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1
INTRODUCTION

Deriving geometric representations from images of the humanly constructed world is a
long-standing task in computer vision [1, 2]. The main objective is to characterize the
surroundings that we are interacting with into rich geometric and semantic structures, such
as wireframes and planar surfaces, as shown in Figure 1.1. These structures are important
cues that we can rely on for visual navigation and scene understanding. For instance, we
can estimate the spatial layout inside a building by relying on a handful of patterns, e.g.,
floors, walls and ceilings. The ability to effortlessly infer these patterns is an important
advantage of human beings over autonomous agents. A natural extension is how to impart
this ability to autonomous agents such that they can automatically recognize, model and
analyze geometric structures in the artificial world.

Humans can intuitively characterize artificial structures into a set of geometric prim-
itives, including junctions, line segments, parametric curves and planes, each of which
defines a collection of elements that share the same geometry or semantics, such as ap-
pearance, shape, orthogonality, parallelism and symmetry [5]. Consider an architectural
drawing as an example where 3D geometry such depth, scale, distance, can be linked to ge-
ometric primitives such as line segments to denote the outline of a building, vanishing points
to encode parallel lines, and intersecting planes to indicate orthogonality. These primitives
provide compact geometric information of a visual scene, facilitating the understanding of
the humanly constructed world.

Research on geometric primitives stems as early as from the 1970’s where the goal is
to recognise visual concepts from simple primitives [6]. Many techniques have been pro-
posed to automatically detect geometric primitives from digital images since then. One
well-known example is the Hough Transform [7] - a prevalent algorithm for straight line
detection. Lines are low-level edge features by definition but are able to capture high-level
semantics, empowering autonomous driving [8, 9] and architectural design [10]. Moreover,
lines also encode crucial 3D geometry since 3D parallel lines intersect at a vanishing point
when projected onto an image plane [11]. Detecting vanishing points allows us to infer
3D orientation of lines from single 2D images without relying on 3D supervision, thus en-
joying great popularity in 3D scene understanding [12–14]. Another important property of

1
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(a) Wireframes (b) Vanishing points (c) Planar surfaces

Figure 1.1: Geometric primitives in the humanly constructed world. (a) Wireframes describe the topology of
line segments [2]. (b) Vanishing points (the intersections of colored lines) represent the orientation of 3D parallel
lines [3]. (c) Orthogonal planes characterize the layout of an indoor scene [4]. The overall goal of this thesis is to
extract these geometric primitives from a single image.

artificial objects is symmetry, including mirror, rotation and translation symmetries. Sym-
metries have been proven beneficial in numerous 3D reconstruction tasks, particularly in
shape completion [15, 16]. Therefore, it is an essential task in computer vision to accu-
rately and efficiently identify diverse geometric primitives.

Classic work on geometric primitive detection relies on well-designed, manually con-
structed features, where the geometric knowledge is explicitly incorporated into feature en-
gineering [17]. These approaches often start with edges and then group edges into diverse
primitives depending on the task. For instance, a conventional line detection approach first
applies the Canny edge detector [18] followed by the Hough Transform to aggregate edge
features into lines. Although there has been significant progress over decades [19, 20],
classic approaches are unable to produce reliable predictions in challenging scenarios due
to incorrect edge pixel identification [21]. Therefore, researchers have been looking for
alternatives that are less dependent on manually designed features, where learning features
from labeled data with deep neural networks is promising.

Research on deep neural networks has seen an explosive growth in computer vision,
because deep networks improve accuracy on numerous tasks [22, 23]. The key of neural
networks is to learn the optimal parameters that minimize the discrepancy between the
model predictions and the target values. Given an image x, a target value y , and a neural
network fΘ parameterized by Θ, we minimize the loss L with respect to Θ:

argmin
Θ

N∑
n=1

L( fΘ(xn), yn), (1.1)

where N is the total number of training samples. The loss L measures the deviation between
the prediction fΘ(xn) and the target value yn . Typically, a neural network contains millions
of parameters and requires a tremendous amount of labeled samples to learn the optimal
parameter Θ [24, 25]. However, labeling data can be notoriously expensive, making data
annotation costs a crucial factor in training neural networks [22].

There are several options to mitigate the necessity of exhaustively labeled datasets, e.g.,
adding inductive prior knowledge [26, 27], leveraging massive unlabeled data [28, 29],
etc. One representative of adding priors is classic feature engineering, which typically
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does not require large datasets, because the geometric priors are explicitly encoded into
feature extraction. Therefore, it would be beneficial to incorporate various geometric priors
into neural networks to reduce the annotation effort. However, training neural networks
relies on gradient descent, an algorithm that calculates the gradients of the loss L with
respect to the parameter Θ [24]. Thus, differentiability is a prerequisite for training neural
networks. In practice, it is often preferred to optimize all the parameters jointly in an end-
to-end fashion. Consequently, the challenge is to implement diverse geometric priors as
differentiable modules for end-to-end training. In this thesis, we explore the possibility of
adding various priors into neural networks for data-efficient learning.

Leveraging large quantities of unlabeled images is another option to reduce the de-
pendence on costly manual annotation, although it does demand matching computational
resources. Semi-supervised learning is such a learning paradigm that combines a small frac-
tion of labeled data and a large portion of unlabeled data. This approach has been adopted
in numerous vision tasks, e.g., image classification [28, 29], semantic segmentation [30],
etc. A simple yet effective technique in semi-supervised learning is pseudo-labeling [31],
where a model is first trained on the small amount of labeled data only, and then used to
generate predictions for the unlabeled data. The predictions with high confidence are con-
sidered as correct pseudo-labels which can be used to train a new model using both the
ground truth labels and pseudo-labels. In addition to adding priors, we also study the usage
of pseudo-labeling in leveraging unlabeled images to improve data efficiency.

One of the main goals of this thesis is to detect geometric primitives from single-view
images with deep neural networks. Our interest is in reducing the dependency on large
manually labeled datasets and in improving the overall performance in a small data regime,
by incorporating geometric knowledge into learning. The challenge is to implement geo-
metric priors as end-to-end modules such that we can optimize the whole system through
gradient back-propagation. The geometric primitives we are interested in are straight lines,
vanishing points, mirror planes and polygons, corresponding to the following five tasks: (1)
wireframe parsing, (2) traffic lane detection, (3) vanishing point detection, (4) 3D mirror
symmetry detection, and (5) polygonal shape detection.

We first give a brief introduction of geometric priors. Then we elaborate each task in an
individual chapter. We conclude with our contributions of this thesis.

1.1. GEOMETRIC PRIORS
Prior knowledge refers to specialized expertise which can be useful in a task, apart from
training data. A simple example is data augmentation in image classification [32]. The
knowledge is that certain image transformations, such as rotations and flips, typically do
not alter the class label of a given image. Therefore, it is common to generate multiple
duplicates of an image by applying these transformations to increase the value of a single
data sample during training. Another example is the widely used feature pyramid network
[33], which handles scale variation in object detection as photographed objects may differ
significantly in size. The basic idea is to aggregate feature representations at multiple scales
such that smaller objects can also be correctly identified. This design is largely inspired by
the Gaussian and Laplacian pyramids [34, 35] and the scale-invariant feature transform
(SIFT) [36], indicating the significance of expert knowledge in both feature engineering
and deep learning.
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Figure 1.2: Wireframe parsing. Wireframes provide reach geometric information for scene understanding [2].

Adding expert knowledge to deep learning restricts the parameter space, and thus has
a regularizing effect, offering potential in parameter reduction, data efficiency and perfor-
mance improvements. The best-known example is arguably the translation equivariance of
convolutional networks which is a particularly successful model for image object detection.
The prior knowledge is that an object may appear anywhere inside an image, and thus it is
important to share filters across the entire space [32]. This not only enables neural networks
to recognize patterns regardless of their positions, but also significantly reduces parameters.
The prevalence of convolutional networks has verified the importance of incorporating prior
knowledge into deep learning.

There are a variety of priors in vision, ranging from visual appearance to camera geome-
try. Appearance-based priors describe what an object looks like [37], while geometry-based
priors illustrate how an image is captured [38]. Visual appearance is mostly defined by
pixel colors (RGB values), which are jointly determined by light sources, surface normals,
camera views and materials. Once a variable changes, the recorded color varies accord-
ingly. This knowledge can be encoded in a physical reflection model [37, 39, 40], without
learning from data. Camera geometry defines the conversion from a ray to a pixel. Common
knowledge, such as the pinhole camera and multi-view geometry, has been an indispensable
prior in 3D vision [38]. A renowned example is the Epipolar geometry [41], which offers a
strong prior to eliminate false matches in image matching. Although being domain-specific,
geometric priors contribute to data efficiency as they restrict the solution space.

In the following, we briefly introduce the geometric priors as linked to the chapters.

1.1.1. DEEP HOUGH TRANSFORM LINE PRIORS
Line segments are a common geometric primitive in a humanly constructed world as shown
in Figure 1.2. They are also referred to as wireframes, together with junctions [2]. Wire-
frames are useful in many aspects, such as architectural design [10], room layout estima-
tion [13], and 3D reconstruction [14]. Recent work on wireframe detection leverages the
capability of deep neural networks in learning from large annotated datasets and outper-
forms classic approaches by a large margin on the Wireframe benchmark [2]. However, the
learning-based models show a significant performance decrease in certain scenarios where
training data is scarce [42]. This brings us to the question: “How to improve the overall
performance of neural networks in a small-data regime?"
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Figure 1.3: Hough Transform. The left figure shows a line l in the Euclidean space (x, y) with its offset-angle
(ρ,θ) parameterization, where ρ is the offset from the origin and θ represents the orientation of the line. The right
figure illustrates the Hough transform of the line. A straight line is equivalent to a local maximum (the red dot) in
the Hough space.

Figure 1.4: Traffic lane detection. The ground truth is annotated in green. Illumination variation and traffic flows
are challenging for lane detection.

To answer this question, we consider the Hough Transform [7] as a global geometric
prior of lines and explore the possibility of adding this prior into neural networks, because
the knowledge of lines needs not to be learned from massive data. The inductive knowledge
is that points on a straight line share the same angle (θ) and offset (ρ) in the polar coordinate
system. Figure 1.3 shows an example of the Hough Transform, where a straight line is
parameterized as a single bin (ρ, θ) in the Hough space, thus turning line detection into
spotting individual bins. We offer a principled way to inject the Hough Transform line
priors into neural networks for data-efficient wireframe parsing in chapter 2.

1.1.2. SEMI-SUPERVISED LANE DETECTION WITH DEEP HOUGH TRANS-
FORM

Autonomous driving [9] relies on precise lane detection, which is inherently a challenging
task due to illumination variations and traffic flows, as shown in Figure 1.4. Moreover,
popular datasets only capture a fraction of driving scenarios in real-world environments
[43, 44], limiting the generalization ability of current approaches in other unseen driving
scenarios. Therefore, leveraging additional realistic unlabelled data will be beneficial. This
leads to the question: “Can we design a semi-supervised model to exploit vast amounts of
unlabeled data?"

To this goal, we combine a pseudo-labeling strategy and the Hough Transform line
priors for data-efficient lane detection in chapter 3.



1

6 1. INTRODUCTION

Figure 1.5: Vanishing point detection. The two pictures on the left display the line segments and associated
vanishing points (in color) on the image plane and on the Gaussian sphere, respectively [47]. The two examples
on the right display three orthogonal vanishing points in the Manhattan world [14].

1.1.3. GEOMETRIC PRIORS FOR DEEP VANISHING POINT DETECTION
One interesting observation in daily life is that parallel lines may intersect at a distance,
such as railways, highways and riverbanks. Parallel lines never cross in 3D world, but they
overlap at the same point in 2D images. The intersecting point is termed the vanishing point,
which encodes the orientation of 3D parallel lines. Vanishing point enjoys great success in
vision as it allows us to infer 3D geometry from a single image without any 3D supervision.
Figure 1.5 shows examples of vanishing point detection from single images.

Conventional approaches on vanishing point detection work with line segments, as van-
ishing points are inherently intersections of lines. Therefore the line segment detector has
a significant impact on the overall performance. Recently, deep neural networks have
also been applied to the vanishing point detection task and show strong performance on
large-scale datasets [45, 46]. The main advantage of these models is their ability to learn
useful context information directly from images without purely relying on line segments.
While showing substantial improvement over conventional baselines, the data-driven learn-
ing models are typically trained on large datasets with a vast number of parameters [45].
Moreover, the majority of works enforce the Manhattan world assumption which states that
there are three orthogonal vanishing points [3]. However, this assumption is no longer ap-
plicable in the real world due to the presence of multiple non-orthogonal vanishing points.
Those findings motivates us to the question: “Can we find a prior independent of both large
quantities of training samples and the Manhattan world assumption?"

We exploit the Gaussian sphere mapping [11], a prior for vanishing points which maps
lines from the unbounded image plane to a bounded hemisphere, as shown in Figure 1.6.
Detecting vanishing points is equivalent to localizing spherical points in the alternative
space, enabling neural networks to detect vanishing points outside the image view. We
validate the added values of the Gaussian sphere mapping in neural networks for data ef-
ficiency, detecting multiple non-orthogonal vanishing points and transferability to unseen
datasets in chapter 4.

1.1.4. DATA-EFFICIENT LEARNING FOR 3D MIRROR SYMMETRY DETEC-
TION

Mirror symmetry has been proven effective in 3D shape completion [50, 51] and single-
view 3D reconstruction [52–54], as it allows us to hallucinate the global structure from
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Figure 1.6: Gaussian sphere mapping for vanishing point detection. (a) Multiple lines intersect at the vanishing
point on the image plane. (b) We show the projection of lines and vanishing point on the Gaussian sphere, where
lines become great circles and vanishing point turns into a spherical point.

Figure 1.7: Mirror symmetry in artificial objects. We show the symmetric axis (the projection of the 3D mirror
plane on the image plane) in green. Mirror symmetry is useful for inferring the the global structure from only
partial observations.

only partial observations. While it is common to identify 3D symmetries from RGB-D
images [16], acquiring depth is often challenging for average users due to the lack of depth
cameras. We focus on detecting 3D mirror symmetry from single-view perspective images,
thus removing the necessity of depth.

A common strategy to detect 3D mirror symmetry is correspondence matching followed
by camera geometry reasoning [48, 49]. However, this approach does not generalize well
to textureless objects and smooth surfaces due to lacking correspondences. Instead of local
feature matching, the work in [55] proposes to learn semantic features directly from large
amounts of data. The combination of feature learning and geometry reasoning has lead to
top performance on public datasets [56, 57]. However, the demand of massive data remains
a concern for real-world application. This prompts us to the question: “Can we mitigate
the dependency on large datasets by adding priors?"

The prior we are interested in is the 3D mirror geometry, as illustrated in Figure 1.8,
which provides an illustration of how to compute the symmetric correspondence of a point
on the other side of its mirror plane in Euclidean space. This knowledge is particularly ben-
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O

z

xy Image plane

Origin
z

Mirror plane
Mirror plane

(a) (b)

Figure 1.8: 3D mirror geometry and scale ambiguity. (a) x′ and x′′ are symmetric with respect to the plane
nᵀx+b = 0, where n and b are the normal and offset of the given plane. The mirror x′′ can be explicitly defined
by x′′ = x′−2n(nᵀx′+b) [48, 49]. (b) Although differing in scale, the two objects (in blue) have exactly the same
projections on the image plane. Thus, it is impossible to infer the actual size of an object (or the offset of the
mirror plane), hence, there is scale ambiguity in detecting the mirror plane from 2D images.

Figure 1.9: Polygons as collections of points. We consider polygons as collections of points, and study trans-
formers in predicting point collections on four toy datasets, namely points, lines, gates and polygons, as well as a
synthetic gate dataset.

eficial when an object is textureless since we are unable to match correspondences purely
relying on appearance. Another knowledge is the scale ambiguity in detecting 3D mirror
planes from 2D images, as we are not able to decide the absolute scale of an object or the
offset the mirror plane, as indicated in Figure 1.8. Therefore, the only variable we are in-
terested in is the normal direction of a mirror plane. We incorporate this knowledge into an
end-to-end learning framework and experimentally demonstrate the impact of adding 3D
mirror geometry in improving data efficiency, as illustrated in chapter 5.

1.1.5. INVESTIGATING TRANSFORMERS IN THE DECOMPOSITION OF POLYG-
ONAL SHAPES AS POINT COLLECTIONS

Polygons are another common geometric primitive in a humanly constructed world, which
consists of a chain of line segments or a collection of ordered vertices. Learning polygonal
representations from artificial objects has the potential to assist numerous high-level appli-
cations, especially in aerial image processing. One popular example is to extract vectorized
building outlines from high-resolution satellite images [58, 59].

Polygons have a varying cardinality (i.e., the number of vertices). For instance, a tri-
angle has 3 vertices while a diamond has 4. Another important aspect is that the order of
vertices matters, as the same set of vertices can form differently shaped polygons. However,
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canonical convolutional neural networks lack the ability to incorporate these priors by de-
sign [60]. In comparison, the widely used auto-regressive transformers [61, 62] in machine
translation and speech recognition [63, 64] are able to handle tasks with unknown cardi-
nality and predefined order. Moreover, transformers have also been successfully applied to
computer vision, e.g., parallel transformers for object detection where the output is a set of
bounding boxes [65, 66]. The popularity of transformers prompts us to the question: “Can
we leverage transformers for detecting polygonal shapes?"

To answer this question, we treat polygons as collections of points, such as sequences
and sets, and study the difference between auto-regressive and parallel transformers on four
toy datasets, including individual points, ordered lines, gates and polygons, as shown in
Figure 1.9. We present our observations and conclusions in chapter 6.

1.2. CONTRIBUTION
The main contribution of this thesis is on how to incorporate classical geometric visual
priors in deep neural networks. We validate the added value of geometric priors in data-
efficient learning on five tasks: (1) wireframe parsing, (2) lane detection, (3) vanishing point
detection, (4) 3D mirror symmetry detection and (5) polygonal shape detection.

Chapter 2 proposes to incorporate the Hough Transform into neural networks while
facilitating end-to-end learning [42]. The proposed model contains a Hough Transform
module which maps pixel-wise features into the Hough space where lines can be identified
as local maxima, and an inverse Hough Transform module which maps individual bins back
to pixels. Filtering in the Hough space allows us to detect lines more efficiently since the
Hough Transform is able to aggregate information globally from all pixels on a line. In
comparison, convolutional networks typically require a stack of layers to capture the entire
line because the receptive field is only a local patch for each layer. Numerous experiments
on two benchmarks show the added value of the Hough Transform line priors towards both
parameter reduction and data efficiency.

Chapter 3 focuses on the usage of the Hough Transform line priors in learning from
unlabeled data for lane detection. The main contribution is a novel loss function, which
exploits the geometric representations of lanes in a semi-supervised manner. Our observa-
tion is that the presence of lanes leads to Hough bins with maximal votes. The intensity of
Hough bins indicates the probability of a lane being present, while the position represents
the layout (angle and offset) of a lane on the image plane, as shown in Figure 1.3. Having a
large maximum indicates that pixels along that line direction are well aligned, thus falling
in the same bin. Maximizing the log-probability of these Hough bins requires no human
supervision, enabling neural networks to detect lanes from unlabelled images. Extensive
experiments on two public datasets [43, 44] demonstrate the ability of the proposed loss
function in learning from unlabeled data, especially when annotations are scarce, e.g., 1%
of the whole dataset.

Chapter 4 explores Gaussian sphere mapping - a geometric prior for vanishing point
detection to enrich neural networks when used to detect multiple non-orthogonal vanishing
points without large datasets. The main idea is to project line segments from the image
plane to a unit hemisphere, where each line segment becomes a great circle and the inter-
section of multiple great circles represents a vanishing point, as illustrated in Figure 1.6.
Our Gaussian sphere mapping is implemented as an end-to-end module, making it possi-
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ble to learn powerful feature representations directly from images without the need for line
segment detectors. Moreover, we can apply common clustering techniques to find multi-
ple non-orthogonal vanishing points on the unit hemisphere, making our model applicable
to both Manhattan and non-Manhattan scenarios. Extensive experiments demonstrate the
competitiveness of our model on multiple datasets, especially when training with a fraction
of labeled data (e.g., 500 images only). More importantly, we improve over previous state-
of-the-art considerably in the challenging non-Manhattan scenario, as well as cross-dataset
tests with domain shift.

Chapter 5 studies detecting 3D mirror symmetry from single-view perspective images.
We introduce 3D mirror geometry as a prior for calculating mirrored correspondences. This
prior allows us to compute the correlation between a pixel and its mirrors at various depth,
which indicates the extent to which a pixel resembles its mirrors with regard to the given
plane. Another geometric prior is the scale ambiguity as we are unable to determine the
offset of the mirror plane from a single-view image, as shown in Figure 1.8. Therefore, we
are only interested in identifying the normal direction of the mirror plane. Given that the
normal direction of all possible planes lies on a unit sphere, we design multi-stage spherical
convolutions to pinpoint the exact mirror plane in a coarse-to-fine manner. Our model not
only improves the data efficiency and overall performance but also reduces the inference
time by approximately a factor of 20 over the top-performing model [55].

Chapter 6 shifts the focus to polygons - a structure composed of a collection of points.
Particularly, we investigate auto-regressive and parallel transformers on detecting four polyg-
onal shapes: points, lines, gates and polygons, as shown in Figure 1.9. We provide a full
picture of the advantages and disadvantages of both types of transformers, and show em-
pirically the impact of the order in a collection of points. More importantly, we show em-
pirically that auto-regressive transformers are a viable solution to detect a set of polygons
when the elements inside each polygon are an ordered set of points.

Chapter 7 summarizes this thesis and presents possible extensions for future work.
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2
DEEP HOUGH-TRANSFORM

LINE PRIORS

Classical work on line segment detection is knowledge-based; it uses carefully designed ge-
ometric priors using either image gradients, pixel groupings, or Hough transform variants.
Instead, current deep learning methods do away with all prior knowledge and replace pri-
ors by training deep networks on large manually annotated datasets. Here, we reduce the
dependency on labeled data by building on the classic knowledge-based priors while using
deep networks to learn features. We add line priors through a trainable Hough transform
block into a deep network. Hough transform provides the prior knowledge about global
line parameterizations, while the convolutional layers can learn the local gradient-like line
features. On the Wireframe (ShanghaiTech) and York Urban datasets we show that adding
prior knowledge improves data efficiency as line priors no longer need to be learned from
data.

This chapter is published as:
Yancong Lin, Silvia-Laura Pintea, and Jan van Gemert. Deep Hough-Transform Line Priors. European Confer-
ence on Computer Vision (ECCV), 2020. arXiv: https://arxiv.org/abs/2007.09493.

17

https://arxiv.org/abs/2007.09493


2

18 2. DEEP HOUGH-TRANSFORM LINE PRIORS

Ground truth Learned local features Added line priors Line predictions

Figure 2.1: We add prior knowledge to deep networks for data efficient line detection. We learn local deep features,
which are combined with a global inductive line priors, using the Hough transform. Adding prior knowledge saves
valuable training data.

2.1. INTRODUCTION

Line segment detection is a classic Computer Vision task, with applications such as road-
line detection for autonomous driving [1–4], wireframe detection for design in architecture
[5–7], horizon line detection for assisted flying [8–10], image vectorization [11, 12]. Such
problems are currently solved by state-of-the-art line detection methods [5, 6, 13] by relying
on deep learning models powered by huge, annotated, datasets.

Training deep networks demands large datasets [14, 15], which are expensive to an-
notate. The amount of needed training data can be significantly reduced by adding prior
knowledge to deep networks [16–18]. Priors encode inductive solution biases: e.g. for
image classification, objects can appear at any location and size in the input image. The
convolution operation adds a translation-equivariance prior [18, 19], and multi-scale filters
add a scale-invariance prior [20, 21]. Such priors offer a strong reduction in the amount of
required data: built-in knowledge no longer has to be learned from data. Here, we study
straight line detection which allows us to exploit the line equation.

In this work we add geometric line priors into deep networks for improved data effi-
ciency by relying on the Hough transform. The Hough transform has a long and successful
history for line detection [22–24]. It parameterizes lines in terms of two geometric terms:
an offset and an angle, describing the line equation in polar coordinates. This gives a global
representation for every line in the image. As shown in figure 2.1, global information is es-
sential to correctly locate lines, when the initial detections are noisy. In this work we do not
exclusively rely on prior knowledge as in the classical approach [25–28] nor do we learn
everything in deep architectures [5, 6, 13]. Instead, we take the best of both: we combine
learned global shape priors with local learned appearance.

This paper makes the following contributions: (1) we add global geometric line priors
through Hough transform into deep networks; (2) we improve data efficiency of deep line
detection models; (3) we propose a well-founded manner of adding the Hough transform
into an end-to-end trainable deep network, with convolutions performed in the Hough do-
main over the space of all possible image-line parameterizations; (4) we experimentally
show improved data efficiency and a reduction in parameters on two popular line segment
detection datasets, Wireframe (ShanghaiTech) [5] and York Urban [29].
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Image Gradients. Lines are edges, therefore substantial work has focused on line segment
detection using local image gradients followed by pixel grouping strategies such a region
growing [27, 28], connected components [25], probabilistic graphical models [26]. Instead
of knowledge-based approach for detecting local line features, we use deep networks to
learn local appearance-based features, which we combine with a global Hough transform
prior.

Hough transform. The Hough transform is the most popular algorithm for image line de-
tection where the offset-angle line parameterization was first used in 1972 [22]. Given its
simplicity and effectiveness, subsequent line-detection work followed this approach [23, 30,
31], by focusing on analyzing peaks in Hough space. To overcome the sensitivity to noise,
previous work proposed statistical analysis of Hough space [32], and segment-set selection
based on hypothesis testing [33]. Similarly, a probabilistic Hough transform for line detec-
tion, followed by Markov Chain modelling of candidate lines is proposed in [34], while [24]
creates a progressive probabilistic Hough transform, which is both faster and more robust
to noise. An extension of Hough transform with edge orientation is used in [35]. Though
less common, the slope-intercept parameterization of Hough transform for detecting lines
is considered in [36]. In [37] Hough transform is used for detecting page orientation for
character recognition. In our work, we do not use hand-designed features, but exploit the
line prior knowledge given by the Hough transform when included into a deep learning
model, allowing it to behave as a global line-pooling unit.

Deep learning for line detection The deep network in [5] uses two heads: one for junc-
tion prediction and one for line detection. This is extended in [6], by a line-proposal sub-
network. A segmentation-network backbone combined with an attraction field map, where
pixels vote for their closest line is used in [13]. Similarly, attraction field maps are also
used in [38] for generating line proposals in a deep architecture. Applications of line pre-
diction using a deep network include aircraft detection [39], and power-line detection [40].
Moving from 2D to 3D, [7] predicts 3D wireframes from a single image by relying on
the assumption that image scenes have an underlying Cartesian grid. Another variation of
the wireframe-prediction task is proposed in [13] which creates a fisheye-distorted wire-
frame dataset and proposes a method to rectify it. A graph formulation [41] can learn the
association between end-points. The need for geometric priors for horizon line detection
is investigated in [42], concluding that CNNs (Convolutional Neural Networks) can learn
without explicit geometric information. However, as the availability of labeled data is a
bottleneck, we argue that prior geometric information offers improved data efficiency.

Hough transform hybrids Using a vote accumulator for detecting image structure is used
in [43] for curve detection. Deep Hough voting schemes are considered in [44] for detect-
ing object centroids on 3D point clouds, and for finding image correspondences [45]. In
our work, we also propose a Hough-inspired block that accumulates line votes from input
featuremaps. The Radon transform is a continuous version of the Hough transform [46–
48]. Inverting the Radon transform back to the image domain is considered in [49, 50].
In [50] an exact inversion from partial data is used, while [49] relies on a deep network
for the inversion, however the backprojection details are missing. Related to Radon trans-
form, the ridgelet transform [51] maps points to lines, and the Funnel transform detects
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Figure 2.2: HT-IHT block: The input featuremap, F, coming from the previous convolutional layer, learns local
edge information, and is combined on a residual branch with line candidates, detected in global Hough space. The
input featuremap of 128×128×256 is transformed channel-wise to the Hough domain through the HT layer into
multiple 183×60 maps. The result is filtered with 1D channel-wise convolutions. Two subsequent 1D convolutions
are added for merging and reducing the channels. The output is converted back to the image domain by the IHT
layer. The two branches are concatenated together. Convolutional layers are shown in blue, and in red the HT
and IHT layers. Our proposed HT-IHT block can be used in any architecture.

lines by accumulating votes using the slope-intercept line representation [52]. Similar to
these works, we take inspiration from the Radon transform and its inversion in defining our
Hough transform block.

2.3. HOUGH TRANSFORM BLOCK FOR GLOBAL LINE PRIORS
Typically, the Hough transform parameterizes lines in polar coordinates as an offset ρ and
an angle, θ. These two parameters are discretized in bins. Each pixel in the image votes
in all line-parameter bins to which that pixel can belong. The binned parameter space
is denoted the Hough space and its local extrema correspond to lines in the image. For
details, see figure 2.3.(a,b) and [22].

We present a Hough transform and inverse Hough transform (HT-IHT block) to combine
local learned image features with global line priors. We allow the network to combine
information by defining the Hough transform on a separate residual branch. The HT layer
inside the HT-IHT block maps input featuremaps to the Hough domain. This is followed by
a set of local convolutions in the Hough domain which are equivalent to global operations
in the image domain. The result is then inverted back to the image domain using the IHT
layer, and it is subsequently concatenated with the convolutional branch. Figure 2.2 depicts
our proposed HT-IHT block, which can be used in any architecture. To train the HT-IHT
block end-to-end, we must specify its forward and backward definitions.

2.3.1. HT : FROM IMAGE DOMAIN TO HOUGH DOMAIN

Given an image line lρ,θ in polar coordinates, with an offset ρ and angle θ, as depicted
in figure 2.3.(a), for the point P = (Px ,Py ) located at the intersection of the line with its
normal, it holds that: (Px ,Py ) = (ρ cosθ,ρ sinθ). A point along this line (x(i ), y(i )) is given
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(a) Input line (b) Line HT (c) Line IHT (d) Mask B(x ′, y ′)

Figure 2.3: (a) A line together with its (ρ,θ) parameterization. (b) The Hough transform (HT ) of the line. (c) The
inverse Hough transform (IHT ) of the Hough map. (d) The binary mask B, mapping the pixel location (x′, y ′)
highlighted in blue in (c) to its corresponding set of bins in the Hough domain.

by:

(x(i ), y(i )) = (ρ cosθ− i sinθ,ρ sinθ+ i cosθ), (2.1)

where x(·) and y(·) define the infinite set of points along the line as functions of the index
of the current point, i , where i ∈R can take both positive and negative values. Since images
are discrete, here (x(i ), y(i )) refers to the pixel indexed by i along an image direction.

The traditional Hough transform [22, 24] uses binary input where featuremaps are real
valued. Instead of binarizing the featuremaps, we define the Hough transform similar to the
Radon transform [46]. Therefore for a certain (ρ,θ) bin, our Hough transform accumulates
the featuremap activations F of the corresponding pixels residing on that image direction:

HT (ρ,θ) =∑
i

Fρ,θ(x(i ), y(i )), (2.2)

where the relation between the pixel (x(i ), y(i )) and bin (ρ,θ) is given in equation (2.1),
and Fρ,θ(x(i ), y(i )) is the featuremap value of the pixel indexed by i along the (ρ,θ) line
in the image. The HT is computed channel-wise, but for simplicity, we ignore the chan-
nel dimension here. Figure 2.3.(b) shows the Hough transform map for the input line in
figure 2.3.(a), where we highlight in red the bin corresponding to the line.

Note that in equation (2.2), there is a correspondence between the pixel (x(i ), y(i ))
and the bin (ρ,θ). We store this correspondence in a binary matrix, so we do not need to
recompute it. For each featuremap pixel, we remember in which HT bins it votes, and
generate a binary mask B of size: [W, H , Nρ , Nθ] where [W, H ] is the size of the input
featuremap F, and [Nρ , Nθ] is the size of the HT map. Thus, in practice when performing
the Hough transform, we multiply the input feature map F with B, channel-wise:

HT = FB. (2.3)

Additionally, we normalize the HT by the width of the input featuremap.
We transform to the Hough domain for each featuremap channel by looping over all

input pixels, F, rather than only the pixels along a certain line, and we consider a range of
discrete line parameters, (ρ,θ) where the pixels can vote. The (ρ,θ) pair is mapped into
Hough bins by uniformly sampling 60 angles in the range [0,π] and 183 offsets in the range
[0,d ], where d is the image diagonal, and the computed offsets from θ are assigned to the
closest sampled offset values.
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(a) Line (orange) (b) Bin in HT (c) Filter in HT (d) IHT

Figure 2.4: Local filters in the Hough domain correspond to global structure in the image domain. (a) An input
line in orange. (b) The line becomes a point in Hough domain. (c) A local [−1,0,1]ᵀ filter in Hough domain. (d)
The inverse of the local Hough filter corresponds to a global line filter in the image domain.

2.3.2. IHT : FROM HOUGH DOMAIN TO IMAGE DOMAIN
The HT layer has no learnable parameters, and therefore the gradient is simply a mapping
from Hough bins to pixels in the input featuremap, F. Following [46], we define the IHT
at pixel location (x, y) as the average of all the bins in HT where the pixel has voted:

IHT (x, y) = 1

Nθ

∑
θ

HT (x cosθ+ y sinθ,θ). (2.4)

In the backward pass, ∂HT
∂F (x,y) , we use equation (2.4) without the normalization over the

number of angles, Nθ.
Similar to the forward Hough transform pass, we store the correspondence between

the pixels in the input featuremap (x, y) and the Hough transform bins (ρ,θ), in the binary
matrix, B. We implement the inverse Hough transform as a matrix multiplication of B with
the learned HT map, for each channel:

IHT = B
(

1

Nθ
HT

)
. (2.5)

Figure 2.3.(c) shows the IHT of the Hough transform map in figure 2.3.(b), while fig-
ure 2.3.(d) shows the binary mask B for the pixel (x ′, y ′) highlighted in blue in figure 2.3.(c),
mapping it to its corresponding set of bins in the Hough map.

2.3.3. CONVOLUTION IN HOUGH TRANSFORM SPACE
Local operations in Hough space correspond to global operations in the image space, see
figure 2.4. Therefore, local convolutions over Hough bins are global convolutions over
lines in the image. We learn filters in the Hough domain to take advantage of the global
structure, as done in the Radon transform literature [47]. The filtering in the Hough domain
is done locally over the offsets, for each angle direction [37, 39]. We perform channel-wise
1D convolutions in the Hough space over the offsets, ρ, as the Hough transform is also
computed channel-wise over the input featuremaps. In Figure 2.5 we show an example;
note that the input featuremap lines are noisy and discontinuous and after applying 1D
convolutions in Hough space the informative bins are kept and when transformed back to
the image domain by the IHT contains clean lines.
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(a) Input featuremap (b) HT (c) Filtered HT (d) IHT

Figure 2.5: Noisy local features aggregated globally by learning filters in the Hough domain. (a) Input featuremap
with noisy discontinuous lines. (b) The output of the HT layer using 183 offsets and 60 angles. (c) The result
after filtering in the Hough domain. The Hough map contains only the bins corresponding to lines. (d) The output
of IHT layer which receives as input the filtered Hough map. The lines are now clearly visible.

Inspired by the Radon literature [37, 39, 47] we initialize the channel-wise filters, f ,
with sign-inverted Laplacians by using the second order derivative of a 1D Gaussian with
randomly sampled scale, σ:

f (ρ)
i ni t= −∂

2g (ρ,σ)

∂ρ2 , (2.6)

where g (ρ,σ) is a 1D Gaussian kernel. We normalize each filter to have unit L1 norm and
clip it to match the predefined spatial support. We, subsequently, add two more 1D convo-
lutional layers for reducing and merging the channels of the Hough transform map. This
lowers the computations needed in the inverse Hough transform. Our block is visualized in
Figure 2.2.

2.4. EXPERIMENTS
We conduct experiments on three datasets: a controlled Line-Circle dataset, the Wireframe
(ShanghaiTech) [5] dataset and the York Urban [29] dataset. We evaluate the added value
of global Hough priors, convolutions in the Hough domain, and data efficiency. We provide
our source code online1.

2.4.1. EXP 1: LOCAL AND GLOBAL INFORMATION FOR LINE DETEC-
TION.

Experimental setup. We do a controlled experiment to evaluate the combination of global
Hough line priors with learned local features. We target a setting where local-only is diffi-
cult and create a Line-Circle dataset of 1,500 binary images of size 100x100 px, split into
744 training, 256 validation, and 500 test images, see figure 2.6. Each image contains 1 to 5
randomly positioned lines and circles of varying sizes. The ground truth has only line seg-
ments and we optimize the L2 pixel difference. We follow the evaluation protocol described
in [5, 53, 54] and report AP (average precision) over a number of binarization thresholds
varying from 0.1 to 0.9, with a matching tolerance of 0.0075 of the diagonal length [53].

1https://github.com/yanconglin/Deep-Hough-Transform-Line-Priors

https://github.com/yanconglin/Deep-Hough-Transform-Line-Priors
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AP: 24.97% AP: 38.57% AP: 56.33%

(a) Input (b) GT (c) Local-only (d) Global-only (e) Local+global

Figure 2.6: Exp 1: Results in AP (average precision) and image examples of the Line-Circle dataset. Using
local+global information detects not only the direction of the lines, as the global-only does, but also their extent.
(See the appendix for more results).

We evaluate three settings: local-only, global-only, and local+global. The aim is not
fully solving the toy problem, but rather testing the added value of the HT and IHT
layers. Therefore, all networks have only 1 layer with 1 filter, where the observed gain in
AP cannot be attributed to the network complexity. For local-only we use a a single 3×3
convolutional layer followed by ReLU. For global-only we use an HT layer followed by
a 3×1 convolutional layer, ReLU, and an IHT layer. For local+global we use the same
setting as for global-only, but multiply the output of the IHT layer with the input image,
thus combining global and local image information. All networks have only 1 filter and
they are trained from scratch with the same configuration.

Experimental analysis. In the caption of figure 2.6 we show the AP on the Line-Circle
dataset. The global-only model can correctly detect the line directions thus it outperforms
the local-only model. The global+local model can predict both the line directions and their
extent, by combining local and global image information. Local information only is not
enough, and indeed the HT and IHT layers are effective.

2.4.2. EXP 2: THE EFFECT OF CONVOLUTION IN THE HOUGH DOMAIN

Experimental setup. We evaluate our HT-IHT block design, specifically, the effect of con-
volutions in the Hough domain on a subset of the Wireframe (ShanghaiTech) dataset [5].
The Wireframe dataset contains 5,462 images. We sample from the training set 1,000 im-
ages for training, and 256 images for validation, and use the official test split. As in [7], we
resize all images to 512 × 512 px. The goal is predicting pixels along line segments, where
we report AP using the same evaluation setup as in Exp 1, and we optimize a binary cross
entropy loss.

We use a ResNet [55] backbone architecture, containing 2 convolutional layers with
ReLU, followed by 2 residual blocks, and another convolutional layer with a sigmoid ac-
tivation. The evaluation is done on predictions of 128×128 px, and the ground truth are
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Networks HT-IHT block AP

(0) w/o convolution 61.77 %
(1) [9×1] 63.02 %
(2) [9×1]-Laplacian 66.19 %
(3) [9×1]-Laplacian + [9×1] + [9×1] 66.46 %
(4) [3×3] + [3×3] + [3×3] 63.90 %

Table 2.1: Exp 2: The effect of convolution in the Hough domain, in terms of AP on a subset of the Wireframe
(ShanghaiTech) dataset [5]. No convolutions perform worst (0). The channel-wise Laplacian-initialized filters
(2) perform better than the standard 1D convolutions (1). Our proposed HT-IHT block (3) versus using [3× 3]
convolutions (4), shows the added value of following the Radon transform practices.

binary images with line segments. We insert our HT-IHT block after every residual block.
All layers are initialized with the He initialization [56].

We test the effect of convolutions in the Hough domain by considering in our HT-IHT
block: (0) not using any convolutions, (1) using a 1D convolution over the offsets, (2) a
channel-wise 1D convolution initialized with sign-inverted Laplacian filters, (3) our com-
plete HT-IHT block containing Laplacian-initialized 1D convolution and two additional 1D
convolutions, and (4) using three standard 3×3 convolutions.

Experimental analysis. Table 2.1 shows that using convolutions in the Hough domain is
beneficial. The channel-wise Laplacian-initialized convolution is more effective than the
standard 1D convolution using the He initialization [56]. Adding extra convolutions for
merging and reducing the channels gives a small improvement in AP, however we use these
for practical reasons rather than improved performance. When comparing option (3) with
(4), we see clearly the added value of performing 1D convolutions over the offsets instead
of using standard 3×3 convolutions. This experiment confirms that our choices, inspired
from the Radon transform practices, are indeed effective for line detection.

2.4.3. EXP 3: HT-IHT BLOCK FOR LINE SEGMENT DETECTION
Experimental setup. We evaluate our HT-IHT block on the official splits of the Wireframe
(ShanghaiTech) [5] and York Urban [29] datasets. We report structural-AP and junction-
mAP. Structural-AP is evaluated at AP5, AP10 thresholds, and the junction-mAP is averaged
over the thresholds 0.5, 1.0, and 2.0, as in [7]. We also report precision-recall, following
[34], which penalizes both under-segmentation and over-segmentation. We use the same
distance threshold of 2

p
2 px on full-resolution images, as in [34]. For precision-recall, all

line segments are ranked by confidence, and the number of top ranking line segments is
varied from 10 to 500.

We build on the successful LCNN [6] and HAWP [38] models, where we replace all
the hourglass blocks with our HT-IHT block to create HT-LCNN and HT-HAWP, respec-
tively. The hourglass block has twice as many parameters as our HT-IHT block, thus we
vary the number of HT-IHT blocks to match the number of parameters of LCNN, HAWP
respectively. The networks are trained by the procedure in [7, 38]: optimizing binary cross-
entropy loss for junction and line prediction, and L1 loss for junction offsets. The training
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Figure 2.7: Exp 3.(a): Data efficiency on subsets of the Wireframe (ShanghaiTech) dataset. We compare different
sized variants of our HT-LCNNs and HT-HAWPs with LCNNs [6] and HAWPs [38]. In (a) and (b) we show the
absolute difference for structural-AP and junction-mAP compared to the best baseline. In (c) we show PR curves
for structural-AP 10. Our HT-LCNN and HT-HAWP models are consistently better than their counterparts. The
benefit of our HT-IHT block is accentuated for fewer training samples, where with half the number of parameters
our models outperform the LCNN and HAWP baselines. Adding geometric priors improves data efficiency.

uses the ADAM optimizer, with scheduled learning rate starting at 4e−4, and 1e−4 weight
decay, for a maximum of 30 epoch.

EXP 3.(A): EVALUATING DATA EFFICIENCY.
We evaluate data efficiency by reducing the percentage of training samples to {50%,25%,
10%,5%} and training from scratch on each subset. We set aside 256 images for validation,
and train all the networks on the same training split and evaluate on the official test split.
We compare: LCNN(9.7M), LCNN(6.2M) with HT-LCNN(9.3M), HT-LCNN(5.9M), and
HAWP(10.3M), HAWP(6.5M) with HT-HAWP(10.5M) and HT-HAWP(6.5M), where we
show in brackets the number of parameters.

Figure 2.7 shows structural-AP 10, junction-mAP and the PR (precision recall) curve
of structural-AP 10 on the subsets of the Wireframe dataset. Results are plotted relative
to our strongest baselines: the LCNN(9.7M) and HAWP(10.3M) models. The HT-LCNN
and HT-HAWP models consistently outperform their counterparts. Noteworthy, the HT-
LCNN(5.9M) outperforms the LCNN(9.7M) when training on fewer samples, while having
40% fewer parameters. This trend becomes more pronounced with the decrease in training
data. We also observe similar improvement for HT-HAWP over HAWP. Figure 2.7(c) shows
the PR curve for the structural-AP 10. The continuous lines corresponding to HT-LCNN
and HT-HAWP are consistently above the dotted lines corresponding to their counterparts,
validating that the geometric priors of our HT-IHT block are effective when the amount of
training samples is reduced.
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Input image LCNN (100%) HT-LCNN (100%) LCNN (10%) HT-LCNN (10%)

Figure 2.8: Exp 3.(a): Visualization of detected wireframes on the Wireframe (ShanghaiTech) dataset, from
LCNN(9.7M) and HT-LCNN(9.3M) trained on 100% and 10% data subsets. HT-LCNN can more consistently
detects the wireframes, when trained on 10% subset, compared to LCNN. (See the appendix for more results).

Figure 2.8 visualizes top 100 line-segment predictions of LCNN (9.7M) and HT-LCNN
(9.3M) trained on 100% and 10% subsets of the Wireframe dataset. When comparing the
LCNN and HT-LCNN in the top row, we notice that HT-LCNN is more precise, especially
when training on only 10% of the data. HT-LCNN detects more lines and junctions than
LCNN because it identifies lines as local maxima in the Hough space. HT-LCNN relies
less on contextual information, and thus it predicts all possible lines as wireframes (e.g.
shadows of objects in the third row). In comparison, L-CNN correctly ignores those line
segments. Junctions benefit from more lines, as they are intersections of lines. These results
shows the added value of HT-LCNN when training on limited data.

EXP 3.(B): COMPARISON WITH STATE-OF-THE-ART.
We compare our HT-LCNN and HT-HAWP, starting from LCNN [6] and HAWP [38] and
using HT-IHT blocks instead of the hourglass blocks, with five state-of-the-art models on
the Wireframe (ShanghaiTech) [5] and York Urban [29] datasets. The official training split
of the Wireframe dataset is used for training, and we evaluate on the respective test splits
of the Wireframe/York Urban datasets. We consider three methods employing knowledge-
based features: LSD [28], Linelet [26] and MCMLSD [34], and four learning-based meth-
ods: AFM [13], WF-Parser (Wireframe Parser) [5], LCNN [6], HAWP [38]. We use the
pre-trained models provided by the authors for AFM, LCNN and HAWP, while the WF-
Parser, HT-LCNN, and HT-HAWP are trained from scratch by us.

Table 2.2 compares structural-AP 5, -AP 10 and junction-mAP for seven state-of-the-art
methods. We report the number of parameters for the learning-based models as well as the
frames per second (FPS) measured by using a single CPU thread or a single GPU (GTX
1080 Ti) over the test set. Our models using the HT-IHT block outperform existing methods
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Train/test Wireframe / Wireframe Wireframe / York Urban

Structural Junction Structural Junction

Metrics #Params FPS AP5 AP10 mAP AP5 AP10 mAP

LSD [28] — 15.3 7.1 9.3 16.5 7.5 9.2 14.9
Linelet [26] — 0.04 8.3 10.9 17.4 9.0 10.8 18.2
MCMLSD [34] — 0.2 7.6 10.4 13.8 7.2 9.2 14.8
WF-Parser [5] 31 M 1.7 6.9 9.0 36.1 2.8 3.9 22.5
AFM [13] 43 M 6.5 18.3 23.9 23.3 7.1 9.1 12.3
LCNN [6] 9.7 M 10.8 58.9 62.9 59.3 24.3 26.4 30.4
HT-LCNN (Our) 9.3 M 7.5 60.3 64.2 60.6 25.7 28.0 32.5
HAWP [38] 10.3 M 13.6 62.5 66.5 60.2 26.1 28.5 31.6
HT-HAWP (Our) 10.5 M 12.2 62.9 66.6 61.1 25.0 27.4 31.5

Table 2.2: Exp 3.(b): Comparing state-of-the-art line detection methods on the Wireframe (ShanghaiTech) and
York Urban datasets. We report the number of parameters and FPS timing for every method. Our HT-LCNN
and HT-HAWP using HT-IHT blocks, show competitive performance. HT-HAWP is similar to HAWP on the
Wireframe dataset, while being less precise on the York Urban dataset. When compared to LCNN, our HT-LCNN
consistently outperforms the baseline, illustrating the added value of the Hough priors.

on the Wireframe dataset, and show rivaling performance on the York Urban dataset. HT-
HAWP performs similar to HAWP on the Wireframe dataset while being less competitive on
the York Urban dataset. HAWP uses a proposal refinement module, which further removes
unmatched line proposals. This dampens the advantage of our HT-IHT block. Given that
the York Urban dataset is not fully annotated, this may negatively affect the performance
of our HT-IHT block. However, adding HT-IHT block improves the performance of HT-
LCNN over LCNN on both datasets, which shows the added value of the geometric line
priors. Moreover, HAWP and LCNN perform well when ample training data is available.
When limiting the training data, their performances decrease by a large margin compared
with our models, as exposed in Exp 3.(a).

Figure 2.9 shows precision-recall scores [34] on the Wireframe (ShanghaiTech) and
York Urban datasets. MCMLSD [34] shows good performance in the high-recall zone
on the York Urban dataset, but its performance is lacking in the low-recall zone. AFM
[13] predicts a limited number of line segments, and thus it lacks in the high-recall zone.
One advantage of (HT-)LCNN and (HT-)HAWP over other models such as AFM, is their
performance in the high-recall zone, indicating that they can detect more ground truth line
segments. However, they predict more overlapping line segments due to co-linear junctions,
which results in a rapid decrease in precision. Our proposed HT-LCNN and HT-HAWP
show competitive performance when compared to state-of-the-art models, thus validating
the usefulness of the HT-IHT block.

In figure 2.10, we compare our HT-LCNN and HT-HAWP with PPGNet [41]. The
PPGNet result is estimated from the original paper, since we are not able to replicate the
results using the author’s code 2. We follow the same protocol as PPGNet to evaluate
(HT-)LCNN and (HT-)HAWP. In general, PPGNet shows superior performance on the York

2https://github.com/svip-lab/PPGNet

https://github.com/svip-lab/PPGNet
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(a) Precision-recall on Wireframe (ShanghaiTech) (b) Precision-recall on York Urban

Figure 2.9: Exp 3.(b): Comparing our HT-LCNN and HT-HAWP with seven existing methods using precision-
recall scores on the Wireframe (ShanghaiTech) and York Urban datasets. Traditional knowledge-based methods
are outperformed by deep learning methods. Among the learning-based methods, our proposed HT-LCNN and
HT-HAWP achieve state-of-the-art performance, even in the full-data regime.
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Figure 2.10: Exp 3.(b): Comparing PPGNet[41] with (HT-)LCNN and (HT-)HAWP on the Wireframe (Shang-
haiTech) and York Urban datasets. PPGNet shows better performance on the York Urban dataset, especially in
high-recall region, while being slightly less precise on the Wireframe dataset when compared to our HT-LCNN
and HT-HAWP methods. We show between brackets the number of parameters.

Urban dataset, especially in the high-recall region, while using a lot more parameters. How-
ever, our HT-LCNN and HT-HAWP methods are slightly more precise on the Wireframe
dataset.

2.5. CONCLUSION
We propose adding geometric priors based on Hough transform, for improved data effi-
ciency. The Hough transform priors are added end-to-end in a deep network, where we
detail the forward and backward passes of our proposed HT-IHT block. We additionally
introduce the use of convolutions in the Hough domain, which are effective at retaining
only the line information. We demonstrate experimentally on a toy Line-Circle dataset that
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our HT (Hough transform) and IHT (inverse Hough transform) layers, inside the HT-IHT
block, help detect lines by combining local and global image information. Furthermore,
we validate on the Wireframe (ShanghaiTech) and York Urban datasets that the Hough line
priors, included in our HT-IHT block, are effective when reducing the training data size.
Finally, we show that our proposed approach achieves competitive performance when com-
pared to state-of-the-art methods.

2.6. APPENDIX
2.6.1. EXP 1: QUALITATIVE RESULTS ON THE LINE-CIRCLE DATASET
Figure 2.11 visualizes detected lines on the Line-Circle dataset from the local-only, global-
only and local+global models. Using the global information learned by our HT-IHT block
combined with the local information provided by the convolutional layers, we propose a
local+global approach that can predict both the direction of the lines and their extent.

2.6.2. EXP 3.(A): QUALITATIVE RESULTS USING WIREFRAME SUBSETS
Figure 2.12 visualizes detected wireframes from our HT-LCNN (9.3M) and LCNN (9.7M)
[6] trained on various Wireframe subsets [5]. We display the top 100 line segments. In
the first example, our HT-LCNN is better than LCNN in detecting wireframes of windows
on various subsets. However, our HT-LCNN is not able to ignore the shadow of objects,
compared to LCNN, as shown in the last example. In general, HT-LCNN outperforms
LCNN when training data is limited.

2.6.3. EXP 3.(B): QUALITATIVE COMPARISON WITH THE STATE-OF-THE-
ART ON THE WIREFRAME DATASET

Figure 2.14 visualizes detected line segments from different approaches on the Wireframe
dataset [5]. We follow [13] to set up thresholds for LSD [28] and WF-Parser [5], and
select the top 100 line segments for other methods (HT-HAWP, HT-LCNN, HAWP[38],
LCNN [6], AFM [13], MCMLSD [34] and Linelet [26].) Learning-based models predict
line segments more precisely than the non-learning methods. In general, our models with
HT-IHT block perform competitively with the state-of-the-art.
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Input Ground truth Local-only Global-only Local+global

Input Ground truth Local-only Global-only Local+global

Input Ground truth Local-only Global-only Local+global

Input Ground truth Local-only Global-only Local+global

Input Ground truth Local-only Global-only Local+global

Figure 2.11: Exp 1: Visualization of detected lines on the toy Line-Circle dataset. The local+global model
successfully removed the circle pixels and retains the pixels along the line. Combing local and global information
detects not only the direction of the lines but also their extent.



2

32 2. DEEP HOUGH-TRANSFORM LINE PRIORS

Ground truth LCNN(100%) LCNN(50%) LCNN(25%) LCNN(10%)

Ground truth HT-LCNN(100%) HT-LCNN(50%) HT-LCNN(25%) HT-LCNN(10%)

Ground truth LCNN(100%) LCNN(50%) LCNN(25%) LCNN(10%)

Ground truth HT-CNN(100%) HT-LCNN(50%) HT-LCNN(25%) HT-LCNN(10%)

Ground truth LCNN(100%) LCNN(50%) LCNN(25%) LCNN(10%)

Ground truth HT-LCNN(100%) HT-LCNN(50%) HT-LCNN(25%) HT-LCNN(10%)

Figure 2.12: Exp 3.(a): Visualization of detected wireframes from HT-LCNN (9.3M) and LCNN (9.7M) [6]
trained on various Wireframe subsets [5]. Our HT-LCNN can more precisely detect the wireframes of the windows
than LCNN, as shown in the first example. However, our HT-LCNN generates more false-positive predictions from
the shadow of objects, when compared to LCNN, as shown in the last example.
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Ground truth HT-LCNN LCNN HT-HAWP HAWP

AFM WF-Parser MCMLSD Linelet LSD

Ground truth HT-LCNN LCNN HT-HAWP HAWP

AFM WF-Parser MCMLSD Linelet LSD

Ground truth HT-LCNN LCNN HT-HAWP HAWP

AFM WF-Parser MCMLSD Linelet LSD

Figure 2.13: Exp 3.(b): Visualization of detected line segments on the Wireframe dataset [5]. We show predictions
from our HT-HAWP, HT-LCNN, and seven other leading methods: HAWP[38], LCNN [6], AFM [13], WF-Parser
[5], MCMLSD [34], Linelet [26] and LSD [28]). (Continued on the next page.)
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Ground truth HT-LCNN LCNN HT-HAWP HAWP

AFM WF-Parser MCMLSD Linelet LSD

Ground truth HT-LCNN LCNN HT-HAWP HAWP

AFM WF-Parser MCMLSD Linelet LSD

Figure 2.14: Exp 3.(b): Visualization of detected wireframes (line segments) on the Wireframe dataset [5]. We
show predictions from our HT-HAWP, HT-LCNN and seven other leading methods (HAWP[38], LCNN [6], AFM
[13], WF-Parser [5], MCMLSD [34], Linelet [26] and LSD [28]). In general, learning-based methods are able to
detect line segments more precisely, while MCMLSD, Linelet and LSD generate more false-positive predictions.
The HT-LCNN and HT-HAWP predictions preserve both global structures and local details, and show competitive
performance with the leading methods.
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SEMI-SUPERVISED LANE

DETECTION WITH DEEP HOUGH
TRANSFORM

Current work on lane detection relies on large manually annotated datasets. We reduce
the dependency on annotations by leveraging massive cheaply available unlabelled data.
We propose a novel loss function exploiting geometric knowledge of lanes in Hough space,
where a lane can be identified as a local maximum. By splitting lanes into separate chan-
nels, we can localize each lane via simple global max-pooling. The location of the maximum
encodes the layout of a lane, while the intensity indicates the the probability of a lane be-
ing present. Maximizing the log-probability of the maximal bins helps neural networks find
lanes without labels. On the CULane and TuSimple datasets, we show that the proposed
Hough Transform loss improves performance significantly by learning from large amounts
of unlabelled images.

This chapter is published as:
Yancong Lin, Silvia-Laura Pintea, and Jan van Gemert. Semi-Supervised Lane Detection with Deep Hough
Transform. International Conference on Image Processing (ICIP), 2021. arXiv: https://arxiv.org/abs/
2106.05094.
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3.1. INTRODUCTION
One key component of self-driving cars is the lane-keeping assist [1, 2], which actively
keeps the vehicles in the marked lanes. The lane-keeping assist relies on accurate lane
detection in the wild, which is a highly challenging task because of illumination and ap-
pearance variations, traffic flow, and new unseen driving scenarios [3].

State-of-the-art deep learning methods for lane detection perform remarkably well on
benchmark datasets [3–6]. However, they rely on deep networks powered by massive
amounts of labelled data. Although the data itself can be obtained at relatively low cost, it’s
their annotations that are laborious and thus expensive [7]. Moreover, the existing curated
datasets do not cover all the possible driving scenarios that could be encountered in real-
world situations. Being able to leverage additional realistic unlabelled training data would
allow for a more robust lane detection system.

To make effective use of additional unlabelled data, we propose a semi-supervised
Hough Transform-based loss which exploits geometric prior knowledge of lanes in the
Hough space [8, 9].

Lanes are lines, thus we propose a semi-supervised Hough Transform loss that pa-
rameterizes lines in Hough space, by mapping them to individual bins represented by an
offset and an angle. Inspired by the work in [9], we rely on a trainable Hough Trans-
form and Inverse Hough Transform (HT -I HT ) module embedded into a neural network to
learn Hough representations for lane detection. We subsequently extend its use for semi-
supervised training, by noting that the presence of lanes leads to Hough bins with maximal
votes. Maximizing the log-probability of these Hough bins requires no human supervision,
enabling the network to detect lanes in unlabelled images.

This paper makes the following contributions: (1) we present an annotation-efficient
approach for lane detection in a semi-supervised way; (2) to this end, we propose a novel
loss function to exploit prior geometric knowledge of lanes in Hough space; (3) we exper-
imentally show improved performance on the CULane [10] and TuSimple [11] datasets,
given large amounts of unlabelled data.

3.2. RELATED WORK
Lane detection methods. Classic work on lane detection is based on knowledge-based
manually designed geometric features. Examples include grouping image gradients [12–
15], or line detection techniques through Hough Transform [16–19] relying on local edges
extracted using image gradients. A main drawback of such knowledge-based methods is
their inability to handle complex scenarios where traffic flow and illumination conditions
change dramatically. Here, we address this by learning appearance variation of lanes in
a deep network, while still relying on the Hough Transform as prior knowledge for line
detection [8, 9].

Recently, deep neural networks have been employed for efficient lane detection, replac-
ing well-engineered features. Typically, the learning-based methods treat the lane detection
as a semantic segmentation task and learn semantic features from large datasets [1, 20–
24]. In contrast to these works we improve the prediction accuracy by leveraging massive
unlabelled data through semi-supervised learning.
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Figure 3.1: Overview of our model. We have an encoder, a decoder, and a fully connected layer inspired by the
ERFNet [4, 5] with a trainable Hough-Transform (HT) and Inverse Hough-Transform (IHT) module [9], on top
of which we build our HT -based semi-supervised loss maximizing the probability of the maximal bins in Hough
space, where Ll ane , Lseg , and LHT are the optimized loss functions.

Semi-supervised methods. Semi-supervised methods solve the learning task by relying on
both labelled and unlabelled data [25], and are divided into: inductive approaches construct-
ing a classifier over labelled and unlabelled data [26–28], and transductive approaches prop-
agating where the task information is shared between data points [29–31]. A self-driving
car has no access to the test statistics, therefore we consider the inductive case.

3.3. SEMI-SUPERVISED LANE DETECTION
Given an input image, our model outputs a lane probability and a semantic segmentation
mask of lane pixels. We use as a starting point the popular ERFNet [5]1. The ERFNet con-
tains a convolutional encoder for deep feature extraction, a convolutional decoder for lane
predictions, and a fully connected layer for predicting the probability of a lane. We insert a
trainable Hough Transform and Inverse Hough Transform (HT-IHT) block [9] between the
encoder and decoder, and utilize the Hough representations of lanes for semi-supervised
learning. Figure 6.2 depicts the overall structure of our model.

3.3.1. HOUGH TRANSFORM LINE PRIORS
We encode an input image to a semantic feature representation F which is mapped to the
Hough space, through a trainable Hough Transform module [9]. The Hough transform HT
maps a feature map F of size [H ×W ] to an [Nρ × Nθ] Hough histogram, where Nρ and
Nθ are the number of discrete offsets and angles. Pixels along lines in F are mapped into
discrete pairs of offsets ρ and angles θ. Specifically, given a line indexed by its pixels

1https://github.com/cardwing/Codes-for-Lane-Detection

https://github.com/cardwing/Codes-for-Lane-Detection
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(xi , yi ), they all vote in the Hough space for the closest bin (ρ, θ):

HT (ρ,θ) =∑
i

F (xi , yi ), (3.1)

where the mapping is given by ρ = xi cosθ+ yi sinθ.
We perform a set of 1D convolutions in Hough space over the offset direction and apply

an Inverse Hough Transform I HT module mapping the [Nρ ×Nθ] Hough histogram back
to an [H ×W ] feature map [9]. The I HT maps bins (ρ, θ) to pixels (xi , yi ) by averaging all
the HT bins where a certain pixel has voted:

I HT (xi , yi ) = 1

Nθ

∑
θ

HT (xi cosθ+ yi sinθ,θ). (3.2)

We concatenate the features F with the I HT features, followed by a convolutional layer
merging these two branches. We set H = 26, W = 122, Nρ = 125 and Nθ = 60.

3.3.2. HOUGH TRANSFORM LOSS FOR UNLABELLED DATA
A lane is composed of a set of line segments with a certain width, that share the same ori-
entation. For unlabelled images we rely on the observation that lanes correspond to local
maxima in the Hough space. Since the ERFNet [4, 5] predicts a single lane in each output
channel, the mapping to Hough space recovers the lanes as global maxima in their respec-
tive channels. Having a large global maximum indicates that pixels along that line direction
are well aligned, thus falling in the same bin. Based on this observation, we provide super-
vision to unlabelled inputs by maximizing the log-probability of the maximum bin (ρ̂, θ̂) in
Hough domain. To give the HT bins a probabilistic interpretation, we rescale the HT maps
between [0,1] for each angle direction independently by applying an L1 normalization over
the offset dimension:

LHT =− log

 HT (ρ̂, θ̂)∑Nρ

k=0 HT (ρk , θ̂)

 , (3.3)

where (ρ̂, θ̂) is the positions of the global maximum in Hough space, calculated from the
predicted segmentation masks.

3.3.3. TRAINING WITH BOTH LABELLED AND UNLABELLED DATA
We train our model with both labelled and unlabelled data. As in [3, 4] the network predicts
for each channel a mask used in a cross entropy loss Lseg over labelled data for predicting
the semantic segmentation. Additionally, the network predicts lane probabilities p which
are used in a binary cross entropy loss over labelled data Llane for optimizing for the exis-
tence of a lane. We also optimize the proposed LHT , only when the predicted probability
p of a lane is larger than a threshold τ; otherwise, we skip the corresponding lane. We set
τ= 0.9. The total loss is the combination of the three losses:

Ltotal =Lseg +αLlane +βLHT (p,τ), (3.4)

where α and β are used to balance different loss terms.
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3.4. EXPERIMENTAL ANALYSIS
Datasets. We evaluate our models on the TuSimple dataset [11] and CULane dataset [10].
All video clips in TuSimple dataset are taken on highways. There are 3,626 frames for
training and 2,782 frames for testing. The CULane dataset contains images from 9 different
driving scenarios, such as lanes in shadow and at night with poor lighting conditions. There
are 88,880 images for training, 9,675 for validation, and 34,680 images for testing. We
follow the official evaluation protocol to measure accuracy on the TuSimple, and use F1

measure on the CULane dataset.

Baselines. We compare with the baseline ERFNet [5], and with the ERFNet-HT using
the HT-IHT block [9]. Both models are trained from scratch with labelled data only. For
semi-supervised learning, we consider the pseudo-labeling baseline ERFNet-pseudo, and
our proposed ERFNet-HT-LHT . The ERFNet-pseudo baseline first learns to predict lanes
on annotated data only, and subsequently uses the predicted pseudo-labels to annotate un-
labelled data, and then retrains the model on all data. ERFNet-pseudo treats the predic-
tion with a confidence score larger than 0.9 as "ground truth" and optimize the Lseg with
pseudo-labels. ERFNet-HT-LHT uses our proposed LHT loss. ERFNet-HT-pseudo+LHT

combines both pseudo-labelling and the LHT loss. Additionally, we also compare with
s4GAN [32], a state-of-the-art semi-supervised learning model for semantic segmentation.

Implementation details. We follow the implementation in [4] and provide our code online
2. We use SGD [33] to train ERFNet and ERFNet-HT for 24 epochs. ERFNet-pseudo,
ERFNet-HT-LHT and ERFNet-HT-pseudo+LHT are trained with extra unlabelled data
for another 12 epochs. The initial learning rate is 1×10−2, and is decreased by a factor of
(1− t/T )0.9, where t is the current training epoch and T is the total number of epochs, as in
[4]. The batch size is set to be 16. For our Ltotal, we set the weights α= 0.1 and β= 0.01 to
ensure that all loss terms have similar magnitudes. Following [4], we multiply the Lseg for
the background class by 0.4 to counter the large number of background pixels. For s4GAN
[32], we directly use the official implementation 3.

Results analysis. To evaluate the effectiveness of our LHT in utilizing unlabelled data, we
randomly split the CULane training data into {100/0,50/50,10/90,5/95,1/99} sets, where
the first digit indicates the proportion of labelled data, while the second one is the propor-
tion of unlabelled data. The TuSimple dataset is split into {100/0,50/50,10/90} sets, as it
contains only 3,626 images. We use the same splits for all models. We report accuracy on
TuSimple and F1-measure on the CULane dataset.

Table 3.1 compares all models on various training sets. ERFNet-HT-pseudo+LHT

achieves the best performance on both 50% and 10% subsets of TuSimple dataset. The
improvement over the supervised baseline is more than 15% on the 10% subset. All semi-
supervised ERFNet models improve accuracy, indicating the potential of exploiting massive
unlabelled data. Pseudo-labeling allows learning from high confidence predictions explic-
itly, while LHT optimizes line feature representations in Hough space in an implicit way.
However, s4GAN [32] shows inferior performance to other models, due to the fact that
s4GAN is not specifically optimized for lane detection, where image content differs sub-

2https://github.com/yanconglin/Semi-Supervised-Lane-Detection-with-Deep-Hou
gh-Transform

3https://github.com/sud0301/semisup-semseg

https://github.com/yanconglin/Semi-Supervised-Lane-Detection-with-Deep-Hough-Transform
https://github.com/yanconglin/Semi-Supervised-Lane-Detection-with-Deep-Hough-Transform
https://github.com/sud0301/semisup-semseg
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Table 3.1: Performance on TuSimple and CULane datasets with various amounts of labelled and unlabelled
data. The first column indicates the proportion of labelled data for training. The remaining data is treated as
unlabelled for semi-supervised learning. ERFNet-HT-LHT and ERFNet-HT-pseudo+LHT show performance
improvements on both datasets. When the number of labelled samples decreases, the advantage of ERFNet-HT-
LHT is more pronounced.

Labels s4GAN [32] ERFNet models

Baseline [5] HT[9] pseudo HT-LHT HT-pseudo + LHT

Accuracy (%) on the TuSimple dataset

100% - 93.71 93.71 - - -
50% 88.82 92.97 93.47 93.37 93.63 93.70
10% 86.25 82.97 77.71 92.12 92.98 93.05

F1 scores on the CULane dataset

100% - 69.86 70.52 - - -
50% - 69.39 68.59 69.68 70.75 70.41
10% - 60.99 61.46 65.56 64.04 66.10
5% - 56.61 57.78 61.99 62.32 63.67
1% - 32.99 32.48 51.38 55.10 52.80

stantially from its origin usage. In general, semi-supervised models perform similar on
the TuSimple dataset as it only includes the highway scenario. On the CULane dataset,
ERFNet-HT-pseudo+LHT consistently outperforms ERFNet-pseudo, validating the use-
fulness of the Hough priors (LHT ) in exploiting lane representations in the semi-supervised
setting. The s4GAN is lacking since we are unable to produce reliable prediction.

We observe that ERFNet-HT-LHT improves over all other models on the 1% subset by
a large margin. On the 1% subset, there is not sufficient labelled data (less than 1K training
images), and therefore the "ground truth" produced by pseudo-labelling in ERFNet-pseudo
is noisy and imperfect. In this case, learning from pseudo-labelled data explicitly can be
harmful, while the LHT avoids this problem by exploiting useful prior geometric knowledge
about lines, in Hough space. In comparison, on the 50% subset, the differences among all
models are marginal, when ample training data is available. The experiment demonstrates
the potential of LHT for data-efficient learning in a semi-supervised setting.

We compare the performance of all ERFNet models in various driving scenarios in
Table 3.2. ERFNet-HT-LHT shows considerable improvement over other models in most
scenarios in Table 3.2, and the advantage accentuates (up to 5%), where the amount of
labelled data is decreased to 1% only. The superiority of ERFNet-HT-LHT demonstrates
the capability of LHT to exploit geometric lanes information from unlabelled data. We also
notice that the "No line", "Shadow" and "Dazzle" scenarios are more challenging for all
methods, compared with the other scenarios.

We visualize line predictions from different models in Figure 3.2. Our ERFNet-HT-
pseudo+LHT better localizes lanes, especially when a lane extends away from the image
boundary, as in the first two examples. As shown in the second example, due to occlusion,
ERFNet and ERFNet-HT miss the two middle lanes, while ERFNet-HT-LHT only predicts
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Table 3.2: F1 scores for different scenarios, with 1% labelled data. ERFNet-HT-LHT outperforms other mod-
els in most scenarios, indicating that the LHT loss exploits useful geometric knowledge of lanes when adding
unlabelled samples. (Note: for cross-road, we show only the number of false-positives, as in [10].)

ERFNet models Baseline [5] HT [9] pseudo HT-LHT HT-pseudo +LHT

Normal 49.24 51.25 69.72 75.06 71.83
Crowded 31.74 31.49 49.53 52.52 50.97
Night 22.36 21.67 45.27 50.77 45.42
No line 18.78 17.54 28.05 32.02 30.12
Shadow 24.71 17.69 36.63 38.50 35.97
Arrow 39.39 38.22 57.28 63.33 59.18
Dazzle 26.25 23.76 40.29 40.28 39.42
Curve 33.62 34.53 46.56 50.52 46.42
Cross-road 6949 8711 3355 5292 3676

Avg F1 33.00 32.48 51.38 55.10 52.80

Figure 3.2: Visualizations of predicted lanes on the CULane dataset. Only 10% annotated data is used for
training. ERFNet-HT-pseudo+LHT performs better on challenging samples and better localizes lane boundaries.
The inference speed of the ERFNet-HT is around 13 frames per second on a NVIDIA GTX1080Ti GPU.

one. In the third example there is an annotation inconsistency, where the opposite lane at
the image border is not annotated. Overall, ERFNet-HT-pseudo+LHT produces sharper
and more precise predictions, in both simple and challenging scenarios.

3.5. LIMITATIONS AND CONCLUSIONS
We propose semi-supervised lane detection by exploiting global line priors in Hough space
through the use of an additional loss. We can incorporate unlabelled data during training
thus overcoming the need for expensive and error-prone annotations. Currently our method
assumes a single lane in each channel, and therefore we can optimize for the global maxi-
mum in Hough space. This assumption may not always hold and an extension to multiple
local maxima is future research. However, our proposed Hough loss adds valuable prior ge-
ometric knowledge about lanes when annotations are too scarce even for pseudo-labelling
based methods. We experimentally demonstrate the added value of our proposed loss on
TuSimple and CULane datasets for limited annotated data.
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4
DEEP VANISHING POINT

DETECTION: GEOMETRIC
PRIORS MAKE DATASET

VARIATIONS VANISH

Deep learning has improved vanishing point detection in images. Yet, deep networks re-
quire expensive annotated datasets trained on costly hardware and do not generalize to
even slightly different domains, and minor problem variants. Here, we address these is-
sues by injecting deep vanishing point detection networks with prior knowledge. This prior
knowledge no longer needs to be learned from data, saving valuable annotation efforts
and compute, unlocking realistic few-sample scenarios, and reducing the impact of domain
changes. Moreover, the interpretability of the priors allows to adapt deep networks to mi-
nor problem variations such as switching between Manhattan and non-Manhattan worlds.
We seamlessly incorporate two geometric priors: (i) Hough Transform – mapping image
pixels to straight lines, and (ii) Gaussian sphere – mapping lines to great circles whose
intersections denote vanishing points. Experimentally, we ablate our choices and show
comparable accuracy to existing models in the large-data setting. We validate our model’s
improved data efficiency, robustness to domain changes, adaptability to non-Manhattan
settings.

This chapter is published as:
Yancong Lin, Ruben Wiersma, Silvia-Laura Pintea, Klaus Hildebrandt, Elmar Eisemann, and Jan van Gemert.
Deep vanishing point detection: Geometric priors make dataset variations vanish. Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.
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4. DEEP VANISHING POINT DETECTION: GEOMETRIC PRIORS MAKE DATASET

VARIATIONS VANISH

Figure 4.1: We add two geometric priors: (i) Hough Transform and (ii) Gaussian sphere mapping, for
vanishing points detection. We transform learned image features to the Hough domain, where lines
are mapped to individual bins. We further project the Hough bins to the Gaussian sphere, where lines
become great circles and vanishing points are at the intersection of great circles. Each color represents
a set of image lines related to a vanishing point. Adding geometric prior knowledge makes our model
data-efficient, less dependent on domain-specifics, and easily adaptable to problem variations such as
detecting a variable number of vanishing points.

4.1. INTRODUCTION
Vanishing point detection in images has non-vanishing real-world returns: camera cali-
bration [1–3], scene understanding [4], visual SLAM [5, 6], or even autonomous driving
[7]. Deep learning is an excellent approach to vanishing point detection [8–11], where
all geometric knowledge is learned from large annotated data sets. Yet, in the real-world,
there are several factors that complicate deep learning solutions: (1) Manually annotating
large training sets is expensive and error prone; (2) Training models on large data sets re-
quire costly computational resources; (3) Practical changes to data collection cause domain
shifts, hampering deep network generalization; (4) Slight changes in the problem setting
require a complete change in deep network architectures. Thus, there is a need to make
deep learning less reliant on data, and its architectures more robust to variants of the same
problem.

In this paper, we add geometric priors to deep vanishing point detection. Using geomet-
ric priors is data-efficient as this knowledge no longer needs to be learned from data. Thus,
fewer annotations and compute resources are needed. Moreover, by relying on priors, the
model is less sensitive to particular idiosyncrasies in the training data and generalizes better
to domains with slightly different data distributions. Another advantage of a knowledge-
based approach is that it is interpretable, and thus the architecture is easy to adapt to a
slightly different problem formulation.

We add two geometric priors, see Figure 4.1: (i) the Hough Transform and (ii) a Gaus-
sian sphere mapping. Our trainable Hough Transform module represents each line as an
(offset, angle) pair in line polar coordinates, allowing us to identify individual lines in
Hough space [12]. We subsequently map these lines from Hough space to the Gaussian
sphere, where lines become great circles, and vanishing points are located at the intersec-
tion of great circles [13]. The benefit of using great circles is that lines are mapped from
the unbounded image plane to a bounded unit sphere, facilitating vanishing point detection
outside the image view. Both the Hough Transform and the Gaussian sphere mapping are
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end-to-end trainable, taking advantage of learned representations, while adding knowledge
priors.

This paper makes the following contributions: (1) we add two geometric priors for
vanishing point detection by mapping CNN features to the Hough Transform, and mapping
Hough bins to the Gaussian sphere; (2) we validate our choices and demonstrate similar
accuracy as existing models on the large ScanNet [14] and SceneCity Urban 3D [15]; (3) we
show that adding prior knowledge increases data-efficiency, improving accuracy for smaller
datasets; (4) we demonstrate our ability to tackle a different problem variant: detecting a
varying numbers of vanishing points on the NYU Depth [16] dataset, where the number of
vanishing points varies drastically from 1 to 8; (5) we show that adding prior knowledge
reduces domain shift sensitivity, which we validate by cross-dataset testing.

4.2. RELATED WORK
Geometry-based vanishing point detection. Vanishing points occur at intersections of
straight lines. Lines can be found by contour detection [17] or a dual point-to-line map-
ping [18]. The common approach, however, is using an explicit straight-line parameteri-
zation in the Hough Transform [19–21]. We exploit this straight-line parameterization as
prior knowledge in a Hough Transform module.

Combining lines to vanishing points can be done by measuring the probability of a
group of lines passing through the same point [22], voting schemes [23, 24], or hypothesis
testing by counting the number of inlier lines such as J-Linkage [25] used in [26, 27]. Other
approaches see vanishing point detection as a grouping problem by applying line clustering
[28–30], expectation-maximization [2, 31–33], or branch-and-bound [34–36]. While these
methods work well, they do not exploit prior knowledge of the 3D world.

A strong geometric prior for vanishing points is modeled by the Gaussian-sphere [13,
37]. A line in an image represents a great circle on the Gaussian-sphere and the intersections
of great circles on the sphere denote vanishing points, detected as local maxima [13, 20].
Mapping lines to the Gaussian sphere shifts the problem from the unbounded image plane to
the constrained parameter space defined by the Gaussian sphere [37–39]. Constraining the
search space is a form of regularization, and is particularly beneficial for limited-data deep
learning. We exploit this prior knowledge by incorporating the Gaussian sphere mapping.

Learning-based vanishing point detection. Vanishing point detection can be learned from
large annotated datasets [8–10, 40]. It is effective to split the problem in separate stages:
line detection, inverse gnomonic projection, network training and post-processing, as in
Kluger et al. [41]. Conic convolutions on hemisphere points, provided further improve-
ments, in Zhou et al. [11]. In contrast, rather than focusing on accurate large-scale deep
models, we consider challenging real-world scenarios, such as: limited training samples,
cross-dataset domain switch, and non-Manhattan world.

Robustness to domain shifts. Classical solutions to vanishing point detection [26, 42, 43]
are built exclusively on prior-knowledge. Such methods are data-free, and thus designed to
work on any domain. Yet, they cannot take advantage of expressive deep-feature learning
for vanishing point detection [11, 44]. On the other hand, deep models are notoriously sensi-
tive to distribution shifts between training and test [45, 46]. Active research on this includes:
domain adaptation [47–49], domain generalization [50], multi-domain learning [51, 52],
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[512x512]x3 [32768]x1

Figure 4.2: Overview: The model starts from in input image, and predicts vanishing points on the
Gaussian hemisphere by relying on two geometric priors: (i) Hough Transform, and (ii) Gaussian
sphere mapping. We use a convolutional network to learn features which are then mapped to Hough
space, where each bin is a line. We filter the Hough space and project Hough bins to the Gaussian
hemisphere and apply spherical convolutions to find vanishing points. We indicate the size of the
learned features above, where the last dimension is the number of channels. We sample 32,768 points
on the hemisphere using the Fibonacci lattice [59], resulting in features maps of size 32,768. Our
model learns to classify spherical points as vanishing points or not using a binary cross-entropy loss.
There is no intermediate supervision.

etc. Such solutions entail significant changes to the deep network model, adding complex-
ity for practical real-world applications. Hence, we focus on a single method which does
not requiring large model changes for robustness to minor domain shifts. Our goal is to
combine the robustness of knowledge-based methods, with the power of deep representa-
tion learning.
Manhattan versus non-Manhattan world. The Manhattan world assumes exactly 3 van-
ishing points. This assumption has been proven useful for orthogonal vanishing point detec-
tion [34, 53–55]. However, the Manhattan assumption does not hold in several real-world
scenarios such as non-orthogonal walls and wireframes in man-made structures. Vanishing
point detection in non-Manhattan world is done by robust multi-model fitting [56], horizon
line detection [40], branch-and-bound with a novel mine-and-stab strategy [57], Bingham
mixture model fitting [58] or non-maximum suppression on the Gaussian sphere [44]. In our
work, we refrain from adding explicit orthogonality constraints, which makes our method
applicable to non-Manhattan scenarios as well. We rely on the Hough Transform and the
Gaussian sphere to map pixel-wise representations to the entire hemisphere. And using a
clustering algorithm we detect multiple vanishing points simultaneously.

4.3. GEOMETRIC PRIORS FOR VP DETECTION
General outline of our approach. Figure 5.2 depicts the overall structure of our model.
We build on two geometric priors: (i) Hough Transform, and (ii) Gaussian sphere mapping.
A CNN learns image features, which are then mapped to a line parameterization via Hough
Transform. We project the features of parameterized lines to the Gaussian sphere where
spherical convolutions precisely localize vanishing points.

(i) Hough Transform. Similar to [11], we use a single-stack hourglass network [60]
to extract image features, F to be mapped into Hough space [61], HT . The HT space
parameterizes image lines in polar coordinates using a set of discrete offsets ρ and discrete
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(a) The Gaussian sphere (b) Vanishing points on the Gaussian sphere

Figure 4.3: Gaussian sphere representations for vanishing points [13, 20]: (a) The Gaussian sphere
is a unit sphere located at the camera center, O. Points on the sphere are encoded by two angles: (α,β)
the azimuth and the elevation, respectively. A line segment AB in the image plane together with the
camera center O forms a plane ψ, highlighted in blue. To define the mapping from the image to the
sphere, we only need to know the normal −→n to the plane ψ. (b) Image lines are projected as great
circles on the sphere. The intersection of multiple great circles on the sphere represents a vanishing
point.

angles θ, defining a 2D discrete histogram. In practice, a set of pixels (x(i ), y(i )) along a
line indexed by i , vote for a line parameterization to which they all belong:

HT (ρ,θ) =∑
i

F (ρ cosθ− i sinθ,ρ sinθ+ i cosθ) (4.1)

The Hough Transform module starts from an [H×W ] feature map F and outputs an [Nρ×Nθ]
Hough histogram HT , where Nρ and Nθ are the number of sampled offsets and angles in
Hough Transform. We set H=128, W =128, Nρ=184, and Nθ=180. This results in [Nρ×Nθ]
possible line parameterizations. We find the local maxima in the Hough domain by per-
forming a 1D convolutions over the offsets. This removes the noisy responses in the Hough
space, as in Figure 5.2. We refer the readers to [61] for details.

(ii.1) Gaussian sphere mapping. The Gaussian sphere is a unit sphere centered at the
camera origin, O. Vanishing points on the sphere are represented as normalized 3D line
directions δ.

Starting from a bin in the Hough domain (ρAB ,θAB ), corresponding to a line direction
in the image plane

−→
AB , we want to map this to the Gaussian sphere. Two image points A

and B sampled from a line represented by its HT bin (ρAB ,θAB ), together with the camera
center O, form a plane ψ as depicted in Figure 4.3(a). The plane ψ is described by its
normal vector:

−→n = (nx ,ny ,nz ) =
−−→
O A×−−→

OB∥∥∥−−→O A×−−→
OB

∥∥∥ . (4.2)

This normal vector −→n is the only information we need to map the image line direction
−→
AB

to the Gaussian sphere.
The spherical coordinates (α,β) describe a point on the Gaussian sphere, where α is the

azimuth defined as the angle from the z-axis in the xz plane, and β is the elevation repre-
senting the angle measured from the xz plane towards the y-axis, as shown in Figure 4.3(a).
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Figure 4.4: Spherical convolutions on the hemisphere. We use EdgeConv [62] for precise vanishing
point localization on the Gaussian sphere. The concatenation of the previous feature maps is fed into
the final layer to produce a prediction.

The intersection between the plane ψ and the Gaussian sphere is a great circle. This great
circle represents the projection of the image line direction

−→
AB on the Gaussian sphere. In-

tersections of multiple great circles are potential vanishing points, see Figure 4.3(b).
We compute the projection of the image line direction

−→
AB , by estimating the elevation

β as a function of the azimuth α and the normal vector −→n [20]:

β(α,−→n ) = tan−1 −nx sinα−nz cosα

ny
, (4.3)

where we uniformly sample α in the range [−π/2,π).
Because the Gaussian sphere is symmetric we only need a hemisphere. We sample N

points on the Gaussian hemisphere using a Fibonacci lattice [59] and then project lines,
corresponding to bins in the Hough space, to these N sampled sphere points. For each line
parameterization in Hough space (ρ,θ), we first compute its normal vector −→n . We, then,
estimate its corresponding (α,β) spherical coordinates using Eq. (4.3). We subsequently as-
sign each (α,β) pair to its nearest neighbor in the sampled points from the Fibonacci lattice,
by computing their cosine distance. To parallelize this process, we precompute the projec-
tion of all Hough line parameterizations onto the sampled sphere locations. This mapping
is stored in an [Nρ×Nθ×M ] tensor, where [Nρ×Nθ] is the number of line parameterizations
in Hough space and M is the number of sampled azimuth angles α. We set N=32,768 and
M=1,024.

(ii.2) Spherical convolutions on the hemisphere. We employ spherical convolutions to
predict vanishing points. We treat the points sampled on the hemisphere as a point cloud
and use EdgeConv [62] to convolve over the hemisphere. EdgeConv operates on a k-nearest
neighbor graph on the points. It learns to represent local neighborhoods by applying a
non-linear function to the neighbors’ features, and then aggregates those features with a
symmetric operator. The neighbors’ features are localized by subtracting the features of the
centroid. Like [62], we take the per-feature maximum over the neighbors to aggregate edge
features.

As shown in Figure 4.4, the spherical part of our model contains 5 EdgeConv mod-
ules [62]. Each EdgeConv module transforms neighboring features with a fully connected
layer, a BatchNorm layer [63] and a LeakyReLU activation. We use N=32,768 nodes on
the hemisphere and compute the 16 nearest neighbors for each node. We concatenate the
features maps from previous layers and feed them into the last EdgeConv layer to produce
the final prediction.
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Figure 4.5: Multi-scale sampling on the hemisphere. We sample points at three scales for detecting
vanishing points in the Manhattan world, as in [11]. Blue indicates sampling at the first scale, while
green indicates fine-grained sampling at the following scales. The red crosses are the predictions at
each scale.

Model training and inference. We train the model using the binary cross-entropy loss.
For each annotated vanishing point, we label its nearest neighbor in the sampled points as
+1 and the others as 0. Because the number of positive samples is considerably lower than
the negative samples, we compute two separate average losses over the positive and the
negative samples, and then sum these. There is no intermediate supervision or guidance.

During inference, we use DBSCAN [64, 65] to cluster all points on the Gaussian sphere
based on the cosine distance. The eps parameter of DBSCAN [65] is set to be 0.005. The
point with the highest confidence in each cluster is the prediction. We rank all predictions
by confidence.

Multi-scale sampling with the Manhattan assumption. For the Manhattan world, we
know beforehand that there are only 3 orthogonal vanishing points, therefore in this sce-
nario, we can use a multi-scale sampling strategy to reduce computation, as in [11]. Here,
we sample points and apply spherical convolutions at 3 scales: δ ≈ {90◦,13◦,4◦} and N =
{512,128,128}, where δ controls the sampling radius and N indicates the number of sampled
points respectively. Figure 4.5 displays the multi-scale sampling. The spherical convolu-
tion networks share the same architecture while processing different number of samples.
We provide details in the supplementary material.

4.4. EXPERIMENTS
Datasets. We evaluate on three datasets following the Manhattan world assumption: SU3
(SceneCity Urban 3D) [15], ScanNet [14], YUD [31], as well as the NYU Depth [16]
dataset which does not follow the Manhattan world assumption. The SU3 dataset contains
23K synthetic images, which are split into 80%, 10% and 10% for training, validation and
testing respectively. The ScanNet has more than 200K real-world images, among which
189,916 examples are used for training. The “ground truth" VPs are estimated from surface
normals as in [11], thus being less precise than other datasets. In the NYU Depth dataset,
the number of vanishing points varies from 1 to 8 across images, making it more challeng-
ing. The NYU Depth dataset has 1,449 images, approximately ×200 and ×20 smaller than
the ScanNet dataset and the SU3 dataset, respectively, further increasing the difficulty of
training CNN models. We additionally demonstrate the effect of geometric priors on the
small-scale YUD dataset with only 102 images. Detailed comparisons are in the supple-
mentary material. Unless specified otherwise, we use the ground-truth focal length on SU3,
ScanNet and YUD for the Manhattan assumption.
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Ablation study: AA Curves on ScanNet

1. LSD + Sphere-NMS
2. LSD + Sphere-Convs
3. Canny-edge + HT-Conv + Sphere-Convx4
4. Conv + HT+NMS + Sphere-Convx4
5. Conv + HT-Conv + Sphere-Convx4 (Ours)
6. Conv + HT-Conv + Sphere-Convx2
7. Conv + HT-Conv + Sphere-Convx1
8. Conv + HT-Conv + Convx1

Figure 4.6: Exp 1: Model choices. We show the effects of the two geometric priors quantitatively on
the ScanNet-1% subset. Adding HT layers and spherical convolutions outperforms the baselines, thus
demonstrating the effectiveness of geometric priors.

HT (# of angles) Sphere (# of points)

90 180 8K 16K 32K

AA@3◦ 77.1 79.3 73.3 77.4 79.3

Table 4.1: Quantization analysis on SU3-10% subset. Denser samplings improve performance. In practice, we
uniformly sample 180 angles from [0,π) for HT, and 32K points on the sphere.

Evaluation. On the SU3, ScanNet and YUD datasets (Manhattan assumption), we evaluate
the angle difference between the predicted and the ground-truth vanishing points in the
camera space, as in [11, 44, 56]. We then estimate the percentage of the predictions that
have a smaller angle difference than a given threshold and compare the angle accuracy (AA)
under different thresholds, as in [11, 44]. We use the ground-truth focal length to exploit
the orthogonal constraint. On the NYU Depth dataset we follow [56] and first rank detected
vanishing points by confidence, and then use the bipartite matching [66] to calculate the
angular errors for the top k predictions. After matching, we generate the recall curve and
measure the area under the curve (AUC) up to a threshold, e.g. 10◦.

Baselines. We compare our model with J-Linkage [26], Contrario-VP [43], Quasi-VP [42,
67], NeurVPS [11] and CONSAC [56] on SU3, ScanNet and YUD. On the non-Manhattan
NYU Depth dataset we only compare with J-Linkage, T-Linkage [68], CONSAC and VaPid
[44], as the other models rely on the Manhattan assumption. J/T-Linkage, Contrario-VP and
Quasi-VP are non-learning methods, employing line segment detection [69]. NeurVPS and
our model are end-to-end trainable, while CONSAC needs line segments as inputs. We
follow the official implementations and use the default hyperparameters to reproduce all
results. We do not consider the baselines [24, 44, 58] due the lack of code/results on certain
datasets.
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Datasets SU3 [15] ScanNet [14] YUD [31]

Metrics Params FPS AA@3◦ AA@5◦ AA@3◦ AA@5◦ AA@10◦ AA@3◦ AA@5◦ AA@10◦

J-Linkage† [26] — 1.0 82.0 87.2 15.7 27.3 43.0 60.8 71.8 81.5
Contrario-VP† [43] — 0.6 64.8 72.2 12.0 21.4 35.3 58.6 70.7 81.8
Quasi-VP [67] — 29.0 75.9 80.7 14.7 25.3 39.4 58.6 61.0 74.0
CONSAC† [56] 0.2 M 3.0 86.3 90.3 15.8 24.6 36.0 61.7 73.6 84.4
NeurVPS [11] 22 M 0.5 93.9 96.3 24.0 41.8 64.4 52.4 64.0 77.8
Ours 7 M 5.5 84.0 90.2 24.8 42.1 63.7 60.7 74.3 86.3
Ours∗ 5 M 23.0 84.8 90.7 22.9 39.8 62.4 59.5 72.6 85.4
Ours† 7 M 5.5 81.7 88.7 22.2 38.8 59.9 59.1 72.6 84.6

Table 4.2: Exp 2: Manhattan world. Angular accuracy on SU3, ScanNet and YUD datasets. Ours
achieves the best results on the the YUD dataset, and is competitive on the larger ScanNet and SU3
datasets. Ours∗ adopts the multi-scale sampling strategy, thus being significantly faster. † assumes
unknown focal length, thus making the Manhattan assumption no longer applicable. Ours† shows a
constant decrease over Ours across datasets, indicating the usefulness of the orthogonal constraint.
Supplementary material provides qualitative visualizations. We conclude that adding priors does not
reduce accuracy in the large scale setting.

Ours-7M Quasi-VP J-Linkage CONSAC Contrario-VP NeurVPS-22M

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Angle difference
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

AA Curve on SU3 dataset 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Angle difference
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

AA Curve on ScanNet dataset

0 2 4 6 8 10

Angle difference
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

AA Curve on YUD dataset

Figure 4.7: Exp 2: Manhattan world. AA curves on on the ScanNet, SU3 and YUD datasets contain-
ing 3 orthogonal vanishing points. Learning-based approaches outperform methods relying purely
on line segments and grouping, validating the power of representation learning. Our model shows
comparable results to the best performing NeurVPS on ScanNet, while using 3× less parameters. On
the smaller YUD dataset, our model slightly exceeds state-of-the-art. Generally, with ample data, our
approach is comparable to others.

Implementation details. We implement our model in Pytorch [70], and provide the code
online 1. Our models are trained from scratch on Nvidia RTX2080Ti GPUs with the Adam
optimizer [71]. The learning rate and weight decay are set to be 4× 10−4 and 1× 10−5,
respectively. To maximize GPU usage, we set the batch size to 4 and 16 when using multi-
scale sampling. On the SU3 and NYU Depth datasets, we train the model for a maximum of
36 epochs, with the learning rate decreases by 10 after 24 training epochs. On the ScanNet
dataset, we train for 10 epochs and decay the learning rate by 10 after 4 epochs. On the
YUD datset we use pre-trained models on SU3.

1https://github.com/yanconglin/VanishingPoint_HoughTransform_GaussianSphere

https://github.com/yanconglin/VanishingPoint_HoughTransform_GaussianSphere
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(a) Data efficiency on ScanNet (b) Data efficiency on SU3

Figure 4.8: Exp 3.(a): Reduced data. We report AA @10◦ on various subsets of the ScanNet and
SU3 datasets, and indicate the number of parameters in the legend. On the ScanNet dataset, we
outperform other methods on the 10%, 5% and 2.5% subsets. Our model degrades gracefully when
reducing the training samples from 20K to 1K on the SU3 subset, while NeurVPS has a drastic drop
in accuracy. CONSAC achieves top results on SU3 due to pre-extracted line segments, but fails on
ScanNet because of inaccurate line detection. There is a similar trend for the baselines relying on line
segment detection. Our model predictions are stable having small variances (±0.50 and ±0.43 on the
1% subsets of ScanNet and SU3 respectively) across 3 repetitions. This experiment validates the data
efficiency of our model.

4.4.1. EXP 1: EVALUATING MODEL CHOICES
We evaluate on a subset of ScanNet containing 1% of the data, and provide the results
in Figure 4.6. Model (1) is a non-learning baseline using a classic line segment detector
(LSD) [69] and non-maximum suppression (NMS) on the sphere. Model (2) replaces the
NMS with spherical convolutions, but still shows inferior result as LSD fails to detect re-
liable line segments. Model (3) combines a Canny-edge detector, Hough Transform and
spherical convolutions. Comparing (3-5) indicates the added value of learning semantics
from images, rather than using classic edge detectors. Comparing (4-5) shows the effec-
tiveness of backpropagating through Hough Transform. Comparing (5-8) exemplifies the
added value of spherical convolutions. Our method combines both classical and deep learn-
ing approaches into an end-to-end trainable model.

We also evaluate the impact of quantizations numerically on the synthetic SU3-10%
subset, which contains precise VP annotations, thus making quantization a crucial factor.
As shown in Table 4.1, fine-grained sampling is essential for a better result.

4.4.2. EXP 2: VALIDATION ON LARGE DATASETS
We validate that adding prior knowledge does not deteriorate accuracy when there is plenty
of data. We compare to five state-of-the-art baselines [11, 26, 43, 56, 67] on the ScanNet,
SU3 and YUD datasets. On the ScanNet and SU3 datasets, we train all learning models
from scratch on the full training split. On the YUD dataset, we use the pre-trained models



4.4. EXPERIMENTS

4

59

on SU3 without fine-tuning. For CONSAC and J-Linkage, we select top-3 predictions. We
also measure the inference speed on a single RTX2080 GPU. Multi-scale sampling Ours∗
achieves 23 FPS, a large speedup over the vanilla design, as we utilize the orthogonality for
efficient sampling.

Table 4.2 shows the AA scores on the ScanNet, SU3 and YUD datasets, while Fig-
ure 4.7 depicts AA curves for varying angle differences. The SU3 dataset is easier as most
images contain strong geometric cues (e.g. sharp edges and contours); this is no longer
the case in the ScanNet dataset. The prediction error on the more realistic ScanNet dataset
is significantly larger for all methods. On the ScanNet dataset, NeurVPS and our model
are visibly better than methods relying on predefined line segments as inputs. The main
advantage of NeurVPS and our model is their ability to learn useful feature representations
directly from images. On the SU3 dataset, NeurVPS exceeds the other methods in the low-
error region (from 0◦ to 1◦). J-Linkage, Quasi-VP and CONSAC have similar results, and
all of them stabilize at 1◦. On SU3 our model is less accurate in 0◦-1◦, yet it compensates at
≥ 1◦. Our inferior performance in 0◦-1◦ range results from the quantization errors in Hough
Transform and the Gaussian sphere mapping. On the small-scale YUD dataset [31], our
model achieves comparable accuracy without fine-tuning, and exceeds the other methods
in the ≥ 2◦ area, indicating the generalization ability of our model in the small data regime.
We conclude that our model using prior knowledge performs similar to existing solutions.

4.4.3. EXP 3: CHALLENGING SCENARIOS
EXP 3.(A): REDUCED DATA

We evaluate data efficiency by reducing the number of training samples to {10%,5%,2.5%,1%}
on the ScanNet dataset, resulting in approximately 20K, 10K, 5K and 2K training images.
Similarly, we also sample the SU3 dataset into {50%,25%,10%,5%,2.5%,1%} subsets. We
train all learning models from scratch using the default hyperparameters on each subset.

In Figure 4.8 we compare the AA scores at 10◦ with state-of-the-art methods. We use
our vanilla design without the multi-scale sampling speedup. The first thing to notice is
that non-learning methods are robust to data reduction. Yet, non-learning methods can-
not take any training data into account, and thus they do not perform as well when more
data is available, as we validated in the previous experiment. On the ScanNet dataset, our
model visibly exceeds the other methods on the 10%, 5% and 2.5% subsets. In compari-
son, NeurVPS suffers from large accuracy decreases on small training data subsets. When
decreasing the number of samples to 2K (1% subset), we still achieve competitive accu-
racy when compared to the non-learning methods, while NeurVPS fails to make reasonable
predictions due to the lack of data. This shows the capability of our model to learn from
limited data, thanks to the added geometric priors.

The NeurVPS model has ×3 more parameters than our model due to its fully-connected
layer with 16M parameters. For fairness, we also consider ‘NeurVPS-7M’ with reduced
fully-connected layers, having a similar number of parameters with our model. Both NeurVPS
variants perform similar on various subsets. On the SU3 dataset the accuracy of NeurVPS
decreases significantly when reducing the training dataset size, despite its superiority on the
large training subsets. In comparison, our model degrades gracefully when training data de-
creases from 20K to 1K. Notably, on the 1% subset, with only 200 images for training, we
are still able to achieve comparable performance with non-learning methods.
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Figure 4.9: Exp 3.(b): Non-Manhattan scenario. We plot the recall curve on the non-Manhattan
NYU dataset. Our method outperforms state-of-the-art, illustrating the ability of the model to detect
a varying number of vanishing points. See supplementary material for qualitative visualizations.

Datasets NYU Depth [16]

top-k = #gt top-k = #pred

AUC @5◦ @10◦ @5◦ @10◦

J-Linkage[26] 49.30 61.28 54.48 68.34
T-Linkage[68] 43.38 58.05 47.48 64.59
CONSAC[56] 49.46 65.00 54.37 69.89
CONSAC[56]+ 46.78 61.06 49.94 65.96DLSD[61]
VaPiD [44] - 69.10 - -
Ours 55.92 69.57 57.19 71.62

Table 4.3: Exp 3(b): Non-Manhattan scenario. We report AUC scores on the NYU Depth dataset.
Here “top-k = #gt" indicates the k most confident predictions where k is the number of annotated
instances [56], while for “top-k =#pred" all predictions are used for evaluation. Our model exceeds
state-of-the-art when detecting a varying number of vanishing points.

EXP 3.(B): NON-MANHATTAN SCENARIO

We compare with state-of-art methods in a more realistic non-Manhattan scenario with
limited annotated data. CONSAC [56] uses the line segment detection in [69]. We also
consider a variant of CONSAC with the more recent line segment detector in [61].

Figure 4.9 and Table 4.3 display the recall curve and the AUC values on the NYU Depth
dataset, respectively. Our model consistently outperforms state-of-the-art baselines, and
the improvement is more pronounced for larger angular differences. Although achieving
the second-best result, VaPiD [44] assumes a constant number of instances and requires
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Synthetic - real-world data

Train SU3 [15]

Test ScanNet [14] YUD [31]

Models Ours NeurVPS CONSAC Ours NeurVPS CONSAC

AA@3◦ 15.2 11.1 10.1 60.7 53.8 61.7
AA@5◦ 25.9 20.3 17.3 74.3 65.6 73.6
AA@10◦ 39.5 35.5 27.2 86.3 79.7 84.4

Real-world data

Train NYU Depth [16]

Test ScanNet [14] (AA) YUD [31] (AA) YUD+ [31] (AUC)

Models Ours CONSAC Ours CONSAC Ours CONSAC

@10◦ 33.6 30.3 83.2 82.7 71.4 75.0

Table 4.4: Exp 3.(c) Cross-dataset domain switch. “Train" and “Test" specify the training and test
datasets. CONSAC uses pre-extracted lines, thus being accurate on YUD/YUD+. However, its ac-
curacy is lower on ScanNet due to the lack of reliable lines. In comparison, Ours is more accurate
on both ScanNet and YUD without tuning. Our geometric priors improve the transferability of the
model across datasets.

non-maximum suppression, which often results in over- and under-prediction. Our model
outperforms existing methods by exploiting geometric priors, while not limiting the number
of vanishing points detected.

EXP 3.(C): CROSS-DATASET DOMAIN SWITCH

We conduct cross-dataset test on multiple datasets, as displayed in Table 4.4. We compare
with NeurVPS and CONSAC, which achieve top accuracy on individual datasets. When
generalizing from synthetic dataset to the real-world (e.g. from SU3 to YUD), our model
shows comparative results to CONSAC, which relies on prior line segment detection, mak-
ing it robust to domain shifts. We observe a similar trend on real-world datasets (e.g. from
NYU to YUD). However, on the challenging ScanNet dataset, Ours exceeds CONSAC,
indicating the advantage of learning semantics over using pre-extracted lines. In contrast,
NeurVPS does not transfer well to another dataset. This validates the robustness of the two
priors in tackling domain shifts.

4.5. CONCLUSIONS AND LIMITATIONS
This paper focuses on vanishing point detection relying on well-founded geometric priors.
We add two geometric priors as building blocks in the deep neural networks for vanishing
point detection: Hough Transform and Gaussian sphere mapping. We validate experimen-
tally the added value of our geometric priors when compared to state-of-the-art Manhattan
methods, and show their usefulness on realistic/challenging scenarios: with reduced sam-
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ples, in the non-Manhattan world where the challenge is to predict a varying number of
vanishing points without the orthogonality assumption, and across dataset domains.

Despite of these improvements, our model also has several limitations. We pre-compute
offline the mapping from images to the Hough bins and to the Gaussian sphere by fixing the
size of the Hough histogram, as well as the Fibonacci sampling. However, these samplings
introduce quantization errors which set an upper bound on accuracy. This is the primary
reason for the limited accuracy on the SU3 dataset in the low-error region. A future research
avenue is exploring an analytical mapping from image pixels to the Gaussian sphere. In
addition, our model still relies on hundreds of fully labeled samples for training. One might
consider testing the added priors in an unsupervised or weakly-supervised manner.

4.6. SUPPLEMENTARY MATERIAL
4.6.1. MULTI-SCALE SAMPLING ON THE GAUSSIAN SPHERE
Inspired by [11], we use a multi-scale sampling strategy to detect three orthogonal vanishing
points in the Manhattan world. We start by uniformly sampling Ns=0 points at scale s =
0 on the entire hemisphere. We input these points into a spherical convolution network.
Sequentially, we use the Manhattan assumption to choose 3 orthogonal vanishing points
with the highest confidence as anchors. We uniformly sample Ns=1 points around each
anchor in a local neighborhood defined by the radius δs=1 at scale s = 1. Then, we feed these
newly sampled points into a spherical convolution network. Finally, the point with highest
confidence in each local neighborhood is considered as the anchor for sampling at the (s +
1)th scale. Specifically, we set δ ≈ {90◦,13◦,4◦} and N = {512,128,128}. The spherical
convolution networks share the same architecture while processing different number of
samples. During training, we assign the nearest neighbors to the ground truth as positive
samples while the others are considered as negative samples. We compute the cross-entropy
losses averaged over positives and negatives respectively, at each scale.

4.6.2. DATASETS

Datasets Images Manhattan Size VPs Train Valid Test

SU3 2[15] Synthetic X 512 × 512 3 18400 2300 2300
ScanNet [14] Real X 512 × 512 3 189916 500 20942
YUD [31] Real X 480 × 640 3 25 - 77

NYU [16] Real × 480 × 640 1-8 1000 224 225

Table 4.5: Comparison of the four datasets. The SU3, ScanNet and YUD datasets follow the Manhattan as-
sumption with 3 orthogonal vanishing points, while the NYU Depth dataset is annotated with a varying number
of instances. In addition, the size of the four datasets varies substantially. There are only 1000 and 25 training
images in NYU and YUD datasets.

Table 4.5 shows a detailed comparison among all datasets, and Figure 4.10 displays
image examples from each dataset. The SU3 dataset is synthetic and all images are well-

2Since there are no official splits, we divide all images into 80%/10%/10% partitions for training, validation and
testing, respectively.
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SU3

ScanNet NYU Depth

YUD

Figure 4.10: Examples from the SU3, ScanNet, YUD and NYU Depth (labeled with ground truth lines)
datasets. Images from the SU3 dataset are well-calibrated with clear geometric cues, such as sharp edges and
contours. In contrast, the other datasets capture real-world images where image content varies significantly. The
NYU Depth dataset is labeled with multiple vanishing points (varying from 1-8).

calibrated with sharp edges. The ScanNet dataset captures indoor scenes in the real-world
environments, where image content varies significantly. The YUD dataset captures both
indoor and outdoor scenes in urban cities and contains only 102 images. SU3, ScanNet and
YUD datasets follow the Manhattan world assumption where there are 3 orthogonal vanish-
ing points. In comparison, the NYU Depth dataset has a varying number of instances across
images. Moreover, there are 1449 images in total, and therefore training deep networks is
highly challenging on the NYU Depth dataset due to the lack of data.

4.6.3. VISUALIZATIONS
We visualize predictions on the NYU Depth dataset in Figure 4.11. We show the input
images, labeled line segments and detected vanishing points on the hemisphere. Each color
represents a group of lines and their corresponding vanishing point. In the third row, our
model correctly detects all vanishing points, as the colored × and ◦ overlap. In comparison,
CONSAC fails to localize the red one and J-Linkage is unable to detect the green one. In
addition, CONSAC makes nearby predictions: e.g., the blue and pink × markers in second
row. This is caused by the LSD [69] method producing a large number of outlier segments,
resulting in incorrect predictions. Our method is suitable for real-world scenarios, where
the image content varies substantially.

Figure 4.12 and Figure 4.13 show detected vanishing points from our model on the SU3
and YUD datasets, respectively. Since all methods make reasonably good prediction and
the difference is hardly visible, we only visualize our results.

Figure 4.14 compares detected vanishing points from all models on the ScanNet dataset.
We compare all models in a column-wise manner, where the input image is on the top,
while predictions from each method is displayed sequentially. We show the top 3 vanishing
points for J-Linkage [26] and CONSAC [56]. In general, NeurVPS and ours are able to
localize vanishing points more precisely than other non-learning approaches. As shown in
the fourth example where the object is not orthogonally placed, Quasi-VP [67] fails due
to the presence of strong outliers and the lack of inliers. This shows the disadvantage
of non-learning method in dealing with complicated real-world scenarios. J-Linkage and
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Input image J-Linkage CONSAC Ours

Figure 4.11: Visualizations on the NYU Depth dataset. The black ◦ represents the ground truth, while the
colored × indicates predictions. Each color corresponds to a set of lines and their related vanishing point. Our
model is better at localizing multiple vanishing points in the non-Manhattan world, having predictions (colored
cross ×) closer to the ground truth (black ◦), while the predictions of the other methods scatter away from the
ground truth, as shown in the first example.

CONSAC sometimes predict vanishing points far away from the ground truth (e.g., the
fourth example), because they are originally designed for multiple vanishing point detection
in non-Manhattan world, and do not enforce orthogonality explicitly. Ours show better
performance in detecting orthogonal vanishing points from complex scenes thanks to the
ability to learn semantic features from images directly in an end-to-end manner.
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Figure 4.12: Visualizations on YUD dataset. We show ground-truth vanishing points (◦) and our predictions
(×) on the Gaussian hemisphere, as well as ground truth lines. Our model accurately predicts vanishing points in
man-made environments.
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Figure 4.13: Visualizations on SU3 dataset. We show ground-truth vanishing points (◦) and our predictions (×)
on the Gaussian hemisphere, as well as ground truth lines. Each color represents a cluster of lines that is related
to a vanishing point. Our model accurately predicts vanishing points in man-made environments.
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Figure 4.14: Visualizations on ScanNet dataset. We show ground-truth vanishing points (◦) and predictions
from all baseline methods (×) on the Gaussian hemisphere. Learning-based models shows superior performance
to classic line segment-based approaches in complex real-world environments.
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5
DATA-EFFICIENT LEARNING

FOR 3D MIRROR SYMMETRY
DETECTION

We introduce a geometry-inspired deep learning method for detecting 3D mirror planes
from single-view images. We reduce the demand for massive training data by explicitly
adding 3D mirror geometry in the deep network, as an inductive prior. We extract semantic
features, calculate intra-pixel correlations, and build a 3D correlation volume for each
plane. The correlation volume indicates the extent to which the input resembles its mirrors
at various depth, allowing us to identify the likelihood of each given plane being a mirror
plane. Subsequently, we treat the correlation volumes as feature descriptors for planes
sampled on a unit hemisphere. Lastly, we design multi-stage spherical convolutions to
identify the optimal mirror plane in a coarse-to-fine manner. Experiments on both synthetic
and real-world datasets show the benefit of 3D mirror geometry in improving data efficiency
and inference speed: up to 25 FPS (on a GeForce RTX 2080 Ti GPU).

This chapter is submitted for publication as:
Yancong Lin, Silvia-Laura Pintea, and Jan van Gemert. Data-Efficient Learning for 3D Mirror Symmetry Detec-
tion. arXiv: https://arxiv.org/abs/2112.12579.
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Figure 5.1: 3D mirror symmetry detection. We identify 3D mirror planes by measuring the correlations between
the input and its mirrors over depth. The mirrors are calculated by 3D mirror geometry (a), which localizes
the reflections of a given pixel directly on the image plane (b). We describe each candidate plane with feature
correlations across points and their mirrors. We sample planes on a hemisphere, and adopt multi-stage spherical
convolutions to localize the optimal plane hierarchically (c). The 3D mirror geometry is explicitly encoded in the
model. We display the ground truth symmetry axis (in green) on top of the image.

5.1. INTRODUCTION
Symmetry exists in nature, in the man-made world, and in science and arts. Mirror sym-
metry, also known as bilateral or reflection symmetry, is an intrinsic property of many
man-made objects, which allows us to infer the entire object from only partial observations,
as demonstrated in the shape completion [1, 2] and single-view 3D reconstruction [3–5].

Symmetries can be readily detected in the image plane for frontal-facing objects [6].
However, most images in our daily life are not taken from the front-view and as a result,
symmetry in the image plane does not always exist due to the perspective effect. Thus,
the inference of 3D mirror symmetries has to handle perspective effects. By relying on
local feature matching and camera geometry symmetries can be found on textured objects
[7]. More recently, deep learning-based approaches detect mirror symmetry by learning
dense features from images [4, 8]. This remedies the effect of unreliable local texture
features, and improves the overall performance of symmetry-dependent 3D reconstruction.
However, these approaches typically require large annotated datasets, such as ShapeNet [9],
for training.

We aim to improve the data efficiency of 3D symmetry detection from a single-view, by
explicitly incorporating 3D mirror geometry. Geometrically, a mirror plane, as depicted in
green in Figure 5.1, localizes uniquely in the image plane the reflection of every point across
this plane, at any given depth. The original points (red circles in Figure 5.1) and their reflec-
tions across a candidate symmetry plane (red check-marks in Figure 5.1) should be visually
similar for a true symmetry plane. We explicitly incorporate this geometric knowledge into
neural networks by characterizing every candidate plane using correlations of features be-
tween points and their reflections across depth. We subsequently use these correlations to
define a voting space for sampled candidate 3D symmetry planes. We sample these candi-
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date 3D symmetry planes in a coarse-to-fine manner on a unit hemisphere and use spherical
convolutions to identify the optimal plane from its neighbors. This formulation constraints
the 3D symmetry plane prediction to prefer geometrically sound candidates, thus explic-
itly incorporating geometric priors. These geometric priors no longer need to be implicitly
learned from data, which leads to data efficiency. Our work harmonizes the strengths of
geometry-based symmetry plane detection with deep learning approaches.

We make the following contributions: (1) We explicitly add 3D mirror geometry into
deep networks for finding symmetric correspondences; (2) We design multi-stage spheri-
cal convolutions to detect a mirror plane in a coarse-to-fine manner; (3) We improve data
efficiency of learning-based 3D mirror plane detection, which has benefits for real-world
scenarios where data is scarce; (4) We experimentally demonstrate the added-value of our
approach in terms of performance and inference speed on the ShapeNet [9] and Pixel3D
[10] datasets.

5.2. RELATED WORK
Planar symmetry detection. A thorough overview on symmetry detection with focus on
2D, is given in [11]. Further work expands on this by including other types of symmetries
such as medial-axis-like symmetries and by adding synthetic 3D data [12]. More recently,
planar symmetry detection with deep networks for and achieves competitive results [6,
13]. However, for planar symmetry detection objects are typically front-facing, greatly
simplifying the task. In addition, planar symmetry does not encode any 3D perspective
information. Different from these works, we aim to detect 3D mirror symmetry from single-
view images taken from any perspective.

3D mirror symmetry detection. 3D mirror symmetry is prevalent in both nature and
the man-made world. There has been excellent research on utilizing geometric transforms
for detecting mirror symmetries from 3D inputs [14–16]. A 3D Hough transform proves
effective at detecting mirror symmetry planes from point clouds, in [14]. Alternatively,
planar reflective symmetry transform can find symmetry planes in 3D volumetric data [16].
Similar to these works, we also make use of the 3D geometric knowledge for detecting
mirror symmetries, but instead or relying on 3D data we start from single-view images.

Recently, deep networks have been used for leveraging large datasets for learning 3D
symmetries [1, 17]. Despite being able to detect multiple symmetries, they rely on heavy
post-processing procedures to find the optimal symmetry. Moreover, these models have
only been tested on synthetic 3D datasets (i.e. ShapeNet [9] with voxelized volumes or
RGB-D data). In contrast, we propose to learn 3D mirror symmetry in an end-to-end man-
ner, and test on both synthetic and real-world 2D images.

3D mirror symmetry from single-view images. A 2-stage approach can be effective for
3D mirror symmetry detection from 2D images, by first matching image correspondences
and then applying RANSAC to identify the best symmetry plane [7]. However, this strategy
is no longer applicable in the absence of texture, or on smooth surfaces, or repetitive pat-
terns, because of incorrect correspondences. Rather than relying on local feature matching,
NeRD [8] makes use of neural networks to learn dense features and incorporates 3D mirror
geometry into learning, making it the top-performing model. Similarly, we also explicitly
add geometric knowledge into learning. However, different from NeRD which relies on



5

78 5. DATA-EFFICIENT LEARNING FOR 3D MIRROR SYMMETRY DETECTION

X

X

256x256x4

< , >
HxWxC HxWxHxW

K

...

Flatten

...

H
W shared

Plane identification by 
multi-stage spherical convs

D

Feature extraction + Correlation 

X Argmax

K planes sampled from a unit hemisphere

X

K

...

Depth

Origin

Image

3D mirror

Prediction

Input

Argmax

Argmax

2D Convs

Asymmetric mirrorA point Symmetric mirror

A plane

Figure 5.2: Overview. Our model includes three components: feature extraction, correlation calculation, and
3D mirror and plane identification by spherical convolutions. We first calculate intra-pixel correlations C using
learned features F . Then we build a correlation volume V for each sampled plane ψ, which we then flatten as a
feature descriptor. We adopt spherical convolutions on uniformly sampled planes on a hemisphere to locate the
optimal plane (highlighted in green).

large amounts of training data, we reduce the inference latency and the demand for massive
annotated data, by calculating the correlations between the inputs and its mirrors and by
introducing multi-stage spherical convolutions to the localize the optimal mirror plane.

5.3. GEOMETRIC PRIORS FOR 3D MIRROR SYMMETRY
Our method starts from RGBA images as input and outputs sampled planes and associated
confidence sores for being a mirror plane. We choose the plane with the highest confidence
as our prediction. Although an object may admit multiple symmetries, we only predict the
principal mirror symmetry, as in [8]. We explicitly add 3D mirror geometry knowledge into
deep networks to improve the data efficiency. Our model is composed of three parts: (1)
feature extraction and correlation calculation, (2) 3D mirroring, (3) plane identification by
spherical convolutions, as in Figure 5.2.

5.3.1. FEATURE EXTRACTION AND CORRELATION CALCULATION
We start by learning semantic image features via a convolutional neural network as in [8],
which results in a feature map F of size [H ×W ×C ], where H , W , C indicate height,
width, and number of channels, respectively. Then, we calculate the intra-pixel correlation
between each pair of points in the [H ×W ] grid by dot product over the channel dimension.
This produces a correlation tensor C of size [H ×W × H ×W ]. C indicates the extent to
which a pixel resembles the others. A higher correlation implies higher visual similarity. In
the convolutional network we subsample the featuremaps to size [64× 64] and set C to 64.

5.3.2. 3D SYMMETRIES
We input the correlation tensor C into the 3D mirror module, together with a sampled plane.
This module outputs a feature descriptor for each considered mirror plane. Given a ran-
domly sampled plane ψ, the 3D mirror module computes the symmetric correspondences
x′′ for each pixel x′ across various depths d . The module then aggregates the correlations
per pixel over all its correspondences in a 3D correlation volume of size [H ×W ×D]. At
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Figure 5.3: Scale ambiguity. The two objects (in blue) only differ in scale, but their projections on the image
plane are the same. Therefore, we are unable to determine the scale of the object, or the actual value of the offset.
In practice, we set b = 1.

O
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Figure 5.4: 3D mirror geometry. 3D points X′ and X′′ are symmetric with respect to the given plane ψ defined
by nᵀx+1 = 0. We represent X′ ∈R4 and X′′ ∈R4 in the homogeneous coordinate, where X′′ = MψX′ as defined in
Eq. (5.1). Mψ ∈R4×4 is the 3D mirror transformation uniquely determined by n, allowing us to calculate mirrors
explicitly [7, 14].

every point, the correlation volume indicates how similar the mirrors across the sampled
plane ψ are to that point. A higher similarity indicates that the sampled plane ψ is more
likely to be the optimal mirror plane. Subsequently, we downsample the correlation volume
and flatten it into a 1D feature vector that describes the currently sampled plane, ψ.

(i) 3D mirror planes. A plane ψ is uniquely defined by its normal direction n ∈ R3 and
offset b ∈ R as nᵀx + b = 0, where x ∈ R3 denotes points on the plane. We are unable
to determine b due to scale ambiguity [8, 18]. This is because the scene can be moved
arbitrarily along the normal direction n and scaled accordingly, without affecting the image,
as shown in Figure 5.3. Therefore, we only need to predict the normal direction n of the
mirror plane. Moreover, given that a normal direction n is equivalent to a point on a unit
hemisphere, we can further define a plane as a spherical point. Thus we can sample planes
on a unit hemisphere.
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(ii) 3D mirror transform. Figure 5.4 shows an illustration of 3D mirror geometry for a
randomly sampled plane ψ defined by nᵀx+1 = 0. The corresponding 3D mirror transfor-
mation Mψ ∈ R4×4 associated to plane ψ : nᵀx+ 1 = 0 is uniquely defined by the normal
direction of the plane n, as in Eq. (5.1) coordinate[7, 14]:

X′′ =
(

I−2nnᵀ −2n
0 1

)
︸ ︷︷ ︸

Mψ

X′, (5.1)

where X′′ ∈ S and X′ ∈ S are a pair of symmetric 3D points, and S ⊂ R4 is the set of 3D
points on the object surface in homogeneous coordinates.

Given the camera intrinsic matrix K ∈R4×4, we can project both X′ and X′′ on the image
plane by x′ = KX′/d ′ and x′′ = KX′′/d ′′, where d ′ and d ′′ are the corresponding depths
in the camera space. Therefore, we can derive the constraint between points x′ and their
projections x′′ as:

x′′d ′′ = KMPK−1x′′d ′′, (5.2)

where x′ = [
x ′, y ′,1,1/d ′] and x′′ = [

x ′′, y ′′,1,1/d ′′] indicate the coordinates of the projected
points in the pixel space. Eq. (5.2) enables us to find the symmetric correspondences of
every pixel at various depths, given a sampled mirror plane, ψ.

(iii) 3D correlation volume. We follow Eq. (5.2) to localize the symmetric correspon-
dences (x ′′, y ′′) for each pixel (x ′, y ′) at various depth d ∈D, where D = {dmi n+ i

D−1 (dmax−
dmi n)|i = 0,1, ...,D−1}. dmi n and dmax are the minimal and maximal depth values. Subse-
quently, we index the correlation tensor at C(x ′, y ′, x ′′, y ′′) via bi-linear interpolation. Lastly,
we fill in V(x ′, y ′,d) with the indexed value. We enumerate all d ∈D for each pixel (x ′, y ′)
in the [H ×W ] grid, thus obtaining a correlation volume V of size [H ×W ×D].

The correlation volume V indicates the similarity between each input and its mirrors at
all sampled depths. This enables deep networks to learn if there exists a visually similar
reflection for a given plane. A higher similarity implies that the give plane is more likely
to be a mirror plane. However, to identify the global mirror plane, we need to aggregate
information over the entire V . Otherwise, the model may only predict local symmetries. To
this end, we apply 2D convolutions to downscale V , resulting in an output tensor of size[ H

8 × W
8 × D

4

]
. We, then, flatten the downscaled output to a 1D vector for further classifica-

tion. One such 1D vector describes each plane sampled on the hemisphere.

5.3.3. PLANE DETECTION BY SPHERICAL CONVOLUTIONS
To pinpoint the optimal mirror plane, we need an exhaustive search on the entire hemi-
sphere, which is computationally infeasible. Instead, we adopt a multi-stage sampling
strategy using Fibonacci lattice [19] in a coarse-to-fine manner. In practice, we sample
planes over 3 stages to reach a desirable precision. Pi = {nk

i }K
k=1 ⊂ R3 represents all sam-

pled planes at i th stage, where n is the normal direction, and K is the number of planes.
This results in a spherical point cloud of size K at each stage, where each spherical point
(plane) has an associated with an 1D feature descriptor. Since all K planes at each stage
are uniformly sampled, we can utilize spherical convolutions to identify the most probable
candidate by comparing a plane with its neighbors. We use EdgeConv [20] to convolve
at each stage. The EdgeConv module extracts features from a local neighborhood with a
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fully connected layer, a BatchNorm layer [21] and a LeakyReLU activation. We treat each
sampled point as a node, and compute its top 16 nearest neighbors.

The multi-stage sampling differs in training and inference. During training, we uni-
formly sample K planes Pi = {nk : arccos(|〈nk ,n∗〉|) ≤ δi }K

k=1 on the hemisphere at the
i th stage and assign the nearest neighbor to the ground truth n∗ as the label. δi is the
scale factor which defines the size of sampling region at the i th stage. We minimize the
binary cross-entropy loss at each stage, averaged over the positive and negative samples
respectively due to the class imbalance. During inference, we start with a set of uniformly
sampled K planes P1 = {nk }K

k=1 ⊂ R3 on the whole hemisphere. Subsequently, we take
from the previous step the best prediction n̂i−1 as the center and sample another K planes
Pi = {nk : arccos(|〈nk , n̂i−1〉|) ≤ δi }K

k=1. Finally, we choose the plane with the highest esti-
mated confidence as our prediction.

5.4. EXPERIMENTS
5.4.1. EXPERIMENTAL SETUP

Datasets. We conduct experiments on ShapeNet [9] and Pixel3D [10]. The objects in
both datasets are aligned to the canonical space such that the Y-Z plane is the 3D mirror
symmetry plane. On the synthetic ShapeNet dataset, we use the same subset as in [8] for
fair comparison. There are 175,122/500/8,756 images in the training/validation/test splits,
respectively. All images are of size 256×256 pixels. On the real-world Pixel3d dataset, we
also follow [8] to pre-process the data. We first crop the images to obtain the objects inside
bounding boxes. Sequentially, we rescale them to 256×256, and adjust the camera intrinsic
matrix K accordingly. This results in a dataset of 5,285 and 588 images for training and test
respectively.

Evaluation. We follow [8] and evaluate all methods by measuring the angle difference
of the plane normals between the ground-truth and predictions in the camera space. We
calculate the percentage of the predictions that have a smaller angle difference than a given
threshold and plot the angle accuracy (AA) curves.

Implementation details. We implement our model in Pytorch [22], and provide our code
online. The x = 0 plane in the object space is considered as the ground truth because it
is explicitly aligned for each object [9]. We set dmi n = 0.64, dmax = 1.23 and D = 64
for depth. We perform spherical convolutions at 3 scales and sample 128,64,64 symmetry
planes at each scale. We set the scale factor to be δ= {90.0◦,12.86◦,3.28◦}. All models are
trained from scratch on each dataset on Nvidia RTX2080 GPUs with the Adam optimizer
[23], for 32 epochs at most. The learning rate and weight decay are set to be 3×10−4 and
1×10−7. We decay the learning rate by 10 after 24 epochs. To maximize the GPU usage,
we set batch size to 6. The inference speed is approximately 25 FPS.

Baselines. We compare our model primarily with NeRD [8], the state-of-the-art work on 3D
mirror symmetry detector, in all experiments. We also implement a simple baseline using
direct regression to estimate the symmetry normal n. We implement this baseline on top of
a ResNet-50 [24] backbone with L1 loss. Front2Back [3] also detects 3D mirror symmetry
using a variant of classical iterative closest point approach. However, it requires depth
maps in advance and has only been tested on ShapeNet. We also compare with RotCon
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Figure 5.5: Exp1: Data efficiency. Comparison between our model and NeRD when training on various ShapeNet
subsets. Both models are trained from scratch on each subset. The difference of the two models is limited when
the training data is ample (e.g., 18K ≥). However, our model outperforms NeRD when training on limited data
(e.g. ≤ 9K images). This gain is especially visible on the 1% subset where the AA difference is more than 10%.

[25] which proposes a continuous representation for estimating 3D rotation. We use L1

loss for training and report its performance on both datasets. DISN [4] learns 6D rotation
representation for estimating camera poses on ShapeNet. We recover the normal of the
mirror plane from camera poses and report the performance of their pre-trained models on
ShapeNet. NCOS [26] defines a normalized object coordinate space (NOCS) and identifies
6D representations of camera poses. We use NOCS to estimate the orientation of objects
on ShapeNet.

5.4.2. EXP 1: DATA EFFICIENCY
We evaluate the data efficiency of our model by reducing the number of training samples
to {50%,25%,10%,5%,2.5%,1%} on the ShapeNet dataset, which has approximately 200K
training images in total. We train all models from scratch and compare the AA scores at 3◦
and 5◦ on the complete test set. We compare our model with NeRD which holds state-of-
the-art result, as shown in Figure 5.5. The two models have similar amount of parameters,
thus removing the impact of parameters. In general, our model shows superiority over
NeRD with the decrease of training samples, and this advantage accentuates on subsets
with fewer than 10K images. When training on 100%−10% subsets, we observe marginal
difference, while on 10%−1% subsets, we observe a drastic difference (up to 10% in AA),
indicating our model is more efficient in learning from limited data. Notably, our model
can achieve similar results as NeRD with only half of the training data as seen on the 2.5%
and 5% subsets, thus demonstrating the data efficiency of our model.

5.4.3. EXP 2: COMPARISON WITH STATE-OF-THE ART
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Figure 5.6: Exp 2.1: Comparison on synthetic ShapeNet. Thanks to the bake-in 3D mirror geometry, NeRD
and our model outperform other models substantially, particularly in low-error region.

Datasets ShapeNet[9]

Metrics AA@1◦ AA@3◦ AA@5◦

ResNet [24] 20.8 55.7 69.5
RotCon [25] 18.7 54.6 69.4
DISN [4] 9.3 26.1 34.1
NOCS [26] 0.6 7.9 17.3
Front2Back [3] 9.3 26.1 34.1
NeRD [8] 57.3 75.4 80.7
Ours 55.7 75.5 82.0

Table 5.1: Exp 2.1: Evaluation on synthetic ShapeNet. Our model performs competitively on the synthetic
ShapeNet dataset. Moreover, our model is approximately ×20 faster than the top-performing NeRD during infer-
ence (25FPS vs 1.4FPS).

EXP 2.1: COMPARISON ON SYNTHETIC DATA

Figure 5.6 and Table 5.1 shows the comparison with state-of-the-art models on the syn-
thetic ShapeNet dataset. Our model displays competitive results and enjoys a considerable
advantage in the low-error region. The prediction error of our model is less than 1◦ in 80%
of the test cases. NeRD performs the best but is approximately × 20 slower than our model
during inference (1.4 vs 25 FPS). In comparison, the ResNet baseline using direct regres-
sion can only reach approximately 50% AA at 1◦, indicating that naive convolutions lack
the ability to exploit the mirror symmetry, even with ample training data. We also notice
that end-to-end approaches outperform models relying on heavy post-processing, such as
Front2Back [3].
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Figure 5.7: Exp 2.2: Comparison on real-world Pixel3D dataset. Our model performs the best on the challeng-
ing real-world dataset, as the knowledge of 3D mirror no longer needs to be learned from massive data.

Datasets Pixel3D[10]

Metrics AA@1◦ AA@5◦ AA@10◦

ResNet [24] 1.5 12.3 23.6
Rotcon [25] 2.2 14.1 25.8
NeRD [8] 22.7 46.0 55.8
Ours 27.5 53.0 62.8

Table 5.2: Exp 2.2: Evaluation on real Pixel3D dataset. Our model performs the best on the real-world Pixel3D
dataset.

EXP 2.2: COMPARISON ON REAL-WORLD DATA

To further validate the effectiveness of our model, we also test on the real-world Pixel3D
dataset [10], as shown in Figure 5.7 and Table 5.2. Our model outperforms all the other
models consistently, thus demonstrates the superiority of our design. It is worth noting that
the prediction error on Pixel3D is relatively larger than on ShapeNet. On one hand, there is
limited training data (5,000 images in total), which is significantly less than ShapeNet. On
the other hand, the camera configuration differs from image to image, thus making it hard
to make precise predictions. Our model incorporates camera intrinsics into the 3D mirror
geometry, and therefore makes better predictions in different camera settings. Meanwhile,
the usage of spherical convolutions contributes to the outstanding results on Pixel3D. NeRD
lags behind due to a high demand for training data.

5.4.4. EXP 3: ABLATION STUDIES
To verify the contribution of each component in our design, we conduct ablation studies,
as shown in Table 5.3. All models are trained on the ShapeNet 1% subset. Model (a) is a
simple baseline using direct regression and shows inferior results to the others in detecting
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3D
Mirror

Correlation
volumes

Spherical
convs

AA@1◦ AA@5◦

a 7 7 7 0.8 9.5
b 3 3 7 15.8 44.4
c 3 7 3 8.0 31.5
d 3 3 3 22.1 53.5

Table 5.3: Exp 3: Ablation studies. We quantitatively verify the added value of 3D mirror geometry, 3D cor-
relation volumes, and spherical convolutions. All these design choices are essential for the performance of our
model.

3D mirror geometry. We replace the spherical convolutions in our design (d) with 1× 1
convolutions in model (b). Comparing (b) and (d), we find that spherical convolutions im-
prove the results significantly. In model (c), we replace the convolutions over the 3D cost
volumes V by taking the max over the depth dimension. By doing so, we only obtain the
correspondence with the highest correlation across different depths for each pixel, thus re-
moving the 3D spatial information. However, model (c) substantially underperforms model
(d), thus validating the necessity of 3D cost volumes. The ablation studies justify the added
value of the 3D mirror, cost volumes, and spherical convolutions.

5.4.5. DISCUSSION AND LIMITATION
We compare the predictions from NeRD and our model qualitatively in this section. We rely
on ground truth depth for visualizing the mirror symmetry on the image plane. Figure 5.8
compares NeRD (middle) and our model (right), when training on the 1% subset only. The
green line shows the ground truth symmetry axis on the image plane. We highlight in red the
errors between the prediction and the ground truth. The comparison verifies the advantage
of our model in small data regime where only 1% data is available.

Figure 5.9 shows the impact of adding more training data from 1%, 10% to 100%. In the
leftmost examples, our model fails on the 1% subset, as it predicts a plane orthogonal to the
ground truth. However, our model can make effective use of additional training data and
recover from substantial mistakes. The examples on the right show that also for our model
adding data improves precision qualitatively. We guide the reader to the supplementary
material for more visualizations.

We show the failure cases of our model in Figure 5.10. The main challenge in these ex-
amples is that an object may admit multiple symmetries, thus leading to ambiguity. More-
over, it can be hard to find symmetric correspondences for certain objects, such as the gun
example. One of the drawbacks of our models is that if the found point correspondences
are not sufficiently similar in appearance, the mirror plane detection will be erroneous. Ad-
ditionally, for now our model is limited to only detecting one primary symmetry plane, and
this is restrictive as certain objects may display multiple symmetries.

5.5. CONCLUSION
This paper studies 3D mirror symmetry detection from single-view perspective images, re-
plying on well-founded geometric priors. We explicitly incorporate 3D mirror geometry
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Figure 5.8: Qualitative results on ShapeNet when training on the 1% subset. We compare the ground truth,
predictions from NeRD and our results when training on the 1% subset only. We highlight the ground truth
symmetry axis in green and prediction errors in red. In general, our model shows superior results over NeRD
in small data regime. However, both models fail on the example in the bottom-left corner due to the lack of
correspondences.

into learning and propose multi-stage spherical convolutions to locate the optimal mirror
plane precisely and efficiently. Our model is fully end-to-end trainable. Extensive experi-
ments on both synthetic and real-world datasets shows the superiority of our model in both
improved data efficiency and state-of-the-art performance. However, our model can only
predict the primary mirror symmetry plane. Future work will focus on extending our model
for detecting multiple types of symmetries, such as rotation symmetry and translation sym-
metry. Exploring the usage of 3D mirror in single-view 3D reconstruction, such as depth
estimation and shape completion, is also a promising future research direction.
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Figure 5.9: Qualitative results on ShapeNet when adding more training data. We compare the predictions
from our models trained on the 1%, 10% and 100% (sub)sets. The green line represents the ground truth symmetry
axis while the red region indicates errors. Our model can effectively take advantage of additional data and thus
recovers from making substantially wrong predictions. (See supplementary material for more examples)

Figure 5.10: Failure cases on ShapeNet. Our model fails in certain scenarios due to the presence of multiple
symmetries and lack of reliable correspondences. We highlight the ground truth in green and prediction errors in
red.
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5.6. SUPPLEMENTARY MATERIAL
We also display results from the real-world Pixel3D dataset [10] in Figure 5.11. In general,
our model is able to detect the dominant mirror symmetry accurately from images unless
multiple symmetries are present.

Figure 5.11: Qualitative results on Pixel3D. Our model is able to detect the dominant mirror symmetry from
real-world images in most cases. However it fails to handle multiple symmetries (shown in the rightmost column).
The ground truth symmetry axis is in green, while the prediction errors are in red.
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6
INVESTIGATING

TRANSFORMERS IN THE
DECOMPOSITION OF

POLYGONAL SHAPES AS POINT
COLLECTIONS

Transformers can generate predictions in two approaches: 1. auto-regressively by condi-
tioning each sequence element on the previous ones, or 2. directly produce an output se-
quences in parallel. While research has mostly explored upon this difference on sequential
tasks in natural language processing, we study the difference between auto-regressive and
parallel predictions on visual set prediction tasks, and in particular on polygonal shapes in
images because polygons are representative of numerous types of objects, such as buildings
or obstacles for aerial vehicles. This is challenging for deep learning architectures as a
polygon can consist of a varying carnality of points. We provide evidence on the impor-
tance of natural orders for Transformers, and show the benefit of decomposing complex
polygons into collections of points in an auto-regressive manner.

This chapter is published as:
Andrea Alfieri, Yancong Lin and Jan van Gemert. Investigating Transformers in the Decomposition of Polygonal
Shapes as Point Collections. International Conference on Computer Vision workshops (ICCVW), 2021. arXiv:
https://arxiv.org/abs/2108.07533.
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SHAPES AS POINT COLLECTIONS

6.1. INTRODUCTION
Predicting polygonal shapes in images is a high-level task that is representative of many
vision problems. One example is to automatically extract vectorized building outlines from
high-resolutions satellite images [1–4]. Similarly, polygon detection can be beneficial for
vision-based flight control of unmanned aerial vehicles (UAVs), as demonstrated in the
Autonomous Drone Racing [5], where drones fly autonomously through a sequence of
polygon-shaped gates purely relying on vision signals. The performance of polygon de-
tection is critical for UAVs as it directly affects the precision of navigation.

In this work, we treat polygonal shape prediction as a collection prediction task such
as sequences and sets . Many kinds of data can be naturally represented using collection
and many machine learning tasks can be viewed as a collection prediction problem, such
as predicting the collection of points of a polygon [6], detecting objects in an image [7,
8], estimating the pose of humans by detecting a set of key-points [9, 10], or predicting
multiple labels for the same sample [11]. The difficulty in such problems arises for two
main reasons: because the cardinality (i.e. the number of elements) of the collection is
unknown and can vary among different samples, and because collections when treated as
a set are permutation-invariant. However, canonical convolutional neural networks are not
able to tackle these problems by design [12].

Transformers [13] have achieved impressive results on numerous collection prediction
tasks [7, 12], thanks to the attention module [14], a solution capable of aggregating infor-
mation from the entire collection while also satisfying permutation invariance.

The work in [13] first presents Transformers as an auto-regressive sequence-to-sequence
model that generates a collection of output tokens one by one. Numerous following works
[15–17] introduce new variants of Transformers to reduce compute latency. However, the
vast majority of auto-regressive Transformers focuses on sequential tasks only, such as
machine translation [16, 17] or speech recognition [15]. Recently, parallel Transformers
have successfully been applied into computer vision, especially in object detection [7, 18],
where the model outputs a set of bounding boxes in parallel. However, parallel Trans-
formers rely on computationally intensive strategies, such as oversampling and Hungarian
matching [19].

The difference between auto-regressive and parallel Transformers is fundamental. Let
us consider an image containing a collection of three objects (namely A,B and C ) which we
are trying to detect. When asking a parallel Transformer to learn this task, we are actually
asking the model to learn the joint probability of these three variables, conditioned on the
model parameters Θ, namely:

P (A,B ,C |Θ) (6.1)

In contrast, when the auto-regressive approach is presented with the same task, what it
needs to learn is the chain of conditional probability distributions defined by:

P (A |Θ) ·P (B | A,Θ) ·P (C | A,B ,Θ) (6.2)

In the second case, the Transformer is asked to produce one element of the collection at
a time, by exploiting information about the previous predictions. This is similar to machine
translation, in which the Transformer outputs one word, conditioned on the previously gen-
erated output. Eq. (6.1) and Eq. (6.2) are equal by definition of the general product rule
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of probability, and Transformers are capable of modelling both. However, using Eq. (6.2)
with Transformers imposes an order even when there might not be a natural order present.

In this work, we study the difference between auto-regressive and parallel Transformers
on polygonal shape prediction viewed as a collection of points, including individual points,
lines, gates and polygons, as shown in Figure 6.1. Our contributions are: (1) We test auto-
regressive and parallel models on four collection prediction datasets and one sequential
dataset to provide the reader with a full picture of the advantages and disadvantages of
both approaches. (2) We show that the conditional decomposition of the collection can be
beneficial for Transformers when there is an explicit order in the elements of a set, such
as predicting a collection of points on a line. (3) we show empirically that the conditional
decomposition benefits from a particular order than others on a polygon dataset.

6.2. RELATED WORK

Polygonal shape detection: The work in [2] views satellite image mapping as a polygon
prediction task and makes use of a convolutional network to output the polygon vertices
directly. The work in [4] first detects bounding boxes of buildings, and then uses recurrent
networks to extract vectorized building footprints. The work in [1] proposes to detect frame
field for constructing building topology via fully convolutional networks and is able to
precisely segment aerial images. Different from these works, we study the effect of self-
attentions or Transformers in polygonal shape prediction.

Object detection as set prediction. DETR [7] first presents object detection as a set pre-
diction task, and removes the need for non-maximal suppression on a large amounts of
anchor boxes. Similar to DETR, we also consider polygonal shapes in an image as a set.
Different from DETR which only output bounding boxes, we produce vectorized polygons
as a collection of vertices.

Transformers. Transformers were originally introduced by [13] as a novel auto-regressive,
sequence-to-sequence model, and gained popularity thanks to their ability to dispense en-
tirely with recurrence and support parallel processing of sequences. Their stunning results
on machine translation and other language tasks [20–23] have recently shed a light on em-
ploying Transformers for computer vision tasks, such as image recognition [24], object
detection [7], segmentation [25], set prediction [12, 26] and other visual tasks [27–30].
Inspired by these works, we study both auto-regressive and parallel Transformers on polyg-
onal shape prediction.

Transformers for set prediction. Deep Sets [31] has proven that transforming all ele-
ments of an input set into some latent representations and then combining them through a
permutation invariant function is a universal approximator of any set function. The work
in [26] shows that the attention layer of Transformers can also be viewed as a generaliza-
tion of the sum operation of Deep Sets and is therefore also a universal approximator of
set functions. Moreover, Lee et al. [12] proposes an attention-based permutation-invariant
framework which demonstrates superior results on set-structured data. Inspired by these
works, we also study Transformers for set prediction task, but on a particular type of set
data - polygonal shapes.
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Points Lines Gates Polygons

Synthetic gates

Figure 6.1: Examples of point collections used in our paper.

6.3. DATASETS
To illustrate our setting, we first show examples of our datasets in Figure 6.1. We use 4
toy datasets and 1 synthetic dataset. The images in the toy datasets are manually generated
during training and if not specified otherwise, we generate 3 million images for training and
10,000 images for testing.

The point dataset contains images with n white points randomly distributed over the
image space. Each point’s size is uniformly sampled from three possible values. The task
is to predict the x, y coordinates of all points in any order. This dataset is an instance of a
pure set prediction problem, with points representing the set elements.

The line dataset contains images picturing a single white line composed by 7 segments.
A green point of fixed size is placed on top of each end of a segment. The line is generated
by first drawing a straight line going from the bottom left corner of the image to the top
right corner, and then randomly shifting 8 equally distributed points perpendicularly to the
line direction by r ∈ [−15%,15%] with respect to the image size. The task is to predict the
x, y coordinates of the 8 points following the line order, starting from the end on the bottom
left of the image. The set elements are represented in this case by the green points, and this
dataset is an example of a set prediction task where there exists an explicit order in which
we need to predict its elements.

The gate dataset contains images with n convex polygons of 4 corners, called gates.
Each gate is generated by defining 4 equally spaced points on a circumference of random
radius r ∈ [5%,40%] with respect to the image size. Each point is then shifted randomly
in the direction of the radius and the four points are finally connected to define the gate.
All four edges of the gates are of the same thickness, uniformly sampled out of 3 possible
choices.



6.4. MODELS

6

97

Figure 6.2: The auto-regressive model for predicting polygons. This model exploits the sentences of tokens
idea [13] which generates tokens auto-regressively. There are only four possible tokens in its vocabulary: start,
point, end-of-polygon and end. The feed-forward network (FFN) at the end of the pipeline produces a class label
and a pair of coordinates (x, y).

The synthetic gate dataset [32] contains realistic synthetic images generated with a
graphical engine, which simulate the flight of a drone in different environments containing
empty wireframe objects (EWFOs or gates). This dataset is a simulation of the images
that a UAV would face in the IROS 2018 Autonomous Drone Race [5]. The training set
contains 26,000 images from two different scenes, with light coming from outside and in-
side the rooms. The test set contains 3,000 images from two additional scenes with light
coming only from artificial sources placed inside the rooms. For all scenes, different walls
and pavement textures are used, as well as different artificial shapes and light intensities for
internal lamps. All images contain 1 to 4 gates. For both synthetic and toy gate datasets,
the task is to predict the position of the four corners in the image for each gate. These two
datasets represent a set prediction scenario closer to real-life problems, where the complex-
ity of the single set element prediction (the gate) is greater than a simple point prediction.
The synthetic gates dataset increases the complexity even further by picturing gates with
different backgrounds and different lighting situations.

Finally, the polygon dataset contains images with n polygons of m ∈ [3,7] corners,
generated using the same technique as the gate dataset. As multiple non-convex polygons
can be represented by the same set of points, the task is to predict the m corners of a polygon
in clockwise order. Any starting point is accepted, and distinct polygons can be predicted
in any order. This dataset represents the hardest set prediction task in which we require our
models to predict a set of ordered sets.

For all datasets, n is a parameter varied for different experimental settings. All samples
in the toy datasets are RGB images of size 256x256, while images from the synthetic gate
dataset are of size 400x400. The coordinates of the labels are represented as the relative
height/width to the image size with values in [0,1].

6.4. MODELS
All of the models that we implemented and tested are derived from DETR [7], an end-to-
end Transformer which achieves competitive results against Faster R-CNN [33] on object
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detection. It takes advantage of a CNN backbone and parallel encoding-decoding Trans-
formers to solve object detection as a set prediction task. In short, DETR is composed of
four modules: a CNN backbone, a Transformer Encoder, a Transformer Decoder, and a
feed-forward network (FFN). An example of our models is shown in Figure 6.2. It pictures
the auto-regressive variant used for the polygon toy setting dataset.

DETR takes as input an RGB image and extracts a high-level feature map of shape C ×
H×W , where C is the size of number of channels, and H and W are the spatial dimensions.
The feature map is supplemented with fixed positional embeddings before the Transformer
encoder. The Transformer encoder is a stack of 6 self-attention mechanisms, each of which
consists of a standard self-attention layer followed by a feed forward network, a residual
connection and layer normalization [7]. All of the models we tested are identical up to this
stage of the architecture, but differ in the subsequent modules.

6.4.1. PARALLEL MODELS
The design of parallel models is identical to DETR [7]. The N learned object queries are
converted in parallel into N output embeddings of size 256 by the Transformer decoder,
which are subsequently fed into a simple feed forward network (FFN) for classification and
position regression.

Depending on the task, we modify the dimensionality of the FFN for position regression
accordingly. For example, on the point and the line datasets, the output is a vector of size
2 representing the (x, y) coordinates of a point normalized by the image width and height,
while the output on the gate dataset is an 8-element vector indicating the four vertices of a
gate in clock-wise order. The class labels for all datasets are the same, namely the object
class and the no-object class.

On the polygon dataset, the FFN is replaced by a simple multi-layer Elman RNN [34],
since the output dimension is also a variable. The RNN model takes as input the embeddings
from the object class and generates a sequence of points one by one. The RNN is possibly
the minimal modification we could make to the architecture to work with polygons and
have the smallest impact on the model’s properties and our experiments.

6.4.2. AUTO-REGRESSIVE MODELS
The auto-regressive models diverge from the parallel ones on all set prediction tasks, be-
cause they work with sentences of tokens that are generated one by one, by conditioning the
next prediction on the previous ones. In particular, each token is a vector of dimension 256
that represents an element of the set, or acts as a special representation. Special tokens can
be:

• start or S: This token is at the beginning of all sentences and defines the starts of the
computation.

• end or E: This token is at the end of all sentences and terminates the computation.

• end-of-polygon or EOP: This token separates polygons from polygons inside the
same image. It acts similarly to the period token used in machine translation to
separate words belonging to different sentences.

Depending on the task, object tokens can be:
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Figure 6.3: Token embeddings for predicting gates and polygons. The first 2n elements (in blue) of the vector
represent the (x, y) coordinates of the n vertices/points, normalized by the image width and height. The following
elements (in red) represent the class label in one-hot format. For gate detection, we have three red blocks because
we have two special tokens start and end, and an object token gate. For polygon detection we have 4 red blocks
because all possible tokens are start, end, point and end-of-polygon, as explained in 6.4.2. The vector is padded
with zeros to reach the required dimensionality of 256.

• point or P: On the point dataset and the line dataset, each point is a 2-element vector
representing the position of the (x, y) coordinate normalized by the image width and
height.

• gate or G: On both toy and synthetic gate datasets, a gate is represented as a vector
of size 8, which defines the normalized coordinates (x, y) of all 4 vertices.

To batch sequences of different lengths together, we pad sentences with the end token up to
the same length. For example, given a batched sequences where the maximal length is 8,
we pad the shorter sequence with 4 visible points only with two extra E:

S, P, P, P, P, E, E, E

We use the same decoder as the parallel models, but adopt the masking technique for
parallel training, which prevents each token from attending to subsequent positions [13].
The token embedding is a fixed length vector of size 256 as shown in Figure 6.3.

The auto-regressive approach predicts all polygons in a certain order. If not specified
otherwise, we always predict objects going from left to right in the image, splitting ties with
top-to-bottom order. We sort polygons and gates accordingly by their centers, computed as
the average of their vertices. Particularly, for the polygon dataset, we also impose an order
on points such that the polygon is clock-wisely defined by the points, otherwise the same
set of the points may result in several polygons of different shapes.

6.5. EXPERIMENTS
First, we validate that the auto-regressive approach is preferable on the line dataset where
there is an explicit natural order in the predictions, and that the parallel solution is better
on the point dataset for pure set prediction tasks without orders. We then compare the two
strategies on more challenging gate datasets where the element is no longer a single point
and where data is scarce. Finally, we explore deeper into the auto-regressive solution to
study upon the importance of the prediction order and the order of the conditional variables.
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Figure 6.4: Results on the line dataset. The task is to predict a series of ordered points. The auto-regressive
model produces approximately perfect prediction, while the parallel model fails.

On toy datasets, we train all models with 3,000,000 images. On the real gate datasets
with 26,000 images, we train all models for 300 epochs. We apply multiple data augmen-
tation techniques, including horizontal flip, vertical flip, hue shift, Gaussian noising.

We train all models on a single NVIDIA GeForce RTX 2080 Ti GPU with AdamW [35],
and set the Transformer’s learning rate to 10−4, the backbone’s learning rate to 10−5, and
the weight decay to 10−4. The learning rate is dropped by a factor of 10 after 200 epochs,
or after 2,000,000 images for the toy settings. Mask R-CNN [36] is also trained for 300
epochs with learning rate 5×10−3, which is decreased by 10 after 200 epochs.

6.5.1. EVALUATION
The evaluation metric on the gate and polygon datasets is mean Average Precision [7],
averaged over different IoU thresholds ([0.50,0.55, . . . ,0.95]). On the point and line datasets,
we also evaluate mean Average Precision, but averaged over different point-to-point L1

distance thresholds ([0.10,0.09, . . . ,0.01]), computed directly on the relative coordinates.

6.5.2. LINE AND POINT DETECTION
With this experiment we show that the conditional decomposition of collections by auto-
regressive Transformers is beneficial when the elements in a collection adhere to a natural
order. Results on the line dataset are shown in figure Figure 6.4. For this task, a line
prediction is considered as a false positive if the sum of all L1 point distances is greater
than the given threshold. The experiment shows that in this setting the auto-regressive
solution is much more precise than the parallel counterpart as it is able to achieve perfect
mAP up to a threshold of 0.02.

On the other hand, the experiments on the point dataset study the behaviour of parallel
and auto-regressive models on a pure set prediction task. The models are now expected to
predict the n points in any order. The parallel Transformers is order-insensitive because
of the Hungarian matching, but the auto-regressive Transformers are trained by always
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Figure 6.5: Results on the point dataset. The auto-regressive model shows marginally better performance than
the parallel one on collections of limited cardinality, but its performance is lacking when the cardinality grows.
The legends with n points represent results on images with exactly n points while the others indicate that the
number of points in an image varies from 1 to n.

feeding points in the left-to-right order. Results on this dataset are shown in Figure 6.5. In
this experiment, we train all models on images with 1 to n points. We present test results
on images with 1 to n points, as well as results on images with exactly n points. Results
show that on collection prediction tasks, the auto-regressive approach is effective when the
cardinality is low, but quickly deteriorates as the cardinality increases.

The two experiments on lines and points prove that the presence of a natural order in the
task is indeed an important discriminative factor towards the performance of the parallel and
auto-regressive models in collection prediction. Moreover, we show the advantage of the
auto-regressive approach in low-cardinality prediction tasks. The parallel ones show signif-
icant advantage in predicting high-cardinality collections but at the cost of using redundant
object queries (100 object queries in this experiment).

6.5.3. GATE DETECTION

The following experiments verify whether the observations on the line and point datasets
generalize in complicated scenarios where the collection element is a gate of four vertices.
First, we evaluate the performances of auto-regressive approach and its parallel counterpart
on the toy gate dataset, as shown in Figure 6.6. There are two parallel models in compar-
ison: one with oversampling where we use 30 object queries which is several times more
than the total number of gates, and the other one without oversampling where we use as
many object queries as the maximal number of objects in the images. The parallel model
with oversampling outperforms the one without oversampling substantially, validating the
need for the parallel models to oversample the cardinality. Moreover, we show once more
the auto-regressive approach performs comparably to the parallel one on low-cardinality
collections, but suffers from the growing cardinality.
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Figure 6.6: Results on the gate dataset. Each point of the plot is an experiment in which the model is trained
and tested on images with 1 to n gates. They show the necessity of oversampling for parallel Transformers. The
performance of auto-regressive models deteriorates when collection cardinality increases.

In Figure 6.7, we provide our findings on the generalization capabilities of these models,
where the number of gates in test images is up to twice more than the number during
training. The auto-regressive model struggles at detecting more gates, while the parallel
one only shows minor performance decrease and achieves an mAP of 0.8 even on images
with twice the amount of gates. We believe this behavior is a result of oversampling: each
of the 30 object queries is assigned to at least one gate during training, which implicitly
tells the model that there could be more objects than the ones it sees in each image.

Figure 6.7: Generalization capability of the different models. We test both parallel and auto-regressive on
images with twice as many gates as the training images. The parallel model is able to detect many more gates than
the auto-regressive one. We believe oversampling attributes to better generalization.
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Finally, we numerically compare the general performances of all models on both toy and
synthetic gate datasets with images containing 1 to 6 gates. We choose Mask R-CNN as the
baseline. Table 6.1 shows parallel Transformer outperforms Mask R-CNN by 5 % mAP on
the toy dataset and by 4 % mAP on the synthetic gate dataset. The auto-regressive approach
is not able to achieve comparable results as there is no natural order in this task. However,
the auto-regressive model is approximately two times faster than the parallel model as it
does not require Hungarian algorithm or oversampling.

Models Toy gates Training time Synthetic gates Training time

Mask R-CNN 90.67% 23.6 61.30% 13.85
Parallel 95.45% 2.2 65.00% 3.85
Auto-regressive 87.67% 1.5 59.03% 1.85

Table 6.1: Numerical results on gate datasets. We evaluate the overall performance in mAP averaged over 10
IoU thresholds [0.50, 0.55, . . . , 0.95]. The parallel model outperforms Mask R-CNN. The performance of auto-
regressive model is lacking due to the absence of natural order in this task. The unit of training time is minutes per
10K images.

6.5.4. POLYGON DETECTION
Results on the polygon toy setting dataset are shown in table Table 6.2. This experiment
explores an hybrid scenario in which the collection elements we are trying to predict are
also collections with an imposed order, because a collection of points can represent multiple
polygons if the order of its points is not given. The auto-regressive approach is the special
one described at the end of section 6.4.2, which predicts a polygon as a sequence of points
followed by the end-of-polygon token, and it outperforms the parallel model substantially
by over 20 % in terms of mAP. When using the auto-regressive solution on polygons, we are
predicting each polygon individually by predicting its vertices and then an end-of-polygon
token. This means that we are splitting a problem of directly predicting all points of all
polygons into multiple sub-problems of predicting each polygon and then deciding when
all points have been predicted. We speculate that the advantage of the auto-regressive model
could be a direct consequence of the conditional decomposition of the joint probability, as
imposing the conditional order on these models can serve as a strong inductive bias by
reducing the search space of the model. This behaviour might not show up on the previous
experiments because gates, points and lines are simple collection elements which do not
enlarge the search space enough. As polygon detection is representative of many common
computer vision tasks, we leave further exploration of this approach as future work.

6.5.5. ORDERS OF CONDITIONAL DECOMPOSITION
We conclude our experiments by providing insights on the importance of orders imposed
on conditional decomposition of a collection by the auto-regressive Transformers. More-
over, we also study the influence of positional endcodings. We run experiments on the toy
gate dataset, synthetic gate and the polygon datasets multiple times, by using two different
object orderings and by adding or removing the positional encodings of the attention layer.
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Models Polygons dataset Training time [mins/10k images]

Parallel 53.55% 5.1
Auto-regressive 76.41% 2.15

Table 6.2: Numerical results on the polygon dataset. Scores are represented as mAP averaged over 10 IoU
thresholds [0.50, 0.55, . . . , 0.95]. The auto-regressive approach outperforms the parallel one by over 20% absolute
mAP. We speculate that this could be a direct consequence of conditional decomposition of the collection.

Positional encodings No positional encodings

Order based on polygon positions −1.90%±1.07% –
Order based on the size of polygons −7.68%±4.53% −2.95%±1.30%

Table 6.3: Ablation studies on position encodings and condition orders. This tables shows results of adding
positional encodings and imposing orders. The top performing model is spatially ordered (left-to-right and top-
to-bottom) and has no positional encoding. Our observations are that: (1) changing the imposed order on auto-
regressive Transformers has a great impact on the performance as shown in the first column; (2) adding position
encodings decreases the performance.

Without the positional encodings, the Transformer decoder is unaware of the index of the
previous predictions in the sequence. When predicting a new point, it only knows which
points were predicted before, but not their orders. The two orderings are the left-to-right,
top-to-bottom order and the small-to-large order in terms of the size of the objects. Ex-
periment results are shown in table Table 6.3. Using the left-to-right, top-to-bottom order
and removing the positional encodings lead to the best performance in all experiments. We
show the mean absolute difference of other models compared to best one. The result shows
that the artificial order matters for auto-regressive models. Moreover, we show that fixed
positional encodings are not beneficial in this setting, in contrast to the original Transformer
architectures. This is expected as different orders of the same words in natural language pro-
cessing can have different meaning, while this does not matter in our setting, as knowing
the location of a point can already prevent our model to predict the same point twice.

6.6. CONCLUSION
We studied two important variants of the Transformer architecture: the parallel one and the
auto-regressive one on the polygonal shape prediction task cast as a collection prediction
problem. We find that the ordering of objects is a strong factor towards the performance of
these models on point, line, gate and polygon datasets. The auto-regressive model benefits
collections of small cardinality or on collection prediction problems that can be easily split
into multiple easier tasks.

One limitation of this research is that most experiments are conducted on toy datasets
only, and it is unclear whether the observations and conclusions on toy datasets generalize
on challenging real-world datasets. A task that would be suitable to expand our research is
polygonal building segmentation from satellite images, as in [1, 37].
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As future work, we find it important to further explore on the polygon detection task as
it is a fundamental problem that is representative in computer vision. Testing the effect of
fixed or learned token embeddings would also be of interest.
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7
DISCUSSION

7.1. CONCLUSION
This thesis explores adding priors into neural networks for detecting geometric primitives
from RGB images, so that the inductive knowledge does not need to be learned from mas-
sive data. We have made advances by injecting a variety of geometric priors as end-to-end
trainable neural network modules. In particular, we studied the added value of adding ge-
ometric priors on five tasks: (1) wireframe parsing, (2) lane detection, (3) vanishing point
detection, (4) 3D mirror symmetry detection and (5) polygonal object detection. Extensive
experiments show the advantage of these priors in improving overall performance, espe-
cially in a small-data regime.

The geometric priors studied in this thesis include Hough Transform, Gaussian sphere
mapping and 3D mirror symmetry. Despite of being task-specific, all the priors share a
common strategy - global voting in the parameter space. Taking the Hough Transform
as an example where each line is parameterized as a bin, we first calculate all possible
lines that a point might belong to, and then increment the bins accordingly by the value of
the given point. After enumerating all points, we obtain the entire accumulator where the
intensity indicates the number of points on the given line. Therefore, we can identify lines
by searching for high-intensity bins in a local neighborhood. The suitability of the Hough
Transform stems from its ability to aggregate local features into a global parameterization,
as we collect evidence for the presence of lines from all points. This strategy is often
referred to as Hough voting in a variety of applications, such as point cloud processing
[1, 2], image matching [3] and object detection [4, 5].

Similarly, one might also consider the Gaussian sphere mapping as another variant of
Hough voting, where the parameter space is a unit hemisphere, represented by azimuth and
elevation, since vanishing points are directions of parallel lines in the 3D world. Concretely
speaking, we start with the interpretation plane formed by a line and the camera origin.
The interpretation plane intersects the unit sphere with a great circle, which indicates all
possible vanishing points that the given line might point at. Since vanishing points are
the intersection of several lines, we can simply identify vanishing points by examining the
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overlap of multiple great circles. Higher intensity implies a larger chance for the presence
of vanishing points. Although the parameterization differs from the Hough Transform, the
Gaussian sphere mapping is also an instance of Hough voting, where each line votes on a
unit hemisphere.

The Hough voting has a unique property - globality. For instance, an individual bin
in the Hough Transform “observes" an entire straight line, which is often a sequence of
spatially adjacent pixels in images. In the Gaussian sphere mapping, a spherical point “per-
ceives" all possible lines that vanish along the given direction. Alternatively, we can inter-
pret the Hough voting as a layer whose receptive field is the entire primitive. In contrast, the
commonly used filtering (or convolution) works with local patches only. Thus, it essential
to stack multiple layers to enlarge the receptive field such that a network “sees" the entire
image. However, this introduces extra computation inevitably. In light of the distinction
between “globality" and “locality", we proposed to incorporate the Hough Transform prior
into a neural network. We not only took the advantage of convolutional networks in local
feature learning, but also inherited the strength of Hough voting in global parameterization.
The benefits of incorporating Hough voting are consequently two folds. On one hand, we
no longer depend on deeper neural networks to ensure a sufficiently large receptive filed,
thus reducing the number of parameters. On the other hand, specialized knowledge of the
geometric primitives was explicitly injected into learning without learning from massive
data, thus mitigating the demand for labeled data substantially.

We parameterize geometric shapes and then apply filtering on those parameterizations,
which allows us to identify geometric structures directly. However, our neural networks
failed to deliver competitive results without properly initializing the incorporated priors,
as demonstrated in chapter 2. Our speculation was that adding knowledge constrains the
solution space and thus requires specialized filters. We drew inspirations from the (Inverse)
Radon Transform, where ramp filters are used for high-quality reconstruction [6], and ini-
tialized the filters in the Hough domain in a similar way. The intuition comes from the fact
that the Hough Transform is equivalent to a discrete variant of the Radon Transform [7].
This choice had dramatic impact on learning and significantly improved the performance.
Therefore, we conclude that specialized knowledge about initialization is necessary to fully
leverage the potential of the added geometric priors.

One major drawback of the Hough voting is quantization. A fine-grained quantiza-
tion is essential to precisely identify geometric structures. However, this will inevitably
increases the memory consumption and inference latency. Moreover, globality is also a
non-negligible factor that contributes substantially to computation with the increase of di-
mensionality, as we exhaustively enumerate over each grid point and calculate its mapping
over the entire parametric space. Fortunately, there are certain assumptions we can exploit
to reduce unnecessary computation, e.g., the Manhattan world assumption in vanishing
point detection, the regularity of geometric structures, and the sparsity in humanly con-
structed scenes. These assumptions allow us to calculate the parameterization for only a
fraction of grid points, thus dramatically reducing the computation cost. Another solution
to remove the discrete quantization is analytic parameterization, such as implicit functions
where multi-layer perceptrons are adopted to represent continuous signals [8–12].
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7.2. FUTURE WORK
While this thesis made progress in several tasks, we propose a number of research topics as
future work where our findings can be useful.

Geometric primitive detection by pretraining on synthetic data. Although incor-
porating geometric priors improves data-efficiency, the proposed approach still requires
hundreds of labeled images for training. However, most geometric primitives are artificial
in nature, and thus we can manually create synthetic datasets for these tasks where all prim-
itives are well-calibrated. Pretraining on these datasets would facilitate neural networks to
learn the filters in the parameter space [13]. Furthermore, we can fine-tune the pretrained
models with only a handful of annotated real-world images to achieve desired performance.

3D wireframe parsing from single 2D images. Intuitively, we can vectorize Manhat-
tan frames as 3D wireframes, a collection of junctions, line segments and their topology
relations [14, 15]. Therefore, it would be intersting whether we can leverage line-related
geometric priors to reconstruct the 3D layout of Manhattan frames together with the orthog-
onality and parallelism assumptions. On one hand, we have demonstrated the advantage of
the Hough Transform line priors in chapter 2 for extracting 2D wireframes. On the other
hand, our work in chapter 4 has illustrated the usage of Gaussian sphere mapping for van-
ishing point detection, from which we can identify the 3D orientation of associated line
segments [16]. One promising idea is to combine the Hough Transform line priors and the
Gaussian sphere mapping into a unified framework for 3D Manhattan frame reconstruction.

Parametric structure detection from point clouds. One popular representation of
3D data is point clouds. The works in [17, 18] have shown impressive results in detecting
parametric curves from point clouds, but at the cost of exhaustive search. In contrast, the
work in [2] proposes a compute-efficient Hough voting strategy for detecting 3D primitives
from point clouds, such as cylinders, spheres and cones. One promising future work is to
further explore the Hough voting scheme in processing large-scale point clouds which are
typically incomplete, noisy, and unorganized [19].

Deformable geometric primitives. Objects vary in scale, pose and gesture. Humans
learn this knowledge arithmetically from education or manually from real-world experi-
ence. One might wonder how to deform a geometric structure with neural networks. The
priors studied in this thesis provide useful tools for deformation as a primitive deforms in
accordance with its parameterization. Therefore, the task is equivalent to estimating the
optimal values of certain parameters that control the deformation. One nice property of this
approach is that these parameterizations are physically meaningful as we can easily visual-
ize the effect of parameter changing. What is more, the deformation of geometric structures
is purely artificial and thus we can use graphics engines for generating ample synthetic data
to simulate the physical world.

Scene compression. Online streaming is popular in digital entertainment, TV broad-
casting, and remote meetings. However, transferring data is challenging due to the amount
of information and real-time latency. One possible solution to compress the data is to lever-
age the repetition and coherency of the geometric world, such as windows on a wall, tables
in a classroom, and buildings in a residential block [20]. We can represent recurring ob-
jects with parameterized templates, but at different positions. Moreover, the parameters of
various templates can be precisely estimated from the Hough voting. This brings benefit to
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memory storage and computational efficiency as we replace duplicate representations with
shared parameterization.

Geometric structure decomposition. Artificial objects are often a composition of mul-
tiple geometry primitives. A straightforward extension of our work is to disentangle seem-
ingly complicated objects into simple primitives. A minimal example is polygons, which
can be decomposed into a collection of ordered vertices. We have provided evidence that
auto-regressive transformers can be a feasible solution to learn polygonal representations
on toy datasets in chapter 6. Thus it would be interesting to generalize our observations to
real-world tasks, such as polygonal building segmentation and indoor floorplan estimation
[21]. This will shed light on other high-level tasks, such as inferring semantically consistent
part arrangements for object instances [22] and reasoning part-whole hierarchies [23].

7.3. FINAL REMARK
We have shown that detecting geometric primitives is a demanding task, where the chal-
lenge comes from acquiring large amounts of labeled data, especially in the deep learning
era. With this thesis, we made one step forward by fusing classic geometric priors with
modern deep learning techniques, and demonstrated the potential of visual inductive pri-
ors in improving data-efficiency. Nevertheless, there is still a long journey ahead to fully
exploit the capacity of deep neural networks in understanding the artificial world.
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SUMMARY

The humanly constructed world is well-organized in space. A prominent feature of this
artificial world is the presence of repetitive structures and coherent patterns, such as lines,
junctions, wireframes of a building, and footprints of a city. These structures and patterns
facilitate visual scene understanding by providing abundant geometry information. Humans
can easily recognize diverse geometric structures. However, we wonder how to instruct an
autonomous agent to interpret the visual world as we do?

There has been great interest in automatic understanding of the geometric world from
images in the past few decades. Conventional approaches first detect hand-crafted edge
features and then group them into parametric shapes such as lines. Recently, this strat-
egy has been gradually replaced by deep neural networks because learning features from
large annotated datasets gives a richer representation compared to hand-designed features.
Although the progress is inspiring, there are still several concerns on deploying neural net-
works in the real-world. A primary concern is the availability of massive labeled data, as
the performance of deep networks deteriorates substantially when training data is scarce.
This thesis introduces novel strategies to enhance the performance of neural networks in a
small data regime, by adding geometric priors into learning.

We start with the Hough Transform, a well-known prior for straight lines, and offer a
principled way to add this prior into neural networks for data efficient end-to-end learning.
On the wireframe parsing task, our model advances the state-of-the-art substantially on
various subsets with much less training data. Subsequently, we extend the Hough Transform
line priors to semi-supervised lane detection, only requiring a small amount of labeled data,
and show that this approach improves the overall performance by leveraging a massive
amount of unlabeled data.

We explore a second geometric prior, the Gaussian sphere mapping, for vanishing point
detection. We present an end-to-end framework for detecting multiple non-orthogonal van-
ishing points without relying on large quantities of training samples. Moreover, the pro-
posed model exhibits consistent performance across multiple datasets without fine-tuning,
thus demonstrating the effectiveness of geometric priors in tackling data variation.

Next, we study detecting 3D mirror symmetry from single-view images. We explicitly
incorporate 3D mirror geometry into identifying symmetry planes. To reduce the computa-
tional footprint, we design multi-stage spherical convolutions to hierarchically pinpoint the
optimal plane in the parameter space. Our model not only improves overall performance
but also reduces the inference latency substantially.

Finally, we explore the possibility of detecting polygonal shapes from images by using
transformers. We provide a full picture of the strength and weakness of the auto-regressive
and parallel transformers on detecting polygons viewed as collections of points. we demon-
strate on a toy dataset that the auto-regressive transformers can be a reasonable option for
learning polygonal representations from real-world images.
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Taken together, with this thesis we show that incorporating geometric priors into modern
deep learning allows reducing the need for expensive, manually annotated data.



SAMENVATTING

De door de mens gemaakte wereld bestaat uit repetitieve structuren en coherente elementen,
zoals lijnen en hun verbindingspunten, zoals te zien in raamwerken van gebouwen. Deze
structuren en patronen maken visueel begrip van scènes mogelijk door informatie over de
geometrie te verschaffen. Mensen kunnen allerlei geometrische structuren gemakkelijk
herkennen door middel van ervaringen uit de echte wereld. We vragen ons in deze thesis af
of een autonome agent de visuele wereld zou interpreteren zoals mensen.

De afgelopen decennia is er veel belangstelling geweest voor het begrijpen van de ge-
ometrische wereld vanuit beelden. Conventionele benaderingen detecteren eerst handge-
maakte randkenmerken en groeperen ze vervolgens in parametrische vormen zoals lijnen.
Onlangs is deze strategie geleidelijk vervangen door diepe neurale netwerken omdat het
leren van functies uit grote geannoteerde datasets een rijkere weergave geeft in vergelijking
met met de hand ontworpen functies. Hoewel de vooruitgang inspirerend is, zijn er nog
steeds verschillende zorgen over de implementatie van neurale netwerken in de echte we-
reld. Een eerste zorg is de beschikbaarheid van massieve gelabelde gegevens, aangezien de
prestaties van diepe netwerken aanzienlijk verslechteren wanneer trainingsgegevens schaars
zijn. Dit proefschrift introduceert nieuwe strategieën om de prestaties van neurale netwer-
ken in een klein dataregime te verbeteren, door geometrische prioriteiten toe te voegen aan
het leren.

We beginnen met de Hough Transform, een bekende prior voor rechte lijnen, en we
geven een principiële manier om deze prior toe te voegen aan neurale netwerken voor data-
efficiënt end-to-end leren. Wat betreft het vinden van gebouw raamwerken, verbetert ons
model de state-of-the-art aanzienlijk op verschillende subsets met veel minder trainings-
gegevens. Vervolgens breiden we de Hough Transform-lijn uit tot semi-gesuperviseerde
rijstrookdetectie. We stellen een nieuwe kostenfunctie voor om rijstroken van grote hoe-
veelheden ongeziene afbeeldingen te identificeren en de algehele prestaties te verbeteren
door gebruik te maken van enorme niet-gelabelde gegevens.

We onderzoeken een tweede geometrische prior, de Gaussische bol projectie, voor de-
tectie van verdwijnpunten. We presenteren een end-to-end netwerk voor het detecteren van
meerdere niet-orthogonale verdwijnpunten zonder te moeten vertrouwen op grote hoeveel-
heden trainingsvoorbeelden. Bovendien vertoont het voorgestelde model consistente pres-
taties over meerdere datasets zonder fine-tuning, waardoor de effectiviteit van geometrische
priors wordt aangetoond bij het aanpakken van datavariatie.

Vervolgens bestuderen we het detecteren van 3D-spiegelsymmetrie van een enkel beeld.
We nemen expliciet 3D-spiegelgeometrie op in het identificeren van symmetrievlakken.
Om de computationele voetafdruk te verkleinen, ontwerpen we meertraps sferische convo-
luties om hiërarchisch het optimale vlak in de parameterruimte te lokaliseren. Ons model
verbetert niet alleen de algehele prestaties, maar vermindert ook de latentie in het maken
van voorspellingen.
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Ten slotte onderzoeken we de mogelijkheid om veelhoekige vormen uit afbeeldingen
te detecteren met behulp van transformers. We illustreren de sterkte en zwakte van de
auto-regressieve en parallelle transformatoren bij het detecteren van polygonen die worden
gezien als verzamelingen van punten. we demonstreren op een volledig gecontroleerde
dataset dat de auto-regressieve transformatoren een redelijke optie kunnen zijn voor het
leren van veelhoekige representaties van afbeeldingen uit de echte wereld.

Samengevat hebben we met dit proefschrift aangetoond dat het opnemen van geometri-
sche priors in moderne deep learning-technieken de behoefte aan dure, handmatig geanno-
teerde gegevens vermindert.
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