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Macroscopic multi-station short-turning model in case of complete railway
blockages

Nadjla Ghaemia,˚, Oded Catsa, Rob M.P. Goverdea

aDepartment of Transport and Planning, Delft University of Technology, The Netherlands

Abstract

In case of railway disruptions, traffic controllers are responsible for dealing with disrupted traffic and reduce

the negative impact for the rest of the network. In case of a complete blockage when no train can use an entire

track, a common practice is to short-turn trains. Trains approaching the blockage cannot proceed according

to their original plans and have to short-turn at a station close to the disruption on both sides. This paper

presents a Mixed Integer Linear Program that computes the optimal station and times for short-turning the

affected train services during the three phases of a disruption. The proposed solution approach takes into

account the interaction of the traffic between both sides of the blockage before and after the disruption.

The model is applied to a busy corridor of the Dutch railway network. The computation time meets the

real-time solution requirement. The case study gives insight into the importance of the disruption period

in computing the optimal solution. It is concluded that different optimal short-turning solutions may exist

depending on the start time of the disruption and the disruption length. For periodic timetables, the optimal

short-turning choices repeat due to the periodicity of the timetable. In addition, it is observed that a minor

extension of the disruption length may result in less delay propagation at the cost of more cancellations.

Keywords: railway disruption, optimization, short-turning

1. Introduction

In railway operation unplanned events such as infrastructure failures, rolling stock breakdown, and inci-

dents are recurrent and unavoidable. As a result, a part of a railway track might be unavailable for several

hours. In such cases, the traffic controllers have to deal with the disrupted traffic. Short-turning is a com-

mon practice to isolate the disrupted area. This measure suggests that those train services that are heading

towards the disrupted area, short-turn in an earlier station and provide service in the opposite direction. In

this way, some services can still be offered in the opposite direction and the trains do not queue up in the

stations close to the disrupted area. Consequently, the disrupted area can be isolated from the rest of the
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network.

To improve the performance during the disruption, traffic controllers commonly use pre-defined solutions

called contingency plans. Each contingency plan is manually designed for a specific disrupted area given

a specific timetable. These plans resemble if-then scenarios: if a certain part of the infrastructure is out

of service, then specific disruption measures should be pursued. The main input for designing contingency

plans are the original timetable (basic hourly pattern) and the infrastructure layout around the disrupted

location. The contingency plan then provides the disruption timetable structure that includes the cancelled

services, operating services, and short-turned services. For each short-turned service, the arrival, departure,

platform track and the train line numbers are indicated. The advantage of these contingency plans is that

they provide some guidelines and consensus when there is a need for a fast action to deal with the disruption

Ghaemi et al. (2017b).

During disruptions the level of service decreases and remains so until the cause of disruption is solved and

the original operation can be resumed. From this perspective the traffic level during a disruption resembles

a bathtub as shown in Figure 1. Corresponding to the bathtub, the disruption period is divided into three

phases. The first and third phases are called transition phases as they represent the transition of operation

from the original timetable to the disruption timetable in the second phase and vice versa. First phase starts

as soon as the blockage starts. Usually there are some irregularities (e.g. unplanned short-turnings) during

the first phase before a stable and reduced timetable (disruption timetable) can be implemented.

There are several processes during the first phase including receiving the disruption notification, an-

nouncing the disruption in the online system, identifying the exact disrupted location, selecting the relevant

contingency plan and finally executing the plan. A study by van Zon and Wink (2014) on 452 disruption

cases of the Dutch railway network reports that the first phase can take on average around 40 minutes. In

this study it is also shown that the longest process relates to selecting the relevant contingency plan and

adjusting it which can take on average around 16 minutes. The third phase starts when it is known that the

blockage is resolved and the train services can resume operating in the previously disrupted area. However

it takes some time to recover from the disruption timetable to the original timetable as is shown in Figure

1. For detailed processes during each phase see Ghaemi et al. (2017b).

Besides being static and inflexible, the main drawback of the contingency plans is that they do not

provide any support for handling the transition phases. Having fast and smooth transition plans is essential

for quickly resuming the disruption timetable in the second phase and recovering the original timetable

in the third phase. The existing contingency plans are not able to provide any support for the execution

of the transition phases, since they do not take into account the disruption period. After all, different

causes of disruption can lead to different disruption lengths (Zilko et al. (2016)). This leaves the traffic
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Figure 1: The service level during disruptions (Ghaemi et al. (2017b)).

controllers without any support for making decisions in the transition phases. Besides the fact that the

existing contingency plans do not suggest the optimal solution, with each update in the infrastructure or

operation, the contingency plans need to be manually updated. Moreover, certain disruption may not have

a corresponding contingency plan. A slight difference between the timetable in operation and the one used

for designing the contingency plan may make the latter invalid.

The rescheduling domain in case of disruptions specially at the microscopic level is relatively unexplored,

as Cacchiani et al. (2014) and Ghaemi et al. (2017b) conclude. Since disruptions of complete blockages can

have a huge impact on the network it is necessary to consider bigger areas as opposed to the disturbances that

perturb a timetable locally. The microscopic approaches, such as Pellegrini et al. (2014) or Caimi et al. (2012),

can only include relatively small areas due to the magnitude of the modelled details. Despite techniques

such as the one developed by Samà et al. (2017) to reduce the number of route choices, considering several

stations at the microscopic level can lead to long computation times. Thus the focus of this literature is on

the macroscopic rescheduling models that can handle disruptions. Xu et al. (2017) developed a rescheduling

model for disruptions caused by temporary speed restrictions. Since there is no blockages short-turning

is not considered as a rescheduling measure. Coor (1997) investigates the impact of the short-turning

strategy on the passenger waiting time on a high-frequency single transit line and concludes that in case

of severe delays it is more beneficial than in case of small delays. In another study by Shen and Wilson

(2001) different strategies such as short-turning, holding and stop skipping are examined. It is concluded

that the combination of short-turning and holding strategies can reduce the mean passenger waiting time

considerably. Ghaemi et al. (2016) model short-turning exclusively as a main measure to handle disruptions

during the second phase. Only one side of the disruption is considered and the impact of the transitions are

discarded. Its focus is on the trade-off between cancellation and delays by selecting different cancellation and

delay penalties. Ghaemi et al. (2017a) extend the microscopic rescheduling model developed by Pellegrini

et al. (2014) with the short-turning model presented in Ghaemi et al. (2016). Louwerse and Huisman (2014)

develop a MILP model to compute the disruption timetable by maximizing the service level. Similarly Binder
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et al. (2017) develop an ILP model to compute a disruption timetable with three objectives of passenger

satisfaction, operational costs and deviation from the original timetable. Veelenturf et al. (2017) developed

a heuristic to adapt the timetable during disruption. To find the best adaptation, a list of alternative

timetables are evaluated in terms of rolling stock and passenger flow and the one with the least consequences

is selected. These references focus on the second phase of the disruption and neglect the transition phases.

There are a few models that address the recovery from a disruption such as Jespersen-groth et al. (2009),

Meng and Zhou (2011), Narayanaswami and Rangaraj (2013), and Zhan et al. (2015). However, they do not

provide any support for the second phase of the disruption. There are a few references such as Nakamura

et al. (2011) and Veelenturf et al. (2016) that provide a disruption timetable and implicitly take into account

the recovery phase. The model developed by Nakamura et al. (2011) does not optimize the timetable but

instead the solution is provided by performing specific steps. These steps identifying the cancelled and

short-turned services, assigning rolling stock to each scheduled departure and finally resolving the mismatch

for scheduled departures that need rolling stock to operate. Veelenturf et al. (2016) extends the model by

Louwerse and Huisman (2014) which maximizes the service level taking into account three resources; open

track, station track and rolling stock. However this model only allows short-turning in the final station

before the disruption and the possibility of short-turning in the preceding station due to the limited capacity

is not included. In their approach services from the affected lines are divided into three parts from which

the second part are those that are scheduled to operate in the disrupted area. In case these services are

cancelled, then the first part or third part might also be cancelled. Moreover it is assumed that the third

phase takes a specific amount of time. The research on the first phase is indeed limited. Chu and Oetting

(2013) provide insight into the processes during the first phase and recommend to take into account the extra

time while designing the contingency plans. Hirai et al. (2006) also focus on the first phase by proposing an

algorithm to compute the stopping stations for the disturbed train lines.

In case of disruptions the rolling stock circulation is rescheduled based on the rescheduled timetable, as

Jespersen-groth et al. (2009) highlight. Thus many rolling stock rescheduling models such as those proposed

by Nielsen et al. (2012), Cacchiani et al. (2012) and Wagenaar et al. (2017) assume a predefined timetable.

To the best of our knowledge, the existing literature on optimal rescheduling and short-turning does not

concretely address the three phases of disruption and specially the traffic interaction from both sides of

the blockage upon the disruption resolution while accounting for rolling stock. For a review of the related

literature see Ghaemi et al. (2017b).

This paper presents a macroscopic rescheduling model which is an extension of the model introduced by

Ghaemi et al. (2016). The macroscopic rescheduling model computes a three-phase disruption timetable,

including the recovery plan for the case of a complete blockage given a certain disruption length. The main
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contributions of the paper are as follows:

• A macroscopic MILP model is developed to compute the disruption timetable and the transition plans

given a certain disruption period.

• Depending on the available infrastructure capacity the short-turning can take place in multiple stations.

• The traffic on both sides of the disrupted location during the three phases are taken into account.

• It is shown that the disruption length affects the optimal periodic short-turning solution of the second

phase.

The structure of the paper is as follows. The three-phase rescheduling problem is elaborated in Section

2. Section 3 presents the mathematical formulation of the MILP model. In Section 4 the results of the

application of the model on a Dutch railway corridor are discussed. Finally, the conclusions are given in

Section 5.

2. Problem Description

In case of large disruptions, the rescheduling decisions are usually made by the traffic controllers located

in the centralized traffic control center who monitor and control the entire network. If there is no relevant

contingency plan, the traffic controllers have to quickly respond and devise a feasible plan for short-turning

train services that are heading towards the disrupted location. The train services that are running towards the

disrupted location are referred to as approaching train services throughout this study. The traffic controllers

have to decide how to assign the approaching train services to the scheduled departures in the opposite

direction. Having multiple train services that need to be short-turned on both sides of the disrupted location

and communicating the plan with other traffic controllers to reach a consensus would take a long time

and might postpone the recovery. Hence an algorithm that can quickly compute the optimal short-turning

solution on both sides of the blockage as well as the transition to the original timetable can speed up the

process. Before defining the problem, it is necessary to explain how a service is defined in this study. Figure

2 illustrates the time-distance diagram for two opposite trains from station a to station d (downwards) and

from station d to station a (upwards). Each service vil,n is characterized with three indicators: l identifies

the line number that determines the stopping stations, n represents the operation time of the service and i

indicates the sequence of the service within line l. In this way each service is recognized as a trip between

two consecutive stations. Hence the following service from station a to b that is performed by the rolling

stock of service vil,n from the same line is denoted by vi`1
l,n . As shown in figure 3 the next service of the same
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Figure 3: Different short-turning possibilities.

line from station a to b is denoted by vi`1
l,n`1 where n` 1 indicates that this service operates in the following

cycle.

In case there is a disruption in station c, the approaching trains cannot proceed further and they have

to short-turn before the disrupted area. In Figure 3 an approaching train vil,n has to short-turn the latest at

station b. The blockage results in cancellation of the services from station d to c and from c to b. Thus the

services from b to a and from a upwards have to be performed by the short-turning trains. As is illustrated

with the red short-turning arcs, there are two scheduled departures possible from station b to a; vj´1
l,m and

vj´1
l,m`1. If the capacity is not sufficient for short-turning all approaching trains, then the trains can also

short-turn a station earlier to scheduled departures vjl,m or vjl,m`1. Thus each approaching train has multiple

short-turning possibilities in different stations. The optimal choice of short-turning is the main problem in

the second phase of the disruption. The traffic scheduling decisions during the first and third phases directly

depend on the start and end times of the disruption period. Note that the optimal short-turning choice in
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the second phase is dependent of the disruption period. The first phase deals with the services that depart

towards the disrupted location before the start of the disruption. Logically these services need to short-turn

in the next stations even if the initial schedule did not include this stop. The third phase starts when train

services can start again using the previously blocked section and lasts until the original timetable is resumed.

In order to plan for the third phase, it is assumed that the end of the disruption is known in advance.

Figures 4 and 5 show two time-distance diagrams for a disruption with same start time and two different

disruption lengths. In this example, station c is disrupted. The train services need to short-turn either at

stations b and d or those preceding them, namely stations a and e.
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Figure 4: Disruption scenario with equal number of short-turnings

The two vertical lines represent the start and end times of the disruption. Note that each short-turning

is the assignment of an arriving train to a scheduled departure in the opposite direction. Consequently,

the short-turning trains on one side of the disrupted location correspond to the scheduled departures of the

short-turnings on the other side of the disrupted location. For example, if the train service vil,n (or vi`1
l,n )

short-turns in station a (or b), then vi`4
l,n (or vi`5

l,n ) needs to be performed by a short-turning in station d (or

e).

The train services that are affected by the blockage are those that run towards disruption with the

scheduled arrival at station c and those that are scheduled to depart from station c within the disruption

period. In Figures 4 and 5, the approaching train services are shown by arrows. Moreover, the scheduled

departures on the other side of the disruption corresponding to the approaching train services are also

depicted by arrows.
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Figure 5: Disruption scenario with unequal number of short-turnings

The number of approaching train services for short-turnings on each side of the disruption may either be

equal or unequal, depending on the disruption period. Figure 4 and Figure 5 show disruption scenarios with

an equal and unequal number of approaching trains services, respectively.

An equal number of approaching train services on both sides of the disrupted location also implies equal

approaching train services and scheduled departures on each side. As is shown in Figure 4 there are two

approaching train services on each side. In this case, the train services vi`1
l,n and vi`1

l,n`1 from one side and

train services vj´4
l,m and vj´4

l,m`1 from the other side are approaching stations b and d. These train services need

to short-turn at or prior to stations b and d. Note that the model can also suggest early short-turnings of the

corresponding services (vil,n, vil,n`1 and vj´5
l,m , vj´5

l,m`1 ) in stations a and e. By short-turning the train services

vi`1
l,n and vj´4

l,m , the services vi`2
l,n and vj´3

l,m need to be cancelled. These cancelled services are represented

using solid grey lines. Similarly, the train services vi`1
l,n`1 and vj´4

l,m`1 can short-turn. Alternatively, these

services can wait at stations b and d until the disruption is over, and then continue according to the original

timetable. Thus, instead of getting cancelled, vi`2
l,n`1 and vj´3

l,m`1 depart with some delay. Consequently two

scheduled services in the opposite directions (e.g. vj´1
l,m`1 and vi`4

l,n`1) get cancelled. To model this possibility

vi`2
l,n`1 and vj´3

l,m`1 are defined as recovery services. In case of an equal number of approaching trains services,

the recovery services consist of the successive services corresponding to the final approaching train services

on both sides of the disruption. These services are illustrated by dashed lines.

An unequal number of approaching train services implies that on one side of the disruption, there are

more approaching train services than scheduled departures in the opposite direction and vice versa on the
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other side. Figure 5 is an example where there are two approaching train services vj´4
l,m and vj´4

l,m`1 in station

d (or vj´5
l,m and vj´5

l,m`1 in station e) and one approaching train service vi`1
l,n in station b (or vil,n a). Since there

are two approaching train services in station d and only one possible scheduled departure in the opposite

direction, only one short-turning can take place and the second approaching train has to wait until the

disruption is over and it can continue towards station a. In case of an unequal number of approaching train

services, the recovery service is the successive service corresponding to the final approaching train service on

the side with more approaching train services. In this case the recovery services vj´3
l,m`1 can only depart with

some delay.

In the third phase, there might be congestion resulting from the train services that are waiting for the

end of the disruption period until they can start running towards the other side of the previously blocked

section.

3. Mixed-Integer Linear Programming Formulation

Before defining the variables and constraints of the Mixed Integer Linear Programming model, it is

necessary to introduce the assumptions and construct the relevant sets. Section 3.1 lists the underlying

assumptions. The sets are defined in Section 3.2 followed by the MILP model in Sections 3.3 and 3.4.

Finally Section 3.5 describes how different phases of disruption are measured.

3.1. Model assumptions

The model in its current formulation addresses the disruption cases where a station is completely blocked

for a certain disruption period. However with some minor adjustments, the model can be applied for complete

blockages of open track sections. The main assumptions of this model are that the disruption length is known

upon occurrence and the timetable is cyclic. Literature proposes several models to predict the disruption

length from which we refer to the model by Zilko et al. (2016) that is based on Copula Bayesian Network.

It is also assumed that each service can only short-turn to replace a service from the same line. Thus the

possibility of short-turning an intercity train and replacing a service from the local line is excluded to avoid

complications in rolling stock circulation. The proposed MILP problem is a macroscopic model and does

not provide microscopic solution that determines the utilization of every track detection section. Instead

a minimum headway is considered to avoid any conflict between the operating services. In addition, the

running, dwell and short-turning times are assumed as input.

3.2. Preprocessed sets based on the disruption period

The notation is listed in Table 1. For notation simplification, the approaching train services are shown as

v1 and those services that are scheduled to approach the disrupted station are denoted by v2. Finally, those
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Table 1: The notation of the input used in the macroscopic model

S The set of all stations s.

L The set of all lines l.

V The set of all scheduled services.

Vl,n Ă V The nth set of ordered services in line l.

vil,n Ă Vl,n The ith service in set Vl,n.

Ps,vi
l,n

The set of platform tracks for service vil,n in station s.

Svi
l,n
Ă S The departure and arrival stations psd

vi
l,n
, sa

vi
l,n
q of vil,n.

S0 Ă S The disrupted station (x).

S1 Ă S The first surrounding stations (b and d) around the disrupted station x.

S2 Ă S The secondary surrounding stations (a and e) around stations in S1.

Sl Ă S The set of possible short-turning stations for line l.

dil,n The scheduled departure time of service vil,n.

ail,n The scheduled arrival time of service vil,n.

θmin
vi
l,n

The minimum short-turning time needed for service vil,n.

τ run
vi
l,n

The running time of service vil,n between two stations.

τdwell
vi
l,n,v

i`1
l,n

The dwell time between service vil,n and service vi`1
l,n in the station.

τh
vi
l,n,v

u
w,z

The minimum headway time between two train services vil,n and vuw,z.

ωc
vi
l,n

The penalty for cancelling service vil,n.

ωz
vi
l,n

The penalty for delaying the arrival of service vil,n.

ts The start time of disruption.

te The end time of disruption.

M A large constant.

services that are scheduled to move away from the disrupted area are denoted as v3 regardless of their line

specifications. Before formally defining these sets, an example is used to make a better distinction between

them.

This example shows three operating lines pk, l,mq in one direction. Thus the approaching services to

station a, b, and c each consist of three sets that are shown distinctively in each column,

V 1a,k “ tv
z
k,n, v

z
k,n`1u, V 1b,k “ tv

z`1
k,n , v

z`1
k,n`1u, V 2c,k “ tv

z`2
k,n , v

z`2
k,n`1u,

V 1a,l “ tv
i
l,n, v

i
l,n`1u, V 1b,l “ tv

i`1
l,n , v

i`1
l,n`1u, V 2c,l “ tv

i`2
l,n , v

i`2
l,n`1u,

V 1a,m “ tv
p
m,n, v

p
m,n`1u. V 1b,m “ tv

p`1
m,n, v

p`1
m,n`1u. V 2c,m “ tv

p`2
m,n, v

p`2
m,n`1u.

Similarly the services that move away from the disruption and depart from station d and e each consist of

three sets that are shown distinctively in each column,

V 3d,k “ tv
z`4
k,n , v

z`4
k,n`1u, V 3e,k “ tv

z`5
k,n , v

z`5
k,n`1u,
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Figure 6: Different lines operating in one direction.

V 3d,l “ tv
i`4
l,n , v

i`4
l,n`1u, V 3e,l “ tv

i`5
l,n , v

i`5
l,n`1u,

V 3d,m “ tv
p`4
m,n, v

p`4
m,n`1u. V 3e,m “ tv

p`5
m,n, v

p`5
m,n`1u.

In the preprocessing step, the following sets are defined.

• The set of lines l that are planned to operate in the disrupted area during the disruption,

LDist “ tl P L|Di, n, Svi
l,n
Ď tS1, S0u, ts ď ail,n ď teu.

• The set of all approaching services vil,n to station s P S1 Y S2 from line l for which the service vi`1
l,n (or

vi`2
l,n ) is scheduled to arrive at S0 within the disruption period,

V 1s,l “ tv
i
l,n P V |s “ savi

l,n
, sdvi

l,n
R tS1, xu, Dz P ti` 1, i` 2u, ts ă azl,n ă te, u, @s P S1 Y S2, l P LDist.

• The set of all services vil,n from line l that are scheduled to depart from station s P S1 and arrive at

station x within the disruption period,

V 2s,l “ tv
i
l,n P V |s “ sdvi

l,n
, savi

l,n
“ x, vi´1

l,n P V 1s,lu, @s P S1, l P LDist.

• The set of services that are scheduled to depart from station s P S1 Y S2 from line l P LDist and run

away from station x,
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V 3s,l “ tv
j
l,m P V |s

d
vj
l,m

“ s, vj´2
l,m , vj´3

l,m P V 2s̄,l, s̄ P S1, l P LDistu, @s P S1 Y S2.

• To compute the optimal short-turnings, all the possible pairs of approaching train services and sched-

uled departures in the opposite direction in the relevant stations are defined by the following sets,

Outvi
l,n
“ tpvil,n, v

j
l,mq|v

j
l,m P V

3
s,lu, @vil,n P V

1
s,l, s P S1 Y S2, l P LDist,

Invj
l,m
“ tpvil,n, v

j
l,mq|v

i
l,n P V

1
s,lu, @vjl,m P V

3
s,l, s P S1 Y S2, l P LDist.

• Since the disruption period is assumed to be known in advance, in the preprocessing step the services

in the first phase can be predetermined. Considering the first phase starting with a reduction in the

traffic level, the approaching services in the first phase are denoted as V 1s,l,red. This set consists of the

approaching service to station s from line l that depart before the start of the disruption and arrive

within the disruption period. They are a subset of the approaching services V 1s,l that already departed

from their possible short-turning station and they have to short-turn in the final station before the

disruption. They are defined by the following set,

V 1s,l,red “ tv
i
l,n P V

1
s,l | d

i
l,n ă ts, s R Slu, @l P LDist.

• Similarly the scheduled departures in the opposite direction in the first phase are denoted as V 3s,l,red.

This set consists of the first scheduled departure from station s and line l in the opposite direction for

which there is no rolling stock available and thus can be performed by short-turning the approaching

train in the first phase. The scheduled departures in the opposite direction in the first phase are defined

by the following set,

V 3s,l,red “ tv
j
l,m P V

3
s,l | d

j
l,m ă djl,w, s R S

lu, @vjl,w P V
3
s,l, l P LDist.

• Based on the defined sets in the first phase, the short-turning couples of the first phase are denoted as

shtred and are defined by the following set,

shtred “ tpv
i
l,n, v

j
l,mq | v

i
l,n P V

1
s,l,red, v

j
l,m P V

3
s,l,redu, @l P LDist.
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• Likewise, the services of the third phase can be predetermined. The services that may use the blocked

section after the disruption is over, are called recovery services and are denoted as V 2s,l,rec. The recovery

service is defined as the last service on those lines which have a greater or equal number of approaching

services than scheduled departures in the opposite direction:

V 2s,l,rec “

$

’

’

&

’

’

%

tvil,n P V
2
s,l | a

i
l,w ă ail,nu, @vil,w P V

2
s,l, s P S1, l P LDist if |V 1s,l| ě |V

3
s,l|

H, otherwise.

3.3. Decision variables

The decision variables are formulated as either continuous or binary variables. The continuous decision

variables represent time and are non-negative:

ta
vi
l,n

: The arrival time of service vil,n.

td
vi
l,n

: The departure time of service vil,n.

zvi
l,n

: The arrival delay of service vil,n.

The decisions regarding occupying a platform track, cancelling a service, and the choice of short-turning

are represented by binary decision variables:

pvi
l,n,q

“

$

’

’

&

’

’

%

1 if vil,n arrives at platform track q,

0 otherwise;

cil,n “

$

’

’

&

’

’

%

1 if vil,n is cancelled,

0 otherwise;

λv1,v3 “

$

’

’

&

’

’

%

1 if v1 short-turns to v3,

0 otherwise.

3.4. Objective function and constraints

The objective function includes two terms, penalized cancellations and delay,

min
ÿ

vi
l,nPV

pωc
vi
l,n
¨ cil,n ` ω

z
vi
l,n
¨ zvi

l,n
q, (1)

where ωc
vi
l,n

and ωz
vi
l,n

are penalties for cancellation and arrival delay of service vil,n.
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3.4.1. Running, dwell, delay and departure time constraints

tavi
l,n
´ tdvi

l,n
“ τ runvi

l,n
, @vil,n P V, (2)

td
vi`1
l,n

´ tavi
l,n
`M ¨ pcil,n ` c

i`1
l,n q ě τdwell

vi
l,n,v

i`1
l,n

, @vil,n, v
i`1
l,n P V, (3)

tdvi
l,n
´ dil,n ě 0, @vil,n P V, (4)

tdvi
l,n
´ dil,n ď p1´ c

i
l,nq ¨M, @vil,n P V, (5)

zvi
l,n
“ tavi

l,n
´ ail,n @vil,n P V, (6)

tdvi
l,n
ě te @vil,n P V

2
s,l,rec, s P S1, l P LDist (7)

Minimum running and dwell times are considered by constraints (2) and (3). The departures should

respect the schedule. Constraints (4) enforce this restriction. To avoid double penalties for cancelled services,

their operations are modelled on time. Constraints (5) make sure that the departures of cancelled services

are the same as the schedule. Constraints (6) measure the arrival delays. The recovery services can only

operate after the end of the disruption. Constraints (7) ensure this restriction.

3.4.2. Short-turning constraints

ÿ

pv1,v3qPOut
vi
l,n
YOut

v
i`1
l,n

λv1,v3 “ ci`2
l,n , @vil,n P V

1
s,l, s P S2, l P LDist, (8)

ÿ

pv1,v3qPIn
v
j
l,m

YIn
v
j´1
l,m

λv1,v3 ` c
j
l,m “ cj´2

l,m , @vjl,m P V
3
s,l, s P S2, l P LDist, (9)

ÿ

pv1,v3qPOut
vi
l,n

λv1,v3 “ ci`1
l,n , @vil,n P V

1
s,l, s P S2, l P LDist, (10)

ÿ

pv1,v3qPIn
v
j
l,m

λv1,v3 ` c
j
l,m “ cj´1

l,m , @vjl,m P V
3
s,l, s P S2, l P LDist, (11)

ÿ

pv1,v3qPOut
v
i`1
l,n

λv1,v3 ` c
i`1
l,n ď 1, @vil,n P V

1
s,l, s P S2, l P LDist, (12)

p1´ λv1,v3q ¨M ` tdv3 ě tav1 ` θ
min
v1 , @pv1, v3q P Outv1 , (13)

cjl,m ď ck`1
l,m , @vjl,m P V

3
s,l, s P S2, l P LDist, k P rj, |S| ´ 1s, (14)

λv1,v3 “ 1, @pv1, v3q P shtred. (15)

The short-turning constraints are better explained by the time distance diagram shown in figure 3. Every
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approaching service to the disrupted area has to short-turn in a station preceding the blockage. Assuming

the arrival station of vil,n to be station a P S2, then it implies that service vi`2
l,n has to be cancelled due to

the blockage unless vi`2
l,n can wait in the final station and then arrives at station c which was disrupted. In

case service vi`2
l,n P V 2s,l is cancelled then vil,n or vi`1

l,n has to short-turn. Otherwise the approaching train

can continue as the recovery service. Constraints (8) enforce this relation. There should be a train assigned

to each scheduled departure in the opposite direction. Thus, there are three options for each scheduled

departure in the opposite direction. If there is no available train that can operate this service, it needs to

be cancelled. Otherwise either an approaching train service or the recovery train service from the other

side of disruption is assigned. This possibility is present through Constraints (9). Each early short-turning

leads to two cancelled services. To give an example, if service vil,n is short-turned as service vjl,m in a station

upstream of the closest station to the blockage, then the following service vi`1
l,n will be cancelled. Likewise

the preceding service of vjl,m, vj´1
l,m , will be cancelled. These cancellations are considered in constraints (10)

and (11). Constraints (12) make sure that if service vi`1
l,n is cancelled due to a short-turning in an earlier

station a (or e), the relevant pairs should not be selected in the last station b (or d). For each short-turning

there should be a minimum short-turning time between the arrival of the approaching train service and the

scheduled departure in the opposite direction. Constraints (13) ensure the minimum short-turning time. If

a departing service from stations a (or e) that runs away from the disruption is cancelled, then the following

services need to be cancelled. Constraints (14) guarantee these cancellations for the remaining services of

the line. The short-turning couples of the first phase that are defined in the preprocessing step are realized

by imposing their short-turning variables through Constraints (15).

3.4.3. Platform constraints

ÿ

qPP
s,vi

l,n

pvi
l,n,q

` cil,n “ 1 @vil,n P V
1
s,l Y V

3
s,l, s P S1 Y S2, l P LDist, (16)

Platform q

vu
w,zv′ v‴ 

vu
w,z

Figure 7: The platform occupation constraint for short-turning services.
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p3´ ppv1,q ` pvu
w,z,q

q ´ λv1,v3q ¨M ` tavu
w,z
ě tdv3 ` τ

h
vi
l,n,v

u
w,z
,

@pv1, v3q P Outv1 , v
1 P V 1s,l, s P S1 Y S2, l P LDist, @v

u
w,z P V : savu

w,z
“ s, auw,z ě av1, @q P Ps,v1 X Ps,vu

w,z
,

(17)

Platform q

vu
w,z

vu
w,z

vi
l,n

vi+1
l,n

Figure 8: The platform occupation constraint for the non short-turning services.

pci`1
l,n ` 2´ ppvi

l,n,q
` pvu

w,z,qqq ¨M ` tavu
w,z
ě td

vi`1
l,n

` τhvi
l,n,v

u
w,z
,

@vil,n P V
1
s,l, s P S2, l P LDist, @vuw,z P V : savu

w,z
“ s, auw,z ě ail,n @q P Ps,vi

l,n
X Ps,vu

w,z
. (18)

Constraints (16) guarantee a platform assignment for each arriving service. Figures (7) and (8) visualize

the constraints (17) and (18). Constraints (17) make sure that in case train service v1 is being short-turned

as service v3 using platform track q then any next arriving service vuw,z should wait until the minimum

headway time after the departure of v3 if it uses the same platform track q. Similarly, constraints (18)

ensure the platform occupation is unique to only one train service at a time for those services that do not

short-turn.

3.5. Postprocessed measures of disruption phases

To measure the lengths of each phase of disruption, there should be a distinction between phases. In

this approach the first phase starts as soon as the disruption starts. It is acknowledged that in practice

the first phase takes longer due to the time needed for communication and reaching an agreement on how

to proceed with the decisions made by the traffic controllers. The end of the first phase which is the start

of the second phase is defined as the time when there (fewer) trains operate regularly again and no more

irregularities caused by the first phase are observed. The second phase lasts until the cause of disruption is

removed. This time point is the beginning of the third phase which lasts until there is no more delay caused

by the disruption and the operations have been resumed to the original timetable. If there are some delayed

services in the third phase, the end of this phase is assumed to be the latest delayed arrival.
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4. Case Study

The model is applied to a mainly double-track railway corridor from Utrecht (Ut) to ’s-Hertogenbosch

(Ht) in the middle of the Netherlands. The model is implemented in MATLAB R2016b and solved by Gurobi.

The toolbox YALMIP (Löfberg (2004)) is used to construct the MILP model. The optimal solutions are

achieved with zero gaps. The corridor is illustrated in Figure 9 and includes 13 stations and 7 lines with

each a frequency of two services per hour in each direction. So 14 trains per hour per direction operate in

this corridor. The case study considers a disruption that takes place at station Geldermalsen (Gdm). There

are different intercity and local train lines operating in this corridor. These lines are colored differently in

Figure 9. The original timetable for this corridor is illustrated in Figure 10. Two intercity lines IC800 (in

light green) and IC3500 (in dark green) and two local lines (called sprinters (SPR) in Dutch) SPR16000 (in

orange) and SPR6000 (in blue) run through Geldermalsen. The local line SPR36700 (in purple) provide

services to Geldermalsen. The intercity lines have scheduled stops only at stations Utrecht (Ut) and ’s-

Hertogenbosch (Ht). Thus, in case of a disruption in Geldermalsen, the IC train services need to short-turn

in these stations. The SPR train services SPR16000 and SPR6000 have scheduled stops at Utrecht Lunetten

(Utl), Houten (Htn), Houten Castellum (Htnc), Culemborg (Cl), and Geldermalsen. From Geldermalsen,

SPR6000 runs towards the east to station Tiel Passewaaij (Tlpsw) and SPR16000 operates towards the

south to Zaltbommel (Zbm) and ’s-Hertogenbosch. The short-turning stations to the south of Geldermalsen

for the SPR services are Zbm or Ht, and for IC services only Ht. The short-turning stations to the north

of Geldermalsen are Cl or Htnc for SPR services. The two lines IC3600 (in light blue) and SPR4400 (in

pink) are not affected by the disruption in Gdm. However since they stop in Ht, they are included in the

model. The IC services short-turn in Ut which due to its complexity is not included in this case study. The

stations Beesd and Tiel Passewaaij are not frequently served. So the short-turnings in these stations can

be performed on schedule without introducing any delay, thus their short-turnings are excluded in the case

study. Table 2 lists the stops for each line.

4.1. Parameters and experiment settings

To test and demonstrate the impact of the disruption on the optimal short-turning solution, three ex-

periments are performed with different disruption periods. In the first experiment, it is shown that with

the same disruption length, there could be different optimal solutions depending on the start time of the

disruption. This is the result of the different first phase. In the second experiment, it is shown that with

the same disruption start time, the third phase could differ due to different disruption lengths. In the third

experiment, the optimal solution and the performance of the model with in particular the relation between

the cancellation and delay are investigated under various disruption periods. In the experiments the dura-
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Figure 9: The disrupted corridor.
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Table 2: Lines

Line Stops

IC800 Ut Ht

IC3500 Ut Ht

IC3600 Hto Ht Tb

SPR36700 Bsd Gdm

SPR4400 Hto Ht Vg

SPR6000 Ut Utl Htn Htnc Cl Gdm Tlpsw

SPR16000 Ut Utl Htn Htnc Cl Gdm Zbm Ht Tb

tion of each phase is measured. The delay for intercity services are penalized more than the delay of local

train services and the cancellation for all services is heavily penalized. The exact parameters’ values and the

number of platform tracks in the short-turning stations are detailed in Tables 3 and 4.

Table 3: Parameters

Parameter Notation Value

Short-turning time θmin
vi
l,n

5 (min)

Headway time τh
vi
l,n,v

u
w,z

3 (min)

Big M M 50000

IC cancellation penalty ωc
vi
l,n
,@vil,n P V, l P t IC800, IC3500, IC3600u 10000

SPR cancellation penalty ωc
vi
l,n
,@vil,n P V, l P t SPR36700, SPR4400, SPR6000, SPR16000u 1000

IC delay penalty ωda

vi
l,n
,@vil,n P V, l P t IC800, IC3500, IC3600u 10

SPR delay penalty ωda

vi
l,n
,@vil,n P V, l P tSPR36700, SPR4400, SPR6000, SPR16000u 1

Table 4: platforms

Station Htnc Cl Gdm Zbm Ht

Number of platform tracks 2 2 4 2 5

4.2. Experiment one: Different start time of disruption and fixed disruption length

In this experiment, station Gdm is disrupted for 30 minutes. Two scenarios with respect to different

disruption start time are considered. In the first scenario (Figure 11), the disruption starts at 09:45 and

in the second scenario (Figure 12) it starts at 10:00. In these figures, different train lines are identified

by different colors which correspond to those used in Figure 9. The cancelled services are colored in grey.

In this experiment there is an equal number of approaching train services from line SPR16000 (in orange)
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and SPR6000 (in blue) on both sides of the disruption (one approaching train service and one scheduled

departure in the opposite direction). It can be observed that the recovery services are cancelled and the

corresponding approaching trains are short-turned in the optimal solution obtained from the model. The

intercity train services from lines IC3500 (in dark green) and IC800 (in light green) have to short-turn in

Ht. However, in Figure 11 it is shown that the service from IC3500 (in dark green) departs from Ht before

the start of disruption. Thus, this service is part of the services within the first phase of the disruption

and has to short-turn in the following station which is Zbm although this line does not have any stops

until Ut. Similarly on the other side of the disruption, the service from IC800 should have short-turned in

Ut. However the disruption starts after the departure of this train from Ut. So this service is short-turned

in station Cl. The short-turnings that are part of the first phase are shown by the horizontal green line.

The other horizontal lines that connect an arriving train service to a scheduled departure in the opposite

direction, are the optimal short-turning solutions within the second phase. Station Cl has two platform

tracks that are occupied by the services from line SPR6000 (in blue) and IC800 (in light green). Hence,

there is no platform track available for the short-turning of service from SPR16000 (in orange) in Cl. So

the optimal solution suggests an early short-turning for this line in station Htnc. On the other side of the

disruption, the short-turning of the service from line 16000 (in orange) in Zbm, corresponds exactly to those

in station Cl. It is also observed that the same occurs to the short-turning of IC800 (in light green) in both

stations Cl and Ht. Zbm has two platform tracks, which are occupied by services from line IC3500 (in dark

green) and SPR16000 (in orange). So the next service from line SPR16000 (in orange) can arrive with some

delay which is the result of the minimum headway. This delay is the difference between the dashed line

which is the scheduled train path and the solid line which is the computed path. Obviously, in this scenario,

the third phase includes some delays.

Figure 12 shows the result for the disruption that starts at 10:00, and reveals different optimal short-

turning solutions on both sides of the disruption. In this scenario the train service from line SPR6000 (in

blue) short-turns in Htnc, due to the fact that both platforms of station Cl are occupied by short-turning

services from line SPR16000 (in orange) and IC3500 (in dark green). On the other side of the disruption, a

departure delay of one minute is observed after the short-turning of train service SPR16000 (in orange) at

station Zbm caused by the minimum short-turning time of 5 minutes. In this scenario, the third phase is

executed smoothly without any delay.

Table 5 shows the results of the first experiment. The second column reports the affected train services

(including the cancelled and delayed services) over the total services. In both scenarios, there are 29 cancelled

services. Note that each service is defined as a trip between two consecutive stations. There are two cancelled

services resulting from early short-turning due to the IC services of the first phase in both scenarios. The
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Figure 11: Optimal short-turning solution for disruption from 9:45 to 10:15.
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Figure 12: Optimal short-turning solution for disruption from 10:00 to 10:30.

remaining 27 cancelled services include the services in the disrupted area (between Cl and Zbm) and those

related to the short-turning of the IC services in the first phase. The delay is measured for each arrival while

the reported delay is computed by adding all the arrival delays. In the first scenario, there are 7 delayed

services of line SPR16000 from Ht to Ut. The large delay for SPR16000 is caused by the limited platform
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track capacity due to short-turnings. Thus in total there are 36 affected train services in the disruption

between 9:45 and 10:15. In the second scenario, there are two delayed services of line SPR16000 which

are caused by respecting the minimum short-turning time. So there are 31 affected services in the second

scenario. Due to a smaller delay in the second scenario, a lower objective function value is attained. The

computation time of both scenarios are less than a second. The last three columns report the length of each

phase. Since the disruption lengths of these scenarios are short, only a few short-turnings of the first phase

are taking place. This conclusion is made by observing the irregularities of IC short-turnings in station Cl

and Zbm. Thus, the first phase is defined from the beginning of the disruption until the latest departures

of the IC services (IC800 from Cl and IC3500 from Zbm). On both sides of the disruption these IC services

wait for a long time to short-turn to the next scheduled departure. These long short-turnings of the first

phase, postpone the second phase. The lengths of the second phase are measured from the end of the first

phase to the end time of the disruption. Consequently in both scenarios there are short second phases of 3

and 4 minutes. Finally, the third phase is measured between the end of disruption and the latest delayed

arrival. By comparing the third phases of the two scenarios, it is observed that the third phase of the second

scenario is shorter than the first one. In the first scenario the third phase ends by the arrival of the delayed

SPR16000 at Ut and in the second scenario it ends by the arrival of the short-turned service from the same

line at Tb. This experiment demonstrates that the optimal solutions proposed by the model may differ for

the scenarios with the same disruption length but different start times of the disruption. In other words, the

impact of disruptions of the same lengths in terms of the delay can differ if they have different start times.

Table 5: The results of experiment one.

Disruption Affected # Cancelled Delays (s) Obj. Comp. 1 phase 2 phase 3 phase

period /total services services function time (s) length (s) length (s) length (s)

9:45 to 10:15 36/210 29 1260 192260 0.12 1620 180 2160

10:00 to 10:30 31/210 29 120 191120 0.08 1560 240 780

4.3. Experiment Two: Fixed start time of disruption and different disruption lengths

In this experiment the start time of the disruption is kept fixed whereas different disruption lengths are

considered. This experiment is hence devised to explore the role of the disruption length on the optimal

solution, specially during the third phase. Figure 13 shows the optimal short-turning solution for the scenario

with a disruption between 10:00 and 10:40. The approaching train service from line SPR6000 (in blue) has

to wait for 17 minutes in station Htnc, until it can proceed and use a platform track in station Cl. The

reason that the optimal solution does not suggest the early short-turning for this line is that it would have

resulted in more cancelled services. As illustrated, more delay is observed in the third phase in comparison
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with experiment one. The main reason is that in this scenario, there is an unequal number of approaching

train services from line SPR16000 (in orange) and scheduled departures in the opposite direction in station

Cl. To be specific, there are two approaching train services and one scheduled departure in the opposite

direction. Thus, the second approaching service is recognized as the recovery service and has to wait in Cl

until the disruption is over by the time it arrives at Gdm and then it can resume the original train path

with some delay. Similarly on the other side of disruption, there are two approaching train services from

line IC800 (in light green) and one scheduled departure in the opposite direction in station Zbm. Thus,

the second approaching train service has to depart from Zbm with some delay to arrive at Gdm after the

disruption is over.

In order to improve the third phase, it might be beneficial to resume the original timetable later so that

there are equal approaching train services and scheduled departures in the opposite direction. Figure 14

shows the optimal short-turning solution for the scenario where resuming the original timetable occurs 13

minutes after the end of disruption. In this scenario, due to the equality between the number of approaching

train services and the number of scheduled departure in the opposite direction, the third phase is rather

smooth.

The results of experiment two are listed in Table 6. From the results, it is concluded that by resuming

the original timetable later, the number of cancelled services is increased by 57% and the delay is reduced

by 52%. Note that the cancelled services are limited to those computed by the model between Cl and Zbm,

nonetheless the delay can propagate to stations located outside of the control area. Specially if there are

alternative modes of transport in the disrupted area, cancelling a few more services might be more preferred

by the train operator than introducing a delay to the network due to the unequal situation. At the same time,

different penalties could be considered to provide different solutions to be analyzed by the train operators.

Similar to the previous experiment the model computes the optimal solution quickly. It is observed that by

resuming the original timetable later, the length of the second phase is increased while the length of third

phase is reduced.

Table 6: The results of experiment two.

Disruption Affected # Cancelled Delays (s) Obj. Comp. 1 phase 2 phase 3 phase

period /total services services function time (s) length (s) length (s) length (s)

10:00 to 10:40 59/245 42 4020 292980 0.19 1560 840 2160

10:00 to 10:53 74/281 66 1920 481920 0.31 1560 1620 1200

From this experiment it is concluded that in the proposed model which encompasses the transition

phase back to normal operations, the disruption length plays an important role in determining the delay
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Figure 13: Optimal short-turning solution for disruption from 10:00 to 10:40.
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Figure 14: Optimal short-turning solution for disruption from 10:00 to 10:53.

introduced in the final transition phase. The disruption period can determine whether there are equal or

unequal approaching train services and scheduled departures in the opposite direction. It is observed that

by resuming the original timetable later, it is possible to reach the equal situation and hence the delay can

be decreased at the cost of increasing the number of cancellations.
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4.4. Experiment three: Increasing disruption lengths

In this experiment, the disruption start time is fixed and the disruption length is increased from one to

five hours with intervals of 10 minutes. Figures 15 and 16 show the optimal short-turning solution for two

selected disruption lengths of 180 and 190 minutes, respectively. It is observed that in the second phase

the short-turning of the intercity train services IC800 (in light green) and IC3500 (in dark green) at Ht

and the local train service SPR16000 (in orange) in Zbm and Cl remain the same as the disruption length

is increasing. However, the optimal short-turnings of the local train services from lines SPR6000 (in blue)

changes. The reason of this change for line SPR6000 is that the disruption is located at the end of the line

and the departures are scheduled slightly earlier than the arrivals. Since there is no train service arriving

from the other side after the disruption, in case there are more scheduled departures than approaching

services, then some services should be cancelled due to the lack of rolling stock. In disruption scenarios with

equal short-turnings, the departures would take place with some delay as the arrivals are after the scheduled

departures. In unequal disruption scenarios, where a scheduled departure should be cancelled, the optimal

solution would be to cancel the first scheduled departure so that the rest of departures can take place more

on time. This results in alternation of the short-turning choice as the disruption length increases.

With increased disruption length, the short-turnings of line SPR16000 in Cl as shown in Figure 15

repeats every 30 minutes (i.e. disruption end times at minutes 0, and 30). In between each half an hour

(with disruptions ending at minutes 10, 20, 40, and 50), the short-turning choice shown in Figure 16 occurs.

The optimal solution for the third phase also repeats every half an hour. In other words, the recovery

plans for disruptions ending at minutes 10 and 40 are the same. This similarity is also valid for disruption

periods ending at minutes 20 and 50 as well as minutes 0 and 30. It is observed that the measured length of

first phase remains the same and the length of the second phase increases with increased disruption length.

Similar to the third phase solution, the length of the third phase repeats every half an hour.

The relation between the disruption length, delay and number of cancelled services is illustrated in

Figure 17. As expected, the number of cancelled services (represented by red circles) steadily increases for

increasingly longer disruptions. The delay, which is plotted by the blue line, is also increasing with some

oscillation. Interestingly, the extent of oscillation grows with disruption length. The peaks in the delay

line are the results of waiting for the end of the disruption that occurs in the third phase. It is therefore

concluded that in case of long disruptions corresponding to the peaks, by minor extension of the disruption

length, the delay can be reduced considerably at the cost of an increase in the number of cancellations.

The real-time applicability of the model depends on the computation time. Figure 18 shows the compu-

tation time of the short-turning model for given different disruption lengths. It is observed that computing

the disruption timetable and the transition plans for a period of three hours for such a busy corridor takes
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Figure 15: Optimal short-turning solution for disruption from 10:00 to 13:00.
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Figure 16: Optimal short-turning solution for disruption from 10:00 to 13:10.
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Figure 17: The relation between the disruption length, delay and number of cancelled services.
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Figure 18: The computation time of the short-turning model.
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less than 10 seconds. The computation time of a new timetable for a disruption period up to five hours takes

less than two minutes.

5. Conclusion

In this paper, a MILP model is proposed to compute the disruption timetable and the transition plans

for complete blockages based on the disruption period. In this formulation, the rescheduling measures of

short-turning, partial cancellation, and re-timing are applied on the traffic on both sides of the disrupted

location. Depending on the available rolling stock and infrastructure capacity, the short-turnings can take

place in multiple stations. Given the disruption period, different services might need to be short-turned on

each side of the blockage. The number of short-turning train services on both sides can be either equal or

unequal depending on the disruption period. In case of unequal short-turnings, the extra train services need

to wait until the end of the disruption and then proceed and operate on the recently resolved track section.

This waiting will postpone the recovery back to the original timetable.

The model is applied to a dense Dutch railway corridor. Several experiments revealed the importance of

the disruption period (the start time and the disruption length) in the optimal short-turning solution. The

computation time is promising for real-time application. It is concluded that different disruption periods

can result in different optimal short-turning choices. Depending on the disruption start time, different

services might be affected during the first phase, which would result in different transition plans. Given

a certain disruption start time, different disruption lengths can also result in different transition plans for

the third phase. The optimal short-turning choice during the second phase can alternate depending on the

disruption length. This alternation is due to the equal and unequal short-turnings for lines whose scheduled

departures are earlier than the arrivals at the short-turning stations. In addition, these choices repeat as the

disruption length increases. Since the original timetable is periodic, for a long enough disruption length a

periodic pattern will emerge that fits in the periodic timetable of the (undisrupted) rest of the network. The

transitions between the three steady-states of the normal (1st and 3rd phase) and disrupted (2nd phase)

period timetable will largely determine the periodic pattern during the 2nd phase, which in turn depends on

the start and end times of the disruption as shown in the third experiment. In case of unequal short-turnings

on two sides of the disruption, the delay can be decreased by resuming the original timetable later than the

end of disruption to reach the equal short-turnings. However, resuming the original timetable later will lead

to more cancelled services. Therefore a rule is necessary to make a trade-off between the number of cancelled

services and the delay.

Currently, the model cannot suggest the shortest time required after the end of disruption to gain equal

short-turnings. Finding this time point given the disruption start time would be a next research direction.
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Another direction is to investigate the optimal short-turning solutions with uncertain disruption lengths.

With minor adjustments, the model can be applied on disruption cases of open track blockages. It is also

interesting to use a microscopic short-turning model to improve the accuracy of the capacity allocation in

the short-turning stations.
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