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Optimal Decision Tree Policies for Markov Decision Processes

Daniël Vos , Sicco Verwer
Delft University of Technology
{d.a.vos, s.e.verwer}@tudelft.nl

Abstract
Interpretability of reinforcement learning policies
is essential for many real-world tasks but learn-
ing such interpretable policies is a hard problem.
Particularly rule-based policies such as decision
trees and rules lists are difficult to optimize due
to their non-differentiability. While existing tech-
niques can learn verifiable decision tree policies
there is no guarantee that the learners generate a
decision that performs optimally. In this work,
we study the optimization of size-limited decision
trees for Markov Decision Processes (MPDs) and
propose OMDTs: Optimal MDP Decision Trees.
Given a user-defined size limit and MDP formula-
tion OMDT directly maximizes the expected dis-
counted return for the decision tree using Mixed-
Integer Linear Programming. By training optimal
decision tree policies for different MDPs we em-
pirically study the optimality gap for existing imita-
tion learning techniques and find that they perform
sub-optimally. We show that this is due to an inher-
ent shortcoming of imitation learning, namely that
complex policies cannot be represented using size-
limited trees. In such cases, it is better to directly
optimize the tree for expected return. While there
is generally a trade-off between the performance
and interpretability of machine learning models, we
find that OMDTs limited to a depth of 3 often per-
form close to the optimal limit.

1 Introduction
Advances in reinforcement learning using function approxi-
mation have allowed us to train powerful agents for complex
problems such as the games of Go and Atari [Schrittwieser et
al., 2020]. Policies learned using function approximation of-
ten use neural networks, making them impossible for humans
to understand. Therefore reinforcement learning is severely
limited for applications with high-stakes decisions where the
user has to trust the learned policy.

Recent work has focused on explaining opaque models
such as neural networks by attributing prediction importance
to the input features [Ribeiro et al., 2016; Lundberg and Lee,
2017]. However, these explanation methods cannot capture

the full complexity of their models, which can mislead users
when attempting to understand the predictions [Rudin, 2019].
Concurrently, there has been much work on interpretable ma-
chine learning in which the model learned is limited in com-
plexity to the extent that humans can understand the complete
model. Particularly decision trees have received much atten-
tion as they are simple models that are capable of modeling
non-linear behavior [Lipton, 2018].

Decision trees are difficult to optimize as they are non-
differentiable and discontinuous. Previous works have used
different strategies to overcome the hardness of optimiz-
ing trees: using assumptions or relaxations to make the
trees differentiable [Gupta et al., 2015; Silva et al., 2020;
Likmeta et al., 2020], reformulating the MDP into a meta-
MDP that exclusively models decision tree policies [Topin et
al., 2021] or extracting trees from a complex teacher [Bastani
et al., 2018]. While these methods are increasingly success-
ful in training performant trees they do not offer guarantees
on this performance.

Our work takes a first step at bridging the gap between
the fields of optimal decision trees and reinforcement learn-
ing. Existing formulations for optimal decision trees assume
a fixed training set with independent samples. This cannot
be used in a dynamic setting where actions taken in one state
influence the best actions in others. Instead, we formulate the
problem of solving a Markov Decision Process (MDP) us-
ing a policy represented by a size-limited decision tree (see
Figure 1) in a single MILP. We link the predictions of the de-
cision tree policy to the state-action frequencies in the dual
linear program for solving MDPs. The dual allows us to rea-
son over policies explicitly, which results in a more efficient
formulation. Our formulation for Optimal MDP Decision
Trees, OMDTs, optimizes a decision tree policy for a given
MDP and a tree size limit. OMDT produces increasingly
performant tree policies as runtime progresses and eventually
proves the optimality of its policy.

Existing methods for training size-limited decision trees in
reinforcement learning such as VIPER [Bastani et al., 2018]
make use of imitation learning where a student tries to learn
from a powerful teacher policy. We compare the perfomance
of OMDT and VIPER on a variety of MDPs. Interestingly,
we show that when training interpretable size-limited trees
imitation learning performs significantly worse as capacity
of the learned decision tree is wasted on parts of the state



space that are never reached by the policy. Moreover, VIPER
cannot prove optimality even if it identifies the optimal solu-
tion. Regarding the performance-interpretability trade-off we
show that decision trees of 7 decision nodes are enough to
perform close to optimally in 8 out of 13 environments. Such
trees are orders of magnitude smaller than the trees created by
methods that exactly replicate the optimal policy using size-
unrestricted trees such as dtcontrol [Ashok et al., 2020].

2 Background
2.1 Decision Trees
Decision trees [Breiman et al., 1984; Quinlan, 1986] are sim-
ple models that execute a series of comparisons between a
feature value and a threshold in the nodes to arrive at a leaf
node that contains the prediction value. Due to their sim-
ple descriptions, size-limited decision trees are easy to under-
stand for humans [Molnar, 2020]. Particularly, size-limited
decision trees admit simulatability [Lipton, 2018]: humans
can use the model to make predictions by hand in reasonable
time and decomposability: humans can understand each in-
dividual aspect of the model. The method proposed in this
paper, OMDT, also offers algorithmic transparency: we can
trust the learning algorithm to produce models that fulfill cer-
tain qualities such as global optimality. Therefore decision
trees are an attractive model class when interpretable policies
are required.

2.2 Markov Decision Processes
Markov Decision Processes (MDPs) [Bellman, 1957] are the
processes underlying reinforcement learning problems. An
MDP models a decision-making process in a stochastic en-
vironment where the agent has some control over the state
transitions. An MDP can be described by a tuple 〈S,A, P,R〉
where S contains all states, A the set of actions an agent can
take, Ps,s′,a the probabilities of transitioning from state s to
state s′ when taking action a, andRs,s′,a the reward the agent
receives when going from state s to state s′ under action a.
When solving an MDP we want to find a policy π : S → A
such that when executing its actions the expected sum of re-
wards (the return) is maximized. In this work we define
policies (w.l.o.g.) as a mapping from states and actions to
an indicator for whether or not action a is taken in state s:
π : S ×A→ {0, 1}.
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Figure 1: Depth 2 OMDT on the stochastic Frozenlake 4x4 envi-
ronment. OMDT proves that no better depth 2 decision tree policy
exists (discounted return 0.37 with γ = 0.99).

Value Iteration
When solving MDPs we generally discount future rewards in
each step by a user-defined value of 0 < γ < 1 to ensure
that the optimal policy will generate a finite return. The most
common approach for optimally solving MDPs is by using
one of many dynamic programming variants. In this work,
we focus on value iteration. Value iteration finds a value Vs
for each state s that holds the expected discounted return for
taking optimal greedy actions starting from that state. These
values can be found by iteratively updating Vs until the Bell-
man equation [Bellman, 1957] is approximately satisfied. We
will refer to this optimal solution found with value iteration
as the unrestricted optimal solution as the computed policy
can be arbitrarily complex.

3 Related Work
3.1 Learning Decision Tree Policies
Decision trees have appeared at various parts of the reinforce-
ment learning pipeline [Glanois et al., 2021] for example in
modeling the Q-value function or in modeling the policy. In
this work, we are interested in modeling the policy with a de-
cision tree as this gives us an interpretable model that we can
directly use at test time.

Decision trees make predictions using hard comparisons
between a single feature value and a threshold the learned
models can be discontinuous and non-differentiable which
makes optimization with gradients challenging. One line of
research focuses on overcoming the non-differentiability of
decision trees to allow for the use of gradient-based optimiza-
tion methods. Gupta et al. [Gupta et al., 2015] train decision
trees that contain linear models in their leaves that can be op-
timized with gradients but this results in models that are hard
to interpret. Silva et al. [Silva et al., 2020] first relax the
constraints that decision nodes select one feature, that leaves
predict one value, and that thresholds are hard step functions.
Such relaxed trees are differentiable and can be trained with
policy gradient methods. By discretizing the relaxed tree they
end up with an interpretable model that approximates the re-
laxed model. However, the relaxed tree can get stuck in local
minima and the discretized tree offers no performance guar-
antees. Likmeta et al. [Likmeta et al., 2020] consider de-
cision tree policies for autonomous driving tasks. To make
the decision tree parameters easily optimizable they fix the
structure of the tree along with the features used in the de-
cision nodes. By learning a differentiable hyper-policy over
decision tree policies they are then able to approximately op-
timize the models with gradient descent.

With Iterative Bounding MDPs [Topin et al., 2021] the au-
thors reformulate the underlying MDP into one where the
agent implicitly learns a decision tree policy. The method
can be thought of as a tree agent learning to take actions
that gather information and a leaf agent learning to take ac-
tions that work well given the gathered information of the tree
agent. By reformulating the MDP its decision tree policy can
be optimized using differentiable function approximators and
gradient-based optimizers.

In a separate line of work the goal is to represent a specific,
usually optimal, policy as a decision tree that is unbounded



in size. These techniques have been developed for policies
with a single goal state [Brázdil et al., 2015] and as a tool for
general controllers [Ashok et al., 2020]: dtcontrol.

Imitation Learning (VIPER)
Instead of directly optimizing a decision tree one can also
try to extract a decision tree policy from a more com-
plex teacher policy using imitation learning. These imi-
tation learning algorithms turn reinforcement learning into
a supervised learning problem for which we have success-
ful decision tree learning algorithms [Breiman et al., 1984;
Quinlan, 1986]. DAGGER [Ross et al., 2011] (dataset aggre-
gation) is an algorithm that iteratively collects traces from the
environment using its current policy and trains a supervised
model on the union of the current and previous traces. Since
DAGGER only uses information on the predicted action of
the teacher policy it ignores extra information on Q-values
that modern Q-learning algorithms provide. VIPER [Bastani
et al., 2018] focuses on learning decision trees and improves
on DAGGER by including Q-value information into the su-
pervised learning objective. While VIPER generates signif-
icantly smaller decision trees than DAGGER we will show
that these trees are not yet optimal with respect to the trade-
off in size and performance.

3.2 Optimal Decision Trees
The standard algorithms for training decision trees in su-
pervised learning are greedy heuristics and can learn trees
that perform arbitrarily poorly [Kearns, 1996]. Therefore
in recent years there has been increasing interest in the de-
sign of algorithms that train decision trees to perform op-
timally. Early works formulated training decision trees for
classification and regression and used methods such as dy-
namic programming to find optimal decision trees [Nijssen
and Fromont, 2007]. Mixed-Integer Linear Programming
based formulations [Bertsimas and Dunn, 2017; Verwer and
Zhang, 2017] have since become popular. These methods are
flexible and have been extended to optimize performance un-
der fairness constraints [Aghaei et al., 2019] or directly op-
timize adversarial robustness [Vos and Verwer, 2022]. Gen-
erally, the size of the tree is limited to provide regulariza-
tion and aid interpretability, then the solver is tasked with
finding a decision tree that maximizes training performance
given the size limits. The field has since worked on in-
creasingly efficient optimization techniques using a variety of
methods such as MILP [Verwer and Zhang, 2019], dynamic
programming [Demirović et al., 2020; Lin et al., 2020], con-
straint programming [Verhaeghe et al., 2020], branch-and-
bound search [Aglin et al., 2020; Aglin et al., 2021] and
boolean (maximum) satisfiability [Narodytska et al., 2018;
Hu et al., 2020; Schidler and Szeider, 2021].

4 OMDT: Optimal MDP Decision Trees
In an attempt to bridge the gap between optimal decision
trees for supervised and reinforcement learning we introduce
OMDTs: Optimal MDP Decision Trees. OMDT is a Mixed-
Integer Linear Programming formulation that encodes the
problem of identifying a decision tree policy that achieves
maximum discounted return given a user-defined MDP and
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Figure 2: Overview of OMDT’s formulation. We maximize the dis-
counted return in an MDP under the constraint that the policy is
represented by a size-limited decision tree.

size limit. Our formulation can be solved using one of many
available solvers, in this work we use the state-of-the-art
solver Gurobi1.

Intuitively the OMDT formulation consists of two parts:
a (dual) linear programming formulation for solving MDPs
and a set of constraints that limits the set of feasible policies
to decision trees. Figure 2 summarizes OMDT’s formulation
in natural language. All the notation used in OMDT is sum-
marized in Table 1.

4.1 Constraints
It is well known that MDPs can be solved using linear pro-
gramming, the standard linear program is [Puterman, 2014]:

min.
∑
s

p0(s)Vs

s.t. Vs −
∑
s′

γPs,s′,aVs′ ≥
∑
s′

Rs,s′,a, ∀s, a

It is not easy to efficiently add constraints to this formula-
tion to enforce the policies to be size-limited decision trees
because it reasons abstractly over policies, i.e. by reasoning
over the policy’s state values. To create a formulation for de-
cision tree policies we resort to the standard dual program:

max.
∑
s

∑
a

xs,a
∑
s′

Ps,s′,aRs,s′,a (1)

s.t.
∑
a

xs,a−
∑
s′

∑
a

γPs′,s,axs′,a = p0(s), ∀s (2)

1https://www.gurobi.com/

https://www.gurobi.com/


This program uses a measure xs,a of how often the agent
takes action a in state s, this allows us to add efficient con-
straints that control the policy of the agent. Intuitively the
program maximizes the rewards

∑
s′ Rs,s′,a weighted by this

xs,a. The constraints enforce that the frequency by which a
state is exited is equal to the frequency that the agent is ini-
tialized in the state or returns to it following the discounted
transition probabilities γPs,s′,a.

To enforce the policy to be a size-limited decision tree we
will later constrain the xs,a values to only be non-zero when
the agent is supposed to take action a in state s according to
a tree policy. We will first introduce the variables and con-
straints required to model the decision tree constraints.

Modeling Decision Nodes
Our decision tree formulation is roughly based on OCT [Bert-
simas and Dunn, 2017] and ROCT [Vos and Verwer, 2022],
MILP formulations for optimal (OCT) and robust (ROCT)
classification trees. In these formulations, the shape of the de-
cision tree is fixed. Like ROCT, we describe a decision node
m by binary threshold variables bm,j,k, indicating whether
the kth threshold of feature j is chosen.2 Unlike ROCT, we
only allow one of these variables to be true over all features
and possible thresholds:∑

j

∑
k

bm,j,k = 1, ∀m (3)

We follow paths through the tree to map observations to
leaves. In each node m we decide the direction ds,m that the
observation of state s takes (left=0 or right=1 of the threshold
k). ROCT uses two variables per state-node pair to model di-
rections ds,m to account for perturbations in the observations.
Since we are optimizing for an MDP without uncertainty in
the observations we only require one variable ds,m per state-
node pair.

We further improve over ROCT by determining ds,m us-
ing only one constraint per state-node pair instead of a sep-
arate constraint per state-node-feature triple. For this, we
pre-compute a function side(s, j, k) which indicates for each
feature-threshold pair (j, k) and every observation s the side
of k that s is on for feature j (left=0 or right=1), i.e. whether
Xsj > k holds. This formulation is not limited to the predi-
cates ‘≤’ or ‘>’ however and can be easily extended to other
predicates in the pre-computation of side(s, j, k). The follow-
ing then forces the direction ds,m to be equal to the direction
of the indicated threshold:

ds,m =
∑
j

∑
k

side(s, j, k) bm,j,k, ∀s,m (4)

The variables ds,m represent the direction of an observa-
tion’s path at a decision node. Together, the d variables allow
us to follow an observation’s path through the tree which we
use to identify the leaf that it reaches. Important in this for-
mulation, compared to existing binary encodings, is that it
requires no big-M constraints to describe these paths. This

2In practice, the possible values for threshold k depends on the
chosen feature j. We do not model this dependence for convenience
of notation.

makes the relaxation stronger and therefore the solver give
much better bounds than using the big-M style formulations
from ROCT.

Modeling Policy Actions
Decision leaves only have one set of binary decision vari-
ables: ct,a encoding whether or not leaf t predicts action a.
We want each leaf to select exactly one action:∑

a

ct,a = 1, ∀t (5)

As mentioned before we can follow an observation’s path
through the tree by using their ds,m path variables. One can
linearize an implication of a conjunction of binary variables
as follows:

x1 ∧ x2 ∧ ... ∧ xn =⇒ y

≡ x1 + x2 + ...+ xn − n+ 1 ≤ y
If an observation reaches leaf t and the leaf predicts action a
then we want to force the policy πs,a to take that action in the
associated state s. Using the aforementioned equivalence we
add the constraint:∑

m∈Al(t)

(1−ds,m) +
∑

m∈Ar(t)

ds,m

+ ct,a − |A(t)| ≤ πs,a, ∀s, a, t (6)

This constraint forces the agent to take the action indicated by
the leaf. To prevent the agent from taking other actions that
were not indicated we force it to only take a single action in
each state (giving a deterministic policy):∑

a

πs,a = 1, ∀s (7)

Now we have indicators πs,a that mark what action is taken
by the agent. To link this back to the MDP linear program-
ming formulation that we use to optimize the policy, we set
the xs,a variables. We need to set xs,a = 0 if πs,a = 0, else
xs,a should be unbounded. We encode this using a big-M
formulation:

xs,a ≤Mπs,a, ∀s, a (8)
M should be chosen as small as possible, but larger or equal
to the largest value that xs,a can take. We use the fact that we
are optimizing the MDP using discount factor γ to compute
an upper bound on xs,a and set M = 1

1−γ , proof is given in
the appendix.

4.2 Complete Formulation
The runtime of MILP solvers grows worst-case exponentially
with respect to formulation size therefore it is important to
limit the scale of the formulation. The number of variables in
our formulation grows withO(|S||J ||TD|+ |A||TL|+ |S||A|)
which follows from their indices in Table 1. The number of
constraints grows with the order O(|S||TD|+ |S||A||TL|) as
it is dominated by the constraints that determine ds,m at each
node (Equation 4) and constraints that force πs,a according to
the tree (Equation 6). OMDT’s complete MILP formulation
is summarized below:

max
∑
s

∑
a

xs,a
∑
s′

Ps,s′,aRs,s′,a (1)



Name Kind Description

bm,j,k bin. Tree uses feat. j and threshold k in node m
ct,a bin. Tree selects action a in leaf t
ds,m bin. Observation of s goes left / right in node m
πs,a bin. Policy takes action a in state s

xs,a cont. Frequency of action a taken in state s

Ps,s′,a const. Probability of transition s→s′ with action a
Rs,s′,a const. Reward for transition s→s′ with action a
p0(s) const. Probability of starting in state s
γ const. Discount factor
Xij const. Feature j’s value of observation i
side(s,j,k) const. Side state s is on for thresh. k and feat. j

a ∈ A set Set of actions in MDP
s ∈ S set Set of states in MDP
i=1..|S| set Observation and state indices
j ∈ J set Set of feature indices
k = 1..K set Indices of all possible feature thresholds
m ∈ TD set Set of decision nodes in the tree
t ∈ TL set Set of leaves in the tree
A(t) set Set of ancestors of leaf t
Al(t) set ... that have t in their left path
Ar(t) set ... that have t in their right path

Table 1: Summary of notation used in OMDT.

s.t. ∑
a

xs,a −
∑
s′

∑
a

γPs′,s,axs′,a = p0(s), ∀s (2)

∑
j

∑
k

bm,j,k = 1, ∀m (3)

ds,m =
∑
j

∑
k

side(s, j, k) bm,j,k, ∀s,m (4)

∑
a

ct,a = 1, ∀t (5)∑
m∈Al(t)

(1−ds,m) +
∑

m∈Ar(t)

ds,m + ct,a−|A(t)| ≤ πs,a, ∀s, a, t (6)

∑
a

πs,a = 1, ∀s (7)

xs,a ≤Mπs,a, ∀s, a (8)

5 Results
We present experiments comparing the performance of
OMDTs with VIPER and dtcontrol. Viper uses imitation
learning to extract a size-limited decision tree from a teacher
policy and dtcontrol learns an unrestricted tree that exactly
copies the teacher’s behavior. To provide a fair comparison
we have trained VIPER and dtcontrol with an optimal teacher
by first solving the MDP with value iteration and then ex-
tracting all Q values, both methods ran with default param-
eters. We also implemented and ran our experiments on in-
terpretable Differentiable Decision Trees [Silva et al., 2020]
but excluded these models from our analysis as they did not
outperform a random policy. The full code for OMDT and

our experiments can be found on GitHub3. All of our experi-
ments ran on a Linux machine with 16 Intel Xeon CPU cores
and 72 GB of RAM total and used Gurobi 10.0.0 with default
parameters. Each method ran on a single CPU core.

5.1 Environments
For comparison we implemented 13 environments based on
well known MDPs from the literature, the sizes of these
MDPs are given in Table 2. All MDPs were pre-processed
such that states that are unreachable from the initial states are
removed. We briefly describe the environments below but re-
fer to the appendix for complete descriptions.

In 3d navigation the agent controls a robots in a 5x5x5
world and attempts to reach from one corner to the other end
with each voxel having a chance to make the robot disappear.
blackjack is a simplified version of the famous casino game
where we assume an infinite sized-deck and only the actions
‘skip’ or ‘hit’. frozenlake is a grid world where the agent
attempts to go from the start state to the end state without
falling into holes, actions are stochastic so the agent will not
always move in the intended direction (e.g. the action ‘up’
will only surely not send the agent ‘down’). inventory man-
agement models a company with limited inventory size that
has decide how many items to order to meet its customer’s
demand while minimizing cost. system administrator refers
to a computer network where computers randomly crash and
an administrator has to decide which computer to spend time
on rebooting, a crashed computer has an increased probabil-
ity of crashing a neighboring computer. tictactoe vs random
is the well known game of tic-tac-toe when played against
an opponent that makes random moves. In tiger vs antelope
the tiger attempts to catch the antelope that randomly jumps
away from the tiger in a grid world. traffic intersection de-
scribes a perpendicular intersection where traffic flows in at
different rates and the operator decides when to switch the
traffic lights. xor is an MDP constructed such that the states
randomly lie on a plain, the agent gets 1 reward for taking the
action according to an XOR function and -1 for a mistake.
The XOR problem is notoriously difficult for greedy decision
tree learning algorithms.

5.2 Performance-Interpretability Trade-off
It is often assumed that there is a trade-off in the performance
and interpretability of machine learning models [Gunning and
Aha, 2019] since interpretable models necessarily lack com-
plexity but this assumption is not always true [Rudin, 2019].
We aim to answer whether the performance-interpretability
trade-off occurs in a variety of MDPs by training size-limited
decision trees and comparing their performance to the opti-
mal solutions that were not restricted in complexity. We vi-
sualize the normalized return of depth 3 OMDTs and unre-
stricted dtcontrol trees in Figure 3. Returns were normalized
such that 0 corresponds to the return of a random policy and
1 to an optimal one. Since small deterministic decision tree
policies are limited in the number of distinct actions that they
take an optimal tree can perform worse than a random policy.
Experiments were repeated 3 times and runs were limited to 2

3https://github.com/tudelft-cda-lab/OMDT

https://github.com/tudelft-cda-lab/OMDT


normalized return MILP runtime (s)

MDP |S| |A| VIPER OMDT
5 mins.

OMDT
2 hrs. vars. constrs. trees VIPER OMDT

optimal

3d navigation 125 6 1.00 ±.00 .81 ±.10 1.00 ±.00 2,528 7,890 1014 2,090 ±55 315 ±89

blackjack 533 2 1.00 ±.00 1.00 ±.00 1.00 ±.00 6,187 14,406 1014 2,248 ±27 408 ±85

frozenlake 4x4 16 4 .67 ±.00 .96 ±.00 .96 ±.00 328 735 1010 74 ±3 2 ±0

frozenlake 8x8 64 4 .83 ±.06 .95 ±.00 .95 ±.00 1,104 2,895 1013 178 ±5 98 ±30

frozenlake 12x12 144 4 .19 ±.09 .63 ±.03 .68 ±.04 2,360 6,495 1014 196 ±38 timeout
inv. management 101 100 1.00 ±.00 .37 ±.37 1.00 ±.00 22,414 91,824 1030 2,254 ±86 2,533 ±540

sysadmin 1 256 9 .88 ±.01 .85 ±.01 .92 ±.00 6,584 23,055 1014 2,265 ±37 timeout
sysadmin 2 256 9 .59 ±.00 .23 ±.06 .58 ±.01 6,584 23,055 1014 2,257 ±7 timeout
sysadmin tree 128 8 .57 ±.04 .48 ±.07 .70 ±.09 3,106 10,383 1013 2,136 ±72 timeout
tictactoe vs random 2,424 9 .80 ±.01 -.06 ±.00 .43 ±.18 61,239 218,175 1020 21 ±3 timeout
tiger vs antelope 626 5 -.10 ±.02 -.17 ±.19 .52 ±.03 10,850 33,819 1015 490 ±243 timeout
traffic intersection 361 2 .98 ±.00 .99 ±.00 1.00 ±.00 4,127 9,762 1011 2,188 ±121 1,219 ±177

xor 200 2 .34 ±.06 1.00 ±.00 1.00 ±.00 5,016 5,415 1021 1,999 ±123 50 ±0

Table 2: Comparison of depth 3 trees trained with VIPER and OMDT on 13 MDPs, experiments were repeated 3 times and runs were limited
to 2 hours of runtime. OMDT solves some MDPs in 5 minutes but significantly improves when given 2 hours of runtime. While 2 hours
are enough for OMDT to achieve greater or equal scores to VIPER in most MDPs, OMDT needs more runtime to outperform VIPER on the
large tictactoe instance. OMDT was able to identify the optimal size-limited tree and prove its optimality in 7 instances.

hours. We consider an OMDT optimal when the relative gap
between its objective and bound is proven to be smaller than
0.01%.

While it is debatable what the precise size limits are for
decision trees to be interpretable [Lipton, 2018] we use trees
of depth 3 which implies that a tree has at most 8 leaves. We
find that in all environments, OMDTs of depth 3 improve on
the performance of random policies, and in 8 out of 13 en-
vironments the policy gets close to optimal. Decision trees
trained with dtcontrol always achieve the optimal normalized
return of 1 since they exactly mimic the optimal policy. How-
ever, dtcontrol produces large trees that are not interpretable
to humans. When run on 3d navigation for example, dtcon-
trol produces a tree of 68 decision nodes which is very com-
plex for humans to understand. OMDT produces a tree of 7
decision nodes which performs equally well.

Overall, our results demonstrate that for many environ-
ments there is no performance-interpretability trade-off: sim-
ple policies represented by size-limited trees perform approx-
imately as well as the unrestricted optimal policy.

5.3 Direct Optimization versus Imitation Learning
The above conclusion holds when the policy is learned to op-
timality under the constraint that it has to be a small tree, e.g.,
using OMDT. Frequently used techniques such as VIPER do
not directly enforce this constraint but aim to imitate the unre-
stricted optimal policy. We now show that this comes at a cost
when the unrestricted policy is too complex to be represented
using a small tree.

VIPER trains its decision trees by imitating high Q val-
ues of the optimal policies while OMDT directly maximizes
expected return. In Table 2 we list the normalized return (0
for random policies, 1 for optimal policies) for VIPER and
OMDT with respectively 5 minutes and 2 hours of runtime.
After 5 minutes OMDT improves performance over random
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Figure 3: (top) Normalized return and bounds for OMDT trees of
depth 3, optimal policies score 1 while uniform random policies
score 0. (bottom) Log of tree sizes for OMDT (maximum depth
3) and dtcontrol. Dtcontrol always produces an optimal policy but
the trees are orders of magnitude larger than OMDT.

policies but often needs more time to improve over VIPER.
After 2 hours OMDT’s policies win on 11 out 13 environ-
ments. For instances with large state space such as tictac-
toe vs random OMDT needs more than 2 hours to improve
over VIPER.

Shortcomings of Imitation Learning
Overall, given sufficient run-time, OMDT produces better
policies than VIPER. This cannot be easily solved by giving
VIPER more run-time but is an inherent problem of imitation
learning. To illustrate this, we investigate the results on the
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(b) OMDT (depth 3): 66% success
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(c) VIPER (depth 3): 11% success

Figure 4: Paths taken on 10,000 Frozenlake 12x12 runs. The agent starts at (0, 0) and attempts to reach the goal tile ‘G’ while avoiding holes.
Actions are indicated by arrows and are somewhat stochastic, i.e. an action of ‘up’ will send the agent ‘left’, ‘up’ or ‘right’ (but never down)
with equal probability. VIPER fails to produce a good policy because it spends capacity of its tree mimicking parts of the complex teacher
policy that its simple student policy will never reach. OMDT achieves a greater success rate by directly optimizing a simple policy.

frozenlake environments. Table 2 demonstrates that imita-
tion learning (VIPER) can perform far from optimal on these
environments, while direct optimization (OMDT) performs
closer to the unrestricted optimal solution. It is insightful to
understand why this happens.

In theory, imitation learning performs optimally in the
limit [Ross et al., 2011] but this result requires the student
policy to be as expressive as the teacher policy. This is not
the case for size-limited decision trees. When VIPER learns
a policy for frozenlake 12x12 it tries to imitate a complex pol-
icy using a small tree that cannot represent all teacher policy
actions. This results in VIPER spending capacity of its deci-
sion tree on parts of the state space that will never be reached
under its student policy. In Figure 4 we visualize the paths
that the agents took on 10,000 runs and indicate the policies
with arrows. VIPER creates leaves that control action in the
right section of the grid world (indicated in red). The optimal
teacher policy often visits this section but the simple student
does not. By directly optimizing a decision tree policy using
OMDT, the policy spends its capacity on parts of the state
space that it actually reaches. As a result, VIPER cannot pre-
vent actions that send its agent into holes on the left part of the
grid world (indicated in red). OMDT actively avoids these.

5.4 Runtime
Runtime for solving Mixed-Integer Linear Programming for-
mulations scales worst-case exponentially which makes it im-
portant to understand how solvers operate on complex formu-
lations such as OMDT. We solved OMDTs for a depth of 3
for a maximum of 2 hours and display the results in Table
2. The table compares the runtimes of VIPER and solving
OMDT to optimality. If the solver does not prove optimal-
ity within 2 hours we denote it as ‘timeout’. We also denote
the number of possible decision tree policies computed as:
|TB |possible splits × |TL||A| . It provides an estimate of how many
decision tree policies are possible and shows that enumerat-
ing trees with brute force is intractable.

OMDT solves a simple environment such as Frozenlake
4x4 (16 states, 4 actions) to optimality within 2 seconds
but runtime grows for larger environments such as inventory
management (101 states, 100 actions) which took on aver-
age 2533 seconds. VIPER needs roughly 2250 seconds of
runtime for every MDP and runs significantly faster on some
MDPs. This is because VIPER spends much time evaluating
policies on the environment and some environments quickly
reach terminal states which results in short episodes. While
OMDT was able to prove optimality on only 7 out of 13 en-
vironments within 2 hours, OMDT finds good policies before
this time on 12 out of 13 environments.

6 Conclusion

We propose OMDT, a Mixed-Integer Linear Programming
formulation for training optimal size-limited decision trees
for Markov Decision Processes. Our results show that for
simple environments such as blackjack we do not have to
trade off interpretability for performance: OMDTs of depth
3 achieve near-optimal performance. On Frozenlake 12x12,
OMDT outperforms VIPER by more than 100%.

OMDT sets a foundation for extending supervised opti-
mal decision tree learning techniques for to the reinforcement
learning setting. Still, OMDT requires a full specification of
the Markov Decision Process. Imitation learning techniques
such as VIPER can instead also learn from a simulation envi-
ronment. Therefore, future work should focus on closing the
gap between the theoretical bound supplied by OMDT and
the practical performance achieved by algorithms that require
only simulation access to optimize interpretable decision tree
policies in reinforcement learning. Additionally, future work
can incorporate factored MDPs into OMDT’s formulation to
scale up to larger state spaces.
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A Environment Descriptions
We describe the environments in additional detail below. All
environments in the paper were solved with a discount rate
of γ = 0.99. Such a value ensures that the solvers generate
policies that have good performance even for environments
that takes hundreds of steps to solve. All MDPs were pre-
processed such that states that are unreachable from the initial
states are removed.

A.1 3d navigation
While policies in 2d scenarios are often easy to visualize and
interpret policies in higher dimensions are harder to under-
stand. Therefore we extend the 2d navigation problem from
ICAP 2011 IPPC competition4 to 3 dimensions. The agent
controls a robots in a 5x5x5 world and attempts to reach from
one corner to the other end with each voxel having a chance
to make the robot disappear. The disappearing chances were
independently sampled from a uniform distribution on [0, 1].

A.2 blackjack
The version of blackjack that we used5 is a slightly simplified
version of the one that often appears in casinos. Specifically,
we make the following assumptions:

• There is no doubling down and splitting action.
• The player does not have knowledge about other players

at the board.
• Aces always account for a value of 11.
• Cards are drawn from an infinitely sized deck, i.e. drawn

with replacement.
The player always starts in the state where no cards are

dealt, the dealer receives a random card, followed by the
player receiving a random card. The player can ’Draw’ cards
until they cross the total of 21 or until they ’Skip’. When that
happens the dealer receives cards until their total is over 17.
In the end, the reward is computed as follows:

• -1 if the player has a lower total than the dealer or if the
player went over 21.

• 0 if the player and dealer end up with the same total.
• +1 if the player has a higher total than the dealer or if the

dealer went over 21.
• +1.5 if the player gets to exactly 21

A.3 frozenlake
Frozenlake is a maze-like game played on a 2D grid where
the player attempts to move from the start state (S) to the goal
state (G) without falling into holes (H). The player walks over
frozen tiles (F) that make the actions stochastic:

• The action ’Up’ sends a player in the directions left, up,
or right with probability 1/3 each.

• The action ’Right’ sends a player in the directions up,
right, or down with probability 1/3 each.

4http://users.cecs.anu.edu.au/∼ssanner/IPPC 2011/
5https://gist.github.com/iiLaurens/

ba9c479e71ee4ceef816ad50b87d9ebd

• The action ’Down’ sends a player in the directions right,
down, or left with probability 1/3 each.

• The action ’Left’ sends a player in the directions down,
left, or up with probability 1/3 each.

We used the default 4x4 and 8x8 maps as defined by the
OpenAI gym6 and defined a new map for 12x12. The maps
are given below (in the same format that the environment
uses):

4x4

"SFFF",
"FHFH",
"FFFH",
"HFFG",

8x8

"SFFFFFFF",
"FFFFFFFF",
"FFFHFFFF",
"FFFFFHFF",
"FFFHFFFF",
"FHHFFFHF",
"FHFFHFHF",
"FFFHFFFG",

12x12

"SFFFFFFFFFFF",
"FFFFFFFFFFFF",
"FFFHFFFFFFFH",
"FFFFFHFFFFFF",
"FFFHFFFFFFFF",
"FHHFFFHFFHFF",
"FHFFHFHFFFFF",
"FFFHFFFFFFFF",
"FFFFFFFFHFFF",
"HFFFFHFFFFHH",
"FFFFFFGFFFFF",
"FFFFFFFFFFFF",

A.4 inventory management
In inventory management, the player is the owner of a shop
that stocks items and sells them to customers. Our environ-
ment is adapted from the implementation by Paul Hendricks7.
Every day the player can choose ‘Don’t buy’ or ‘Buy x’ items.
We used the following parameters for the problem:

• The maximum inventory size is 100 (this creates 101
states since the inventory can have 0 up to and includ-
ing 100 items)

• Ordering any items comes with a fixed cost of -10

• Ordering items costs -2 per item

• Holding an item in storage costs -1 per item

• Selling an item grants the player +4

• The number of customers follows a Poisson distribution
with expectation λ = 15 (customers per day)

A.5 system administrator
The system administrator task refers to a computer network
where computers randomly crash and an administrator has to
decide which computer to spend time on rebooting. This en-
vironment is based on one of the MDPs of the ICAPS 2011
IPPC competition4. When a computer crashes it has an in-
creased probability in following time steps to crash a neigh-
boring computer. The topology of the network can be varied
to create MDPs with various properties. The 3 topologies
considered in this work are visualized in Figure 5.

The system administrator is then allowed to reboot one
machine at every time step or wait. Rebooting a computer
is penalized with a reward of -0.45 but will always fix the
crashed computer. At each time step every computer that has

6https://github.com/openai/gym/blob/master/gym/envs/toy text/
frozen lake.py

7https://github.com/paulhendricks/gym-inventory/tree/master

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/
https://gist.github.com/iiLaurens/ba9c479e71ee4ceef816ad50b87d9ebd
https://gist.github.com/iiLaurens/ba9c479e71ee4ceef816ad50b87d9ebd
https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
https://github.com/paulhendricks/gym-inventory/tree/master


(a) tree (b) random 1 (c) random 2

Figure 5: System administrator topologies.

not crashed will reward the system administrator with +1. We
refer to a computer being on (1) or crashed (0) as the ‘status’,
the probability of being on in the next step is then given by:

ratio on neighbors× (0.05 + 0.9× status)

A.6 tictactoe vs random
The well known tic-tac-toe game is played on a 3x3 grid
where players take turns putting a cross / circle in an empty
square. The player that manages to put 3 of their symbols in a
row / column / diagonal wins the game. While 2 player zero-
sum games are not MDPs, they become MDPs when we fix
the strategy of one of the players. In this case the opponent
plays moves uniformly at random. It is worth noting that this
turns the game that is normally deterministic into a stochastic
environment. The player gets to start the game, i.e. they play
with the crosses.

A.7 tiger vs antelope
The tiger vs antelope game is played on a 5x5 grid where the
agent controls the tiger and tries to catch an antelope. Every
turn the agent can move ‘up’, ‘down’, ‘left’ or ‘right’ and
if the antelope is not caught it responds by jumping in any
direction away from the player uniformly at random.

A.8 traffic intersection
The traffic intersection scenario that we considered describes
a perpendicular intersection where traffic flows in at differ-
ent rates and the operator decides when to switch the traffic
lights. At each side of the intersection 5 cars can fit in a row
and from the moment the traffic light switches we count up to
5 time steps in which one side of the intersection is waiting.
Cars arrive with probability 0.1 per time step on one side of
the intersection and 0.5 on the other side.

The operator gets rewarded +1 for each car making it
through the intersection and gets penalized for flipping the
color of the traffic signs and for waiting cars. Flipping the
color of the traffic lights incurs a reward of -2. For each wait-
ing car the traffic operator gets a reward of −0.1× 2wait time.

A.9 xor
The XOR problem is notoriously difficult for greedy decision
tree learning algorithms, we generate an MDP that mimics

the structure of the supervised learning problem. Specifically
we draw 200 samples in 2 dimensions uniformly at random.
The agent gets 1 reward for taking the action a according to
an XOR function and -1 for a mistake:

R(x, y, a) =

{
1 round(x) + round(y) mod 2 = a

−1 round(x) + round(y) mod 2 = a

Each action sends the agent to a state uniformly at random.

B Linearizing Implications of Conjunctions
In the main text, we constructed one of OMDT’s constraints
using the fact that:
x1 ∧ x2 ∧ ... ∧ xn =⇒ y ≡ x1 + x2 + ...+ xn − n+ 1 ≤ y
We give a short proof of this statement. First, we rewrite the
logical formula into conjunctive normal form. In this case a
single disjunctive clause.

x1 ∧ x2 ∧ ... ∧ xn =⇒ y

≡ ¬(x1 ∧ x2 ∧ ... ∧ xn) ∨ y
≡ ¬x1 ∨ ¬x2 ∨ ... ∨ ¬xn ∨ y

A disjunctive constraint a∨ b∨ c can be trivially expressed as
the linear constraint a+ b+ c ≥ 1. Intuitively any variable a,
b or c needs to be true. Now we rewrite to linear constraints:

¬x1 ∨ ¬x2 ∨ ... ∨ ¬xn ∨ y
≡ (1− x1) + (1− x2) + ...+ (1− xn) + y ≥ 1

≡ x1 + x2 + ...+ xn − n+ 1 ≤ y

C Big-M Value
For the constraints that force xs,a according to the policy πs,a
(Equation 8) we used a big-M formulation with M = 1

1−γ
as an upper bound on xs,a. To prove this upper bound we
construct an MDP in which we maximize xs,a then show that
this value equals our bound. Consider an MDP with one state
s∗ and one action a∗ such that the agent always starts in that
state (p0(s∗) = 1) and action a∗ will always return to s∗

with probability Ps∗,s∗,a∗ = 1. Clearly, this maximizes the
frequency xs∗,a∗ . Substituting into Equation 2 we find:∑

a

xs,a = p0(s) +
∑
s′

∑
a

γPs′,s,axs′,a (2)

xs∗,a∗ = p0(s
∗) + γxs∗,a∗ =

1

1− γ

D Performance at Varying Depths
In the main text we discussed performance of trees at a depth
of 3 since these trees are still easily interpretable but more
powerful than trees of depth 1 or 2. Normalized returns after
2 hours of runtime for varying depth are presented in Table 3,
Table 4 shows the runtime needed to prove optimality of the
solutions for varying depths.

E Size-Limited Policies
We claim that since our models are interpretable since they
are limited in size to an extend that a human can easily follow
the predictions of the models [Lipton, 2018]. The decision
trees of depth 3 created by OMDT and VIPER are visualized
for inspection in Figure 6 and Figure 7 respectively.



depth 1 depth 2 depth 3 depth 4
MDP OMDT VIPER OMDT VIPER OMDT VIPER OMDT VIPER

3d navigation -.00 ± .00 -.00 ± .00 .06 ± .00 .01 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00

blackjack .98 ± .00 .98 ± .00 1.00 ± .00 .98 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00

frozenlake 4x4 .19 ± .00 .04 ± .06 .67 ± .00 .46 ± .00 .96 ± .00 .67 ± .00 1.00 ± .00 1.00 ± .00

frozenlake 8x8 .74 ± .00 .72 ± .01 .93 ± .00 .90 ± .02 .95 ± .00 .83 ± .06 .98 ± .00 .95 ± .00

frozenlake 12x12 .06 ± .00 .04 ± .02 .34 ± .00 .30 ± .00 .68 ± .04 .19 ± .09 .81 ± .01 .19 ± .09

inv. management .99 ± .00 .98 ± .00 1.00 ± .00 .99 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00

sysadmin 1 .84 ± .00 .83 ± .00 .89 ± .00 .86 ± .03 .92 ± .00 .88 ± .01 .91 ± .00 .92 ± .01

sysadmin 2 .27 ± .00 .27 ± .00 .55 ± .00 .55 ± .00 .57 ± .02 .59 ± .00 .67 ± .04 .72 ± .00

sysadmin tree -.03 ± .00 -.03 ± .00 .37 ± .00 .26 ± .00 .71 ± .08 .57 ± .04 .86 ± .04 .86 ± .00

tictactoe vs random -.06 ± .00 -.06 ± .00 .61 ± .00 .61 ± .00 .43 ± .18 .80 ± .01 .68 ± .10 .83 ± .00

tiger vs antelope -.36 ± .00 -.64 ± .06 .19 ± .05 -.31 ± .17 .50 ± .05 -.10 ± .02 .64 ± .03 .23 ± .10

traffic intersection .50 ± .00 .42 ± .00 .98 ± .00 .98 ± .00 1.00 ± .00 .98 ± .00 1.00 ± .00 1.00 ± .00

xor .15 ± .00 .05 ± .00 1.00 ± .00 .13 ± .00 1.00 ± .00 .34 ± .06 1.00 ± .00 .90 ± .03

Table 3: Normalized returns of OMDT and VIPER when varying the maximum depth of the decision tree, runtime was limited to 2 hours
and experiments repeated with 3 random seeds. For depths until 3 OMDT finds optimal or high quality trees within 2 hours while for depth 4
OMDT will need more runtime to improve on the scores produced by VIPER’s trees on 3 environments.

MDP depth 1 depth 2 depth 3 depth 4

3d navigation 9 ±0 258 ±27 315 ±89 223 ±25

blackjack 36 ±5 72 ±7 408 ±85 598 ±99

frozenlake 4x4 1 ±0 1 ±0 2 ±0 2 ±0

frozenlake 8x8 2 ±0 9 ±2 98 ±30 3134 ±350

frozenlake 12x12 10 ±2 349 ±57 timeout timeout
inv. management 453 ±42 6597 ±507 2533 ±540 3548 ±732

sysadmin 1 129 ±10 5059 ±542 timeout timeout
sysadmin 2 488 ±53 timeout timeout timeout
sysadmin tree 74 ±10 4547 ±767 timeout timeout
tictactoe vs random 2989 ±61 timeout timeout timeout
tiger vs antelope 1695 ±210 timeout timeout timeout
traffic intersection 33 ±1 104 ±28 1219 ±177 5595
xor 113 ±10 43 ±1 50 ±0 98 ±27

Table 4: Runtimes until OMDT proves optimality when varying the depth of the trees, runtime was limited to 2 hours and experiments repeated
with 3 random seeds. Proving optimality for deeper trees usually takes more runtime but since a deeper tree allows the tree’s objective value
to be closer to the bound runtime can reduce e.g. in 3d navigation depth 4. OMDT only proved optimality for traffic intersection depth 4 in
one of the runs.
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Figure 6: Depth 3 trees produced by OMDT within 2 hours of runtime with one fixed seed.
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Figure 7: Depth 3 trees produced by VIPER with one fixed seed.
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