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1. Introduction
Many subsurface energy applications (e.g., geothermal energy production) rely on accurate numerical simula-
tions of fluid flow and mass or heat transport in fractured porous media. A large class of methods is available for 
numerical modeling of fracture networks. It may consist of various approaches to the homogenization of fractures 
network, including Dual-Porosity (Barenblatt, 1960; Warren & Root, 1963) and various MINC models (Kari-
mi-Fard et al., 2006; Pruess & Narasimhan, 1982), or different versions of Embedded Discrete Fracture Models 
(EDFM) starting from already classic approaches (Hajibeygi et al., 2011; Li & Lee, 2008) to projection-based 
technique (HosseiniMehr et al., 2020; Ţene et al., 2017). Some hybrid versions combining EDFM with homoge-
nized fractured networks at two different scales also exist (Li & Voskov, 2021).

Another class of model is Discrete Fracture Model (DFM), where fracture segments are described as a lower-di-
mensional object on the mesh. The ideas of the modern DFM approach can be found in Gureghian (1975) where 
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Finite Element Methods (FEM) was applied, and in Helmig et al. (1997) where Finite-Volume Method (FVM) 
was used. In modern reservoir simulation, which includes highly implicit time approximation using finite-volume 
discretization on unstructured grids, the DFM methodology has been introduced by Karimi-Fard et al. (2004). The 
DFM approach is often preferred in detailed geological studies due to its accuracy (Berre et al., 2019; Flemisch 
et al., 2018; Moinfar et al., 2011; Wong et al., 2020). DFM models typically require a high meshing accuracy 
to resolve the fracture networks' complex geometry, thereby drastically increasing the computational complex-
ity and rendering them unusable for uncertainty quantification purposes (Jung et al., 2013; Nejadi et al., 2017; 
Spooner et al., 2021). More recently, the DFM approach in reservoir simulation has been enhanced for prac-
tical applications by fully coupling geomechanics (Garipov et al., 2016) and fracture propagation (Gallyamov 
et al., 2018). These complex physical processes typically require a fine modeling resolution to capture all the 
effects, further exposing the limitations of incorporating uncertainty quantification.

These limitations severely constrain the necessary low-risk, sustainable, and energy-efficient subsurface activi-
ties that are desired. One of the main factors of the considerable computational complexity of DFM models is the 
meshing artifacts (i.e., skinny triangles, small control volume sizes, and a large number of degrees of freedom) 
that result from using conformal meshes and related convergence issues (Geiger & Matthäi,  2014; Koohbor 
et al., 2020; Li & Li, 2019). Fracture network input data are typically acquired from outcrop analysis or statistical 
models. In outcrop analysis, raw output, either by manual or automatic interpretation, results in difficulties for the 
meshing software. These meshing artifacts are highlighted in Figure 1 and are well known in the existing liter-
ature (Berre et al., 2019; Karimi-Fard & Durlofsky, 2016; Mallison et al., 2010; Mustapha & Mustapha, 2007; 
Reichenberger et al., 2006).

Several preprocessing strategies have been proposed in the literature to address the challenges of constructing a 
conformal mesh for complex natural fracture networks. However, the investigation of a numerically convergent 
solution after applying the preprocessing procedure, a thorough examination of the topology changes as a func-
tion of discretization accuracy, and the application to uncertainty quantification have not been adequately studied. 
Furthermore, in most existing methods, the meshing challenges related to fracture segments intersecting at a 
small angle are only implicitly resolved. For example, in most studies, an algebraic constraint is used for merging 
nodes, but the angle at which fractures intersect is not explicitly checked. This means that some meshing issues 
are not resolved. Finally, in the existing fracture preprocessing methods, variability of the fracture aperture is not 
taken into account.

Therefore, we have developed an open-source preprocessing framework that borrows concepts from early work 
in this area (Koudina et al., 1998; Maryška et al., 2005) and more recent approaches (Karimi-Fard & Durlof-
sky, 2016; Mallison et al., 2010; Mustapha & Mustapha, 2007). It differs from other graph simplification works, 
such as Wellman et  al.  (2009), where small (low-permeable) fractures are iteratively removed. According to 
prescribed algebraic constraints, our preprocessing procedure merges nodes and resolves fractures that intersect 
at a significantly small angle that would otherwise introduce additional meshing challenges. To capture variable 
aperture distribution and low connectivity networks, in addition to previous methodologies, an aperture correc-
tion is added to the method presented here. Most of the operations are formulated using graph theory, which 
results in simple bookkeeping of the incidence matrix operations (West, 2001). Using the developed framework, 
we can create a fully conformal uniformly distributed grid based on any realistic fracture network at the required 
level of accuracy.

Most data obtained from outcrop studies is in planar 2D view (Bisdom et al., 2017). The available 3D data on 
fractures in the subsurface often consists of very coarse seismic cubes or borehole imaging logs. The attributes 
of the seismic cube are often too coarse to extract the exact fracture pattern, and the imaging logs only provide 
limited information at the well location (Boersma et al., 2020). Therefore, this paper focuses on 2D fracture char-
acterization and the preprocessing technique, which improves the meshing and subsequent fluid-flow modeling. 
We analyze the static and dynamic performance of the preprocessing on changes in geometry and topology of 
the fracture network and resulting mesh and changes in flow response. Ultimately, this leads to a robust way 
of constructing a hierarchy of DFMs for uncertainty quantification of natural fracture networks (de Hoop & 
Voskov, 2021).

Notice that the main ingredients of the developed framework and flow modeling are not limited to 2D and can be 
effectively applied for fully 3D fracture networks (as shown by Karimi-Fard and Durlofsky (2016) from which 
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we borrow several concepts). In 3D, all the fractures are represented by planes and discretized into segments (i.e., 
subplanes) using an unstructured mesh. The vertices and edges of the meshed fractures will constitute the graph 
of the 3D fracture network, and the same preprocessing algorithm we propose in this paper (i.e., merging nodes) 
can be applied. Fracture apertures can be assigned to each edge of the discretized fracture, implying that the frac-
ture aperture correction could also be used. However, some difficulties (e.g., projection of fracture aperture from 
the subplane to the edge and back) may introduce specific difficulties. A more straightforward approach could be 
making several slices through the 3D volume, projecting the fractures onto each slice and performing the same 
preprocessing on each slice (Sanderson et al., 2019).

The paper is organized as follows. We start with the description of the input data used in this study followed by 
the theory for preprocessing, topology analysis, and fluid flow and energy transport modeling. Next, we describe 
all essential ingredients of the proposed framework, including intersection, node merging, straightening, and 
removing acute angles. The results section contains the analysis of the static and dynamic performance of the 
preprocessing framework. We finish the paper with a detailed discussion and conclusion.

Figure 1. Fracture data acquisition, interpretation, and modeling steps. (a and e) Outcrop images obtained from the Whitby and Brejoes fieldwork area. (b and f) 
Manual interpretation of the fracture networks. (c and g) Conformal meshing results based on the raw interpretation. (d) and (h) is a zoom of the meshing artifacts due 
to complex fracture interaction. (a and b) Taken from Houben et al. (2017). (e and f) Taken from Boersma et al. (2019).
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2. Materials and Methods
The accurate numerical representation of fracture networks in the subsurface is not the end goal of the modeling 
effort. The modeling objective is often to make better predictions on subsurface activities and their associated 
risks. Therefore, it is essential to test our preprocessing framework accordingly. This is done by investigating 
the changes introduced by the algorithm on the dynamic behavior of the subsurface (i.e., fluid-flow response). 
Mainly, geothermal energy production is chosen (i.e., injection of cold water and production of hot water via 
a well doublet) to examine this. The methodology is presented here. First, a brief description of the fracture 
networks used in this work is given; second is a brief introduction to graph theory; third, a brief theoretical back-
ground on the topology of fracture networks is presented; fourth, the preprocessing method is presented; fifth, 
the relevant equations to model the physical processes are given; and, finally, the numerical approximation of 
governing equations is introduced.

2.1. Fracture Network Input Data

The performance of the preprocessing algorithm is examined for two realistic fracture networks, a synthetic test 
case, and a variable aperture distribution applied to one of the realistic fracture networks. The first is found in the 
Whitby Mudstone outcrop along the cliff coast North of Whitby (UK; Houben et al., 2017). The second example 
is the fracture network observed in the carbonate outcrop in Brejões, Brazil (Boersma et al., 2019). Both networks 
are interpreted by hand; however, the developed method would also be very suitable for automatic fracture detec-
tion algorithms as presented in Prabhakaran et al. (2019). The synthetic test case consists of a high-permeable 
matrix and low-permeable fractures with a narrow opening in the middle of the domain. The variable aperture 
model is applied to the Whitby fracture network (see Figure 2).

The outcrop images and the manual interpretation of the fracture networks are displayed in Figure  1. Both 
networks show good connectivity at first glance. The main difference between the two networks is the angle at 
which the fractures intersect. In the Brejoes network, this angle is around 60, while the angle is closer to 90° for 
the Whitby network. The proposed fracture networks significantly differ in scale (Brejoes 100–1,000 m versus 
Whitby 1–10 m scale). Both networks are scaled up to characteristic reservoir size in a geothermal doublet system 
(Willems & Nick, 2019) by a scalar multiplication to preserve relative lengths and angles, which simplifies the 
static and dynamic analysis. The scalar is chosen for each network such that the resulting length in the y-direction 
is roughly 1,000 (m) for both cases which is a typical distance between wells in a geothermal doublet system. This 
scaling with a scalar multiplier can be safely done because of the fractal nature of fracture networks (i.e., the same 
pattern exists at several length scales) as discussed in Acuna and Yortsos (1995).

Figure 2. (a and b) Aperture distribution as a function of angle (similar to Boersma et al. (2021)). (c) Shows only the high-permeable fractures and illustrates that 
variable aperture models can lead to low connectivity fracture networks.
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For the dynamic analysis, it is assumed that the two realistic frac-
ture network models have very low permeability (i.e., convective flow 
is mainly limited by the fracture network) to ensure that the effect of 
changes to the fracture network on the flow response can be observed. 
An important note is that not all manual interpretations record the inter-
section between all fracture segments (i.e., only the end nodes of the frac-
tures are registered). This becomes important in the following section, 
where the graph is constructed based on the fracture network data. The 
two data arrays describing the fracture networks used in this study can 
be found by the following link: https://github.com/MakeLikePaperrr/
Fracture-Preprocessing-Code.

To incorporate geological realism, a variable aperture distribution is applied 
to the Whitby fracture network, similar to the aperture model in Boersma 
et  al.  (2021). The distribution and resulting apertures are visualized in 
Figure  2. Fractures oriented N-S are highly permeable, while fractures 
oriented E-W are low permeable. Figure 2 also depicts how a variable aper-
ture leads to a much lower connectivity fracture network. Choosing a cutoff 
around 13% of the maximum conductivity leads to a large number of isolated 
fractures, hence, low connectivity.

2.2. Graph Theory

As defined in Bollobás (2013), a graph G is an ordered pair of disjoint sets (V, E). The set of all vertices of graph 
G is denoted as V = V(G), while the set of all edges of the graph G is denoted as E = E(G). Edges of a graph 
join two vertices i and j such that (i, j) ∈ E(G) and i, j ∈ V(G). If (i, j) ∈ E(G), it implies that i and j are adjacent 
vertices of G, and i and j are incident with the edge (i, j).

Important matrix representations of the graph G are the following four matrices:

1.  Incidence matrix: B(G), which is a n × m matrix, where n is the number of vertices and m is the number of 
edges of the graph. As previously indicated, whenever a vertex i is on an edge (i, ⋅), the vertex i is in incident 
with edge (i, ⋅). Hence, Bij = 1 if vertex i is on the jth edge otherwise Bij = 0

2.  Degree matrix: D(G), which is a n × n matrix describing the number of edges attached to each vertex. The 
degree matrix can be obtained using the follow equation: 𝐴𝐴 𝐴𝐴 = 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 (𝐵𝐵𝟏𝟏) , where 𝐴𝐴 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍(𝐯𝐯) is a function that 
constructs a square matrix with vector v on its diagonal, and 1 is a vector of ones with size m × 1. The degree 
matrix denotes the number of edges leaving a specific vertex

3.  Adjacency matrix: A(G), which is a square n × n matrix, where n is the number of vertices of the graph G. As 
previously mentioned, if the pair of vertices (i, j) ∈ E(G), they are said to be adjacent. Hence, Aij = 1 if vertices 
i and j are on the edge (i, j). Furthermore, for our purposes, it is assumed that the main diagonal is zero (i.e., 
Aii = 0), which implies that no nodes are connected to itself. Note that A, B, and D are related through the 
following equation: A = BB T − D

4.  Discrete Laplacian matrix: L(G) which can be found via the following equation: L = D − A = 2D − BB T. This 
matrix will be used for an alternative connectivity measure in the static analysis. The Discrete Laplacian is a 
matrix representation of the relationships defined in a graph

A typical input data array 𝐴𝐴  that describes the fracture network contains the pairwise x-coordinate and y-coordi-
nate of each fracture segment in the network. The first step is to convert this array into two different forms: an 
array that contains all the unique vertices in the graph (i.e., V) and the incidence matrix (B). This is done by using 
Algorithm 1 which is found in Appendix A. An important assumption of this construction of V and B is that no 
subsegments can intersect in other places than the vertices of the particular subsegments. As mentioned before, 
this is often not the case in the manual interpretation of fracture networks; hence, we need to calculate all possible 
intersections before applying Algorithm 1 shown in Appendix A. A simple intersection calculation algorithm is 
provided in Section 2.4.1.

Figure 3. Illustration of topology in fracture networks. After Sanderson and 
Nixon (2015).

https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
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2.3. The Topology and Geometry of Fracture Networks

In this section, the required mathematical relations for performing the static analysis on the effect of the preproc-
essing method on fracture networks are explained. Topology is used to understand how the connectivity and 
abutment-intersection relations of the fracture network are changing due to the preprocessing. Furthermore, it is 
also essential to look at how several geometrical properties of the fracture network are changing (e.g., angles and 
lengths) through preprocessing.

Several authors have thoroughly investigated the application of topology to fracture networks (Manzocchi, 2002; 
Sanderson & Nixon, 2015). Isolated nodes are typically denoted with an I, abutments are characterized by a 
Y-node, and X-nodes are used to indicate intersecting fracture segments. This is illustrated in Figure 3. Trans-
lating the type of nodes to the graph notation, node I is of degree one, node Y is of degree three, and node X 
is degree four. In general, it is unusual that more than two lines intersect at exactly one point. However, our 
preprocessing method merges nodes and causes several nodes to have a degree >4. This causes us to consider all 
intersections of node degrees larger than four to be X type of nodes. This is used to plot the results in a ternary 
diagram (as shown in Figure 3). Classifying the fracture networks topology in this way allows us to use a proxy 
for the connectivity. Connectivity is often defined in this context as the average number of intersections per line. 
This changes slightly when allowing for nodes with a degree higher than four. Instead of the definition used in 
Balberg and Binenbaum (1983)

𝐶𝐶𝐿𝐿 = 4
𝑁𝑁𝑌𝑌 +𝑁𝑁𝑋𝑋

𝑁𝑁𝐼𝐼 +𝑁𝑁𝑌𝑌

, (1)

where NI is the total number of I-nodes, NY is the total number of Y-nodes, and NX is the total number of X-nodes, 
we use

𝐶𝐶𝐿𝐿 = 2

∑𝑑𝑑

𝑖𝑖
𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖

𝑁𝑁𝐼𝐼 +𝑁𝑁𝑌𝑌

, (2)

Figure 4. Illustration of the steps in the preprocessing workflow, from the raw data to a fully processed fracture network. The 
partitioning and node merging steps are a function of lf while the acute angle and straighten steps are a function of θa, min and 
θs, min respectively. The smaller the lf, the more precise the preprocessed network represents the raw data. However, small lf 
means that the subsequent steps in the algorithm take substantially more time.
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where wi are the weights, Ni is the total number of i node types in the network, 
and i  =  {Y, X, X+, X++…}. X+ represents a vertex which is one degree 
higher than an X (i.e., degree five instead of four), X++ two degrees higher, 
etc. The weights are determined by the number of lines (but not edges) 
involved in the vertex type (e.g., NY involves two lines therefore wY = 2 while 
NX++ involves six edges and hence three lines therefore wX++ = 3). Please also 
note that all vertices of degree two are not used nor important in this analysis 
(i.e., a curved or a straight line are topologically the same).

An alternative connectivity measure is obtained by using the Discrete Lapla-
cian of the graph. This matrix can be used for finding spanning trees of a 
given graph (i.e., connected fracture sets in the fracture network). Nota-
bly, each element of the Laplacian's null-space rational basis describes a 
connected component of the graph (Spielman,  2010). With this basis, we 
can find the number of connected fracture sets in our network and also each 

fracture that belongs to these components (i.e., subgraphs). The connectivity measure is then calculated as the 
ratio between the cumulative length of the fractures in the largest spanning cluster and the cumulative length of 
all the fractures in the full network.

Geometrical properties such as angles and lengths of the fractures are obtained using simple trigonometry rules. 
An easy and fast way to calculate the angles of a fracture w.r.t. the x-axis is to decompose the fracture into two 
components (i.e., Δx = x2 − x1 and Δy = y2 − y1). Then, the angle can be obtained using the following equation:

𝜃𝜃 = arctan

(

Δ𝑦𝑦

Δ𝑥𝑥 + 𝜖𝜖

)

, (3)

where ϵ is a small perturbation to prevent the case of Δx = 0.

2.4. Preprocessing Algorithm

For an accurate and efficient graph-based approach, a correct graph representation of the fracture network is 
necessary. Since not all intersections are always given via the fracture network's geological (or automatic) inter-
pretation, we need to calculate all the intersections to construct the correct graph for a fracture network. After 
finding all the intersections, the large fractures are partitioned into smaller fracture segments with length lf. Then, 
any two nodes that are too close in proximity are merged. Subsequently, segments that intersect at an angle below 
a certain threshold denoted as θa, min are merged as well. Furthermore, an optional straightening of the fractures 
can be applied to simplify the meshing procedure further if fractures intersect within [180 − θs, min, 180 + θs, min]. 
These steps are illustrated in Figure 4 and thoroughly explained in the following sections. Lastly, an aperture 
correction procedure is proposed, which deals with variable apertures and connecting previously disconnected 
fractures.

2.4.1. Intersections

Here, the intersection detection method is described. The intersections are found by checking all combinations 
of any two edges. The combinations can be found via the binomial formula. All edges are parameterized, and a 
2 × 2 linear system is solved for each pair of edges. Any intersection that occurs splits the two edges into four, 
and a vertex is added.

Let 𝐴𝐴  = 𝑉𝑉 ∈ ℝ
𝑛𝑛×𝑑𝑑 be the set of coordinates in the physical space of all unique vertices in the graph, where n is the 

number of vertices and d is the dimension of the physical space associated with the graph (i.e., fracture network). 
Then, let 𝐴𝐴  = 𝐸𝐸 ∈ ℝ

𝑚𝑚×2 be the set of all edges in the graph, where m is the number of edges and 2 represents the 
number of vertices associated with each edge. In other words, the jth element of 𝐴𝐴  , 𝐴𝐴 𝐴𝐴𝑗𝑗 ∈ ℕ

2×1 , represents the set 
of two natural numbers associated with the two vertices of edge j. This means that 𝐴𝐴 

(

𝑝𝑝
1
𝑗𝑗

)

= 𝑉𝑉
(

𝑝𝑝
1
𝑗𝑗
, ⋅
)

= 𝐱𝐱
1
𝑗𝑗
 and 

𝐴𝐴 
(

𝑝𝑝
2
𝑗𝑗

)

= 𝑉𝑉
(

𝑝𝑝
2
𝑗𝑗
, ⋅
)

= 𝐱𝐱
2
𝑗𝑗
 , where 𝐴𝐴 𝐱𝐱

1

𝑗𝑗
, 𝐱𝐱

2

𝑗𝑗
∈ ℝ

𝑑𝑑 are the two vertices associated with edge j.

Finding all the intersections between any two edges, without any assumption on the location or orientation of the 
edge, can be done as follows. First parameterize all segments, using the following equation:

Figure 5. Illustration of the types of aperture corrections. Merging the 
nonshared vertex results in a Type 1 correction (parallel resistor), while 
merging the shared vertex results in a Type 2 correction (sequential resistor). 
An effective matrix aperture is used if the two edges are disconnected (Type 
2b).



Water Resources Research

DE HOOP ET AL.

10.1029/2021WR030743

8 of 28

𝐫𝐫𝑗𝑗(𝑡𝑡) = 𝐱𝐱
1

𝑗𝑗
+ 𝑡𝑡

(

𝐱𝐱
2

𝑗𝑗
− 𝐱𝐱

1

𝑗𝑗

)

, 𝑗𝑗 = 1,… , 𝑚𝑚, (4)

where rj(t) represents a point on the fracture segments and t varies from 0 to 1 (from both end-points of the frac-
ture segment). Find the pairs/combinations of edges, (i, j), that can possibly intersect,

(

𝑚𝑚

2

)

=
(𝑚𝑚)

2

2
, (5)

and solve the following equation for each such combination:

𝐫𝐫𝑗𝑗(𝑡𝑡) = 𝐫𝐫𝑖𝑖(𝑠𝑠). (6)

The two edges intersect directly whenever 0 < t, s < 1 is true (note: <instead of ≤indicates that the intersections 
at the end-points of segments are excluded). This simplifies to solving a 2 × d system of equations for each inter-
section, such as

𝐴𝐴𝐱𝐱 = 𝐛𝐛, (7)

where 𝐴𝐴 𝐴𝐴 =
[

𝐱𝐱
2

𝑖𝑖
− 𝐱𝐱

1

𝑖𝑖
,−

(

𝐱𝐱
2

𝑗𝑗
− 𝐱𝐱

1

𝑗𝑗

)]

 , x = [t,s] T, and 𝐴𝐴 𝐛𝐛 =
[

𝐱𝐱
1

𝑖𝑖
− 𝐱𝐱

1

𝑗𝑗

]

 .

The actual point of intersection is calculated by plugging the t that is obtained from Equation 7 into Equation 4. 
Every intersection involves exactly two segments, and the intersection id for those segments and x-coordinate and 
y-coordinate are stored in an array. After all the segments have been checked, a loop over this array allows us to 
manipulate intersections accordingly. For 𝐴𝐴  , this amounts to nint new points, where nint refers the total number of 
intersection points. And for 𝐴𝐴  , each 𝐴𝐴 𝐴𝐴𝑗𝑗 ∈  that contains at least one intersection gets replaced by 𝐴𝐴 𝐴𝐴

𝑗𝑗

int
+ 1 new 

segments, where 𝐴𝐴 𝐴𝐴
𝑗𝑗

int
 refers to the number of intersections on the jth segment.

This naive way of finding the intersection has the downside of having a large computational complexity (as 
indicated above). To circumvent this, we applied a method that takes advantage of the fact that most time is spent 
solving the linear 2 × 2 system in Equation 7. A simple check is applied for each pair of fracture segments to 
indicate if there can exist an intersection or not. Assuming the vertices of each edge (i.e., fracture) are ordered 
from smallest x-coordinate to largest, two edges can only have a possible intersection if the smallest x-coordinate 
of one of the two edges is smaller than the largest x-coordinate of the other edge (and vice versa for the y-coordi-
nate). This significantly reduces the overall computational time of the algorithm as shown in Section 3. Further 
reduction in computational time is achieved by parallelizing the algorithm, which is our ongoing development.

Figure 6. Vertices that do not share an edge might be connected through a path in the neighborhood of the vertices. A 
subgraph is extracted and using Dijkstra's shortest path; the effective resistance is computed. If no shortest path exists (i.e., 
even in the neighborhood the two vertices remain disconnected), the effective matrix aperture is used instead.
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2.4.2. Node Merging

The node merging algorithm, in essence, is sequential. Each vertex (i.e., node) is added to the domain if it does 
not violate the algebraic constraint. This means that the distance between the newly added node and any other 
node already in the domain must be larger than lf ⋅ h, the node is merged into the closest node already in the 
domain. Parameter lf refers to the accuracy at which the original fracture network will be processed and subse-
quently influences the optimal grid resolution, while h is a scaling parameter on the closed interval [0.5, 0.86]. 
The larger the h is, the more simplified the resulting network becomes. Here, 0.5 is chosen as a lower bound 
such that any point on a fracture segment will get merged into one of the end-points, while 0.86 is chosen as an 
upper bound such that any vertex perpendicular to the fracture segment with a distance equal to the height of an 
equilateral triangle with length lf at the midpoint will get merged. The sequential nature of the algorithm implies 
that the order in which we add nodes to the domain affects the final result. Nodes that are added first are most 
likely placed in their exact location. Another essential consideration is the fracture aperture, since the conductive 
fractures often have a large impact on the fluid flow. Therefore, the fracture segments are ordered based on their 
aperture. If a single aperture model is applied, then segments are sorted based on the length of the fractures to 
minimize changes to the global structure of the network.

Figure 7. Changes to fracture network as a function of preprocessing accuracy lf. The network's complexity is greatly 
reduced by the decrease in fracture segments with increasing lf. The angles of the N-S fractures remain unchanged up to 
lf = 64 (m).
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The length of each fracture segment, 𝐴𝐴 𝐴𝐴 ∈ ℝ
𝑚𝑚 , can be calculated in the following way:

𝐿𝐿 =

⎛

⎜

⎜

⎜

⎜

⎝

‖𝐱𝐱
1

1
− 𝐱𝐱

2

1
‖

⋮

‖𝐱𝐱
1
𝑚𝑚 − 𝐱𝐱

2
𝑚𝑚‖

⎞

⎟

⎟

⎟

⎟

⎠

. (8)

Figure 8. Angle distribution as a function of fracture cleaning accuracy. The top row corresponds to the Whitby network, while the bottom row corresponds to the 
Brejoes network. The cleaning shows no significant change between lf = 4 and lf = 16 for the Whitby network; that's why these steps are omitted in the figure. However, 
the Brejoes network does show significant deviation at lf = 16. The preprocessed Whitby network is no longer representative of the raw network at lf = 128, while this 
already happens at lf = 64 for the Brejoes case.

Figure 9. A large deviation between the raw data and the processed network's topology in both fracture networks is observed. The reason for this is explained in 
Figure 10. The Brejoes network converges to the raw data for low lf < 1. The jump in the large lf = 128 for the Brejoes case is expected due to the fracture network 
becoming extremely coarse. Only a few fractures actually remain, meaning the relative proportion of end nodes greatly increases.
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Then we define the order of adding segments, Osegm, from largest to smallest:

𝑂𝑂segm =

⎧

⎪

⎨

⎪

⎩

{𝑖𝑖 ∈ ℕ | ∀𝑙𝑙𝑖𝑖 ∈ 𝐿𝐿𝐿 𝑙𝑙𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖+1} 𝐿 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 = 𝑖𝑖

{𝑖𝑖 ∈ ℕ | ∀𝑖𝑖𝑖𝑖 ∈ 𝐴𝐴𝐿 𝑖𝑖𝑖𝑖 ≥ 𝑖𝑖𝑖𝑖+1} 𝐿 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

 (9)

where ai is the aperture of fracture segment i and A is the list of all fracture apertures.

From now on, for simplicity, it is assumed that h = 1/2. This means that 𝐴𝐴
𝑙𝑙𝑓𝑓

2
 is the minimum distance between each 

vertex in the simplified graph. To achieve this, a partitioning algorithm that divides each fracture segment in 
mi = max(1, round(li/lf)) subsegments is executed. See Algorithm 2 for the detailed description.

Now we can construct the graph representation of the ordered and partitioned 
fracture network, using Algorithm 1 and substituting 𝐴𝐴  with 𝐴𝐴 new and m with 
mnew. Furthermore, the problem is that vertices are added to the domain and 
not necessarily edges. Therefore, we need to determine the order in which 
vertices should be added to the domain. The order of the vertices, Overtices, 
can be found with Algorithm 3.

After the order is determined and B and 𝐴𝐴  are sorted, the primary node merg-
ing algorithm can be applied. It simply consists of sequentially checking, 
from highest to lowest priority vertices, if a newly added node violates the 
algebraic constraint (i.e., is within 𝐴𝐴

𝑙𝑙𝑓𝑓

2
 from any nodes already in the domain). 

This is thoroughly described in Algorithm 4.

The main parameter in the partitioning and subsequent node merging algo-
rithm is the preprocessing accuracy lf. This parameter determines the minimum 
distance between any vertex in the simplified graph. The computational time 
of the algorithm scales proportionally to the lf and the number of fractures.

2.4.3. Straightening and Removing Acute Angles

Another (optional) modification to the fracture network is the straightening 
of fracture segments. This amounts to checking each vertex with order two 
and calculating the angle between the two edges leaving this vertex. If this 

Figure 10. Detailed view of the fracture network topology of the Whitby network. The left image displays the raw input topology, while the right image shows the 
topology after applying the preprocessing algorithm with lf = 1. Due to the manual interpretation, it can be seen that a lot of nodes are characterized as I-nodes (degree 
1) or X-nodes (degree ≥ 4) in the left plot, while most seem to be Y-nodes (degree 3; when considering usual abutment relationships in fracture mechanics and the 
resolution of the outcrop image).

Figure 11. Visual comparison between the meshing result of the raw (left) 
versus the cleaned (right). Meshing and preprocessing accuracy are both 
32 (m) (i.e., lm = lf = 32). The darker blue spots in the image on the left 
represent clusters of small control volumes. These appear at locations of 
complex fracture interactions on a scale way below the meshing resolution lm.
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angle is within some threshold, particularly within [180 − θs, min, 180 + θs, min], the node can be removed since 
the fracture is considered straight. The angle θs, min is typically chosen on the interval [0, 7.5], depending on how 
severely the user wants to straighten the fractures. The straightening of fractures can be beneficial when consid-
ering meshing tools such as GMSH (Geuzaine & Remacle, 2009). The reason for this is that conformal meshing 
techniques require the fracture to be embedded into the domain. Less embedded fractures mean faster and easier 
meshing.

Simply merging the conflicting nodes does not resolve all the artifacts associated with meshing DFMs. This is 
mainly caused by the fact that the algebraic constraint, 𝐴𝐴

𝑙𝑙𝑓𝑓

2
 , is constant. Whenever nodes are merged, the corre-

sponding edge (i.e., fracture segment) might be stretched and have a length greater than lf. This might result in 
vertices being placed near existing edges and not flagged as problematic nodes by the node merging algorithm. 
Therefore, an additional correction to the network is required to obtain the optimal representation for meshing 
purposes.

The algorithm for removing the acute angles is very similar to Algorithm 5; however, now the loop is over all 

nodes with a degree bigger than one. Instead of calculating one angle, 𝐴𝐴

(

𝑑𝑑𝑖𝑖

2

)

 angles are computed between all 

edges leaving the vertex i, where di is the degree of vertex i. The two edges corresponding to the smallest angle 
below a certain threshold will be merged. The smaller segment will be merged in the larger segment, and the 
noncoinciding vertex will be merged in the closest vertex of the larger segment. This ensures minimal changes to 
the fracture network due to other possible edges leaving the merged vertex. The tolerance for the minimal angle 
θa, min is typically chosen on the interval [0, 18] degrees. Larger θa, min means a more simplified fracture network 
since potentially more fracture intersections are flagged as problematic.

2.4.4. Aperture Correction

In order to incorporate low connectivity and fracture networks with variable apertures, a fracture aperture correc-
tion is applied during the cleaning procedure. Connected fractures are treated analogous to resistors in an electric 
circuit. Resistance is equal to the inverse of the hydraulic conductivity, which in turn is a function of the square of 
the fracture aperture. Figure 5 displays the two different corrections (Type 1 versus Type 2). Type 1 corrections 
result in the overlap of two segments after merging of vertices. Type 2 is subdivided further into 2a, which results 
in an edge collapse, and 2b, which connects two previously disconnected edges. The following equation gives the 
correction for Type 1

�̂�𝑅 =

(

𝑛𝑛=2
∑

𝑖𝑖=1

1

𝑅𝑅𝑖𝑖

)−1

, (10)

Figure 12. Control volume size distribution as a function of preprocessing accuracy for the Whitby network. Optimal refers 
to the preprocessing strategy where the fracture network is cleaned at the same accuracy as the mesh is generated. Clean 
refers to preprocessing the fracture network once at a small lf and then simply decreasing the meshing resolution lm while 
keeping the fracture network unchanged.
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where Ri is the resistance of edge i defined as

𝑅𝑅𝑖𝑖 =
𝐿𝐿𝑖𝑖

𝑎𝑎
2
𝑖𝑖

, (11)

where Li is the length and ai is the aperture of the ith edge, respectively, such that the effective aperture of the 
corrected edge is given by

�̂�𝑎 =

√

√

√

√

�̂�𝐿

𝑛𝑛=2
∑

𝑖𝑖=1

𝑎𝑎
2
𝑖𝑖

𝐿𝐿𝑖𝑖

, (12)

where 𝐴𝐴 �̂�𝐿 is the length of the new edge.

The Type 2a correction is given by

�̂�𝑅 =

𝑛𝑛=2
∑

𝑖𝑖=1

𝑅𝑅𝑖𝑖, (13)

resulting in

�̂�𝑎 =

√

√

√

√

�̂�𝐿
∑𝑛𝑛=2

𝑖𝑖=1

𝐿𝐿𝑖𝑖

𝑎𝑎
2
𝑖𝑖

. (14)

In the case of Type 2b, an effective matrix aperture is obtained by inverting the permeability of parallel plate 
flow such that

𝑎𝑎mat =
√

12𝑘𝑘mat, (15)

where kmat is the matrix permeability at the location of the particular edge. A further addition to the Type 2b 
correction is added to preserve the characteristics of impermeable fractures/faults and high-permeable matrix, 
given by

�̂�𝑎 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

�̂�𝐿

(𝑎𝑎mat𝐿𝐿mat + 𝑎𝑎𝑖𝑖𝐿𝐿𝑖𝑖) , 𝑖𝑖𝑖𝑖𝑎𝑎mat > 𝑎𝑎𝑖𝑖

1

1 − (𝐿𝐿𝑖𝑖∕ (𝐿𝐿𝑖𝑖 + 𝐿𝐿mat))
𝑛𝑛

𝑎𝑎𝑖𝑖
+

(𝐿𝐿mat∕ (𝐿𝐿𝑖𝑖 + 𝐿𝐿mat))
𝑛𝑛

𝑎𝑎mat

, 𝑖𝑖𝑖𝑖𝑎𝑎mat ≤ 𝑎𝑎𝑖𝑖,
 (16)

Figure 13. Mesh element quality distribution as a function of preprocessing accuracy for the Whitby network.
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where Lmat is the gap between the vertices and n is determined by fitting a 
least-squares solution to tracer simulation on two disconnected fractures with 
different gaps and characteristic cleaning lengths, given by

𝑛𝑛 = 9.56
𝐿𝐿mat

𝐿𝐿𝑖𝑖 + 𝐿𝐿mat

+ 1.18. (17)

If n ≈ 1 we have the normal harmonic mean, while n → ∞ is the same as 
not applying any aperture correction. The parameter n effectively limits the 
aperture penalty when connecting disconnected fractures, as it was observed 
from simple numerical experiments that the aperture correction, in some cases, 
over-penalizes the effective aperture. Also, note that n is bounded since Lmat can 
never exceed lfh, since otherwise, these vertices would not apply for merging.

To deal with vertices that are connected through a path in the neighborhood 
of the vertices, a subgraph is extracted around the vertex that is merged. The 
shortest path is computed using Dijkstra's algorithm implementation described 
in Csardi and Nepusz (2006). Whenever there is no shortest path (i.e., even in 
the neighborhood the two vertices remain disconnected), the effective matrix 
aperture is used for the resistance instead. This is represented in Figure 6.

Figure 6 illustrates an essential feature of the aperture correction. Merging 
vertex 12 into vertex 11 results in a reduction of the aperture of the edges 
connecting vertex 10 and 12 as well as 12 and 13. This is undesirable because 

we want to preserve this connectivity. Since the vertex merging happens sequentially, it has become evident at this 
point that sorting based on aperture (highest to lowest) is more effective for an accurate representation of fluid 
flow in the fracture network than simply sorting based on length.

All the code related to the algorithms described above is implemented in Python and can be found at https://
github.com/MakeLikePaperrr/Fracture-Preprocessing-Code. We have made use of the following packages: 
NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), and igraph (Csardi & Nepusz, 2006).

2.5. Governing Equations

In order to evaluate the dynamic performance of the preprocessing algorithm, several flow scenarios are consid-
ered, for which the governing equations are specified here. The conservation of mass, in general form, is written 
as

Figure 14. Temperature distribution as a function of preprocessing and 
meshing accuracy for the optimal strategy after 3,150 (days; Whitby network).

Figure 15. Temperature distribution as a function of preprocessing and meshing accuracy for the optimal strategy after 
3,150 (days; Brejoes network).

https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
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𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜙𝜙

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

𝑥𝑥𝑐𝑐𝑝𝑝𝜌𝜌𝑝𝑝𝑠𝑠𝑝𝑝

)

+ ∇ ⋅

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

𝑥𝑥𝑐𝑐𝑝𝑝𝜌𝜌𝑝𝑝𝐯𝐯𝑝𝑝 +

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

𝑥𝑥𝑐𝑐𝑝𝑝𝜌𝜌𝑝𝑝𝑞𝑞𝑝𝑝 = 0, 𝑐𝑐 = 1,… , 𝑛𝑛𝑐𝑐 , (18)

where ϕ represents the porosity, xcp is the molar mass fraction of component c in phase p, ρp is the density, sp is 
the saturation, and qp is the source term of the pth phase respectively, and vp is the velocity of the pth phase. The 
Darcy velocity of the pth phase is given by

𝐯𝐯𝑝𝑝 = −
𝑘𝑘𝑟𝑟𝑟𝑝𝑝

𝜇𝜇𝑝𝑝

𝐊𝐊∇ (𝑝𝑝𝑝𝑝 − 𝜌𝜌𝑝𝑝𝐠𝐠) 𝑟 𝑝𝑝 ∈ {𝑜𝑜𝑟𝑜𝑜} 𝑟 (19)

where kr,p is the relative permeability, μp is the viscosity and pp is the pressure of the pth phase, respectively, K is 
the permeability tensor, and g is the directional gravitational acceleration defined as g∇z. The equations for the 
tracer simulation, applied to the variable aperture model, are obtained by having a two-component single-phase 
system and setting the density and viscosity equal to unity.

The following equation describes the conservation of energy required for the geothermal simulations:

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜙𝜙

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

𝜌𝜌𝑝𝑝𝑠𝑠𝑝𝑝𝑈𝑈𝑝𝑝 + (1 − 𝜙𝜙)𝑈𝑈𝑟𝑟

)

+ ∇

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

ℎ𝑝𝑝𝜌𝜌𝑝𝑝𝐯𝐯𝑝𝑝 + ∇(𝜅𝜅∇𝑇𝑇 ) +

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

ℎ𝑝𝑝𝜌𝜌𝑝𝑝𝑞𝑞𝑝𝑝 = 0, (20)

where Up is the internal energy of fluid phase p, Ur is the rock internal energy, hp is the enthalpy of phase p, κ 
is the thermal conduction, and T is the temperature. All governing assumptions and properties can be found in 
Wang et al. (2020, 2021).

2.6. Numerical Solution

Finite-volume discretization is applied to a general unstructured grid (using a Two-Point Flux Approximation 
(TPFA) for the fluxes across interfaces with upstream weighting) and a backward (implicit) Euler time discre-
tization strategy to both the conservation equations and obtain the following system of equations (assuming no 
gravity and capillarity):

𝑉𝑉

[

(

𝜙𝜙

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

𝑥𝑥𝑐𝑐𝑝𝑝𝜌𝜌𝑝𝑝𝑠𝑠𝑝𝑝

)𝑛𝑛+1

−

(

𝜙𝜙

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

𝑥𝑥𝑐𝑐𝑝𝑝𝜌𝜌𝑝𝑝𝑠𝑠𝑝𝑝

)𝑛𝑛]

− Δ𝑡𝑡
∑

𝑙𝑙

(

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

𝑥𝑥
𝑙𝑙

𝑐𝑐𝑝𝑝𝜌𝜌
𝑙𝑙

𝑝𝑝Γ
𝑙𝑙

𝑝𝑝Δ𝑝𝑝
𝑙𝑙

)

+ Δ𝑡𝑡

𝑛𝑛𝑝𝑝
∑

𝑝𝑝=1

𝜌𝜌𝑝𝑝𝑥𝑥𝑐𝑐𝑝𝑝𝑞𝑞𝑝𝑝 = 0, 𝑐𝑐 = 1,… , 𝑛𝑛𝑐𝑐

, (21)

Figure 16. Water saturation distribution as a function of preprocessing and meshing accuracy for the optimal strategy after 
150 (days; Brejoes network).
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 (22)

where 𝐴𝐴 Γ
𝑙𝑙

𝑝𝑝 is the convective and 𝐴𝐴 Γ
𝑙𝑙

𝑐𝑐 is the thermal transmissibility of interface 
l and phase p, respectively.

For details regarding the handling of the fractures, the reader is referred to 
Karimi-Fard et  al.  (2004). In short, fractures constitute a control volume 
in the computational domain of a similar dimension as the matrix control 
volumes, particularly approximated by a porous media where the permea-
bility follows from the parallel plate model (cubic law, i.e., kf = a 2/12). This 
allows solving the above system of nonlinear equations everywhere in the 
domain without using fracture-matrix transfer functions. The mass and heat 
transfer between fracture and matrix naturally follows from the discretization.

Figure 17. The temperature at the production well over time for optimal (left column) and clean (right column) preprocessing strategies for both the Whitby (top row) 
and Brejoes (bottom row) networks. Substantial deviation for large lf = lm in the optimal strategy was observed. This does not happen in the clean strategy. This is 
because the fracture network is unchanged while the mesh is coarsened. This also causes the number of control volumes to remain considerable even for large lm thereby 
reducing the numerical diffusion (see Tables 3 and 4).

Parameter Whitby Brejoes

Rock heat conduction, κr (kJ/m/day/K) 165 150

Rock heat capacity, Cr (kJ/m 3/K) 2,500 2,200

Initial pressure, p0 (bar) 500 100

Initial temperature, T0 (K) 423.15 583.15

Injection rate, Qinj (m 3/day) 1,000 300

Injection temperature, Tinj (K) 303.15 308.15

Production bottom hole pressure, pprod (bar) 475 100

Table 1 
Boundary Conditions
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Operator-Based Linearization (OBL) is used to linearize the above system 
of nonlinear equations (i.e., Equations 21 and 22). OBL is a novel way of 
performing the linearization step.  The discrete form of the mathematical 
equations is grouped into state-dependent operators and space-depended 
relations. The parameter space of the problem is discretized, where each axis 
is split by the uniformly distributed set of supporting points. Any point in 
the parameter space belongs to a certain hypercube bounded by supporting 
points. Next, the nonlinear operators are subsequently calculated exactly in a 
set of supporting points at a preprocessing stage or adaptively. At the simu-
lation stage, the operators' values and their derivatives are evaluated using 
multilinear interpolation inside a particular hypercube in the parameter space 
where the specific simulation state belongs. The multilinear interpolation of 
the most nonlinear part of the governing equations provides simple, exact, 
and above all flexible Jacobian assemble for the nonlinear solution procedure. 
For details on the OBL framework, the reader is referred to Voskov (2017) 
and Khait and Voskov (2017, 2018a).

The proposed fracture network processing framework has been fully integrated with the open-source Delft 
Advanced Research Terra Simulator (DARTS). DARTS is a scalable parallel simulation framework, which 
has been successfully applied for modeling of energy transition applications, including hydrocarbon (Khait & 
Voskov, 2018a; Lyu et al., 2021), geothermal (Khait & Voskov, 2018b; Wang et al., 2020) and CO2 sequestration 
(Kala & Voskov, 2020; Lyu et al., 2021) cases. The ongoing effort to include fully coupled geomechanical mode-
ling into DARTS allowed us to directly address induced seismicity problems (Novikov et al., 2021) which is 
another challenge in energy transition usually directly relevant to fracture networks.

3. Results
This section presents the investigation of the performance of the preprocessing method described in the previous 
section. The performance is assessed in terms of static and dynamic qualities and is therefore subdivided accord-
ingly. It is important to stress the difference between the preprocessing accuracy lf and the meshing accuracy lm. 
The parameter lf refers to the minimum distance between any two vertices in the preprocessed fracture network. 

In contrast, lm refers to the characteristic length of the control volumes after 
applying a particular meshing strategy (i.e., Frontal-Delaunay as a 2D mesh-
ing algorithm in this work, see Geuzaine and Remacle (2009) for details).

Following the definition of those two parameters, there is a significant 
distinction between the two preprocessing strategies described below. The 
first approach is defined as the “clean” strategy. In this approach, the preproc-
essing algorithm is executed once with a lf = 1, θa, min = 18°, and θs, min = 2.5°. 
The lf remains unchanged in the clean strategy for subsequent coarser mesh-
ing results. The second strategy is denoted as the “optimal” strategy. In this 
strategy, for each subsequent coarser model, the preprocessing algorithm is 
executed with lf =  lm. This means that the fracture network in the “clean” 
strategy remains unchanged when coarsening the mesh. In the “optimal” 
strategy, the fracture network changes when constructing the coarser models.

3.1. Static Performance of the Preprocessing Framework

3.1.1. Changes in Configuration

Figure 7 illustrates several changes to the raw fracture network after applying 
successive coarsening. An apparent reduction in the number of nodes (red 
dots) can be seen with increasing lf, which significantly reduces the number 
of fracture segments. Fewer fracture segments typically indicate a lower 
network complexity (simply by having fewer degrees of freedom). Multilin-
ear segments become linear (i.e., straight) because of the reduction in fracture 

Parameter Whitby Brejoes

Matrix permeability, kmat (mD) 1e−3 1e−2

Matrix porosity, ϕmat (–) 0.3 0.04

Fracture permeability, kfrac (mD) 8.3e7 7.5e6

Fracture porosity, ϕfrac (–) 1 1

Length domain, Lx (m) 1,050 700

Width domain, Ly (m) 1,050 350

Simulation time, t (days) 10,950 10,950

Table 2 
Reservoir and Simulation Parameters

Nblocks Nfracs Nnewt Nlin TCPU (s)

Clean (lf = 1, lm = 4) 91,780 6,800 3,543 53,210 4,159

Clean (lf = 1, lm = 8) 41,119 4,311 3,277 46,830 1,290

Clean (lf = 1, lm = 16) 24,044 3,152 3,199 40,566 538

Clean (lf = 1, lm = 32) 22,879 2,841 3,112 39,667 364

Clean (lf = 1, lm = 64) 20,142 2,824 3,087 39,340 400

Clean (lf = 1, lm = 128) 20,222 2,824 3,085 38,903 422

Optimal (lf = lm = 4) 80,672 6,362 3,436 50,573 4,079

Optimal (lf = lm = 8) 26,553 3,363 2,890 37,988 813

Optimal (lf = lm = 16) 8,718 1,594 2,680 32,600 196

Optimal (lf = lm = 32) 2,417 563 2,533 27,434 53

Optimal (lf = lm = 64) 605 147 2,395 23,119 18

Optimal (lf = lm = 128) 166 32 2,403 17,147 6

Note. Nblocks corresponds to the total number of control volumes, Nfracs to the 
number of fracture control volumes, Nnewt to the number of Newton-iterations, 
Nlin to the number of linear iterations, and TCPU to the total simulation time. 
lf refers to the preprocessing accuracy, and lm refers to the meshing accuracy.

Table 3 
Numerical Performance Whitby Simulations
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segments, further reducing network complexity. Ultimately, small and complex features of the fracture network 
start to disappear while the main pattern (backbone) remains visible. The average spacing of the North-South 
fractures (40–50 m) remains unchanged up to lf = 32. Around lf = 64, which exceeds this average spacing, the 
fracture configuration changes substantially, as shown in Figure 8.

3.1.2. Angle Distribution

A critical characteristic in fracture networks is the angle distribution, particularly weighted by the length of the 
fractures, especially when considering variable apertures (Baghbanan & Jing, 2008; Bisdom et al., 2016). This 
usually gives an insight into the potential flow response of the network while also providing possible informa-
tion on the paleostress that caused the network formation. Since multiple nodes are merged in the preprocessing 
approach, it is expected that these angles can change substantially when using a large lf, where large is relative 
to the scale at which the raw data is collected. This can be clearly seen when looking at Figure 8. For small lf, 
the deviation in angles is almost unnoticeable, while around lf = 32, a small deviation of roughly 10% in the 
orientation is observed in the Whitby network. Around lf = 64, the deviation becomes significant (>20%), but 
the dominant orientation (N-S) is still similar to that of the raw results. Finally, at lf = 128, the angle distribution 
is very different from the raw data (>30%), even the dominant orientation, and does not resemble the original 
network.

Similar behavior but at earlier resolution is observed for the Brejoes network. At lm = 16, the deviation is roughly 
20%. The dominant NNW-SSE orientation disappears already at lf = 64. The average spacing of the NNW-SSE 
fractures in the Brejoes network is roughly 12 m. This shorter spacing correlates with the earlier deviation in the 
angle distribution in the Brejoes network when compared to Whitby.

3.1.3. Topology

Besides the angle distribution, it is also important to look at connectivity and in particular, the topology changes 
to the fracture network. Figure 9 shows the topology of the raw and preprocessed fracture networks in the ternary 
topology diagram (as explained in Figure 3). A large deviation between the raw and preprocessed data is observed, 
even with the small lf = 1 (m). The raw network contains roughly 55% I-nodes, 20% Y-nodes, and 25% X-nodes. 
The finest preprocessed network (i.e., lf = 1 (m)) contains approximately 20% I-nodes, 75% Y-nodes, and 5% 
X-nodes. Furthermore, with increasing lf, the preprocessed networks increasingly deviate toward a large X-node 
percentage (from 5% at lf = 1 to almost 70% at lf = 128 for Whitby and from 10% at lf = 2 to 70% at lf = 64 for 
Brejoes).

To illuminate the differences in topology between the fine lf = 1 and the raw data, the degree of the raw and 
cleaned network nodes is shown in Figure 10. Even after zooming in at the nodes of the raw network, a significant 
amount remains misclassified as I-nodes while they would be more suitably classified as Y-nodes or X-nodes (at 
this scale of observation). This is the result of two fracture segments essentially intersecting, but not exactly due 
to inaccuracy in image interpretation. The same behavior arises for the X-nodes that are misclassified as Y-nodes. 
This happens when two fracture segments only intersect with a minimal extension of one of the segments across 
the point of intersection.

3.1.4. Impact of Changes on Meshing

Because the complexity of the fracture network decreases, the conformal meshing procedure becomes substan-
tially easier. This is shown in Figure 11. A significant reduction in the number of control volumes and a more 
homogeneous distribution is observed for the preprocessed meshing results compared to the raw network. The 
dark blue areas in the raw meshing results indicate a concentration of small control volumes. Furthermore, very 
flat triangular elements are observed at some locations in the raw meshing results. Therefore, it seems that the 
volume distribution and quality of the mesh elements are improved in the preprocessed results. This is quantified 
in Figures 12 and 13, respectively. Please note that the fluid-flow simulations are carried out in the 3D domain 
and therefore the model is assigned a thickness (2.5D).

Mesh quality here refers to a similar definition as used in Mustapha and Dimitrakopoulos (2011), particularly 
using the following equation

𝑞𝑞 = 4
√

3
𝐴𝐴

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐
, (23)
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where A is the area of the triangle and a/b/c are the lengths of the three sides of the triangle, respectively. This 
means that when q = 1 we have a high mesh quality since the triangle is equilateral (i.e., the optimal shape for 
TPFA fluid-flow simulation), while a low-quality mesh element (i.e., q ≪ 1) refers to a large deviation from 
an equilateral triangle. The mesh elements in the 2.5D model are triangular prisms which means that this mesh 
element quality indicator also works for this type of geometry. The reason for this is that the centroid of the trian-
gular prism lies in the same xy-plane as the centroid of the triangle and is therefore not changing the orthogonality 
relationship between neighboring control volumes.

Ultimately, the purpose of using and generating fracture networks is to utilize them in specific industrial 
applications. In this work, the chosen application is geothermal energy production from the subsurface. This 
application usually requires multiple numerical simulations to address general uncertainty in subsurface 
parameters. The accuracy and speed of convergence of these simulations are highly dependent on the mesh 
quality and, specifically for fracture networks, the orthogonality of the control volume intersections and the 
volume distribution. Therefore, we quantify the effect of the preprocessing method on these two properties, 
where mesh quality is a proxy for the orthogonality of the control volume intersections. Figure 12 shows 
the volume distribution as a function of lf and lm, while Figure 13 shows the distribution of mesh element 
quality.

The volume distribution obtained after meshing the raw fracture network input is not normally distributed. It has a 
peak around zero, which indicates a large number of small control volumes. This effect becomes more substantial 
with increasing lm. At lm = 32, the volume distribution of the raw network input is entirely concentrated around 
zero. The volume distribution obtained after meshing the optimal preprocessed fracture network input does show 
a normal distribution. The distribution becomes wider and more skewed with increasing the lm. No small control 
volumes are observed for the optimal preprocessed results, even in lm = 128 (m). The clean preprocessing strategy 
shows similar behavior to the optimal strategy for small lm, while converging to the behavior of the raw input 
network for lm ≥ 32.

The mesh element quality obtained after meshing with a small lm behaves similarly for the raw and preprocessed 
input fracture data, except for a relatively small amount of flat triangles (i.e., q ≈ 0). An increase in the number 
of flat triangles (i.e., q ≤ 0.01) from 0.32% to 1.29% and a reduction of the overall quality is observed for the raw 
input data with increasing lm. However, the mesh quality for the preprocessed results remains above q = 0.40 even 
for lm = 128 (m). Low mesh quality (i.e., q ≤ 0.01) can be seen as an indicator for poor simulation convergence 
since a few of these elements can ruin the nonlinear convergence behavior of the numerical simulation (more than 
the mean mesh element quality or the whole distribution).

3.2. Dynamic Performance of Preprocessing Framework

3.2.1. High-Enthalpy Single Aperture

The dynamic performance is analyzed by applying geothermal simulation to the different DFM models obtained 
after meshing (i.e., clean and optimal for different lm). Geothermal simulation typically consists of a doublet 
system: at one point, cold water is injected, and at another point, hot water or steam is produced. Mathematically 
speaking, this amounts to solving Equations 18 and 20 presented in Section 2.5. The injection point is in the 
bottom left of the domain, while the production point is at the top right of the domain. Both wells are perforat-
ing a fracture segment. First, the temperature fields of both networks are shown (Figures 14 and 15). The water 
saturation field is shown for the Brejoes network (Figure 16), and finally, the temperature at the production well 
over time (Figure 17).

The boundary conditions and modeling parameters can be found in Tables 1 and 2. The simulation parameters 
model a situation that is investigated throughout the world for its geothermal energy potential (Moeck, 2014). 
Particularly, we study geothermal energy production from a tight fractured reservoir with convective flow 
happening predominantly through the fracture network. It is important to observe how changes to the fracture 
network affect the simulation results in such a setup. If the fracture permeability is much larger than the matrix 
permeability, the fractures will evidently play a dominant role in the fluid-flow patterns. There are a particular 
set of parameters for each network. The first set of parameters simulates initially high-enthalpy single-phase 
super-critical water according to IAPWS 97 equation of state (Wagner & Kretzschmar, 2008) used in DARTS. 
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This set of parameters is applied to the Whitby case. The second set simulates high-enthalpy steam flow condi-
tions and is applied to the Brejoes case.

The temperature field after 3,150 (days) of simulation for the Whitby network is presented in Figure 14. The 
temperature is reduced near the injection point from the initial 423.15  (K) to the injection temperature of 
303.15 (K). Fluid flow primarily happens through the fractures; hence, the largest temperature variations occur 
closer to the fractures. This is more apparent in the finer models (i.e., smaller lm). Larger diffusion of the tempera-
ture profile is observed for increasing lm. The main fracture pattern becomes invisible at lm = 64 (m). The tempera-
ture distribution for the Brejoes network is shown in Figure 15. In terms of temperature distribution, a comparable 
trend was observed w.r.t. to the Whitby network. The water saturation field is shown in Figure 16 after 150 days 
of simulation. Accurate representation of the water saturation is more sensitive to the resolution than temperature.

The energy rate and temperature profile at the production well showed similar behavior; therefore, only the 
temperature profiles are shown in Figure 17. A commonly used metric to analyze the flow behavior of geothermal 
systems is the doublet lifetime. The lifetime is typically reached when the water temperature at the production 
well has decreased with 10–20% of the difference between initial and injection temperature. The optimal strategy 
(i.e., lf = lm) in the Whitby network starts deviating from the finer scales at lf = 32 (m), particularly the lifetime is 
reduced by 670 (days). From lf = 64 (m), the deviation becomes more significant, notably a 2,700 (days) differ-
ence in lifetime due to early breakthrough of the cold water. At lf = 128 (m), the response does not resemble the 
finer scales specifically the lifetime is reduced to 500 (days) due to almost instant cold-water breakthrough.

The clean strategy (i.e., lf = 1 and lm = lm) shows an analogous result to the optimal strategy for the small lm. For 
larger lm the result of the clean strategy is significantly closer to the finer scales; particularly, there is no deviation 
in breakthrough times between the scales. This is expected since the fracture network is not changing (i.e., lf = 1 
for all simulations) with increasing lm. Therefore, no changes in connectivity or the path from injector to producer 
occur, which is important in this tight fractured reservoir setting. Meshing artifacts in the clean strategy increase 
the number of control volumes for larger lm, contributing to small changes across the scales (see Table 3). The 
difference between the clean and optimal strategy (i.e., lf = lm) for small lm (≤32) in terms of flow response is 
negligible; however, the performance of the optimal strategy is significantly better.

A more significant deviation in Brejoes temperature profile for the optimal case is observed. This is in line with 
the other observations. This pattern is observed in the angle distribution in the previous section (see Figure 8). 
Furthermore, Brejoes fracture density is larger (i.e., spacing between fractures is shorter), which leads to a more 
diffused and less complex temperature distribution. The large connectivity also means a shorter and highly 
conductive path from injector to producer, resulting in an early cold-water breakthrough.

3.2.2. High-Permeable Matrix (Low-Permeable Fracture)

Fractures are often seen as high-permeable conduits, but there are cases where fractures or other discontinuities 
end up blocking fluid flow (Gale et al., 2004). The test case presented here consists of a single-phase steady-state 
simulation in a reservoir with a high-permeable matrix and low-permeable fractures. A small gap between the 
fractures exists in the middle of the domain (x, y) = (500, 500). Since the gap exists below the meshing resolution 
accuracy, the preprocessing algorithm connects the fractures. In the case of no aperture correction, the flow can 
only go around the fractures. With aperture correction, the preprocessed model correctly represents a similar flow 
pattern as in the high-fidelity model with streamlines passing through the middle of the domain (see Figure 18).

3.2.3. Low Connectivity (Variable Aperture)

The final test case consists of the variable aperture model applied to the Whitby fracture network (as seen in 
Figure 2). Since most of the high-permeable fractures (N-S oriented) are connected through low-permeable frac-
ture (E-W oriented), this variable aperture model results in a low connectivity fracture model. A single-phase 
tracer simulation shows that the aperture correction is able to preserve the low connectivity of the network 
up  to  the numerical accuracy corresponding to the higher numerical dispersion in the coarser model. The early 
breakthrough of the tracer without aperture correction is obvious, according to Figure 19.

3.3. Numerical Performance High Enthalpy

The numerical performance of the two strategies can be found in Tables 3 and 4 for Whitby and Brejoes, respec-
tively. No time step cuts are observed in both strategies for the Whitby simulations. However, several time step 
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cuts were observed in both strategies for the Brejoes simulations. This is reflected in the larger amount of nonlin-
ear and linear iterations. The convergence issues can be explained by the combination of complex two-phase 
physics (steam condensation) and DFM in the case of high-enthalpy two-phase flow. A more sophisticated 
nonlinear strategy can be utilized to limit the time step cuts (Wang & Voskov, 2019), but the main goal of this 
study is to have a fair comparison between the two preprocessing strategies for the conventional nonlinear solver.

It is observed that the optimal strategy shows a better convergence in both networks. A reduction in nonlinear 
iterations of roughly 20% for the coarse models in the Whitby simulations is observed. In the Brejoes simulations, 
this reduction is almost 45%. The total CPU time for the optimal strategy in the Brejoes network increases slightly 
at the coarsest level due to a higher number of control volumes when the coarsest strategy is applied since the 
scale of the cleaning mainly constrains the meshing. For the optimal strategy at the coarsest scale, the simulation 
time is primarily dominated by the linearization step (i.e., construction of the operators for the OBL method) and 
therefore does not reduce below 32 s.

The number of control volumes Nblocks in the clean strategy does not drop below 48–50 thousand for Whitby and 
22–26 thousand for Brejoes. This is because the fracture network, at the preprocessing accuracy of lf = 1, is too 
complex for the meshing software at large lm. The result is a substantial amount of elements with low mesh qual-

Figure 18. Single-phase steady-state simulation of a high-permeable matrix and low-permeable fractures. There is a small gap between the fractures in the high-fidelity 
model allowing for fluid to pass. Not applying any fracture correction blocks the flow, while the aperture correction accurately depicts the high-fidelity behavior.
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ity (see Figure 13) and no further reduction in Nblocks with increasing lm. This 
significantly increases the computational time for the clean strategy when 
compared with the optimal strategy. For example, at lf = lm = 32 the optimal 
strategy only takes 14.6% of the clean strategy simulation time. However, 
this comes at the cost of a less accurate simulation response (see Figure 17).

4. Discussion
The existing preprocessing strategies described in the literature only implic-
itly resolve the fracture segments that intersect at a small angle via node 
merging. We augment this with an extra step where all the low-angle inter-
sections are explicitly resolved and improve the volume distribution, mesh 
quality, and the convergence of subsequent numerical simulation. Further-
more, we presented an aperture correction technique that allows handling 
of realistic aperture distributions and low connected fracture networks. We 
also contribute a comprehensive investigation of the geometry and topology 
changes as a function of discretization accuracy and its effect on the dynamic 
reservoir behavior. Next, we discuss static and dynamic results of our study 
and give our recommendations.

4.1. Topology

The inherent bias of artificial connectivity in the coarser models is evident in the static analysis. Especially the 
topology is sensitive to subtle changes in the fracture network. The preprocessing method does seem to converge 
given that the distance in the ternary topology diagram appears to decrease with decreasing lf (except for two 
jumps in the Brejoes topology data for lf = 1 and lf = 128 (m)).

The large deviation from the raw topology can be explained through several points. Manual interpretation is 
usually made in some software (e.g., QGIS) or on the image directly. Every fracture is interpreted as a line, and 
two points are connected, particularly the beginning-point and end-point of the fracture. Even if the interpreter 
meant for the two fractures to abut against each other, beginning-point or end-point are rarely placed exactly on 
top of the existing line. The computer processing interprets the point as I-node or X-node, while the interpreter 
meant the node to be a Y-node. This can be omitted if some snipping tool during the interpretation is used 
or a semiautomated (Vasuki et al., 2014) or fully automated (Prabhakaran et al., 2019) interpretation method. 
However, this is not always the case as shown for two networks chosen in this study.

The other problem is the scale of the image. The Brejoes data set has a huge resolution (20 mm/pixel; Prabha-
karan et al., 2019). It can be argued that you would roughly need 15–25 pixels to be sure about the interaction of 
two or more fractures due to shading, contrast, and other optical effects in the image. Considering this, it would 
mean that intersection and abutment relationships cannot be interpreted at a scale smaller than 300–500 (mm) 
(for this particular image).

Furthermore, the image shows a 2D representation of the fracture network. In 3D, fractures are represented by planes. 
Any deviation from perfectly vertical planes would increase the chance of nodes classified as I-nodes turning into 
Y-nodes. All of this leads to the argument that the raw network data should not be used in the topological assessment 
of fracture networks. However, a small cleaning should be applied for the analysis to provide meaningful results.

4.2. Fluid Flow

As shown in Figures 14 and 15, the predictions on flow response do not seem to be affected by small details in 
the fracture network. However, they are substantially different after successive coarsening (i.e., increasing lc). 
The main reason for the earlier water breakthrough observed in Figure 17 can be attributed to an increase in 
connectivity of the fracture network (see also Figure 9). Furthermore, the shortest flow path through the fracture 
network from the injector to the producer is significantly reduced in the coarser models; hence, the cold water 
arrives earlier. Finally, since the volume of the fractures is unchanged, even if two fracture segments are merged, 

Figure 19. Single-phase tracer simulation on the Whitby network with the 
variable aperture model depicted in Figure 2. A better match in breakthrough 
times is obtained after using the aperture correction.
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the fluid velocity through a merged fracture is higher for the same injection rate. All of these things affect the time 
the water has to heat up (i.e., recharge) and reduce the breakthrough time of the cold water in the coarser models.

Even without using flow-based upscaling when coarsening the mesh (i.e., increasing lm), the flow response for the 
coarser models remains accurate (up to lm = 32 for the Whitby simulation and up to lm = 16 for Brejoes). This implies 
that for a fraction of the computational time of the high-fidelity model (i.e., 1.3% for Whitby and 4.3% for Brejoes), 
we are still able to obtain a representative flow and heat transfer for this complex physical process. This opens up 
avenues for replacing effective media models in common optimization and uncertainty quantification practices, such 
as Arnold et al. (2016) and Spooner et al. (2019), with more accurate DFM models (de Hoop & Voskov, 2021).

The main idea is that adding a fracture to an already connected network is not necessarily a problem. Connecting 
whole clusters that were not previously connected can pose a significant issue and significantly affects the flow and 
heat transfer in the reservoir. To remedy this, we added a novel aperture correction that penalizes connecting fracture 
segments that do not already share a connection. The tracer simulation applied to the Whitby fracture network with 
variable aperture distribution significantly improves the match between the coarser representation and the high-fidel-
ity model in terms of breakthrough time (see Figure 19). Furthermore, the aperture correction allows us to deal with 
coarsening of sealing fractures that potentially block fluid flow, as observed in the synthetic test case in Figure 18.

4.3. Application and Recommendations

It seems from the study presented in this paper that the flow response is less sensitive to changes in the fracture 
network than initially thought. The orientation of the fractures (i.e., angle distribution) is also less sensitive than 
the topology. This could serve as a recommendation to geologists and modelers  that the scale and complexity 
at which the data is collected and the models are constructed is unnecessarily refined. It would save time and 
improve the ambiguity of our models to set a certain interpretation scale at which you can be certain of the inter-
section and abutment relationships before making the interpretation.

The preprocessing method effectively extracts the backbone of a complex fracture network. Therefore, it can be 
used to extract the main pattern of the network and might be useful when generating training images for algo-
rithms such as Bruna et al. (2019).

5. Conclusion
This study demonstrates a strategy to simplify complex fracture networks in 
terms of flow response based on a robust preprocessing approach using graph 
theory. We show that using raw fracture data for topological analysis and 
dynamic modeling is unwise and that some preprocessing should be applied 
to investigate the patterns that exist in the studied network. Our method 
simplifies the topology of the fracture network by merging fracture nodes 
(i.e., vertices) within a certain radius. Consequently, this amounts to taking 
the union of the incidence matrix's rows of each vertex, thereby preserving 
all the connectivity within the fracture network. Furthermore, it explicitly 
removes problematic fracture intersections that occur at an angle below a 
certain threshold. Finally, our frameworks extends the current preprocess-
ing methods, such as Mustapha and Mustapha (2007) and Karimi-Fard and 
Durlofsky (2016), by taking into consideration an aperture correction when 
vertices are merged to better preserve the original connectivity and handle 
heterogeneous aperture distributions.

Our preprocessing framework can create a fully conformal uniformly distrib-
uted grid for a given realistic fracture network with variable aperture at the 
required level of accuracy. The changes introduced by the method are analyzed 
in terms of geometry (i.e., angle distribution of the fracture network), mesh-
ing results (i.e., volume and quality of the elements), and dynamic response 
of the reservoir when subjected to geothermal high-enthalpy production 

Nblocks Nfracs Nnewton Nlinear TCPU(s)

Clean (lf = 1, lm = 4) 157,105 8,079 6,970 163,388 6,803

Clean (lf = 1, lm = 8) 58,912 4,682 4,947 87,940 1,607

Clean (lf = 1, lm = 16) 30,739 3,035 5,129 80,568 856

Clean (lf = 1, lm = 32) 22,918 2,402 4,784 77,690 766

Clean (lf = 1, lm = 64) 24,955 2,233 5,038 78,795 618

Clean (lf = 1, lm = 128) 26,127 2,211 4,851 75,687 551

Optimal (lf = lm = 4) 150,566 7,852 4,354 108,073 3,909

Optimal (lf = lm = 8) 46,811 4,115 3,308 52,374 564

Optimal (lf = lm = 16) 15,139 2,093 2,979 38,458 167

Optimal (lf = lm = 32) 4,899 967 2,747 27,698 50

Optimal (lf = lm = 64) 1,471 371 2,632 20,254 32

Optimal (lf = lm = 128) 400 122 2,562 14,203 34

Note. Nblocks corresponds to the total number of control volumes, Nfracs to the 
number of fracture control volumes, Nnewt to the number of Newton-iterations, 
Nlin to the number of linear iterations, and TCPU to the total simulation time. 
lf refers to the preprocessing accuracy, and lm refers to the meshing accuracy.

Table 4 
Numerical Performance Brejoes Simulations
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conditions. Results are analyzed for two realistic fracture networks based on outcrop studies, a synthetic case 
with sealing fractures, and a variable aperture model. Topology is more affected by the preprocessing than the 
geometry and flow response in studied networks.

Uncertainty quantification relies on a large number of numerical simulations. The presented method decreases 
the computational complexity of DFM models. Therefore, our approach opens up avenues for using efficient 
DFM models with similar computational complexity as embedded DFM (EDFM) and even Dual-Porosity models 
while accurately capturing the discrete nature of fracture networks for uncertainty quantification and history 
matching purposes. This is especially true for the optimal preprocessing strategy where cleaning and optimizing 
the fracture network, including treatment of intersections, node merging, and straightening, are combined.

The open-source computational framework performing all the preprocessing stages can be found at https://github.
com/MakeLikePaperrr/Fracture-Preprocessing-Code.

Appendix A: Various Algorithms for DFN Preprocessing

Algorithm 1. Construct Graph

   1: V = {}
   2: n = 0
   3: for 𝐴𝐴 (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗) ∈   do
   4:   if (xi, yi)∉V then
   5:     V = V ∪ (xi, yi)
   6:     n + = 1
   7:  
   8:   if (xj, yj)∉V then
9 :     V = V ∪ (xj, yj)
1 0:     n + = 1
1 1: 
1 2: B = zeros(n, m)
1 3: for (xi, yi) ∈ V do
1 4:     𝐴𝐴 ids = find (∀ (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) ∈  (⋅, [1, 2]) ∧ ∀ (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) ∈  (⋅, [3, 4]))

1 5:     B(i, ids) = 1
1 6: 
1 7:     D = diag(B1m × 1)
1 8: A = BB T − D
1 9: L = D − A

Algorithm 2. Partition Segments

   1: 𝐴𝐴 𝐴𝐴new =
∑𝐴𝐴

𝑖𝑖
max (1, round (𝑙𝑙𝑖𝑖∕𝑙𝑙𝑓𝑓 ))

   2: 𝐴𝐴 new = zeros (𝑚𝑚new, 4)

   3: count = 1
   4: for k ∈ Osegm do
   5:   mk = max(1, round(lk/lf))
   6:   ids = [1, …, mk]
   7:   𝐴𝐴 new (count ∶ (count + 𝑚𝑚𝑘𝑘) , 1) =  (𝑘𝑘, 1) + (ids − 1)∕𝑚𝑚𝑘𝑘( (𝑘𝑘, 3) −  (𝑘𝑘, 1))

   8:   𝐴𝐴 new (count ∶ (count + 𝑚𝑚𝑘𝑘) , 2) =  (𝑘𝑘, 2) + (ids − 1)∕𝑚𝑚𝑘𝑘( (𝑘𝑘, 4) −  (𝑘𝑘, 2))

   9:   𝐴𝐴 new (count ∶ (count + 𝑚𝑚𝑘𝑘) , 3) =  (𝑘𝑘, 1) + ids ∕𝑚𝑚𝑘𝑘( (𝑘𝑘, 3) −  (𝑘𝑘, 1))

1 0:   𝐴𝐴 new (count ∶ (count + 𝑚𝑚𝑘𝑘) , 4) =  (𝑘𝑘, 2) + ids ∕𝑚𝑚𝑘𝑘( (𝑘𝑘, 4) −  (𝑘𝑘, 2))

1 1:   count + = mk

1 2: 
1 3: OOsegm, new = [1, …, mnew] //since 𝐴𝐴 new is already ordered now!

https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
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Algorithm 3. Determine Order Vertices

   1: B = B(⋅, Osegm) //order the columns of B
   2: Overtices = zeros(n, 1)
   3: count = 0
   4: for k = 1 to m do
   5:   (i, j) = find(B(⋅, k) == 1)
   6:   if i ∉ Overtices then
   7:     count + = 1
   8:     OOvertices(count) = i
9 :  
1 0:   if j ∉ Overtices then
1 1:     count + = 1
1 2: OOvertices(count) = j
1 3:     
1 4: 𝐴𝐴  =  (𝑂𝑂vertices, ⋅) //sort vertices
1 5: B = B(Overtices, ⋅) //sort rows of incidence matrix accordingly

Algorithm 4. Node Merging

   1: 𝐴𝐴 𝐴𝐴𝑋𝑋 = pdist() //pairwise symmetric n × n distance matrix for each vertex in 𝐴𝐴 

   2: mergelist = zeros(n, 1)
   3: for k = 2 to n do
   4:     𝐴𝐴 idmin = min ({𝑑𝑑𝑘𝑘𝑘𝑘𝑘 ∈ 𝐷𝐷𝑋𝑋 | ∀𝑘𝑘 ∈ ℕ𝑘 𝑘𝑘 𝑖 𝑘𝑘}) //closest vertex already in domain
   5:     if DX(k, idmin) < lf/2 then
   6:     mergelist(k) = idmin

   7:     B(idmin, ⋅) = B(idmin, ⋅) ∪ B(k, ⋅) //record new connections from node merging
   8:     B(k, ⋅) = 0 //remove merged node from graph
   9:     DX(k, ⋅) = ∞ //reset distance from removed node
1 0:     DX(⋅, k) = ∞ //reset distance from removed node
1 1: 
1 2: 𝐴𝐴 mask = {𝑖𝑖 ∈ ℕ | ∀𝑖𝑖 ∉ mergelist, 𝑖𝑖 ≤ 𝑛𝑛}

1 3: 𝐴𝐴  = (mask)

1 4: 𝐴𝐴 𝐴𝐴 = card()

1 5: B = B(mask, ⋅)
1 6: B = B(⋅, 11 × nB > 1) //remove “collapsed” edges
1 7: B = unique(B, ’cols') //remove overlapping edges
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Data Availability Statement
The data and source code are available at https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code.
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