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Policy Analysis of Safe Vertical Manoeuvring using
Reinforcement Learning: Identifying when to Act

and when to stay Idle.
D.J. Groot, M. Ribeiro, J. Ellerbroek, and J. Hoekstra
Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology, The Netherlands

Abstract—The number of unmanned aircraft operating in
the airspace is expected to grow exponentially during the next
decades. This will likely lead to traffic densities that are higher
than those currently observed in civil and general aviation, and
might require both a different airspace structure compared to
conventional aviation, as well as different conflict resolution
methods. One of the main disadvantages of analytical conflict
resolution methods, in high-traffic density scenarios, is that
they can cause instabilities of the airspace due to a domino
effect of secondary conflicts. Therefore, many studies have also
investigated other methods of conflict resolution, such as Deep
Reinforcement Learning, which have shown positive results, but
tend to be hard to explain due to their black-box nature. This
paper investigates if it is possible to explain the behaviour of a
Soft Actor-Critic model, trained for resolving vertical conflicts
in a layered urban airspace, by interpreting the policy through
a heat map of the selected actions. It was found that the model
actively changes its policy depending on the degrees of freedom
and has a tendency to adopt preventive behaviour on top of
conflict resolution. This behaviour can be directly linked to a
decrease in secondary conflicts when compared to analytical
methods and can potentially be incorporated into these methods
to improve them while maintaining explainability.

Keywords—Air Traffic Control, Unmanned Traffic Manage-
ment, Reinforcement Learning, Policy Analysis, Artificial Intel-
ligence, Explainable AI

I. INTRODUCTION

The demand for (un)manned air traffic operations within
urban environments is expected to increase over the course of
the following years. One study estimated the potential drone
delivery market for Paris to grow to a total of 110 k to 275 k
drones operating per hour in the city by 2035 [1]. Even at
the lower end of this estimate, this will significantly exceed
current aviation operations. As a result, the Federal Aviation
Administration (FAA) and the International Civil Aviation
Organisation (ICAO) have mandated that drones possess the
ability to detect and avoid obstacles without human interven-
tion [2]. The margin by which other aircraft must be avoided
is based on a minimum horizontal and vertical separation.
If any two aircraft are within these margins of each other,
this is called an intrusion. In this research, a conflict between
two aircraft means that the distance at the predicted closest
point of approach (CPA) between these aircraft is smaller than
the required separation margins, indicating a potential future
intrusion.

One potential approach to comply with drone operation
mandates is to use conventional analytical conflict resolution
algorithms such as the Modified Voltage Potential (MVP)
Algorithm [3]. However, at higher traffic densities, these
algorithms may cause instability through the so-called ‘domino
effect’ [4], which may make them unsuitable for such high-
density operations. Alternatively, a learning method that is
intrinsically motivated to minimize the number of secondary
conflicts resulting from successive resolution manoeuvres
could be used. Deep Reinforcement Learning (DRL) is one
such method that has been researched in various studies for
conflict resolution [5]. However, one main drawback of DRL is
the ‘black-box problem’, which makes it challenging to certify
and predict behaviour in all stages of flight. In this paper,
we propose training a set of DRL models and analyzing the
learned policies to identify patterns in the behaviour. These
patterns could explain observed manoeuvres and increase
understanding of DRL methods. Additionally, the optimal
decisions found by these methods can help enhance analytical
methods. This approach could leverage the benefits of DRL in
enhancing safety while still maintaining the explainability of
analytical methods. We note that this work employs the same
experimental setup and methods as our previous publication,
which focused primarily on safety [6]. However, this paper
emphasises policy analysis and explainability, accordingly, the
results are analyzed from a different perspective.

For this research only conflicts that arise during vertical
manoeuvres within a layered urban airspace are considered
in order to isolate the behaviour and improve explainability.
This airspace structure is a result from the Metropolis project,
which researched different ways to structure the airspace
to enhance operational efficiency and intrinsic safety of the
airspace [7]. A layered airspace was found to decrease the
number of conflicts through separation of the traffic in different
layers (segmentation effect) and by having aircraft flying in
similar directions in the same layer (alignment effect) [8].
However, vertically manoeuvring aircraft do not benefit from
the separation and alignment effect in layered airspace, result-
ing in an increase in conflicts and intrusions [9], [10]. Because
of this, solely focusing on the vertical conflicts not only aids in
the explainability, but is also relevant for improving the safety
of the vertical manoeuvres within the airspace.

To identify and highlight how different resolution manoeu-



vres result in different policies with unique strategies, a total
of four DRL models with a variety of degrees of freedom will
be trained in large-scale simulations, simulating both package
deliveries and take-offs. The policies of the models will be
evaluated by analysing the selected actions. The performance
of the models will also be compared to the MVP model in
terms of safety to ensure that the solutions of the methods, and
therefore the policies are valid. It is decided to use the MVP
algorithm as previous research has shown that it is optimal at
resolving conflicts whilst minimizing additional travel distance
[11].

II. PROBLEM FORMULATION

To compare the effectiveness of DRL and the MVP algo-
rithm at resolving vertical conflicts and improving the overall
safety of vertical manoeuvres, vertical operations will be
simulated in the BlueSky Open Air Traffic Simulator [12].
Drones will be tasked with either climb or descent commands
to a specific target layer within this airspace. During these
vertical manoeuvres, the goal of the model is to safely control
the drone to the target layer while avoiding intrusions with
other aircraft, e.g., resolve the existing conflicts before they
lead to an intrusion. From now on, individually controlled
aircraft will be referred to as agents, whereas the model is
used to define which policy is used by these individual agents.

For this research, the DRL and MVP models are further
subdivided into different models based on the freedom they
have in their actions, as it is currently unknown which set
of actions will result in optimal performance. In total three
individual actions can be isolated: a change in vertical speed,
a change in horizontal speed, and a change in heading. These
actions are combined to obtain the following ‘sub-models’:

• ‘vz’, control of the vertical speed only.
• ‘vh + vz’, control of the vertical and horizontal speed.
• ‘vh + hdg’, control of the horizontal speed and heading.
• ‘full’ (vh + hdg+ vz), or 3 degrees of freedom, control

of all motions.

III. METHODS

Here, the methods used in the experiments will be presented.
First, the Markov Decision Processes (MDPs) are formulated
as the foundation for the DRL methods. Then the employed
DRL algorithm, Soft Actor-Critic (SAC), will be further elab-
orated. Finally, an overview of MVP, the baseline resolution
method, will be given.

A. Markov Decision Process

To ensure that DRL can be used for the defined problem,
this problem must first be formulated as an MDP. An MDP
is a mathematical framework that can be used for decision-
making in systems with uncertainty. An important element of
the MDP is the so-called Markov property, which entails that
the future states of the system should only be dependent on
the current state of the system. For the scenario of conflict
resolution with MVP this Markov property holds, as for a
specific conflict, the used resolution manoeuvre, and therefore

future states, are independent of how these aircraft came to
be in conflict. It is therefore assumed that this property also
holds for DRL. This allows the problem to be formulated as
an MDP, described by the quadruple (S,A, P,R): [13]

1) S, the state space of the system.
2) A, the action space of the system.
3) P ([s, a], s′), the state transition function.
4) R(s, a, s′), the reward function.

The goal of the model is to learn which action a ∈ A given
a state s ∈ S maximizes the total reward

∑
r ∈ R over all

the state transitions s, a → s′, where s′ indicates the next state.

1) Observation Vector
The observation vector is a combination of the ownship

states and the (relative) states of the intruders. Note that the
number of aircraft in the vicinity of the ownship is variable,
but the proposed method requires the observation vector to
be constant in size. This means that the problem has to be
converted to a partially observable MDP (POMDP), hence why
the term observation vector is used instead of state. For this
research, it is decided to include 5 aircraft in the observation
vector sorted by time until the closest point of approach (Tcpa)
with a maximum distance at the closest point of approach
(Dcpa) of 250m, which is 5 times the minimum horizontal
separation (PZh) between 2 aircraft. This ignores aircraft that
are moving away from the agent and only includes the aircraft
with the smallest Tcpa in the vector, e.g, the aircraft that
require the most imminent action. An exception to this is made
for aircraft that are in conflict, these are prioritized over other
aircraft and are always included in the observation vector,
again sorted by Tcpa. All the horizontal states considered for
the observation vector are given in Figure 1. Apart from this
also the vertical distance, Dz , and relative vertical velocity,
Vw, are considered.

For the ownship observation, the height difference with the
target layer (∆h), vertical speed (Vz), horizontal speed (Vown)
and heading difference with the current layer (∆hdglayer) are
used. The final observation vectors for all the models are
given in Table I. Not all models are given the same vector
as it is assumed that a too-large observation vector containing
non-relevant information will negatively impact the required
training time of the models.

Finally, all vector elements are normalized using z-score
normalization (equation 1), which makes the distribution of
all features approximate zero mean and unit variance. The
values for σs and µs are determined by observing 100.000
state transitions. An exception for the normalization of the
observation vector is made for the conflict boolean parameter,
which is kept as a boolean.

S =
si − µs

σs
(1)

2) Action Space
For the action space, the allowable actions and their limits

have to be defined. The allowable actions are dependent on

2



Figure 1. Visualization of the (horizontal) states related to an intruder.

TABLE I. THE RESULTING STATE VECTOR FOR THE DIFFERENT EXPERI-
MENTS.

vz vh + vz vh + hdg full
Ownship States
Vz x x x x
Vown x x x
∆hdglayer x x
∆h x x x x
Intruder States (x5) ↓
Tcpa x x x x
Dcpa x x x x
Conflict x x x x
Dz x x x x
Dx x x x
Dy x x x
Vu x x x
Vv x x
brg x x
∆hdgint x x

the different models, defined in Section II. The limits for the
different actions are given in Table II. The increment column
indicates the maximum change in action per time step of the
simulation. Note that the sign of allowed vertical speed is
bounded to the objective of the agent.

TABLE II. ALLOWED RANGE AND INCREMENTS PER TIME-STEP FOR EACH
OF THE DIFFERENT ACTIONS.

Action Range Increment
Vertical Speed (m/s) [-5, 5] [-5, 5]
Horizontal Speed (m/s) [5, 15] [-1.5, 1.5]
Heading (deg) [0, 360] [-45, 45]

3) State Transition Function
The state transition function is fully determined by the

underlying dynamics implemented in the BlueSky Open Air
Traffic Simulator. These dynamics follow an open-source kine-
matic aircraft performance model developed from flight data
from Automatic Dependent Surveillance-Broadcast (ADS-B)
[14].

4) Reward
It is preferred to keep the reward function as simple as pos-

sible while encompassing all the requirements of the solution
to the problem [15]. This leads to the reward function given in
equation 2. Here starget refers to a state in which the agent is

in the corresponding target layer and sLoS is a state in which
an intrusion with the agent is present.

r =

 1 s = starget
−1 s = sLoS

0 otherwise
(2)

B. Deep Reinforcement Learning: Soft Actor Critic

To solve the (PO)MDP defined in section III-A, this study uses
the Soft Actor-Critic (SAC) DRL algorithm. SAC is an off-
policy, model-free, DRL algorithm, which means that it can
learn from past experiences without explicitly knowing the en-
vironment dynamics or reward function. The hyperparameters
used for this research are given in Table III and the same as
the ones used by the original authors with a reward scale of
20 [16].

TABLE III. HYPERPARAMETERS USE FOR THE SAC ALGORITHM.

Parameter Value
Optimizer Adam
Learning rate 3e-4
Discount factor (γ 0.99
Memory buffer size 10e6
Sample size 256
Smoothing coefficient (τ ) 5e-3
Number of layers 2
Neurons per layer 256
Network update frequency 1

C. Baseline Resolution Algorithm: Modified Voltage Potential

To provide a reference for the performance of the DRL
models, all scenarios are also simulated with the MVP conflict
resolution algorithm [17]. MVP determines the closest point
of approach of two aircraft, and, if the distance between the
two aircraft at CPA is smaller than the minimum separation
distance, a repelling ‘force’ is determined which changes the
velocity vector such that the shortest way out of the conflict
is determined. To ensure a fair comparison between the MVP
and the DRL models, the MVP model will have the same
constraints on their degrees of freedom imposed as their DRL
counterpart.

IV. EXPERIMENTAL SETUP

A. Experimental Scenario

For all conducted experiments, the goal of the agent is to
traverse through the different layers in a layered airspace and
reach the target layer without intrusions.

The layered airspace in question consists of 2 sets of 8
altitude layers, each having an allowed heading range of 45
degrees, covering all the possible heading angles twice. The
purpose of having 2 sets of layers is that long-distance travel
can be done at higher speeds in the top layers, whereas short-
distance commute is allocated to the slower bottom layers
[7]. For this research, however, the different layers function
solely as a way to artificially generate the need for vertical
manoeuvres. A transition layer is placed between each layer
that can only be accessed by aircraft conducting vertical
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manoeuvres, which allows the agent to adapt to the new layer
before merging. All layers are 7.62m (25ft) in height.

Within this airspace, aircraft operating in the top 8 layers
will have a certain probability to obtain a descent command
to one of the 8 bottom layers, simulating the delivery of a
package. Similarly, aircraft flying in the bottom 8 layers have
a probability to get a climb command, simulating the return
to a warehouse or place outside of the city. This probability is
selected such that on average 5% of the aircraft in the airspace
are conducting vertical manoeuvres at any given time. This
means that at any given time roughly 5% of the aircraft in the
airspace will be controlled by either DRL or MVP.

B. Traffic Density and Conflict Probability

The traffic density in the airspace is selected to be
188AC/km2 (55AC/NM2), equally distributed over all of
the heading layers, such he conflict probability between an
agent and any other aircraft, based on the equations in
Sunil [4], equals 10.0%.

C. Control Variables

1) Simulation time-steps
The simulation is run with time-steps of 1.5 seconds. Thus,

the DRL agent selects an action for the aircraft every 1.5
seconds. The MVP agent selects an action for the aircraft every
1.5 seconds only when in conflict.

2) Minimum Separation
The protected zone around all aircraft is set at 50m hori-

zontally (Rpz) and 7.62m (25ft) vertically (hpz). These values
are based on comparable work [18], as currently no standard
for separation requirements has been specified for unmanned
aviation.

3) Conflict Detection
For all experiments, instead of look-ahead time use is made

of a ‘search cylinder’ with a radius of 500m, spanning from the
agent’s altitude to the altitude of the target layer. All aircraft
within this cylinder with a Dcpa < PZh are evaluated for
potential conflicts. This is done by comparing the times in
and out of the horizontal and vertical minimum separation. If
there is an overlap between these times the aircraft are labelled
as in conflict. The choice for a look-ahead distance instead of
look-ahead time is made to ensure that aircraft that are flying
(almost) parallel to the agent, but that are very close in absolute
distance, will not be overlooked for state inclusion. This has
as a drawback that aircraft with a very high relative speed,
and therefore a much smaller Tcpa than other aircraft, might
initially be ignored.

4) Default Speeds
All cruising aircraft will be flying at a constant horizontal

speed of 10m/s. The default vertical speed for the baseline and
MVP during climb or descent is 4m/s.

5) Conflict Resolution
Conflict resolution is only performed by aircraft that are

vertically manoeuvring. For all aircraft that are not conducting
vertical manoeuvres conflict resolution is turned off.

D. Dependent Variables

Three safety metrics are used: the average number of conflicts
encountered during a vertical manoeuvre, the average time
spent in conflicts, and the average number of intrusions or
losses of minimum separation. The latter is the most important
as it directly relates to the safety of the operations. The
number of conflicts encountered can give a good indication
of the relative stability between the different methods and
the percentage of time spent in conflict can be related to the
efficacy of the performed resolution manoeuvres.

E. Experimental Hypotheses

1) DRL Model Policies
It is hypothesized that all the models that can control

the vertical speed will opt for a high mean vertical speed.
This hypothesis is based on the findings of Sunil and Tra
where it is shown that lower vertical speeds lead to more
intrusions [9], [10]. Heading changes on the other hand, are
expected to be relatively small in magnitude regardless of the
available degrees of freedom, as large heading changes will
also change the relative orientation of the observed aircraft by
the agent considerably. From a predictability point of view,
this is unfavourable, as the agent has less control over the
next state.

For the range of magnitudes for the selected actions, the
hypothesis is that this range will become smaller when more
degrees of freedom are introduced to the model. This is
because it can use coupling of the actions to resolve conflicts
with smaller changes to individual states.

Finally, it is expected that all policies will be predominantly
driven by the conflict boolean in order to minimize flight
path deviations. This is because flight path deviations can
result in secondary conflicts, which, when assuming a uniform
distribution of intrusion probability for all conflicts, will likely
also result in an increase in the number of intrusions.

2) Safety
In terms of safety, it is hypothesized that the models with

more degrees of freedom will have fewer intrusions than the
models with fewer degrees of freedom at the cost of higher
training time. This is because it was shown that having more
degrees of freedom increases the safety of a DRL model
in a lane-changing and merging task on the highway [19].
Simultaneously it is hypothesized that the total number of
conflicts will increase due to the Domino Effect of conflict
resolution manoeuvres [20].

V. RESULTS

A. Policy Analysis

One of the main issues with DRL, or methods utilizing deep
neural networks in general, is the ‘black box’ that underlies
the decision-making process. In an attempt to demystify the
behaviour of the trained models, this section will evaluate the
policies by analyzing the selected actions based on the Tcpa

and Dcpa of the first aircraft in the state array. For the heading
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Figure 2. Mean selected vertical velocities for the ‘vz’ model. The figure
shows a clear separation between conflict and non-conflicting flights, indicated
by the sharp line at Dcpa = 50m.

and horizontal velocity policy maps the mean absolute value is
used, as the distribution for both negative and positive values
is relatively equal, which would result in a mean close to zero
for all values of Tcpa and Dcpa.

The policy heatmap for the ‘vz’ model is given in Figure 2.
For the ‘vh+vz’ and ‘vh+hdg’ models the policy heatmaps are
shown in Figures 3 and 4, respectively. Finally, the heatmap
for the ‘full’ model can be seen in Figure 5.

Figure 2 shows the selected vertical velocities for the ‘vz’
model. In this figure, it is clearly visible that the conflict
boolean dictates the behaviour of the model. This is indicated
by the fact that the vertical velocity changes based on whether
or not Dcpa < 50m. This is in contrast with the vertical
velocities selected by the ‘vh+vz’ and ‘full’ methods (Figures
3,5), which do not show this distinction. This can be explained
by the fact that the ‘vz’ model is unable to influence the
value of the Dcpa variable, as it is only based on the closest
horizontal distance encountered, which is not affected by
the vertical velocity. All other methods (Figures 3, 4 & 5)
do have control over Dcpa through horizontal velocity and
heading commands. In these cases, the sharp contrast between
conflict and no conflict also disappears in their respective
policy heatmaps. This is interesting as there is no intrinsic
motivation for the agents to select actions that change the
trajectory if there is no conflict, but the behaviour is present
in all methods that were able to influence Dcpa.

Comparing the policies of the ‘vh + vz’ and the ‘vh +hdg’
models, which both have an action space of size = 2, a clear
difference can also be observed. From the ‘vh + hdg’ policy
maps (Figure 4) it can be seen that the policies for the change
in horizontal velocity and heading are highly correlated. The
‘vh + vz’ model (Figure 3) however does not show the
same correlation between the two actions. Instead, the model
keeps the vertical velocity relatively constant (except for
some outliers), and only uses the vertical velocity as a last
resort, indicated by the lower values close to Tcpa = 0 in
Figure 3a. This is in line with the hypothesis that a constant

Vertical
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/s)

Dcpa

T
c
p
a

(a)

∆
H

orizontal
Velocity(m

/s)

Dcpa

T
c
p
a

(b)

Figure 3. Policy heatmaps for the ‘vh + vz’ model. (a) Selected vertical
velocities. (b) Selected horizontal velocity changes.

higher vertical velocity is more favourable for minimizing the
number of intrusions, however, both the ‘vz’ and ‘full’ have a
lower mean vertical velocity which contradicts this hypothesis.
Furthermore, the correlation for the heading and horizontal
velocity changes present in the ‘vh + hdg’, and to a lesser
extent in the ‘full’ model, can potentially be explained by the
fact that both affect the relative horizontal velocity and can
therefore be effectively used in conjunction. However, more
research is necessary to strengthen this hypothesis.

Finally, analyzing the policy for the ‘full’ method (Figure
5) and comparing it with the policies for the ‘vh + vz’ and
‘vh + hdg’ methods (Figures 3,4), some differences are again
observed. Most notably the policy for the ‘full’ method seems
to be more homogeneous in the selected action, showing less
contrast between clear areas of danger and areas of relative
safety. This is also indicated by the lower overall range in
magnitudes in the heatmaps. This can partially be explained
by the fact that more degrees of freedom allow conflicts to
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Figure 4. Policy heatmaps for the ‘vh + hdg’ model. (a) Selected horizontal
velocity changes. (b) Selected heading changes.

be resolved with fewer extreme actions through a coupling
of the actions, and is in line with the initial hypothesis. It
can, however, also indicate that it is harder to generate a
proper policy with too many degrees of freedom, resulting
in less resolute behaviour. This observation is supported by
the relatively unstructured policy maps in comparison with
the other policies.

B. Safety Analysis

Evaluating the total number of conflicts, which are predicted
intrusions and shown in Figure 7, it is observed that for all
cases the total number of conflicts encountered during opera-
tions increases in comparison to the ‘No Resolution’ method.
This is a frequent occurrence often referred to as the Domino
Effect [4], [20]. Essentially, the manoeuvres employed by the
agents to resolve conflicts lead to a larger airspace volume
being used by the state-based conflict detection method. This
in turn increases the number of potential conflict pairs when
compared to flying in a straight line. The most significant

increase in the number of conflicts is observed in the ‘vz’
and ‘full’ models, which may be partially attributed to the
overall lower vertical speed demonstrated by these models
during operations, as illustrated in Figures 2 and 5a. This is
because these lower vertical speeds also increase the overall
duration of the vertical manoeuvres, which can result in an
increase in the number of conflicts encountered. A noteworthy
observation is that the aforementioned Domino Effect appears
to be less prominent in the ‘vh + vz’ and ‘vh + hdg’ DRL
models compared to their corresponding MVP models. It is
hypothesized that this can be attributed to the ability of the
DRL models to act when not in conflict. This allows it to
increase the Dcpa margins whilst not in conflict, allowing more
room for resolution manoeuvres that do not result in secondary
conflicts.

Finally, observing the total number of intrusions per flight
given in Figure ??, it is evident that all methods successfully
reduce the total number of intrusions when compared with the
no-conflict resolution scenarios. Further inspection of Figure
?? also shows that increasing the degrees of freedom does
not necessarily result in a safer policy for the DRL model.
This observation is intriguing since the policy of the DRL ‘vz’
model constitutes a part of the solution space of the ‘vh+ vz’
and ‘full’ models, and similarly, the policy of the MVP
models is a part of the solution space of their corresponding
DRL models. The performance of the ‘vh + vz’ and ‘full’
models, however, fail to match that of the better available
policies, suggesting that these models may be stuck in a local
optimum, or require longer training time. This highlights one
of the drawbacks of using Deep Reinforcement Learning for
higher-dimensional problems. With more actions, the required
exploration increases exponentially, increasing the required
training time whilst decreasing the guarantee of convergence
to the global (or a more optimal local) optimum.

A final remark is that the DRL model found a horizon-
tal resolution method that outperforms the MVP model in
terms of safety. As already shown in Section V-A, the DRL
models also acted when not in conflict. It is possible that
this results in fewer conflicts during vertical manoeuvres and
larger buffer areas around other aircraft, which in turn leads to
fewer potential conflicts leading to an intrusion and increases
the available solution space in the scenarios where conflicts
present themselves.

VI. DISCUSSION

A. Policy Analysis

The findings demonstrate significant variability in observed
policies for different conflict resolution DRL models, depend-
ing on their degrees of freedom. However, the study also found
similarities between the ‘vh + vz’ and ‘vh + hdg’ models,
indicating the possible existence of common ground rules that
result in fewer intrusions and secondary conflicts. Although it
might be difficult to directly implement DRL-based methods
as a resolution method due to the black box nature of DRL,
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Figure 5. Policy heatmaps for the ‘full’ model. (a) Selected vertical velocities. (b) Selected horizontal velocity changes. (c) Selected heading changes.

vz vh + vz vh + hdg full

Figure 6. Average number of conflicts encountered during a vertical manoeu-
vre.

vz vh + vz vh + hdg full

Figure 7. Number of intrusions per vertical manoeuvre.

analyzing the resulting behaviour can still provide valuable
insights for enhancing analytical methods.

It is observed that the ‘vh + vz’ and ‘vh + hdg’ models
act even when the Dcpa is larger than 50 meters, the con-
flict cut-off. This behaviour effectively increases the mini-
mum horizontal separation used in decision-making, which
is considered to decrease airspace stability by increasing the
number of conflict resolution manoeuvres, and thus secondary
conflicts [4]. This increase in secondary conflicts is however
not observed for these models, indicating that this acting while
not in conflict behaviour effectively functions as an additional
conflict prevention layer, not present in conventional conflict
resolution methods. This has two potential benefits. First,
conflict prevention requires smaller deviations from the current
flight path than resolving conflicts. Second, this creates larger
margins with other aircraft, increasing the available solution
space in the case of new conflicts, and potentially reducing the
occurrence of multi-conflict scenarios where finding a solution
is challenging.

An interesting next step would be to use the observed
policies to generate a set of rules or alterations to existing
conflict resolution methods, incorporating the trends observed
in the DRL methods. If this can be successfully done it will
allow conventional analytical methods to benefit from the
exploratory nature of DRL methods.

B. Safety Analysis

The safety analysis showed that the DRL model outperforms
the MVP model for the ‘vh+hdg’ cases. This difference may
be attributed to the lower total number of conflicts observed by
the DRL method, as a lower number of conflicts directly influ-
ences the total number of potential intrusions. When actually
comparing the number of intrusions to the number of conflicts,
the MVP model still resolves a higher fraction of conflicts
(0.33% vs 0.15% of conflicts resulting in an intrusion for the
DRL and MVP method respectively). The main reason for the
higher effectiveness of the DRL method for the ‘vh+hdg’ case
should therefore be attributed to conflict prevention, rather than
conflict resolution. Additionally, the DRL model’s capability
to execute conflict resolution manoeuvres at different moments
depending on the conflict geometry allows for more optimal
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conflict resolution timing when compared to the MVP model,
which has a fixed resolution time step for all geometries.
Previous research has indicated that a constant look-ahead
distance or time may not be the most effective approach [21].

The reduction in conflicts is not observed in the vz and the
full model, both of which have a high increase in the number
of conflicts. This can be explained by the vertical velocity
of these methods shown in Figures 2 and 5a respectively.
Both of these methods use a low vertical velocity during ‘safe
operation’, resulting in longer duration of the manoeuvres, and
hence more conflicts. This result is in agreement with the
results of the study done by Tra. Et al. which found that a
higher vertical velocity is better for the overall safety [10].
This also indicates that the models have likely converged to
a local optimum, resulting from the fact that a lower vertical
velocity results in a lower number of intrusions per unit time,
but not per episode. This can potentially be mitigated by
increasing the γ hyperparameter to ensure a higher weight
is given to future penalties.

C. Limitations and Recommendations

Finally, it is important to acknowledge the limitations of
the results due to the experimental setup and the scope of
the research. For instance, the traffic scenarios used in the
study can be modified to include higher or variable traffic
densities and aircraft flying at different cruising velocities.
Furthermore, it is challenging to predict the performance of
the DRL model in more complex traffic scenarios where not
all aircraft adhere to altitude layers, or how the method and
corresponding policies would change in non-vertical conflict
scenarios such as during cruise or for general/commercial avia-
tion applications. To estimate the true effectiveness of DRL for
safe manoeuvring, it should be trained and tested in a variety
of different traffic scenarios consisting of operations during all
stages of flight (potentially using different models/policies for
different conditions) and at various traffic densities.

Another limitation of the research was the non-resolution
behaviour of the cruising aircraft, this is analogous to merging
on the highway without other road vehicles giving way, and is
likely, not optimal in terms of overall safety. Therefore a next
step of the research could be to also activate conflict resolution
for cruising aircraft. This will remove the stationarity and
predictability from the environment and better demonstrate the
DRL model’s ability to handle emergent behaviour. However,
this will also result in a massive multi-agent operation that
may adversely affect the stability and duration of training, and
will hinder proper policy analysis, as is done in this research,
potentially decreasing the explainability of the methods. Nev-
ertheless, the obtained results show that DRL can be a potential
solution for improving safety and providing novel insights into
safe operations through analysis of the trained policies.

VII. CONCLUSION

This paper tried to enhance the explainability of Deep Rein-
forcement Learning (DRL) methods for the task of conflict res-
olution. It was found that the methods actively changed the tra-

jectory, even in non-conflicting states, which is different from
conventional analytical conflict resolution algorithms such as
the Modified Voltage Potential (MVP) Algorithm. Moreover,
a few of the DRL methods obtained fewer secondary conflicts
than their respective MVP counterparts, indicating that the
learned policy effectively learned to decrease the domino effect
commonly observed in conflict resolution methods. Although
not all trained models obtained satisfactory behaviour, the low
number of secondary conflicts observed in two of the models
shows that it is possible to reduce the number of intrusions
while minimizing the domino effect. Because this domino
effect is linked to airspace stability, future studies should
investigate how and if analytical methods can be enhanced
with pre-emptive acting as observed in the policies of the
DRL models to ensure that safety at higher traffic densities
is maintained.
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