 3.63 6.15 77.55 85.29 95.69 89.18
Late CNN-based 9.24 3.74 6.49 71.67 77.75 84.95 85.41
Late BiLSTM-based 8.28 3.35 5.81 78.96 87.61 98.09 91.52
Late BiGRU-based (ours) 7.94 3.17 5.56 82.60 89.80 98.37 93.29

Table 8

Ablation study comparing unidirectional and bidirectional GRU and LSTM networks for temporal feature extraction in the proposed

WaveletInception-BiGRU model.

Model types Case Study 1 (MAPE %) Case Study 2 (Classification %)

k, ky, Overall Size (M) Prec. F1 Recall Acc. Size (M)
LSTM 9.38 4.08 6.73 1.11 68.87 76.84 90.29 85.61 1.30
BiLSTM 8.28 3.35 5.81 1.22 78.96 87.61 98.09 91.52 1.57
GRU 8.97 3.66 6.31 1.02 73.13 82.34 94.21 87.88 1.26
BiGRU (ours) 7.94 3.17 5.56 1.03 82.60 89.80 98.37 93.29 1.41

temporal feature extraction. The BiGRU model achieves the best overall
results, with the lowest MAPE of 5.56% in Case Study I and the highest
accuracy of 93.29% in Case Study II. BiLSTM follows, with an overall
MAPE of 5.81% and an accuracy of 91.52%, outperforming its unidi-
rectional counterpart. Among unidirectional models, GRU outperforms
LSTM, with a MAPE of 6.31% versus 6.73% and an accuracy of 87.88%
versus 85.61%. Bidirectional variants introduce only a modest increase
in the number of parameters while consistently improving performance
over unidirectional architectures.

We evaluate the proposed WI-BiGRU model for estimating track
stiffness variations under four scenarios in Case Study I. Table 9 sum-
marizes the RMSE and MAPE for both k;, and k;,. The WI-BiGRU model
achieves the best results in the uniform stiffness scenario, with MAPEs
of 5.11 for k, and 1.86% for k;. The most challenging case is the
single-sleeper stiffness drop, which results in the highest errors (overall
MAPE of 7.81%). The three-sleeper drop scenario yields moderate
performance (overall MAPE of 6.19%), while transition-zone changes
are estimated more accurately (overall MAPE of 4.56%). Across all
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scenarios, the model finds ky harder to estimate than k,, with overall
MAPEs of 7.94% and 3.17%, respectively.

Fig. 10 shows examples of railpad and ballast stiffness estimations
compared to their ground truth values. The blue lines represent the
ground truth, while the orange lines represent the model’s estimations.
These examples illustrate the model’s capability to estimate both pa-
rameters under various scenarios, including uniform stiffness, localized
reductions, and transition zones.

Furthermore, we evaluate the WI-BiGRU performance for the tran-
sition zone identification in Case Study II. Table 10 summarizes the
model’s performance in identifying sleepers on the normal track and
above the viaduct at Site 4 in Case Study II. The model achieves an
overall accuracy of 93.29% in both scenarios, demonstrating high and
balanced classification performance. For the viaduct stiffness scenario,
the model achieves 82.60% precision, 98.37% recall, and 89.80% F1-
score, indicating strong detection of transition-zone sleepers with min-
imal false negatives. In the normal track scenario, the model achieves
a precision of 99.24%, a recall of 91.12%, and an F1-score of 95.00%,
reflecting reliable identification with few false positives.
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Table 9
WI-BiGRU estimation accuracy performance across four track stiffness scenarios (Case Study I).
Case Study I Scenarios ky, ke Overall MAPE (%)
RMSE (MN/m) MAPE (%) RMSE (MN/m) MAPE (%)
(I) Uniform 15.29 5.11 0.65 1.86 3.36
(ID) Drops in 1 sleeper 21.99 10.76 1.81 4.66 7.81
(IIT) Drops in 3 sleepers 19.34 8.98 1.22 3.41 6.19
(IV) Transition zone changes 17.01 6.62 0.86 2.54 4.56
All scenarios 18.21 7.94 1.13 3.17 5.56

Table 10
WaveletInception-BiGRU model estimation accuracy performance on the track
transition zone identification (Case Study II).

Scenarios Prec. (%) Recall (%) F1 (%) Accuracy (%)
(I) Normal Track Stiffness 99.24 91.12 95.00 93.29
(I) Viaduct Stiffness 82.60 98.37 89.80 93.29

6. Discussion

This paper presents two case studies demonstrating the effectiveness
of the WaveletInception-BiGRU deep learning framework for on-board
vibration response analysis. Our model outperforms four external base-
line models and its own ablations in both track stiffness estimation
and railway transition zone identification. In the first case study, the
WaveletInception-BiGRU model achieves a MAPE of 7.94% for railpad
stiffness and 3.17% for ballast stiffness across different scenarios of
track stiffness reduction (see Table 9). In the second case study, it yields
an accuracy of 93.29% for transition zone identification (see Table 10).
Compared to baseline models in the literature, our framework demon-
strates notable accuracy (see Table 5) and computational efficiency (see
Table 6), supported by insights from our ablation studies (see Tables
3—-4 and Tables 7-8).

At the core of the proposed architecture is the WaveletInception
network, which integrates an LWPT stem with 1D Inception-ResNet
blocks. The LWPT stem decomposes input vibration signals into multi-
resolution components while preserving all original signal information
due to its orthogonality. This decomposition provides physically in-
formative features in the early stages of the network and enables
downsampling without information loss.

The results in Table 3 demonstrate that the proposed LWPT-based
stem module significantly outperforms conventional preprocessing
techniques. Standard resizing techniques, such as those used for CWT
and STFT, rely on interpolation and averaging, which introduce non-
physical values and spectro-temporal decimation. This resolution loss
is particularly detrimental in rail health monitoring, where accurately
localized, transient signatures — such as rail squats or fastening failures
— are obscured by the smoothing effects of frequency-bin averaging
and reduced temporal resolution.

Furthermore, the LWPT stem addresses the critical challenge of
handling variable signal lengths via zero padding. While essential
for CNN-based deep learning architectures, padding often introduces
artificial discontinuities and spectral leakage, leading to the degraded
performance observed in STFT-based preprocessing (Accuracy: 84.78%;
MAPE: 6.87%). In contrast, the proposed LWPT stem mitigates these
artifacts through multi-resolution analysis, adaptively resolving fre-
quency components without the constraints of rigid windowing. Specif-
ically, utilizing db4 filters over the Haar variant proves superior; the
higher-order db4 wavelets provide smoother boundary transitions, ef-
fectively distributing padding-induced distortions and allowing the
model to isolate the low-frequency features essential for accurate defect
mapping.

Empirical evidence (Table 4) also highlights the effectiveness of the
employed learnable denoising function (Michau et al., 2022). Given
that stochastic noise is inherent in real-world vibration data, these
results suggest that integrating adaptive thresholding directly into the
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architectural stem is more effective than static preprocessing (no de-
noising).

Since not all frequency decomposition bins of the LWPT are equally
relevant for the subsequent deeper layer, our analysis showed the
significance of a channel projection layer to adapt the LWPT for a
supervised deep learning architecture effectively. This can boost the
architecture to prioritize frequency decompositions, which are more
informative for the task-specific monitoring. However, a primary lim-
itation of the current LWPT implementation is its sequential recursive
structure, which precludes parallel computation across nodes. As the
decomposition depth L increases, the exponential growth of the num-
ber of nodes (2L) can significantly increase computational overhead.
Furthermore, a physical interpretation of our stem module, particularly
the LWPT and its channel projection layer, remains an open question
for future research.

The WaveletInception network offers both representational and
computational benefits for vibration-based feature extraction. It inte-
grates spectral information directly into the deep learning architecture.
The 1D Inception-Residual network has multi-scale parallel branches
that capture informative patterns across temporal scales, essential for
track condition monitoring (Shen et al., 2023; Lamprea-Pineda et al.,
2024; Shen et al., 2021). The Inception-ResNet blocks use filters of
varying sizes to extract multi-scale, high-level features from the outputs
of the stem module.

Moreover, the residual connections support stable learning and an
efficient gradient flow, helping deeper models converge and avoid
degradation. Bottleneck convolutions further reduce parameter count
and computational cost while preserving discriminative power.

The proposed 1D convolutional network avoids the computational
overhead of 2D convolutions over time—frequency representations (see
Table 6). This design not only reduces processing time but also can
preserve the physical interpretability of the extracted features, as they
remain closely linked to the original signal. While 2D networks (Ha-
jializadeh, 2023) can capture complex time-frequency interactions,
their features are often more abstract and computationally demanding.
Indeed, they convolve over frequency bins, which may not be physically
interpretable. By focusing on 1D convolutions, the WaveletInception-
BiGRU model can achieve an efficient balance between performance,
interpretability, and computational cost.

The proposed framework leverages Bi-directional Gated Recurrent
Unit (BiGRU) layers to model the long-range temporal dependencies
inherent in on-board vibration responses. As shown in Table 8 and
motivated by Figs. 6- 8, the inclusion of bidirectional context is critical
for capturing interrelated dependencies between measurement speed,
excitation levels, and modal characteristics. By processing the signal
in both forward and backward paths, the architecture captures the
neighboring context of vibrations, which is essential for the accurate
health-condition estimation of individual infrastructure components.

The proposed BiGRU-based architecture captures the relationships
between onboard vibrations and operational-condition embeddings. As
shown in Table 7, the late-fusion BiGRU strategy significantly out-
performs CNN and LSTM counterparts, particularly in the real-world
scenarios of Case Study II (93.29% accuracy). This advantage arises
from the BiGRU’s ability to effectively model interactions between
speed embeddings and spectral features extracted by the WaveletIncep-
tion network. By capturing bidirectional temporal dependencies, the
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Fig. 10. WI-BiGRU model predictions on the Case Study I test set. Ground-truth values are shown in blue, and model estimates in orange.

network adaptively manages variable signal lengths, mitigates zero-
padding artifacts, and adjusts the extracted vibration features under
operational conditions, ensuring consistent health-condition estima-
tion. Furthermore, the high precision observed in Case Study II, which
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includes environmental noise and sensor interference typical of real-
world conditions, demonstrates the framework’s practical robustness.
While this paper confirms the model’s reliability across diverse op-
erational conditions, future work should systematically stress-test the
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model under extreme signal-to-noise ratios to further assess the noise
robustness of our proposed model architecture.

A distinctive feature of our architecture is the distributed temporal-
sampling strategy that generates N feature vectors for the correspond-
ing N structural beams. Recurrent models, such as LSTM and GRU mod-
ules, often employ a many-to-one architecture, collapsing the entire
sequence into a single terminal hidden state (the last time step). This
can create an information bottleneck, particularly for high-resolution
vibration signals, in which local transient features are lost during global
compression. In contrast, our strategy performs distributed selection
across the temporal dimension, maintaining a direct mapping between
features and the physical, spatial distribution of the target component
within the infrastructure.

This hierarchical sequence modeling approach offers significant
practical advantages for on-board monitoring. By selecting N equidis-
tant points in the temporal domain, the model effectively aligns with
the physical layout of the infrastructure without requiring high
-precision spatial positioning. This is particularly advantageous when
measurement speed varies; while precise GPS-based positioning be-
comes challenging under fluctuating speeds, the number of structural
targets within a segment remains constant. Consequently, the dis-
tributed sampling preserves temporally localized features and global
context, enabling finer localized health assessments while mitigating
the representation loss inherent in standard length-aware or packing-
based sequence modules (see Table 3).

By processing vibration responses directly in the time domain,
the proposed architecture eliminates the necessity for manual fea-
ture engineering. Unlike traditional diagnostic frameworks that rely
on hand-crafted statistical or spectral indicators, the proposed stem
module enables the network to automatically derive sensitive features
directly from vibration signals collected at varying speeds. This process
is further enhanced by the BiGRU-based integration of operational
data, which facilitates the internal modeling of vibration signatures
across varying speed profiles. Consequently, this end-to-end approach
establishes a fully automated monitoring system that maintains high
diagnostic precision despite fluctuations in measurement speed.

The WI-BiGRU model demonstrates high precision across all sce-
narios in Case Study I (Table 9), though performance varies with the
localization of defects. While the overall MAPE is 5.56%, the highest
misestimation occurs in Scenario (II) (single sleeper drop), where the
k, error reaches 10.76%. This indicates that highly localized, tran-
sient stiffness changes are more difficult to isolate than the sustained
signatures found in 3-sleeper drops or transition zones. Furthermore,
rail pad stiffness (kp) exhibits higher error rates than ballast stiffness
(ky), likely because ki, has a more dominant influence on the global
track vibration response. In Case Study II (Table 10), the model ac-
curately identifies transition zones but reveals a lower precision for
the viaduct stiffness class (82.60%). This suggests that some normal
sleepers near the transition boundary are misclassified as viaduct sleep-
ers due to mechanical coupling and boundary blurring across different
track structures. These findings indicate that, although the model is
highly effective for mapping structural conditions, its sensitivity can
still be improved for single-point defects and boundary regions.

The dataset in Case Study I is based on a vehicle-track interaction
model from Shen et al. (2023) to demonstrate our deep learning frame-
work. Simulated drive-by responses may not capture all real-world
environmental and operational factors. Phenomena like weld effects,
temperature changes in rail stiffness, and rail neutral temperature are
not modeled. The simulation uses a single vehicle-track setup, while
real railways have varying profiles, welds, fastenings, sleepers, and
structures that could affect results (Shen et al., 2023). Case Study II
shows that our framework can identify transition zones in real-world
conditions. Transition zones may exhibit additional degradation mech-
anisms, such as ballast fouling and differential settlement, suggesting
that expanding the model to include additional health indicators, such
as track geometry degradation and differential settlement, is essential
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for future research. Additionally, the framework can also be applied to
various track types, including ballast and ballastless tracks, and broader
transportation infrastructure, such as railway and road bridges and
tunnels.

7. Conclusions and future work

In this paper, we have proposed a novel deep learning frame-
work, Wavelet-Inception-BiGRU, for estimating infrastructure health
condition monitoring using onboard vibration signals. The core of our
methodology is a new feature-extraction network, called WaveletIncep-
tion, that integrates a Learnable Wavelet Packet Transform (LWPT)
and 1D Inception-ResNet blocks to effectively extract multi-scale, high-
level representations from vibration signals. Furthermore, the feature
extraction network incorporates operational conditions, in particular
measurement speed, through feature-level fusion with a bidirectional
Gated Recurrent Unit (BiGRU) layer. This enables the model to learn
interrelated features across different measurement conditions. For the
health condition estimation head, we have proposed a sequential model
using BiGRU networks. The model leverages temporal information from
both the forward and backward directions of on-board measurements.
Additionally, the sequential modeling approach enables more detailed
estimation at the beam or component level, enabling comprehensive
assessments of different segments of infrastructure.

Future research will focus on three main directions. First, this
paper is one of the first to include operational conditions of on-board
vibration response in a deep learning model. The BiGRU layer captures
temporal dependencies and fuses vibration and operational data. In the
future, other temporal encoders, like attention mechanisms, can be ex-
plored to improve feature extraction. Second, our results show that the
proposed model works well for health indicators with low-frequency
features. Next, the framework can be adapted for high-frequency ap-
plications, such as defect detection in superstructures and rails, using
advanced sensors like laser Doppler vibrometers. Third, to support
large-scale, automated, cloud-based monitoring, future research will
systematically test the framework’s stability when signal-to-noise ratios
and operational conditions vary.
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