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Abstract
Satellite data, such as optical and Synthetic Aperture Radar imagery, can provide information about the
location and level of destruction caused by natural hazards. This information is essential to optimise
the rescue mission logistics by humanitarian aid organisations and save people in need. Currently,
many Automatic Damage Assessment (ADA) methods exist, designed explicitly for one data type with
corresponding spatial resolution. However, the weather and satellite coverage conditions can hinder
rapid and complete data acquisitions after large events. Therefore, it is essential to identify the limits
and capabilities of novel methodologies testing various data availability scenarios and adjusting them
to become robust and widely deployable.
In this research, the Convolutional Neural Network Caladrius of 510 ­ an organisation of the Red
Cross Netherlands is selected to perform experiments. Initially, the model was designed to input high­
resolution imagery and based on the Siamese Architecture, including two Inception­V3 modules fol­
lowed by three connected layers. Themultiple experiments are based on single­, dual­, and cross­mode
scenarios, representing data characteristics with varying resolutions, satellite sources and observation
sensor types. The xBD dataset provides pre­ and post­event high­resolution optical imagery of numer­
ous disasters with corresponding validated damage labels of the included buildings. Subsequently,
this dataset is replicated in three down­sampled versions and using Sentinel­2 1C and Sentinel­1 GRD
data. With the use of the Macro F1­score and the Cohen’s Kappa coefficient, the performances are
compared and the predictions’ reliability is determined in operational situations.
The results indicate that a lower resolution of the input data has a negative effect on the correct classified
buildings. A linear relation does not express the loss in performance, as most damage properties are
captured between 0.5­ and 2.5­meter. Consequently, this implies that the Sentinel 10­meter resolution
datasets provide few recognisable features. The Sentinel­2 1C experiment outperforms the Sentinel­1
GRD, which equals the output of a random classifier. However, no final conclusion is drawn between
the true prediction rate of the model compared to the input data type; optical and SAR imagery due
to the non­optimal experiment circumstances and limited included datasets. Furthermore, the results
from the dual­mode mapping showcase the importance of identical data characteristics between train
and test datasets. Conversely, with the use of the cross­mode experiments, it is found not essential to
match the pre­ and post­event resolution imagery. This latter is very promising for the Red Cross and
creates flexibility to construct datasets quickly after the disaster has struck.
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1
Introduction

The frequency of natural related disasters is increasing due to the effect of climate change. The av­
erage number of events recorded per year has quintupled worldwide in just fifty years time. Rising air
and water temperatures are leading to amplified storms, extreme droughts, longer wildfire seasons,
heavier precipitation, higher sea levels and subsequent floods. The extent and level of destruction and
devastation have impacted, in 2019 alone, more than 95 million people and damage costs running up
to 140 billion US Dollars [43]. Especially, the under­developed countries are affected and assistance
is becoming a constant necessity.

Numerous non­ and governmental organisations are motivated to mitigate and control the impact of
these disasters, prioritising decreasing the death rate.
A comprehensive disaster management system is designed and integrated within humanitarian aid
operations to structure the logistics in the time period of a natural hazard, showcased in Figure 1.1.
The system can be subdivided into two phases concerning pre­event and post­event countermeasures
[29]. The timeline starts with harm mitigation and preparation for a future disaster, followed by predic­
tion and early warning, all based on preventing damage. The four post­event countermeasures include
damage assessment, disaster response, recovery, and reconstruction. At every phase of the manage­
ment system, high­quality information is crucial to understand the natural phenomena and contribute
to immediate response.

Figure 1.1: Comprehensive disaster management [15]

The first four days after the disaster has struck, the data indicating the level of damage is essential to
locate the regions with the most vulnerable victims and to execute adequate rescue and relief actions
[50]. Currently, the information is collected with the use of different methodologies and tools [21]. The
most fundamental approach is conducting field surveys directed by observation teams to assess the
type and scale of damage in detail [3]. These ground­based observations are time­consuming, costly
and only possible to acquire in passable areas, causing delay and incomplete data. Furthermore, this
method limits quick updates and provides inconsistent quality due to human errors [35].
To overcome these limitations, remotely sensed data is introduced to map the affected region. Drone­,
air­, or space­based observations can be gathered by optical or radar sensors. Each of these platforms
and sources is accompanied by its own ad­ and disadvantages. The drone­ and air­based systems
can be deployed on the spot after the disaster, when necessities are available and capabilities are met,
which are often limited in emergent regions. Additionally, imagery in advance of the disaster is not
observed consistently due to different prioritisation and the unpredictable timing of events.
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2 1. Introduction

Satellite imagery has the ability to map a big region because of its high spatial coverage. Furthermore,
the data is collected continuously, making it suitable to access pre­ and post­event data. The revisit
time and orbit position specify the availability and usability of the data with respect to the target location.
A variety of satellite imagery is provided by private and governmental institutions, accessible in a range
of resolutions; the shortest distance between two points on a specimen that the observer can still
distinguish as separate entities. The type of sensor of the satellite mission defines how to interpret
the visualisation and the implementation in the comprehensive disaster management system. Optical
imagery is based on a passive sensor, observing the reflectance of visible wavelengths provided by
Sunlight. The biggest downside is the quality dependency on weather and day­night cycles. The space­
borne sensing method Synthetic Aperture Radar data is unaffected by clouds, smoke and darkness.
The active sensor collects data by actively illuminating the ground with radio waves and measuring the
reflected signal. The observed backscatter differences indicate the properties present at the surface.
This technique is able to provide information with an off­nadir and side­view orientation.

To perform damage assessment, the first post­event countermeasure of the comprehensive disaster
management system, satellite images of both types are reviewed by specialised organisations such
as UNOSAT and manually annotated in affected regions [57]. This approach does resolve the safety
limitations of field survey damage predictions. However, restrictions still exist regarding time, scalability,
and human labelling subjectivity. Therefore, automatic damage assessment is introduced in innovative
research to take full advantage of the data available and subsequently improve rescue missions.

1.1. Automatic Damage Assessment
Automatic Damage Assessment (ADA) involves models which classify building polygons with binary­ or
multi­class labels, by only inputting imagery. The models have the potential to produce more accurate,
quicker and cheaper damage maps of the impacted regions.
In previous research, a range of techniques is investigated to obtain reliable results, based on different
satellite imagery types and mono­ and multi­temporal data scenarios. Results show varying success.

1.1.1. Previous Research
The first damage assessment technique based on optical input data was represented by texture­ and
segmentation­methods, which highlighted and classified buildings by their visual characteristics [59].
Rapidly, these methods were followed by supervised machine learning techniques. The support vector
machine modelling application proposed a good damage prediction rate with the help of multiple param­
eters, established in advance [24]. Additionally, the Bayes Decision theory was tested on numerous
disaster datasets. The method assigned labels based on the decision rule of conditional probabilities,
created by assumptions of feature distributions. Both supervised learning techniques required a­priori
knowledge to direct the classification process.
With the introduction of unsupervised learning, the innovations were boosted and the application of
Convolutional Neural Networks (CNN) was explored. A CNN is a type of artificial neural network,
specifically designed to process pixel data to recognise features. The model is fed with training data,
consisting of images and corresponding ground truth labels. After the training phase, the self­learning
CNN model is ready to predict classes on unseen data, named the test­set.
Numerous different architectures were designed, including varying order and number of convolution­,
activation layers and type of augmentation [2] [11] [19] [31] [32] [44] [65]. It was found to be difficult
to directly compare performances of the models due to non­similar class balances, disaster types and
data sources. In most researches, class imbalance occurred between the binary classes no­damage
and damage, resulting in unreliable high accuracy scores. Nonetheless, it was identified that all mod­
els did learn damage­related features, since their accuracy was superior compared to a naive classifier
that always predicts the majority class.
In most researches, the input data contained solely one use case of a previous earthquake, tsunami
or hurricane. This created non­robust models to real­life situations, as all disaster types showcase
different visible damage characteristics. Subsequently, Tinka Valentijn et al. (2020) [58] investigated
the relationship between the performance of a CNN and a range of hazard types. Although the results
varied between datasets, no relation was determined to be conclusive. The quality differences between
pre­ and post­event imagery of the selected disasters made it complex to substantiate an explanation.



1.2. Problem Statement 3

The ADAmethods inputting SAR data consist of non­similar fundamental characteristics. SAR imagery
does present unique challenges for computer vision algorithms and human comprehension due to the
non­literal imagery type visualisation [67]. In previous research, SAR data was interpreted using their
grey bands or by exploiting phase differences between two radar observations, called interferometric
SAR (InSAR). This latter was commonly used to estimate the interferometric coherence and intensity
correlation. These methods required three images of the location of interest acquired by the same
satellite mission and with identical imaging geometry. The coherence and correlations were computed
of the created pre­disaster and co­disaster image pairs [47]. Subsequently, the damage caused by the
natural disaster was able to assess by detecting the change between the two image pairs. Both the
interferometric coherence and the intensity correlation showed a decreasing value with an increasing
damage level. This value was based on the varying phase and intensity of the complex observed SAR
back­scatter [20].

One of the biggest hurdles of innovating ADA techniques is the low quality and limited amount of vali­
dation data observed by any sensor type. Annotating ground truth labels of buildings linked to previous
disasters is a labour­intensive job and requires consistent protocols of damage scales. However, to
create a reliable model for various operational situations, an extensive input dataset must be present,
including multiple hazard types originated all over the globe to showcase a variety of constructions.
In 2019, a new opportunity within the research field appeared by the start of the xView2 challenge
held by the Defence Innovation Unit [66]. The largest and highest­quality publicly available dataset
xBD was released in this challenge, containing high­resolution satellite optical imagery with specified
building locations and damage scores. The xBD dataset consists of 19 disasters, including six different
data types; volcano eruptions, wildfires, floods, tsunamis, earthquakes and hurricanes [23].

1.2. Problem Statement
Despite the academic research on satellite observed imagery driven ADA, the implementation after
natural hazards shows a delayed effect. Multiple models exist, specifically designed for one data type
with respective characteristics. Humanitarian aid organisations are lacking resources and procedures
to be able to apply and master all methods.
The organisation 510 ­ an initiative of the Red Cross Netherlands has designed a CNN named Cal­
adrius, trained and tested on high­resolution optical imagery. Under perfect data availability conditions,
the model would be applicable to detect damage of buildings. Unfortunately, this is often hindered by
circumstances such as the satellite revisit time, cost of information or weather forecasts. Whilst at the
same time, different sources, types or lower­resolution data are available to implement. However, this
is not possible due to the missing knowledge on how to interpret the predictions. The reliability is not
tested and determined, which is not permitted in life and death situations.

1.2.1. Research Objective
This research is focused on eliminating the deficit to augment the implementation of ADA. In coop­
eration with 510 ­ An Initiative of the Netherlands Red Cross, the Caladrius model is prepared and
improved to apply to various data availability scenarios, including optical and SAR data.
The research will provide insights into the reliability of classifications in all­weather situations and by
inputting openly accessible data sources in addition to expensive and exclusive high­quality data.
With these results, the Red Cross can judge how and when to implement the damage assessment
map within the comprehensive disaster management system to improve humanitarian aid’s efficiency
by facilitating data­driven aid prioritisation. As such, the research questions is phrased as follows:

”What is the influence of different input data characteristics to the true prediction rate of assessing
damage on building level, using the Convolutional Neural Network ’Caladrius’?

To compare the different data characteristics, various resolution imagery and satellite sources are in­
cluded to train and test the Caladrius model. Sub­questions are determined, to specify the research
objective:
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1. What is the influence on the true prediction rate of the Caladrius model by training and testing on
optical imagery with varying resolution settings, ranging from 0.5 to 10.0­meter?

2. What is the influence on the true prediction rate of theCaladriusmodel bymixing the input imagery
with non­identical resolution settings?

3. What is the influence on the true prediction rate of the Caladrius model by training and testing on
Synthetic Aperture Radar imagery?

Experiments are set up to answer these sub­questions, consisting of single­, dual­ and cross­mode
data availability scenarios, imitating operational cases. The data scenarios are based on the xBD
dataset, which is down­sampled in lower resolutions and replicated using openly available datasets,
originating from the Copernicus missions Sentinel­1 and Sentinel­2. The provided coordinates of the
image bounds enable the recreation and the ground truth labels ensure the validation of the model.
The performance and true prediction rate of the Caladrius model are measured using the F1­scores,
the Cohen’s Kappa coefficient and the Area Under the Curve (AUC).

1.3. Overview of Chapters
This thesis is split up into seven chapters. The Literature Study will provide information about the
acquiring process of satellite imagery and the respective interpretation. In addition, the functioning of
a CNN is explained, divided into feature learning concepts and the operation of classification. The
Data chapter includes a detailed description of the datasets used to train and test the Caladriusmodel.
Plus, the extraction method of the openly accessible datasets Sentinel­1 and Sentinel­2 is provided.
Subsequently, the Methodology chapter concerns the required steps to identify buildings and classify
the corresponding polygons with damage types, along with data pre­processing steps, the experimental
setups and selected performance metrics. Next, the Results chapter showcases and discusses the
performance differences of the Caladrius model by executing the experiments. Found relations and
correlations are elaborated to reason the reliability of predictions in varying data availability scenarios.
Last, the Discussion and Conclusion chapters aim to answer the research questions and provide advice
for improvements and future work.
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Literature Study

In this chapter, background information is given to gain knowledge about fundamental concepts re­
garding the research topic. Firstly, the two satellite imagery types are elaborated in more detail, in
section 2.1. The visualisations observed by optical and Synthetic Aperture Radar sensors require
different interpretations, which is essential to understand before inputting into the Caladrius model.
Subsequently, in section 2.2, the functioning of a Convolutional Neural Network (CNN) is discussed,
including its layers and components.

2.1. Satellite Imagery Types
Satellites observing the electromagnetic spectrum provide three imagery types; visible, infrared and
water vapour. Waves of charged particles produced by vibration travel trough the atmosphere and the
vacuum of space. These waves are linked to different wavelengths and frequencies. Instruments are
required to detect the electromagnetic energy and to utilize the range of the spectrum to explore and
understand processes [61]. The applied instruments can be subdivided in two types; active and passive
sensors, visible in Figure 2.1. Both types acquire data at different spectrum wavelengths, applicable to
various use cases.

Figure 2.1: Sensor types of satellites to observe the Earth or third bodies [62]

The resolution of the imagery defines how the data from both sensors can be used and is depended
on the satellite orbit and sensor design. Four types of resolution can be defined, radiometric, spatial,
spectral and temporal. The first describes the number of bits representing the energy recorded. The
higher the resolution, the more information can be stored, showing a great discrimination between
pixels. The spatial resolution is often referred to as the commonly used definition of resolution. It
specifies the area on Earth’s surface covered by one pixel. Details become visible with higher resolution
imagery. The spectral resolution explains the ability of a sensor to discern finer wavelengths. The
narrower the range of wavelengths belonging to a band, the higher the resolution. It is used to detect
densities and property details of soils. The last resolution description represents a satellite’s time period
to revisit the exact location. The temporal resolution is based on the mission’s orbit height and swath
width. Unfortunately, a trade­off is required to optimize one of the resolution settings, based on the
respective use­case.

5
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In this research, multiple datasets are included to review the Caladrius model. The datasets vary in
spatial resolution and imagery type. The two types used are elaborated in the next sections.

2.1.1. Optical Imagery
Optical imagery is a passive sensing method that measures naturally available energy. It has equal­
ities with visuals of a standard camera, using wavelengths of visible light and thermal infrared. The
electromagnetic emissions can be produced locally from vegetation or exist due to reflected Sun illu­
minations. This latter causes the undesired dependency on the day­night cycles. Additionally, clouds
and shadows can contaminate the imagery and can make it non­usable in many situations.
Four different systems exist to channel the received light, containing panchromatic, multi­spectral,
super­spectral and hyper­spectral imaging systems. Most openly available datasets such as Landsat
and Sentinel consist of a multi­channel detector including a few spectral bands. Each band is sensitive
to radiation within a narrow wavelength range, representing the brightness and colour information. An
oscillating mirror continuously scans the surface of the Earth perpendicular to the velocity of the satel­
lite. Every mirror sweep scans six lines simultaneously in each of the spectral bands [53].
The multi­spectral scanners can be further divided into two types; whiskbroom and pushbroom scan­
ners. The first is also known as the across­track scanner, which uses a rotating mirror and a single
detector to scan the scene along with a long and narrow band, one pixel at a time. The pushbroom
scanner does not have a movable mirror, but uses several detectors placed perpendicular to the flight
direction. The imagery of the second scanning technique is of higher quality due to the longer obser­
vation times, absorbing a stronger signal [56].
Optical imagery is collected by governmental and private organisations and available in various reso­
lutions.

2.1.2. Synthetic Aperture Radar
Synthetic Aperture Radar is an active data collector, producing energy in form of radio waves and
recording the reflected energy after interacting with the Earth. The received signal’s strength, direction,
and travel time provide information of properties linked to the surface and object observed. Diffused
scattering will be measured when the surface is rough, visualised by varying pixel brightness. Specular
reflection appears when a smooth surface reflects the beam [63].
The radar sensors utilise long wavelengths with a range of centimetres to meters, making it possible to
penetrate through clouds. Different wavelengths are referred to as bands, with corresponding letters
such as X, C, L and P. The length of the wave determines how the radar signal interacts with the surface
and how far a signal can penetrate a medium, for example, soil, ice or canopies of forests [42].
One of the limitations of radar imagery is the achievable azimuth resolution, parallel to the flight direction
of the satellite, visualised in Figure 2.2. The width of the beam’s footprint on the surface is proportional
to the antenna length and determines the resolution. Large antennae are obstructive and therefore
restrict radar imagery’s visible detail.
This undesired effect can be mitigated by introducing a moving antenna to synthesise the working of
a long antenna. The many radar pulses of the same object provide information, which improves the
resolution in the azimuth direction.

Figure 2.2: Imaging Radar Geometry [26]
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The transmitted and received path of the signal can differ in polarisation, referring to the plane’s ori­
entation in which the transmitted electromagnetic wave oscillates. Typically, SAR transmits linearly
polarised, with the horizontal direction indicated by the letter H and the vertical by V.
The polarisation setting can be installed at the receiver and transmitter, making it possible to create
various combinations; VV, HH, VH, HV. The strength of these combinations carries information about
the structure of the imaged surface, based on the types of scattering, such as rough surface, volume
and double bounce.

SAR visualisations are a non­literal imagery type and should be interpreted accurately, using a different
approach than optical imagery. Colours are not visible, but intensity ranges depending on the amount
of energy the SAR sensor measures. This intensity is related to the dielectric constant of the scattering
object, which stands for the sensitivity of the material to the reflectance of electromagnetic waves and
the roughness of the surface [36].
Shadows, foreshortening and layover effects can cause distortion within the SAR visualisations. The
shadows are formed by objects blocking the path of the radar beam. These areas will return no signal
and appear black. Foreshortening causes misalignments when the radar beam reaches the base of
a tall feature, such as a mountain or high building, tilted towards the radar before reaching the top.
The slope will appear compressed in comparison with reality. The layover effect is the opposite of
foreshortening, by contacting first the top of a tall feature. The top will be displaced towards the radar,
creating a ’lay over’ the base. These geometric limitations occur due to relief displacement, which is
one­dimensional perpendicular to the flight path. The sensor’s look angle can influence these phenom­
ena. A larger angle will increase the shadows’ length while minimising the layover effect [13].
Additionally, speckle can arise in SAR imagery, meaning a salt and pepper variation in the pixel bright­
ness, which degrades the quality of the images. Speckle occurs due to the possibility of many scatter
signals in a given pixel, which will lead to positive and negative interference.

SAR imagery is popular because of the 24­hour all­weather observations, deployable for various use­
cases. Many private companies respond to this growing demand by providing high­resolution imagery
on request, such as Capella space [26]. These high­detail gray visualisations could replace optical
imagery in many situations.

2.2. Convolutional Neural Network
Artificial Intelligence (AI) is introduced expandingly within many situations, to bridge the gap between
the capabilities of humans and computers. Machine­ and deep learning, branches of AI, are based
on learning and adapting models through experience to execute tasks such as image recognition and
classification. The corresponding input data can be labelled or unlabeled.
A Convolutional Neural Network (CNN) is an algorithm based on deep learning techniques, analysing
input data and assigning importance to features and characteristics. A CNN can be subdivided into
two parts; feature learning and classification, visualised in Figure 2.3.

Figure 2.3: Example of a structure of a Convolutional Neural Network [18]

The feature learning exists of several connected layers, including three phases. Starting with the con­
volutions, which produces a set of linear activations and searches for patterns with the use of filters.
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Followed by the detection phase, consisting of a non­linear activation function, such as the Rectified
Linear Unit (ReLU). The last phase equals the pooling function to modify the layer’s output. The second
part of the CNN, the classification, includes the flattening transformation, a fully connected layer and a
Softmax function to classify the object with a probabilistic value between 0 and 1.
In the next subsections, the characteristics of the two parts are further explained. Subsequently, an
elaboration about the training phase of a CNN is given and possible regularization techniques to prevent
overfitting.

2.2.1. Feature Learning
Convolution Layer
A convolution layer is introduced to scan the input imagery and detect patterns with the use of filters,
also called kernels. A kernel is a smaller sized two­dimensional array compared to the input data
and filled with specified weight values, learned during the training phase by the gradient descent to
minimise the loss function. By moving systematically over the input data, features can be identified at
every location. In Equation 2.1, the mathematical relation is given of the convolution, when continuous
or discrete, respectively [4]. The integral expresses the overlap of filter function 𝑔 shifting over the
input function 𝑓. The output of the expression is equal to the feature map. In Figure 2.4, the flow of the
mathematical convolution is visualised.

(𝑓 ⋅ 𝑔)(𝑡) = ∫
∞

−∞
𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

(𝑓 ⋅ 𝑔)(𝑡) =
∞

∑
𝜏=−∞

𝑓(𝜏)𝑔(𝑡 − 𝜏)
(2.1)

Multiple filters can be included in a convolution layer, indicating the depth dimension of the feature map.
A trade­off is introduced, as an extra filter also increases the computing power and training time.
Every filter has its own learnable parameters, which remain equal while shifting over the input image.
This latter is called parameter sharing and one of the most significant advantages of the convolution
layers compared to traditional Neural Networks. Instead of learning a parameter for each location, only
one parameter is learned for the feature map.
A second quality of the convolution layer equals the property of equivariant representations. Thismeans
that the feature map will reflect any affine transformations occurring in the input data, useful when a
local function can be applied everywhere.

Figure 2.4: Filter applied to a two­dimensional input, with the corresponding output of the feature map

The output size of the feature map ((𝑛ℎ −𝑘ℎ +1) ⋅ (𝑛𝑤 −𝑘𝑤 +1)) is dependent on the size of the input
shape (𝑛ℎx 𝑛𝑤) and filter size (𝑘ℎx 𝑘𝑤). By applying a smaller filter than input size, the image shrinks
every time a convolution operation is performed.
In general, pixels in the middle of the input image are filtered more often than pixels on corners and
edges. Consequently, the information on the borders is under­represented. To overcome this problem,
padding is introduced. Padding is a process of adding layers of zeros to the borders of the input image,
transforming the input size to (𝑛ℎ+2𝑝ℎ)⋅(𝑛𝑤+2𝑝𝑤) and output size to (𝑛ℎ−𝑘ℎ+𝑝ℎ+1)⋅(𝑛𝑤−𝑘𝑤+𝑝𝑤+1),
in which 𝑝 is equal to the number of layers of zeros.
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In default situations, the filter starts at the upper­left corner of the input array and slides one pixel at a
time over all locations. By initiating a stride, equal to the number of pixels shifts over the input matrix, in­
termediate pixels can be skipped, optimal for computational efficiency or down­sampling wishes. Again,
this has an influence on the output shape of the featuremap, (𝑛ℎ−𝑘ℎ+𝑝ℎ+𝑠ℎ)/𝑠ℎ⋅(𝑛𝑤−𝑘𝑤+𝑝𝑤+𝑠𝑤)/𝑠𝑤,
where 𝑠ℎ and 𝑠𝑤 are the corresponding height and width step sizes of the stride [4].

Activation Function
The activation function defines how the weighted sum of the input, originated from the convolution layer,
is transformed to the next layer. Often the activation is performed with a non­linear expression, which
is beneficial for learning complex tasks.
Multiple activation functions in Machine Learning are designed and still innovating. Popular examples
are the rectified linear unit function ReLU [52], Max­out and Channel­out [60], the Sigmoid, hyperbolic
tangent and arc­tangent functions [1]. The selection of the best­suited activation function has a large
impact on the capability and performance of the network.

The ReLU is the most integrated activation function in many types of neural networks. It has proven to
optimise the performance and ease the training, reducing the computational complexity expressed in
time and space. Additionally, the ReLU can be used by multi­layer perceptrons and within convolutional
neural networks, despite the risk of the vanishing gradient problem.
The mathematical relation of the ReLU layer is stated in Equation 2.2, in which the output is always
equal to a positive value [7].

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.2)

When the condition of x>0 is not met, the output will equal zero. The first­order derivative can be com­
puted, allowing the execution of back­propagation. Back­propagation is the process of computing the
gradient of the loss function with respect to the model’s weights backwards through the network. The
ReLU is resistant to the vanishing gradient problem, because the gradient of the loss function will never
approach zero. Nevertheless, this activation layer is accompanied by flaws, consisting of the exploding
gradient problem and the possible presence of the dying ReLU; the situation when most output values
are equal to zero and back­propagation cannot be performed.

Pooling
Multiple feature maps are created and stored in the CNN. The low­level features close to the input and
high­order learnable and abstract features are represented in deeper layers [8].
The limitation of these feature maps is recording the precise position of patterns within the input data.
Just with minor movements in the input data, due to cropping, shifting or/and rotation, the output of the
feature map is heavily changed. A common approach to minimize this sensitivity is to down­sample
the feature maps. A lower resolution version of the input signal will be created, including fewer details
but retaining important structural elements. As mentioned earlier, down­sampling can be achieved by
increasing the stride within the convolutional layer.
However, a more robust and suitable approach is introducing a pooling layer. Different pooling functions
exist to summarize surrounding outputs within the feature map. The maximum pooling and average
pooling are the most commonly used and showcased in Figure 2.5. The maximum pooling function
outputs the highest value within the window and the average pooling function computes the average
of all tiles within the window.

Figure 2.5: Example of maximum and average pooling extractions
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Implementing a pooling layer after a convolution and ReLU activation layer is a typical pattern used
for ordering layers and can be repeated multiple times. The capability added by pooling is called
the model’s invariance to local translation. Additionally, the pooling layer reduces the dataset size,
processing time and minimises the risk of overfitting [8].

2.2.2. Classification
The second part of the CNN consists of the classification, subdivided into three steps.
First, a feature map is transformed to one column during flattening. The column is filled with the values
of the feature map matrix, row by row. With many feature maps, all will be flattened and placed beneath
each other, resulting in one long vector of inputs [8].
Next, the flattened vector is inputted into a fully connected layer, which learns non­linear combinations
of the high­level features found by the convolution layers. The layer connects the first part of the CNN
with the last activation function.
The last activation function is the third step called the Softmax; also known as the normalized exponen­
tial function. A vector of arbitrary real values is turned into a vector of probability factor values adding
up to 1, presenting predictions for each label. The mathematical expression of the Softmax 𝑆 can be
found in Equation 2.3.

𝑆(𝑦)𝑖 =
𝑒(𝑦𝑖)

∑𝑛𝑗=1 𝑒
(𝑦𝑗)

(2.3)

Where 𝑦𝑖 equals the 𝑖­th element of the input vector and 𝑛 the number of classes [6].

2.2.3. Training a CNN
After the architecture of the CNN is built, the data can be collected and pre­processed to train the
model. The input data is divided into three subsets to optimise and test the performance. Often, a
split ratio is chosen of 80/10/10 representing the training, validation and test dataset, respectively. The
training dataset functions to fit the model and determines the weights and biases of the neural network.
Subsequently, the validation dataset unbiasedly evaluates the established fit during the training phase,
from which the results are reviewed to update the hyper­parameters. Next, the test dataset is inputted
into the trained model to classify unseen data.
The split ratio depends on the samples in the dataset and the trained model type. When little hyper­
parameters are included, a smaller validation set can be chosen.
In general, it is beneficial for the model’s performance to include a big training set. Although, it is impor­
tant to detect and prevent overfitting, which can occur when the model learns specific characteristics
of the training set that do not occur in unseen data. For example, the features could identify noise or
irrelevant information and learn to classify a specific label.
Figure 2.6 shows the prediction function with respect to the real values of the input data. In the under
fitted scenario, the model has not trained long enough or on too few samples, detecting no meaningful
relationships between the input and output variables. The overfitted scenario shows the opposite.

Figure 2.6: Relation between the prediction function over time and the real values of the input data

A good balance should be found between the model’s training set size and complexity to optimise the
performance. This could be obtained using the error computation of the training­ and test­set. If the
training set has a low error rate and the test data has a high error rate, it signals overfitting.
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The error can be expressed using a loss function. Multiple functions exist, linked to their own char­
acteristics and implementations. In this research, multi­classification is introduced and, therefore, the
cross­entropy loss is selected [37]. In Equation 2.4, the mathematical expression is given to compute
the difference between true values (𝑦𝑖𝑐) and the predicted values (𝑦̂𝑖𝑐). The subscript 𝑖 stands for the
data point belonging to class 𝑐.

𝐽 = − 1𝑁

𝑁

∑
𝑖=1

𝐶

∑
𝑐=1

𝑦𝑖𝑐 log (𝑦̂𝑖𝑐) + (1 − 𝑦𝑖𝑐) log (1 − 𝑦̂𝑖𝑐) (2.4)

The loss function is the model’s objective function, which must be minimized during the iterations in the
training phase.
The training phase can be subdivided into a forward and backward pass. In the forward pass, the input
is running through all network layers. Followed by the backward pass, where the gradients of the loss
function are propagated and weights are updated.
The prediction values per class are obtained after the forward pass by inputting batches of the com­
plete training set. The predictions are rated with the loss function, which indicates if the weight and
bias parameters of the neurons should be tweaked and iterated. The bias represents the shift of the
activation function, and is equal to the constant in a linear function. Bias units are independent of the
previous layer but connected to their own weights. The weights define the strength of a connection
between neurons, it affects the influence of a change in the input upon the output. In Equation 2.5, the
computation of a neuron is given of the weighted sum of the inputs, where 𝑥𝑛 is equal to the input, 𝑤𝑛
to the weights and 𝑏𝑛 to the bias.

𝑌 =∑(𝑤𝑛 ⋅ 𝑥𝑛) + 𝑏𝑛 (2.5)

Subsequently, the output value 𝑌 is fed into the activation function, which prepares a prediction value,
visualised in Figure 2.7.

Figure 2.7: Mathematical model of an artificial neuron, including input data, weights, bias and activation function [46]

After the loss is computed, the backward pass starts to seek the optimal change of weights and biases
to reduce the error in the next iteration. The gradient of the loss function is reviewed and specifies
the rate of change and the sign shows the direction. The old weights 𝑤𝑛 are updated with use of this
gradient (𝜕𝐽/𝜕𝑤𝑛), as can be seen in Equation 2.6 [45]. The learning rate is equal to 𝑎, and is a hyper­
parameter that controls how much to change the model in response to the estimated error each time
the model weights are updated [64].

∗𝑤𝑛 = 𝑤𝑛 − a( 𝜕𝐽𝜕𝑤𝑛
) (2.6)

While back­propagating, the chain rule is applied to compute the gradient one layer at a time. The
iteration from the last layer to the start, prevents redundant calculation of intermediate terms. Unfortu­
nately, no global optimum is guaranteed while updating the weights, a local optimum can confuse.
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One epoch consists of one completed forward­ and backward­pass for all batches in the training set.
Again, an optimum must be found between the number of epochs and the final permitted loss. Increas­
ing the number of epochs enlarges the chance of converting towards an optimal performance value,
but also increases the computer time.

2.2.4. Regularization Techniques
Regularization techniques are invented to prevent overfitting by reducing the test error at the expense
of increasing the train error. The four most applied techniques contain the L1 and L2 regularisation,
dropout, data augmentation and early stopping.

The first method adds an extra term to the cost function, known as the regularisation term. This term
reduces the values of the weight matrices, which simplifies the model.
The L1 term is selected when the absolute value of the weights should be penalized or even be re­
duced to zero. This application could be beneficial to compress the model. The L1 term is given in
Equation 2.7, in which the 𝜆 represents the regularization parameter. This hyper­parameter should be
optimised for the best result [33].

𝐿1 = 𝜆 ⋅∑||𝑤|| (2.7)

The L2 term, also called the weight decay, is almost identical to the L1 regularization but will never
equal zero.

𝐿2 = 𝜆 ⋅∑||𝑤||2 (2.8)

Secondly, dropout is a popular regularisation technique that randomly selects nodes at every iteration
and removes them with their corresponding in­ and outgoing connections. Every iteration includes a
different set of nodes, resulting in various outputs. The hyper­parameter of the dropout function states
the number of nodes that will drop. The method replicates the effect of training many neural networks
with different architectures, in parallel.
The dropout regularisation technique can be applied at many stages of the neural network. For exam­
ple, in the beginning the dropout can prevent the hierarchy of importance per incoming batch [52].
By increasing the size of the training dataset, overfitting could also be prevented. The method of data
augmentation is introduced, which does not require new input data with expensive and time­consuming
labelling. The method replicates existing data and tweaks the input using rotating, flipping, scaling and
shifting.

Last, the early stopping approach reviews the validation score and indicates when to stop training
the model. The moment is selected when the performance of the validation set does not improve or
stagnates. The sweet stop, expressed in number of epochs is visualised in Figure 2.8 with the blue
dotted line.

Figure 2.8: The validation and train set error with respect to the iterations in the training phase of the CNN model
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Data

To investigate the research objective, multiple datasets are selected and tested with the Caladrius
model, listed in Figure 3.1. The used data can be subdivided into two types: optical and Synthetic
Aperture Radar (SAR) imagery. Both have specific characteristics, which lead to ad­ and disadvan­
tages. The optical imagery is represented by the xBD dataset released in the xView2 challenge of the
Humanitarian Assistance Disaster Recovery organisation, plus the openly accessible Sentinel­2 data.
The Sentinel­1 mission provides the SAR data. Unfortunately, no high­resolution SAR imagery was
available for free and included within this research.
The influence of the input data with respect to the model’s true prediction rate can be compared using
equal disasters and regions to minimise the variation and reasoning of miss­classifications. The xBD
dataset is determined as a benchmark and replicated in down­sampled versions, and with the use of
Sentinel data. The longitude­latitude coordinates of the image bounds are extracted to create identical
datasets, in addition, the provided ground truth labels of the damage types per polygon are used to
validate the experiments.

Figure 3.1: Data source overview subdivided into two types: optical and SAR imagery

This chapter covers the description of all data types and datasets. Firstly, the high­resolution optical
imagery representation of the xBD dataset is explained, in section 3.1, including the chosen study area.
Section 3.2 elaborates the down­sampled xBD version and the extraction of Sentinel­2 data. It is inter­
esting to parallel the xBD 10­meter resolution and Sentinel­2 imagery to identify differences. Finally,
section 3.3 contains information about the SAR data type and the implementation in this research.

13
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3.1. High­resolution optical imagery
Imagery collected by optical sensors has similar characteristics to visuals of a standard camera, using
wavelengths of visible light and thermal infrared. The spatial resolution defines the detail detectable in
the figures, available in a wide range. High­resolution imagery (0.1­1.0 meters) is beneficial while ap­
plying change detection methods. The biggest disadvantage equals the dependency on the day­night
cycle and weather conditions. More information about this sensingmethod is stated in subsection 2.1.1.
In this research, the three colour bands; Red, Green and Blue are selected to picture the landscape
and the built­up areas.

3.1.1. xBD
The xBD dataset was released in 2019 by the Humanitarian Assistance & Disaster Recovery for the
xView2 challenge, with the specific purpose to detect damage at building level. The challenge encour­
aged the progress of accurate and efficient deep learning models, to distinguish dangerous situations
with pre­and post­disaster satellite imagery [66].
The dataset consists of 19 disasters linked to 22.068 images, sourced from the Maxar open data pro­
gram. This organisation provides imagery of major crisis events observed by multiple satellite missions:
Worldview02, Worldview03 VNIR and Geoeye01 [38]. The data ranges from 0.5 to 1.0­meter resolu­
tion.
The disasters within the xBD dataset are located across the globe, to ensure a variation of shape and
size of constructions based on landscape differences. Furthermore, multiple natural hazard types are
included to showcase a range of visible damage features. The seven disaster types contain earth­
quakes, wildfires, tornadoes, hurricanes, floods, tsunamis and volcanic eruptions. In Appendix A, the
details of the location and time period are listed of the 19 disasters. The included images per disaster
event are unevenly represented concerning the covered surface area 𝑘𝑚2 and the number of polygons.

In Figure 3.2, the data­frame of xBD is showcased, linking pre­ and post­event images to corresponding
JSON files. The before and after visualisations enable classification based on change detection.
The images are released in PNG and GeoTIFF versions. The JSON files include the x/y pixel­ and lon­
gitude/latitude coordinates of the polygons, valid for the respective image types. The drawn polygons
of the visible building footprints are estimated on the pre­imagery by data annotators and overlaid on
their matching post­event imagery pair. This provides the ideal box before the damage occurred, since
the footprint may be significantly shifted during a disaster. However, this method can result in missed
buildings, firstly, because the building did not exist yet in the pre­imagery, secondly, due to coverage
of clouds, haze, or vegetation. These missed buildings are neglected within the research.
In the post­event JSON files, the damage labels per polygon are given, assuming that all buildings
before the events are non­damaged. Additionally, metadata is listed within the JSON files to represent
background information about the image collection: sensor, grounds sampling distance, capture date,
pan resolution, sun azimuth­, sun elevation­, target azimuth­ and off­nadir angle.

Figure 3.2: xBD data­frame: Pre­event imagery (left) and Post­event imagery (right), with the corresponding JSON files (Example:
Hurricane Michael 78)
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Each post­event facility is classified with a damage label based on the Joint Damage Scale, show­
cased in Table 3.1 and Figure 3.3. The scale consists of four classes, ranging from no­damage (0) to
destroyed (3), and is generalised in an iterative process to represent various disaster types, structure
categories, and geographical locations.
Two review sessions of labelling ensure consistency, checked by experts on random samples. The
California Air National Guard, NASA, and FEMA estimated that 2­3% of the annotations were misla­
beled and were subsequently corrected manually.

The xBD dataset is heavily imbalanced towards the negative imagery, which results in a high level of
no­damage buildings. This division is not preferred, as it can influence the true prediction rate of the
minority classes. The classification model will skew towards the majority class to reach high accuracy.

Table 3.1: Joint Damage Scale descriptions on a four­level granularity scheme [23]

Disaster Level Structure Description

0 (no­damage) Undisturbed. No sign of water, structural or
shingle damage, or burn marks

1 (minor­damage) Building partially burnt, water surrounding structure,
volcanic flow nearby, roof elements missing, or visible cracks

2 (major­damage) Partial wall or roof collapse, encroaching volcanic flow,
or surrounded by water/mud

3 (destroyed) Scorched, completely collapsed, partially/completely
covered with water/mud, or no longer present

Figure 3.3: Visualisation of the Joint Damage Scale description of four­level granularity scheme

3.1.2. Study Area
In this research, it is decided to focus on a section of the total xBD dataset. A selection is made to
reduce the model’s input for two reasons. Firstly, the xBD dataset is replicated in down­sampled ver­
sions, in Sentinel­2 and Sentinel­1 imagery, creating multiple reprocessing steps and requiring much
storage space. Secondly, the model is trained iteratively. The Caladrius model runs very computer
power­intensive and time­consuming. To make the research executable within the time frame of the
thesis, the input data is minimised.
To select specific disasters, two criteria are set: (1) similar visual damage characteristics, (2) events
from 2015 until the present. The first restriction is created to ensure no correlation between perfor­
mances and disaster types. By only selecting similar scenario’s, the comparison can be made between
different data input types. The second restriction is related to the launch period of the Copernicus mis­
sion. Before 2015, the Sentinel­2 sensor was not launched into space and, therefore, unable to collect
images.



16 3. Data

This selection procedure results in a dataset including four disasters; Hurricane Matthew, Hurricane
Michael, Tsunami Palu and Tsunami Sunda Strait. All visual damage is wind­related, and therefore, the
two different disaster types meet the first criteria of the selection. This specific damage type is chosen
due to the obvious changes within the construction of the buildings. In contrast, floods show water and
mud surrounding the houses and facilities. Furthermore, volcano eruptions and forest fires are less
suitable because of the smoke and cloud formation after the event struck.

Details of the data linked to each event are listed in Table 3.2, including the number of image pairs,
polygons and class distributions. Additionally, Figure 3.4 visualises the study area and the correspond­
ing locations of the selected datasets. The real impact of the events did hit a larger region than shown,
but the xBD images were only gathered above the large urban areas, covered by the indicated boxes.

Table 3.2: Details of the disasters included in the study area

Disaster Event Name Images Polygons Class Distribution
Hurricane Matthew 405 9,506 18/54/12/16
Hurricane Michael 550 20,046 64/24/8/3
Tsunami Palu 196 24,119 85/0/2/13
Tsunami Sunda Strait 148 11,682 98/0/1/1
Total 1299 65,352 69/16/5/10

Figure 3.4: Study area: Central and North America (left), Indonesia (right)

Hurricane Matthew is well represented within the dataset, regarding a percentage of 30% of the total
images. Nevertheless, the polygon portion is significantly lower. The geographical location of Haiti,
with smaller and fewer cultivation, can be the reason for the non­polygon dense areas. The impact of
the hurricane, which struck the 4th of October in 2016, was very violent and categorised with the value
4 on the Saffir­Simpson Hurricane Wind Scale ranging from 0 to 5. The combination of the effects of
wind, coastal flooding and rain caused heavy flooding, landslides and destruction of the infrastructure,
agriculture and natural ecosystem. In total, 2 million people were affected, 546 people did not survive
the event, and many more lost their homes and searched for shelters [49].
Hurricane Michael was the seventh in the Atlantic hurricane season of 2018 and labelled with category
5. It hit the region of Central America and the US along Florida’s Panhandle. In the xBD dataset,
Panama City is captured with 550 images before and after the disaster. Due to the solid constructions
of the buildings within this area, most remained intact [12].
The third disaster; Tsunami Palu, was located at Sulawesi in Indonesia, nearby the city Palu. It resulted
from an earthquake with a 7.5 on the Richter magnitude scale, caused by increased stress on the Palu­
Kora fault [28]. The six­meter high wave had a speed of 400 km/h and caused 4340 deaths and 14.000
injuries. Within the xBD dataset, the Tsunami Palu illustrates the most destroyed buildings.
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Last, the tsunami near the area of Sunda Strait between Java and Sumatra in Indonesia was originated
by a massive landslide into the caldera of the volcanic island Anak Krakatau. The tsunami struck dur­
ing December 2018, at popular tourist’s places. Locally, waves erased beach shores about 1­meter
vertically and 20 to 30­meters wide. Within the xBD dataset, this specific disaster visualises a limited
amount of destroyed and major­damaged buildings.

In Table 3.2, the class distribution is given per disaster, expressed in the percentage of samples be­
longing to the labels. It can be noticed that there is an understanding of a high imbalanced dataset,
which can create difficulties within the research. In section 4.2, a method is elaborated to overcome
this issue by resampling the dataset to create a balance.

3.2. Low­resolution optical imagery
In this research, the performance of the Caladrius model is tested on various resolution datasets to
determine the relationship between both parameters. The lower resolution data will show fewer de­
tails, which can cause difficulties during the recognition of damage features. In some scenarios, the
buildings will be smaller than the resolution in meters, resulting in a polygon representation with just
one or a few pixels.
The low­resolution optical imagery is represented by the down­sampled xBD and Sentinel­2 data, ex­
tracted with the use of Google Earth Engine. Both are elaborated in this section.

3.2.1. Down­sampled xBD
The 0.5­meter resolution xBD dataset is down­sampled using a transformation algorithm, explained in
subsection 4.2.1. The original dimensions of the xBD images are equal to 1024x1024 pixels, which is
altered to 204x204, 102x102 and 51x51 pixels. The alteration creates images with the spatial resolution
of 2.5, 5.0 and 10­meter, respectively. The effect of the down­sampling is visualised in Figure 3.5, more
and more detail of the region and on building level is discarded.
The reason for the chosen maximum resolution setting of 10­meter is to compare the Sentinel­2 and
Sentinel­1 data with the ’perfect’ down­sampled xBD dataset, provided with related ground truth labels.

Figure 3.5: The effect of down­sampling the xBD input imagery to 2.5, 5.0 and 10.0­meter resolution (Example: Hurricane
Michael 43)

3.2.2. Sentinel­2
The replication of the openly available Sentinel­2 dataset is created using the tool Google Earth Engine
(GEE). Google Earth Engine is a platform providing satellite imagery and geospatial datasets with
multiple analysis tools, enabling it to detect variabilities and trends on the surface all over the globe
[48].
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Sentinel­2 is part of the European Copernicus mission, including a constellation of two polar­orbiting
satellites stationed in equal sun­synchronous trajectories, phased at 180 ∘ to each other. The mission
aims to monitor the differences in land surface conditions using optical imagery. This can be realised
with a wide swath width of 290 km and a high revisit time [17]. Sentinel­2 offers two products available
for users, listed in Table 3.3. Due to the start date of the available products and the selected natural
disasters of the xBD dataset, the Level­1C product is chosen for the research. This is unfortunate
because the Bottom­Of­Atmosphere reflectance Level­2A could be clearer from noises.

Table 3.3: Sentinel­2 product types [17]

Name High­Level Description Production and Distribution Data Volume Data availability

Level­1C
Top­Of­Atmosphere
reflectances in

Cartographic geometry

Systematic generation
and Online distribution

∼600 MB (each
100 km x 100 km2)

23­06­2015
­ Present

Level­2A
Bottom­Of­Atmosphere

reflectances in
Cartographic geometry

Systematic and on­User
side (using Senitnel­2

Toolbox)

∼800 MB (each
100 km x 100 km2)

28­03­2017
­ Present

Every disaster of the dataset is handled separately to find the specific region, extraction date and filter
settings. Firstly, the longitude and latitude coordinates of the xBD GeoTIFF’s are extracted to specify
the region observed within the dataset. This same region is then visualised in Google Earth Engine,
making it possible to select the suitable Sentinel­2 1C figures before and after the disaster. The decision
is made not to apply a reduced statistic, such as the median, mean, sum or variance, but to show the
first image available. By reducing an image collection to one embodiment, each pixel is composed,
which creates an illusory figure and makes it non­applicable to change detection in a short period of
time.
The biggest hurdle of finding the right set of Sentinel­2 1C figures is the cloud coverage and associated
shadows, often present after a hurricane. A cloud filter and mask are not applied, since the cloud mask
would output zero values for the covered pixels. The Caladrius model will not recognise this.
Manually, the dates before and after the disaster are selected within an iterative process. By zooming­
in on the urban area’s included in the xBD dataset, the cloud coverage is rated. The goal is to choose
the clearest Sentinel­2 1C image closest to the disaster date.
The clipped images are saved in the GeoTIFF file format, referred to the EPSG:4326 frame and include
the B4, B3, B2 bands, equal to the Red, Green, Blue bands, respectively.
In Table 3.4, the dates of the extracted Sentinel­2 1C images are given, per disaster. Additionally,
Figure 3.6 visualises the dates on a scale, together with the disaster date and collected xBD imagery.
It can be noticed that the xBD data is gathered at multiple timestamps and pre­event imagery originate
from 1­3 years before the event. The latter is not advantageous, since this can cause differences when
comparing pre­ and post­event polygons, without it being damaged. For example, due to construction
or dismantling of structures. The Sentinel­2 1C pre­event imagery is extracted in less than 2 months
before the event, the post­event imagery within 30 days.

Table 3.4: Details of the extracted Sentinel­2 data included in this research

Disaster Disaster Date Before Date After Date Images
Hurricane Matthew 28­09­2016 | 10­10­2016 19­09­2016 09­10­2016 1/1

Hurricane Michael 07­10­2018 | 16­10­2018 29­06­2018 17­10­2018 | 28­10­2018 1/2

Tsunami Palu 18­09­2018 18­08­2018 27­09­2018 1/1

Tsunami Sunda Strait 22­12­2018 16­11­2018 05­01­2019 | 10­01­2019 1/2

In the specific case of the Hurricane Michael disaster, a trade­off is made regarding the cloud cover
percentage and the rapid data collection. On the 17th of October in 2018, the first image available
shows small thick clouds. Due to the polygon dense area of Panama City, many buildings became
non­recognisable. The disfigurement is visible on a small scale when extracting the GeoTIFF’s bounds
of the individual images. In response to this, thirty per cent of the clipped Sentinel­2 1C photos are
replaced with the representation of the 27th of October.
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Figure 3.6: Timeline of Sentinel­2 1C and xBD data collection, pre­ and post­event

The pictured area in xBD of the Sunda Strait Tsunami is scattered over the island of Java, including
three cities: Bojong Kidul, Labuhan and Situpotong. The considerable distance between the cities
makes it difficult to select a Sentinel­2 1C image without clouds above all urban areas. The first times­
tamp, the 5th of January in 2019, is a good fit for the two cities located at the coast but cloudy within the
mountains. Therefore, the second time stamp, the 10th of January, is chosen for the Situpotong region.

In Figure 3.7, an example image of the Hurricane Matthew disaster is pictured of the 0.5 and 10.0­meter
resolution xBD dataset compared to the Sentinel­2 1C. This input data­point is an area covered with
agriculture, afforestation and buildings. Similarities can be detected; the river in the left upper corner
and the urban area on the right side. The most significant difference is the colour palette, by means of
the high contrast within the Sentinel­2 1C image. The xBD representations contain white, brown and
greenish colours, whereas the Sentinel­2 1C also outputs black and purple shades.
The polygons will be zoomed in to assess the damage on the building level. Within the xBD 10­meter
resolution and Sentinel­2 1C imagery, these will equal several pixels, without detail or a visible structure.
This can cause problems, which will be examined in the neural network results, in chapter 5.

Figure 3.7: The comparison of an extracted Sentinel­2 1C image with the xBD 0.5 and 10.0­meter resolution visualisation
(Example: Hurricane Matthew 03)

3.3. Synthetic Aperture Radar
Synthetic Aperture Radar visualisations are a non­literal imagery type and should be interpreted accu­
rately, using a different approach than with optical imagery. Intensity ranges are visualised, depending
on the amount of energy the SAR sensor measures. The energy can be observed 24­hours a day in
all­weather conditions, deployable for various use­cases. More information on how SAR imagery is
constructed can be found in subsection 2.1.2.
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In this research, no high­resolution SAR data is integrated due to the non­available open sources which
could be linked to the selected xBD disasters. Only low­resolution data is represented, originating from
the satellite mission Copernicus Sentinel­1.

3.3.1. Sentinel­1
TheSentinel­1mission operates day and night in a constellation of two polar­orbiting satellites, Sentinel­
1A and Sentinel­1B. The radar functions with a C­band sensor linked to a wavelength and frequency
of 7.5–3.8 cm and 4–8 GHz, respectively [16].
The goal of the first Copernicus mission is to cover the entire world bi­weekly and observe sea­ice
zones, Europe’s coastal zones, and shipping routes. The short revisit time and precise position infor­
mation make the mission very successful to monitor land and investigate climate change.
Three products are openly available, consisting of Level­0, Level­1 and Level­2. The first represents
the raw data, which should be decompressed and processed before use.
Level­1 includes a Single Look Complex (SLC) and Ground Range Detected (GRD) product. The SLC
set is geo­referenced SAR data based on orbit and attitude data provided in zero­Doppler slant­range
geometry. A single look in each dimension is created by the full transmit signal bandwidth with phase
information. The GRD product only includes amplitude information and is based on the multi­look setup
with a ground range projection using an Earth ellipsoid model. A square spatial resolution pixel is the
result. The final product, Level­2, is helpful to detect Ocean Swell spectra, including OceanWind Fields
and Surface Radial Velocities.
On the platform Google Earth Engine only Level­1 GRD data is available and, therefore, selected for
this research. The image collection is pre­processed by removing thermal noise, radiometric calibration
and terrain correction. Each scene within the collection has four instrument modes and four polarisa­
tion combinations; single­band and dual­band [14].

The specific images that are extracted to replicate the xBD set are filtered with the use of three settings.
The first equals the instrument mode. The Sentinel­1 operates with four acquisition settings; Interfer­
ometric Wide swath (IW), Extra­Wide swath (EW), Strip Map (SM) and Wave (WV). The first three
options are available in single and dual polarisations. The WV instrument mode can only be linked to
the single polarisation, VV and HH. The different settings correspond to respective swath widths and
spatial resolutions. The IW mode is the most commonly used and applicable, meeting many service
requirements and covering all countries around the globe. The EW mode is primarily selected for the
application of wide­area coastal monitoring, for example, ship traffic and sea­ice measuring. SM only
provides visualisation of small islands and on request for emergency organisations. In this research,
the IW swath is chosen, in which the beam is electronically steered in the azimuth direction for each
burst, resulting in homogeneous image quality. The IW SLC product has one image per sub­swath and
one per polarisation channel.
Secondly, the orbit property could be filtered. SAR satellites have two­orbit direction trajectories, from
the North to the South Pole and the other way around, corresponding to a descending and ascending
orbit, respectively. The same area is revised by both orbit properties, but will output different visualisa­
tions because of the sight view of objects. When extracting the Sentinel­1 GRD imagery, there is tried
to create an ascending and descending pair of the disasters. Unfortunately, this was not possible due
to the accessibility of the data. The Sentinel­1 GRD does revisit most places on Earth within five days,
but the data is not collected continuously.
At last, the reducer type could be selected. Again, the first image available, before and after the disas­
ter, is extracted.

Without any hinder of clouds within the SAR visualisations, the selection process of image pairs is easy.
The only essential requirement implies that the orbit property must be equal for both images, pre­ and
post­event. In Table 3.5, the dates of collected imagery are listed and in Figure 3.8 shown on a timeline.
One problem did occur by extracting imagery for the Hurricane Matthew disaster, consisting of missing
data after the event of half of the region. Two cities are pictured within the Hurricane Matthew dataset;
Cayes and Jeremy. The city Cayes is not captured within four months after the disaster, with an as­
cending orbit direction. Furthermore, no descending data is openly available above Haiti in any of the
years before the event. Therefore, there is chosen to include the data of the 17th of October in 2016,
which only represents 62% of the original image pairs. The remaining pairs are ignored.
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Table 3.5: Details of the extracted Sentinel­1 data included in this research

Disaster Disaster Date Before Date After Date Orbit direction Images

Hurricane Matthew 28­09­2016 | 10­10­2016 02­07­2016 17­10­2016 Ascending 1/1

Hurricane Michael 07­10­2018 | 16­10­2018 27­09­2018 21­10­2018 Ascending 1/1

Tsunami Palu 18­09­2018 08­06­2018 06­10­2018 Descending 1/1

Tsunami Sunda Strait 22­12­2018 11­12­2018 29­12­2018 Descending 1/1

Figure 3.8: Timeline of Sentinel­1 GRD and xBD data collection, pre­ and post­event

The images within this research are created using the RGB colour­composite of VH, VV and VH/VV
polarisation channels. An example of Tsunami Palu is showcased in Figure 3.9.
It is striking that the visualisation is entirely different compared to the xBD and Sentinel­2 1C images.
However, back­scatter differences can be detected due to the damaged region in the lower part of the
image. The pixels output fewer dark colours, representing a more smooth surface than before.

Figure 3.9: The comparison of an extracted Sentinel­1 GRC image with Sentinel­2 1C and the xBD 0.5 resolution visualisations
(Example: Tsunami Palu 18)
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Method

This chapter describes the methodology used to answer the research questions and fulfil the objective.
In Figure 4.1, the pipeline of the Automatic Damage Assessment (ADA) is visualised, including the data
input, output and models. The flow starts with the input pre­ and post­event imagery pairs, equal to
the input of the building extraction model. In subsection 4.1.1, all details are given of the functioning
of this extraction step, creating polygons by using the provided building coordinates. Subsequently, all
clipped polygon images are resampled to equal the dimension of 299x299 pixels to fit into the Caladrius
model. In subsection 4.1.2, a description is given of the Convolutional Neural Network (CNN), which
outputs a list of the ground­truth labels and predictions per polygon.

Figure 4.1: The pipeline of the data flow, building extraction and damage classification

To resolve the restrictions of the imbalanced xBD dataset, data pre­processing is applied and a balance
is created, the process of which is described in section 4.2.
Next, the experiment set up is included in section 4.3, to exhibit the runs executed with the Caladrius
model, consisting of single­, dual­, and cross­modal data scenarios. Finally, the metrics to evaluate the
performance of the model are proposed.

4.1. Caladrius Model
The pipeline includes two models; to extract the buildings from the input images and to classify the
polygons with a damage label. The CNN Caladrius, based on the Siamese architecture, executes the
second step. Both are explained in this section.

4.1.1. Extract Buildings
Within the JSON files of the xBD dataset, longitude/latitude and x/y coordinates are provided of the
building’s corners to extract from the GeoTIFF and PNG images, respectively. Firstly, the shape formed
by the coordinates is checked and resized to a rectangle, with the longest original side as the base.
Next, an extra border is added around the polygon area. This extra space can give interesting infor­
mation about the context and, therefore, the damage type, such as flooded water and debris. The
extension factor, a percentage of the total polygon size, is varied within the research of Ritwik Gupta
[22] to estimate the optimal factor. The extension factor is set at 5%, added at all four sides to minimise
the risk of including neighbouring buildings within the polygon image.
Before saving the created polygons as images, the polygons are examined to meet two restrictions.
Primary, the sum of all RGB values of the polygon requires to be positive. Secondly, a threshold of non
zero pixels of 0.90 should be fulfilled.

23
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Each individual saved polygon is renamed, and a text file is created, including a column with filenames
and their corresponding ground­truth label.

In this research, the GeoTIFF version of the xBD dataset is selected, because of the replication pos­
sibility of Sentinel­2 and Sentinel­1. It is noticed that the longitude/latitude polygon footprints do not
overlap the actual building area; however, no fixed offset is found and resolved. Therefore, the x/y
coordinates are translated to new longitude/latitude values with the help of the equations below.
First, the longitude/latitude coordinates of the xBD imagery bounds are estimated and used to deter­
mine the size of the pixels (𝑤𝜆pixel , ℎ𝜙pixel ) expressed in degrees (∘). The minimum and maximum values
of the coordinates are divided by the number of pixels (1024) in the height and width direction of the
image shape, showed in Equation 4.1.

𝑤𝜆pixel =
𝜆max − 𝜆min
1024

ℎ𝜙pixel =
𝜙max − 𝜙min
1024

(4.1)

Next, the width and height values of the pixels (𝑤𝜆pixel , ℎ𝜙pixel ) are integrated in Equation 4.2, to compute
the new longitude/latitude coordinates of the polygon bounds ([𝜆1, 𝜆2], [𝜙1, 𝜙2]). The coordinates can be
computed with a linear equation, using theminimum longitude andmaximum latitude values (𝜆min, 𝜙max)
to represent the offset coefficient and the pixel size to characterize the multiplication coefficient.

[𝜆1, 𝜆2] = 𝜆min +𝑤𝜆pixel[𝑥1, 𝑥2]
[𝜙1, 𝜙2] = 𝜙max − ℎ𝜙pixel[𝑦1, 𝑦2]

(4.2)

The minimum longitude (𝜆max) and maximum latitude (𝜙max) are selected, since the x/y coordinates
[𝑥1, 𝑥2, 𝑦1, 𝑦2] are estimated from the origin located at the left upper corner.

All pixels touched by the polygons are extracted to create the building images. This results in bigger
polygon images for lower resolution datasets, the effect is shown in Figure 4.2. In addition, the exten­
sion factor is, in specific cases, enlarged by applying the model on the lower resolution datasets. The
extension factor is based on the difference between the size of the building and the resolution setting,
plus the original 5% on all sides. This design choice is implemented to ensure polygons exist of more
than 1 pixel when the building is smaller than the spatial resolution.

Figure 4.2: Visualisation of the effect of down­sampling on polygon scale (Example: Tsunami Palu 138)
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4.1.2. Convolutional Neural Network
The CNN model named Caladrius was created in 2019 by 510 ­ an initiative of the Red Cross Nether­
lands, with the mission to minimise the time taken by aid organisations to reach the victims of the dis­
aster. The damage detection tool is openly available on Github1, where iterations and improvements
are constantly made to achieve reliable predictions and reach optimal performance to implement the
tool in real­life situations.

The architecture of the CNN model, shown in Figure 4.3, is inspired by the Siamese architecture, in­
cluding two identical networks with separate pre­ and post­event imagery as input data. The Siamese
architecture is designed to discriminate characteristics of inputs and uses the same weights and param­
eters within the twin subnetworks [39]. The Caladrius Network differs on this aspect since it updates
the weights in parallel due to the distinct features of the pre­ and post­event input data, which should be
learned separately. In addition, the outcome is not solely established by the differences of the output
vectors of the linear networks, but is assembled by implementing three fully connected layers.

Figure 4.3: Architecture of the Caladrius model. The number in the squares on the left side of a block represents the input size
of each block, the number on the right side indicates the output size. N refers to the number of damage classes [58].

The fully connected layers consist of a ReLU activation function, batch normalisation and dropout, all
explained in detail in section 2.2. In the training phase of the neural network, the final fully connected
layer is linked directly to the cross­entropy loss computation, which is used to examine the model’s
performance and is optimised by altering the weight values. The Softmax finalises the pipeline in the
test phase and produces the prediction values between 0 and 1 for every damage label.

The settings of the model’s hyper­parameters are tested with the Adam optimiser in previous research
[58], resulting in a batch size of 32 and a learning rate of 0.0001. The augmentation is applied at ev­
ery training batch with a scheme containing flipping, rotation and translation. The transformations are
different for every epoch.

Inception­V3
The two separate CNN models follow the Inception­V3 architecture, successfully applied to a larger
variety of computer vision tasks. The Inception architecture family is designed to solve two issues of
neural networks. The first arises due to a large size variation of the target within the input imagery,
making the search difficult for a fitted kernel size to overlap the information. A larger kernel detects in­
formation globally distributed, and a smaller kernel is preferred to learn small details. The second issue
concerns the computationally expensive convolutions existing in deep neural networks. The Inception
architecture is built with smart design choices to reduce the computer time and storage required.
The general Inception module, also called the naive version, resolves the first issue by including filters
on the same level with multiple sizes, which creates a wider network, visualised in Figure 4.4. Next to
the convolution layers, a max­pooling layer is added, the functioning of which is explained in subsec­
tion 2.2.1.
To reduce dimensions and at the same time computational intensity, extra 1x1 convolution blocks are
placed before the larger sized convolution blocks. This action does limit the number of channels and
therefore decreases the number of parameters. Simultaneously, the width and height of the input im­
agery are not affected.

1https://github.com/rodekruis/caladrius
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The first Inception version was designed during the ImageNet Large­Scale Visual Recognition Chal­
lenge in 2014, and further research evaluated the architecture, resulting in already five versions [51].

Figure 4.4: a) Naive inception module, b) Inception module with dimension reduction [54]

The Inception­V3 architecture is based on three building blocks (Figure 4.5), which are iterations of
the naive Inception module. It improves accuracy and uses smart factorisation methods to be more
efficient in computational complexity. Within block A the convolutional layer of the dimension 5x5 is
transformed into two series blocks of a 3x3 size. This multi­layer network uses 28% less parameters
with the same input size and output depth, due to the weight sharing between adjacent tiles.
Block B introduces an asymmetric combination of 1×7 convolutions followed by 7×1 convolutions. This
factorization does perform well on medium grid­sizes, ranging from 12 to 20, where computational cost
saving increases as the grid grows.
At last, block C factorises the 3x3 convolution layers by creating an asymmetric parallel combination of
1x3 and 3x1 convolutions with the same receptive field, reducing 33% of the parameters while main­
taining the existing performance.
The spatial dimension of the input is reduced within the inception Dim, while increasing its number of
channels [41].

Figure 4.5: The three blocks, A, B and C of the Inception V3 and the [54]
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In Table 4.1, the original architecture of Inception­V3 is listed, including 6 standard convolutional layers
and 12 inception layers.
In the training phase, the model is extended with an auxiliary classifier that injects gradients between
the last layers of the inception block B and the inception dim layer. This extra classifier prevents the
problem of the vanishing gradient. In addition, a dropout layer is implemented between the output of
the average pooling layer and the fully connected layer.
The Inception­V3 is trained on a million images from 1000 classes of the ImageNet dataset, learning
general features of various animals and objects. This transfer learning process sets the initial weights
of the model and results in a significant decrease in training time and the size of the dataset required
[51].

Table 4.1: Architecture of Inception­V3 [54]

Type Patch size/stride or remarks Input size

conv 3 × 3/2 299 × 299 × 3
2× conv 3 × 3/1 299 × 299 × 3
max pool 3 × 3/2 147 × 147 × 64
conv 3 × 3/1 147 × 147 × 32
conv 3 × 3/2 147 × 147 × 32
conv 3 × 3/1 147 × 147 × 32
3× Inception A Figure 4.5 35 × 35 × 288
3× Inception dim Figure 4.5
5× Inception B Figure 4.5 8 × 8 × 1280
3× Inception dim Figure 4.5
2× Inception C Figure 4.5 8 × 8 × 1280
Avg pool 8 × 8 8 × 8 × 2048
Fully connected + Softmax 1 × 1 × 2048

Although the Inception­V3 is adopted in the Siamese inspired Caladrius network, a minor adjustment
was made. The output size of the final fully connected layer in the Inception module is reduced from
2048 to 512 features. The reason for the downsizing is the small dimension of the polygon input images
of 299x299 pixels, creating a high risk of overfitting. In addition, three fully connected layers are added
on top of the Inception­V3 architectures to link the twin sub­networks, combine the learned insights and
create a deeper network, to finally predict the damage of the polygon images.

In this research, no significant modifications to the Caladriusmodel are required by running the multiple
experiments, including different resolutions and types of input imagery. The three colour bands of the
input polygon images are all normalised, solving the varying ranges of the RGB values in the xBD,
Sentinel­2 and Sentinel­1 datasets.
Due to the non­typical visualisation of the Synthetic Aperture Radar data, the first layer of the Inception­
V3 is unfreezed in this specific experiment, undoing the transfer learning. The features of the ImageNet
dataset will not match the characteristics of the SAR imagery.

4.2. Data Pre­processing
The down­sampling method is discussed in this section, to elaborate on the creation of the 2.5, 5.0,
10.0­meter xBD datasets. Subsequently, the images of the xBD, Sentinel­2 and Sentinel­1 datasets
require a few pre­processing steps before being put into theCaladriusmodel. Firstly, the transformation
of the GeoTIFF to the PNG file version should be made to read the polygon images properly within the
CNN. Next, the imbalanced datasets are resampled to create similar­sized damage classes, elaborated
in subsection 4.2.2.
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4.2.1. Down­sampling
The average resampling technique is selected, to shrink the input rasters. The method computes the
mean of all original pixel values 𝑋RGB𝑖 included within the new pixel area. This method makes sure no
information is lost, compared to other approaches. In Equation 4.3, the relation is given of the assigned
value 𝑋RGB to each band; Red, Green and Blue.

𝑋RGB =
∑𝑛𝑖=1 𝑋RGB𝑖

𝑛 (4.3)

4.2.2. Resampling
A high­class imbalance is detected within the labelled xBD dataset; substantially more images repre­
sent the no­damage buildings compared to the remaining damage types. An imbalance can have a
negative influence on the performance of classification [34]. Models tend to classify input data with the
most common label, due to the best chance of being correct. Nevertheless, minority labels are often
and in this specific use case the critical targets to identify.
The imbalance can be addressed with several methods, subdivided into two categories. The first cate­
gory is based on data level methods operating on the training dataset by changing its class distribution.
The second category covers classifier­level methods that keep the training dataset unchanged and
adjust the loss functions.
Over­sampling and under­sampling belong to the first category, replicating and removing randomly
selected samples of minority and majority classes, respectively. The factor of the over­ and under­
sampling can be specified beforehand or chosen to re­balance the classes with an even distribution. In
both cases, the training set is resized. The method of over­sampling has emerged as dominant in most
analysed scenarios [10]. Nevertheless, the risk of overfitting can arise with a high replication factor.
Characteristics of the same images within the minority class will be learned, resulting in an inaccurate
performance on unseen data, defeating the purpose of the model. The significant disadvantage of ap­
plying the under­sampling method is discarding a portion of available data.
The second category includes thresholding and cost­sensitive learning. The first adjusts the decision
threshold and changes the output class probabilities. The optimal threshold is found by trial and error,
using the ROC curve to examine performance differences [9]. The last method, cost­sensitive learn­
ing, assigns different costs to miss­classifications. The learning rate is modified such that higher cost
examples contribute more to the update of weights.
Tinka Valentijn et al. [58] researched the effect of the cost­sensitive learning on the xBD dataset, no sig­
nificant effect was shown, based on the Macro F1­scores and recall values of the four damage classes.
Meanwhile, resampling, a combination of over­ and under­sampling, did show improvements and left
the resampled train­data size unchanged.

The original ratio of classes within Hurricane Matthew, Michael, Tsunami Palu and Sunda Strait dataset
equals 69/16/5/10. In this research, there is chosen to resample the dataset to resolve the imbalance,
with a combination of over­ and under­sampling. The order of the resampling steps and splitting the
dataset in training, test, and validation portions is elaborated below. Furthermore, the resulting distri­
bution of the classes within the training set is visualised in Figure 4.6.

1. Firstly, the majority class is under­sampled to balance the no­damage buildings originated from
America and Asia. The set of American no­damage buildings consists of 26,649 polygons com­
pared to the 60,680 Asian polygons. An equilibrium is created between both polygon numbers
𝑥America1=𝑥Asia1 , reducing the total dataset with 34,031 data­points. Two reasons thrive this al­
teration, primarily to limit the bias towards learning characteristics of constructions related to
environmental and location­specific circumstances. Secondly, to prevent a prohibitive replication
factor required to over­sample the minority class to create a balanced dataset.

2. The total dataset is randomly split into a train­, test­, and validation dataset to realise a ratio of
80/10/10, respectively. Every dataset in this research is created with the same random seed.

3. The third step of the resampling process includes the combination of over­ and under­sampling to
retain the dataset’s size. A new ratio of the damage type classes is established to be 35/25/20/20,
to create a balanced training dataset. No equally distributed ratio is specified to imitate a real­life
scenario. Accordingly, the replication factors are equal to 0.6095/1.1306/2.6956/1.5335.
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Figure 4.6: Training dataset size and composition, before and after re­sampling

4.3. Experiments
Eighteen experiments are set up and performed, subdivided into threemodality scenarios; single­mode,
dual­mode and cross­mode to address all possible data combinations for damage mapping. In change­
detection research, is it beneficial to use pre­ and post­event images taken under almost identical
acquisition conditions to train and test the model, represented by single­mode experiments. However,
it is unpredictable if this is feasible within a restricted time period. The dual­mode and cross­mode
experiments investigate the deployability of the Caladrius model inputting a mix of non­similar data.

4.3.1. Single­Mode
The single­mode scenarios, in Table 5.4, are designed to answer the first and third research questions,
regarding the relationship between the optical imagery resolution and imagery type with respect to the
true prediction rate of the Caladriusmodel, respectively. The original and down­sampled xBD datasets
are inputted to train and test the model, representing the first four experiments.
Subsequently, the 5th experiment using Sentinel­2 data is created to estimate differences between
satellite sources, despite having equal resolution and optical sensors. Additionally, this experiment
reviews the capability of replicating a dataset. Last, the functioning of the Caladriusmodel is examined
inputting SAR imagery of the Sentinel­1 dataset. The results of the last three experiments are inter­
esting to compare, to identify the differences between the sensor types and determine if the Caladrius
model is able to function in all­weather circumstances.

Table 4.2: The six designed experiments including xBD, Sentinel­2 and Sentinel­1 imagery in Single­Mode data scenarios

Optical SAR
xBD Sentinel­2 Sentinel­1

Res [m] 0.5 2.5 5.0 10.0 10.0 10.0
1 Pre­event x

Post­event x
2 Pre­event x

Post­event x
3 Pre­event x

Post­event x
4 Pre­event x

Post­event x
5 Pre­event x

Post­event x
6 Pre­event x

Post­event x

All six experiments, listed in Table 5.4, are repeated by binary­classification between the labels no­
damage and damage. The threshold is determined by a qualitative analysis of the visualisations of the
polygons and drawn between theminor andmajor­damage classes. The binary distinction can indicate
which regions are hit instead of specifics on the damage type, which might suffice operational use. This
application can be interesting for low­resolution data due to the loss of detail in the images.
The approach of binary classification equals training and testing on multi­class labels and grouping the
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predictions into binary labels. In previous research, this approach outperformed training and testing on
binary labels, expressed in AUC values [58].

4.3.2. Dual­Mode
In the six dual­mode experiments, the input data of the training phase consists of non­similar char­
acteristics compared to the test data. These experiments represent the scenario in which the training
process can not be repeated due to time restrictions, and the available data of the affected region has a
lower resolution than the train dataset. Training themodel can take days, which is not permitted to serve
rapid relief actions. Therefore, this process is performed in advance. However, when the accessible
test data does not suit the trained model, Caladrius is unserviceable. It is essential to understand the
reliability of the damage predictions in these situations and how sensitivity the model reacts to the mix
of data. All six experiments, given in Table 4.3, only focuses on the different resolution xBD datasets.

Table 4.3: The six designed experiments including xBD imagery in Dual­Mode data scenarios

Optical SAR
xBD Sentinel­2 Sentinel­1

Res [m] 0.5 2.5 5.0 10.0 10.0 10.0
7 Train­set x

Test­set x
8 Train­set x

Test­set x
9 Train­set x

Test­set x
10 Train­set x

Test­set x
11 Train­set x

Test­set x
12 Train­set x

Test­set x

4.3.3. Cross­Mode
Again, six experiments are defined to consider the cross­mode data scenario, listed in Table 4.4. The
cross­mode configurations consist of optical high­resolution pre­event imagery and low­resolution post­
event imagery, to train and test on. After the disaster has struck, it is crucial to collect the post­event
imagery as soon as possible to visualise the damage affected. The date of pre­event imagery is less re­
stricted by the time period of the disaster, creating flexibility to select clear high­resolution data. For this
reason, it may happen that pre­ and post­event imagery are acquired by non­identical characteristics.
To note, it is important to train the model on equal data properties as the test­set.

Table 4.4: The six designed experiments including xBD imagery in Cross­Mode data scenarios

Optical SAR
xBD Sentinel­2 Sentinel­1

Res [m] 0.5 2.5 5.0 10.0 10.0 10.0
13 Pre­event x

Post­event x
14 Pre­event x

Post­event x
15 Pre­event x

Post­event x
16 Pre­event x

Post­event x
17 Pre­event x

Post­event x
18 Pre­event x

Post­event x
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4.4. Performance Metrics
To measure and compare the performances of the experiments executed with the Caladrius model, it
is necessary to define when one outcome is superior to the other. Different Machine Learning models
are evaluated with varying performance metrics, depending on their type and goal. The most common
metrics can be subdivided into threshold and rank types [30]. Threshold metric types predict a sample
with a positive or negative value with respect to the threshold level. The distance of the prediction
score compared to the threshold can be neglected. The rank metric type depends on the ordering of
the samples with corresponding prediction values.

Three metrics are highlighted of the first type, including the accuracy, Cohen’s Kappa coefficient and
F1­scores. The accuracy is equal to the ratio between the number of correct and total predictions, given
in Equation 4.4. This is not a preferred measure when working with an imbalanced dataset, since a
bad model will tend to classify all samples with the majority class, resulting in a high accuracy score.
In this research, the accuracy score does not correctly represent the performance of the classification
model.

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (4.4)

The Cohen’s Kappa coefficient, given in Equation 4.5, measures the inter­rater reliability, corrected by
the agreement of chance. The index can be computed using the confusion matrix and is applicable to
imbalanced datasets. The numerator of the ratio is based on the difference between the observed over­
all accuracy 𝑃𝑂𝑏𝑠 and the overall accuracy, which will be reached by chance 𝑃Change. The denominator
is equal to the maximum value of this difference. The Kappa value 1 represents a good performing
model, and a zero indicates a random classification. In theory, a negative value can be scored, when
the performance is even lower than obtained by a random guess [5]. The Cohen’s Kappa metric has
the downside of outputting a higher coefficient for balanced datasets than imbalanced datasets. In
this research, the experiments all have the same class distribution, created by the resampling steps,
elaborated in subsection 4.2.2. Therefore, the Cohen’s Kappa coefficient can be used to compare the
varying resolution datasets, using the original xBD dataset as the base. The Kappa coefficient can
especially be interesting to examine the lower resolution data and determine if random classification
occurs or characteristics of the images are still learned.

𝐾 = 𝑃𝑂𝑏𝑠 − 𝑃Chance
1 − 𝑃Chance

(4.5)

The F1­score is interpreted as the weighted average of the precision 𝑃 and recall 𝑅 values. The pre­
cision represents the True Positive examples divided by total positive classified examples. The recall,
also called sensitivity, is the fraction of True Positives divided by the sum of True Positives and False
Negatives. Within the multi­class experiments, the Harmonic F1­score is computed per class. The true
class is equal to the class the calculation is related to, and the negative class refers to the summation
of the remaining classes. The individual Harmonic F1𝑖­scores show if a class under­performs and can
be used to calculate the overall Weighted F1­score of the model. The Weighted F1­score is sensitive
to an imbalance within the dataset, since it is based on the sum of the number of images belonging
to the specific classes 𝑛𝑖 times the linked Harmonic F1𝑖­scores, divided by the total number of images
within the test dataset 𝑛.
To treat every class equally, the Macro F1­score is the best suited performance measure, giving the
same importance to each class. All Harmonic F1𝑖­scores are added and divided by the total included
classes 𝑁, 4 in multi­class and 2 in the binary­class setting.
In previous research [58], the Harmonic F1­score of the total dataset, also called a Pythogorean mean,
is introduced to estimate the true prediction rate of the Caladrius model. To compare results, this spe­
cific metric is together with the Macro F1­score included in this research. The Harmonic F1­score can
be computed by dividing the number of classes by he sum of reciprocals of each Harmonic F1𝑖 score.
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In Equation 4.6, all relations of the F1­score computations are stated.

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Harmonic F1𝑖 = 2 ×
𝑃 × 𝑅
𝑃 + 𝑅 =

𝑇𝑃
𝑇𝑃 + 0.5(𝐹𝑃 + 𝐹𝑁)

Weighted F1 = 1
𝑛

𝑛

∑
𝑖=1,2,3,4

𝑛𝑖 × Harmonic F1𝑖

Macro F1 = 1
𝑁

𝑁

∑
𝑖=1,2,3,4

Harmonic F1𝑖

Harmonic F1 = 𝑁 1
∑𝑁𝑖=1,2,3,4Harmonic F1−1𝑖

(4.6)

The metrics belonging to the rank metric type include the Area Under the ROC Curve (AUC­ROC) and
Area under Precision­Recall curve (AUC­PR). In this research, the AUC­ROC is better suited, since it
is less sensitive to imbalance. The AUC of the curves is only applicable to measure performance for
the binary classification setting.
The AUCmeasures howwell predictions are ranked and examines the quality of themodel’s predictions
irrespective of what classification threshold is chosen. The vertical axis of the ROC plot represents the
True Positive rate and the horizontal axis ranges the False Positives.

The metrics results, computed on the test set, will not be used to rank the performances of the Cal­
adrius, but will provide insights into how reliable the predictions are in operational situations after a
natural disaster. In addition, the miss­classifications are reasoned by qualitative analysis and interpret­
ing confusion matrices.
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Results

In this chapter, the results of the performed experiments are showcased and discussed. Firstly, the
general performance of the Caladrius model is reviewed and verified with previous research, in sec­
tion 5.1. Next, the results of the single­, dual­ and cross­mode experiments are investigated in sec­
tion 5.2, to elucidate the relation between the resolution of optical imagery and the true prediction rate
of the Convolutional Neural Network (CNN). Multiple reasons for miss­classifications are discussed to
recommend improvements in further research. In section 5.3, the effect of inputting Synthetic Aperture
Radar (SAR) data into the Caladrius model is examined.

5.1. General Performance
To verify theCaladriusmodel and compare performances with previous research [58], the model is sep­
arately trained and tested on the selected disasters; Hurricane Matthew, Hurricane Matthew, Tsunami
Palu and Tsunami Sunda. In Table 5.1, the Macro and Harmonic F1­scores, together with the recall
values per damage type, are listed. The test runs are paramount to identify if the true prediction rate is
similar and create a baseline for further alterations to the Caladrius model. All runs are trained for 100
epochs, and the datasets are still intact without applying the resampling steps.

In Table 5.1, a minor inconsistency between metric scores can be detected, explained by three possible
reasons. Firstly, the runs are operated using other computational resources; GPU and processing card.
This can cause mathematical rounding differences. Secondly, the Caladriusmodel is previously trained
and tested on xBD PNG image files. In this research, the GeoTIFF version is selected, as elaborated
in chapter 3. Last, the random seed could be non­identical between comparable runs, assigning other
images to the train­, test­, and validation­dataset. This effect is translated in the minor­damage recall
value, linked to disaster Tsunami Palu and Sunda Strait. In previous research, both scores were equal to
1.00. In the verification runs of this research, no samples were included of this damage type; therefore,
the recall value outputs 0.00.

Table 5.1: Results of multi­classification per disaster (epoch=100), sorted by the F1 scores and recall value per damage type;
No = No­damage, Min.= Minor­damage, Maj.=Major­damage and Des.=Destroyed

F1 Recall
Harm. Macro No Min Maj Des

Hurricane Matthew [58] 0.54 0.58 0.38 0.86 0.32 0.68
Hurricane Matthew 0.49 0.55 0.26 0.87 0.29 0.74
Hurricane Michael [58] 0.50 0.54 0.91 0.40 0.41 0.35
Hurricane Michael 0.49 0.54 0.94 0.47 0.36 0.36
Tsunami Palu [58] 0.00 0.70 0.98 1.00 0.00 0.82
Tsunami Palu 0.00 0.43 0.99 0.00 0.00 0.67
Tsunami Sunda [58] 0.00 0.33 1.00 1.00 0.00 0.29
Tsunami Sunda 0.00 0.40 1.00 0.00 0.00 0.44
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To reduce the training time of the model, the loss and score functions are reviewed in Figure 5.1 to
estimate the required number of epochs. The running time of the verification experiments ranged
between 12 hours and 3 days, depending on the number of polygons included in the disaster dataset.
In this research, the data of the four datasets are combined, enlarging the training phase to 8 days.
The train­ and validation loss curve indicates how well the Caladrius model is learning and if the model
is able to generalise predictions on a hold­out dataset. In addition, the plot can show signs of under­
and overfitting characteristics, both effects are preferably avoided [7].
The cross­entropy loss is computed every epoch and consulted to update the weights within the CNN.
In Figure 5.1, heavy spikes are visible in the validation loss trend­line, the unrepresentative train dataset
can cause these outliers. The imbalanced dataset provides insufficient information to learn the minority
class features.
The loss value starts at 0.90 and converges to 0.45. In the following experiments, the Caladrius model
is trained on 50 epochs due to time restrictions and the minimal improvement in the remaining epochs.

Figure 5.1: The loss and F1­score plots, trained on the xBD dataset, 100 epochs

5.1.1. Effect of Class Imbalance
The class imbalance causes many miss­classifications, this is harmful since the minority classes are
the most important to be predicted correctly, equal to the major­damage and destroyed buildings. To
limit the reduction in performance due to the class distribution, resampling is applied, as explained in
subsection 4.2.2. In Table 5.2, the effect of combining over­ and under­sampling can be detected. The
Macro F1­score does improve significantly. The recall values show variable results. The classes, which
contain damage characteristics, do reach better prediction rates.

Table 5.2: Results of multi­classification of the imbalanced and balanced dataset (epoch=50), sorted by the F1 scores and recall
value per damage type

F1 Recall
Harm. Macro No Min Maj Des

Imbalanced 0.66 0.55 0.94 0.69 0.21 0.69
Balanced 0.63 0.68 0.86 0.68 0.42 0.76

To examine the results further, confusion matrices are created, including the number of predicted poly­
gons and normalised scores per true label, in Figure 5.2. Preferably the diagonal is highlighted, indi­
cating the number of True Positives plus the corresponding recall value.
Comparing both matrices, it can be noticed that fewer polygons are assigned to the no­damage type
by the Caladrius model, trained on the balanced dataset. The miss­classified no­damage polygons
are shifted towards the neighbouring classes of the true label. This is improved behaviour because
the model is learning damage features instead of classifying most samples with the majority class.
Consequently, the recall value and True Positives of the no­damage class did reduce.
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Figure 5.2: The confusion matrices of the imbalanced and balanced dataset, trained on the xBD dataset

In Figure 5.3, the training and validation process are showcased of the imbalanced and balanced
dataset. The training loss of the balanced dataset starts and converges towards a higher value. This
can be explained by the dataset’s lower number of no­damage buildings. This specific class repre­
sented the majority within the imbalanced dataset, resulting in small loss values and high accuracy,
despite the low overall performance expressed in Macro F1­score.
The validation loss plot presents a smoother trend line in the balanced dataset, without any outliers.
Nevertheless, an offset occurs between the training and validation loss function. This effect arises
because of the different class distributions within the training and validation dataset, no resampling is
applied to the latter. Additionally, validation loss functions are often lower than training loss functions
due to the regularisation application during the training phase. Also, the training loss is estimated dur­
ing each epoch, while validation loss is measured after each epoch [7].
The overall score of the training and validation process do improve and converge towards a higher
value due to the resampling steps, this behaviour is desired.

Figure 5.3: The loss and F1­score plots, trained on the imbalanced and balanced xBD dataset, 50 epochs

5.1.2. Reasoning of Miss­classifications
Evaluating why the Caladrius model is miss­classifying specific polygons is essential to detect if the
flaw is coming from the CNN, the quality of the images or labels. Subsequently, it is crucial to resolve
the issue and prevent false predictions.

Miss­classifications due to the Quality of the xBD Dataset
The imagery of the xBD is of high quality, however, shortcomings are detected. The xBD data is col­
lected with optical sensors, which creates the possibility of cloud covered figures. In the composed
dataset of this specific research, clouds are also present. Especially, the Tsunami Sunda Strait images
show this effect, pre­ and post­event. It is observed that almost all post­event polygons, covered with
clouds, are on default labelled with the no­damage type. This can be explained by the human annota­
tors, who interpreted the labels based on these images.
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However, something interesting is found, as many of these covered polygons are classified by the
model as destroyed. The similarity between the visualisations of a building that is wiped away or cov­
ered with clouds can confuse. In Figure 5.4, an example is given of a cloudy region and of a destructed
coastal town. In both polygon images, no construction is visible anymore after the Tsunami has hit.
Therefore, the Caladrius model did classify both buildings as destroyed, in which the cloud covered
polygon was labelled with no­damage.
For further research, it is essential that polygon images covered with clouds are removed, not exclu­
sively to reduce miss­classification but also to prevent theCaladriusmodel from learning characteristics
of cloudy pixels linked to the default class type no­damage.

The second shortcoming of the xBD dataset is the considerable time period in between the pre­imagery
collection and the actual disaster impact. The data of Hurricane Matthew was acquired three years
in advance, discarding constantly evolving constructions within urban areas. Consequently, multiple
buildings visible in post­imagery are not recognised due to the non­existence in the pre­imagery. Fur­
thermore, situations occur where buildings are labelled with the no­damage type, but predicted as de­
stroyed. In the 3 years time, these buildings were rebuilt or reconstructed, causing significant changes,
without being damaged. Examples of miss­classified polygons due to reconstruction alterations are
visible in Figure 5.5.

Figure 5.4: Left: visualisation of image including cloud coverage (Example: Tsunami Sunda Strait 82­84 (labeled: 3, prediction:
3)) Right: visualisation of image including a destroyed village (Example: Tsunami Palu 20­37 (labeled: 0, prediction: 3))

Figure 5.5: Visualisation of miss­classified polygons due to the acquisition of imagery three years in advance of the disaster
(Example: Hurricane Matthew)
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Thirdly, the satellite parameters vary between images within pre­ and post­event pairs. The provided
metadata in the JSON­files consists of the off­nadir­, target azimuth­, sun azimuth­ and sun elevation­
angles, defining the position of the satellite and Sun with respect to the Earth. Non­similar parameters
can cause different illumination, side views and visible detail within the images. In Figure 5.6, the va­
riety is showcased in a box plot per disaster. The more significant the difference between pre­ and
post­event the more effect it could have on the prediction accuracy. In previous research [58], it was
found that the Sun azimuth and elevation do influence the AUC score. When the lighting is too bright,
too dark or when the difference between the image pair is too large, the performance of the Caladrius
classification degrades.
In addition, a big difference in off­nadir angle between pre­ and post­event imagery causes non­accurate
polygon outlines. The building bounds were estimated on the pre­event data, as explained in subsec­
tion 3.1.1. The safety border partly compensates for the misalignment; however, this does not resolve
the shift in some samples. Consequently, only partial information of the building is given to the Cal­
adrius model.

Figure 5.6: Box­plot of the satellite acquisition characteristics per disaster, including the median, standard variation and outliers

Lastly, the correctness of the manual labelled buildings is debatable. The boundaries between the
neighbouring classes are specified using the Joint Damage Scale (Table 3.1), but are subjective. The
distinction between the no­damage and destroyed labels is clear, however, the visual difference be­
tween minor­ and major­damage buildings are sometimes hard to recognise in qualitative analysis, the
same goes for the Caladrius model.
Furthermore, when zooming into the miss­classifications, some major­damage and destroyed labels
were given to buildings in heavily impacted regions. However, no damage properties could be de­
tected by inspecting the specific polygon image. The human annotators were probably biased by the
visualisation of the total image, instead of examining only the characteristics of the construction. The
Caladrius model did classify the respective buildings as no­damage, which were wrongly identified as
miss­classification.

Miss­classifications due to the Differences between Disaster Datasets
It is interesting to determine if the Caladrius model under­performs on one specific disaster, and if this
downgrades the overall performance of the xBD dataset. Earlier, the scores per disaster were given
in Table 5.1. However, these results are based on training and testing solely on one specific disaster,
whereas in this research, there is trained on the total dataset, including the four selected disasters.
In Table 5.3, the prediction accuracy per disaster is listed and the recall values per damage type are
showcased in Figure 5.7.
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Table 5.3: Results of multi­classification per disaster (epoch=50), trained on the xBD dataset, sorted by the F1 scores and recall
value per damage type

F1 Recall
Harm. Macro No Min Maj Des

Hurricane Matthew 0.44 0.54 0.16 0.84 0.46 0.75
Hurricane Michael 0.49 0.54 0.88 0.43 0.49 0.30
Tsunami Palu 0.49 0.51 0.94 0.00 0.17 0.85
Tsunami Sunda Strait 0.00 0.40 0.98 0.00 0.00 0.71
Total 0.63 0.68 0.86 0.68 0.42 0.76

Figure 5.7: The F1­score, Recall and Precision plots per disaster and class

The quality of the predictions, linked to the Hurricane Matthew disaster, did score the highest Macro F1­
value. Nevertheless, the performance is hardly perfect. The no­damage class underachieves because
the model labels these polygons with the minor­damage type, the majority class within the Hurricane
Matthew dataset. In Figure 4.6, it can be noticed that more than half of the minor­damage polygons
within the total resampled training set belong to Hurricane Matthew. This can lead to a scenario where
the Caladrius model is not only learning characteristics of this damage type but also linking buildings
in this region to the minor­damage class, without being so. This is an undesired behaviour.
The second best scored damage type concerns the destroyed class, the prediction threshold of this
label has the biggest distance to the minor­damage class and performs for this reason better than the
no­damage and major­damage class.

The metric values based on the Hurricane Michael dataset are still affected by the imbalance, despite
the resampling of the training­set. The F1­score follows the trend of the class type distribution, as can
be noticed in Figure 5.7. The no­damage class outperforms the remaining classes.
In the confusion matrix in Figure 5.8, no clear diagonal can be recognised. By observing the destroyed
predictions, substantially more False Negatives are counted than True Positives. It can be concluded
that the Caladrius model does not perform well on this specific disaster.

In the Tsunami Palu test­set, no samples linked to theminor­damage label are present. For this reason,
the corresponding Macro F1­score, recall and precision values equal zero.
The performance of the major­damage class is shockingly low, the model does not recognise char­
acteristics linked to this damage type. When performing qualitative analysis, it is detected that miss­
annotations cause most miss­classifications. All buildings surrounding the respective polygons are
wiped away, however, no damage is visible in the polygon image itself.
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In addition, other major­damage labelled samples are miss­classified without any determined expla­
nation, clear visible details are showcased in the polygons hinting to damage related features. In
Figure 5.9, examples of wrongly predicted no­damage polygons are given. In these specific samples,
the Caladrius model lacks expertise.
Surprisingly, the destroyed class performance is above average, despite the low number of polygons
included in the train and test­set.

The last disaster reviewed is the Tsunami Sunda Strait. Within the test­set, almost 94% of the polygons
belong to the no­damage type. Again, the destroyed class scores high in terms of recall value.

Figure 5.8: The confusion matrices per disaster dataset, trained on the xBD dataset

Figure 5.9: Visualisation of Major damage labelled polygons and classified with the No damage class (Example: Left Tsunami
Palu 59­47 Right Tsunami Palu 60­225) )

In general, it can be concluded that the Caladrius model encountered varied issues at each of the
disaster datasets. Testing on the total dataset scores the highest Harmonic andMacro F1­scores. More
consistent performance across disasters would have been preferred, as this would indicate reliable
predictions in operational situations. In real life, a dataset of a disaster can be specified with one of the
troubling characteristics discussed in this section, resulting in a scenario where the Caladrius model
can have problems by predicting one of the damage types.
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5.2. Relation between Resolution and Performance
Varying the resolution of the input imagery can have an influence on the performance of the Caladrius
model. The drawn hypothesis equals a positive relationship between performance and resolution set­
ting, implicating that a decrease in input data resolution will result in a reduction in correct predictions.
It is interesting to find out if there is a specific resolution threshold, from which the model stops recog­
nising damage characteristics and the classification becomes random. This latter is tested with the use
of the Cohen’s Kappa coefficient.
The tree data scenario’s, single­, dual­ and cross­mode are created to perform multiple experiments
and to determine the relation. In this section, only the optical input imagery is discussed.

5.2.1. Single­Mode
The single­mode data scenario consists of similar resolution pre­ and post­imagery, to train and test
the Caladrius model on to investigate the searched relations. The original xBD dataset has a ground
resolution of 0.5­meter, and is down­sampled to investigate the results of 2.5, 5.0, 10.0­meter resolu­
tion settings. In Table 5.4, the performance is expressed in F1­scores and recall values per damage
type. In addition, Figure 5.10 showcases the reduction of F1­scores per resolution setting, in which it
can be noted that the loss is not linear through the points. The biggest drop of score occurs between
the 0.5 and 2.5­meter resolution setting. The difference in performance between the 2.5 and 5.0­meter
resolution is two times smaller per meter. This indicates that the most recognisable features of damage
are smaller than 2.5­meter. The slope between 5.0­ and 10.0­meter is similar to the antecedent.
The 30­meter resolution dataset is added to the experiments, to investigate if the score would converge
towards a certain minimum performance. However, the F1­scores do still reduce comparing the 10.0­
meter resolution dataset. This finding is interesting because this means that the classification on the
10.0­meter dataset still functions in a degree.

In addition, all single­mode experiments are repeated with the binary distinction of no­damage and
damage buildings. By observing the scores in Table 5.4, the multi­class and binary performance can
be compared. The binary­class setting does outperform the multi­class. The Harmonized and Macro
F1­score of the 30­meter resolution setting are even higher than the respective scores of the original
xBD 0.5­meter multi­class experiment.
It is no surprise that the recall values of the no­damage labelled polygons exceed the damage cases,
due to the small imbalance of the 60/40 ratio in the training dataset. In Figure 5.10, a similar behaviour
and slope variation can be detected comparing both class settings.

Table 5.4: Results of multi­ and binary­classification with varying resolution settings of the xBD dataset, sorted by the F1 scores
and recall value per damage type

Multi­classification Binary­classification
F1 Recall F1 Recall
Harm. Macro No Min Maj Des Harm. Macro No Dam

0.5 m xBD 0.63 0.68 0.86 0.68 0.42 0.76 0.81 0.83 0.93 0.73
2.5 m xBD 0.54 0.61 0.81 0.62 0.33 0.69 0.75 0.78 0.90 0.65
5.0 m xBD 0.49 0.57 0.75 0.60 0.29 0.72 0.72 0.75 0.86 0.66
10.0 m xBD 0.41 0.52 0.66 0.62 0.23 0.61 0.67 0.71 0.86 0.57
30.0 m xBD 0.33 0.48 0.78 0.49 0.11 0.48 0.62 0.68 0.92 0.41

Figure 5.10: F1­score plot with respect to the resolution setting of the xBD dataset
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All xBD datasets with varying resolutions are examined with the use of the Cohen’s Kappa coefficient,
elaborated in section 4.4. This coefficient indicates if the classification is to an extent based on the
agreement of chance. When the value appears close to zero, a random classification occurs, a value
equal to one represents a perfect performing model.
In Table 5.5 the metric scores are listed. It is interesting to estimate that even the 10.0 and 30.0­
meter resolution xBD datasets surpass the performance of a random classifier. With the eye, no visible
buildings can be found within most polygon images, linked to these low resolutions.

Table 5.5: Cohen’s Kappa coefficients (𝜅) per xBD experiment, multi­label classification

Dataset Res [m] 𝜅 [­]
xBD 0.5 0.63
xBD 2.5 0.53
xBD 5.0 0.48
xBD 10.0 0.40
xBD 30.0 0.36

To examine the effect of reducing the resolution per class, the confusion matrices are given per dataset
representing the multi­ and binary­classification, in Figure 5.11.
First, the multi­class performances are investigated. The no­damage class originally scores the highest
recall value, however, this value reduces the most by lowering the resolution. When the model miss­
classifies a no­damaged building, it is most often with the prediction minor­damage. In operational
situations, this is preferred over the other two damage types due to the neighbouring position and the
otherwise misplaced effort to help people, without utility.
The performance of the minor­damage type is the most constant in the four experiments. However, an
increase in wrongly predicted minor­damage samples arises by lowering the resolution, specifically of
the no­damage true labelled buildings.
Themajor­damage class is evidently under­performing compared to the rest of the classes. The model
finds it hard to recognise the specific characteristics. Surprisingly, the assignedmajor­damage samples
are often predicted to belong to the no­damage andminor­damage classes, despite the clear visible de­
struction of the constructions. It would be more obvious and preferred when the miss­classified major­
damage samples were predicted as destroyed, otherwise dangerous situations could occur. Overall,
the outcome of themajor­damage class is not reliable and reaches 0.42 recall in the original run, which
means the Caladrius model predicts more wrong than correct. In the matrix of the 10­meter resolution,
this recall value is halved to 0.23.
Remarkably, the destroyed class scores more adequately than the major­damage class, despite sim­
ilar visible features. Again, most miss­classified buildings are labelled with the no­damage type. The
threshold of this specific class has the greatest distance to the destroyed class, nevertheless, the model
can be influenced by the imbalance within the training set.
No identical trend for all classes is detected by lowering the resolution. For example, the 5.0­meter
resolution dataset provides some improvements with respect to the destroyed class compared to the
2.5­meter resolution dataset.

When inspecting the confusion matrices created by the binary­classification, it can be seen that the no­
damage class is performing less with every resolution drop. Unlike the damage class, which improves in
the 5.0­meter resolution experiment. When the damage class is equal to the Positive class, the absolute
numbers indicate more False Positives compared to False Negatives. However, when observing the
normalised ratio, the False Negatives are more common. This ratio is not preferred, as this means the
Caladrius model assigns the no­damage label to the damage buildings, which defeats the purpose of
the damage assessment model. The damage buildings are crucial to locate.
In the experiment based on the original xBD dataset, the performance shows usable predictions after an
disaster. The aid organisations would provide help for the labelled damaged houses, with an effective
rate of 73%. The 27% of wasted effort can be taken for granted. However, when using 10­meter
resolution data, almost 50% percent of the labelled damaged houses would be approached, without
being so. Moreover, around 800 households would not be reached.
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Figure 5.11: The confusion matrices of multi­ and binary­classification, trained on the xBD dataset with varying resolutions
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Subsequently, in Figure 5.12 visualisations are created of polygons to perform a qualitative analysis and
to detect when miss­classifications occur. The first example represents a polygon classified correctly
in all resolution settings. The second example is only recognised as minor­damage within the three
higher­resolution datasets; 0.5, 2.5, 5.0­meter. This threshold of true predictions shifts over the four
examples, to detect when detail is lost or characteristics can not be learned anymore. By reviewing the
polygon visualisations, no trend or reasoning can be estimated.

Figure 5.12: Visualisation of polygons with varying resolution settings to detect when miss­classification occurs

A hypothesis was drawn linking miss­classifications to the building footprint, expressed in square me­
ters. The smaller the building the less detail is visible and themore complex feature extraction becomes,
consequently this can result in a lower classification rate. In addition, if the relation between footprint
size and performance does exist, it is predicted to have a more significant effect on the lower resolution
data.

In Figure 5.13, the distribution of True and False predictions versus the building footprint is plotted.
The area size of the buildings is computed by extracting the length and width of the created polygons,
based on the provided coordinates in the JSON­files. The longitude 𝜆 and latitude 𝜙 coordinates are
translated to distances 𝑑, expressed in meters. Below, the integrated computation is stated to estimate
the area 𝐴 of the buildings. The notation 𝑅 equals the radius of the Earth 6371 km.

a = sin2 (Δ𝜙2
180
𝜋 ) + cos(𝜙1

180
𝜋 ) ∗ cos(𝜙2

180
𝜋 ) ∗ sin2 (Δ𝜆2

180
𝜋 )

d = R ∗ 2 ∗ atan(√a) ∗ atan(√1 − a)
A = d2

(5.1)

The calculated area 𝐴 of the polygons, included in the test­set, ranges from 9 to 44244 𝑚2, with the
mean of 519.54 𝑚2 and standard deviation of 1177.52 𝑚2. Due to the divergent footprints, outliers are
erased by only including the 95th percentile of polygons.
By reviewing Figure 5.13, the first hypothesis can be investigated. An overlap is detected between
the distributions of the True and False classified buildings. This demonstrates that a larger building
size does not significantly enlarge the chance of correct classification. This non­existing relation is also
confirmed by the results of the Hurricane Michael dataset, given in Table 5.3. At this specific location,
the constructions are notably bigger than in the other three regions. Nevertheless, the Macro F1­score
of the Hurricane Michael dataset does not excel.
In the zoomed­in plots, a difference between high­ and low­resolution datasets can be detected. The
maximum peak of the True predictions is higher for high­resolution data and decreases for lower reso­
lution datasets. The opposite behaviour is identified in the False prediction probability density function
plot. This does confirm the hypothesis of lower resolution data having a bigger chance of mispredicting
small buildings. However, the effect is minor.
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There must be emphasised that the weak relation between polygon size and performance exists due
to the loss of detail in lower resolution data. Not because the Caladrius model can learn, for example,
that small buildings are less resistant to an impact and therefore collapse earlier. All polygon images
are resized to 299x299 pixels before inputting them into the CNN.

Figure 5.13: Distribution of True and False predictions versus the building footprint, per resolution dataset [m2]

Sentinel­2
Next, a single­mode experiment is executed using the Sentinel­2 1C dataset, consisting of 10­meter
resolution optical imagery. The xBD dataset is collected with private satellites of high quality, whereas
the Sentinel­2 mission is a governmental project providing openly available data. It is interesting to
compare the performances by inputting the two data sources of equal resolutions.
By plotting the images on a reference frame using their longitude and latitude coordinates, a slight
offset appeared between the visualisations of the xBD and the Sentinel­2 1C data. No constant shift
was detected, and the large number of images in the dataset made it impossible to fix it manually. To
make sure the possible difference between metric scores of the Sentinel­2 1C and 10.0­meter xBD
experiments are not caused by the misalignment, an extra experiment is designed. The experiment
equals the single­mode data scenario using the 10­meter xBD dataset. However, while creating the
polygon images, the bounding boxes are shifted with one pixel representing 10­meters.
In Table 5.6, the F1­scores and recall values are listed of the respective optical data, including the
10­meter resolution imagery. It can be noticed that the Sentinel­2 1C experiment performs a bit lower
than the 10.0­meter xBD dataset. Especially, the classes which represent damage properties are af­
fected by the switch to another satellite source. This difference in metric scores is estimated to be not
exclusively due to the misalignment of the polygons.
The Cohen’s Kappa coefficient is checked to indicate if the Sentinel­2 experiment is based on chance,
which equals 0.32. The coefficient of the shifted xBD dataset has a value of 0.39, which means the
Caladrius model under­performs by inputting the Sentinel­2 dataset but reaches the same order of
magnitude. This is very promising.

Examples of polygons of the 10­meter resolution datasets are showcased in Figure 5.14. It can be
detected that the Sentinel­2 building visualisations have a different size compared to the xBD polygons.
This can be explained by the large pixel size and the relative position of the polygons within the imagery.
The clipping is based on the exact longitude and latitude coordinates, however, the relative position of
those coordinates within a pixel window decides which pixels are included.
By reviewing the given polygons, the identified difference in colour palette could be the first reason for
the reduced performance of the Caladriusmodel. In the xBD dataset, the RGB ranges are stored using
8­bits, including values between 0­255. The Sentinel­2 colours are provided with wavelength values of
0 to 10,000. The minimum and maximum of both ranges do not represent the same colour, meaning
the transformation could have caused a loss in the true prediction rate.
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The second reason for the reduction in the quality of the classifications can be linked to the replication of
the images and copying the polygon coordinates plus ground truth damage labels, which are specifically
created for the xBD dataset.

Table 5.6: Results of multi­ and binary­classification of the optical imagery datasets consisting of 10­meter resolution, sorted by
the F1 scores and recall value per damage type

Multi­classification Binary­classification
F1 Recall F1 Recall
Harm. Macro No Min Maj Des Harm. Macro No Des

10.0 m xBD 0.41 0.52 0.66 0.62 0.23 0.61 0.69 0.71 0.86 0.57
10.0 m xBD + shift 0.39 0.50 0.71 0.54 0.17 0.64 0.68 0.72 0.87 0.57
Sentinel­2 0.27 0.44 0.72 0.55 0.07 0.44 0.56 0.63 0.88 0.39

Figure 5.14: Visualisation of polygons representing the visual differences between 10­meter resolution imagery

5.2.2. Dual­Mode
The dual­mode experiments check if the characteristics of the training and test dataset are required
to be identical. In situations of natural hazards where time is crucial, it is beneficial when the model’s
training process does not have to be repeated and the affected region can be assessed immediately.
The experiments are based on the multi­classification of theCaladriusmodel, trained on high­resolution
and tested on low­resolution data. All results of possible combinations are given in Table 5.7. The diag­
onal represents the Macro F1­scores and Cohen’s Kappa coefficients of the single­mode experiments,
inputting the four different resolution xBD datasets. It can be noticed that the performance reduces
significantly while combining datasets of different resolutions. The scenario of training and testing the
model on 10­meter resolution data is evenmore beneficial than training on 0.5­meter and testing on 2.5­
meter resolution data. The higher the resolution difference between the train and test­set, the lower
the performance. For example, the metric scores higher for the combination of 5.0­ and 10.0­meter
resolution data compared to 2.5­ and 10.0­meter resolution data, representing the train and test­set,
respectively.
The drop in Macro F1­scores per combination is related to the trend detected and showcased in Fig­
ure 5.10. Most recognisable damage features were captured between the 0.5­ to 2.5­meter resolution
data. In Table 5.7, it can be noticed that the maximum reduction of the prediction rate per meter oc­
curred while combining 0.5 and 2.5­meter data. In the remaining cases, the average drop in Macro
F1­score, listed horizontal, equals 0.8.

Table 5.7: Results of Dual­Mode experiments with use of the xBD dataset, multi­label classification

(a) Macro F1­Score

Test
Res 0.5 m 2.5 m 5.0 m 10.0 m

Train 0.5 m 0.68 0.49 0.38 0.34
2.5 m x 0.61 0.54 0.42
5.0 m x x 0.57 0.49
10.0 m x x x 0.52

(b) Cohen’s Kappa score (𝜅)

Test
Res 0.5 m 2.5 m 5.0 m 10.0 m

Train 0.5 m 0.63 0.37 0.22 0.16
2.5 m x 0.53 0.47 0.33
5.0 m x x 0.48 0.38
10.0 m x x x 0.40
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This reduction in metric values can be explained by the different visualisations used to learn damage
characteristics from in the training phase and test and assign labels to. The Caladrius model could not
identify patterns it mastered.
It can be concluded that it is essential to acquire equal, when possible, or similar resolution imagery to
train and test the Caladrius model on.

5.2.3. Cross­Mode
The cross­mode experiments check if the characteristics of the pre­ and post­event imagery are re­
quired to be identical. In situations after a natural hazard, it is beneficial to select the first dataset
available to identify damage and act quickly to save lives. The data collection before the disaster is
less time­restricted and can be optimised.
The experiments are based on combinations of varying resolutions within the image pairs, to train and
test the Caladrius model. In Table 5.8, the Macro F1­ and Cohen’s Kappa scores are listed and show
promising results. The output indicates that it is always better to pick a high­resolution pre­event image
and a low­resolution post­event image, compared to selecting the respective low­resolution imagery
pre­ and post­event. For example, the 0.5­meter dataset can be combined with the 5.0­meter dataset,
which will outperform the pair of similar 5.0­meter resolution pre­ and post­event imagery. Furthermore,
the difference between resolutions of pre­ and post­event imagery does not require to be minimal. The
experiment including 0.5­ and 10.0­meter imagery surpassed the combination of 5.0­ and 10.0­meter
resolution data, pre and post­event, respectively.
All these findings show that theCaladriusmodel can learn innovative features when trained on a dataset
with identical characteristics as it is tested on. Due to the deep layers in the CNN, the model can recog­
nise damage properties, despite the non­similarities of pre­ and post­event imagery. This strength is
owned by the Siamese architecture, in which both weights are initiated and updated separately.
Overall, it is preferred to acquire high­resolution data in advance of the disaster, despite the resolution
of the post­imagery, to train and test the Caladrius model.

Table 5.8: Results of Cross­Mode experiments with the use of the xBD dataset, multi­label classification

(a) Macro F1­Score

Post­Event Imagery
Res 0.5 m 2.5 m 5.0 m 10.0 m

Pre­ 0.5 m 0.68 0.63 0.61 0.57
2.5 m x 0.61 0.58 0.57
5.0 m x x 0.57 0.53
10.0 m x x x 0.52

(b) Cohen’s Kappa score (𝜅)

Post­ Event Imagery
Res 0.5 m 2.5 m 5.0 m 10.0 m

Pre­ 0.5 m 0.63 0.56 0.53 0.49
2.5 m x 0.53 0.50 0.48
5.0 m x x 0.48 0.42
10.0 m x x x 0.40

5.3. Relation between Satellite Imagery Type and Performance
The relation between the satellite imagery type and the true prediction rate of the Caladrius model is
examined by a single­mode experiment inputting Sentinel­1 GRD data. This SAR data could replace
the optical imagery when cloud coverage occurs after a natural disaster. The Sentinel­1 GRD visuals
consist of 10­meter resolution imagery, comparable with the Sentinel­2 1C and 10­meter xBD datasets.
As explained in subsection 4.1.2, Inception­V3 model is pre­trained on the ImageNet dataset. This sig­
nifies that the first layer of the network is frozen and memorises the features learned on the ImageNet.
Due to the visual difference between optical and SAR imagery, the first layer is unfrozen to train and test
the Caladrius model with the Sentinel­1 data. The results of both configurations are listed in Table 5.9
to compare the effect of the frozen first layer.

Table 5.9: Results of the multi­ and binary­classification experiments Sentinel­1 and Sentinel­1* (*=without a frozen first layer)

Multi­classification Binary­classification
F1 Recall F1 Recall
Harm. Macro No Min Maj Des Harm. Macro No Dam

Sentinel­1 0.00 0.31 0.88 0.00 0.04 0.42 0.54 0.62 0.88 0.35
Sentinel­1 * 0.04 0.32 0.88 0.01 0.07 0.42 0.54 0.62 0.87 0.35
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By reviewing the classification settings, no clear winner can be declared. Surprisingly, the untrained
model does not outperform the pre­trained model. In both experiments, the model does perform inad­
equately by assessing the damage.
To determine if these metric scores are established by chance, the Cohen’s Kappa coefficient is com­
puted, given in Table 5.10. Both values are around 0.17, which is close to zero, equal to a random
classification. This indicates that the Caladrius model is not able to learn and recognise features by
inputting Sentinel­1 GRD data.

Table 5.10: Cohen’s Kappa coefficients (𝜅) of the multi­classification experiments Sentinel­1 and Sentinel­1* (*=without a frozen
first layer)

Dataset Res [m] 𝜅 [­]
Sentinel­1 10.0 0.17
Sentinel­1 * 10.0 0.17

In Figure 5.15, the confusion matrices visualise the distribution of polygons classified by the Caladrius
model. The most significant difference between the un­ and pre­trained model is linked to the predicted
label minor­damage. Despite being trained with this distinction, the pre­trained model did not assign
this damage type to any sample.
Overall, both models did perform poorly on the four label scenario. The no­damage type is predicted
the most frequently, which can be explained by the data availability issues of the Hurricane Matthew
dataset. The missing images altered the balanced ratio of the training dataset to 40/18/19/23, causing
low recall values of the minor­damage and major­damage labels, equal to the minority classes.
Furthermore, the outcome of the binary classification is investigated. A recall value of ∼0.35 is reached
to allocate damaged polygons, which signifies more False than True predictions .

Figure 5.15: The confusion matrices of the multi­ and binary­classification experiments Sentinel­1 and Sentinel­1* (*=without a
frozen first layer)

In Figure 5.16, four visualisations of polygon images labelled with the four damage types are show­
cased. The examples are selected carefully to display the most apparent features of that specific label
and to detect characteristics within the respective SAR figures. All examples are predicted correctly by
inputting the original resolution xBD dataset.
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The colours of the pixels indicate the backscatter intensity of the area. Without any changes on the
ground, the colours would be assumed similar pre­ and post­event. However, this theory is not validated
by analysing Figure 5.16. The first example represents a building of the Tsunami Palu dataset, in
which the original image shows no damage or change. Yet, the SAR visualisation does output colour
variations and the Caladrius model does classify the sample as major­damaged. Also, in the second
example, an extensive colour range is visible, but in this case, the model predicts the building with the
no­damage label. The last two original xBD polygon images show damage properties due to the effect
of the disasters. Nevertheless, both SAR images are predicted differently and incorrect.
No clear pattern can be recognised in the visualisation of the Sentinel­1 imagery. Damaged buildings
do not solely and always show considerable differences in colour pallet, and the trigger for theCaladrius
model to classify a sample with a specific label is not found.

Figure 5.16: Visualisation of polygons representing the four damage types, comparing the xBD and Sentinel­1 dataset

Additionally, it is interesting to compare the metric scores of the Caladrius model by inputting Sentinel­
1 GRD, Sentinel­2 1C and the xBD 10­meter resolution dataset. The xBD 10­meter dataset predicts
significantly more polygon images correctly and reaches a Macro F1­score of 0.52. The Sentinel­2 ex­
periment follows this performance ranking and the Sentinel­1 finished last with the value of 0.32. The
SAR dataset included in this research provides no learnable features and equals a random classifier.
The unconventional colour palette can have caused this difference.

It is important to note that this does not imply that all SAR datasets will be outperformed by optical
imagery and the imagery type is non­suitable as input data of the Caladrius model to assess damage
automatically.
Additionally, the research did not answer the question if SAR data could be used by an Automatic
Damage Assessment tool, because this was already proven by many existing methods based on in­
terferometric coherence and intensity correlations. In previous research, Sentinel­1 GRD did output
promising results by mapping damage after a natural hazard [25]; however, this is not the case by
using the Caladrius model.
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Discussion

This chapter provides a discussion of the results and how they could be interpreted and implemented
within operational situations after a natural hazard to optimise rescue missions. Additionally, the en­
countered limitations of this research are listed with recommendations for further research.

6.1. Interpretations
This research aimed to gain insights into the functioning of the Caladrius model in real­life data avail­
ability scenarios. It was initiated as the first step to create an all­weather and all­around applicable
Automatic Damage Assessment (ADA) tool on building level.
Originally, the Convolutional Neural Network (CNN) was designed by 510 ­ an organisation of the Red
Cross Netherlands to classify four damage types, inputting satellite high­resolution optical imagery.
However, in emergencies, this data was not always accessible or cloud­free, making the Caladrius
model non­usable. In these situations, the 510 organisation relied back on field surveys to identify de­
struction, accompanied by many disadvantages. Additionally, not using available low­resolution optical
and/or Synthetic Radar Aperture (SAR) data to map the affected region is a waste.

Eighteen experiments were designed and executed, including single­, dual­ and cross­mode data sce­
narios. The input data were characterised by the resolution and observation sensor type to investigate
the relations between the two parameters and the true prediction rate of the Caladrius model.

Single­Mode Experiments
Within the single­mode experiments, the model was trained and tested on multiple datasets, containing
the original and down­sampled xBD, plus the replicated Sentinel­2 1C and Sentinel­1 GRD versions.
Due to the identical study area and provided annotated damage labels, a comparison could be made.
The hypothesis was drawn that changing the input characteristics from the design settings of the Cal­
adrius model would lower the performance, which was confirmed to be conclusive.
The first experiment served as a benchmark and reached a Macro F1­score of 0.68, based on the
original xBD 0.5­meter resolution dataset. Preferably, the accuracy measure would have been closer
to 1, representing a perfect classification. The performed pre­processing steps of the data could have
affected the non­optimal performance, such as the composition of the selected four disasters and the
resampling method, which was proposed to resolve the imbalance issues.

Next, the predicted decreasing trend of the true prediction rate of theCaladriusmodel by down­sampling
the xBD dataset was substantiated. Two key takeaways were identified to be interesting for the Red
Cross. First, the loss per meter differed between the resolution transformations, indicating that most
damage features were sized between 0.5­2.5 meters. Secondly, a random classification only occurred
by inputting a dataset with a lower resolution than 10­meters. This latter came as a surprise because
the clipped polygons consisted of just a few pixels. Still, the Caladrius model was able to learn and
recognise related properties.
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Despite the resampling of the imbalanced training dataset, the minority class major­damage was de­
tected to perform inadequately and this deteriorated by lowering the resolution. Additionally, an in­
creased number of samples was assigned to the majority label no­damage.
Identical trends were estimated by the binary­classification experiments, where the threshold was
drawn between the minor­ and major­damaged classes. However, the Macro F1­scores demonstrated
more reliable and promising results. By reviewing the confusion matrices, the division of the existing
miss­classifications of all resolution datasets showcased a higher absolute number of False Positives
compared to False Negatives, indicating that more houses were predicted as damaged while being
labelled as no­damage. In real­life situations, this will result in wasted effort of the Red Cross; how­
ever, too much given aid is preferred over missed dangerous situations. Unfortunately, the overlooked
damaged buildings increased from 27% to 43% of the total damaged buildings, by inputting 0.5­ and
10­meter resolution imagery, respectively. This defeated the purpose of the ADA.
One indicator was tested to explain the miss­classifications caused by down­sampling, represented by
the size of building footprints. A minor effect was detected, containing a bigger chance of mispredicting
small buildings for lower resolution data. Nevertheless, besides the loss of visible detail within the poly­
gon images, no extra theoretical reason was determined to explain the positive relationship between
the resolution and performance of the Caladrius model.

The Sentinel­2 Level­1C dataset was introduced to investigate the quality of an open­source compared
to the equal resolution xBD dataset collected with private satellites. The free­accessibility and self­
service of extracting the region of interest provide many opportunities to the Red Cross to implement
this data source within the ADA process.
The experiment did reach a 15% lower Macro F1­score compared to the multi­classification of the 10­
meter xBD dataset. Particularly the polygons containing damaged characteristics were misidentified,
which were crucial in this use case to locate. By conducting an extra experiment, it was determined
that the difference in accuracy measures was not exclusively caused by the misalignment of the poly­
gon footprints due to the non­similar off­nadir angle of the satellites. Other reasons for the non­equal
performances could be the colour translation required from wavelength values to RGB ranges or the
variation in created polygon sizes. However, it was promising to notice that theCaladriusmodel learned
features by inputting the B4, B3, B2 bands of this data source. Furthermore, it would be interesting to
investigate the addition of the infrared band to expand the visuals’ information and the outcome of an
experiment based on the Level­2A product, including the Bottom­Of­Atmosphere reflectance.

Lastly, the Sentinel­1 GRD dataset provided the SAR imagery to train and test the Caladrius model.
Unfortunately, the result appeared similar to the performance of a random classifier. Even when the
operation of the frozen first layer of the CNN was reversed, no patterns were mastered to recognise
damage features. In theory, the back­scatter values of the SAR observations must have been trans­
formed to a colour visualisation, indicating differences with a range of intensity varieties. However,
no trend was identified after a qualitative analysis to confirm this theory within the pre­ and post­event
polygon pairs. The poor prediction capability could be explained by the different visual interpretations
required, the resampled resolution of the GRD product and the selected colour representation of the
visuals by the polarisation bands; VH, HH and VH/VV.
Even though the performance of training and testing on the Sentinel­1 GRD dataset was inadequate,
it has been proven that the Caladrius model was able to run by inputting SAR data.

Overall, fully relying on the predictions after a natural hazard is still discouraged based on the found
results of the single­mode experiments. First, the initial performance level of the Caladrius model
inputting high­resolution imagery must be improved before low­resolution imagery and Sentinel­2 1C
would be deployable. Additionally, binary classification is found better suited than multi­classification.

Dual­Mode Experiments
The dual­mode experiments examined the capability of the Caladrius model to immediately test the
dataset of the affected region, without retraining the CNN with similar data characteristics. The training
process of the network takes a couple of days, which is not permitted in rescue missions where time is
crucial. Unfortunately, it was estimated that this reduces the true prediction rate drastically. The bigger
the difference between the resolution of both datasets, the lower the accuracy measure.
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Practically, this implies that the organisation 510 should train the Caladriusmodel with multiple different
resolution datasets and choose the suited version which matches the available satellite imagery after
a disaster has struck.

Cross­Mode Experiments
The last cross­mode experiments mimicked the data scenario of high­resolution pre­event imagery and
low­resolution post­event imagery. After a natural hazard, the first dataset available is highly appreci­
ated as it includes the just wrought havoc, regardless of the corresponding characteristics. Pre­event
imagery has no restricted time period to acquire, creating the opportunity to select high­quality and
resolution data.
The results of the experiments outputted minimal difference, during training and testing on the resolu­
tion combinations. This increased the flexibility of matching imagery pairs in operational situations. It
was found beneficial to include the highest­resolution data possible in advance of the disaster. In con­
trast, the resolution of the post­event imagery impacted the performance less strongly. This simplifies
the trade­off between rapid data collection and resolution setting.
It can be concluded that the Caladrius model can learn innovative features when trained on a dataset
with identical characteristics as it is tested on, whatever the build­up of the datasets may be.

6.2. Implications
All these experiments created insights into how to implement the Caladriusmodel in an emergency use
case and how to rely on the predictions. Last month, the Hunga Tonga­Hunga Ha’apai volcano erupted
causing a subsequent tsunami. The coral reefs and surrounding islands were affected by the ash and
the force of the water. In this situation, the ADA tool of the Red Cross could have been used to map
the destruction and to identify the islands locating the most people in need.
The highest resolution optical data, preferably higher than 5,0­meters, should have been collected pre­
and post­event to create image pairs, prioritising the quality of the data in advance and the speed
after the hazard. It is not obliged to match the data characteristics, learned from the cross­mode ex­
periments. In addition, by performing the dual­mode experiments it was found essential to equal the
resolution of the test­ (imagery of Tonga) and the training dataset. Unfortunately, the models trained
in this research do not apply to this specific use case due to the dataset’s missing volcano eruption
disaster types. However, the xBD does provide previous natural events of this category.
Since the training process is time­intensive, it is preferred this process is taken care of in advance. By
down­sampling the xBD dataset in multiple resolution settings and combinations, pre­ and post­event,
various trained Caladrius versions should be created to select the suited model when needed.
In this research, the building polygons were provided with longitude and latitude coordinates. In emer­
gency operations, the buildings should be extracted from the imagery using a model or with the help
of information on the internet. For example, HOTOSM and Microsoft Maps Team invested in locating
building footprints on the Open Street Map of various areas around the globe [27] [40].
The reliability of the binary­classification predictions of the Tonga use case would be related to weather
conditions, the data resolution, the composition of the training dataset and the quality of the Caladrius
model itself. It defines if the predictions could be used as leading information or as an additional refer­
ence when outlying the rescue mission.

6.3. Limitations
This research is associated with limitations, which hindered the search for conclusive answers to the
initiated research questions and the quality of the predictions. The three most significant limitations are
described below.

Quality of the xBD dataset
All experiments were based on the xBD dataset, in its original state, down­sampled and replicated. This
dataset was selected because of the provided coordinates of the building footprints and validation labels
of damage types. However, this ’high­quality’ dataset was accompanied by multiple flaws, leading to
unsatisfactory results.
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Primarily, the high class­imbalance made it challenging to train the model and learn the minority class’s
damage properties accurately. The no­damage class dominated the prediction ratio, despite attempt­
ing to create an equilibrium by a resampling method.
Secondly, the included data could have been selected with higher standards. A portion of the images
was covered with clouds, which overshadowed the targets. Additionally, the acquisition period of disas­
ters took place years in advance, creating non­reliable image pairs pre­ and post­event due to missing
or renovated buildings, which is undesired in change detection processes. The variable satellite pa­
rameters also made a shortcoming in the quality of the image pairs. Illumination differences caused a
reduction in performance, expressed in the Area Under the Curve (AUC) value. Henceforth, this could
be corrected within the pre­processing steps of the data.
At last, the polygons were labelled subjectively by the annotators using the Joint Damage Scale. Qual­
itative analysis identified inconsistencies due to misinterpretations of visual characteristics and the
vague description of the distinctions. The mislabelling led to inputting misinformation into the Caladrius
model to learn features from during the training phase.

Quality of the SAR dataset
To test the potential of the Caladrius model with the active and passive sensor based satellite data, the
Sentinel­1 and Sentinel­2 datasets were included. The Sentinel­1 Ground Range Detection (GRD) im­
agery generated by Synthetic Aperture Radar observations were only based upon amplitude measures
without phase information. The Sentinel­1 Single Look Complex (SLC) product includes both details,
which can be beneficial in damage detection. However, this latter dataset was not openly accessible
on Google Earth Engine and could not be tested within this research.
Furthermore, the performances of both satellite sensor types were examined with 10­meter resolution
figures, which created non­optimal circumstances to make a comparison. No detail and contours were
visible in the low­resolution data, restricting the use of side­view characteristics, which equalled one
of the main advantages of the SAR data. Unfortunately, no high­resolution SAR data was available to
replicate the disasters in the xBD dataset and conclusively investigate the relation between data sensor
type and true prediction rate of the Caladrius model.

Quality of the Caladrius Model
In this research, the Caladrius model, owned by 510 ­ an organisation of the Red Cross Netherlands,
was used to assess damage automatically. By inputting the high­resolution xBD imagery no optimal
performance was found. After investigating the visuals of the miss­classifications, some samples were
identified with apparent features belonging to the annotated label. This concluded that the inadequate
quality of the model was one of the reasons for the undesired true prediction rate.
The computer scientists of the Red Cross did research opportunities to improve the architecture. First, a
trial was implemented to replace the cross­entropy loss function with a log F1­score computation, which
showed robust behaviour to an imbalanced input dataset. Secondly, it was found that the Inception­V3
was not the best­suited fit to pre­train on the ImageNet dataset. The EfficientNet­4 scored higher metric
measures [55] and was integrated within the Caladrius model as a pilot.

6.4. Further Research
Further research is recommended to resolve the aforementioned limitations to achieve the Caladrius
model’s optimal performance on high­resolution optical imagery. Additionally, the pre­processing steps
and training phase, performed in this research, should be criticised and optimised.
Without this being accomplished, the predictions are not deployable within emergency operations. Plus,
searched relationships and correlations will not be substantiated using the CNN.
Subsequently, in­depth research must be performed to investigate the capability of inputting SAR im­
agery into the Caladrius model. Sentinel­1 GRD can be explored using different polarisation bands
to recreate the colour­composite, and the SLC product can be tested for improvements. But most
importantly, a high­resolution SAR dataset should be accessed as it could have much potential to cre­
ate reliable damage assessment maps in all­weather situations and replace the optical imagery when
necessary.



7
Conclusion

In this thesis, the influence of different input data characteristics was tested on the true prediction
rate of the Convolutional Neural Network Caladrius to assess the damage on building level. Three
relationships were investigated to specify the different input data characteristics concerning various
resolutions and satellite imagery types.

Relationship between input imagery resolution and multi­classification performance
The relation between the resolution of the optical input data and the true prediction rate of the Caladrius
model was estimated to be positive. By down­sampling the spatial resolution of the xBD imagery
to 2.5, 5.0 and 10.0­meter, the Macro and Harmonic F1­scores decreased due to the loss of visible
details within the polygon images. The function between both parameters was not associated with a
constant linear coefficient, as the slope between the resolution transformations differed per meter. This
indicated that most recognisable features were sized smaller than 2.5­meter. Nevertheless, damage
properties still existed within the 10­meter resolution data. The agreement of chance was tested with a
30­meter resolution dataset and Cohen’s Kappa coefficient, showing that the experiment outperformed
the capability of a random classifier.
A trend became visible of the model predicting more and more samples to the majority class of the
label no­damage, by reducing the resolution. The model no longer recognised the existing damage
properties of buildings, and had yield to the imbalance of the dataset.
Equal behaviour was demonstrated by the binary classification of the xBD datasets, in which multi­class
labels were grouped to no­damage and damage distinctions. However, the Caladrius model did reach
higher F1­scores by switching to this distribution setting. The detailed distinction of the four classes
demanded too much detail.

Relationship between mixed input data characteristics and multi­classification performance
The classification quality did reduce drastically when non­equal resolution optical imagery was acquired
to train and test the CNN, respectively. It was found more optimal to input equal low­resolution data
than a high­resolution data combination in all situations.
Mixing different resolutions of pre­ and post­event optical imagery showed promising results to become
more flexible in creating matching imagery pairs and speeding up the damage mapping. Preferably, the
highest resolution data possible was collected in advance of the disaster, independent of the resolution
value of the post­event imagery, to train and test the Caladrius model on.

Relationship between input imagery type and multi­classification performance
In this research, no substantiated comparison could be made between the capabilities of the Caladrius
model by inputting optical and Synthetic Aperture Radar (SAR) imagery due to the inadequate resolu­
tion of the data sources.
The optical imagery was represented by the down­sampled 10.0­meter xBD and Sentinel­2 1C dataset.
Despite the identical data characteristics, the two experiments showed different classification perfor­
mances. Especially, the identification of buildings containing damage properties under­performed by
training and testing with the Sentinel­2 1C dataset. Still, the order of magnitude of metric measures
was similar and showcased that the Caladrius model was able to distinguish classes.
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The Caladrius model based on the SAR data, originated from the Sentinel­1 GRD mission, outputted
a true prediction rate comparable to the competence of a random classifier. This low performance
indicated the Caladrius model was not capable of learning features from the provided SAR visuals.
From the experiments in this research, the conclusion could be drawn that the implementation of the
Sentinel­2 1C data was superior to the Sentinel­1 GRD data. However, it is not determined if the differ­
ence in the observation sensor type exclusively caused the variation in accuracy measures. Moreover,
other SAR datasets with higher resolutions or originating from a different source could provide ade­
quate performances using the Caladrius model. It is important to investigate this further to eliminate or
prove the functionality of SAR data, as it would create many opportunities when optical observations
are unusable.



A
Appendix

Table 1: The 19 included disasters in the xBD dataset [23]

Disaster Event Name Location Event Dates

Mexico City Earthquake North America 19 Sep 2017

Midwest US Floods North America 03 Jan 31 May 2019

Pula Tsunami Asia 18 Sep 2018

Sunda Strait Tsunami Asia 22 Dec 2018

Hurricane Michael North America 07 Oct 16 Oct 2018

Hurricane Florence North America 10 Sep 19 Sep 2018

Hurricane Harvey North America 17 Aug 02 Sep 2017

Hurricane Matthew Central America 28 Sep 10 Oct 2016

Monsoon in Nepal, India, Bangladesh Asia 01 Jul 30 Sep 2017

Joplin, MO Tornado North America 22 May 2011

Moore, OK Tornado North America 20 May 2013

Tuscaloosa, AL Tornado North America 27 Apr 2011

Carr Wildfire North America 23 Jul 30 Aug 2018

Woolsey Fire North America 09 Nov 28 Nov 2018

Pinery Fire Oceania 25 Nov 02 Dec 2018

Portugal Wildfires Europe 17 Jun 24 Jun 2017

Santa Rosa Wildfires Central America 08 Oct 31 Oct 2017

Lower Puna Volcanic Eruption North America 23 May 14 Aug 2018

Guatemala Fuego Volcano Eruption Central America 03 Jun 2018
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