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Abstract

In density based topology optimization, the initial design is an important parameter. The
commonly used homogeneous density distribution is generally applicable and does not require
computation. However, problem specific initial designs exist that improve the quality of the
final result, the required computational cost, or both. Using these two measures, three initial
design types are compared with this homogeneous distribution using three optimizers. These
are the commonly used Optimality Criteria, Method of Moving Asymptotes and generally
well performing algorithm IPOPT. The robustness of these optimizers to poorly performing
initial designs is also investigated. The comparison is performed using a rigorous analysis
method which involves optimizing a large, diverse, set of benchmark problems and analyzing
the results using performance profiles. The first initial design, based on Constructal Theory,
performs poorly independent of the optimizer used. The second initial design, the approximate
solution to the unpenalized problem, results in better designs at similar computational cost
when using IPOPT. The optimizers OC and MMA only benefit from this initial design for
some problem types. MMA converges to KKT points in less than 10% of the problems
and the initial designs did not improve this. Regarding robustness, IPOPT performs well,
resulting in designs of comparable performance to the homogeneous density distribution. The
performance of OC severely deteriorates.



Table of Contents

Abstract i

Acknowledgements v

1 Introduction 1
1-1 Research purpose and thesis outline . . . . . . . . . . . . . . . . . . . . . . . . 2
1-2 Why are topology optimization problems difficult? . . . . . . . . . . . . . . . . . 3

1-2-1 General problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-2-2 Local minima due to the SIMP approach . . . . . . . . . . . . . . . . . . 4

2 Topology optimization problems 8
2-1 The problem library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2-1-1 Minimum compliance problems . . . . . . . . . . . . . . . . . . . . . . . 8
2-1-2 Minimum volume problems . . . . . . . . . . . . . . . . . . . . . . . . . 10
2-1-3 Compliant mechanism design problems . . . . . . . . . . . . . . . . . . . 11

2-2 SIMP parameters and density filter . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Optimizers and settings 13
3-1 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3-2 Termination criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Initial design types 15
4-1 Homogeneous density distribution . . . . . . . . . . . . . . . . . . . . . . . . . 15

4-1-1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4-1-2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4-1-3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4-2 Constructal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Table of Contents iii

4-2-1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4-2-2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4-2-3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4-3 Solution to the unpenalized problem . . . . . . . . . . . . . . . . . . . . . . . . 18
4-3-1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4-3-2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4-3-3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4-4 Generation of poorly performing design . . . . . . . . . . . . . . . . . . . . . . . 21
4-4-1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4-4-2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4-4-3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Comparison method 23
5-1 Performance profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5-2 Performance profiling of initial design influence . . . . . . . . . . . . . . . . . . 24
5-3 Penalization of inaccurate designs . . . . . . . . . . . . . . . . . . . . . . . . . 26
5-4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5-5 A versatile method to generate performance profiles . . . . . . . . . . . . . . . . 26

5-5-1 Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Numerical experiments results for initial designs 30
6-1 Minimum compliance problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6-2 Minimum thermodynamic compliance problems . . . . . . . . . . . . . . . . . . 31
6-3 Compliant mechanism design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6-4 Initial design performance discussion and conclusion . . . . . . . . . . . . . . . . 33

7 Numerical experiments results for optimizer robustness 35
7-1 Minimum compliance problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7-2 Compliant mechanism design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7-3 Optimizer performance discussion and conclusion . . . . . . . . . . . . . . . . . 37

8 Discussion 39
8-1 On when performance curves differ significantly . . . . . . . . . . . . . . . . . . 39
8-2 Learning from the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9 Conclusion and future work 43

A Difficulties in Topology Optimization: mathematical background 45
A-1 Computational complexity theory . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A-2 Convexity: to be or not to be . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



iv Table of Contents

B Constructal Theory details 48
B-1 The original CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B-1-1 Zeroth order element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B-1-2 First order element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B-1-3 Second order element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B-2 Remarks and adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B-2-1 Adjustments to constructs . . . . . . . . . . . . . . . . . . . . . . . . . 52
B-2-2 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Constructal Theory derivations 54
C-1 Derivations of the original Constructal Theory . . . . . . . . . . . . . . . . . . . 54

C-1-1 Heat flow in zeroth order construct . . . . . . . . . . . . . . . . . . . . . 54
C-1-2 Optimizing the zeroth order construct . . . . . . . . . . . . . . . . . . . 56
C-1-3 First order construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C-2 Derivations of modified Constructal Theory . . . . . . . . . . . . . . . . . . . . 58
C-2-1 First order construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

D Area to point flow through the dislodging of elements 61

E Problem library performance profiles 64

F Computational cost of different mesh sizes 72



Acknowledgements

The Dutch saying

“Een goed begin is het halve werk”

states that if you are off to a good start you have already realized half of your ambitions.
Although I hope to raise your interest in finding such starting point in the rest of this docu-
ment, the reason I mention this is to indicate the luck I had working under the supervision
of Deepak and Matthijs. From the first day on they granted me full confidence regarding
my research ideas. I chose to perform my thesis at the university because I wanted to ex-
perience academic research and improve my writing. Deepak and Matthijs their supervision
fully supported this, them both having a deep understanding of the problems at hand and an
amazing knowledge of the English language. Our meetings were productive, full of humor,
and I always left with enthusiasm and energy. Deepak, Matthijs, thank you for this joyful
collaboration.

My appreciation also goes out to Susana and Matthias from the Technical University of
Denmark, with whom I had several interesting and fruitful discussions.

I would like to thank Thijs, with whom I have now shared eight years of engineering studies
and enthusiasm for the fascinating developments around us. I am sure this is not the last of
our studies together. I am thankful to Michiel and Bas who are always in for an in depth
discussion on physics or the reviewing of some code. Carmen and Tessa, I am grateful for
your encouragement and for being critical about my ambitions. There is still so much you
can teach me.

Finally, I want to thank my mother, Paula Kleinheerenbrink, and father, Frank van Schoubroeck,
for their support, belief and advice during all of my studies. It is you to whom I would like
to dedicate this work.



vi Acknowledgements

Nomenclature

Abbreviations
CT Constructal Theory
FE Finite Elements
HOM Homogeneous density distribution, commonly used initial design.
ID Initial design
IPOPT Interiour point optimizer.
KKT conditions Karush - Kuhn -Tucker conditions, necessary first-order conditions for a

design point to be a local minimum
MMA Method of Moving Asymptotes, type of optimizer.
OC Optimality Criteria, type of optimizer.
SIMP Simplified Isotropic Material with Penalization, material interpolation

method.
TO Topology Optimization
UP Unpenalized problem
VTPF Volume-to-point flow problem.



Chapter 1

Introduction

Topology optimization (TO) is a computational method that optimizes the distribution of
material in a design domain in order to maximize the performance of the system under spec-
ified loading conditions (Bendsøe and Kikuchi, 1988). Although initially developed for load
carrying structures, the mathematical framework of TO enables its application to a variety of
material distribution problems. An example is the design of a microfluidic mixer (Andreasen
et al., 2009) with the aim of maximizing the mixing of two fluids with different temperature.
The design domain is a rectangular pipe with specified length where a constraint defines the
maximum pressure drop. Although well performing designs are obtained in multiple case
studies, reported computation times are 92 and 165 hours. TO has also been applied to
multi-physics problems such as the design of an electrothermomechanical actuator (Sigmund,
2001a,b). Here, the application of a voltage across the domain causes heating, deforming the
structure in such a way that it can be used as an actuator.

Conventional TO formulations discretize the design domain into several finite elements (FE)
. A distribution of material consists of solid and void elements and this element-wise presence
of material is taken as the optimization problem variables (Bensøe and Sigmund, 2003). The
finer the discretization of the design domain, the more complex the possible topologies can
be.

It is difficult to solve this type of discrete optimization problem due to the large number of
design variables and multiple constraints (e.g. Beckers (1999)). Instead, continuous variables,
representing the material density inside each element, and gradient based optimizers are used.
Although these converge quickly, they are prone to terminate in local minima which exist due
to the penalization of intermediate density elements (Sigmund and Petersson, 1998; Verbart
et al., 2011; van Dijk et al., 2010) and some problem physics (e.g. Lau et al. (2001)). Fur-
thermore, optimizing problems within practical computations times prohibits global searches
in the typically large design space. Thus, in density based TO, the starting point of the local
search has a major influence on the final result (Sigmund and Petersson, 1998; Rozvany, 2009).
In this research, we systematically investigate the relation between initial design (ID) choices
and the effects these have on the quality of the final result and the required computation
time.
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The current TO method can be seen as a two step process. The first step consists of choosing a
starting point, represented by an initial design. In the second step a gradient-based optimizer
uses this point to converge to a nearby solid-void solution. Ideally, the first step yields an
initial design that places the optimizer at a point that enables it to converge to the global
minimum. This requires knowledge about that minimum’s precise position, which cannot be
computed for anything but small problem sizes (e.g. Stolpe and Svanberg (2003), Tovar and
Khandelwal (2011)). Currently, a homogeneous density distribution (HOM), not requiring
any computation, is commonly used for almost all density based TO problems. However,
more problem specific initial designs are worth investigating due to these likely resulting in
higher quality final results, reduced computation times, or both.

To the best of our knowledge, a detailed study on possible initial design choices and their
effects has not been performed. Sigmund and Maute (2013) investigate the effect of starting
with a solid-void design. Using that initial design, only slight, slowly occurring, modifications
are performed by the optimizer. Lohan et al. (2015) generate an initial design for SIMP
using an evolutionary approach. This initial design outperforms HOM, proving better initial
designs exist, but the associated large increase in computational cost makes it unpractical. In
this paper we investigate initial designs that potentially improve the final objective function
value while maintaining competitiveness with HOM regarding the total computation time.

Initial design generation methods can be split in two general classes. The first is methods
that optimize a material layout for a specific physics application, which structure may con-
tain valuable information. Examples are Constructal Theory (Bejan, 1997) and The Erosion
Model (Errera and Bejan, 1998). The first produces dendritic structures for heat and mass
transfer problems by tiling slender elements. The second mimics erosion in river drainage
basins by removing material that experience large pressure drops. The second method con-
sists of generally applicable mathematical methods. A few examples follow. In a global
search all possible options are evaluated (e.g. Christian et al. (2016)). This can be done in a
stochastic fashion using, for example, Monte-Carlo methods (Wenzel and Hamacher, 1999).
Alternatively the global optimum can be found using deterministic methods such as branch-
and-bound algorithms (Horst and Tuy, 1995). Evolutionary methods mimic the biological
process of evolution by selecting, mutating, and combining different designs according to a
fitness function (Bäck, 1996) but generally perform poorly for TO problems (Sigmund, 2011).
In fractal-based optimization methods (e.g. Salimi (2015)) search directions and step sizes are
chosen using fractals, geometrically represented as structures that contain overlaying copies
of themselves. Thus, although many alternative methods to generate initial designs exist, the
value of these designs for TO, has not been investigated.

1-1 Research purpose and thesis outline

The purpose of this thesis is to systematically investigate the effect of the use of three different
initial design generation methods on the performance of a large test set of TO problems
(Rojas-Labanda and Stolpe, 2015a) using the SIMP formulation. The chosen methods are all
deterministic in order to guarantee reproducibility of the results. The first method, chosen
for its low computation cost and ease of implementation, is Constructal Theory (CT) (Bejan,
1997). The second is an approximate solution to the unpenalized TO problem (UP) (Tovar
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and Khandelwal, 2010). Finally, an explicitly chosen poorly performing design is generated
in order to examine the optimizer robustness.

Due to the final result being dependent on the optimizer chosen, each initial designs generation
method is evaluated using three different optimization algorithms. The first and second are,
the in the community well-established, Optimality Criteria (OC) (Rozvany and Zhou, 1991;
Zhou and Rozvany, 1991) and the Method of Moving Asymptotes (MMA) (Svanberg, 1987).
The third is the in TO generally well performing (Rojas-Labanda and Stolpe, 2015a) interior
point method IPOPT (Wächter and Biegler, 2006). The performance of the initial-design
optimizer combinations is evaluated using a rigorous analysis method. This consists of first
optimizing a large test set of standard TO problems using each combination, followed by the
comparison of these results using performance profiles (Dolan and Moré, 2002). Using these
profiles, both a global indication of, and a ratio between the performance of the methods can
be obtained.

All in all, the main research question of this thesis is:

Is there an initial design generation method that can compete with the homoge-
neous density distribution regarding the final objective function value and total
required computational cost?

This question is subdivided into the following questions:

1. What types of methods exist to generate initial designs?
2. How can the performance of initial designs be compared?
3. Is the performance of an initial design optimizer dependent?
4. How do optimizers handle explicitly chosen poorly performing initial designs?

This thesis is built up as following. The remainder of this chapter further describes why
TO problems are difficult. Chapter 2 contains the set of benchmark problems, followed by
a description of the used optimizers and stopping criteria in Chapter 3. In Chapter 4 the
investigated initial design types are described. The comparison method can be found in
Chapter 5. The results of the numerical experiments concerning the initial design types can
be found in Chapter 6 while the optimizer results are contained in Chapter 7. Finally, a
conclusion and an outlook for possible future work can be found in chapter 9.

1-2 Why are topology optimization problems difficult?

The remainder of this chapter describes why TO problems are difficult. First the general TO
problem is formulated as a nonlinear optimization problem., followed by a description of how
local minima are introduced by the SIMP approach.

1-2-1 General problem definition

In the most general sense, topology optimization aims to answer the question: what material
distribution minimizes an objective function F while possibly subject toM constraintsGi ≤ 0,
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i = 1 . . .M . For every point in the design domain, x ∈ Ω, the material density is indicated
by the density variable ρ(x). The naturally discrete problem is relaxed in order to enable
practical computation using a large number of variables and constraints. The TO problem is
defined in the general optimization problem formulation as

minimize
ρ

F = F (u(ρ), ρ) =
∫

Ω
f(u(ρ), ρ)dV,

subject to: Gi(u(ρ), ρ) ≤ 0, j = 1, . . . ,M,

0 ≤ ρ(x) ≤ 1,∀ x ∈ Ω.

(1-1)

Here the state field u satisfies a state equation (Sigmund and Maute, 2013).

Before continuing with the origins of local minima let us discuss why this approach is at all
necessary. Why can we not perform a global search of the design space in order to localize
the global minimum? Or why can we not start from a large number of evenly spaced different
initial designs, followed by a selection of the best final result? Both these approaches are based
on the principle that the more possibilities analyzed, the higher the probability of finding the
global minimum. Although this is true, the design space of TO problems is simply too large
to even analyze a fraction of possible material distributions.

In order to emphasize this, consider a small-sized TO problem with a 1000 finite elements
of equal volume and a volume fraction of 0.25. There are a total of P (1000, 250) ≈ 10735

possible combinations of distributing the 250 solid elements. Many of these combinations can
be ruled out using two assumptions. Firstly, that all material should be present in order to
reach optimality (active volume constraint) (Stolpe, 2010). Secondly that the location of 10%
of the solid material is known due to the problem physics. This results in a problem with 225
solid elements that can be placed in 975 possible locations, resulting in

(975
225
)
≈ 10227 pos-

sible combinations. Although greatly reduced, analyzing even a fraction of the combinations
is computationally impossible in a practical amount of time for anything but the smallest
problem sizes (e.g. Rasmussen and Stolpe (2008)). For that reason, this study is focused on
the generation of a single initial design, and the use of that in one optimization run.

1-2-2 Local minima due to the SIMP approach

By optimizing the continuous TO formulation, as described by definition 1-1, using gradient
based optimizers enables the use of a large number of variables with multiple constraints.
The material properties of the intermediate densities are obtained through an interpolation
scheme. The most commonly used scheme is Simplified Isotropic Material with Penalization,
or SIMP (Bendsøe, 1989). In SIMP, the relation between the density and the modulus of
elasticity of an element i is

Ei(ρ) = Emin + ρpi (Emax − Emin). (1-2)

Note the penalization parameter p and the minimum value of Emin, included in order to
prevent the global stiffness matrix K becoming singular. Figure 1-1 indicates how the penal-
ization parameter changes the relation between the density and stiffness. When p = 1 a linear
relation exists between the density and stiffness. When p > 1 intermediate density elements
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have a low stiffness in comparison to their volume (the cost). As these are unfavorable, the
optimizer converges to designs with little intermediate density elements. Unfortunately, local
minima are introduced in the solution topography when p > 1.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

ρ

E
(ρ

) p = 1
p = 2
p = 3

Figure 1-1: Relation between the modulus of elasticity and the penalization parameter.

An illustrative example

In this section, a simple example is used to visualize how non-convexities arise due to the
application of penalization. It consists of a minimum compliance optimization problem. Con-
sider two parallel springs k1 and k2 as visible in Figure 1-2. Both springs are rigidly attached
on the left hand side. Furthermore they are connected through a rigid beam on the right
hand side. On the middle of the beam a static force f is exerted with a magnitude of f in
the right direction.

k1

k2

f

1

Figure 1-2: Setup of optimization problem: what distribution of material between spring k1 and
k2 minimizes the displacement of the vertical bar when under a constant load f?

The objective of this optimization problem is minimizing the displacement of the right spring
tips, denoted by u2, under the load f . The densities, ρ, of the springs are the problem
variables. The springs are naturally either present, with a density of one, or absent, with
a density of zero. In this example, the densities are taken as continuous variables, with
0 ≤ ρ ≤ 1, in order to demonstrate how non-convexities arise in the SIMP formulation. The
optimization problem is written as

minimize
ρ

F = F (u(ρ), ρ)

subject to: ρ1 + ρ2 ≤ 1,
Ku = f
0 ≤ ρi ≤ 1, i = 1, 2.

(1-3)
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Where Ku = f is the equilibrium equation that is to be met. In order to satisfy the volume
constraint one spring may be solid. A derivation of the objective function follows. Each spring
has a stiffness matrix equal to

Kspring = k(ρ)
[

1 −1
−1 1

]
. (1-4)

Assembling the stiffness matrix to complete the equations of motion yields

(k1(ρ1) + k2(ρ2))
[

1 −1
−1 1

] [
u1
u2

]
=
[

0
f

]
. (1-5)

Now solving for u2 yields the displacement on the right node as u2 = f/(k1(ρ1) + k2(ρ2). For
the remaining part of this example f will be considered constant and the aim is to minimize
the objective function u2 = 1/(k1(ρ1) + k2(ρ2). Finally, applying the SIMP formulation in
the relation between the spring density and stiffness yields the objective function as

u2(ρ) = 1
ρp1k1 + ρp2k2

. (1-6)

In order to calculate this displacement spring stiffnesses are chosen as k1 = 0.8, k2 = 1.

Let us consider the problem before applying penalization, thus with p = 1. Minimum com-
pliance problems are convex due to the more material present in the springs, the stiffer they
are thus the lower the objective function (Petersson, 1999). In this problem, the volume
constraint is active at optimality.

The value of the objective function for p = 1 can be seen in Figure 1-3 with the material
allocated to k1 on the horizontal axis and the objective function value on the vertical axis.
The solid line is convex and indicates a minimum in the objective function value when all
material is present in the second spring, as expected. Furthermore, a gradient based optimizer
converges to this minimum whatever the initial density distribution.

Next consider the curve of the objective function for p = 1.5. The penalization parameter
causes the solution topography to contain two different local minima. For different initial
density distributions, different minima will be found by a gradient based optimizer. The
curve for p = 2 demonstrates how a higher value of p assists in converging to a binary design.
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0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

ρ1

F
(ρ

) p = 1
p = 1.5
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Figure 1-3: Objective function value for the two-spring example under different penalization
values.



Chapter 2

Topology optimization problems

This chapter contains the set of test problems used to investigation the performance of certain
optimizer initial design combinations. In general, the validity of the observations deduced
from these experiments depend on the set of test problems. They must properly represent
every TO problem the optimizer ID combinations are expected to optimize. It is for this
reason that the test set of problems as described by Rojas-Labanda and Stolpe (2015a) is
used. It contains a large number of structural TO benchmark problems of varying difficulty,
lying in three different problem classes. These are minimum compliance, minimum volume,
and compliant mechanism design. Each class contains multiple problem types, defined by the
boundary conditions and designs domain. Furthermore, each problem type is tested using
different parameters in order to obtain a large set of problems.

2-1 The problem library

The first two columns of Table 2-1 indicate the problem library. The three problem classes
are shown in the first column, followed by the problem types contained in each class. In
addition to the original library used by Rojas-Labanda and Stolpe (2015a) one problem type
is added in order to enable the investigation of Constructal Theory as an initial design. This
problem consists of minimizing the thermodynamic compliance of a heated plane (Bensøe and
Sigmund, 2003). Sections 2-1-1 to 2-1-3 describe the problem types, design domain aspect
ratios, finite elements per unit length and constraints per problem class. All of the problems
are two dimensional.

2-1-1 Minimum compliance problems

In this problem class the objective is to minimize the compliance under a volume constraint.
The dictating equilibrium equation is found by applying the finite element method to the
dictating partial differential equation and is K(t)u = f . Here u ∈ Rd indicates the nodal
displacements, t ∈ Rn the element wise densities, and f ∈ Rd the external load. The total
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Table 2-1: The problem library consists of the three problem classes, contained in the first column,
and contained problem types, indicated by the second column. Not all IDs and optimizers have
been used for every problem. Combinations that are examined are indicated with a tick.

Problem class Problem type Initial design Optimizer
CT HOM UP BAD OC MMA IPOPT

Minimum
compliance

Heated plate 4

4 4 4 4 4 4
Cantilever

8Michell truss
MBB beam

Minimum
volume

Heated plate 4

4 4 4 8 4 4
Cantilever

8Michell truss
MBB beam

Compliant
mechanism
design

Inverter

8 4 4 4 4 4 4

Gripper
Amplifier
Lever

Crimper

number of degrees of freedom is indicated by d and n indicates the number of finite elements.
The stiffness matrix K, with size Rn → Rd×d, is well conditioned through the application
of a small, positive density for elements with a density of zero (see the SIMP formulation in
Section 1-2-2). The problem is formulated as

minimize
t

uT (t)K(t)u(t),

subject to: aT t ≤ V,
0 ≤ t ≤ 1.

(2-1)

Here a indicates the relative volume of the elements. This formulation contains a nonlinear
objective function with linear inequality constraints. The volume fraction lies between zero
and one: 0 < V ≤ 1 (Rojas-Labanda and Stolpe, 2015a).

For the test set of minimum compliance problems, two types of physics are considered. The
first is mechanical compliance. Here the standard TO problems are optimized, consisting of
the Michell truss, the Cantilever, and the MBB beam. The boundary conditions of these
problems can be seen in Figure 2-1a to 2-1c. The second type of physics considered is the
thermodynamic compliance Bendsøe and Sigmund (2003). In this problem a heat load is
incident on a rectangular plate which contains a heat sink on a segment of one edge and
adiabatic boundaries around the rest of the domain. The domain of this problem can be
seen in Figure 2-1d. In this case the variables u in problem definition 2-1 indicate the nodal
temperatures.

For the mechanical compliance problems five different volume fractions are considered. These
range from 0.1 up to 0.5 in steps of 0.1. Furthermore, each problem type is optimized using
multiple domain ratios and a different number of elements per unit length as indicated in
Table 2-2. There are a total number of 225 unique minimum mechanical compliance problems.
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Table 2-2: The test set of the minimum mechanical compliance, minimum mechanical volume
and compliant mechanism design problems are defined by different domain ratios [nelx:nely] and
number of elements per unit length Nl.

Problem type Domain aspect ratios Nl

Michell 1:1, 2:1, 3:1

20, 40, 60, 80, 100Cantilever 2:1, 4:1
MBB 1:2, 1:4, 2:1, 4:1

All compliant mechanisms 1:1, 2:1

Table 2-3: Details of the test set of minimum thermodynamic compliance problems.

Problem type Conductivity ratios Volume fractions
Heated plate 100, 150, ..., 1000 0.1, 0.15, ..., 0.4

The application of Constructal Theory to thermal problems is relatively evident, for this
reason it is applied to the problem of minimizing the thermodynamic compliance. When
using CT to generate an ID, the variables are the conductivity ratio between the high and
low-conductivity material, k̃, and the volume fraction. The domain aspect ratio and resulting
number of FE elements follows from CT (detail in Chapter 4). The minimum number of
FE elements is set to 1000, the smallest and largest problem sizes include 6204 and 204440
elements. As shown in Table 2-3, the conductivity ratios considered are from 100 up to and
including 1000 in steps of 50. The volume fractions used range from 0.1 up and including
0.4 in steps of 0.05. Using these variables there are a total number of 133 unique minimum
thermodynamic compliance problems.

2-1-2 Minimum volume problems

In the minimum volume problems the amount of material in the domain is minimized under
a compliance constraint. The problem formulation is similar to the minimum compliance
problem but now formulated as

minimize
t

aT t,

subject to: uT (t)K(t)u(t) ≤ C,
0 ≤ t ≤ 1.

(2-2)

Here C = k(uT (t0)K(t0)u(t0)), indicating the compliance must be no more than a factor
k larger than the compliance of a homogeneous density distribution t0 (Rojas-Labanda and
Stolpe, 2015a). This distribution consists of all elements having a density of a half, t0 = 0.5∗1.

As in the minimum compliance problems two types of physics are considered: mechanical
and thermodynamic compliance. For the mechanical problems, the used domain sizes and
discretizations per unit length are equal to the minimum compliance problems and shown in
Table 2-2. There are a total number of 135 unique mechanical minimum volume problems.
For the thermodynamic compliance the procedure followed is equal to the procedure used in
the minimum compliance problems. Considering the number of FE elements, the smallest
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Table 2-4: Compliance ratios of the minimum mechanical and thermodynamic volume problems.

Physics application Compliance ratio k
Mechanical minimum volume 1, 1.2, 1.5

Thermodynamic minimum volume 1, 1.1, ..., 1.5

and largest problem sizes include 5760 and 33572 elements. There are a total number of 114
unique thermodynamic minimum volume problems.
The compliance ratios, k, for the two physics applications can be seen in Table 2-4. For
the mechanical problems values of 1, 1.2 and 1.5 are considered. For the thermodynamic
minimum volume problems k ranges from 1 up to and including 1.5 in steps of 0.1. This is
done in order to maintain a large problem library.

1

(a) Michell truss

1

(b) Cantilever (c) MBB beam

Q

1

(d) Heated plate, with
a small heat sink on
the left boundary.

Figure 2-1: Minimum compliance and volume problem designs domains and boundary conditions.
For the first three problems, the arrows indicate the application of a force while a uniform heat
load is applied on the heated plate.

2-1-3 Compliant mechanism design problems

In compliant mechanism design problems, the aim is to transfer a force applied at the input
node uin to an output node uout, subjected to a constraint on the permissible amount of
material. The problem formulation is

maximize
t

lTu(t),

subject to: aT t ≤ V,
0 ≤ t ≤ 1.

(2-3)

Here l is a vector with zeros for all degrees of freedom except the one associated with the
output degree of freedom (Rojas-Labanda and Stolpe, 2015a). The objective function is
nonlinear.
There are five different design problems. These are the force inverter, the gripper, the am-
plifier, the lever and the crimper. The problem domains and boundary conditions are shown
in Figure 2-2. Five different discretizations per unit length are considered for two different
domain ratios. These are stated in Table 2-2. The range of the volume fraction is from 0.1
up to and including 0.5 in steps of 0.1.
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(a) Force inverter problem with
kout = 10−3.
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(b) Gripper with kout = 5·10−3.
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(c) Amplifier problem with
kout = 5 · 10−3.

uin

kin

uout

kout

1

(d) Lever with kout = 5 · 10−3.
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(e) Crimper problem with
kout = 5 · 10−2.

Figure 2-2: Compliant mechanism design domains and boundary conditions. The input spring
stiffness, kin, is one for all problems.

2-2 SIMP parameters and density filter

The problem instances are all formulated using the SIMP approach with the standard penal-
ization value of p = 3. A Python version of the standard 88-line MATLAB code (Andreassen
et al., 2011) is modified to optimize the problems. The modifications are performed in order
to be able to optimize the different problem classes using the optimizers. The originally in
C++ written optimizer IPOPT is accessed through the open-source Python wrapper cyipopt.

In order to prevent checkerboards a density filter is applied (Bourdin, 2001). In this filter,
element densities are modified according to a weighted average of the neighboring element
densities in a radius rmin. The weighted average is defined by H̄e,i = max(0, rmin −∆(e, i))
where ∆(e, i) indicates the distance from element e to element i. The modified element density
is defined by

k̃e = 1∑
i∈Ne

H̄e,i

∑
i∈Ne

H̄e,iti.

Here Ne is the set of elements that lie within a radius of rmin of element e. In this research,
the filter radius, rmin, is constant with respect to the element size and set to a value of 1.2.
This results in mesh-dependent topologies that permit smaller feature sizes when increasing
the number of finite elements per unit length. In this manner, the amount in which the
performance of topologies can differ is also larger for a set discretization; optimizer and initial
design configurations have more possibilities of distancing themselves from each other.



Chapter 3

Optimizers and settings

The three optimizers used in this paper are Optimality Criteria Rozvany and Zhou (1991);
Zhou and Rozvany (1991), the Method of Moving Asymptotes Svanberg (1987), and IPOPT
Wächter and Biegler (2006). Many other optimizers can be used for TO problems (for exten-
sive benchmark see work by Rojas-Labanda and Stolpe (2015a)). Examples are Sequential
Quadratic Programming (Boggs and Tolle, 1995), the dual optimizer using convex approx-
imations CONLIN (Fleury, 1989) and the globally convergent version of MMA, GCMMA
(Svanberg, 2002). However, OC and MMA are the most used optimizers, while IPOPT was
found to be generally well performing.

3-1 Optimizers

Optimality Criteria (OC) is a first order optimization procedure that was originally derived
by considering the strain energy as an indicator where material should be added and where
it should be removed. OC only functions when the derivative of the objective function to the
design variables is always negative. It can thus not be used for minimum volume problems.
The OC optimizer used in this paper is as stated in the 88-line code of Andreassen et al.
(2011). Two modifications have been performed. Firstly, the difference between the estimates
of limits of the constraint Lagrange multiplier has been reduced. Secondly, modifications
have been made following Bensøe and Sigmund (2003) in order for OC to be able to handle
compliant mechanism design problems.

The Method of Moving Asymptotes (MMA) optimizer is a first order method that sequentially
generates approximations of the local solution topography. In MMA, this approximation is
convex and can be efficiently solved. The found solution to the convex problem is the starting
point for the next iteration. MMA modifies the asymptotes that define the approximation
every iteration in order to prevent them being too conservative. This prevents a slow conver-
gence.

IPOPT is an interior-point optimizer that has been found to be a well performing independent
of the TO problem type Rojas-Labanda and Stolpe (2015a). It is a second-order method that
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approximates the second derivative of the objective function to the design variables using
a limited-memory BFGS algorithm. IPOPT is the only one of three optimizers where the
number of solves is not always equal to the number of iterations. Thus is due to IPOPT
sometimes calling the objective function value multiples times per iteration.

3-2 Termination criteria

It is desirable to stop an optimization run when the used optimizer does not further improve
the design. This occurs when an optimizer converges to a local optimum. In what part of this
convergence path to stop the optimizer is a sensitive business. Stopping the optimizer when
the difference between two consecutive iterations is below a given threshold might interrupt
the optimizer prematurely. Furthermore, precise stopping criteria exist in the form of the
Karush - Kuhn - Tucker (KKT) conditions. A measure of optimality of a design point is found
by taking the Euclidean norm of these conditions. In this paper, an optimizer terminates due
to one of two events occurring. The first, and desired event, being the optimizer generating
a design that satisfies the Euclidean norm of these conditions within a certain value ω. The
second event being the optimizer using the maximum number of solves, set at 1000.

Of the three optimizers used, OC is the only exception. It is stopped when the difference
between two designs is below a certain threshold and the design satisfies the constraints. The
value ω associated with the finding of a KKT-point is optimizer dependent. Rojas-Labanda
and Stolpe (2015a) demonstrated that the amount of designs where MMA finds a KKT-point
is highly dependent on the value of ω. On the other hand, IPOPT was able to find designs
associated with KKT-points within very small values of ω. For the exact formulation of the
KKT-conditions and the associated optimizer dependent values of ω the reader is referred to
Rojas-Labanda and Stolpe (2015a).



Chapter 4

Initial design types

This chapter contains the theory, method and application of the four tested initial designs.
Not all of these are applied to all problems. An overview of all problem types and optimizer
and ID combinations is given by Table 2-1.

4-1 Homogeneous density distribution

The homogeneous density distribution (HOM) is currently the community standard initial
design for density based topology optimization (Bendsøe and Sigmund, 2003).

4-1-1 Theory

HOM does not contain any problem related information.

4-1-2 Method

The HOM initial design consists of a uniform density field with a value equal to the volume
constraint, tHOM = V ∗ 1. The only exception is minimum volume problems, where the
density field has a value of a half, tHOM, min. vol. = 0.5 ∗ 1.

4-1-3 Application

HOM can be applied to all problems.
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4-2 Constructal Theory

Constructal Theory (CT) is used as an inspiration to generate an initial design for the mini-
mum thermodynamic compliance problem. The background theory, generation method, and
application to this problem are explained below. Another type of CT inspired initial design
generation method, also from Bejan (2001), is also investigated but was not considered due
to the high computational cost. For details, the reader is referred to Appendix D.

4-2-1 Theory

CT was developed to unite all types of flow in a single law Bejan (1997, 2001). It aims to
prove that geometric form is the mechanism through which a system achieves its objective.
The law that forms the basis of CT is the Constructal Law, stated as:

“For a finite-size flow system to persist in time (to live), its configuration must
evolve in such a way that it provides easier access to the imposed (global) currents
that flow through it.”Bejan (2001)

CT has been applied to a variety of disciplines such as economics, biology, and engineering.
Application examples are the optimized cooling of a heat generating volume through natural
and forced convection Bejan et al. (1995), volume-to-point heat and fluid flow problems Bejan
(1997); Bejan and Errera (1997), predicting the formation of geometrical shapes in fluid
systems heated from below (Rayleigh-Bénard convection) Nelson R. A. and Bejan (1998) and
the prediction of geometrical shapes in river drainage basins Errera and Bejan (1998).

An approximation of the CT solution to the volume-to-point flow problem (VTPF) Bejan
(1997); Bejan and Errera (1997) can be used as an initial design for TO flow problems.
CT generates this solution using a large number of steps under multiple assumptions and
intermediate optimizations. The aim of the rest of this section is to sketch this process and
provide the reader with an idea of the result rather than explain it in detail. For a detailed
analysis, discussion of the criticism on CT, and a derivation of the equations the reader is
referred to appendix D.

In the VTPF a limited amount of high conductivity material, φ, is to be distributed in a
finite volume V with the aim of minimizing the maximum occurring temperature due to a
heat input q′′′[W/m3]. This is done by conducting the heat to a sink, present on a small part
of the boundary. There is no heat flow across the rest of the boundary. V is described by a
width W , length L and height H where W , L >> H. For that reason the optimization is
performed in the two dimensional plane LH. The VTPF is similar to the heat conduction
TO problem Bendsøe and Sigmund (2003).

The CT solution to the VTPF is dependent on two variables. Firstly the fraction of high
conductivity material φ. Secondly the conductivity ratio, k̃, between the high and low-
conductivity material. The solution consist of a material distribution and the ratio of the
width and length of the domain.
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4-2-2 Method

CT generates a solution to the VTPF by assembling elementary into into higher order designs.
The extent of this assembly process is dictated by the problem variables φ and k̃.

When k̃φ < 8 the solution consists of only the elementary design. Here the high-conductivity
material is present in the WL plane in the form of a rectangle, running from the heat sink
across the domain. An example is visible in Figure 4-1a. The thickness of the blade is dictated
by φ. The length to width ratio of the domain is optimized in order to minimize the maximum
temperature, while keeping the area constant. This ratio is determined by

(
H0
L0

)
opt

= 2√
k̃φel

. (4-1)

Where φel is the volume fraction assigned to the elementary construct, in this case φ. For a
detailed description of how equation 4-1 is found the reader is referred to appendix B-1-1.
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(b) Assembly of elementary designs.

Figure 4-1: CT assembles elementary designs into higher order designs.

When k̃φ ≥ 8, CT assembles multiple elementary designs together to form a more complex
material distribution. The elementary tiles are rotated, stacked, and connected to the sink
by a central branch. In figure 4-1b six elementary designs are combined in this manner.

In the original CT formulation this assembly process continues by using the new design as a
tile and once again rotating and stacking them in order to generate better performing designs.
It has however been proven that further assembly decreases the performance (Ghodoossi and
Egrican, 2003). Thus an assembly of elementary designs is generated when k̃φ ≥ 8. Con-
sidering other additions to CT as suggested by Ghodoossi and Egrican (2003) the remaining
assembly dimensions are stated below. For a detailed derivation the reader is referred to
appendix C. The elementary design is calculated as in equation 4-1 with the exception that
now φel = φ

2 , where φ equals the problem volume fraction. The optimal number of elementary
tiles in the assembly is n1, opt =

√
k̃φ. The maximum temperature is minimized by choosing

the aspect ratio as
(
H1
L1

)
opt

=
√

2. Finally the thickness of the central branch is dictated by
D1 = L0φ.
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4-2-3 Application

The CT solution to the volume to point flow problem can be used as an ID in TO flow problems
and is used in this study for the minimum thermodynamic compliance TO problem Bensøe
and Sigmund (2003). Due to CT dictating the domain shape, it has limited applicability.
For this study the domain shape is first calculated using CT and the other initial designs are
generated using this domain shape.

The use of initial designs in TO requires their description in a discretized design domain. For
computational reasons the CT shape is only approximately present in the discretized domain,
which is addressed in the next paragraph. The generated ID is thus a CT inspired ID rather
than an exact solution as stated by CT. Moreover, in the assembly of elementary designs, the
applied material is lower than φ. This is due to the elementary and center branch overlapping.
This missing material is added as solid elements on both sides of the center branch. For every
CTID the volume constraint is always met and the amount of allocated material is never
below 95% of the volume fraction.

When optimizing a topology, optimizers such as OC and MMA make only slight modifications
per iteration once a design becomes binary. This is due to the optimizers attempting to
satisfying the optimality criteria, while the shifting of material causes these to decrease due
to the penalization parameter. This effect is known as the boundary translation problem
(Sigmund and Maute, 2013) and it occurs due to the shifting of a boundary often requiring
the escape from a local minima.

The boundary translation problem becomes visible when comparing an initial design with
the final design generated using, for example, OC. The more an initial design is represented
by elements with a solid density, the more the final result resembles it. In order to fully
investigate the value of a CTID, each problem is optimized using a CTID with varying density
differences. These indicate the difference in density between the CT shape and the remainder
of the design domain. The differences tested are 0.25, 0.5, 0.75, and 1. The occurring density
difference is dependent on the mesh size and a maximum deviation of 5% from the exact
density difference is tolerated. The smaller this tolerance, the larger the required mesh size.
Algorithm 1 indicates how CTID are generated computationally.

4-3 Solution to the unpenalized problem

A commonly used method to minimize the influence of the local minima introduced by the
SIMP formulation is the continuation method (Allaire and Kohn, 1993). Here, the penal-
ization parameter is slowly increased with the aim of preventing the early convergence to
a poorly performing local minimum. Although convergence to the global optimum is not
guaranteed (Stolpe and Svanberg, 2001), the final objective function value is ofter lower than
when using a constant penalization value (Sigmund and Maute, 2013). The unpenalized (UP)
initial design can be seen as a continuation method with a single steep step in the penalization
parameter.
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Algorithm 1 Generate CTID
1: nrelem ← 5000
2: φel ← φ
3: if k̃φ > 8 then
4: φel ← φ

2
5: Generate elementary design
6: while δdens > toldens do
7:

(
L0
H0

)
opt
← 2√

k̃φel
8: if D0 < 4 then
9: nrelem ← nrelem + 100

10: nrelem ← nrelem + 100
11: update D0,

(
L0
H0

)
opt

12: if k̃φ > 8 then
13: Generate assembly of elementary designs
14: n1, opt ←

√
k̃φ1

15: Assemble elementary designs
16: if δdens > toldens then
17: Add material to center branch
18: Return design

4-3-1 Theory

The unpenalized problem is of interest because the associated solution topography follows the
general shape of its penalized counterpart, without the penalization-parameter induced local
minima. Consider the set of feasible solutions to an unpenalized TO problem, Sfeasible. This
set is a union of the feasible binary and feasible non-binary solution sets

Sfeasible = Sfeasible, binary ∪ Sfeasible, non-binary.

The value of the unpenalized design is clear when considering the fact that the unpenalized
minimum compliance and minimum volume TO problems are convex (Petersson, 1999). There
is one and only one optimum which lies in the feasible solution set, Sfeasible. Now, the structure
of the binary and non-binary solution sets indicate that a binary solution of equal quality
does not exist. The solution to the unpenalized problem is a lower bound to the objective
function value of the penalized problem. Considering the function of optimization algorithms
being the generation of a binary design from a non-binary ID, the global optimum of the
unpenalized TO problem is an ID worthwhile investigating.

4-3-2 Method

The unpenalized ID is generated by setting the penalization parameter as p = 1 and opti-
mizing the TO problem. The computational expense of TO problems is related to the time
required to solve the system of linear equations in the finite element method. The size of the
system is dependent on the mesh size of the TO problem. Because one of the performance
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(a) In UP1, the problem is solved
on the original mesh size.

(b) In UP2, four elements are ag-
gregated.

(c) In UP4, sixteen elements are
aggregated.

Figure 4-2: Examples of approximate solutions to the unpenalized version of the minimum
compliance problem using different mesh sizes. In this case, the problem type is the Michell
cantilever, the domain ratio is 2:1 and the maximum volume fraction is 0.3.

indicators of an initial design is the computation expense, three mesh sizes, with a different
amount of elements, are used to generate the UP. An example of these mesh sizes is shown
in Figure 4-2. The first is a mesh equal to the original mesh and requires the same amount
of computation time per solve. The second is a mesh where two elements are combined per
axis. In a two dimensional problems of the used test set this results in new square elements
that contain four elements of the original mesh, see Figure 4-2b for an example. The third
mesh combines four elements per axis. This mesh contains large square elements that con-
tain sixteen of the original mesh finite elements, see Figure 4-2c for an example. In order to
assess the computational burden of the two coarse meshes an experiment is performed. The
details can be found in Appendix F. The results of this experiment indicate that the required
computation time is proportional to the size of the stiffness matrix, and the computational
cost of UP are scaled accordingly.

In this thesis the focus lies on the performance of different IDs considering specific optimizers.
For that reason, for a specific problem, all optimizers are initiated with the same UPID. This
is done by optimizing the unpenalized problem using the same optimizer, namely IPOPT.
If instead each optimizer would independently generate the UPID it would be more difficult
to distinguish the change of performance due to the quality of the ID from the change of
performance due to the quality of the optimizer.

The termination criteria are the same as the original problem except the maximum number of
iterations. For minimum compliance and minimum volume problems it is set to 30, whilst for
compliant mechanism design problems it is set to 60. Due to the optimizer not always finding
a KKT point before the maximum number of iterations is reached, the unpenalized initial
design is formally an approximate solution to the unpenalized problem. UP is generated using
HOM as an initial design (for details, see Section 4-1).

4-3-3 Application

UPID is applicable to all the test set problems. Furthermore, it can be generated for all
problems that are formulated using SIMP.



4-4 Generation of poorly performing design 21

4-4 Generation of poorly performing design

The previously explained initial design generation methods aim to generate initial designs
with a high performance. The poorly performing, or BAD, ID explained in this section, does
the opposite. It is generated to have a poor performance. Using these initial designs, the
capability of optimizers to handle bad initial designs is researched.

4-4-1 Theory

TO can be considered a two step procedure. First, a starting point is selected. Subsequently
a design is generated using that starting point. The performance of the final design can be
improved by improving either one of these steps. Moreover, the contributions of both steps
are closely related. A well performing initial design using a poorly performing optimizer can
yield the same quality final design as a poor initial design optimized by a well performing
optimizer. Consider a poorly performing design tbad. Slight modifications of this design, t̃bad,
are likely to also perform poorly. The same holds for a well performing design, although the
objective function is sensitive to particular sections, random slight modifications still yield
a well performing design. The capability of an optimizer to transform a poorly performing
design into well function one indicates the capability to traverse a large distance in the design
space, thus being resistant to being caught in local minima. If an optimizer demonstrates this
type of robustness, it is useful for problems where it is difficult to generate well performing
initial designs.

4-4-2 Method

In this research, the bad initial designs are generated by transforming the minimization prob-
lem into a maximization problem for minimum compliance and minimum volume problems,
and visa versa for compliant mechanism design problems. This is done by multiplying the
objective function value and the sensitivities by -1. Furthermore, the constraints are modified
in order to obtain a design that is feasible in the original problem statement. An example of
two BAD initial designs can be seen in Figure 4-3.

An explanation of the problem dependent BAD initial design generation method follows.
For minimum compliance the problems are formulated as maximum compliance problems.
The upper bound on the volume is modified to an equality constraint, in order to prevent the
optimizer from removing all material. The resulting initial designs often contain little material
around the attachment point of the loads and fixed boundary conditions. Figure 4-3a is an
example of a BAD initial design for the Michell problem. For minimum volume problems the
BAD initial design is a completely solid design domain described by x0 BAD, min vol = 1. For
compliant mechanisms, the BAD initial design is also generated by multiplying the objective
and sensitivities by -1. The resulting mechanism minimize the displacement in the required
direction, instead of maximizing it. This results in displacements at the output spring location
that are in the direction opposite to the desired one. Figure 4-3b is an example of a BAD
initial design for the compliance inverter, the current mechanism displaces the output node
upwards instead of downwards.
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(a) Example for the cantilever
problem.
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(b) Example for the compliant
lever.

Figure 4-3: Examples of BAD initial designs.

The BAD initial designs are generated using the IPOPT algorithm. For compliant mechanism
design problems, the maximum number of iterations is 90. For the remaining problems it is
30. Furthermore, the termination criteria are as for the original optimization problem.

4-4-3 Application

The BAD ID can be applied to all benchmark problems.



Chapter 5

Comparison method

In topology optimization, there are two key performance measures. The first is the quality
of the final design and the second is the computational cost of generating it. In this thesis,
different initial design and optimizer combinations are compared. These combinations will
from now on be addressed as methods. The comparison of methods is performed by optimizing
a large set of TO problems with each method and comparing the performance measures using
performance profiles Dolan and Moré (2002).

A comparison of methods is generally performed in order to obtain a global indication of
the relative performance of a method, rather than relative capability of a method to solve a
particular problem. For that reason the performance measures of methods are often compared
using a test set of problems. Naturally, the validity of this comparison improves as the test
set of problems better represents any problem the method is expected to solve. With this in
mind, test sets are often large and contain problems with different levels of difficulty.

As the difficulty of problems in a test set varies, so will the performance measures of a
particular method. Evaluating the performance of a method using these measures is not
straightforward. For example, comparing methods using an average or sum of a measure can
be misleading, as these values can be dominated by a small subset of problems. Another
reason why the comparison of performance measures is difficult is due to the incapability
of methods to always produce a result that respects problem specific criteria. When this
occurs, there are a few common approaches. One is simply removing the problem from the
test set, another is penalizing failing methods. One could also compare methods according to
the number of times a feasible design is found, rather than the performance measure. Each
approach has a drawback. Removing problems causes information regarding the robustness of
methods to be lost while the application of a penalization factor is subjective. Furthermore,
counting the number of feasible designs rather than using the actual performance measure
values causes information regarding the relative performance to be lost. These difficulties are
overcome by using performance profiles.
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5-1 Performance profiles

Performance profiles Dolan and Moré (2002) enable the comparison of a single performance
measure value of n optimization methods s1, s2, . . . , sn when optimizingm problems p1, p2, . . . , pm.
They have been extensively used to compare optimization methods (e.g. Benson et al. (2003)).

Consider the first problem p1 contained in the problem set P being optimized by every
optimization method, si with i = 1, · · · , n, in the methods set S . Every method si may
obtain different performance measure values for problem p1. Often so, the value of one
method will be the minimum value. The values of the remaining methods are each a factor
larger than this minimum value. Thus, for problem p1 ∈ P we have identified two items.
Firstly, the method with the minimum in performance measure value. Secondly, the ratios
of the performance measure values of the remaining methods in comparison to this minimum
value.

In order to generate a performance profile, the procedure of first solving the problem with
each method followed by the calculation of the performance value ratios is carried out for
each problem pj ∈ P. An advantage in the use of performance profiles lies in the manner this
information is visualized in a graph.

In order to understand how a performance profile is drawn, consider the first method, s1 ∈ S ,
used to optimize every problem in P. For every one of these problems the ratio of the
performance measure value of s1 in comparison to the minimum value has been calculated.
When s1 has solved the problem best, this ratio is equal to 1. For the remaining problems it is
larger than 1. Now, let us consider a certain ratio, indicated by τ1. The group of performance
measure ratios of method s1 can be split into two. The first group consists of problems
that were solved within a performance value ratio that is less than or equal to this ratio τ1.
Naturally, the second group is the remaining problems. Every problem in P is contained in
one of these two groups. If we now consider another ratio, τ2 > τ1, the number of problems in
the first group,thus solved with a ratio no larger than τ2, is equal or larger than the number
of problems solved within τ1. This is due to the tolerance increasing. In a performance
profile, the curve of a method indicates the number of problems solved for a range of values
of τ . Thus, a performance profile indicates the number of problems a method solved within a
certain ratio of the best method among the set. An example of a performance profile can be
seen in Figure 5-1. Here the objective function values of three optimizers is compared when
optimizing 225 minimum compliance problems using the homogeneous density distribution.

5-2 Performance profiling of initial design influence

In this thesis, the methods being compared are initial design and optimizer combinations. As
described in Section 2-1, the problem library used to compare these methods is largely corre-
sponds to the library used by Rojas-Labanda and Stolpe (2015a). The comparison of initial
design and optimizer combinations is performed according to the quality and computational
cost of the final design. The objective function value of the final design indicates the quality.
The cost is proportional to the number of times the system of equations, resulting from the
FEM approach, is solved as this is the most expensive part of the TO procedure. It is propor-
tional rather than exactly equal to the number of solves, due to compliant mechanism design
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Figure 5-1: Performance profile of three optimizers when tested on 225 minimum compliance
problems.

problems requiring the solving of two systems per iteration, but this only being counted as a
single solve as these never occur independently.

The cost is the number of times the system of equation is solved as this is the most compu-
tationally expensive part of a TO procedure.

In this research, it is desirable of an initial design-optimizer combination to possess three
characteristics. Firstly, the solving of the largest amount of problems best. Secondly, the
capability to solve the majority of the problems reliably, i.e. consistently good in performance.
Finally, the ability to solve any of the problems within a small performance ratio of the best
method. Which methods display these characteristics can be observed in a performance profile
and are explained using Figure 5-1.

Which method solved the largest number of problems best, is indicated by the percentage of
problems a method solves within a factor of τ = 1. Figure 5-1 indicates method A solved
the largest amount of problems best (approximately 70%). Method C follows, solving around
25% of the problems best. According to this first criteria, method B performs poorly, solving
less than 10% best.

The second desired characteristic, the capability to solve problems reliably, is indicated by a
steep increase in the percentage of problems a method solves. This indicates a large number
of problems is solved within an approximately equal performance ratio, demonstrating a
small spread in the quality. In Figure 5-1 method B solves about 50% of problems between
1.05 ≤ τ ≤ 1.1 but only slowly further increases the number of solves problems at larger
values of τ .

Finally, the third desired characteristic, the capability to solve any problem well, is indicated
by the largest occurring value of τ in the curve of a method.

For all problems, the performance ratio is calculated by dividing the performance of the
optimizer considered by the best value among all optimizers, as explained in Section 5-1. The
only exception is the compliant mechanism design problems, due to their objective function
values being negative. For these problems the performance ratio is calculated by using the
inverse of the earlier equation: dividing the best optimizer value by the value of optimizer
considered (Rojas-Labanda and Stolpe, 2015a).
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5-3 Penalization of inaccurate designs

As described in Section 3-2, an optimizer is stopped when it finds a design that meets the
KKT criteria. To prevent optimizers from running indefinitely, a maximum number of solves
is also specified. As the required number of solves is one of the two performance measures,
the failure to find a KKT-point quickly depreciates the performance of a method. However,
it also occurs that optimizers do not meet the problem criteria. The failure of an optimizer
to meet these constraints is also reflected in the design its Euclidean norm of the KKT-
conditions. If this norm is not below a certain threshold, µ, the optimizer is penalized for
that problem (for optimizer specific values of µ the reader is referred to Rojas-Labanda and
Stolpe (2015a)). As proposed by (Rojas-Labanda and Stolpe, 2015a), this is performed by
assigning it a performance ratio that is slightly larger than the worst occurring value in order
to differentiate between optimizers that did not converge and optimizers that converges with
the worst performance value. The assigned performance ratio is 1.05fmax, with fmax being
the maximum occurring performance value of all optimizers for that problem. Although
this penalization method is subjective, the resulting performance values have a transparent
relation with actual values obtained by the optimizers.

5-4 Limitations

Although some comparison difficulties are overcome through the use of performance profiles,
there are important limitations. Firstly, optimizers such as MMA are sensitive to the required
KKT-norm µ and their curve in performance profiles is heavily influenced by the subjective
penalization method. Secondly, the drawn conclusions are only valid for the methods being
compared, as the method profiles can drastically change when another method is added to
M . That being said, the qualitative behavior among methods does not change. For example,
in Figure 5-1 method A will still outperform method C when removing method B, but the
differences will be more explicit. Lastly, due to the limited amount of samples, the validity
of the conclusions drawn is completely dependent of how the test set represents any problem
the methods are expected to solve.

In this research, the question is often: is the difference between two performance profiles
significant? The difficulty is that all the previously mentioned limitations influence the an-
swer. As mentioned previously, the difference between two curves can be easily amplified by
removing the remaining methods from the profile. Although it is difficult to completely rule
out these effects, the investigation of a performance profile is consistently performed using
the three desired characteristics as described in Section 5-2 and a detailed description of what
is compared is contained in each result section.

5-5 A versatile method to generate performance profiles

For this thesis, a large amount of data is to be analyzed using performance profiles. For
that reason a versatile function was written in the high-level, open source, programming
language Python. The function, called gen_perfprof, is written in such a way that problems,
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methods, and performance measure being compared (see Section 5-1) are input variables. In
this manner, different perspectives on the data can easily be generated.

The backbone of gen_perfprof consists of functions from a package called Pandas. Pandas is
an open-source, high-performance, data analysis tool written for Python. Mainly the groupby
function has come of use. This function enables the splitting of data into groups using which
group-specific computation can be performed.

Gen_perfprof takes four arguments. The first is the data in the form of a Pandas dataframe,
which is a table. The second is the labels which indicate the unique problems in P . The
third is the labels which indicate the unique methods, composing S. Lastly, the label which
indicates the performance measure, o.

In the gen_perfprof the following steps are performed:

1. Find the unique methods.
2. Find the unique problems using the groupby function.
3. Apply the normalization by dividing by minimum value or assigning 1.05 times the

maximum value (see Section 5-3).
4. Find the unique values of τ .
5. Find the number of solved problems by each unique methods for each occurring value

of τ .

This procedure is described using pseudo code in Algorithm 2. During the generation of a
performance profile, the data and the resulting profile are checked. These checks consist of
the following procedures:

1. Checking if each problem is solved by an equal amount of optimizers. If this is not
the case the optimizers solved different problems that cannot be compared (with, for
example, differing volume fractions).

2. Inspecting the amount of problems solved at τ = 1. The sum of all optimizer values at
ρ(1) is mostly 100%. An exception occurs when there is a problem where optimizers
have equal performance values. This occurs, for example, when the maximum allowed
number of iterations is violated.

3. Checking the performance measure for negative values. If these are present, unwanted
scaling might occur.

4. Inspecting if the number of problems present in the data is equal to the number of (user
defined) unique problems multiplied by the optimizers. If this is not the case, possibly
unwanted, aggregation of information is taking place.

If a check is not passed, a warning is printed.

5-5-1 Application example

An example follows that demonstrates how gen_perfprof allows different perspectives on a
single set of data.
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Algorithm 2 gen_perfprof
1: Input: data, problem definition, performance measure, method characteristic
2: S ← unique methods in data(method)
3: P ← unique problems in data(problemdefinition)
4: for p in P do
5: if feasibility is TRUE then
6: op,s ← op,s

min(op,s∀s∈S)
7: else
8: op,s ← 1.05 ∗max(op,s∀s ∈ S)
9: τuniq ← unique op,s ∀p ∈ P, ∀s ∈ S

10: for τ in τuniq do
11: for s in S do
12: ρs,τ ←

size(oP,s≥τ)
size(P)

13: Return: τuniq, ρs,τ

Table 5-1: Final objective function value, number of iterations, solves, and feasibility fo three
optimizers and two IDs for one of the minimum compliance problems.

nelx nely vol. prob. type optimizer ID obj. iter. solves feas.
120 60 0.1 Cantilever IPOPT HOM 494 1000 1140 True
120 60 0.1 Cantilever IPOPT UP4 484 340 362 True
120 60 0.1 Cantilever MMA HOM 712 1000 1000 False
120 60 0.1 Cantilever MMA UP4 497 1005 1005 False
120 60 0.1 Cantilever OC HOM 501 1000 1000 True
120 60 0.1 Cantilever OC UP4 483 1005 1005 True

Consider the 225 minimum mechanical compliance problems described in Section 2-1-1. The
performance of the three optimizers using HOM and UP4 as initial designs is indicated for a
single problem in Table 5-1.

Figure 5-2 contains three performance profiles, generated using the minimum compliance
problems. For every profile the problem definition is the same, set by the labels [nelx, nely,
volfrac, problem type], but the definition of a unique optimizer varies. In Figure 5-2a, the
methods, M , are defined by the unique initial designs, see Table 5-1. Each curve contains
the information of all three unique optimizer (thus OC, MMA, and IPOPT), and contains
675 data points. This figure indicates that, when aggregating the performance of all optimiz-
ers, HOM outperforms UP4. Now, in Figure 5-2b, the methods are defined by the unique
optimizers, each curve representing 450 data points. This figure indicates IPOPT is the best
optimizer. Finally, Figure 5-2c contains the profiles of each unique initial design and optimizer
combination. As each unique combination has optimized 225 problems, the curves represent
225 data points. This profile indicates that IPOPT performs better when initialized with
UP4 than with HOM, and OC and MMA do not.
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Figure 5-2: Performance profiles of the objective function value for the 225 minimum compliance
problems with different definitions of a unique method.



Chapter 6

Numerical experiments results for
initial designs

In the first numerical experiments a test set of three problem classes containing a total of
nine problem types are used to assess the value of the different initial design and optimizer
combinations. In order to be able to elaborate more extensively on the important results, this
section only contains a subset of all performance profiles. Appendix E contains all profiles of
all problem classes.
The performance measures are the final objective function value and total amount of stiffness
matrix assemblies, as described in Section 5-2. Only the profiles of the minimum compliance
and compliant mechanism design problems are contained and explained in this chapter. The
results of the minimum volume problems are similar to the results of the remaining experi-
ments while the differences between the performance of initial designs is smaller. The profiles
can be seen in Appendices E and E. Lastly, the performance profiles do not contain all com-
binations of methods in order to maintain readability of the profiles. An explanation of the
selection procedure follows.
The choice has been made to mostly compare the homogeneous density distribution (HOM)
with one other initial design using all optimizers. The other initial design is often chosen to
be the one that has the best performance for the best optimizer. Problem specific details are
contained in the appropriate sections.
When qualitatively comparing the performance of the optimizers using the HOM with the
results of Rojas-Labanda and Stolpe (2015a), similar trends are observed. A quantitative
comparison cannot be performed due to the different sizes of the problem sets and the per-
formance profiles containing different methods.

6-1 Minimum compliance problems

For the mechanical compliance problems the tested initial designs include HOM and the
optimized unpenalized problem (UP) using three different mesh sizes. The results indicate
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Figure 6-1: Performance profiles for the 225 minimum compliance problems.

that the performance of both OC and MMA deteriorates using the unpenalized initial designs.
The performance of IPOPT is either similar or better when using UP. Amongst these, a course
mesh, combining sixteen finite elements of the original mesh to one element for the unpenalized
problem, performs best. Thus UP4 is compared to HOM for all three optimizers in Figure 6-1.
A quantitative analysis follows.

IPOPT using UP4 is the best overall method. Regrading the objective value, it solves 38%
of all problems best (at τ = 1), 12% more than the next best (IPOPT using HOM). IPOPT
using UP4 solves the most problems across the whole spectrum of τ , solving 100% of problems
within τ = 1.27 in comparison to τ = 16.9 for IPOPT HOM. Regarding OC the number of
problems solved best using UP4 in comparison to HOM lies 1% higher the remaining spectrum
of τ indicate a large decrease in performance. The performance of MMA is generally poor
due to it being penalized for not properly converging to a KKT point. When using HOM this
only occurs in 15% of the problems and further deteriorates to 8% using UP4.

Figure 6-1b shows that IPOPT also outperform OC and MMA regarding the number of
stiffness matrix assemblies. IPOPT UP4 solves 42% of problems best, 9% more than IPOPT
HOM. Furthermore, a slightly lower amount of stiffness matrix assemblies is required when
using UP4 than when using HOM for all but a small part of the τ spectrum. However,
the difference is not very significant. IPOPT UP4 solves all problems within τ = 6.55 in
comparison to τ = 11.24 for IPOPT HOM. OC and MMA their convergence performance is
worse when using UP4.

6-2 Minimum thermodynamic compliance problems

For the minimization of thermodynamic compliance, Constructal Theory (CT), an approxi-
mate solution to the unpenalized problem, and HOM are used as initial designs. Four varia-
tions of the CTID are tested. Each one with a larger density difference between the CT shape
and the remainder of the design domain, dictating how explicitly the CT shape is present in
the initial design (for details see Section 4-2). How this explicitness affects the final design
can be seen in Table 6-1. The images indicate that, when using OC and MMA, the final
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Figure 6-2: Performance profiles for the 133 minimum thermodynamic compliance problems.

result resemble the CTID more as it is more explicitly present. The IPOPT results do not
display this tendency. Of all designs no two are equal, indicating that each design represents
another minima.

Figure 6-2 displays the performance profiles for the minimum thermodynamic compliance
problems. These contain the curvesof three initial designs types combined with two optimizers.
Regarding CT, the initial design with a density difference of 0.25 is chosen due to this being
the best performing of the CTIDs (for all CTIDs see Appendix E). Regarding the optimizers,
MMA is not plotted due to poor performance. This is due to the poor convergence to KKT
points, which occurs independently of the used initial design.

Regarding the objective function value, CT performs worse than the HOM for both OC and
IPOPT. Comparing UP1 to HOM, the number of problems solved best increases from 23% to
47% for IPOPT and from 3% to 13% for OC. Figure 6-2a indicates IPOPT either performs a
competitive design or a poor design, as also observed in (Rojas-Labanda and Stolpe, 2015a).
For τ > 1.05 OC outperforms IPOPT, solving 100% of problems at τ = 1.12 for UP1 and
τ = 1.14 using HOM.

When inspecting the number of solves, Figure 6-2b indicates that the initial design has no
influence on the number of solves required by OC. IPOPT solves 80% of problems within
τ = 1.31 using UP1 in comparison to τ = 1.39 for HOM and 1.49 for CT 0.25. However,
100% of problems are only solved within τ = 7.91 using UP1 in comparison to τ = 3.15 for
HOM and 5.75 for CT 0.25.

6-3 Compliant mechanism design

Figure 6-3 contains the performance profiles for the compliant mechanism design problems. It
was chosen to compare UP4 with the HOM due to its high performance and low computational
cost.

In general, the performance using UP4 is comparable or better than the performance using
HOM. The number of problems solved best is equal in both cases when using IPOPT, while
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Table 6-1: Density difference between the initial design and the final solution to the minimum
thermodynamic compliance problem with volume fraction of 0.35. White areas indicate where
the initial design contains more material than the final design, gray areas indicate where the two
have an equal density while black areas indicate where the final solution has a higher density than
the initial design. The CT initial design shape is always equal. The columns indicate the density
difference present in the CTID.

Optimizer Initial design
HOM CTID 0.25 CTID 0.5 CTID 1

OC

MMA

IPOPT

for OC the percentage increases from 12% to 21%. OC using UP4 is generally the best
method, solving 80% of problems within τ = 1.06, followed by OC HOM which does this in
τ = 1.08. Furthermore, all problems are solved by OC UP4 within τ = 1.46 compared to
τ = 2.03 for HOM. IPOPT produces either a well performing design, or a very poor design.
This is visible when comparing the τ values when solving 80% and 100% of problems. Using
UP4 and HOM, 80% of problems are solved within τ = 1.09 and τ = 1.17 while the maximum
occurring τ values are 1585 and 646.

Regarding the number of stiffness matrix assemblies, IPOPT is the best general optimizer.
The percentage of problems solved best by IPOPT increases from 28% to 31% for IPOPT
when using UP4 instead of HOM while for OC it decreases from 30% to 1%. IPOPT UP4
solves 80% of problems in τ = 1.55 instead of τ = 1.86 when using UP4 while the largest
occurring ratio amongst all problems is reduced from 20.1 to 14.5.

6-4 Initial design performance discussion and conclusion

Comparing all initial design and optimizer combinations, one can conclude that there is not a
single initial design that outperforms all others for all problems. Moreover, when considering
a specif problem class, the performance of an initial design is optimizer dependent. That
being said, the unpenalized initial design generally performs well when compared to the
homogeneous density distribution regarding the final objective function value. Regarding the
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Figure 6-3: Performance profiles for the 150 compliant mechanism design problems.

number of solves, the performance of UP is comparable to HOM. The designs obtained using
Constructal Theory perform poorly, independent of how explicit this initial design is present,
and independent of the optimizer used.

As observed by Rojas-Labanda and Stolpe (2015a) IPOPT generally performs very well.
A clear difference in results is that IPOPT is also competitive with MMA and OC when
inspecting the number of solves. This might be an attribute of the used test set of each
problem class being larger. OC is generally competitive, although sensitive to the initial
design used. On the other hand MMA performs poorly due to it being penalized in a large
number of problems due to insufficient convergence to a KKT point. The KKT error mostly
consists of the stationary conditions being unsatisfied, which is a result of MMA being a first
order method. When not applying this penalization, MMA UP generally outperforms MMA
HOM, as visible in the profiles in Appendix E.

As UP can be considered a continuation method with a single steep step in the penalization
parameter, the observed increase in performance is in agreement with the generally observed
increase in performance when using continuation methods.

Table 6-2 contains problem specific recommendations regarding the use of initial design op-
timizer combinations. An important reminder is that not all optimizers initial design combi-
nations are investigated for all problems, for an overview see Table 2-1.

Table 6-2: Recommended initial design optimizer combinations regarding the objective function
value and number of solves.

Problem class Objective Iterations
Minimum mechanical compliance IPOPT UP4 IPOPT UP4

Minimum thermodynamic compliance OC UP1 IPOPT HOM
Mechanical minimum volume IPOPT UP1 IPOPT HOM

Thermodynamic minimum volume IPOPT UP1 IPOPT HOM
Compliant mechanism OC UP4 IPOPT UP4



Chapter 7

Numerical experiments results for
optimizer robustness

In the second set of numerical experiments the robustness of the three optimizer is investi-
gated. This is done by generating a poorly performing initial design and comparing the final
result with the result when using HOM as an initial design. For brevity, only the profiles
with respect to minimum mechanical compliance and compliant mechanism design problems
are shown. The conclusions drawn from the minimum volume problems do not differ from
the conclusions drawn below.

The robustness of optimizers is analyzed using the most significant of four measures. Firstly,
the change in percentage of problems solved best. Secondly, the value of τ when solving
80% of the problems, thirdly the maximum occurring value of τ , and finally the change in
percentage of feasible solutions.

7-1 Minimum compliance problems

Figure 7-2 contains the profiles for the minimum mechanical compliance problems. An exam-
ple of a BAD initial design can be seen in Figure 7-1a. It contains the BAD initial design as
generated for the two by one Cantilever with 10% volume fraction. Figures 7-1b-7-1d display
the differences in the final design obtained by the BAD initial design compare to HOM.

Figure 7-2a indicates that the varying amount the BAD initial designs affect the final objective
function value. The performance of the OC optimizer is severely affected, with the 80% of
the problems being solved within τ = 1.11 instead of τ = 1.02. Furthermore, the percentage
of feasible designs drops from 100% to 60%. Interestingly, the largest occurring value of τ
is reduced slightly when using the BAD initial design, although not by a significant amount.
Even though the profiles of IPOPT are visually similar, the percentage of problems solved
best is reduced from 31% to 24% when using the BAD initial design. Somewhat surprising
in the large reduction in the value of τ required to solve all problems, being reduced from
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(a) BAD initial design (b) OC (c) MMA (d) IPOPT

Figure 7-1: Example of a BAD initial design and optimizer specific results. Black elements
indicate the presence of material in the final design when using HOM that is not present in the
final result when using the BAD initial design. White elements indicate the opposite. Grey areas
indicate where the designs do not differ.
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Figure 7-2: Performance profiles for the 225 minimum compliance problems when using HOM
and BAD initial design.

τ = 16.78 for HOM to τ = 1.25 using BAD, even though all final results are feasible in both
cases. MMA its number of feasible solutions is reduced by 4% to 2%. For larger values of τ
the curves do not differ much from each other due to the heavy penalization.

Regarding the number of solves, again the performance of OC is severely affected. The
performance ratio when solving 80% of the problems increases from τ = 5.96 to τ = 13.51
while the last problem is solved at τ = 35.71 instead of τ = 14.93 for HOM. As in the objective
function value, IPOPT is hardly affected. The percentage of problems solved for the range of
τ values lies a steady 5% lower when using BAD in compared to HOM.

7-2 Compliant mechanism design

Figure 7-3 contains the profiles of the optimizers using the HOM and BAD initial designs for
compliant mechanisms. The BAD initial design is generated using the IPOPT optimizer with
a maximum number of 90 iterations. A visual inspection of these initial designs indicate the
consequences of this choice. Especially the designs with a large amount of elements contain
many gray elements. When observing the iteration history of IPOPT, it is clear that a binary
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Figure 7-3: Performance profiles for the 150 compliant mechanism when using the homogeneous
density distribution (HOM) and BAD initial design.

design is achieved relatively late in the design process. This is in contrast to, for example,
OC, that emerges with a binary designs within 100 solves. Even though the BAD initial
designs do not explicitly contain a mechanism, large differences in performance between the
HOM and BAD initial designs can be observed.

Regarding the objective function value, the performance of each optimizer is reduced when
using the BAD initial design in comparison to the HOM. The performance of OC is most
heavily affected, with the percentage of feasible designs dropping from 100% to 13%. After
solving 80% of problems within a factor τ = 2.78 for the BAD initial design instead of τ = 1.07
for the HOM, the increase of solved problems occurs very slowly for the BAD initial design.
This indicates a large spread in the remaining problems their performance ratio. The largest
performance ratio, rp,OC, increases from 1.7 to 3567. The convergence of IPOPT is reduced
from 95% to 89% while it solves 80% of problems at τ = 1.34 instead of τ = 1.14. The number
of problems solved also increase very slowly and it solves its last problem at a performance
ratio of 3567 in compared to 588 for the HOM. The percentage of feasible designs generated
by MMA is reduced from 9% to 5% and the performance curves are similar.

Regarding the number of solves, the earlies mentioned percentages of feasible designs also
indicate the decrease in number of problems where the optimizer terminated before reaching
the maximum number of solves when using the BAD initial design. Figure 7-3b indicates that
all optimizers their required number of solves increases when using the BAD initial design in
comparison to the HOM.

7-3 Optimizer performance discussion and conclusion

The numerical experiments indicate large differences in the capabilities of optimizers to handle
poorly performing initial designs. IPOPT is generally capable of generating a final design that
performs well when compared to IPOPT HOM. An explanation can be found in the knowledge
that interior point methods are generally insensitive to ‘warm starts’ (Forsgren, 2006). These
are used when the optimal solution to a particular problem is known, and another problem,
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resembling the first one, is to be optimized. In the experiments the performance of OC is
severely affected by the BAD initial design. Lastly, the impact of the performance on MMA
is hardly visible, although the percentage of feasible results is further reduced.



Chapter 8

Discussion

Although the problems, initial designs and optimizers were chosen with the aim of forming a
representative investigations there are many limitations. Firstly, only the SIMP formulation
using a single filter type is applied. Secondly, the optimizer settings are chosen to equal the
ones used by Rojas-Labanda and Stolpe (2015a). This was done due to optimizers being
generally sensitive to these settings, and an investigation of the optimal setting requiring a
lot of time. Finally, the test set contains only 2D examples.
The remaining part of this chapter investigates when a difference between two performance
profiles is significant and for which mechanical compliance problems the IDs performed the
poorest.

8-1 On when performance curves differ significantly

When comparing two curves in a performance profile, a large distance between the curve
naturally indicates large differences in performance. Even though the profiles presented in
Chapter 6 and 7 are systematically analyzed, the question that remains is: when are two
profiles significantly different? Or: in what sense is some method A slightly outperforming
method B a matter of chance? As discussed in Section 5-4, this depends on multiple factors.
One of the factors is the chosen test set, and a single experiment is performed in order to
investigate the effect of this factor.
The validity of a the conclusion resulting from the analysis of a performance profile is wholly
dependent on how the test set represent the problems a method is expected to solve. One
approach to investigate the consistency of a method is by comparing the performance profiles
when optimizing random subsets of problems. This has been performed for the 225 mechanical
compliance problems, with the subsets consisting of the 95% of problems with worst and
best performance ratio. Figure 8-1 contains the resulting performance profiles. The subsets
naturally form an upper and lower bound around the curve.
Any random subset containing 95% of the problems must lie in between the indicated bounds.
Naturally, the width of the band is a function of the gradient. Consider the profile indicating
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the objective function value in Figure 8-1a. The lower bound of the IPOPT UP4 profile lies
above the upper bound of the IPOPT HOM profile for τ < 1.1, which is an indication of the
optimizer robustness. A clearer, quantitative definition of the significance in the difference in
such curves has not been found and further investigations is recommended.
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Figure 8-1: Performance profile for the 225 minimum compliance problems including bounds
indicating the curves of the 95% worst and 95% best problems.

8-2 Learning from the data

The numerical experiments required the optimizing of a large number of problems. In addition
to the performance comparison performed in the previous chapters, the resulting data contains
valuable information. Examples of questions that arose during the analysis are:

1. Can the solution to the unpenalized problem be used to indicate how close the results
are to the global optimum?

2. Why does the OC optimizer not benefit from UP for only mechanical compliance prob-
lems?

3. Compliant mechanism design problems are generally more difficult than minimum com-
pliance problems. Is the difference obtained by using UP as an initial design also larger?

4. For which problems do the optimizers obtain the largest performance ratios?
5. For which problems do the initial designs obtain the largest performance ratios?
6. Do the difficult problem types differ for the initial designs?

In this section the last two questions are addressed. This is done by analyzing the results
obtained for the mechanical compliance problems. The first step is the calculating of the
performance ratios according to the objective function value or number of solves, as done
when drawing a performance profile. The difference is now that a penalization of infeasible
results is not applied. In this case, the methods distinguish themselves according to the ID
used (for details see Section 5-5-1), thus all optimizer information is aggregated into one
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(c) Considering the problem type.

Figure 8-2: Distribution of the 20% of problems with the largest objective function value ratios
for different parameters. The performance of the different IDs is compared, aggregating the
solvers.

curve. Then the 20% of problems with highest τ values are selected. Lastly, these problems
are plotted in histograms.

An important note is to be added regarding the aggregation of information. Through this
definition the best optimizer ID combination performance value is selected and the remainder
of combination ratios is calculated. This is the same as when distinguishing between unique
optimizer and ID pairs. The difference now is that all optimizers are aggregated. The plots
thus also reflect the performance of the optimizers, but with respect to the influence of the
IDs. Considering the 20% of most difficult problems when optimizing using UP4, it is possible
that OC and MMA are be part of this curve for a single problem, while IPOPT solved the
problem best, even in comparison to the results obtained using HOM. In this manner, the
capability of an ID to improve the performance of all optimizers is analyzed.

Figure 8-2 contains histograms of the difficult problems when considering the objective func-
tion value. Figure 8-2a indicates problems with a larger aspect ratio (being long and slender)
are generally more difficult to solve, although the trend is not definite. The trend is more ex-
plicitly present for UP4 than for HOM. On the other hand, Figure 8-2b clearly indicates that
problems with a smaller volume fraction are more difficult. The figure indicates that when
using UP4 the problems are slightly more uniformly distributed. Interestingly, Figure 8-2c
indicates the Michell truss problems being particularly difficult when using UP4, the 20% of
problems containing almost twice as many Michell truss problems as any other.

Figure 8-3 contains histograms of the difficult problems when considering the number of
solves. The differences between the initial designs is less explicit than when considering the
final objective function value. Interestingly, large volume fractions required a larger number
of solves.
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Figure 8-3: Distribution of the 20% of problems with the largest number of solves ratios for
different parameters. The performance of the different IDs is compared, aggregating the solvers.



Chapter 9

Conclusion and future work

In density based TO, the choice of the initial design is a key parameter, affecting both the
quality of the final result and computation required to reach convergence. In this thesis,
a method to systematically investigate these effects has been applied to four initial design
generation methods for the first time in the TO community. The analysis method consists
of optimizing a large, diverse set of benchmark problems among three problem classes and
analyzing the results using performance profiles.

The main objective of this research is the performance comparison of two ID generation meth-
ods with HOM, which is now commonly used. The results indicate that no ID outperforms all
others for all problems. Furthermore, the performance of an ID is optimizer dependent. The
Constructal Theory inspired initial design performs poorly. The approximate solution to the
unpenalized problem generally outperforms HOM. The generally best performing optimizer,
IPOPT, benefits from UP when optimizing for minimum compliance, minimum volume, and
compliant mechanism design. This is mostly independent of the mesh coarseness the ID is
generated on, while the largest performance increase is often observed using a coarse mesh.
OC and MMA also perform better when using UP than HOM, although they require the
mesh to be as fine as the original problem, resulting in a higher computational cost than
HOM. Considering UP as a continuation method with a single, steep step in the penalization
parameter value, the decrease in objective function value agrees with the results obtained
when using continuation methods.

The secondary research objective consists of investigating the robustness of optimizers to
poorly performing IDs. The results indicate IPOPT is generally very robust, generating de-
signs comparable to ones obtained when initiated with HOM, at similar computation costs.
This is an attribute to interior point methods being insensitive to warm starts. The perfor-
mance of OC is severely affected regarding both the quality and required computation. As
in the investigation of different IDs, the performance of MMA is generally poor due to the
inability to converge to a KKT-point. This is an attribute of it being a first order method.
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Future work

The validity of the numerical experiment conclusions can be investigated further. The gener-
ation of performance profiles including a certain percentage of worst and best solved problems
might be an approach. Furthermore, the significance of results is a subject profoundly studied
within the area of mathematical statistics. A study of these methods can be of use in order
to quantify the difference between similar performance curves.

Through the optimization of the large and diverse set of problems, a huge amount of data was
generated. For example, the iteration history contains the objective function value, change
in design between iterations and value of the KKT conditions. A detailed data analysis of
these results is recommended as this undoubtedly results in knowledge about the optimizers
and problems.

One would expect the performance of IDs to differ more when the tested problems become
more difficult. The application of UP to, for example, large 3 dimensional problems with
multiple loads might further confirm it being a well performing ID.

Finally, it would be interesting to compare the performance of problems initiated with the UP
ID to the use of continuation methods. The latter methods generally require a large number
of iterations and UP might be an interesting alternative, improving the objective function
value at limited computational cost.



Appendix A

Difficulties in Topology Optimization:
mathematical background

This appendix contains a sketch of why TO problems are difficult from the perspective of
complexity theory followed by the definition of convexity.

A-1 Computational complexity theory

TO problems are known to be difficult problems in general Bensøe and Sigmund (2003).
In this section, the level of this difficulty is described more precisely using computational
complexity theory.
In the field of computational complexity theory, mathematicians and computer scientists aim
to classify computational problems according to their inherent difficulty, and relate these
classes to one another. Many different types of complexity classes have been identified, and
a simple type of TO problem, namely a truss-sizing problem, has been proven to lie in one of
these classes Yates et al. (1982).
Both the computational complexity of the problem classes and the presence of TO there are
mathematically precisely defined but lie outside the scope of this text (the interested reader is
referred to Garey and Johnson (1990)). Simply speaking, the truss-sizing problem is proven
to lie in a particular complexity class by proving that a problem that lies in this class can
be formulated as a truss-sizing problem. The solution to this newly formulated truss-sizing
problem can be mapped back to a solution of the original problem. Finding the solution to
the truss-sizing problem can thus only be at least as difficult as solving the original problem,
indicating the difficulty of solving truss-sizing problems. With regards to the complexity of
the problem class, TO problems are very difficult optimization problems indeed. This is due
to the number of possible solutions that need to be evaluated to find the global minimum
being proportional to the size of the solution set.
Even without a precise understanding of the mathematical complexity of TO problems there
is a clear message: finding the global minimum is not possible in a practical amount of time.
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x2

(a) A convex set.

x1

x2

(b) A non-convex set.

Figure A-1: Two sets in R2.

This is due to TO problems naturally containing a large amount of variables. Evaluating even
a fraction of the possible solutions is impossible for anything but the smallest problem sizes
(e.g. Rasmussen and Stolpe (2008)).

A-2 Convexity: to be or not to be

The presence of local minima in the domain of a function is described by a general mathemat-
ical property, namely convexity. This section contains the definition of convexity and some
associated properties. Before defining a convex function, let us investigate the definition of a
convex set.

Definition A.1. Consider a set C of points xi with xi ∈ Rn ∀ xi ∈ C. Let 0 ≤ λ ≤ 1 be
given. A convex combination of two points, {xi, xj}, is defined as x∗ = λxi + (1 − λ)xj.
Finally, the set C is convex if all convex combinations of the points {xi, xj} again lies in C:
{x∗(xi, xj) ∈ C|∀{xi, xj} ∈ C}.

A geometric interpretation follows. Consider the convex set of points {xi} ∈ R2 defining the
polygon in Figure A-1a. The set is convex by definition A.1 due to any point lying on the
line between two points, x1 and x2, also lying in the set. Thus, when moving from one to
another point in the set, only points inside the set are encountered. This is not the case for
the non-convex set visible in Figure A-1b. Pairs of points exist where the line between the
two points does not fully lie inside the set.

The definition of a convex function follows.

Definition A.2. A function f : C → R defined on a convex set C is convex if for all
{xi, xj} ∈ C and 0 ≤ λ ≤ 1: f(λxi + (1− λ)xj) ≤ λf(xi) + (1− λ)f(xj).

A geometric interpretation using Figure A-2 follows. The solid line indicates the value of f for
f(λx1 +(1−λ)x2). The dotted line indicates the value of the function λf(x1 +(1−λ)x2). As
the solid line is less than or equal to the dotted line for 0 ≤ λ ≤ 1, the function is convex. Let
us inspect the solution topography of f with regard to local minima. As visible in Figure A.2,
the function f contains only one minimum, it naturally being the global minimum. Now
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consider the non-convex function visible in Figure A-2b. By definition A.2 it is clearly not
convex. Furthermore, there are two minima present. The right minimum with λ ≈ 0.9 is a
local minimum while the minimum at λ ≈ 0.1 is the global minimum due to there not being
any other value of f that lies below this value. Thus, convex function contain only one, global,
minimum while non-convex function contain multiple minima.
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Figure A-2: Functions

The question arises of how to discover if a function is convex or not. One could map different
points on the solution topography and test for convexity using definition A.2 but this is
tedious and possible endless. Other definitions of convexity make this unnecessary. Consider
again figures A-2. The derivatives of the functions fconv. and fnonconv. are clearly different.
The values of ∂fconv.

∂λ are all positive while the sign of the values of ∂fnonconv.
∂λ differs on different

part of the function domain. This is generalized in the following, alternative, definition of a
convex function.

Definition A.3. A function f : C → R defined on a convex set C is convex if the gradient
∇f is monotonically increasing.

A function g is monotonically increasing if for two points, where x1 < x2, it hold that
g(x1) < g(x2).



Appendix B

Constructal Theory details

The aim of this appendix is to explain Constructal Theory (CT) in detail. Although consider-
able time and effort has been spent to explain CT clearly and concisely, this appendix might
not change the perception of the reader that CT is a messy and vague theory. The author
can only remark that, even after extensively studying CT, he has the same feeling. In the
first section the original CT is described. The results of this theory have been calculated in
more precisely and the second section highlights these modifications. The CTID, as explained
in Section 4-2, is generated using these modified equations. The section ends with general
remarks.

The derivation of many of the equations in this appendix can be found in appendix C. These
have been separated from this text with the aim of improving readability. When a derivation
has been performed, a reference is placed in the text.

B-1 The original CT

CT generates a solution to the volume to point flow problem by assembling an elementary,
also called the zeroth order, element into higher order designs. This process is dictated by
the value of the two input variables, the ratio of conductivity k̃ and the volume fraction of
high-conductivity material φ. The resulting CT design defines the ratio between the height,
H, and length, L, of the design domain, and the placement of the high conductivity material.
In this section the equations defining the critical shapes of the zeroth, first, and second order
elements are explained. For details on the volume-to-point flow problem the reader is referred
to Section 4-2.

B-1-1 Zeroth order element

In CT, the zeroth order element is the smallest building block where the feature size is
dictated by manufacturing constraints. In this element, the high conductivity material is



B-1 The original CT 49

L0
H

0

H
0
/
20

�

Q

1

Figure B-1: Elementary construct.

always present as a rectangular shape, running from the heat sink to the other end of the
domain. An example of an elementary construct is visible in figure B-1.

The thickness of the blade, D0, is naturally proportional to the volume fraction of material
allocated to this element: D0 = φ0H0. The value of the ratio H0

L0
is chosen in order to minimize

the maximum temperature difference ∆T0 between the heat sink and the upper and lower
right corners. This temperature difference is approximated in dimensionless form using

∆T0k0
q′′′A0

= H0
8L0

+ 1
2k̃φ0

L0
H0

. (B-1)

The right hand side consists of two parts. The first part indicates the temperature difference
between the corner and the high conductivity material where the heat conduction is assumed
to be flowing only in the vertical direction due to the width of the domain being larger than
the height. The second part defines the temperature drop between the end of the high-
conductivity material and the heat sink. Equation B-1 is derived from Fourier his heat law
in appendix C-1-1.

The optimal height to length ratio is found by minimizing equation B-1. The result, derived
in appendix C-1-2, is

(
H0
L0

)
opt

= 2√
k̃φ0

< 1 (B-2)

The performance of the zeroth order construct is indicated by

∆T0k0
q′′′A0

= 1

2
√
k̃φ0

. (B-3)

The assumption made is that L > H. In equation (B-2) this occurs when the ratio between
the high and low conductivity is much larger than one, kp

k0
>> 1, which is generally valid for

flow problems. Combining equations (B-2) and (B-3) yields

∆T0, min = q′′′H2
0

4k0
. (B-4)



50 Constructal Theory details

Equation (B-3) indicates that the optimal domain ratio causes the resistance through the
low-conductivity material to be equal to the resistance through the high-conductivity blade.
In CT, this ratio is labeled as the equipartition principle and supposedly exists at every scale
in CT.

B-1-2 First order element

The first order construct consists of an assembly of elementary constructs. An example can be
seen in figure B-2. The minimization of the temperature difference is performed in a similar
manner as in the zeroth order construct. An important note is that the heat flow in the y-
direction is again approximated as uniform by treating the zeroth order construct as a patch
of homogeneous material with conductivity ratio k1 = kpD0/H0, and thus k0 < k1 < kp.
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L1

H
1

H
1
/
20

1

Figure B-2: Assembly of elementary designs.

By construction H1 = 2L0, opt and the equation for the maximum temperature difference
occurring in the design, derived in appendix C-1-3, is expressed by

∆T1k1
q′′′A1

= 1
8
H1
L1

+ k1H1
2kpD1

L1
H1

. (B-5)

The derivation of the optimized shape of first order construct is more elaborate due to more
design variables being present. The equations indicating the optimal shape, amount of zeroth
order elements, and minimum maximum temperature are explained below.
The area of the first order construct is defined by the number n1 of zeroth order elements
through A1 = n1A0. The total amount of high-conductivity material is approximated, due
to overlapping regions, as Ap,1 = D1L1, opt + n1D0L0, opt. The amount of high-conductivity
material present is φ1 = Ap,1/A1. The optimal shape ratio, derived in appendix C-1-3, is

(
H1
L1

)
opt

= 2
(
k1H1
kpD1

)1/2

. (B-6)

Using this ratio, the minimum temperature is equal to

∆T1, mink1
q′′′A1

= 1
2

(
k1H1
kpD1

)1/2

. (B-7)
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Using equations (B-2) the definition of k1 and the definition of H1 we find

∆T1, min = q′′′H2
0

4k0
. (B-8)

Note that this result is equal to the minimum maximum temperature in the zeroth order
construct, (B-4).

Now the shape of the domain is known, the number of zeroth order constructs is optimized.
The result, also derived in appendix C-1-3, is found to be

n1, opt = 2L1, opt
H0

=
(

kpD
2
1

k0D0H0

)1/4

. (B-9)

The final steps taken are in order to find the optimal branch thicknesses and performance
of the first order construct. Through the approximation of the elementary construct as a
homogeneous material and the found relation of ∆T1, min = ∆T0, min the overall temperature
difference is approximated as∆T1 = ∆T0, min+ 1

2∆T1, min. Which results in a non-dimensional
thermal resistance

∆T1, mink0
q′′′A1

= 3
4

(
k0
kp

)3/4 (
H0
D1

)1/2 (H0
D0

)1/4
.

Finally the branch width ratio is optimized and found to be

(
D1
D0

)
opt

=
(
D0kp
H0k0

)1/2
>> 1. (B-10)

Using these values the performance of the first order construct is

∆T1k0
q′′′A1

= 1
k̃φ1

, (B-11)

∆T1, min = 3
8
q′′′H2

0
k0

. (B-12)

B-1-3 Second order element

The second order construct is built up in the same way as the first order construct. The
critical dimensions are found by first optimizing the aspect ratio, followed by the number
of first order constructs. Finally the width of the branches is optimized. For brevity, only
the performance is noted, the details can be found in Bejan (1997). The performance of the
second order construct is defined by

∆T2k0
q′′′A2

= 2
k̃φ2

, (B-13)

∆T2, min = 3
8

(
1 + 1

31/2

)
q′′′H2

0
k0

. (B-14)
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B-2 Remarks and adjustments

During the derivation of the assembly of elementary into higher order designs, the following
points are of importance:

1. In the zeroth order construct H0 < L0 in order to approximate the heat flow as one
dimensional. This requires the reasonable assumption that k̃ >> 1.

2. When assembling the first order construct, the zeroth order construct is approximated
as a homogeneous material.

3. The equipartition principle is lost in the first order construct.

The last two points are addressed in Ghodoossi and Egrican (2003). There, the heat flow
from the zeroth to the first order construct is more precisely approximated by modeling the
flow from the zeroth branch to the central branch as point wise heat inputs. This leads to
different domain shapes and performance values as described in the next section.

B-2-1 Adjustments to constructs

In Ghodoossi and Egrican (2003) only the dimensions of the first order construct differ from
the original CT. The precise derivations can be found in appendix C-2-1. The optimal per-
formance of the first order construct is derived as

∆T1k0
q′′′A1

=
√

2
k̃φ1

. (B-15)

The performance of the second order construct is more precisely derived as

∆T2k0
q′′′A2

= 9
√

2
8k̃φ2

. (B-16)

In the same paper the temperature differences between the maximum and minimum occurring
temperatures are derived by rewriting equations B-15. The maximum temperature in the first
order construct is found to be

∆T1, min = q′′′H2
0

2k0
. (B-17)

Comparing the minimized maximum temperatures that occur in the zeroth and first order
construct using (B-4) and (B-17) indicates a rise of a factor two. The equipartition principle
thus hold only when using this more precise approximation. The maximum temperature
difference in the second order construct is

∆T2 = q′′′H2
0

2k0
+ n1q

′′′A0H1
4kpD2

n2
2.
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When minimizing this temperature difference with respect to the number of first order con-
structs and ratio of branch thicknesses the result is

n2, opt = 2
√

2 ≈ 2.8. (B-18)

This optimal number not being a multiple of two poses a problem: practically either two or
four elements need to be placed. When the thickness of the second order element is optimized
with two and four first order elements the results are

∆T2,min,n = 2k0
q′′′A2

= 9
√

2
8k̃φ2

, (B-19)

∆T2,min,n = 4k0
q′′′A2

=
√

2(
√

2 +
√

3)2

8k̃φ2
. (B-20)

Thus the better choice is placing two first order constructs in the second order construct.
When now the optimal geometric features are derived using this fact and the minimized
maximum temperature difference is found as ∆T2, min = 3q′′′H2

0
4k0

. The minimized maximum
temperature is a factor 1.5 higher than the first order construct B-17. This was expected to
be a factor two as dictated by the equipartition principle. But the optimal value of n2 could
not be implemented since it needs to be an even number.

B-2-2 Closing remarks

When considering the performance of higher order constructs, (B-15) and (B-16) indicate
that there is no combination of k̃φ that validates the use of the second above the first order
construct Ghodoossi (2004); Kuddusi and Egrican (2008). An intuitive explanation is the fact
that in the second order construct heat first flows away from the heat sink when traversing
the path indicated by high conductivity material.

One of the statement in Bejan (1997) is that CT validates the existence of ‘tree-like’ shapes in
nature. Why these shapes result from CT rather than the idea of minimizing of flow resistance
is not clear. Furthermore, the orthogonal assembly of slender elements often resembles a
three-like shape, independent of the assembly method.

These points do not obstruct the use of CT as an initial design for topology optimization.
Thus, when the combination of k̃φ requires a first order design the modified design choices as
suggested by Ghodoossi and Egrican (2003) are used.
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Constructal Theory derivations

This appendix contains the derivations of the main equations describing the original and
modified Constructal Theory (CT). For a description of these equations see appendix D.

C-1 Derivations of the original Constructal Theory

In this section the equations describing the original Constructal Theory are derived.

C-1-1 Heat flow in zeroth order construct

In the zeroth order construct the heat flow is approximated as two dimensional, due to the
thickness of the plate being small compared to the length and height. Furthermore, the
equation dictating the heat flow is approximated as a sum of two one dimensional heat flows.
The first being in the y direction through the material with low conductivity k0. The second
flow is in the x direction along the high conducting material.

The governing equation for the low conductivity heat generating material is derived from
Fourier his law of thermal conduction. This law indicates that the heat flow in one direction
is equal to the negative gradient of the temperature multiplied by the heat conductivity,
q′′ = −k dTdx . The time dependent change in temperature of a finite volume, with heat q′′′ [ W

m3 ]
being generated in the volume is

∂(cpρAdxT )
∂t

= −kA∂T
∂x

∣∣∣∣∣
x

−

−kA∂T
∂x

∣∣∣∣∣
x+dx

+ q′′′Adx.

A Taylor expansion of the second to last part yields

−kA∂T
∂x

∣∣∣∣∣
x+dx

= −kA∂T
∂x

∣∣∣∣∣
x

+ kA
∂2T

∂x2 dx.
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Substituting this in the earlier result and dividing by dx yields

∂(cpρAT )
∂t

= kA
∂2T

∂x2 + q′′′A.

Since cp, ρ and A are not dependent of time these can be placed before the derivative and the
equation becomes

cpρA
∂T

∂t
= kA

∂2T

∂x2 + q′′′A.

In CT the heat flow is assumed to have reached an equilibrium the right side of the above
equation is zero. Dividing by kA and reordering yields

∂2T

∂x2 + q′′′

k
= 0. (C-1)

The zeroth order construct is symmetrical around the line y = H0
2 . Only considering the top

half of the plane and setting the bottom at y = 0 the boundary conditions are ∂T
∂y = 0 at

y = H0
2 and T = T0(x) at y = 0. When implementing (C-1) for heat flow in the y direction

with conductivity k0, integrating and implementing the first boundary condition the result is

∂T

∂y
=
∫ −q′′′

k0
dy = −q

′′′

k0
y + C1 = −q

′′′

k0
y + q′′′H0

2k0
.

Integrating this a second time and implementing the second boundary condition yields

T =
∫ −q′′′

k0
y + q′′′H0

2k0
dy = −q

′′′

k0
y2 + q′′′H0

2k0
y + C2 = q′′′

2k0
(H0y − y2) + T0(x). (C-2)

This is the first result. To continue we need to solve the heat flow through the blade in the
x direction. Applying conservation of energy with the plate having a thickness of σ yields

∂(cpρAdxT )
∂t

= −kA∂T
∂x

∣∣∣∣∣
x

−

−kA∂T
∂x

∣∣∣∣∣
x+dx

+ q′′′H0dxσ,

with A = D0σ. Note that q′′′H0dxσ is the heat input on the blade from the heat generating
material. The heat being generated inside the high conductivity material with area A is not
considered. Using a Taylor expansion and implementing the equilibrium we find

∂(cpρAdxT )
∂t

= kD0σdx
∂2T

∂x2 + q′′′H0dxσ = 0.

When dividing by σdx, the conductivity of the material being kp, and reordering the result is

kpD0
∂2T0
∂x2 + q′′′H0 = 0. (C-3)

This equation is known as the fin equation. In our application this differential equation is
subject to the boundary conditions dT0

dx = 0 at x = L0 and T0 = T (0, 0) at x = 0. Integrating
(C-3) and implementing the first boundary condition yields

dT0
dx

= −
∫
q′′′H0
kpD0

dx = −
(
q′′′H0
kpD0

x

2 + C1

)
= −q

′′′H0
kpD0

x

2 + q′′′H0
kpD0

L0.
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Integrating a second time and implementing the second boundary conditions yields

T0 =
∫
q′′′H0
kpD0

(−x+ L0)dx = q′′′H0
kpD0

(
−x2

2
+ x

2L0

)
+ C2 = q′′′H0

kpD0

(
−x2

2
+ xL0

)
+ T (0, 0).

(C-4)
Having found the value of T0 we substitute this in equation (C-2) which results in

T (x, y)− T (0, 0) = q′′′

2k0
(H0y − y2) + q′′′H0

kpD0

(
−x2

2
+ xL0

)
.

The above result indicates that the maximum temperature difference occurs at the maximum
distance from the heat sink, thus at x = L0 and y = H0

2 . Using these values equation B-1 is
found. Note that the above relation is only valid when y > 0. The following assumptions and
approximations have been made:

1. There is no heat being generated in the strip of high conductivity material.

2. The final equation is valid for the upper half of the design. Due to symmetry the lower
half of the design has an equal temperature distribution.

3. The length of the heat path in the y direction has been approximated as H0
2 instead of

H0−D0
2 .

C-1-2 Optimizing the zeroth order construct

Equation B-2 is derived from equation B-1 by setting the partial derivative of B-2 to equation
B-1 to zero. This indicates a stationary point. We thus solve for∂∆T0k0

q′′′A0

∂H0
L0


k̃,φ0

= 1
8 −

1
2k̃φ0

(
L0
H0

)2
= 0.

Using the corresponding ratio of H0
L0

rightfully indicates a minimum since the second derivative
is a positive value, ∂2∆T0k0

q′′′A0

∂
(
H0
L0

)2


k̃,φ0

= 1
8 + 1

k̃φ0

(
L0
H0

)3
> 0.

Solving for L0
H0

results in
(
L0
H0

)2
=
(
k̃φ0

4

)
. Taking the square root and inverting both sides

yields B-2, (
H0
L0

)
opt

= 2√
k̃φ0

.

Now equation B-3 can easily be found by substituting the above result in B-1 as

∆T0k0
q′′′A0

= 1
8

2√
k̃φ0

+ 1
2k̃φ0

√
k̃φ0

2 = 1
4
√
k̃φ0

+ 1

4
√
k̃φ0

= 1

2
√
k̃φ0

.
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Next B-4 can be found using the above two derivations by noting that

1
4

(
H0
L0

)
opt

= 1

2
√
k̃φ0

.

This is equal to the right hand side of equation B-4. Substituting yields

∆T0k0
q′′′A0

= 1
4

(
H0
L0

)
.

Now multiplying by q′′′, A0 and dividing by k0 yields the minimum maximum temperature in
the zeroth order construct,

∆T0, min = q′′′H2
0

4k0
. (C-5)

C-1-3 First order construct

From equation B-5 we derive equation B-6 by again taking the partial derivative and setting
this to zero, ∂∆T1k1

q′′′A1

∂H1
L1

 = 1
8 −

k1H1
2kpD1

(
L1
H1

)2
= 0.

Solving for L1
H1

yields
(
L1
H1

)2
=
(
kpD1
4k1H1

)
. Taking the square root and inverting both sides

yields (B-6), indicating the optimal ratio for the first order construct

(
H1
L1

)
opt

= 2
(
k1H1
kpD1

)1/2

.

Implementing this result in (B-5) yields equation B-7,

∆T1k1
q′′′A1

= 2
8

(
k1H1
kpD1

)1/2

+ k1H1
2kpD1

1
2

(
kpD1
k1H1

)1/2
= 1

4

(
k1H1
kpD1

)1/2

.

Equation B-8 is derived again using

1
2

(
k1H1
kpD1

)1/2

= 1
4

(
H1
L1

)
opt

.

This being equal to the right side of equation B-7 a substitution leads to

∆T1, mink1
q′′′A1

= 1
4

(
H1
L1

)
opt

.

Now multiplying by q′′′, A1 and dividing by k1 yields

∆T1, min = q′′′H1L1
k1

1
4
H1
L1

= q′′′H2
1

4k1
.
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With k1 = kp
D0
H0

and H1 = 2L0, opt we find ∆T1, min = q′′′L2
0H0

kpD0
. Reformulating equation B-2

in order to solve for L0 we find L0 = 1
2

(
kpD0H0

k0

)1/2
. By substituting this in the previous

result we find
∆T1, min = q′′′H0

kpD0

1
4

(
kpD0H0
k0

)
= q′′′H2

0
k̃φ0

.

Which is equation B-8.

Now the optimal number of zeroth order tiles in the first order element is optimized, as
dictated by (B-9). To derive this we first note that n1, opt can be written as a function of
L1, opt and H0 as

n1, opt = A1
A0

= L1H1
L0H0

= L12L0
L0H0

= 2L1, opt
H0

.

The right side of the equation above can be found by using the optimal H1
L1

and substituting
previous results. First the definitions of k1 and H1 are substituted and the result is

(2L0
L1

)
opt

= 2
(
kpD02L0
H0kpD1

)1/2

= 2
(2D0L0
H0D1

)1/2
.

This is inverted, followed by a multiplication by 2L0, resulting in L1 = L0
(
H0D1
2D0L0

)1/2
. Now

we divide by H0 and substitute the optimal value of H0
L0

which yields

L1
H0

= L0
H0

(
H0D1
2D0L0

)1/2
= 1

2

(
kpD0
k0H0

)1/2 (kpD0
k0H0

)−1/4 (D1
D0

)1/2
.

Now multiplying this by 2 we reach the alternative definition of n1, opt as stated earlier. This
definition is

2L1
H0

=
(
kpD0
k0H0

)1/4 (D1
D0

)1/2
=
(

kpD
2
1

k0D0H0

)1/4

.

C-2 Derivations of modified Constructal Theory

In this section the derivations leading to the equations as stated in Section B-1-1 are derived.
Equations describing the zeroth order construct are not different, thus the first subsection is
regarding the first order construct.

C-2-1 First order construct

Instead of approximating the heat conductivity rate of the zeroth order element as homoge-
neous, as Bejan does, the fin equation has been applied with heat inputs at the points where
the zeroth and the first order branch meet Ghodoossi and Egrican (2003). The temperature
difference between the prescribed boundary temperature and the upper or lower right corner
is ∆T1 = ∆TM1n′1

P1 +∆TM1M1n′1
. This temperature difference is composed of two terms. The

temperature drop through the zeroth order blade, the first part of the equation. And the
temperature drop from the source M1 up to the point where the last zeroth order element is
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in connection with the horizontal blade M1n′1 which is the second part of the upper equation.
With n′1 = n1

2 the first part is known. The second part can be calculated exactly as stated
below.

The temperature distribution between two points M1,j−1 and M1,j is

d2T

dx2 = 0. (C-6)

The two boundary conditions are

T = TM1,j−1 at x = (2j − 3)H0
2

kPD1
dT

dx
= [n1 − 2(j − 1)]q′′′A0 at x = (2j − 1)H0

2 .

Integrating (C-6) yields the temperature distribution between M1,j−1 and M1,j as

T − TM1,j−1 = [n1 − 2(j − 1)]q′′′A0
kpD1

.

Substituting x as stated in the second boundary condition yields

TM1,j − TM1,j−1 = [n1 − 2(j − 1)]q′′′A0H0
kpD1

.

Applying a similar procedure to the M1M11 interval yields

TM11 − TM1 = n1q
′′′A0H0

2kpD1
.

The temperature difference along the D1 link is equal to the sum of all temperature differences

∆TM1M1n′1
= TM11 − TM1 +

n′1∑
j=2

(TM1,j − TM1,j−1) = n2
1q
′′′A0H0

4kpD1
.

Adding the above result to the temperature drop in the zeroth order element, equation (C-5),
yields

∆T1 = q′′′H2
0

4k0
+ n2

1q
′′′A0H0

4kpD1
.

In order for the result to be non-dimensional, it is rewritten as

∆T1k0
q′′′A1

= 1
2n1

( 1
k̃φ0

)
+ H0n1

4k̃D1
. (C-7)

To reach (B-15) two steps need to be taken. First the optimal number of zeroth order
constituents needs to be found. Then the optimal material allocated to the first order blade in
comparison to the zeroth order blade considering the material constraint. These are performed
below.
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Taking the derivative of (C-7) with respect to n1 and setting this to zero yields

∂∆T1k0
q′′′A1

∂n1
= − 1

2n2
1 (kφ0)1/2 + H0

4D1k
= 0.

Solving for n1 yields

n1 =

 2D1k̃

H0
(
k̃φ
)1/2


1/2

.

Solving the earlier optimized ratio of
(
H0
L0

)
opt

for L0 and substituting yields n1 =
(
k̃D1
L0

)1/2
.

Substituting this result in equation (C-7) yields

∆T1k0
q′′′A1

= 1
2

( 1
k̃φ0

)(
k̃D1
L0

)−1/2

+ H0

4k̃D1

(
k̃D1
L0

)1/2

.

Solving
(
H0
L0

)
opt

for φ0 yields φ0 =
(

2L0
H0k̃1/2

)2
. Substituting this in the previous result and

reorganizing yields:

∆T1k0
q′′′A1

= 1
2k̃

(
L0
D1

)1/2 H0k̃
1/2

2L0
+ H0

4

( 1
k̃L0D1

)1/2
= H0

2

( 1
k̃L0D1

)1/2
(C-8)

The optimal material distribution is now derived. The constraint on the amount of material
can be written in non-dimensional form as

φ1 = AP1

A1
= D1L1 + n1, optD0L0

L1H1
.

Solving for φ1 yields D1 =
(
n1
L1

)
(A0φ1 −D0L0). With L1 = n1H0

2 expanding A0 and substi-
tuting φ0 = D0

H0
we obtain

D1 =
( 2
H0

)
(H0L0φ1 −D0L0) = 2L0φ1 −

2D0L0
H0

= 2L0(φ1 − φ0).

Substituting this in (C-8) and substituting the value of
(
H0
L0

)
opt

yields

∆T1k0
q′′′A1

= H0
2

(
1

2k̃L2
0(φ1 − φ0)

)1/2

=
(

1
k̃[2φ0(φ1 − φ0)]1/2

)
.

We thus need to maximize the term [φ0(φ1 − φ0)]1/2. Taking the first derivative and setting
that to zero yields

∂[φ0(φ1 − φ0)]1/2

∂φ1
= 1

2

(
φ1
φ0

)1/2
− 1 = 0.

Solving for φ1 indicates φ1 = 2φ0. By substituting this optimal value in the original result
we obtain

∆T1k0
q′′′A1

=
√

2
k̃φ1

.

Which is equation (B-15).



Appendix D

Area to point flow through the
dislodging of elements

In Errera and Bejan (1998); Bejan (2007) Constructal Theory is applied to simulate the
forming of river drainage basins. In nature, river basins are formed due to water dislodging
and carrying away solid particles. This is simulated by starting with a discretized field
of material with a low permeability and removing elements once a pressure drop over the
element is present. A detailed description follows.
The model domain consists of a fixed volume with width W , length L, and height H, where
H << W,L. A certain mass flow per unit area ṁ′′[ kg

m2s ] in exists on the WL plane, which for
brevity will be noted as ṁ. Except for a small opening, all the boundaries of the volume are
impermeable. Due to the pressure field P (x, y), the fluid is driven to the outlet. The domain
is visible in figure D-1a.
The volume is discretized into square elements with a size of D2H and a permeability of
Klow [m2]. The flow through this medium is modeled using Darcy his law. This law describes
the flow of fluid through a porous medium and is applicable to viscous, laminar flow. With a
fluid viscosity of µ [ kg

ms ] the volume-average velocity component in the x direction is u = −K
µ
∂P
∂x

and in the y direction it is v = −K
µ
∂P
∂y . Using these equations and the conservation of mass

the pressure field is described as

∂2P

∂x2 + ∂2P

∂y2 + ṁν

HK
= 0, (D-1)

with ν = µ
ρ being the kinematic viscosity. The objective is the minimization of the ratio

between the maximum pressure Ppeak and the total flow rate ṁWL. The objective improves
due to the dislodging and removing of elements. This occurs when the yield shear stress, as
averaged over an element base, D2, exceeds τ . With s being the direction of the resultant of
all pressure forces on the block perimeter, a block is dislodges when

(
∂P

∂s

)
H > τ. (D-2)
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(a) Inflow of mass on WL plane with a
sink at the left boundary.

(b) The area WL is discretized into elements that
can be dislodged.

Figure D-1: Drainage basin design domain. Both figures are copied from Bejan (2007).

When a block is removed, the resulting volume is assigned a higher permeability Khigh.

Starting with all elements having a permeability of Klow, ṁ is slowly increased, (D-2) is
calculated for all elements and the permeability of dislodged elements is replaced by Khigh.
If an element is dislodged, the pressure field is recalculated and (D-2) is checked again for all
elements. This is repeated until no elements are dislodged, after which ṁ is slightly increased.
Figure D-2a displays the resulting drainage basins after removing an n amount of elements
with the mesh originally containing 2601 elements. The value of the non-dimensional objective
function P̃ = Pmax

τD/H is plotted alongside the dimensionless flow M = ṁνD
τK in figure D-2b.

(a) Emerging shapes after the removal of n ele-
ments.

(b) The shift of the peak pressure as the flow rate
is increased.

Figure D-2: Resulting drainage-basin designs and objective trends when increasing the mass
input. Both figures are copied from Bejan (2007).

The shapes obtained in river drainage basin designs are clearly more complex than the as-
semblies of elementary designs (see appendix ). Mapping the river-drainage-basin solution to
a configuration of a heat problem will probably result in a design with a higher performance
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than this assembly. The two methods have not been quantitatively compared. This is due to
the design having more freedom and it being modified according to local gradient-information
rather than a global objective function. Unfortunately the generation of these designs is ex-
pensive due to every calculation of the pressure field requiring a FEM solve. Thus dislodging
n elements can result in the requirement of n solves of a system of linear equations. The size
of the system can be reduced by exploiting the symmetry.



Appendix E

Problem library performance profiles

This appendix contains a large amount of performance profiles. These include figures that
indicate the performance of different IDs for a single performance, the aggregated performance
of all IDs, and the performance of MMA when not penalized. The profiles are ordered
according to the different problems optimized.

Minimum mechanical compliance

Figure E-1 indicates each optimizer specific performance when considering the different IDs
for the mechanical compliance problems.

Thermodynamic compliance

Figure E-2 indicates the performance of the unique IDs while Figure E-3 shows the optimizer
specific performance when considering the different IDs for the thermodynamic compliance
problems.

Minimum volume, mechanical

Figure E-4 shows the performance of IPOPT for the mechanical minimum volume problems.
Due to MMA being heavily penalized, the performance profiles contain little information and
are not shown here.

Minimum volume, thermodynamic

Figure E-4 shows the performance of IPOPT for the thermodynamic minimum volume prob-
lems. Due to MMA being heavily penalized, the performance profiles contain little information
and are not shown here.
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Compliant mechanism design

Figure E-6 shows the optimizer specific performance when considering the different IDs for
the compliant mechanism design problems.

MMA when not penalized

Figure E-7 shows the performance profiles of MMA regarding the objective function value for
different problems when not applying penalization.
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(a) Objective function value of IPOPT
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(b) Solves of IPOPT
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(c) Objective function value of MMA
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(d) Solves of MMA
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(e) Objective function value of OC
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(f) Solves of OC

Figure E-1: Performance profiles of each solver with all tested initial designs for the 225 minimum
mechanical compliance problems.
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(a) Objective function value of all IDs.
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(b) Number of solves for all IDs for the thermo-
dynamic compliance problems. The CTIDs perform
poorly, while UP1 slightly outperforms HOM.

Figure E-2: Aggregating the optimizers indicates the performance of the IDs independent of the
optimizers.
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(a) Objective function value of IPOPT.
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(b) Solves of IPOPT.
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(c) Objective function value of OC.
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(d) Solves of OC.

Figure E-3: Solver specific performance when optimizing the thermodynamic compliance prob-
lems. The number of solves of OC indicate all IDs requiring an equal amount of solves, the profile
do not differ. As this is also the case for MMA, the profiles are not shown here.
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(a) Objective function value of IPOPT.
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(b) Number of solves of IPOPT.

Figure E-4: Performance of IPOPT when optimizing the mechanical minimum volume problems.
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Figure E-5: Performance of IPOPT when optimizing the thermodynamic minimum volume prob-
lems.
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Figure E-6: Performance profiles of each solver with all tested initial designs for the 150 compliant
mechanism problems.
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(a) Objective function value of MMA for the 225
mechanical compliance problems.
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thermodynamic compliance problems.

1.00 1.05 1.10 1.15 1.20
τ

10

20

30

40

50

60

70

80

90

100

%
of

pr
ob

le
m

s

MMA HOM
MMA UP1
MMA UP2
MMA UP4

(c) Objective function value of MMA for the 150
compliant mechanism design problems.
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(d) Objective function value of MMA for the 135
minimum volume mechanical compliance problems.

Figure E-7: Performance profiles of MMA optimizer when not penalizing inaccurate designs.
MMA UP generally outperforms MMA HOM. A clear exception is the minimum volume problem.



Appendix F

Computational cost of different mesh
sizes

The approximate solution to the unpenalized problem is solved on difference mesh sizes.
In order to estimate the computation cost of a solve on each mesh size, an experiment is
performed. This consist of optimizing a minimum mechanical compliance MBB problem
using constant parameters and dimension ratios, but a varying amount of elements. The
problem is optimized for 15 different mesh sizes, containing between 100 and 150.000 finite
elements. The computation time per solve is notes for each problem and is visible in Figure F-
1a. The relation between the size of the system solved and the required time scales according
to the number of degrees of freedom, n. This is less than the theoretical value of (n3

3 ) + 2n2,
the first part representing the Cholesky factorization and the second part the forward and
backward factorization of the upper and lower triangular matrices. This might be due to
the matrices being very sparse, as visible for one case in Figure F-1b. Using these empirical
results an approximate UP2, combining four elements, is assigned a computation time factor
of approximately 1

4 of the original mesh size while UP4, combining sixteen elements is assigned
a time factor of approximately 1

16 .

103 104 105

Size of system solved

10−3

10−2

10−1

100

101

102

103

104

105

106

107

T
im

e
pe

r
so

lv
e

[s
]

n

n3

3 + 2n2

OC
MMA
IPOPT

(a) The growth in computation time is less than expected.

(b) Sparse matrix of MBB problem
containing 3600 finite elements.

Figure F-1: System solving times and image indicating matrix sparsity.
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