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On the Vulnerability of Data Points Under Multiple
Membership Inference Attacks and Target Models

Mauro Conti , Fellow, IEEE, Jiaxin Li , and Stjepan Picek , Senior Member, IEEE

Abstract—Membership Inference Attacks (MIAs) infer whether
a data point is in the training data of a machine learning model,
posing privacy risks to sensitive data like medical records or finan-
cial data. Intuitively, data points that MIA accurately detects are
vulnerable. Those data points may exist in the data of different
target models, each susceptible to multiple MIAs. As such, the
vulnerability of data points under multiple MIAs and target models
represents a significant challenge. This article defines several met-
rics reflecting data points’ vulnerability and capturing vulnerable
data points under multiple MIAs and target models. We implement
77 MIAs, with an average attack accuracy over target models rang-
ing from 0.5 to 0.9, to support our analysis with our scalable and
flexible platform, Various Membership Inference Attacks Platform
(VMIAP). Based on the results, we observe that MIA has an infer-
ence tendency to some data points despite a low overall inference
performance. Furthermore, previous approaches are unsuitable
for finding vulnerable data points under multiple MIAs and target
models. Finally, we explore the impact of retraining target, shadow,
and attack models separately on the vulnerability of data points.

Index Terms—Machine learning, privacy, membership inference
attack, vulnerable data points, metrics.

I. INTRODUCTION

MACHINE learning, especially with the development of
deep learning, promotes many real-world applications,

e.g., computer vision, natural language processing, and data
mining. With machine learning’s frequent practical applications,
security and privacy problems arise, including models’ fair-
ness [1], [2], adversarial examples [3], [4], and model steal-
ing [5], [6]. A Membership Inference Attack (MIA) detects
whether a data point is in the training data of a machine learning
model, violating the data points’ privacy. MIA became an impor-
tant topic after the seminal work by Shokri et al. [7]. A successful
MIA has serious consequences, especially when the training
data is sensitive, like medical data, bank account information,
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and historical browsing records. Enacting data privacy laws
such as the General Data Protection Regulation (GDPR) in
Europe and the California Consumer Privacy Act (CCPA) in
the United States has heightened the community’s emphasis on
data security and privacy. Consequently, MIAs have garnered
significant attention from academia and industry.

It has been empirically demonstrated that some data points
in the dataset are more vulnerable to MIA [8], [9], [10]. MIAs
generally infer vulnerable data points with a high probability.
Long et al. selected data points with fewer neighbors on the
combination feature space represented by outputs of reference
models as vulnerable ones [8]. In our paper, we denote this
method as the neighbors-based method. Furthermore, the au-
thors mentioned identifying vulnerable data points with the
outlier detection method is possible. Carlini et al. [11] discussed
that vulnerable data points are likelier to be outliers. Therefore,
we investigate possible vulnerable data points with an outlier
detection method (SUOD) [12] to provide a comparison choice.
In 2021, Song et al. defined the privacy risk score of a single data
point as the posterior probability of being a member conditioned
on the target model’s behavior on this data point [9]. After that,
Duddu et al. proposed to use the Shapley value to measure
data points’ susceptibility to MIAs [10]. Those methods obtain
vulnerable data points within the training data of one target
model and one specific MIA. They do not explore data points’
vulnerability under multiple MIAs and different target models.
However, more MIAs threaten the target models as current works
propose more advanced attacks [11], [13], [14]. For example,
previous works proposed various methods [7], [15] to attack
models trained with the help of Machine Learning as a Service
(MLaaS). Third-party platforms (Google, Amazon, and Azure)
train the model based on the uploaded data and publicize the
final model as an API, with many users having access to query
the API. Therefore, attacking the trained model with multiple
MIAs is feasible and relevant.

Training multiple models from one dataset is a common prac-
tice in ensemble learning and the previous MIA. For example,
Bagging [16] trains several models with multiple training sets,
each containing the same number of data points randomly drawn
from the dataset with replacement to vote the final prediction.
The model structure and hyperparameters could be the same for
those models. In the work of Carlini et al. [11], the authors train
N shadow models on N subsets of a dataset. The target point
(x, y) occurs in N/2 subsets. Therefore, they could estimate
the metric distributions while the target point is separated in the
training and test sets. With the estimated metric distributions of
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the target data point, they infer the membership of this target
data point in a specific target model. Those N shadow models
have the same model structure and hyperparameters for training.
Therefore, training multiple models with resampled training sets
from the same dataset is possible in Bagging and training N
shadow models for the previous MIA. In summary, this work
explores whether the vulnerable data point found under one MIA
and one target model is also vulnerable to other MIAs and target
models. Additionally, the vulnerable data points under one MIA
and one target model could have a certain degree of randomness,
as the worst accuracy of the binary attack model is 0.5 rather than
0. We eliminate this randomness by exploring multiple target
models and MIAs. Finally, previous methods mainly focus on the
data point’s vulnerability while the data point is in the training
data regardless of the test data. However, the vulnerability of
the test data is closely related to the performance of MIAs,
and exploring vulnerable data points in the test data provides
another perspective to understand the vulnerability. Therefore,
we propose our method to overcome those gaps.

We explore the vulnerability of data points under multiple
MIAs and target models. As an essential step, we attack each tar-
get model with multiple MIAs. Note that these target models are
trained with resampled subsets of the same dataset by conducting
numerous splits. Except for exploratory experiments, they have
the same size of data points, identical model structure, and same
hyperparameters as default. This approach allows us to eliminate
the influence of the effect of size, model structure, and hyper-
parameters while analyzing a single data point’s vulnerability
within these target models. In addition, we define eight metrics
about the data point’s exposure rate and MIA’s inference rate,
as discussed in Section III, to formally analyze the data point’s
vulnerability and MIA’s inference correctness and tendency. The
main reason for new definitions is that previous methods [8], [9],
[10] on the vulnerable data points do not provide suitable metrics
to evaluate the data point’s vulnerability under multiple MIAs
and target models from their definitions and our observation
(Section VI-E). Moreover, to make it convenient and fast to
attack target models with multiple MIAs, we designed and
implemented the VMIAP,1 a scalable and flexible platform to
conduct various MIAs against target models. Finally, we employ
previous methods and our devised metrics to identify vulnerable
data points. It is reasonable that factors that impact the average
attack accuracy of MIAs will influence the vulnerability of data
points since vulnerability is related to the attack accuracy. To
further explore other influencing factors of data point vulnerabil-
ity, we conduct experiments to retrain target, shadow, and attack
models to recapture each data point’s vulnerability. Retraining
a model in this work means initializing the parameters with
a different random seed and shuffling the data during training
while keeping the training data, model structure, and hyperpa-
rameters unchanged to avoid their influence. The randomness
that comes from retraining target, shadow, and attack models
separately has different impacts on detecting vulnerable data

1[Online]. Available: https://github.com/fight-think/Various_Membership_
Inference_Attacks_Platform_open_source

points, which is reflected in the modification range of metric
values for measuring the vulnerability.

Our main contributions are:
1) We define metrics related to the data point’s exposure

rate and MIA’s inference rate to analyze data points’ vul-
nerability and MIA’s inference correctness and tendency.
Our metrics capture vulnerable data points under multiple
MIAs and target models, while previous methods cannot,
as shown in Fig. 8. Besides, MIA has an inference ten-
dency to some data points despite a low overall inference
accuracy of 0.5, as shown in Table VII.

2) We design and implement a scalable and flexible platform
VMIAP for attacking different target models with multiple
types of MIAs. We detail the platform in Section IV and
compare it with other previous platforms in Table V.

3) The modified average attack accuracy of MIAs on the
different overlapping gaps (Fig. 2), datasets, and model
structures (Table VI) in Section VI-A shows that the
overlapping gap, dataset, and model structure are the main
factors affecting attack performance. Retraining target,
shadow, and attack models have different impacts on the
vulnerability of data points. From the perspective of MIAs,
when retraining the target model with a high overfitting
level, the vulnerability of data points is less modified than
when retraining shadow and attack models.

II. BACKGROUND AND THREAT MODEL

The first four subsections present the necessary background
information about notations, machine learning, previous meth-
ods, and the Membership Inference Attack Game. Finally, we
discuss the threat model.

A. Notation

We summarize in Table I the notations we use in the rest of
the paper.

B. Machine Learning

We consider the target models based on neural networks
and train the attack model as classical or ensemble models to
implement MIAs. We introduce those types of models in this
section.

Neural Network. The target model we focus on is a supervised
model for classification tasks. The target dataset Dtarget, drawn
from the underlying distribution D, comprises many data points.
The x and y represent the data point’s feature vector and label,
respectively. The unique values of y indicate categories of data
points. Before training, we divide the target dataset into two
sub-datasets Dtrain

target and Dtest
target for training and testing the

target model fθt , which is a neural network. The fθt obtains the
feature vector x and predicts its label based on the maximum
probability it belongs to each category. The training of fθt makes
its outputs for data points in Dtrain

target close to their ground truths.
The learning algorithm and loss function guide the adjustment
of the model’s parameters θt. The iterative update of θt is along
the opposite direction of the gradient to minimize the loss of a
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TABLE I
NOTATIONS

batch of data points in Dtrain
target. The model will reuse Dtrain

target

for updating parameters several times. After the training of fθt ,
the model will evaluate on Dtest

target, which has no overlapping
data points with Dtrain

target. The prediction accuracy of fθt on
Dtest

target presents the model’s generalization ability. The model
with a high prediction accuracy on Dtest

target is more effective in
practice.

Classical Model: SVM [17] and Linear Regression [18] are
two classical models in machine learning. SVM aims to find
the best decision boundary to separate data points into different
categories while maximizing the distance between the decision
boundary and the nearest data points of each category. Linear
regression is a statistical method used to model the relationship
between one or more input variables and a continuous output
variable, which assumes a linear relationship between the inputs
and the output. It aims to find the best-fitting line or hyperplane
that minimizes the loss. Since classifying members and non-
members is a binary task, it is feasible to use those two classical
models.

Ensemble Model: Apart from Bagging mentioned in Section I,
we utilize XGBoost [19] to train the attack model. XGBoost
iteratively trains the weak leaner, typically the decision tree, to
correct errors of the previous predictions by minimizing a loss
function measuring the difference between current predictions
and ground truth. The formal name of this process is Gradient

Tree Boosting. XGBoost applies L1 and L2 regularizations
related to the weights of learners to reduce overfitting. To
enable the operation on billions of examples in distributed or
memory-limited settings, XGBoost uses a novel tree learning
algorithm for handling sparse data, and a theoretically justified
weighted quantile sketch procedure enables handling instance
weights in approximate tree learning.

C. On Finding Vulnerable Data Points

Previous works mention or utilize the neighbors-based
method, SUOD, privacy risk score, and Shapley value to
find vulnerable data points. Thus, we briefly introduce those
concepts.

Neighbors-Based Method: The MIA generally performs bet-
ter on the overfitted target model. To overcome the low per-
formance of MIA on a well-generalized model, Long et al. [8]
propose to select a few vulnerable data points from the training
data and implement MIA against them. The primary step for
selecting is counting the number of neighbors of each data
point on the combination feature space represented by outputs
of reference models. They choose the data points with fewer
neighbors as the vulnerable ones.

SUOD: Outlier detection with multiple unsupervised detec-
tors is common for unlabeled data and stability-required scenar-
ios [20]. SUOD [12] is a three-module acceleration framework
that leverages random projection, pseudo-supervised approx-
imation, and balanced parallel scheduling for the scalability
of outlier detection. The random projection module generates
lower subspaces for high-dimensional datasets while preserving
distance relationships. The pseudo-supervised approximation
module approximates fitted unsupervised models by lower-cost
supervised regressors for fast prediction of unseen data. The
balanced parallel scheduling module forecasts models’ training
and prediction costs with high confidence, so the scheduler
assigns a nearly equal number of tasks among workers for effi-
cient parallelization. With those three modules, SUOD expedites
the training and prediction with many unsupervised detection
models for outlier detection.

Privacy Risk Score: Song et al. [9] define the privacy risk score
(r) of an input (z) with respect to fθt as the posterior probability
of being a member of Dtrain

target conditioned on fθt’s behavior
(O(fθt , z)) on the input. We denote the privacy risk score as
r(z) = P (z ∈ Dtrain

target|O(fθt , z)). They further expand this ex-
pression based on Bayes’ theorem for a convenient computation.

Shapley Value: The Shapley value [10] is a concept originating
from cooperative game theory. It provides a fair and systematic
way to allocate each player’s contribution cooperatively. In
machine learning, the Shapley value is used to estimate the
contribution of each training data point to the model’s utility.
The computation of the Shapley value for a data point estimates
the influence of that record on the model’s utility using the
leave-one-out training approach. The formula for Shapley values
involves assessing the marginal contribution of each data record
to the model’s utility when added to a randomly chosen subset
of the training data.
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D. Membership Inference Attack Game

We use the definition of the Membership Inference Attack
Game presented by Yeom et al. [21], and followed in the works
of Carlini et al. [11] and Jayaraman et al. [22].

Definition 1 (Membership Inference Attack Game): The game
between a challenger C and an adversary A:

1) The challenger samples a training dataset Dtrain
target from

the underlying distribution D and trains a target model fθt
based on Dtrain

target.
2) The challenger flips a bit b. If b = 0, the challenger samples

a data point (x, y) from the distribution D. If b = 1, the
challenger randomly selects a data point (x, y) from the
training dataset Dtrain

target.
3) The challenger sends (x, y) to the adversary.
4) The adversary queries the target model fθt and has some

extra knowledge E. Then, the adversary outputs the pre-
diction b′ = Afθt ,E,I(x, y)with a specific utilization strat-
egy I of knowledge E.

5) Outputs 1 if b = b′, else 0.
If b = b′, the game’s output is 1, which means the adversary

wins this game on a single data point. Otherwise, the challenger
successfully defends. In realistic experiments, we act as both
the challenger and the adversary to test the performance of
adversaries. The evaluation depends on the result of a specific
adversary on a large number of data points.

E. Threat Model

As per the definition of the Membership Inference Attack
Game in the previous section, the adversary has access to the tar-
get model fθt and some extra knowledge E. The adversary aims
to win the Membership Inference Attack Game on data points
as often as possible. If the adversary obtains extra knowledge
E and changes the utilization way I to information, we regard
it as a new type of MIA in our paper. The basic ideas of MIAs
follow previous works. Then, we change the details of MIAs’
implementations to construct variants of previous MIAs, which
extends possible related MIAs to evaluate our newly defined
metrics. In this way, we obtain 54 different MIAs to explore
the vulnerability of data points. To formally explain each MIA’s
threat model, we expose multiple MIAs’ extra knowledge and
utilization strategies, which distinguish different MIAs.

Extra knowledge: Given one data point (x, y), the adversary
queries the target model fθt and obtains its output. Then, the
adversary returns the prediction (Afθt ,E,I(x, y)) about the mem-
bership of this data point. Following the strategy of the shadow
model [7], the adversary obtains a shadow dataset Dshadow,
which has no overlapping data points with the training and
test data of the target model, to train and test a shadow model
fθs for imitating the behavior of the target model. Besides, the
adversary knows the model structure and hyperparameters of
the target model fθt . In summary, the label y, the target model’s
output fθt(x), the shadow datasetDshadow, the model structure,
and the target model’s hyperparameters are the adversary’s extra
information to infer the membership of the data point (x, y).

Basic process: The adversary trains the shadow model with
the extra knowledge to mimic the behavior of the target model.

TABLE II
ELEVEN BASIC FEATURES

To better imitate it, the adversary also relabels the shadow dataset
by evaluating it with the target model and uses this relabeled
shadow dataset (Dre_shadow) to train an additional model, which
we call relabeled shadow model (fθre_s ) in this work. With
a shadow or relabeled shadow model, the adversary extracts
the attack feature to distinguish the training and test data. The
attack feature is a metric directly or indirectly calculated from
the model’s output. For the shadow or relabeled shadow model,
the adversary knows the membership of each data point in the
shadow or relabeled shadow dataset. Therefore, the adversary
constructs the attack dataset with the attack feature and the
membership label. With the attack dataset, the adversary trains
the attack model or selects the threshold to determine the mem-
bership of the data point. More explanation about the process of
implementing multiple MIAs is in Section IV.

Utilization strategies: The utilization strategies are related to
obtaining the attack feature from the model’s output and using
it to predict membership. For different MIAs in this work, there
is a subtle difference in the attack feature, utilization of the
attack feature, or the source of the attack dataset (shadow model
or relabeled shadow model). We derive the attack features by
amalgamating or directly selecting from eleven basic features.
Table II provides those eleven basic features.

There are classifier-based and threshold-based methods for
using the attack feature to predict membership. In the classifier-
based method, the adversary trains one classifier to infer mem-
bership with the attack dataset. Here, we select four types of clas-
sifiers: SVM, Linear Regression, XGBoost, and a shallow Mul-
tiLayer Perceptron (MLP) [23]. Those four types of classifiers
contain classical, ensemble, and neural network models, which
bring diversity to MIAs and make comparison and evaluation
straightforward by only changing the classifier type. Table III
lists the attack features utilized in the classifier-based method.
The labels from 1© to 11© are from Table II. Each row in the
table represents one attack feature combined with eleven basic
features in Table II. Generally, we connect multi-valued feature
1© with other single-valued features ( 4© to 11©) as the attack

features. There are fifteen attack features for the classifier-based
method. We regard the change in the type of classifier as a new
type of MIA. Therefore, there are 60 (15×4) classifier-based
MIAs.

For the threshold-based method, the adversary finds a suitable
comparison threshold for the single-valued attack feature. Eight
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TABLE III
FIFTEEN ATTACK FEATURES OF THE CLASSIFIER-BASED METHOD

basic features labeled from 4© to 11© are possible attack features.
1© to 3© are excluded as the multi-valued feature unsuitable

for threshold comparison. Besides, the source of those eight
basic features could be the shadow or relabeled shadow models.
Therefore, there are 16 (8×2) threshold-based MIAs. Besides,
we include the gap MIA, proposed by Yeom et al. [21], for
comparison. The gap MIA classifies the data point that the target
model correctly predicts its class as a member. Otherwise, this
MIA regards it as a non-member. In summary, we currently
consider 77 (60+16+1) MIAs. The previous works do not cover
all the details about 77 MIAs’ implementations. Specifically,
we use more than one type of attack model, combine the output
vector and other basic features as the attack features, and utilize
the relabel strategy for threshold-based methods. This means that
we expand MIAs from previous works. The expansion explores
more possible MIAs for our analysis and provides more for the
label-only condition with the relabel strategy.

III. NEW METRICS FOR DATA POINT AND MIA

We give a brief introduction in Section III-A. Section II-
I-B formulates metrics for the data point’s exposure rate.
Section III-C interprets metrics for MIA’s inference rate.

A. Brief Outline

Previous works detect vulnerable data points under one MIA
and one target model. They focus on improving the overall attack
accuracy rather than analyzing the vulnerability of each data
point. From the analysis of Section VI-E and their definitions,
we find they are unsuitable for describing vulnerable data points
under multiple MIAs and target models. Therefore, we define
four metrics for the data point’s exposure rate to assess the data
points’ vulnerability. Two new metrics are suitable for measuring
the vulnerability of the data point under multiple MIAs and
target models. The other two metrics are basic elements for
those two metrics. Besides, we formulate four metrics related to
MIA’s inference rate to investigate the inference correctness and

tendency of the MIA. We define the notations of the following
formulas in Tabel I.

B. Data Point’s Exposure Rate

For the data point (x, y) in the training data of j-th target
model, we define the percentage of correct inferences among n
MIAs as its Member Exposure Rate (MER), formulated in (1).

MERj(x, y) =

∑n
i=1 B(b′(j,i)(x, y) == 1)

n
. (1)

In k random divisions of the dataset, the data point (x, y) is
in the training data of MT (x, y) target models. We average the
MERj(x, y) values among those target models to define the
Average Member Exposure Rate (AMER), formulated in (2).

AMER(x, y) =

∑MT (x,y)
j=1 MERj(x, y)

MT (x, y)
. (2)

If this data point (x, y) is in the test data of j-th target
model, we define the percentage of correct inferences among
n MIAs as its Non-Member Exposure Rate (NMER). The dif-
ference between NMER and MER in (1) is the judgemental
condition changes to b′(j,i)(x, y) equals 0. Similarly, we average
the NMERj(x, y) values among NMT (x, y) target models to
define the Average Non-Member Exposure Rate (ANMER) of
data point (x, y).

From definitions of AMER(x, y) and ANMER(x, y), they
average the MIAs’ inference accuracies over target models while
the data point is in the target models’ training and test data.
Higher inference accuracy means more data points are correctly
inferred. Therefore, we use those two metrics to determine vul-
nerable data points while in the training and test data separately.

The above definitions consider the perspective of the data
point to analyze the vulnerability. We also analyze the cor-
rectness of the inference from the perspective of MIA. Let us
consider that a specific MIA correctly infers the existence of a
single data point in a target model. Can this MIA infer the data
point’s presence while attacking other target models? What is
the inference correctness of this MIA to other data points? Does
this MIA have an inference tendency to a part of data points?
To understand those questions, we define metrics about MIA’s
inference rate from the perspective of the MIA to analyze its
inference correctness and tendency to data points.

C. MIA’s Inference Rate

For the data point (x, y) in the training data of MT (x, y)
target models, the i-th MIA infers the membership of this data
point in those target models. We define the percentage of correct
inferences as the Member Inference Rate (MIR) of i-th MIA to
the data point (x, y), formulated in (3).

MIRi(x, y) =

∑MT (x,y)
j=1 B(b′(j,i)(x, y) == 1)

MT (x, y)
. (3)

Including the data point (x, y), MN different data points
occurred in the training data of k target models. Therefore,
we average the MIRi(x, y) values of those data points as
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TABLE IV
AN EXAMPLE OF CALCULATING THE (AVERAGE) MEMBER INFERENCE RATE

AND (AVERAGE) MEMBER EXPOSURE RATE

the Average Member Inference Rate (AMIR) of the i-th MIA,
formulated in (4).

AMIRi =

∑MN
m=1 MIRi(xm, ym)

MN
. (4)

If the data point (x, y) is in the test data of NMT (x, y) target
models, we define the percentage of correct inferences from i-th
MIA as its Non-Member Inference Rate (NMIR) to the data point
(x, y), which modify the judgemental condition to b′(j,i)(x, y)
equals 0. Including the data point (x, y), NMN different data
points occurred in the test data of k target models. Similarly,
we average the NMIRi(x, y) values of those data points as
the Average Non-Member Inference Rate (ANMIR) of the i-th
MIA.

With those metrics for MIA’s inference rate, we answer ques-
tions including MIA’s inference correctness to different data
points and MIA’s inference tendency to a part of data points. We
distinguish the functions for defining metrics and the outputs of
functions here. The italics represent functions, includingMER,
AMER, NMER, ANMER, MIR, AMIR, NMIR, and
ANMIR. We uniformly use non-italicized letters outside met-
ric definition formulas like MER, AMER, NMER, ANMER,
MIR, AMIR, NMIR, and ANMIR to represent functions’ out-
puts or metrics.

D. Explanation of the Exposure and Inference Rates

Considering that definitions of data point’s exposure and
MIA’s inference rates are abstract, we use a simple example
to explain those metrics. Due to the similarity between metrics
for a data point in the training and test data, we only illustrate
the (Average) Member Inference Rate and (Average) Member
Exposure Rate in Table IV.

In Table IV, M_i represents the i-th MIA and D_i represents
the i-th data point. The number 0 represents a data point in the
training data of one target model but is inferred as a non-member
by the MIA. The number 1 means the data point is in the training
data of one target model and is predicted as a member by the
MIA, which is a correct inference. D_1 is in the training data
of 4 target models, and D_2 is in the training data of 5 target
models. We obtain the number of target models by counting
the 0 or 1 inference values for each data point. The number of
MIAs is 2 (M_1 and M_2), and the number of data points is
2 (D_1 and D_2). These numbers in the table are placeholders
used to illustrate metrics and do not represent actual quantities
in our experiments. The table shows that MIR, AMIR, MER,
and AMER are calculated based on the inference values.

IV. VARIOUS MEMBERSHIP INFERENCE ATTACKS PLATFORM

(VMIAP)

Previous code implementations of membership inference
attacks are unsuitable for applying different MIAs to target
models. In addition, they do not analyze a single data point’s
vulnerability under multiple MIAs and target models, which is
inconvenient for our research exploration. Thus, we designed
and implemented the VMIAP, which is scalable and flexible, to
support our research about vulnerable data points under multiple
MIAs and target models. In Section IV-A, we explain different
types of MIAs. We provide the details of platform implementa-
tion in Section IV-B.

A. Different Types of MIAs

The membership inference attack, proposed by Shokri
et al. [7], undergoes a series of developments [8], [9], [14],
[15], [21]. As mentioned in Section II-E if the adversary obtains
extra knowledge and changes how to utilize that knowledge, we
regard it as a new type of MIA in our paper. The extra knowledge
contains the label y, the target model’s output fθt(x), the shadow
dataset Dshadow, the model structure, and the target model’s
hyperparameters. The adversary utilizes extra information and
alters the utilization strategies to implement multiple MIAs.

The utilization strategies comprise two categories. One is
predicting membership by comparing the metric value with
a selected threshold. The other is the combination or direct
selection of eleven basic features in Table II for attack features
in Table III for classifier-based MIAs. For the threshold-based
MIA, the metric’s selection and source (shadow or relabeled
shadow models) determine one MIA. Apart from better imitating
the target model, the relabeled shadow model also deals with the
label-only [14] situation, where the model only exposes the pre-
diction label. By changing the utilization of extra knowledge and
considering the gap MIA [21], which predicts the membership
based on the prediction correctness, we implement 77 different
MIAs in the VMIAP for analyzing the vulnerability of data
points under multiple MIAs and target models, as mentioned
in Section II-E.

B. Platform Implementation and Running

The code implementation is divided into multiple parts to
make the platform scalable and flexible. Those parts com-
prise dataset preparation, parameter import, model training,
attack feature extraction, classifier-based MIA implementation,
threshold-based MIA implementation, and vulnerability analy-
sis. The parameter import part prepares hyperparameters after
dividing the dataset with the dataset preparation part. They are
vital for training target, shadow, and relabeled shadow models.
The attack feature extraction part obtains attack features for
multiple MIAs. The implementations of classifier-based and
threshold-based MIAs handle attacks. The vulnerability analysis
combines the inference results from multiple MIAs and target
models. We only need to change and adapt the corresponding
parts of our platform to expand datasets, models, and MIAs. The

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2026 at 09:20:04 UTC from IEEE Xplore.  Restrictions apply. 



4028 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 4, JULY/AUGUST 2025

Fig. 1. The process of the VMIAP for implementing multiple MIAs against
target models.

framework is implemented in Python, and the main package is
Pytorch.2

Fig. 1 shows the general process of the VMIAP for multiple
MIAs and target models. The figure contains the parts we men-
tioned in the previous paragraph. For the division of the dataset,
we utilize settings to control the split rates and the number of
selected data points. Given a fixed number of data points from
one dataset, we assign target shadow rate, target split rate, and
shadow split rate to decide the proportion of the target dataset
among all data points, the proportion of training data in the target
dataset, and the proportion of training data in the shadow dataset.
In most experiments, we set those three rates as 0.5, 0.5, and 0.5
for the shadow model’s better imitation and fair evaluation of
attack accuracy on training and test data. After dealing with one
time of dataset division, we keep dividing, training, extracting,
and analyzing multiple times for multiple target models. We
define Split_num as the division times, which has the same
meaning as k defined in Table I. We measure the vulnerability of
each data point in the dataset based on the inference results of 77
MIAs on Split_num target models with our metrics and previous

2[Online]. Available: https://pytorch.org/

TABLE V
COMPARISON OF PLATFORMS TO IMPLEMENT MIAS

methods. In experiments, the minimum division time is 20. In
each division, one data point has the same probability (0.25)
in target and shadow models’ training and test data. According
to the related knowledge of probability theory [24], most data
points will occur in training and test data of the target model
five times (20*0.25=5), which is feasible to evaluate the data
point’s vulnerability. However, the data point’s occurrence times
in training or test data may vary greatly when evaluating the
influence of division rates on the results by setting rates different
from 0.5, 0.5, and 0.5. While training models, we train the target
and shadow models first. Then, we relabel the shadow dataset
with the target model to train the relabeled shadow model. With
the relabeled shadow model, we obtain predictions from it with
the target and relabeled shadow datasets. We separately input the
target and shadow datasets into target and shadow models to get
models’ predictions for attack feature extraction. The platform
will record the inference correctness results of multiple MIAs
on each data point in the data of each target model, providing
results for analyzing the data point’s vulnerability.

To clearly describe the process of attacking multiple target
models with different MIAs, we show the process flow of the
VMIAP in Algorithm 1. Split is the operation that divides
the dataset into target and shadow datasets. Train returns the
target, shadow, and relabeled shadow models by training with
the dataset and other settings.Predict infers the label of the data
point with the model. Extract obtains the model output to the
dataset and calculates the attack features for MIAs. Fit trains
the attack models or finds the suitable thresholds by fitting the
attack features from shadow and relabeled shadow models.Eval
evaluates the attack performance on the attack features from the
target dataset. Analyze aggregates the inference correctness of
data points under multiple MIAs and target models to analyze
the vulnerability of each data point.

Table V compares our platform with previous platforms to im-
plement MIAs from four perspectives, including the number of
considered features, analysis on a single data point, parallelism
of attacks, and flexibility of expanding attacks. We can observe
that our VMIAP considers more features when analyzing a
single data point. Besides, we extract features for MIAs in
parallel instead of separately in other platforms. For example, the
process of getting signals in the ML privacy meter [25] extracts
confidence and loss within different functions with redundant

3[Online]. Available: https://github.com/csong27/membership-inference
4[Online]. Available: https://github.com/AhmedSalem2/ML-Leaks
5[Online]. Available: https://github.com/privacytrustlab/ml_privacy_meter
6[Online]. Available: https://github.com/liuyugeng/ML-Doctor
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computation. Finally, the modification to the extraction process
can easily expand MIAs on our platform by carrying features
on two types of returned variables: one contains single-valued
features, and the other contains vector-based features. However,
other platforms require separate handling of extended features.
For example, the ML doctor [26] has separate functions to define
attack models for different vector-based features, which could
be unified.

V. EXPERIMENTAL SETTINGS

We designed and ran experiments related to three datasets. Our
experiments contain two parts. The first part is implementing
various MIAs on different target models to observe the data
point’s vulnerability under multiple MIAs and the inference
tendency of the MIA to various data points. The second part
compares vulnerable data points found by different methods
and reruns each experiment for comparison. In Section V-A,
we describe datasets used for experiments. In Section V-B, we
detail the content of the experiments.

A. Datasets

We use three datasets: CIFAR-10, MNIST, and PURCHASE-
100. We do not use all the data points in the dataset and
randomly select 40000 data points from each dataset. There
are two reasons for selecting stationary 40000 data points. The
first reason is that fixed data points are vital for analyzing data
points’ vulnerability after the repetitive division of those data
points for training models and attacking. The second reason
is that Shokri et al. explored the performance of attacking
while training target models with 10000 data points. We follow
their setting and choose 40000 data points to train and test
target and shadow models. More precisely, among 40000 data
points, we use non-overlapping 10000 data points for training
the target model, testing the target model, training the shadow
model, and testing the shadow model, respectively. Among
the datasets, the CIFAR-10 and the MNIST are almost bal-
anced. The PURCHASE-100 is unbalanced, which means the
number of data points in each class varies significantly. The
PURCHASE-100 is from Kaggle’s ”acquire valued shoppers”
challenge dataset containing several thousands of individuals’
shopping histories.7 In the work of Shokri et al. the authors use
a converted purchase dataset with 600 binary features, which
represents whether a user purchases a specific item or not [7].
The conversion refers to the transformation of features, not the
encryption or restriction of data or information access. The
competition with the raw dataset predicts which shoppers are
most likely to repeat purchases. They transfer this dataset for
shopper’s purchase style classification. The PURCHASE-100
has 100 categories, which means 100 purchase types among
shoppers. We use the same PURCHASE-100 dataset as in the
work of Shokri et al.

7[Online]. Available: https://www.kaggle.com/c/acquire-valued-shoppers-
challenge/data

B. Methodology

In this section, we explain the details of the experiments and
provide the settings and model architectures. In Section V-B1,
we present experimental steps, models’ structures, and settings.
Then, we discuss finding and comparing vulnerable data points
in Section V-B2.

1) Multiple MIAs Against Target Models: For three datasets
mentioned in Section V-A, we select LeNet, ResNet18, CNN,
shallow MLP, and deeper MLP as the network structures for
experiments as they are also selected in previous works [7],
[11], [14], [15], [21] and are commonly used for classification
tasks. For each combination of the dataset, model structure, and
other settings, we follow the process of the VMIAP mentioned
in Section IV-B to train Split_num target models and attack each
target model with 77 MIAs mentioned in Section IV-A. Then,
we analyze the vulnerability of each data point under 77 MIAs
and Split_num target models.

The architecture and hyperparameters are the same for a
dataset to get Split_num target models. We choose two model
architectures for each dataset to explore the influence of model
architecture. The Appendix, available online, provides the model
structures’ details and training settings in Table C.1, available
online.

2) Finding and Comparing Vulnerable Data Points: As men-
tioned in Section III-B, we determine vulnerable data points with
the help of AMER and ANMER. Those two metrics are related to
the actual inference correctness of data points in multiple target
models under multiple MIAs. To compare and test the effec-
tiveness of previous methods, we pick l (40 or 400) data points
out of 40000 as vulnerable data points based on newly defined
metrics and previous evaluation methods. We select 40 or 400
data points because of the relatively small number of vulnerable
points, and it simplifies comparisons when each approach uses
a consistent number of them. Besides, selecting vulnerable data
points of two quantities provides a new perspective to evaluate
the vulnerability of data points. The steps of finding vulnerable
data points are identical for various datasets, and the following
paragraphs describe how we use different methods to determine
vulnerable data points.

Our new metrics: Following the definitions, we compute the
AMER of each data point and select l (40 or 400) vulnerable data
points based on this value for each model structure and dataset.
Similarly, we obtained l (40 or 400) vulnerable data points with
ANMER. Besides, we repeat the training of target, shadow, and
attack models together or separately to obtain another two sets of
vulnerable data points with two new metrics. We try to observe
the difference between vulnerable data points while retraining
models to explore their impact on the vulnerability. Hence, we
obtain several sets of l (40 or 400) vulnerable data points for
each dataset and model structure.

Other methods: For the neighbors-based [8] method,
SUOD [12], privacy risk score [9], and Shapley value [10], we
calculate the corresponding metrics to measure the vulnerability
and select l (40 or 400) out of 40000 data points based on the
metrics for each dataset division. After Split_num divisions
of the dataset, we obtain Split_num sets of l (40 or 400) data
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TABLE VI
MIAS’ ATTACK PERFORMANCE ON TARGET MODELS WITH DIFFERENT CONFIGURATIONS AND ACCURACY

points. Then, we count the number of occurrences of each data
point in those Split_num sets and select l (40 or 400) frequent
ones as vulnerable data points. Finally, we repeat this process
to get two sets of l (40 or 400) vulnerable data points for each
method. We refer to original papers for more detail apart from
Section II-B.

VI. RESULTS AND DISCUSSION

In this section, we present our experimental results and discuss
the findings. In particular, we include parts about the accuracy
of target models, attack performance of MIAs (Section VI-A),
exposure rate of data point (Section VI-B), inference rate of
MIA (Section VI-C), exploratory experiments (Section VI-D),
and vulnerable data points comparison (Section VI-E).

A. Target Models’ Accuracy and MIAs’ Attack Performance

Table VI shows statistical metrics about target models’ set-
tings, accuracies, and MIAs’ attack performance. Each row rep-
resents the result for a given configuration (Dataset, Structure,
Split_num, and Rates). We train Split_num target models by
creating resampled data subsets through multiple divisions of
the same dataset. They have identical hyperparameters under
one configuration. The Rates column comprises three elements:
target shadow rate, target split rate, and shadow split rate. We
use those three rates to partition the dataset into four subsets for
training and testing target and shadow models, as elaborated
in Section IV-B. Besides, we calculate the average training
accuracy (Avg train acc), the average testing accuracy (Avg test
acc), and the average accuracy difference between training and
testing accuracy (Avg dif acc) of Split_num target models.

Table VI shows the average accuracy of Split_num target mod-
els. First, the larger the gap between the training and testing accu-
racy of the target model, the better MIAs’ attack performance is
in general. The accuracy gap of MNIST (0∼0.01) is smaller than
CIFAR-10 (0.17∼0.28) and PURCHASE-100 (0.16∼0.40). The
attack performance of CIFAR-10 and PURCHASE-100 is rel-
atively higher than MNIST. We attribute it to the fact that a
more significant accuracy gap means a higher gap of overfit-
ting, which is the commonly accepted reason for MIA [21].
Second, increasing the Split_num does not change the average

training and testing accuracy. For instance, the first and second
rows pertain to the CIFAR-10 results, with the only difference
being the Split_num. Altering Rates does not change the av-
erage training and testing accuracy much. For example, the
twelfth and thirteenth rows correspond to the PURCHASE-100
results, where the sole distinction lies in the Rates, with an
accuracy discrepancy of 0.01 (Avg train acc) and 0.06 (Avg
test acc). This observation can be attributed to the stability of
the optimization algorithm used during the training of machine
learning models. Third, changing Split_num does not impact
the attack performance as it causes very slight alteration to the
average overfitting gap (Avg dif acc) like the first and second
rows for CIFAR-10. Meanwhile, the Rates parameter exerts an
interpretable influence on the attack performance. The attack ac-
curacy increases while applying the Rates of (0.5, 0.8, 0.8). Since
the percentage of training data points increases, the attack model
obtains high accuracy if it infers most data points as members
while training the attack model and using it for attacking. This
indicates that altering the Rates parameter does not influence
the attack capability of MIA and can be considered an external
perturbation.

Regarding the attack accuracy, we compute the average attack
accuracy over Split_num target models to represent a specific
MIA’s attack performance for those target models. In Fig. 3,
each point in the picture depicts the average attack accuracy of
a configuration under one MIA. Due to 77 different MIAs, we
obtain a list of average attack accuracy values: points with the
same color and shape. Then, we calculate the mean (Avg MIA
acc), variance (MIA acc var), median (MIA acc med), maximum
(MIA acc max), and minimum (MIA acc min) values of each list
of average attack accuracy values in Table VI. We provide Fig. 2
to show the relation between the average overfitting gap (Avg dif
acc) and the double average attack accuracy (Avg MIA acc).
We refer to the mean of the average attack accuracy values as
the ”double average attack accuracy” (Avg MIA acc) because it
averages attack accuracy over both Split_num target models
and 77 MIAs. The figure shows that a more significant average
overfitting gap usually leads to a higher double average attack
accuracy. However, the double average attack accuracy could
be high even if the average overfitting gap is low. As far as we
know, there is no clear mathematical formula to formulate this
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Fig. 2. The relationship between the average overfitting gap (x-axis) and the
double average attack accuracy (y-axis).

Fig. 3. The average attack accuracy of different MIAs. The x-axis represents
different MIAs. The y-axis indicates the average attack accuracy over Split_num
target models.

relationship. Therefore, we display this relationship in Fig. 2 as
in the previous work [7].

In Fig. 3 and Table VI, we see that the average attack
accuracy of MIAs ranges from 0.5 to 0.9 among the three
datasets. However, within the same configuration (one row in Ta-
ble VI), the average attack accuracy variance is relatively small
(0.000004∼0.02). This phenomenon shows the configuration
itself will significantly affect the attack performance. According
to the previous analysis, the Rates does not essentially affect the
attack performance. The Split_num has no effort on the attack
performance. In Table VI, modifying model structures while
keeping other settings (e.g., rows 11 and 15) impacts the average
attack accuracy of MIAs (0.779 in row 11 and 0.548 in row 15).
Similarly, the attack performance varies (0.679 in row 5 and
0.503 in row 10) while changing only the dataset (rows 5 and 10).
Besides, a higher average overfitting gap could lead to a higher
average attack accuracy in Fig. 2. According to those analyses,

we conclude that overfitting gap, dataset, and model structure
are the main factors affecting attack performance. This finding
corresponds with the result of previous work [27]. We regard
the maximal and minimal average attack accuracy values of 77
MIAs as two discrete variables and utilize the t-test to test the
significance of the difference between those two variables. There
are two hypotheses. The first one is the null hypothesisH0: there
is no significant difference between two variables; the other is the
alternative hypothesis Ha : there is a significant difference be-
tween two variables. We use a standard significance level of 0.05
for comparison. After calculation, we get a p-value of 0.000055.
Therefore, we reject the null hypothesis and conclude that there
is a significant difference between the maximal and minimal
average attack accuracy values of 77 MIAs. For example, row
11 for the result of PURCHASE-100 has a difference of 0.395.
At the same time, the minimal average attack accuracy (MIA acc
min) is close to 0.5in all experiments. This result indicates that
not all 77 MIAs are efficient at attacking Split_num target models
of each configuration. The MIA that achieves a higher attack
performance than other MIAs under one configuration may not
obtain competitive attack performance in other configurations
compared to other MIAs.

From the previous analysis, suitable MIAs of high attack
performance might vary within different datasets and model
structure combinations. To provide more detail, we select three
configurations to show the inference correctness of 77 MIAs on
each 20 (Split_num) target models from three datasets in Fig. D.1
of the appendix, available online. Here, we only calculate the
inference accuracy of the training data of the target model
according to the goal of the MIA. In the figure, the x-axis depicts
the types of MIAs, and the y-axis depicts target models. Each
number on the y-axis represents three target models with the
same mark from three datasets. There are two values (”0” and
”1”) in the figure. Setting ”1” indicates that the specific MIA
attains an inference accuracy greater than or equal to 0.7 on
each training set of three target models. Otherwise, we fill the
cell with ”0”. We tally the ”1” in the column for each MIA,
revealing that MIAs 4, 12, 16, 24, 32, 44, 65, 67, 69, 73, and
75 are particularly adept at inferring training data from three
datasets. The explanation of those 11 MIAs is in Table D.1 of
the appendix, available online. Additionally, most MIAs excel
in inferring target models labeled 0, 1, 2, 3, 11, 12, and 15 by
similarly counting the ”1” in each row. The analysis suggests that
specific MIAs perform superior inference, while several target
models exhibit weaknesses. The overfitting gaps of those target
models range from 0.0125 to 0.4165. This suggests that we can
accurately infer the training data of the target model with a low
overfitting gap using multiple high-performance MIAs. While a
more substantial overfitting gap typically correlates with higher
attack performance, it is important to note that partial MIAs can
still perform better in inferring models with a low overfitting
gap. To conclude, the average training and test accuracies of
Split_num target models do not rely on the Split_num value and
are slightly related to the Rates value. Generally, a larger average
overfitting gap leads to a higher double average attack accuracy.
Dataset and model structure are also the main factors of MIA’s
attack performance. By analyzing the inference correctness of
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Fig. 4. The sorted AMER values (2), ANMER values, and difference of those two metrics under varying configurations. The x-axis indicates the symbol of data
points, and the y-axis means the metric value. As there is no direct relation between lines, the same x symbol usually means different data points in varying lines
because of the value sorting.

77 MIAs on the training data of each of the 20 target models
from three datasets, we find that eleven MIAs achieve better
attack performance, and seven target models in each dataset are
weaker.

B. Data Point’s Exposure Rate

Following Section III, the data point’s AMER and ANMER
represent its vulnerability under multiple MIAs and target mod-
els. As per the explanation in Section V-B2 for finding vulnerable
data points, we use those metrics to select vulnerable data points.
This section analyzes those two metrics and their difference in
Fig. 4.

Fig. 4 shows the sorted AMER values, ANMER values,
and the difference between those two metrics under varying
configurations. First, the AMER and ANMER decrease from
a value close to 1 to near 0. The ANMER has a faster and more
significant drop than the AMER (from the shape and termination
of curves), which leads to a large proportion of the AMER
value being higher than the ANMER value. This observation
is understandable because MIA is biased toward inferring the
training data rather than the test data. Therefore, training data
points’ vulnerability is more substantial than test data points
under multiple MIAs. It corresponds with the result that the
AMER value is higher than the ANMER value. From another
perspective, this phenomenon reflects the appropriateness of our
newly defined metrics. Second, there is a proportion of data
points with an AMER or ANMER value close to 1, meaning
77 MIAs almost correctly infer the membership of these data
points in Split_num target models. In other words, these data
points are susceptible to inference by 77 MIAs while being in
Split_num target models. Therefore, a high AMER or ANMER
value reflects the data point vulnerability under multiple MIAs
and target models. Specifically, around 45 percent of data points
have an AMER value larger than 0.6in all experiments in Fig. 4.
Meanwhile, some data points have an ANMER value larger than
0.6. Those observations indicate partial but not all data points are
vulnerable under multiple MIAs and target models. Third, the
AMER and ANMER values change with the alteration of split
rates. In particular, the AMER values are high when the split
rates are 0.5, 0.8, and 0.8. The ANMER values are relatively high

when the split rates are 0.5, 0.5, and 0.5. The possible reason
for this phenomenon is that more training data points lead to
the class imbalance of the dataset for training the attack model.
The attack model tends to predict all data points to members.
Therefore, the AMER values are higher. Fourth, increasing the
value of Split_num from 20 to 40 does not introduce substantial
changes to the curves of the AMER and ANMER values. It
reflects that those two metrics are not sensitive to the Split_num.
Increasing the Split_num means increasing the number of target
models whose training data includes the specific data point
while calculating its AMER value. The sum of MER values
also increases because the AMER value is the average value
of MER among target models whose training data includes this
specific data point (Section III-B). Hence, we conclude that the
Split_num has a limited impact on the values of AMER and
ANMER. From Table VI, we observe that experiments related
to PURCHASE-100 have higher average overfitting gaps (Avg
dif acc from 0.164 to 0.408) than CIFAR-10 (0.1712 to 0.2805).
Meanwhile, experiments of CIFAR-10 are more overfitted than
MNIST (0.0049 to 0.0140). In Fig. 4(a) and (b), the curves for
PURCHASE-100 (purple) and CIFAR-10 (red) are relatively
higher than the curves of MNIST (green). It indicates that a
higher average overfitting gap generally leads to high values
of AMER and ANMER, which means high vulnerability under
multiple MIAs and target models. As previously analyzed in
Fig. 2 within Section VI-A, a larger average overfitting gap
leads to an increased double average attack accuracy, implying
improved membership inference correctness. This improved
membership inference correctness is directly linked to higher
values of AMER and ANMER, as stipulated by their respective
definitions.

Due to the limited random splitting of the dataset for exper-
iments, the MT and NMT values of different data points vary,
which is inevitable because it is impossible to iterate all the
subsets of the dataset with partial data points. Fig. 5 shows
the MT of data points following the decrease of AMER values.
Fig. 6 shows the NMT of data points following the decrease of
ANMER values. Each figure’s blue point represents the MT or
NMT of one data point. In Fig. 5, there is a slightly less densely
populated region at the bottom of each picture. Still, the overall
distribution of MT over all data points is even. Similarly, the
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Fig. 5. The MT of data points following the decrease of AMER values with
the Split_num of 20 and 40.

Fig. 6. The NMT of data points following the decrease of ANMER values
with the Split_num of 20 and 40.

general distribution of NMT in Fig. 6 is balanced over all data
points. According to (2), the MT and NMT values influence the
AMER and ANMER metrics calculation. The distributions of
MT and NMT are even in the mentioned figures. Nonetheless,
each data point’s AMER and ANMER values exhibit significant
variation across the curves depicted in Fig. 4. This means that
the values of MT and NMT among data points are not reasons
for data points’ fluctuating AMER and ANMER values. We
have obtained similar figures and observations from other ex-
periments with varying configurations, although we have not
displayed all due to space constraints.

From the high values of AMER and ANMER, partial data
points are vulnerable under multiple MIAs and target models.
The vulnerability of the training data is more significant than the
test data. Changing the Split_num does not change much to the
curves of AMER and ANMER. The higher average overfitting
gap generally causes larger values of AMER and ANMER.
The values of MT and NMT do not account for data points’
fluctuating AMER and ANMER values.

C. MIA’s Inference Rate

Apart from the data point’s exposure rate, we explore MIA’s
inference rate, which represents the inference correctness from
the perspective of the MIA. From (3) and (4), the MIR and
NMIR indicate the MIA’s inference to a specific data point. The
AMIR and ANMIR separately show the MIA’s inference to all
training and test data points. We draw the AMIR and ANMIR
values under varying configurations in Fig. 7. The high values
(even close to 1) of AMIR and ANMIR indicate that the MIA

Fig. 7. The AMIR (4) and ANMIR values of MIAs under different configu-
rations. The x-axis means the type of MIAs. The y-axis represents the specific
value of metrics for each MIA.

correctly infers most data points in target models. Besides, the
figure shows that the AMIR value is generally more significant
than the ANMIR value. The blue points in the figure are higher
than the red points. For example, in the second sub-figure for
CIFAR-10 and two sub-figures for PURCHASE-100, the AMIR
value is close to 1. This observation is similar to the previous
result: the AMER value is higher than the ANMER value. The
reason is that training data points are more vulnerable than test
data points, even under one MIA.

Table VII provides a small number of data points with high
MIR or NMIR values while the corresponding MIAs have low
AMIR or ANMIR values. In the table, the fourth column shows
data points’ top ten MIR (NMIR) values. Those ten data points’
MT (NMT) values are given in the fifth column. The top ten
MIR and NMIR values of data points are all 1, with high MT and
NMT values from 8 to 12. Elevated MT and NMT values suggest
that the MIR and NMIR metrics are not calculated sporadically.
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TABLE VII
TOP 10 DATA POINTS WITH HIGH MIR OR NMIR VALUES WHILE THE AMIR

OR ANMIR VALUES ARE RELATIVELY LOW

This observation suggests that MIAs with low AMIR or ANMIR
values (close to 0.5) tend to infer specific data points precisely.
The low AMIR or ANMIR values indicate that these MIAs
perform poorly when evaluating all training or test data points
together. High MIR and NMIR values indicate that MIA makes
accurate inferences for specific data points rather than the entire
training or test data. Consequently, we observe low AMIR or
ANMIR values and high MIR and NMIR values coexist. This
highlights some MIAs have an inference tendency to a piece
of data points even though the overall inference performance is
relatively low.

The MIAs obtain higher AMIR values than ANMIR values,
which means that MIAs perform better on the training data. Even
though the AMIR or ANMIR values are close to 0.5, the MIAs
still infer some data points precisely.

D. Exploratory Experiments

In previous experiments, the number of selected data points is
40000. The shadow dataset is from the same data distribution as
the target dataset. The hyperparameters (including the number of
epochs, batch size, learning rate, weight decay, and optimizer)
of Split_num target models are the same. Therefore, we add
exploratory experiments to understand better the impact of data
volume, the distribution of the shadow dataset, and the target
models’ hyperparameters.

Regarding data volume, we select 50000 data points from
CIFAR-10, 60000 data points from MNIST, and 60000 data
points from PURCHASE-100 in separate experiments. Besides,
we changed the distribution of the shadow dataset to another
two datasets to explore the effect of data distribution. Finally,
we alter the hyperparameters while training Split_num target
models. Split_num and Rates are the same (40 and (0.5, 0.5,
0.5)) for those three explorations.

Table B.1, available online, shows the dataset, model struc-
ture, total number of data points, target models’ accuracies, and
MIAs’ attack performance. Compared with Table VI, more data
points could slightly reduce the average overfitting gap (Avg
dif acc) and decrease the double average attack accuracy (Avg
MIA acc). For example, PURCHASE-100 obtains the average
overfitting gap of 0.348 and the double average attack accuracy
of 0.733 with 60000 data points. The average overfitting gap
is 0.407, and the double average attack accuracy is 0.779 with
40000 data points (row 12 in Table VI). This is because more
data points could improve the generalization of the trained
model, reducing the average overfitting gap and the double
average attack accuracy. While sampling the shadow dataset
from another distribution, the double average attack accuracy is
close to 0.5, even though the target models’ average overfitting
gap is relatively large. Unsurprisingly, the attack features from
the shadow model are different from the target model due to the
distribution difference between the shadow and target datasets.
This leads to the low performance of MIAs. If we set different
hyperparameters while training Split_num target models, the
average overfitting gap and double average attack accuracy
slightly increase for CIFAR-10 and MNIST and decrease for
PURCHASE-100 by comparing the last three rows of Table B.1,
available online, and three rows (2, 7, and 12) in Table VI. The
alterations in average overfitting gaps are as follows: 0.0474
(increase) for CIFAR-10, 0.014 (increase) for MNIST, and 0.094
(decrease) for PURCHASE-100. Regarding the double average
attack accuracy, the adjustment levels are 0.016 (increase) for
CIFAR-10, 0.008 (increase) for MNIST, and 0.023 (decrease)
for PURCHASE-100. Changing the hyperparameters leads to a
change in the average overfitting gap, which affects the double
average attack accuracy. A heightened average overfitting gap
is associated with a more pronounced double average attack
accuracy. The fluctuating pattern of the average overfitting gap
exhibits inconsistency across the three datasets when training
Split_num target models with varying hyperparameters. We
attribute this phenomenon to the interaction between hyperpa-
rameters within training.

Fig. B.1, available online, displays the AMER, ANMER,
and the difference between these two metrics in the context of
three exploration experiments. While increasing the number of
data points, the start and end points of AMER and ANMER
curves are similar compared with 40000 data points. However,
the middle of the curve is smoother with more data points. It
indicates that more data points obtain a middle value of the
AMER and ANMER range. The situations differ among the
three datasets for experiments with shadow datasets from other
distributions. For PURCHASE-100, the AMER significantly
drops, and the ANMER significantly increases. For MNIST, the
AMER slightly increases, and the ANMER slightly decreases.
In the case of CIFAR-10, the AMER experiences a marginal
increase, while the ANMER undergoes a slight decrease. We
observe this trend because these experiments’ double average
attack accuracies hover around 0.5. The reduction (increase)
of inference accuracy on the member data needs the increase
(reduction) of inference accuracy on the non-member data to get
a final random guessing accuracy. The direction and magnitude
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of change observed in either of these metrics are attributed to
variations in the dataset. While changing the hyperparameters,
the AMER and ANMER curves are relatively higher (lower)
if the double average attack accuracy increases (decreases) by
comparing lines with the only difference of hyperparameters
in Figs. B.1 and 4. We attribute this observed behavior to the
double average attack accuracy affecting vulnerability, which is
also mentioned in Section VI-B.

In conclusion, increasing the number of data points has a
modest effect of reducing the average overfitting gap, lowering
the double average attack accuracy, and promoting a more uni-
form decline in the curves of AMER and ANMER. Sampling
the shadow dataset from another distribution could break the
attack performance and make the curves of AMER and ANMER
change in different ways within different datasets. Training
Split_num target models with different hyperparameters leads
to the inconsistent change of the average overfitting gap among
three datasets, which causes the change of the AMER and
ANMER curves.

E. Vulnerable Data Points Comparison

We determine vulnerable data points under multiple MIAs and
target models based on our new metrics (AMER and ANMER),
neighbors-based method, privacy risk score, and Shapley value.
Fig. 8 displays the overlapping data points between varying
vulnerable sets of different methods and repetitions of exper-
iments for CIFAR. We show the overlapping data points of the
other two datasets in Figs. E.1 and E.2, available online. For
comparison, we select 40 and 400 vulnerable data points to
show the overlapping vulnerable data points. Besides, we use
the outlier detection method, SUOD, to compare with previous
methods. The previous work does not prove the data points
found by the SUOD are genuinely vulnerable. The figure shows
that SUOD identifies different data points compared to previous
methods. While selecting 400 vulnerable data points, SUOD
only identifies a few overlapping data points with those identified
by ANMER. We use SUOD for a comparison purpose and do
not assert the vulnerability of the data points it identifies, leaving
this as future work.

We reveal the vulnerable data points identified by various
methods and make comparisons in Fig. 8 (similar in Figs. E.1
and E.2, available online). From the analysis in Section VI-B
and definitions in Section III, 77 MIAs correctly infer the
vulnerable data points found with AMER and ANMER with a
high probability. However, there is very limited overlap between
the vulnerable data points identified by our metrics and those
from previous methods. For 40 vulnerable data points, there
is virtually no overlap. Among 400 vulnerable data points, the
maximum overlap with our two new metrics is just 10 (CIFAR),
which is less than 2.5%. This suggests that data points detected
by previous methods cannot be accurately inferred by 77 MIAs
while in Split_num target models. Previous methods are ef-
fective only in single MIA and single target model scenarios,
rendering them ineffective in our case with multiple MIAs and
target models.

Fig. 8. In the context of CIFAR-10, this figure illustrates the overlap of 40
and 400 vulnerable data points across different methods. The x-axis and y-axis
represent the various approaches employed. When the same tag is present, it
signifies a repeated experiment with no parameter changes except for retraining
the target and attack models. The numerical values within each cell of the figure
denote the count of overlapping data points.

From Fig. 8 (similar in Figs. E.1 and E.2, available online),
we observe that detected vulnerable data points with our AMER
(ANMER) are mostly various when we retrain target, shadow,
and attack models (classifier-based MIAs), indicated by the low
overlapping data points between two rows named ”AMER”
(”ANMER”). Retraining a model in this work means that we
keep the data, model structure, and hyperparameters of the pre-
vious run, initialize parameters with a different random seed and
shuffle the data during training. Although we maintain the data,
model structure, and hyperparameters, vulnerable data points
found still vary a lot. Hence, we conclude that the randomness
that comes from the retraining of target, shadow, and attack
models has an impact on the vulnerability of data points under
multiple MIAs and target models.

To further explore the impact of retraining target, shadow, and
attack models on the detection of vulnerable data points under
multiple MIAs and target models, we only retrain one of them
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Fig. 9. The number of overlapping vulnerable data points detected by AMER
and ANMER if we repeat training target, shadow, and attack models separately
(CIFAR-10).

and keep the other two unchanged. Fig. 9 (together with Figs. E.3
and E.4, available online) shows the number of overlapping
vulnerable data points found with AMER and ANMER if we
retrain models. Under PURCHASE-100, we find that retraining
target models could still detect 236 identical vulnerable data
points when measuring vulnerability with AMER. However, the
number of maintained vulnerable data points is 68 for CIFAR-10
and 50 for MNIST. This is reasonable since the overlapping
level of models trained with PURCHASE-100 is higher than the
other two datasets. The high overlapping level makes it easier
to distinguish members and non-members for MIAs. Hence,
MIAs could detect more overlapping vulnerable data points
under PURCHASE-100.

We compare the number of overlapping vulnerable data points
measured with AMER when retraining target, shadow, or attack
models. In PURCHASE-100 and CIFAR-10, retraining the tar-
get model will maintain more vulnerable data points (236 in
PURCHASE-100 and 68 in CIFAR-10) than retraining shadow
and attack models. Retraining shadow and attack models will
keep more vulnerable data points than only retraining attack
models, which indicates the impact of retraining attack models
on determining the vulnerability of data points is larger. We
speculate the reason for this phenomenon is that the attack model
is closer to the final prediction of MIAs. Retraining the attack
model will directly rebuild the strategy to distinguish members
and non-members, which leads to less overlapping vulnerable
data points. For MNIST, retraining the attack model has less im-
pact on vulnerable data points than retraining target and shadow
models, which is contrary to PURCHASE-100 and CIFAR-10.
We attribute this difference to the attack features of data points
from MNIST that are not distinguishable enough for MIAs due to

Fig. 10. The modification of AMER and ANMER during the repetition
experiments (CIFAR-10).

a lower overfitting level than PURCHASE-100 and CIFAR-10.
Hence, attack models tend to maximize the attack performance
in a similar way in MNIST, which leads to more overlapping
vulnerable data points if only retraining attack models of MIAs.
From the above analysis, we conclude that retraining the target
model has less impact than retraining shadow and attack models
on vulnerable data points measured with AMER if the dataset
tends to be trained in an overfitting way. If the model trained on
the dataset is hard to overfit, retraining target models has more
impact than retraining shadow and attack models on the number
of overfitting vulnerable data points.

To verify our previous findings, we analyze the modification
of AMER and ANMER values of data points while retraining tar-
get, shadow, and attack models separately. We draw the modifi-
cation of AMER and ANMER in Fig. 10 (together with Fig. E.5,
available online) with the x-axis representing the index of the
data point and the y-axis indicating the metric value (AMER
or ANMER) or change. Among ten rows in the figure, rows
named ”AMER” and ”ANMER” are actual metric values, and
the other eight rows are modified metric values. From Fig. E.5,
available online, we can observe that retraining the target model
brings a larger modification range (−0.5 to 0.5) than retraining
shadow (−0.25 to 0.25) and attack (−0.1 to 0.1) models. More
modification leads to less overlapping vulnerable data points
in Fig. E.3, available online. This is reasonable since larger
modification in metric value makes the vulnerable data points
with the highest metric value inconsistent. For CIFAR-10, the
modification of AMER (ANMER) is within a high range (−0.5
to 0.5), which leads to a low number of overlapping vulnerable
data points (from 42 to 68 for AMER). Hence, the modification
of metric value reflects on the number of overlapping vulnerable
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data points. A high metric modification leads to less overlapping
vulnerable data points.

The vulnerable data points determined by the AMER and
ANMER values are different except for a few data points. This
observation comes from the small number of overlapping vulner-
able data points determined by the AMER and ANMER values.
This occurs because the vulnerability of a data point differs when
it is part of the training data compared to when it is included in
the test data. We also show the vulnerability difference between
the training and test data in Section VI-B. Consequently, it
is challenging to identify similar vulnerable data points based
on their AMER and ANMER values. Besides, the impact of
retraining target, shadow, or attack models on vulnerable data
points measured with ANMER is different from that measured
with AMER. For example, the number of overlapping vulnerable
data points measured with AMER decreases from 68 (retrain the
target model) to 42 (retrain the attack model) in Fig. 9. When it
comes to ANMER, the number of overlapping vulnerable data
points increases. The reason for this difference is also related to
the vulnerability difference between the training and test data.

The previous methods are ineffective in identifying vulnerable
data points when subjected to multiple MIAs and target models,
as evidenced by the limited overlap between the data points
identified by previous methods and our metrics. The impact of
retraining target, shadow, and attack models on the vulnerability
of data points varies on the metric type and dataset. In terms
of AMER, a high overfitting level of the target model on the
dataset eliminates the impact of retraining the target model,
which makes retraining the target model less influential to the
vulnerability of data points compared with retraining shadow
and attack models. Larger modification of metric values leads
to less number of overlapping vulnerable data points, which
reflects the impact of retraining models on detecting vulnerable
data points. The vulnerable data points found by AMER and
ANMER vary due to the different vulnerabilities of the training
and test data.

VII. RELATED WORK

MIA has attracted significant attention after the seminal work
of Shokri et al. [7]. We divide current research works into at-
tacking methods, defense strategies, and a deeper understanding
of MIA.

Attacking methods: Shokri et al. put forward the application
of the shadow model to mimic the behavior of the target model
and obtain the dataset for training the attack model [7]. Salem
et al. relaxed some assumptions in the work of Shokri et al.
They proposed data-transferring and threshold-based attacks
using the highest posterior, standard deviation, and entropy [15].
Yeom et al. formulated three adversaries of MIAs with addi-
tional information, including loss, empirical error, leave-one-out
validation error, average training loss, and even the training
dataset [21]. Sablayrolles et al. used Bayes’ formula, optimal
steps, and approximations to implement optimal MIA only with
loss [28]. Long et al. carefully selected a few vulnerable data
points and attacked them with direct and indirect inference [8]. Li
et al. [14], and Choquette-choo et al. [13] investigated attacking

target model under label-only condition. They proposed three
methods: applying adversarial examples, data augmentation,
and relabeling shadow data with the target model. Carlini et al.
presented the Likelihood Ratio Attack (LiRA), which formulates
the MIA as hypothesis testing and considers the data point
in or out of the training data separately [11]. The concept of
separation manipulation serves as an inspiration for our work.
Our empirical result shows that the data point’s vulnerability is
different in the training data compared with the test data. Ye et al.
put forward model-dependent and sample-dependent MIA via
distillation, which means the determination threshold is related
to the target model and data point [29].

Defense strategies: Strategies for reducing the overfitting
are proposed for eliminating the MIA, including dropout [30],
L2-norm standard regularization, and model stacking. Some
strategies manipulate the target model’s output, including classes
of output limitation, prediction vector modification, and predic-
tion entropy increase [7], [15]. Nasr et al. combined the training
process of the target model with a misleading attack classifier,
decreasing the performance of classifier-based MIAs [31]. Jia et
al. added slight perturbation to the prediction vector, leading to
the misclassification of classifier-based MIAs [32]. Shejwalkar
et al. leveraged knowledge distillation to train ML models with
membership privacy [33]. Li et al. utilized the mix-up data
augmentation and Maximum Mean Discrepancy regularization
to mitigate the gap between training and validation accuracy, ul-
timately leading to a decrease in attack performance [34]. Tang et
al. proposed a novel ensemble architecture and a self-distillation
framework to defeat MIAs [35]. Jarin et al. decreased MIAs’
performance by excluding the sub-model prediction whose train-
ing data include the target data point [36]. Finally, DP-SGD is
frequently mentioned to defend against MIAs with high utility
costs [37].

Deeper understanding: The factors contributing to the success
of the MIA attracted frequent discussion. Overfitting, the choice
of target model and dataset, the selection of part data points, and
the complexity of the training dataset are recognized as influence
factors of MIAs [7], [8], [15], [21], [26], [27], [38]. Besides,
some works are devoted to analyzing the privacy risk of the target
model with the help of the MIA [25], [26]. Furthermore, the data
points with high privacy risk, susceptibility, or vulnerability are
detected with different methods [8], [9], [10]. The focus of this
paper, vulnerable data points under multiple MIAs and target
models, differs from previous settings.

VIII. LIMITATIONS

There are three main limitations to our work. First, we only
consider classification tasks with the image and number features.
The MIAs for other tasks and data formats are not included, e.g.,
generative models [39], [40], [41], graph data [42], [43], [44],
[45], and federated leaning [46], [47].

Second, the type of MIAs implemented in current research is
limited. MIAs in this work generally use the shadow dataset from
the same distribution to determine the threshold or train the at-
tack model. Some strategies exist to overcome the condition that
the shadow dataset comes from the same distribution [14], [15].
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Other recently proposed MIAs are not implemented in this work.
For example, the label-only MIAs proposed by Li et al. [14] and
Choquette-choo et al. [13] with the help of adversarial examples
or data augmentation, the LiRA put forward by Carlini et al. [11],
and the strategy of calculating the threshold for each category
proposed by Song et al. [9].

Third, the data of Split_num target models are from the same
dataset. It would be interesting to investigate the cases where the
Split_num target models are trained from multiple datasets with
different but similar distributions. This would be more close to
real-world scenarios for multiple ML target models. While our
work has those limitations (which we leave for future work), we
still manage to provide results unrelated to specific MIAs and
datasets.

IX. CONCLUSION

This paper explores a single data point’s vulnerability and tries
to find vulnerable data points under multiple MIAs and target
models. To formally analyze the data point’s vulnerability, we
define metrics about the data point’s exposure rate and MIA’s
inference rate. All experiments are completed with the help of
our newly developed platform, VMIAP, which is scalable and
flexible for attacking target models with varying MIAs.

Our main takewaway messages are
1) The overfitting gap, the dataset, and the model structure

are the main factors for the MIAs’ attack accuracies.
2) Our new metrics, AMER and ANMER, reflect the actual

situation of the data point’s vulnerability and capture
vulnerable data points under multiple MIAs and target
models. Changing the factors that influence MIAs’ attack
accuracies will also impact the vulnerability of the data
point.

3) MIA could still infer some data points precisely despite
its relatively low overall inference performance of 0.5.

4) From definitions and a few overlapping data points be-
tween previous methods and our metrics, we empirically
verify that methods previously used to find vulnerable data
points are inappropriate for the case under multiple MIAs
and target models.

5) The impact of retraining target, shadow, and attack models
on detecting vulnerable data points is different and related
to the metric type (AMER or ANMER) and the overfitting
level of the model trained on the dataset. From the perspec-
tive of the adversary (AMER), retraining target models
has less impact on the vulnerability of data points than
retraining shadow and attack models if the target model
trained on the dataset is more overfitted.
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