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Synchronization of cyclic power grids: Equilibria and stability
of the synchronous state
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Synchronization is essential for the proper functioning of power grids; we investigate the

synchronous states and their stability for cyclic power grids. We calculate the number of stable

equilibria and investigate both the linear and nonlinear stabilities of the synchronous state. The linear

stability analysis shows that the stability of the state, determined by the smallest nonzero eigenvalue,

is inversely proportional to the size of the network. We use the energy barrier to measure the

nonlinear stability and calculate it by comparing the potential energy of the type-1 saddles with that

of the stable synchronous state. We find that the energy barrier depends on the network size (N) in a

more complicated fashion compared to the linear stability. In particular, when the generators and

consumers are evenly distributed in an alternating way, the energy barrier decreases to a constant

when N approaches infinity. For a heterogeneous distribution of generators and consumers, the

energy barrier decreases with N. The more heterogeneous the distribution is, the stronger the energy

barrier depends on N. Finally, we find that by comparing situations with equal line loads in cyclic

and tree networks, tree networks exhibit reduced stability. This difference disappears in the limit of

N !1. This finding corroborates previous results reported in the literature and suggests that cyclic

(sub)networks may be applied to enhance power transfer while maintaining stable synchronous

operation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973770]

The electrical power grid is a fundamental infrastructure

in today’s society and synchronization is essential for the

proper functioning of the power grid. The current transi-

tion to a more distributed generation of energy by renew-

able sources, which are inherently more prone to

fluctuations, poses even greater challenges to the func-

tioning of the power grid. As the contribution of renew-

able energy to the total power being generated is surging,

it becomes more challenging to keep the synchronization

against large disturbances. The objective of this paper is

to study the influence of cycles in the network, and of the

distribution of power generation and consumption, on

the synchronization. We find that the heterogeneity of

power generation and consumption diminishes both the

linear stability and the nonlinear stability and that large

size cyclic power grids are more sensitive to this hetero-

geneity. In addition, we show that a line in a tree network

loses synchronization more easily than a line carrying the

same amount of power in a ring network. This suggests

that the stability of the synchronous state can be

improved by forming small cycles in the network. The

findings may help optimize the power flow and design the

topology of future power grids.

I. INTRODUCTION

In power grids, the topology of the network and the distri-

bution of power generation and consumption play important

roles in the synchronization.1–8 The linear stability of the syn-

chronized state against small size disturbances has been widely

studied using the master stability formalism of Pecora and

Carroll,9 e.g., Refs. 2, 5, 7, and 8. Complementary work on

large disturbances was described by Menck et al.5 with the

concept of basin stability, which was applied to estimate the

basin of attraction of the synchronous state. In practice, the sig-

nificance of stable operation of the power grid was acknowl-

edged long ago and has led to general stability studies for the

power grid using direct methods,10–12 which focus on the

potential energy landscape of nonlinear power systems.

The primary interest of this paper is to study the influ-

ence of cycles and of the distribution of generators and con-

sumers on the synchronization. In particular, we study cyclic

power grids to analyze the impact of the size of the cycle

and of the heterogeneity of the power distribution on the

synchronization.

We focus on the potential energy landscape of the non-

linear systems and use the energy barrier to measure the

nonlinear stability. The energy barrier prevents loss of syn-

chronization and is defined as the potential energy difference

between the type-1 equilibria and the corresponding stable

equilibrium. Starting from the commonly used second-order

swing equations, we reduce our model to a system of first-

order differential equations using the techniques developed

by Varaiya and Chiang10,13 to find stability regions for

synchronous operation of electric grids after a contingency.

After this reduction, we are left with a first-order Kuramoto

model with nearest neighbor coupling.

For the case of a cyclic power grid with a homogeneous

distribution of power generation and consumption, we derive

analytical expressions for the stable equilibria and for their
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number, which generalize earlier work of DeVille.14

Furthermore, we investigate the more general case with ran-

dom distributions of generators and consumers numerically.

To this end, we develop a novel algorithm that allows fast

determination of the stable equilibria, as well as the saddle

points in the system.

Subsequently, the stability of the equilibria is studied

both using linearization techniques for linear stability and

direct (energy) methods for determining the nonlinear stabil-

ity. By comparing our stability results for different network

sizes, we show that the linear stability properties differ

greatly from the energy barrier obtained by direct methods

when the system size increases. More specifically, the linear

stability measured by the first nonzero eigenvalue approxi-

mately scales with the number of nodes (N) as 1=N. This is

consistent with the findings by Lu et al.15 on the linear stabil-

ity of a chain or cyclic network. However, this is in contrast

to the nonlinear stability result in this study, which shows

that the potential energy barrier decreases to a nonzero value

for N !1. For large size cyclic power grids, small pertur-

bations of the power supply or consumption may lead to

desynchronization. Moreover, comparison of a ring topology

with a tree topology reveals enhanced stability for the ring

configuration. This result suggests that the finding that dead-

ends or dead-trees diminish stability by Menck et al.5 can be

interpreted as a special case of the more general fact that

tree-like connection desynchronizes easier than ring-like

connection. This confirms the earlier result in Refs. 16 and

17 that forming small cycles can increase the stability of the

synchronous state. However, it does not mean that stability

can be increased by arbitrary adding more cycles in the net-

work because of the well-known Braess’ paradox, which has

also been found in power systems.6,7 In this situation, the sta-

bility of the synchronous state decreases after the introduc-

tion of additional lines to the network. Hence, when a cycle

is added to the network to improve the stability, the Braess’s

paradox should be avoided.

In this paper, we focus on the linear and nonlinear stabil-

ities of cyclic power grids. The paper is organized as follows.

We define the model in Section II and calculate the (number

of) stable equilibria of cyclic networks in Section III. We

next analyze the linear stability of the synchronous states in

Section IV and the nonlinear stability in Section V. Finally,

we conclude with a summary of our results in Section VI.

II. INTRODUCTION OF THE MODEL

We consider the second order Kuramoto model defined

by the following differential equations:

d2di

dt2
þ a

ddi

dt
þ K

X
j

Aij sin di � dj

� �
¼ Pi; (1)

where the summation is over all N nodes in the network. In

Eq. (1) di is the phase of the i�th generator/load and Pi is the

power that is generated (Pi > 0) or consumed (Pi < 0) at

node i and a > 0 is the damping parameter that we take

equal for all nodes. The link or coupling strength is denoted

by K and Aij is the coefficient in the adjacency matrix of the

network. The model also is called the second-order

Kuramoto model, see, e.g., Refs. 2, 5, and 18–20.

When we consider the case of a ring network, Eq. (1)

reduces to

d2di

dt2
þ a

ddi

dt
þ K sin di � diþ1ð Þ þ sin di � di�1ð Þ

� �
¼ Pi; (2)

with i ¼ 1; 2;…;N. In writing Eq. (2), we assumed that

dNþi ¼ di. We usually rewrite the second-order differential

equations as the first-order system

_di ¼ xi;

_xi ¼ Pi � axi � K½sinðdi � diþ1Þ þ sinðdi � di�1Þ�: (3)

Note that in an equilibrium, the total consumption equals to

the total amount of generation, i.e.,
PN

i¼1 Pi ¼ 0.

The line load of a line is defined as follows:

Li;j ¼ Kj sinðdi � djÞj; (4)

which measures the power transmitted by the line connecting

node i and node j.
In this paper, we focus on the power distribution with

the form

Pi ¼ ð�1Þiþ1Pþ ni; i ¼ 1; 2;…;N � 1:

ni 2 Nð0; rÞ; and
XN

i¼1

Pi ¼ 0; (5)

where Nð0; rÞ is the normal distribution with standard devia-

tion r � 0 and mean 0, and ni is a random number. We refer

the model with r¼ 0 as the homogeneous model in which

power P is generated at the odd nodes and �P is consumed

at the even nodes, i.e.,

Pi ¼ ð�1Þiþ1P: (6)

Further, we refer the model with r > 0 as the heterogeneous
model, which is obtained by a Gaussian perturbation of the

homogeneous model. The degree of heterogeneity of Pi in

the heterogeneous model is measured by r.

To investigate the linear stability of the synchronous

(equilibrium) state, Eq. (3) are linearized around an equilib-

rium state ðds
i ; 0Þ; i ¼ 1;…;N. Using vector notation d ¼

ðd1;…; dNÞT and x ¼ ðx1;…;xNÞT , the linearized dynamics

is given by the matrix differential equation

_d
_x

� �
¼ 0 IN

L �a

� �
d

x

� �
¼ J

d

x

� �
; (7)

with L the (negative) Laplacian matrix defined by

Li;i�1 ¼ K cosðdi � di�1Þ;
Li;iþ1 ¼ K cosðdi � diþ1Þ;

Li;i ¼ �K½cosðdi � di�1Þ þ cosðdi � diþ1Þ�: (8)

The eigenvalues of L, denoted by ki, are related to the eigen-

values of J, denoted by li, according to the following

equation:
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li6 ¼ �
a
2

6
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4ki

p
; i ¼ 1; 2;…;N � 1: (9)

These 2N � 2 eigenvalues are supplemented by two eigen-

values 0; one corresponding to a uniform frequency shift and

the other to a uniform phase shift. For a > 0, the real part of

li6 is negative if ki < 0. The type-j equilibria are defined as

the ones whose Jacobian matrix J have j eigenvalues with a

positive real part.

III. THE EQUILIBRIA OF RING NETWORKS

In this section, we study a ring network consisting of an

even number of nodes (N) with N=2 generators and N=2 con-

sumers, e.g., as shown in Fig. 1. The phase differences

between neighbors are

h1 � d1 � dNðmod 2pÞ; hiþ1 � diþ1 � diðmod 2pÞ:

To find the equilibrium points we set ðdi; _diÞ ¼ ðds; 0Þ in

Eq. (3) from which we find the following equations for hi:

sin hi � sin hiþ1 ¼ Pi=K; i ¼ 1;…;N: (10)

Because all phase differences hi are restricted to one

period of hi, the following additional requirement holds:

XN

i¼1

hi ¼ 2mp; m 2 f�bN=2c;…;�1;0;1;…;bN=2cg; (11)

where bN=2c denotes the floor value of N=2, that is, the larg-

est integer value which is smaller than or equal to N=2. Each

equilibrium corresponds to a synchronous state whose stabil-

ity we wish to determine. We first calculate the number of

stable equilibria of the homogeneous model. Note that these

equilibria correspond to phase-locked solutions of a first-

order Kuramoto model that was explored by DeVille14 for

the case P¼ 0.

A. The equilibria of the homogeneous model

In this subsection, the number of stable equilibria is

determined by solving the nonlinear system analytically. Our

approach is similar to that of Ochab and G�ora.21 Note that

for general ring networks, an upper bound of the number of

stable equilibria has been derived by Delabays et al.,22 which

is a linear function of the size N. Here, we focus on the spe-

cial case with the homogeneous model as described in Eq.

(6), we have the following proposition.

Proposition III. 1. The equilibria of the ring network
with homogeneous distribution of generation and consump-
tion as in Eq. (6) are given by hi ¼ h1 for odd i, and hi ¼ h2

for even i, where

h1 ¼ arcsin
P

2K cos
2mp

N

2
4

3
5þ 2pm

N
; (12a)

h2 ¼ �arcsin
P

2K cos
2mp

N

2
4

3
5þ 2pm

N
; (12b)

and m is an integer such that

jmj � N

2p
arccos

ffiffiffiffiffiffi
P

2K

r !$ %
:

The total number of stable equilibria is given by

Ns ¼ 1þ 2
N

2p
arccos

ffiffiffiffiffiffi
P

2K

r !$ %
: (13)

When P¼ 0, Ns reaches the upper bound derived in Ref.

22. Details of this derivation can be found in supplementary

material Section S1.

In the following, we denote the stable equilibria as hm
S

¼ ðhm
1 ; h

m
2 ;…; hm

1 ; h
m
2 Þ where hm

1 ; h
m
2 can be calculated by

Eq. (12).

In Fig. 2(a), we show the total number of stable equilib-

ria NS as a function of P/K. It can be clearly seen from this

figure that the total number of stable equilibria decreases

with P/K and reaches 0 when P=K ¼ 2.

B. The equilibria of the heterogeneous model

To investigate the effect of the distribution of Pi, we per-

formed Monte Carlo (MC) simulations of the system (3)

with the distribution of Pi given by Eq. (5).

All the equilibria of small size power systems can be

found using a software package Bertini.23–25 However, we

perform numerical calculations using the algorithm in sup-

plementary material Section S2 since the size of the net-

works is relatively large. The algorithm amounts to finding

all solutions for b of

XN

i¼1

aiarcsin
Xi

j¼1

Pj=K þ b

0
@

1
A ¼ mp;

where ai¼ 1 when the phase difference hi 2 ½�p=2; p=2� and

ai ¼ �1 if hi 2 ½p=2; 3p=2�. For details and bounds on the

values of m, we refer to supplementary material Section S2.

Since the number of equilibria is known to increase exponen-

tially with N,26,27 it is not feasible to find all equilibria for

large networks. Therefore, we developed an algorithm based

on a recent theoretical paper of Bronski and DeVille28 for

finding all equilibria of type-j. Details about the algorithm

can be found in supplementary material Section S2. We are

particularly interested in type-1 equilibria, as a union of the

stable manifolds of these equilibria can be used to
FIG. 1. A ring network with alternating consumer and generator nodes.

Circle nodes are generators and square nodes are consumers.
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approximate the basin of stability of the stable equilibria.

Our algorithm is capable to find type-1 equilibria at a com-

putational cost of OðN3Þ and hence can be applied to rather

large networks. We remark that this algorithm might be

extended to more general networks. Employing this algo-

rithm, the number of stable equilibria is investigated as

follows.

Our algorithm was applied to networks with P=K ¼ 0:5
described by the heterogeneous model. In the simulations, we

average over 1000 independent runs for each value of r. In

Fig. 2(b), the number of stable equilibria is plotted as a func-

tion of the number of nodes that we vary from N¼ 6 to

N¼ 102, for 4 different values of r¼ 0, 0.1, 0.2, and 0.3. It

can clearly be seen that for r ¼ 0:2 or r ¼ 0:3 the number of

stable equilibria attains a maximum value and then decreases.

The same behavior is also expected for r ¼ 0:1. However, the

decrease is expected to set in at larger values of N; hence,

such behavior cannot be observed from Fig. 2(b). The occur-

rence of a maximum for nonzero r can be understood as

follows. If the number of nodes increases, the probability that

a phase difference between two nodes exceeds p=2 also

increases. Even though for moderately large N (1 < N < 50),

the fact that more equilibria can be found increases linearly

with N, as was shown in Eq. (13), this increase is much

smaller than the decrease caused by the arising probability of

phase differences beyond p=2. This may be explained by the

fact that in larger networks the probability to form clusters in

which neighboring nodes i and iþ 1 have large DP ¼ jPi

�Piþ1j increases more rapidly than linearly with N. As a

larger DP is associated with larger phase differences, such

clusters with large fluctuations in DP between its members are

likely to result in asynchronous behavior. This finding is in

agreement with the well-known result that no synchronous

states exist for an infinite Kuramoto network; see also Ref. 29.

Note that for a certain distribution of Pi, equilibria can

be found with at least one phase difference exceeding p
2
, but

nevertheless being stable. This is in accordance with the

graph theoretical result of Bronski and DeVille28 and numer-

ical findings of Mehta et al.23

IV. LINEAR STABILITY OF EQUILIBRIA

To determine the stability of the equilibria, the eigenval-

ues of the matrix corresponding to the system of second-order

differential equations are required. These can be calculated

analytically for single generator coupled to an infinite bus sys-

tem for any value of damping parameter a, in which case the

system is described by a single second-order differential equa-

tion. Such an approach was also taken by Rohden et al.2,19

The eigenvalues of the linearized system Eq. (7) can be

explained in forms of the eigenvalues of L as shown in Eq.

(9). Thus, the stability of equilibrium is determined by the

eigenvalues of L, i.e., a positive eigenvalue ki of L results in

a corresponding eigenvalue li with positive real part.30

We focus on the stable equilibrium with all eigenvalues

of L negative and all N � 1 pairs of eigenvalue in Eq. (9)

are complex valued with negative real part. The most stable

situation arises when the damping coefficient a is tuned

to the optimal value aopt described by Motter et al.:8

aopt ¼ 2
ffiffiffiffiffiffiffiffiffi
�k1

p
, where k1 is the least negative eigenvalue of

L, in that case l1 ¼ �
ffiffiffiffiffiffiffiffiffi
�k1

p
. So the linear stability of the

power grid is governed by the eigenvalues of L, which is fur-

ther investigated in this section.

The entries of the matrix L that arises after linearization

around the synchronized state ðds; 0Þ are easily calculated

and from that we find that L is the following Laplacian

matrix:

L¼

�c2�c1 c2 0 ��� 0 c1

c2 �c2�c3 c3 0 ��� 0

0 . .
. . .

. . .
. . .

.
0

0 ��� 0 cN�2 �cN�2�cN�1 cN�1

c1 0 ��� 0 cN�1 �c1�cN�1

0
BBBBBBB@

1
CCCCCCCA
;

(14)

where ci ¼ K cosðdi � di�1Þ ¼ K cos hi. As matrix L is a

(symmetric) Laplacian matrix with zero-sum rows, k¼ 0 is

an eigenvalue. This reflects a symmetry in the system: if all

phases are shifted by the same amount b, the system of dif-

ferential equations remains invariant. It is well known that

when all entries ci> 0, L is negative definite; hence, all

eigenvalues are non-positive, which implies stable equilibria

with the phase differences jdi � di�1j � p=2 ðmod 2pÞ, for

all i ¼ 1;…;N.

A. The linear stability of the homogeneous model

For the homogeneous model, we derive a theorem which

shows that type-1 equilibria appear if a single phase differ-

ence between two nodes has negative cosine value and type-j
equilibria with j> 1 appear if more than one phase differ-

ences have a negative cosine value. In the following, we

write a phase difference exceeds p=2 ðmod 2pÞ if it has a

negative cosine value. We summarize our findings in the

FIG. 2. (a) The number of stable equi-

libria according to Eq. (13) compared

to the numerically calculated number

of stable equilibria. (b) The number of

stable equilibria as a function of N,

P=K ¼ 0:5. With a larger r, it becomes

more difficult for the power system to

synchronize to a stable state.
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following theorem, which slightly generalizes similar results

obtained in Refs. 14 and 31.

Theorem IV. 1. All stable equilibria of a power grid
with ring topology and homogeneous distribution of power
consumption and generation as described in Eq. (6) are
given by Eq. (12). Stability of the synchronous states in the
network, corresponding to negative eigenvalues of the matrix
J, is guaranteed as long as jdi � di�1j � p=2 ðmod 2pÞ. If a
single phase difference exceeds p=2 ðmod 2pÞ this synchro-
nous state turns unstable and the corresponding equilibrium
is type-1. Moreover, synchronized states with more than one
absolute phase difference exceeding p=2 ðmod 2pÞ corre-
spond to equilibria with at least two unstable directions, that
is, to type-j equilibria with j> 1.

The proof of the theorem can be found in supplementary

material Section S1.

Theorem IV.1 confirms that Eq. (12) indeed capture all

the stable equilibria of the homogeneous model, on which

we make two remarks on the homogeneous model.

Remark I. We notice that for the case N � 0 ðmod 4Þ an

infinite number of equilibria exist for the homogeneous

model. We will not consider this nongeneric case here, but

refer to the work of DeVille14 for more details about this

case.

Remark II. The stable equilibria depend on m. For prac-

tical purposes the case m¼ 0 is most desirable for transport

of electricity, as in this case direct transport of power from

the generator to the consumer is realized. Direct transport

from generator to consumer minimizes energy losses that

always accompany the transport of electrical power. The

power is transported clockwise if m< 0 and counterclock-

wise if m> 0 as shown in Fig. 3(a). Note that the loop flows

of the equilibria with m 6¼ 0 may exist in general networks

with cycles, see Refs. 22 and 32 for more details.

For the case m¼ 0, the stable equilibrium is hS ¼
ðh1; h2;…; hNÞ with h1 ¼ �h2 ¼ arcsin P

2K

� �
as follows from

Eq. (12). It is interesting to explore the ramifications of our

results for the eigenvalues of L of the second-order model.

We write the eigenvalues of the matrix L that result after lin-

earizing around the stable state (12) with m¼ 0, which can

easily be determined

kn ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
p

sin2 pn

N

� �
; n ¼ 0; 1;…;N � 1: (15)

The first nonzero eigenvalue, k1 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
p

sin2ðp=NÞ,
gives rise to an associated eigenvalue pair for matrix J

l1;þ ¼
�a
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 8 sin2 p=Nð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
pq

2
;

l1;� ¼
�a
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 8 sin2 p=Nð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
pq

2
;

(16)

whose optimal value is obtained if a is tuned to the value

which makes the square root vanish.8 For this value of a,

l1;þ ¼ l1;� ¼ lopt, which equals

lopt ¼ �
ffiffiffiffiffiffiffiffiffi
�k1

p
¼ �ð4K2 � P2Þ1=4

ffiffiffi
2
p

sin ðp=NÞ: (17)

From Eq. (17), we easily observe that lopt increases to 0 with

a rate of 1=N for N sufficiently large. This suggests that net-

works with many nodes are much more susceptible to pertur-

bations; hence, it is more difficult for the power grid to

remain synchronized.

B. The linear stability of the heterogeneous model

To investigate the effect of more heterogeneous distribu-

tion of power generation and consumption, we determine the

linear stability of the stable equilibria found using the numerical

algorithm described in supplementary material Section S2. We

perform MC simulations to generate heterogeneous distribu-

tions of power generation and consumption using the method

given in Eq. (5), and average over 1000 runs. In all runs, we set

P¼ 1 and K¼ 8, so P=K ¼ 0:125. In Fig. 4(a), we plotted the

value of �lopt for two values of r as a function of N. Indeed

the dependence on N is as predicted, and the two curves almost

coincide, which means that the eigenvalue is not so sensitive to

the heterogeneity of power distribution for the setting of P and

K. In Fig. 4(b), we explore the dependence on r. Here, we see

as the heterogeneity of Pi increases, the expected linear stability

decreases. However, only a very mild dependence on r can be

seen, so the heterogeneity does not seem to be very important

for this value of P/K. To better understand how each configura-

tion of consumers and generators rather than the averaged con-

figuration changes its stability with increasing heterogeneity,

we plotted the distribution of �lopt in Figs. 4(c) and 4(d).

These show that besides a small shift of the maximum toward

smaller values of �lopt the distribution is also broader, which

indicates that certain configuration will be less stable than

others. We remark that the value of the y axis is relatively large,

which means that the �lopt is very close to the average value.

V. NONLINEAR STABILITY OF THE SYNCHRONOUS
STATE IN RING NETWORKS

We next discuss the stability of synchronous operation

when the system is subject to perturbations of such a degree

that render the linear stability analysis of Section IV inappro-

priate. A measure for the stability of the stationary states is

then provided by the basin of attraction of the equilibria. For

high-dimensional systems, this is a daunting task. However, it

is possible to estimate the volume of the basin either by numer-

ical techniques, such as for example, the recently introduced

FIG. 3. (a) A cyclic power grid with alternating consumers and generators,

which may have stable equilibria with the power transported around the

cycle clockwise with m< 0 and counterclockwise with m> 0. The practical

synchronization state is the one with m¼ 0, in which the line load L ¼ P=2.

(b) A tree power grid with 3 nodes. The line load of line 1 L ¼ P=2.
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basin stability S, by Menck et al.,5,33 in which the phase space

is divided into small volumes. Choosing initial conditions in

each of the small volumes and recording convergence to a sta-

ble equilibrium for each attempted initial condition, a number

S between 0 and 1, which is a measure for the size of the vol-

ume of the attracting phase space, can be obtained. Since this

technique is computationally demanding and also labels solu-

tions which make large excursions through phase space as sta-

ble,34 as they do belong to the stable manifold of the

equilibrium, we will follow a different approach.

The stability region has been analyzed by Chiang35 and

independently Zaborszky et al.30,36 and the direct method was

developed by Varaiya et al.10,13 to find a conservative approxi-

mation to the basin of stability. The approximation actually is the

minimal energy barrier, which prevents loss of synchronization.

Here, we measure the nonlinear stability by the energy

barrier. We define an energy function Eðd;xÞ by

E d;xð Þ ¼ 1

2

XN

i¼1

x2
i �

XN

i¼1

Pidi � K
XN

i¼1

cos diþ1 � dið Þð Þ;

¼ 1

2

XN

i¼1

x2
i þ V dð Þ; (18)

where the potential VðdÞ is

VðdÞ ¼ �K
XN

i¼1

cos ðdiþ1 � diÞ �
XN

i¼1

Pidi: (19)

It can easily be shown that

dE d;xð Þ
dt

¼ �a
XN

i¼1

x2
i � 0:

The primary idea behind estimating the region of attrac-

tion of a stable equilibrium by the direct method is that this

region is bounded by a manifold M of the type-1 equilibria

that reside on the potential energy boundary surface (PEBS)

of the stable equilibrium. The PEBS can be viewed as the

stability boundary of the associated gradient system10,12

ddi

dt
¼ � @V dð Þ

@di
: (20)

The closest equilibrium is defined as the one with the lowest

potential energy on the PEBS.37,38 By calculating the closest

equilibrium with potential energy Vmin and equating this to

the total energy, it is guaranteed that points within the region

bounded by the manifold M¼ fðd;xÞjEðd;xÞ ¼ Vming
will always converge to the stable equilibrium point con-

tained inM.

The idea of estimating the region of stability by type-1

equilibria is probably best illustrated by considering a simple

example of a three-node network depicted in Fig. 5(a). We

choose this network only for illustration purposes as this

small three-node network allows direct evaluation. For this

network, we set P1=K ¼ 0:125;P2 ¼ �0:125;P3=K ¼ 0 and

a¼ 0. Equipotential curves are plotted in Fig. 5(b). The type-

1 equilibria (saddles) are displayed as little stars and penta-

grams, numbered 1–6. It is clear that the type-1 equilibria

indeed surround the stable equilibria which are shown as

local minima in the potential V. Equilibrium 1 is the closest

equilibrium with the smallest potential energy on the PEBS

plotted by a black dashed-dotted line. A small perturbation

in the direction to saddle point 1, depicted by the red dashed

curve, leads to desynchronization, whereas a larger perturba-

tion in a different direction (blue solid curve) eventually

decays toward the stable equilibrium point and hence the

system stays synchronized. This shows the conservativity of

the direct method and the challenges in calculating the

region of stability, as it depends on both the direction and

size of the perturbation. One approach to this problem is to

FIG. 4. (a) �lopt as a function of N for

r¼ 0 and r ¼ 0:6. (b) �lopt as a func-

tion of r with N¼ 30. (c) The distribu-

tion of �lopt for r ¼ 0:2 and r ¼ 0:4
and N¼ 22. (d) The density of �lopt for

r ¼ 0:2 and r ¼ 0:4 where N¼ 30.

P=K ¼ 0:125 is kept fixed in all panels.
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determine the so-called controlling unstable equilibrium,

e.g., Chiang et al.11,35 We will not consider this method

here, but rather restrict ourselves to the potential energy of

all the type-1 saddles on the PEBS, to the energy barriers in

special which are the potential energy differences between

the type-1 saddles and the stable equilibrium. As displayed

in Fig. 5(b), there are two type-1 saddles corresponding to

the absolute value jhij of a phase difference exceeding p=2.

The potential energy of these two saddles is different and the

one with smaller potential energy is more susceptible to

perturbations. In the following study, all the equilibria are

divided into two groups: (I) a group that corresponds to jhij
exceeding p=2 with smaller energy and (II) the other group

with larger energy. In Fig. 5(b), direct calculation shows that

the saddles (1–3) constitute group I and (4–6) constitute

group II.

We remark that closest equilibrium 1 corresponds to the

line connecting node 1 and 2 with the largest line load. This

makes sense since the line with higher line load is easier to

lose synchronization first.

In Subsection V A, we derive the analytical approxima-

tion of energy barriers of the homogeneous model, for group

I and group II, respectively. In Subsection V B, we present

the numerical results for the heterogeneous model.

A. Potential energy for the homogeneous model

The potential energy of the stable state hm
S derived by

Eq. (12) is

Vm
S ¼ �K

XN

i¼1

cos hm
i

� �
�
XN

i¼1

P �1ð Þiþ1
di;

¼ �KN

2
cos hm

1

� �
þ cos hm

2

� �� �
þ NP

4
hm

2 � hm
1

� �
: (21)

We next consider the potential energy of the type-1

saddle points. According to Theorem IV.1, a type-1 saddle

point corresponds to a link with absolute phase difference

exceeding p=2 ðmod 2pÞ in the network. We denote the

type-1 saddle points corresponding to the stable state hm
S

by

Tm
j ¼ ĥ

m

1 ; ĥ
m

2 ;…; p� ĥ
m

1 ; ĥ
m

2 ;…; ĥ
m

1 ; ĥ
m

2

	 

and

�T
m
j ¼ ĥ

m

1 ; ĥ
m

2 ;…;�p� ĥ
m

1 ; ĥ
m

2 ;…; ĥ
m

1 ; ĥ
m

2

	 

;

where the phase difference hj exceeds p=2 ðmod 2pÞ and j is

odd. These two equilibria belong to group I and group II,

respectively.

In the following, we only focus on the type-1 saddle Tm
j ,

the same results can be obtained for �T
m
j .

The equations that determine the values of ĥ
m

1 and ĥ
m

2

are now (12a) (with ĥ
m

i substituted for hm
i ) combined with

N

2
� 2

� �
ĥ

m

1 þ
N

2
ĥ

m

2 ¼ 2m� 1ð Þp: (22)

Hence, we find that the type-1 saddles are implicitly

given as solutions of the following equation:

sin ĥ
m

1 �
2m� 1ð Þp

N
� 2ĥ

m

1

N

� �
¼ P

2K cos
2m� 1ð Þp

N
þ 2ĥ

m

1

N

� � ;
(23)

which admits a solution ĥ
m

1 2½0;p2� when P=2K< cosðð2m�1Þ
p=Nþð2mþ2pÞ=ðNðN�2ÞÞÞ. We next argue that the type-1

saddles found in Eq. (23) lie on the PEBS which surrounds the

stable equilibrium hm
S . One could use the same arguments as

previously invoked by DeVille.14 In supplementary material

Section S3, we provide a more general proof which is valid for

different m.

We set m¼ 0 for the reasons described in Remark II in

Section IV and denote h0
S and T0

j by hS and Tj, respectively.

Note that there are 2N type-1 equilibria on the PEBS of hS if

FIG. 5. (a) A 3-node power grid with P1=K ¼ 0:125;P2=K ¼ �0:125 and P3=K ¼ 0, and h1 ¼ d1 � d2; h2 ¼ d2 � d3; h3 ¼ d3 � d1. (b) The potential energy

as a function of d1 and d2, where d3 ¼ 0. The 6 unstable equilibria are local minima on the potential energy boundary surface (PEBS) plotted by the black

dashed-dotted line. The equilibria 1 and 4 correspond to the cases that h1 exceeds p=2 and �p=2, respectively. Similarly, the equilibria 2 and 5 correspond to

the cases that h2 exceeds �p=2 and p=2, respectively, and the equilibria 3 and 6 correspond to the cases that h3 exceeds �p=2 and p=2, respectively.

Equilibrium 1 is the closest equilibrium. The trajectory plotted by the red dashed line goes through equilibrium 1 and results in desynchronization after h1

exceeds p=2. However, the trajectory plotted by the blue solid line always stays inside the attraction of the stable equilibrium in the middle even though its

energy is larger than the potential energy of equilibrium 1.
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P=2K is sufficiently large, and each line load is P=2 for the

equilibrium hS as shown in Fig. 3(a).

We proceed to calculate the potential energy differences

(details given in supplementary material Section S4)

between the stable state hS and the saddle Tj for j odd, which

we call DVI

DVI ¼ �
KN

2
cos ĥ

0

1 � cos h0
1

h i
� KN

2
cos ĥ

0

2 � cos h0
2

h i
þ 2K cos ĥ

0

1 �
NP

4
ĥ

0

1 � h0
1

h i
þ NP

4
ĥ

0

2 � h0
2

h i
þ �p=2þ ĥ

0

1

	 

P: (24)

We can recast Eq. (24), using Eq. (12a), in the following

form:

DVI ¼ P � p
2
þ arcsin

P

2K

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
p

þ DUI; (25)

where DUI can be proven positive and has the asymptotic

form for large N

DUI ¼
1

N

p
2
� arcsin

P

2K

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
p

þ O N�2ð Þ: (26)

For �T
0
j , a similar calculation shows that the potential energy

difference can be expressed as

DVII ¼ P
p
2
þ arcsin

P

2K

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
p

þ DUII; (27)

where DUII can be proven positive and has the asymptotic

form for large N

DUII ¼
1

N

p
2
þ arcsin

P

2K

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
p

þ O N�2ð Þ: (28)

We remark that for the case j is even, the derivation of the

potential energy differences is analogous.

From the expression for the energy barriers DVI and

DVII, we can easily infer that as the line load L ¼ P=2

increases, DV1 decreases and DVII increases. As mentioned

before, DVI is more susceptible to disturbances.

Furthermore, we can immediately draw the conclusion

that for large network sizes, DVI and DVII approach a limit-

ing value that depends only on K and P, which can be

observed in Fig. 6(a). A direct calculation shows that the

asymptotic limits correspond exactly to a potential difference

found for a tree network, which is sketched in Fig. 3(b).

Note that the line load of each line in the ring network and

line 1 in the four nodes tree network are both P=2. Indeed,

we find that for the line in a tree network with line load P=2,

the energy leading it to desynchronization is DVT
I and DVT

II

(Ref. 13)

DVT
I ¼

P

2
�pþ 2arcsin

P

2K

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
p

;

DVT
II ¼

P

2
pþ 2arcsin

P

2K

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � P2
p

: (29)

Hence, the energy barrier in Eqs. (25) and (27) can be

explained in terms DVI ¼ DVT
I þ DUI and DVII ¼ DVT

II

þDUII. As DUI and DUII are always positive, the energy

needed to make a line lose synchronization (exceeding

p=2 ðmod 2pÞ) is increased for the line in a ring network com-

pared with in a tree network. In other words, the line with

line load L ¼ P=2 in the ring network is more robust than in

a tree network. This permits the line in cycles to transport

FIG. 6. (a) The potential energy DVI;
DVII ; DVT

I and DVT
II as functions of N

for the homogeneous model. The

approximate values of DVI and DVII

are calculated neglecting the terms of

OðN�2Þ in Eqs. (26) and (28). (b) The

average value of DVI;DVT
I of the het-

erogeneous model as functions of N
with r ¼ 0:2; 0:4. (c) The average

value of DVII ;DVT
II of the heteroge-

neous model as functions of N with

r ¼ 0:2; 0:4. P¼ 1 and K¼ 8 in all

panels.
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more power. A ring topology results in an increased stability

of the synchronous state compared to that of a tree network.

This effect is larger for smaller networks. This finding corrob-

orates the results by Menck et al.,5 who found decreased sta-

bility from dead-ends or, small trees in the network.

In order to examine the robustness of our results, we

next perform numerically studies on the heterogeneous

model as in Eq. (5) with r > 0.

B. Numerical results for the heterogeneous model

From the analysis of the nonlinear stability of cyclic

power grids in the homogeneous model, we know that the

potential energy differences between the type-1 equilibria

and the stable synchronous state with m¼ 0 are always larger

than the potential energy differences for a tree like network

with the same line load L. Moreover, the potential energy

barrier of the ring network approaches that of the tree net-

work as N increases. In the following, we verify whether this

remains true for cyclic power grids with heterogeneous

distribution of Pi and study how the heterogeneity of power

distribution influences the nonlinear stability.

We next focus on how the potential energy of type-1

equilibria changes as N increases. As we remarked in

Subsection V A, there are two groups of type-1 equilibria on

the PEBS of hS, each having a different potential energy rela-

tive to the synchronous state, DVI and DVII, respectively.

As we do not have analytical expressions for DVI and

DVII in this case, we numerically compute these values for

different values of r > 0 using the same procedure for

assigning values to Pi as in Eq. (5). For different values of N,

we perform 2000 runs to calculate DVI and DVII and com-

pute the ensemble average. To determine which type-1 equi-

libria are on the PEBS of hS, the numerical algorithm

proposed by Chiang et al.35 is used.

Since r is nonzero, incidentally a large value of Pi can

be assigned to a node, which prevents the existence of a sta-

ble equilibrium. Such runs will not be considered in the aver-

age. Neither are runs in which fewer than 2N type-1

equilibria are found on the PEBS.

In our numerical experiments, we set again K¼8;P¼1;
P=K¼0:125 and vary N between 6 and 102 and set either

r¼0:4 or r¼0:2.

We determine the potential differences DVT
I and DVT

II by

first calculating the stable equilibria hS. As hS determines all

phase differences, it facilitates computing the line loads by

Eq. (4) between all connected nodes. From the line loads, we

subsequently extract the value of P which we then substitute

into Eq. (29) to find DVT
I and DVT

II, respectively.

By considering the average values of the quantities

DVI; DVII; DVT
I ; DVT

II, we conclude the following.

First, for the heterogeneous distribution of Pi, the average

value of DVI and DVT
I decreases with N as shown in Figs. 6(b)

and 6(c). This is because the average line load increases with

N as shown in Fig. 7(a) and DVI and DVT
I are monotonously

decreasing functions of the line load and N. However, DVII

decreases first and then increases after reaching a minimum

with N since it is a monotonously increasing function of line

load but a decreasing function of N. DVT
II always increases

since it is a monotonously increasing function of the line load.

Second, for larger r, DVI decreases faster and DVII

increases faster after reaching a minimum. Since DVI deter-

mines the stability more than DVII, the grid becomes less sta-

ble as r increases. So cyclic power grids with a homogeneous

distribution of Pi are more stable than ones with a heteroge-

neous distributed Pi.

Third, DVI is lower bounded by DVT
I and DVII by DVT

II,

and converge to the respective bound as N !1, which is

consistent with the homogeneous case. This confirms that

lines in a cyclic grid can withstand larger perturbations than

corresponding lines in a tree network. As the size N of the

cycle increases, this difference disappears gradually.

In order to get more insight into these scenarios, the dis-

tribution of DVI;DVII;DVT
I , and DVT

II is plotted in Fig. 8 for

different N and r.

The distribution of DVI and VII converges to DVT
I and

DVT
II, respectively, which can be observed from Figs.

8(a)–8(d). There is a boundary between DVI and DVII plotted

by vertical black solid lines in the middle of Figs. 8(a)–8(f)

for different sizes of networks. The boundary actually is the

upper bound of DVI and lower bound of DVII, which is close

to 2K þ Kp2=2N calculated by setting P¼ 0 in Eq. (25) or

(27). This does not depend on r, as can be verified in Figs.

8(e) and 8(f). For the tree connection, the boundary of DVT
I

and DVT
II plotted by vertical black dashed lines in the middle

of Figs. 8(a)–8(d) equals 2K calculated by setting P¼ 0 in

Eq. (29).

Figs. 8(e) and 8(f) show that the distribution of DVI and

DVII becomes broader as either N or r increases. This is also

reflected in the distribution of the line loads shown in Fig.

7(b). We further remark that for the heterogeneous case, the

line loads are different and the lines with smaller line load

become stronger while the ones with larger line load become

weaker. In other words, the power grid is more resilient

FIG. 7. (a) The average line load, cal-

culated by Eq. (4), as a function of N
for the heterogeneous model with

r ¼ 0:2; 0:4. (b) The distribution of

line loads of cyclic power grids with

N¼ 22, 38 and r ¼ 0:2; 0:4. The distri-

bution widens both for increasing val-

ues of N and r. P¼ 1 and K¼ 8 in all

panels.
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against some large disturbances while it is less resilient

against others.

The maximum value of the density of potential energy is

much smaller than that of the linear stability as shown in

Figs. 4(c) and 4(d). This demonstrates that the potential

energy is much more sensitive to the heterogeneity than the

linear stability in the setting of P and K.

VI. CONCLUSION

Synchronous states and their stability in cyclic power

grids have been studied in this paper. We derive analytical

expressions for the stable equilibria of the cyclic power

grids with homogeneous power distribution. Both linear and

nonlinear stabilities are investigated for cyclic power grids.

In particular, the nonlinear stability is measured by the

energy barriers, which are the potential energy differences

between the type-1 equilibria and the stable equilibrium. An

analytical approximation of the energy barrier is obtained

for the cyclic grids with a homogeneous distributed power

generation and consumption. With an efficient algorithm for

all the type-1 equilibria, numerical studies on the nonlinear

stability have been performed for the cyclic power grids

with heterogeneous distribution of power generation and

consumption. For the homogeneous case, we find that add-

ing cycles to the network increases the energy barriers.

However, as the size of the cycle N approaches infinity, the

energy barriers decrease to constants. For the heterogeneous

case, the energy barrier decreases with both the heterogene-

ity and the size N. Therefore, to benefit from the increased

stability of a ring like connection, the size of the cycle

should not be too large (typically N< 10). Furthermore, for

both homogeneous and heterogeneous cases, a line connect-

ing two nodes in a ring network is more robust than a

corresponding line in a tree network carrying the same line

load.

An analytical approximation of the critical clearing

time39,40 of faults in power systems is derived by Roberts

et al.,41 which shows that larger potential energy of the

closest equilibrium may increase the critical clearing time.

The energy barrier measures the energy-absorbing capabil-

ity of real power grids. In further study, it is worthwhile

to investigate the energy barrier of small size artificial

power grids to gain insight into improving the stability of

the synchronous state of general power grids. However,

the challenge remains to find all the type-1 equilibria of

the power systems.

FIG. 8. (a)–(d) The distribution of

DVI ; DVII ; DVT
I and DVT

II for cyclic

power grids for N ¼ 10; 18; 50; 102.

(e) and (f) The distribution of DVI and

DVII for r ¼ 0:2, 0.4 with N¼ 22, 38.

The vertical black dashed lines in the

middle of figures (a)–(d) denote the

boundary between DVT
I and DVT

II and

the vertical black solid lines in the

middle of figures (a)–(f) indicate the

boundary between DVI and DVII . P¼ 1

and K¼ 8 in all panels.
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SUPPLEMENTARY MATERIAL

See supplementary material for the proof of Proposition

III.1 and of Theorem IV.1 in Section S1, the algorithm for

finding all the type-j equilibria in Section S2, the proof of the

type-1 saddles in Eq. (23) being on the PEBS of hm
S in

Section S3, and the derivation of the energy barriers in Eqs.

(25) and (26) in Section S4.
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