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Sensing the environment is of crucial importance in many different applica-

tions, such as autonomous driving, weather prediction, and hazard prevention

to name a few. To improve the sensing outcome, sensor networks are often

considered because they are capable of observing the environment from dif-

ferent viewpoints. Sensors are generally not cheap though; think for instance,

about radar stations or satellites. As a result, we want to make optimal use

of a limited amount of sensors, and thus sensor placement becomes a critical

problem.

Sensor placement can be considered as an instance of sparse sensing, the

more general field concerned with allocating a limited amount of resources to

tackle a specific statistical inference task [Chepuri and Leus, 2016b]. Besides
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sensor placement, it encompasses applications such as antenna selection and

(non-uniform) sub-Nyquist sampling [Molisch and Win, 2004], [Blu et al., 2008],

[Eldar and Michaeli, 2009], and [Vaidyanathan and Pal, 2011]. The basic idea

of sparse sensing is that there is a large number of potential candidate measure-

ments from which only a limited amount is selected due to cost considerations.

Sparse sensing has been optimized for several different inference tasks, such

as estimation [Krause et al., 2008, Joshi and Boyd, 2009, Ranieri et al., 2014,

Chepuri and Leus, 2015, Liu et al., 2014] and detection [Bajovic et al., 2011],

[Cambanis and Masry, 1983], [Yu and Varshney, 1997], [Coutino et al., 2018a],

[Chepuri and Leus, 2016a], which are the two tasks we will focus on in this

chapter. Different performance measures for these tasks have been considered

ranging from the Cramér-Rao bound or minimum mean square estimation er-

ror, over frame potential, to the log likelihood ratio. Both linear as well as

nonlinear observation models have been considered. Moreover, different solu-

tion approaches have been proposed. The two most popular ones are convex

relaxation and greedy selection methods.

What is not often treated in sensor placement is the fact that the measure-

ments can be conditionally dependent [Liu et al., 2014, Coutino et al., 2018a].

This can for instance occur when the candidate measurements are corrupted

by interference from undesired sources which can be modeled as correlated

noise. This complicates matters significantly and makes the sensor placement

problem for estimation and detection tasks tough to handle. We show in this

chapter how to tackle this scenario for both the convex relaxation and greedy

selection methods. For simplicity of presentation, we only focus on the linear

model in this chapter, but it can be easily extended to nonlinear models as

well. Furthermore, we assume additive Gaussian noise, although that can also
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be relaxed in some cases.

In Section 8.1, we introduce the sensor placement problem for a linear data

model with additive Gaussian noise. As mentioned earlier, we will not only

assume uncorrelated noise, but also handle the correlated case. Furthermore,

the convex relaxation as well as the greedy selection methods will be presented.

Finally, a field estimation and detection example will be introduced that will be

used throughout the chapter for illustrative purposes. Sections 8.2 and 8.3 will

then respectively discuss in detail the estimation and detection problem. We

will introduce the related performance metrics and illustrate how the convex

relaxation and greedy selection methods can be employed for these measures.

The field estimation and detection example allows us to demonstrate the be-

havior of the solutions as well as the related trade-offs.

8.1. Data Model

In this section, we will detail the setup that will be considered throughout

this chapter. We assume that 𝐾 sensors can be distributed over 𝑀 candi-

date positions, and the goal is to place these sensors in some optimal fashion.

The candidate positions can represent the only available sensor positions, e.g.,

rooftops of buildings for a distributed radar application, or they are obtained

by gridding some continuous area. The number of sensors we have available is

generally much smaller than 𝑀, i.e., 𝐾 ≪ 𝑀

The potential measurement 𝑥𝑚 ∈ R that is taken at position 𝑚 = 1, 2, . . . , 𝑀

is assumed to be linearly dependent on some parameter vector 𝜽 ∈ R𝑁 cor-
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rupted by addition noise 𝑛𝑚 ∈ R, i.e.,

𝑥𝑚 = h⊤𝑚𝜽 + 𝑛𝑚, (8.1)

where h𝑚 collects the linear coefficients related to the 𝑚-th measurement.

Stacking the different candidate measurements into x = [𝑥1, . . . , 𝑥𝑀 ]⊤, we can

write

x = H𝜽 + n, (8.2)

where H = [h1, . . . , h𝑀 ]⊤ and n = [𝑛1, . . . , 𝑛𝑀 ]⊤. Throughout, we will assume

that the noise is Gaussian distributed with zero mean, i.e., E{n} = 0, and

covariance matrix Σ, i.e., E{nn⊤} = Σ. So in summary, the data model can be

expressed as x ∼ N(H𝜽 ,Σ).

Note that although such a linear Gaussian model is restrictive, some of the

results in this chapter can be extended to non-linear non-Gaussian models as

well. In the non-linear case, we can view (8.2) as a local linear model around

a specific 𝜽 where H represents the Jacobian matrix of the nonlinear model

in 𝜽. This will generally make H dependent on 𝜽 which will require some

adjustments to the proposed methods. The Gaussianity assumption, on the

other hand, is required for the correlated noise case (non-diagonal Σ), but can

easily be dropped for the uncorrelated noise case (diagonal Σ).

We cannot use all 𝑀 measurements in x since we only have 𝐾 ≪ 𝑀 sensors

available. To select the “best” 𝐾 measurements, we will adopt the selection

vector w ∈ {0, 1}𝑀 whose 𝑚-th entry is one if the position 𝑚 is selected or zero

otherwise, and whose total number of non-zero entries is 𝐾, i.e., ∥w∥0 = 𝐾.
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The selected measurements can then be represented by

y = Φ(w)x = Φ(w)H𝜽 + Φ(w)n, (8.3)

where Φ(w) is the submatrix of the 𝑀 ×𝑀 identity matrix I𝑀 that is obtained

by removing the zero rows from diag(w)I𝑀 . Note thereby that

Φ(w)Φ⊤(w) = I𝐾 , Φ⊤(w)Φ(w) = diag(w). (8.4)

The problem we are tackling in this chapter is how to design the “best” w

under the constraints w ∈ {0, 1}𝑀 and ∥w∥0 = 𝐾. What we mean by “best” is

determined by some inference performance metric 𝑓 : {0, 1}𝑀 → R. Depending

on the inference task, this metric can be the estimation error or miss detection

probability for instance. Hence, the problem we need to solve is

argmin
w∈{0,1}𝑀

𝑓 (w) s.t. ∥w∥0 = 𝐾. (8.5)

This is known as the cardinality constrained (CC) problem.

In some cases, though, we might want to keep 𝐾 as small as possible as

long as we can guarantee a certain inference performance. In that case, we can

formulate a performance constrained (PC) problem as

argmin
w∈{0,1}𝑀

∥w∥0 s.t. 𝑓 (w) ≤ 𝜆, (8.6)

where 𝜆 denotes the considered performance bound. Both problems are equiv-

alent in that for every 𝐾 in (8.5), there exists a related 𝜆 in (8.6).

Solving these problems would require a complex combinatorial search which

quickly becomes intractable. As a result, in this chapter, we will focus on convex
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relaxation and greedy selection approaches. The specific inference tasks we will

aim at are

• Estimation of 𝜽.

• Detection of 𝜽, where 𝜽 can be known or not.

In both cases, we assume the knowledge of H and the noise covariance matrix

Σ. Before we delve into the details of the estimation and detection inference

tasks, we briefly overview the general idea of the convex relaxation and greedy

selection methods.

8.1.1. Solution approaches

A common approach to tackle the CC and PC problems in (8.5) and (8.6) is

adopting convex relaxation. More specifically, the l0-norm will be replaced by

its convex hull, which is given by the l1-norm, whereas the Boolean constraint

is replaced by a box constraint. Assuming further that 𝑓 (·) is a convex func-

tion, potentially obtained after convexifying the desired performance measure,

the CC and PC problems can respectively be relaxed to the following convex

problems

argmin
w∈[0,1]𝑀

𝑓 (w) s.t. ∥w∥1 = 𝐾. (8.7)

and

argmin
w∈[0,1]𝑀

∥w∥1 s.t. 𝑓 (w) ≤ 𝜆. (8.8)

Note that the constraint ∥w∥1 = 𝐾 in (8.7) can be considered convex, since due

to w ∈ [0, 1]𝑀 it can be written as 1⊤w = 1. For the same reason, we can also

replace ∥w∥1 in (8.8) by 1⊤w.

Convex problems have been well-studied, although not all forms are nec-
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essarily easy to solve. Furthermore, it is not always possible to quantify the

suboptimality of the convex relaxation. Specific convex performance measures

𝑓 (·) for the estimation and detection problem will be discussed in later sec-

tions. Note that an approximate Boolean solution for w can be obtained from

the solution of the above problems by means of thresholding or randomiza-

tion [Chepuri and Leus, 2016b].

Another method to handle the CC and PC problems is greedy selection.

The idea behind this approach is rather intuitive and basically selects one

sensor at a time (myopic method), either to add it to or to remove it from

the previously selected sensors. Suppose that X represents the set of currently

active or inactive sensors. Then a greedy approach would iteratively add to X

the sensor that is obtained as

𝑠∗ = argmax
𝑠∉X

𝑓 (X ∪ 𝑠),

where 𝑓 (X) is the set function that correctly translates the performance mea-

sure 𝑓 (w). Note that this translation will depend on the fact whether X repre-

sents the active or inactive set of sensors. The CC problem is now handled by

iterating till we have 𝐾 active sensors, whereas for the PC problem the itera-

tions will stop when the desired performance has been reached. Interestingly, if

𝑓 (X) is submodular, monotone nondecreasing, and normalized (i.e., 𝑓 (∅) = 0),

then the greedy solution is near optimal and approaches the optimal cost with

a factor 1 − 1/𝑒, where 𝑒 is the Euler number [Nemhauser et al., 1978].
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8.1.2. Running example

The running example that we will consider throughout this chapter1 is that

of spatial field estimation/detection. To simplify the presentation, we will con-

sider a one-dimensional spatial field with candidate sensor positions that are

uniformly spaced over the considered area. We further consider a spatially cor-

related field that is non-stationary (i.e., the correlation depends on the sensor

location). More specifically, we assume the spatial correlation matrix of the

field is given by

R =



1 𝛿1 𝛿21 . . . 𝛿𝑀−1
1

𝛿1 1 𝛿2 . . . 𝛿𝑀−2
2

𝛿21 𝛿2 1 . . . 𝛿𝑀−3
3

...
...

...
. . .

...

𝛿𝑀−1
1 𝛿𝑀−2

2 𝛿𝑀−3
3 . . . 1


.

To further simplify the setup and reduce the number of variables, we take

0 < 𝛿1 = 𝛿 < 1 and 𝛿𝑖 = 𝛿𝑖−1− 𝜅, with 0 < 𝜅 < 𝛿/𝑀. This structure will allow us

to analyze how the developed selection methods behave as a function of differ-

ent correlation structures. Note however that we do not assume a stochastic

signal in (8.3), but a deterministic one. That is why we further assume the

observed deterministic field is somehow “smooth” within the class of fields

characterized with correlation matrix R. In other words, we define H as the

matrix that stacks the 𝑁 ≪ 𝑀 unit-norm eigenvectors of R with the largest

eigenvalues, i.e., R = HΛH⊤ +H𝑛Λ𝑛H⊤
𝑛 , with Λ ∈ R𝑁×𝑁 the diagonal matrix of

1Software to reproduce results from the chapter are available at https://github.com/

spchepuri/sensorplacement.git
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Figure 8.1: Illustration of the running example that will be used throughout
this chapter. On the left is a representation of the spatial correlation matrix
R whereas the related measurement matrix H is depicted on the right. The
chosen parameters are 𝑀 = 30, 𝑁 = 3, 𝛿 = 0.9 and 𝜅 = 0.01.

the 𝑁 strongest eigenvalues of R and Λ𝑛 ∈ R(𝑀−𝑁 )×(𝑀−𝑁 ) the diagonal matrix

collecting the remaining eigenvalues. For the specific values of 𝑀 = 30, 𝑁 = 3,

𝛿 = 0.9 and 𝜅 = 0.01, the spatial correlation matrix R and related measurement

matrix H are depicted in Fig. 8.1.

As far as the additive Gaussian noise is concerned, two scenarios will be

studied in this chapter: uncorrelated and correlated noise. In case of uncorre-

lated noise, we simply assume Σ = 𝜎2I. The correlated noise scenario is more

complex. There we only focus on spatially stationary noise but we will assume

a decaying correlation function as well as a constant correlation function. In
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the first case, the noise covariance matrix is given by

Σ = 𝜎2



1 𝛾 𝛾2 . . . 𝛾𝑀−1

𝛾 1 𝛾 . . . 𝛾𝑀−2

𝛾2 𝛾 1 . . . 𝛾𝑀−3

...
...

...
. . .

...

𝛾𝑀−1 𝛾𝑀−2 𝛾𝑀−3 . . . 1


, (8.9)

whereas for the second case, we use

Σ = 𝜎2 [(1 − 𝛾)I + 𝛾11𝑇 ] . (8.10)

In both cases, we take 𝛾 < 1. Clearly, when 𝛾 = 0 we obtain the uncorrelated

noise scenario. Note that in all scenarios the noise variance is given by 𝜎2.

10



8.2. Distributed Estimation

Consider the setting where the fusion center, which gathers a subset of sen-

sor data, performs an estimate of the unknown parameter vector 𝜽. Let us

denote the estimator as 𝜽 (w), where we recall that w is the selection vector.

The performance of such parameter estimation problems is characterized by

the error covariance matrix denoted by E(w) = E{[𝜽−𝜽 (w)] [𝜽−𝜽 (w)]⊤}. Since

𝜽 (w) (and hence E(w)) depends on the subset of measurements acquired via w,

various scalar measures of E(w) are optimized with respect to (w.r.t.) the se-

lection variable w. Next, we discuss some of the popular choices of performance

measures.

8.2.1. Estimation Optimality Criteria

To measure the quality of estimation, the following scalar measures can be

used.

• A-optimality criterion or mean squared error. The mean squared

error in estimating 𝜽 is

𝑓 (w) = E{∥𝜽 − 𝜽 ∥2} = trace(E(w)), (8.11)

which is also the sum of the eigenvalues of E(w).

• D-optimality criterion or volume of the confidence ellipsoid. The

𝜂-confidence ellipsoid is the minimum volume ellipsoid that contains the

estimation error 𝜽−𝜽 with probability 𝜂. It can be shown to be proportional
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to the determinant of E:

𝑓 (w) = log det(E(w)). (8.12)

• E-optimality criterion or worst-case error variance. Another criterion

related to the volume of the confidence ellipsoid is the worst-case variance

of the estimation error:

𝑓 (w) = max
∥u∥=1

u⊤E(w)u = 𝜆max(E(w)), (8.13)

where 𝜆max(·) denotes the maximum eigenvalue of its argument.

• Worst-case coordinate error variance. The worst-case coordinate error

variance is the largest diagonal entry of the error covariance matrix E(w),

i.e.,

𝑓 (w) = max
1≤𝑖≤𝑀

[E(w)]𝑖𝑖, (8.14)

where [E(w)]𝑖𝑖 denotes the 𝑖-th diagonal entry of E(w).

Although there is no general answer to how one performance measure com-

pares with another, all the above scalar measures are equally reasonable be-

cause they quantify the estimation quality.

8.2.2. Uncorrelated Observations

Suppose the noise covariance matrix is diagonal, i.e., Σ = diag(𝜎2
1 , · · · , 𝜎2

𝑀
)

with 𝜎2
1 = · · · = 𝜎2

𝑀
= 𝜎2 being a special case. Since the parameter 𝜽 is

assumed deterministic, we can then focus on the maximum likelihood (ML)
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estimate, which is given by

𝜽 =

(
𝑀∑︁
𝑚=1

𝑤𝑚𝜎
−2
𝑚 h𝑚h

⊤
𝑚

)−1 𝑀∑︁
𝑚=1

𝑤𝑚𝑥𝑚h𝑚.

The estimation error 𝜽 − 𝜽 then has zero mean, i.e., the estimate is unbiased,

and covariance matrix

E(w) =
(
𝑀∑︁
𝑚=1

𝑤𝑚𝜎
−2
𝑚 h𝑚h

⊤
𝑚

)−1
. (8.15)

We can observe the explicit role of w in (8.15) for selecting the measure-

ments that improve the conditioning of E(w).

Now we describe the sparse sampler design problem for the setting with

uncorrelated observations using the above described scalar measures of E(w)

and the CC problem formulation (8.7).

For the D-optimality criterion, (8.7) specializes to

argmax
w∈[0,1]𝑀

log det
𝑀∑︁
𝑚=1

𝑤𝑚𝜎
−2
𝑚 h𝑚h

⊤
𝑚 (8.16)

subject to 1⊤w = 𝐾,

which is a convex problem as the objective is a concave function in w, the sum

constraint is linear, and the 𝑤𝑚 variables are restricted to the interval [0, 1].

This problem can be solved using any one of the standard convex solvers.

Similarly, we obtain convex problems for the A-optimality and E-optimality

criteria as

argmin
w∈[0,1]𝑀

trace

(
𝑀∑︁
𝑚=1

𝑤𝑚𝜎
−2
𝑚 h𝑚h

⊤
𝑚

)−1
(8.17)
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subject to 1⊤w = 𝐾,

and

argmax
w∈[0,1]𝑀

𝜆min

(
𝑀∑︁
𝑚=1

𝑤𝑚𝜎
−2
𝑚 h𝑚h

⊤
𝑚

)
(8.18)

subject to 1⊤w = 𝐾,

respectively. Both these problem formulations can be transformed into their

epigraph form, leading to a semi-definite program (SDP).

Also minimizing the objective function related to the worst-case coordinate

error variance in (8.14) can be expressed in the epigraph form leading to the

following SDP:

minimize
𝑡 ,w∈[0,1]𝑀

𝑡 (8.19)

subject to 1⊤w = 𝐾,
𝑡 e⊤

𝑗

e 𝑗
𝑀∑
𝑚=1

𝑤𝑚𝜎
−2
𝑚 h𝑚h

⊤
𝑚

 ⪰ 0, 𝑗 = 0, 1, . . . , 𝑀,

where e 𝑗 is the 𝑗-th column of the identity matrix of size 𝑀.

Next, we discuss numerical experiments to illustrate the sensor placements

obtained by solving the above convex programs. In Figure 8.2, we illustrate the

sparse sampler obtained by optimizing the D-optimality criterion (i.e., max-

imizing the logdet function), the A-optimality criterion (i.e., minimizing the

trace function) and the E-optimality criterion (i.e., maximizing the minimum

eigenvalue function) while selecting 𝐾 = 6 sensors in the CC problem setting.

The system matrix is generated as explained in Section 8.1.2 with 𝑀 = 30,

14



Figure 8.2: Comparison of the non-Boolean (top row) selection obtained by
optimizing the D-optimality (left), A-optimality (middle) and E-optimality
(right) criterion while selecting 𝐾 = 6 measurements for the setting in our run-
ning example. The recovered Boolean solution after rounding (bottom row)
from D-optimality (left), A-optimality (middle), and E-optimality (right) cri-
teria.

𝑁 = 3, 𝛿 = 0.9, and 𝜅 = 0.01. The noise variance is selected as 𝜎2 = 1. We ob-

serve that all three methods basically select three groups of sensors. There are

three groups because we have 𝑁 = 3 unknowns. If one measurement per group

would be considered, a well-conditoned H matrix is obtained. The clustering

into groups further boosts the energy of the measurements.

The D-optimality cost function can be shown to be a submodular function

in the selection variables [Shamaiah et al., 2010]. This means that, as discussed

earlier, we can greedily maximize the logdet function. In Figure 8.3, we can see

that the selection pattern obtained by greedily maximizing the logdet function

is similar as the rounded solutions shown in Figure 8.2.

Although it is difficult to characterize the optimality of the convex relax-

ation, it is optimal for the following special case. When the parameter to be
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Figure 8.3: Selection obtained by greedily optimizing the D-optimality criterion
while selecting 𝐾 = 6 measurements for the setting in our running example.

estimated is a scalar 𝜃 with 𝑁 = 1, the error covariance is also a scalar and

readily given by 𝐸 (w) = ∑𝑁
𝑛=1 𝑤𝑚(ℎ2𝑚/𝜎2

𝑚). In this case, (8.5) can be optimally

solved without requiring any convex relaxation. Minimizing the cost over the

Boolean variable can then be optimally solved by rank ordering the signal-

to-noise ratios ℎ2𝑚/𝜎2
𝑚 associated with each sensor. Specifically, the solution is

obtained by setting the entries of 𝑤𝑚 corresponding to the maximum entries

of the set {ℎ2𝑚/𝜎2
𝑚, 1 ≤ 𝑚 ≤ 𝑀} to 1, and the remaining ones to zero, untill

𝐾 sensors are selected (CC problem) or the performance bound is met (PC

problem).

8.2.3. Correlated Observations

Now we discuss the general case with Σ being a non-diagonal matrix. The ML

error covariance matrix can then be expressed as

E(w) =
(
H⊤𝚽⊤(w)

(
𝚽(w)Σ𝚽⊤(w)

)−1𝚽(w)H
)−1

. (8.20)
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The error covariance matrix is now clearly a more intricate function of w

compared to (8.15).

In what follows, we express the earlier discussed scalar functions of E(w)

in a simpler form amenable to convex optimization. Firstly, we write the noise

covariance matrix 𝚺 as

𝚺 = 𝛼𝑰𝑀 + S, (8.21)

where a nonzero 𝛼 ∈ R is chosen such that S ∈ R𝑀×𝑀 is invertible and well

conditioned. Using (8.21) in (8.20), we obtain

E(w) = H⊤𝚽⊤(w)
(
𝛼𝑰𝐾 +𝚽(w)S𝚽⊤(w)

)−1𝚽(w)H.

Since 𝚽⊤(w)𝚽(w) = diag(w), we have

𝚽⊤(w)
(
𝑎𝑰𝐾 +𝚽(w)S𝚽⊤(w)

)−1𝚽(w) = S−1 − S−1 [
S−1 + 𝛼−1diag(w)

]−1
S−1.

(8.22)

This is due to the matrix inversion lemma

C(B−1+C⊤A−1C)−1C⊤ = A −A(A + CBC⊤)−1A,

with C = 𝚽⊤(w), B−1 = 𝛼𝑰𝐾 , and A = S−1. Therefore, we have

E(w) = H⊤ [S−1 − S−1 [
S−1 + 𝛼−1diag(w)

]−1
S−1]H. (8.23)

= H⊤S−1H −H⊤S−1 [
S−1 + 𝛼−1diag(w)

]−1
S−1H.

Using this simpler form, for instance, the E-optimality constraint can be

expressed as a linear matrix inequality in w, i.e., 𝜆min(E(w)) ≥ 𝜆 can be ex-
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Figure 8.4: (Left) Sensor placements obtained from (8.25) for different 𝐾 and
correlation coefficients 𝛾 when the noise has a spatially constant correlation
function as in (8.10). (Right) Sensor placements for different 𝛾 for 𝐾 = 10.

pressed as 
S−1 + 𝛼−1diag(w) S−1H

H⊤S−1 H⊤S−1H − 𝜆𝑰𝑁

 ⪰ 0𝑀+𝑁 (8.24)

with S−1+𝛼−1diag(w) being positive definite, which determines the choices of 𝛼.

Thus, in the case of correlated observations and focusing on the PC problem,

the sparse sampler can be designed by solving the following convex problem:

argmin
w∈[0,1]𝑀

1⊤w (8.25)

subject to


S−1 + 𝛼−1diag(w) S−1H

H⊤S−1 H⊤S−1H − 𝜆𝑰𝑁

 ⪰ 0𝑀+𝑁 .

This convex program can be solved using any off-the-shelf convex solvers.

We next illustrate sensor placements obtained for the two noise correlation

matrices that were introduced in Section 8.1.2 [cf. (8.9) and (8.10)]. We use the

same system matrix as in the uncorrelated case with 𝑀 = 30, 𝑁 = 3, 𝛿 = 0.9,
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Figure 8.5: (Left) Sensor placements obtained from (8.25) for different 𝐾 and
correlation coefficients 𝛾 when the noise has a spatially decaying correlation
function as in (8.9). (Right) Sensor placements for different 𝛾 for 𝐾 = 10.

𝜅 = 0.01, and 𝜎2 = 1. We set 𝛼 = 10−4. While the sensor placements obtained

in the uncorrelated case led to a well-conditioned system matrix, the sensor

placement design with correlated observations aims to improve the conditioning

taking into account the correlation across observations as measured by the error

covariance matrix (8.20).

For the spatially constant correlation function, where all observations are

equally correlated with the correlation coefficient 𝛾, we can see in Figure 8.4

that as 𝛾 increases, the D-optimality cost increases for a given number of

sensors. This, in other words, means that if there is more correlation across

sensors, fewer observations lead to better estimation quality. On the other

hand, with the decaying correlation function (8.9), the effect is the opposite as

seen in Figure 8.5 with a more clustered placement.
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8.3. Distributed Detection

In this section, we focus on the binary detection problem related to the model (8.2).

More specifically, the two hypotheses (states) we consider are:

H0 : x = n, (8.26)

H1 : x = H𝜽 + n, (8.27)

where we will distinguish between the cases where 𝜽 is known or not.

Irrespective of the scenario, we can relate the measurements x to the model

H0 : x ∼ 𝑝(x|H0), (8.28)

H1 : x ∼ 𝑝(x|H1), (8.29)

where 𝑝(x|H𝑖) for 𝑖 = 0, 1 denotes the probability density function (pdf) of x,

conditioned on the state H𝑖. As we discussed in Section 8.1, we assume that

𝑝(x|H0) = N(0,Σ) while 𝑝(x|H1) = N(H𝜽 ,Σ), although we will often use the

more general notation throughout this section.

The goal now is to solve the CC and/or PC problem in (8.5) and (8.6),

respectively, for some specific detection performance measure 𝑓 (w). We next

discuss some typical detection performance measures, which we approximate by

more manageable functions in the next section. If the prior hypothesis probabil-

ities are known, i.e., in a Bayesian setting, the optimal detector minimizes the

probability of error, 𝑃e = 𝑃(H0 |H1)𝑃(H1) + 𝑃(H1 |H0)𝑃(H0), where 𝑃(H𝑖 |H 𝑗)

is the conditional probability of deciding H𝑖 when H 𝑗 is true and 𝑃(H𝑖) is the

prior probability of the 𝑖th hypothesis. When the prior hypothesis probabilities

are unknown, i.e., in a Neyman-Pearson setting, the optimal detector aims to
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minimize the probability of miss detection (type II error), 𝑃m = 𝑃(H0 |H1), for

a fixed probability of false alarm (type I error), 𝑃fa = 𝑃(H1 |H0). The sensor se-

lection problems for detection can then be expressed as in (8.5) and (8.6) with

𝑓 (w) replaced by either 𝑃e(w) (Bayesian setting) or 𝑃m(w) (Neyman-Pearson

setting), where in the latter case we implicitly assume that 𝑃fa(w) is fixed.

Note that 𝑃e(w), 𝑃m(w) and 𝑃fa(w) denote the error probabilities due to the

measurement selection defined by w.

In general, the above performance measures are not easy to optimize nu-

merically. As a result, in the following, we present alternative measures for

both known and unknown 𝜽 cases that can be used as direct surrogates to

solve the optimization problems.

8.3.1. Known 𝜽 Parameter

Even when 𝜽 is known, the error probabilities 𝑃e and 𝑃m (for a fixed 𝑃fa) might

not admit a known closed-form expression or their expressions might not be

favorable for numerical optimization. We therefore present several weaker and

simpler substitutes, which can be optimized instead of the error probabilities.

These substitutes are based on the notion of distance (closeness or divergence)

between the two distributions of the observations under test. They lead to

tractable, if not always optimal (in terms of the error probabilities) design

procedures for sparse sampling. Nevertheless, optimizing these distance mea-

sures improves the performance of any practical system.
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8.3.1.1. Optimality Criteria

Let the likelihood ratio of the two hypotheses under test be defined as

𝑙 (y) = 𝑝(y|H1)
𝑝(y|H0)

. (8.30)

In what follows, we consider a number of distance measures that belong to

the general class of Ali-Silvey distances [Ali and Silvey, 1966], which are of the

form

𝜑
(
E |H𝑖

{𝜙[𝑙 (y)]}
)
, (8.31)

where 𝜑(·) is an increasing real-valued function, 𝜙[·] is a continuous convex

function on (0,∞), and E |H𝑖
{𝜙[𝑙 (y)]} indicates that 𝜙[𝑙 (y)] is averaged under

the pdf 𝑝(y|H𝑖).

Known Prior Probabilities. Under the assumption of known prior distri-

butions for both hypotheses, a Bayesian detector can be devised. This kind

of detector minimizes, and makes a decision based on comparing the optimal

statistic to a threshold, i.e.,

log 𝑙 (y) = log
𝑝(y|H1)
𝑝(y|H0)

H1

≷
H0

log
𝑃(H0)
𝑃(H1)

. (8.32)

In the Bayesian setting, our goal is to choose the best subset of measure-

ments that results in a prescribed Bayesian probability of error. The best

achievable exponent in the Bayesian probability of error is parameterized by

the Chernoff information (sometimes also referred to as the Chernoff dis-

tance) [Cover and Thomas, 1991], and it is given by

𝐶 (H1 | |H0) = − log min
0≤𝑛≤1

E |H0{[𝑙 (y)]𝑛}. (8.33)
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Due to the involved minimization over 𝑛, the Chernoff information in (8.33)

is difficult to optimize over. Therefore, we use a special case of the Chernoff

information called the Bhattacharyya distance as the optimization criterion,

where the Bhattacharyya distance is obtained by fixing 𝑛 = 0.5 in (8.33). The

Bhattacharyya distance is given by

B(H1 | |H0) = − log 𝜌, (8.34)

where the Bhattacharyya coefficient 𝜌 is

𝜌 = E |H0{
√︁
𝑙 (y)}. (8.35)

It is easy to verify from (8.35) that the Bhattacharya distance is symmetric,

which means B(H1 | |H0) = B(H0 | |H1). More importantly, the upper and lower

bounds for the Bayesian probability of error can be obtained using the Bhat-

tacharyya coefficient. The bounds are given as follows [Kadota and Shepp, 1967]

1

2
min

(
𝑃(H0), 𝑃(H1)

)
𝜌2 ≤ 𝑃𝑒 ≤

√︁
𝑃(H0)𝑃(H1)𝜌. (8.36)

Therefore, in place of the Bayesian error probability, we could maximize the

Bhattacharyya distance. Furthermore, when
∫
[𝑝(y|H1)]𝑛 [𝑝(y|H0)]1−𝑛𝑑y is

symmetric in 𝑛 and the observations are independent and identically dis-

tributed, the Bhattacharyya distance is exponentially the best [Kailath, 1967],

i.e.,

𝑃𝑒
as.
= exp

(
− B(H1 | |H0)

)
for 𝑃𝑒 → 0. (8.37)
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A similar bound as that in (8.36) can be obtained linking the Bhattacharyya

distance and the more general Bayes risk

R =

1∑︁
𝑖=0

1∑︁
𝑗=0

𝐶𝑖 𝑗Pr(H𝑖 |H 𝑗)Pr(Hj). (8.38)

The bound is given by [Kobayashi and Thomas, 1967]

R0 + R2𝜌
2 ≤ R ≤ R0 +

√︁
R1𝜌, (8.39)

for constants R0,R1,R2 dependent on the costs 𝐶𝑖 𝑗 and the prior probabilities

𝑃(H𝑖), which further motivates the choice of the Bhachattaryya distance for

selecting measurements in the Bayesian setting.

Note that under the independence assumption of the measurements, the

likelihood 𝑙 (y) can be factorized as the product of the local measurement like-

lihoods 𝑙𝑚(𝑥) := 𝑝𝑚(𝑥 |H1)/𝑝𝑚(𝑥 |H0), i.e.,

𝑙 (y) = 𝑝(y|H1)
𝑝(y|H0)

=

𝑀∏
𝑚=1

[𝑙𝑚(𝑥)]𝑤𝑚 , (8.40)

which implies linearity in the selection variables of the Bhattacharyya dis-

tance [Chepuri and Leus, 2016b], i.e.,

B(H1 | |H0) =
𝑀∑︁
𝑚=1

𝑤𝑚B𝑚(H1 | |H0), (8.41)

where B𝑚(H1 | |H0) := − logE |H0{
√︁
𝑙𝑚(𝑥)} is the 𝑚th local Bhattacharya dis-

tance.

While the linearity of (8.41) eases the optimization over w, in general,

the independence on measurements of the Bhattacharya distance allows for an
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offline design of the selection variable.

Unknown Prior Probabilities. In the case that prior probabilities are un-

known, we typically design detectors based on the Neyman-Pearson approach.

In this setting, one of the error probabilities is considered fixed, e.g., 𝑃fa, and

the other error probability 𝑃m is minimized. When this procedure is followed,

the decision is again based upon the log-likelihood ratio test

log 𝑙 (y) = log
𝑝(y|H1)
𝑝(y|H0)

H1

≷
H0

𝛾, (8.42)

where now the threshold 𝛾 is obtained by fixing 𝑃fa.

For a Neyman-Pearson problem, it is known that the best achievable error

exponent in the probability of error, e.g., in 𝑃m, is given by the relative entropy

or Kullback-Leibler (KL) divergence

log 𝑃m
as.
= −K(H1 |H0) for 𝑃m → 0. (8.43)

where the Kullback-Leibler divergence is defined as

K(H1 |H0) := E |H1{log 𝑙 (y)}. (8.44)

These properties allow to construct an upper and lower bound for 𝑃m, for 𝑃fa

values of practical interest, i.e., 𝑃fa ≈ 0 ([Chepuri and Leus, 2016b]). That is,

exp(−K(H ||H0)) ≤ 𝑃m ≤ 1

1 + (K (H1 | |H0 )−log 𝛾)2
𝑣2

, (8.45)

where 𝑣2 is the variance of the log-likehood ratio and 𝛾 is the threshold for a

target 𝑃fa.
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Similarly to the Bhattacharyya distance, when the measurements are con-

ditional independent on the hyphotesis H , the KL divergence is linear in w

K(H1 | |H0) =
𝑀∑︁
𝑚=1

𝑤𝑚K𝑚(H1 | |H0), (8.46)

where K𝑚(H1 | |H0) := E |H1{log 𝑙𝑚(𝑥)} is the 𝑚th local KL divergence.

Note that due to the asymmetry of the KL divergence, it cannot be con-

sidered a proper distance. However, this property can be used if instead of

minimizing the 𝑃m for a given 𝑃fa we want to minimize a given 𝑃fa for a given

𝑃m. To do so, we only need to interchange H1 and H0 in the previous expres-

sions. When the symmetry of the metric is of importance, instead of the KL

divergence, its symmetric version, the J-divergence can be employed:

D(H1 | |H0) := K(H1 | |H0) + K(H0 | |H1). (8.47)

As it is composed by two KL-divergence terms, this distance is also linear in

w and can be used to find an upper and lower bound for 𝑃e = 0.5(𝑃fa + 𝑃m)

for general distributions. For arbitrary 𝑃e, the upper bound is only possible to

obtain when the observations are Gaussian [Kadota and Shepp, 1967].

Under the assumption of Gaussian observations, the discussed metrics be-

tween the different hypotheses under test are shown in Table 8.1. Here, 𝝁𝑖 and

Σ𝑖 denote the mean vector and the covariance matrix of the 𝑖th distribution,

respectively.

8.3.1.2. Sparse Sampler Design

Using the discussed surrogate measures as 𝑓 (w), a new formulation of the

sparse sensing problems (8.5) and (8.6) can be stated. In what follows, we
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Table 8.1: Summary of metrics for Gaussian probability distributions.

Metric Expression Setting

Bhattacharyya

B(H1∥H0) ≔ 1
8 (𝝁1 − 𝝁0)𝑇Σ−1(𝝁1 − 𝝁0) + 1

2 log

(
det(Σ)√

det(Σ1 ) det(Σ0 )

)
, Σ = 0.5(Σ1 + Σ0) (8.51) Bayesian

Kullback-Leibler

K(H1∥H0) ≔ 1
2

(
tr

(
Σ−1
0 Σ1

)
+

(
𝝁1 − 𝝁0

)𝑇
Σ−1
0

(
𝝁1 − 𝝁0

)
− 𝑁 + log

(
det(Σ0)

)
− log

(
det(Σ1)

) )
(8.52) Neyman-Pearson

J-Divergence

D(H0∥H1) ≔ K(H1∥H0) + K(H0∥H1) (8.53) Neyman-Pearson

present different approaches for designing sparse samplers for detection, giving

special attention to the Gaussian case for correlated observations.

Conditionally Independent Observations. As discussed before, when the

observations are considered to be conditionally independent, the three dis-

cussed metrics are linear in w. That is, if we collected the local distances/di-

vergences in a vector d ∈ R𝑀 , the CC and PC problems respectively simplify

to

argmax
w∈{0,1}𝑀

d⊤w s.t. ∥w∥0 = 𝐾, (8.54)

argmin
w∈{0,1}𝑀

∥w∥0 s.t. d⊤w ≥ 𝜆. (8.55)

Due to the linearity of the metric, it can be shown that for both problems a

greedy strategy finds the optimal solution. More specifically, the largest entries

in d are selected till we have 𝐾 sensors (CC problem) or the desired performance

has been reached (PC problem). As a result, the proposed selection mechanism

is very attractive as its complexity is mainly that of sorting a list. An example

of the performance, in terms of probability of error, of the selection for a case

where Σ = I and 𝜽 = 1 with prior probabilities 𝑃(H0) = 0.3 and 𝑃(H1) = 0.7 is

shown in Figure 8.6.
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Figure 8.6: Performance of the optimal selection with conditionally indepen-
dent observations in the Bayesian setting. Here, Σ = I, 𝜽 = 1 and 𝑃(H0) = 0.3
and 𝑃(H1) = 0.7.

As we will see next, for dependent observations, in general no simple mech-

anism exists to obtain optimal selections. However, similar to the methods

developed for estimation, we discuss alternatives leveraging the convex and

submodular machinery for optimizing the introduced metrics.

Dependent Observations. Although the conditional independence assump-

tion is valid in circumstances where the noise is caused solely by the measure-

ment acquisition, when sensors experience external noise sources or if the signal

itself is stochastic in nature the independence assumption might not hold any-

more. As a result, the additive property of the metrics is not valid anymore.

Thus, computing the optimal sparse sampler under dependent observations

requires considering the non-linear (and possibly non-convex) metrics. So, in

general, we will have to solve the sparse sampler design problem [cf. (8.5)-(8.6)]
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using a global optimization technique [Horst and Pardalos, 2013].

Despite that there might not be a general recipe to solve problems (8.5)

and (8.6) for arbitrary measurement distributions, in the particular case of

correlated Gaussian observations, the presented metrics allow for a selection

mechanism based on convex and submodular optimization that enables an

efficient offline sampler design.

When the two distributions only differ by their means as in our binary

hypothesis problem formulation [cf. (8.26)-(8.27)], from Table 8.1 it is seen

that all metrics (upto a scale factor) coincide; that is

B(H1 | |H0) ∝ K(H1 | |H0) ∝ D(H1 | |H0) ∝ (𝝁1 − 𝝁0)⊤Σ−1(𝝁1 − 𝝁0), (8.56)

which can be interpreted as a measure of the signal-to-noise ratio, effectively

defining the detection performance. By considering the selection matrix and

defining m := 𝝁1 − 𝝁0, we can consider the quantity

𝑠(w) := m⊤Φ⊤(w)
(
Φ(w)ΣΦ⊤(w)

)−1
Φ(w)m (8.57)

as our performance metric and solve, for instance, the PC problem

argmin
𝑤∈{0,1}𝑀

∥w∥0 s.t 𝑠(w) ≥ 𝜆. (8.58)

Although the above problem is still hard to solve, we can consider the following

convex relaxation

argmin
w∈[0,1]𝑀

1⊤w (8.59)
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s.t


S−1 + 𝛼−1diag(w) S−1m

m⊤S−1 𝜆′

 ⪰ 0,

where 𝜆′ := 𝜆 − m⊤S−1m. The linear matrix inequality (LMI) is derived in a

similar way as was done for estimation in correlated noise, i.e., by decomposing

the covariance matrix Σ as Σ = 𝛼I𝑀 + S with 𝛼 ∈ R chosen such that S is

invertible and well conditioned, and by using the equivalence of the inequality

m⊤S−1 [S−1 + 𝛼−1diag(w)]−1S−1m ≤ 𝜆′ (8.60)

with the LMI in (8.59). Note that (8.60) is derived from the constraint in (8.58)

using the matrix inversion lemma and the properties of the selection matrix.

Analogously, the CC problem can be formulated using the same LMI as

argmin
w∈[0,1]𝑀 ,𝑡

𝑡 (8.61)

s.t 1⊤w = 𝐾,
S−1 + 𝛼−1diag(w) S−1m

m⊤S−1 𝑡

 ⪰ 0,

with an auxiliary variable 𝑡 that has been used to formulate the epigraph form

of a problem using the left hand side of (8.60) as cost function.

As the problems (8.59) and (8.61) are convex, they can be solved efficiently

using any off-the-shelf convex optimization method. Although the resulting

solution is not necessarily binary, procedures such as randomized rounding can

be employed to recover a feasible selection vector with good performance from

the continuous solution. Although the above convex relaxations provide a way

to tackle the sparse sampler design for unequal means, greedy methods can still
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Figure 8.7: Comparison of the selection of the convex (left) and submodular
(right) optimization approaches when selecting 𝐾 = 6 measurements consider-
ing the setting of our running example under equi-correlated noise [cf. (8.10)]
with 𝛾 = 0.5. In dashed lines the normalized mean is shown for illustration.
Here, 𝜽 = 1.

be employed in several instances while obtaining a comparable or even better

detection performance. For example, as suggested in [Coutino et al., 2018b],

a greedy procedure that constructs a solution by greedily selecting the best

solution of the original cost function 𝑠(w) and the surrogate

𝑠′(w) :=


0 if w = 0

log det𝑀 (w) otherwise

(8.62)

where 𝑀 (w) denotes the matrix in the left hand side of the LMI in (8.59)

and (8.61) can be considered. As the cost function (8.62) is submodular, its

greedy optimization achieves provable near-optimality guarantees. Further, be-

cause at every step it can be efficiently computed, i.e., a determinant update,

this mechanism for sparse sampler design can be employed when solving the

semidefinite program in (8.59) or (8.61) is not practically feasible.

An illustration of the different selections made by the convex and greedy
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Figure 8.8: Comparison of the selection of the convex and submodular opti-
mization approaches when selecting different number of measurements consid-
ering spatially decaying [left; cf. (8.9)] and spatially constant [right; cf. (8.10)]
correlated noise. In dashed-crossed lines the performance of greedily optimiz-
ing the SNR function is shown. Here, 𝜽 = 1 and 𝛾 = 0.5 for both types of noise.

selection approaches is shown in Fig. 8.7. In this example, we consider again

𝜽 = 1 and ask the methods to select a set of cardinality 𝐾 = 6 when the noise

is equi-correlated with parameter 𝛾 = 0.5 [cf. (8.10)]. We further take 𝜎2 = 1.

As the convex solution not necessarily provides an integer solution, here, we

have selected the 𝐾 entries of w with the highest value. To illustrate the pos-

sible impact of the mean of different measurements, the means normalized

with respect to the maximum are also shown. Finally, a complete compari-

son for our running example, under spatially decaying or spatially constant

correlated noise, is shown in Fig. 8.8. Here, we compare the methods under

the same setting across different selection cardinalities 𝐾 and set 𝛾 = 0.5 and

𝜎2 = 1 for both cases. In addition, for reference, we also include the perfor-

mance of performing greedy optimization directly on the SNR function. Note

that while the three methods achieve similar performance, the greedy methods

are cheap alternatives to convex optimization which in several instances out-

performs the latter even if the function is not submodular, i.e., for the Greedy
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Figure 8.9: (Left) Sensor selection of the submodular strategy for different
numbers of sensors 𝐾 and correlation coefficients 𝛾 when the noise correlation
is giving by the spatially decaying correlation in (8.9). (Right) Selected sensors
for different 𝛾 for 𝐾 = 5.

SNR method. However, it is known that in certain instances this might not

be the case as greedy optimization on non-submodular functions can fail, see,

e.g., [Coutino et al., 2018b].

To illustrate the effect of the correlation pattern and strength, we consider

the sensor selection problem when the noise correlation is given by respectively

(8.9) and (8.10) when using the submodular selection strategy.

The result of the selection for a spatially decaying correlation function is

shown in Fig. 8.9. While typically for estimation tasks the strategy selects

sensors that lead to a well-conditioned measurement matrix, for detection the

focus lays mostly on selecting measurements with high signal-to-noise ratio.

This introduces a natural trade off between correlation and energy on the

measurements. For instance, in the case of a spatially decaying noise correlation

matrix, sensors seem to spread more as the correlation coefficient increases.

As a result, more sensors are needed to reach the same performance as the

correlation grows.
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Figure 8.10: (Left) Sensor selection of the submodular strategy for different
numbers of sensors 𝐾 and correlation coefficients 𝛾 when the noise correlation
is giving by the spatially constant correlation in (8.10). (Right) Selected sensors
for different 𝛾 for 𝐾 = 5.

This trade off becomes less apparent when an equi-correlated noise matrix

is considered. In this setting, there is no need for the sensors to have a particular

arrangement to leverage correlation. This naturally leads to clear clusters based

on the signal-to-noise ratio. Also, it allows for a reduced number of required

sensors when the correlation coefficient increases. These effects are illustrated

in Fig. 8.10.

8.3.2. Unknown 𝜽 Parameters

In many practical detection problems, complete knowledge of the signal to

detect is not available. For example, only knowledge of the subspace described

by our matrix H might be known but the precise values of 𝜽 not. This situation

can arise in direction of arrival estimation with prior knowledge of the angular

sector where the signal might arrive or in the communications domain where

user codes are known but not whether they are active or not.
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Optimality Criteria. To tackle the design of sparse samplers for this setting,

let us recall our binary hypothesis test problem

H0 : x = n, (8.63)

H1 : x = H𝜽 + n. (8.64)

while keeping in mind that in this setting 𝜽 is an unknown parameter.

As 𝜽 is unknown, for addressing the detection problem, we need to make

use of the generalized likelihood ratio test (GRLT) which decides H1 if

𝐿𝐺 (x) =
𝑝(x; 𝜽1)
𝑝(x; 𝜽0)

> 𝛾 (8.65)

where 𝜽 𝑖 is the ML estimate of 𝜽 under H𝑖. In our particular case, these esti-

mates are given, respectively, by

𝜽0 := 0, (8.66)

𝜽1 =
(
H⊤Φ⊤(w)

(
Φ(w)ΣΦ⊤(w)

)−1
Φ(w)H

)−1
×H⊤Φ⊤(w)

(
Φ(w)ΣΦ⊤(w)

)−1
Φ(w)x, (8.67)

where to compute the ML estimate under H1 prewhitening after sampling has

been performed. In this case, it can be shown that the logarithm of the GRLT

is distributed as [Kay, 2009]

2 ln 𝐿𝐺 (x) ∼


𝜒2
𝑁

under H0,

𝜒2
𝑁
(𝜆(w; 𝜽)) under H1,

(8.68)
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where 𝑁 is the dimensionality of 𝜽 and

𝜆(w; 𝜽) = 𝜽⊤H⊤Φ⊤(w)
(
Φ(w)ΣΦ⊤(w)

)−1
Φ(w)H𝜽 (8.69)

is the non-centrality parameter of the chi-squared distribution under H1. This

leads to a detector performance defined by

𝑃fa = 𝑄𝜒2
𝑁
(𝛾′), (8.70)

𝑃d = 𝑄𝜒2
𝑁
(𝜆(w;𝜽 ) ) (𝛾′), (8.71)

where 𝛾′ is the modified threshold for the test in (8.68).

Based on this performance metric, we can design a sparse sampler which

maximizes 𝑃d for a fixed 𝑃fa. This is achieved by noticing that the 𝑃d is a mono-

tone function of 𝜆(w; 𝜽). Therefore, by maximizing the non-centrality parame-

ter (8.69), the power of the test can be maximized. However, as 𝜽 is unknown a

priori, direct maximization of 𝜆(w; 𝜽) is not possible. In the following, we briefly

discuss three alternatives to design sparse samplers using the noncentrality pa-

rameter as selection criterion for the designs. For more details and an extended

formulation of the unknown parameter case, see, e.g., [Coutino et al., 2017]

Average Design. If there is some prior belief that the parameter lies within a

known set Ω, a straightforward design approach can be based on maximizing

the average noncentrality parameter, i.e.,

max
w∈[0,1]𝑀

∫
𝜽 ∈Ω

𝜆(w; 𝜽)𝑝(𝜽)𝑑𝜽 . (8.72)

This design is equivalent to the one obtained through a Bayesian approach

where a prior 𝑝(𝜽) is given to all the possible vectors 𝜽 ∈ Ω. This approach

36



requires an integration over the domain Ω. Note that when Ω is discretized

and the integral is approximated by a summation, the previously discussed

approach based on LMIs, see, e.g., (8.61), can be directly applied as 𝜆(w, 𝜽)

exhibits the same structure as the SNR expression in (8.57).

Worst Case (Max-Min) Design. Alternatively, we could consider a worst-case

design which aims to select samples that maximize the noncentrality parameter

in the worst case, i.e.,

max
w∈[0,1]𝑀

min
𝜽≠0

𝜆(w; 𝜽). (8.73)

Given the structure of the noncentrality parameter, this design problem be-

comes an eigenvalue maximization problem; that is

max
w∈[0,1]𝑀

𝜆min

(
H⊤Φ⊤(w)

(
Φ(w)ΣΦ⊤(w)

)−1
Φ(w)H

)
, (8.74)

which is analogous to the sparse sampler design problem using the E-optimality

criterion when the ML error covariance matrix is used [cf. (8.20)].

Log-Det Design. In many instances, the max-min criterion for a composite

hypothesis test has an inherently pessimistic nature [Feder and Merhav, 2002].

Therefore, a less stringent design, based on the D-optimality criterion could

be to design samplers based on the problem

max
w∈[0,1]𝑀

log det
(
H⊤Φ⊤(w)

(
Φ(w)ΣΦ⊤(w)

)−1
Φ(w)H

)
, (8.75)

which instead of only focusing on the minimum eigenvalue, considers the energy

distribution across the different directions as it aims to maximize the product of
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the eigenvalues. Note that, again, this problem is analogous to that of sparse

samplers for estimation when the D-optimality criterion and the ML error

covariance are used.
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8.4. Conclusions

Distributed sensing has been investigated in this chapter. More specifically, we

looked at the optimal placement of sensors to carry out a specific inference

task such as estimation or detection. To simplify the presentation, a linear

Gaussian model was considered and the task was to estimate the unknown

variables or to detect whether there is a signal or not. The latter detection

problem was studied for known and unknown signals. Even for the considered

linear model, the problem statement is not easy to tackle, especially in case of

correlated noise (i.e., conditionally dependent observations). Simulations on a

field estimation problem show that sensors are selected that result in a well-

conditioned and highly energetic measurement matrix. Furthermore, in case

of correlated noise, this behavior is traded off with the correlation function.

For a spatially decaying noise correlation function, this can potentially result

in requiring more sensors to reach the same estimation performance as for

uncorrelated noise. In case of a constant noise correlation function, sensors do

not have to be close to each other to exploit the correlation, and we see that less

sensors are needed to reach the same performance as in the uncorrelated noise

case. For field detection a similar behavior is observed except that in this case

the conditioning of the selected measurement matrix is not that important as

the focus is more on selecting measurements with a high signal-to-noise ratio.
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