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Abstract

Of the many crowd behavior models, very few have been used in assisting crowd management practice.
This lack of usage is partly due to crowd management involving a diversity of situations that require
competencies in observing, sense-making, anticipating and acting. Crowd research is similarly scattered
across disciplines and needs integration to advance the field towards supporting practice. To address these
needs, we present INCROWD, an integrated framework detailing a high-level architecture of a decision-
support system for crowd management and model development. It also offers a lens for categorizing
crowd literature, allowing us to present a structured literature review.

Keywords: crowd management, crowd modeling, decision-support systems, system architecture

1. Introduction

The importance of understanding human behavior in crowds is undisputed. It is required for ensuring
that proper support can be given to crowd managers in preparation and during a crowd event. The last
decades proposals have been put forward to capture the idiosyncrasies of crowd behavior in a variety of
ways to understand (parts of) crowds. These understandings or models come in different forms, rang-
ing from extremely formal (e.g. computational models) or implicit knowledge (e.g. mental models of
experts). The crowd models that are grounded in science originate from very different disciplines and
practices, including psychology, sociology, theoretical physics, applied mathematics, artificial intelli-
gence, and computer science. Despite having helped researchers better understand crowd behavior, there
are only few examples where these models have actually been used to assist in crowd management (with
some exceptions, including e.g. [Ball, 2007]). There is thus a substantial gap between crowd research
and crowd management practice.

Crowd management practice involves accessing and interpreting a wide variety of information sources,
predicting crowd behavior as well as deciding on the use of a range of possible, highly context-dependent
intervention mechanisms. In the context of this paper, decision-support for crowd managers denotes
any computer-assisted support on each of these tasks. Both crowd research and crowd management
practice have developed and improved tremendously in their attention for preparing crowd events. Auto-
mated tools are increasingly being offered for particular aspects of crowd management, but much more
is needed [Challenger et al., 2009b].
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We argue that the lack of adequate decision-support is partly due to the status of the majority of cur-
rent crowd models. Firstly, most models are not ready for use: they are (if at all) tested for acceptability
in science, but not for usability in practice. Secondly, most models reflect a particular discipline and thus
target only one specific element of crowd management, i.e. acting, observing, interpreting, predicting and
deciding. To truly provide decision support for crowd management, a new approach is needed that inte-
grates data gathering, assessment and prediction of crowd situations, and evaluating decisions regarding
interventions. Crowd research has the potential to support crowd management in a better way by taking
an integrated view in the development of models that are operationally usable. This would allow crowd
management to benefit from the wide variety of existing knowledge and tools (models) regardless of the
different (disciplinary) forms in which they appear. This can be achieved, for example, by connecting
and using both expert insight and social theory to predict the further development of a crowd while being
fed information from a pattern detection algorithm to interpret data from cameras at a crowd site.

In particular, we see potential for improving support during an event, i.e. in real-time. In our view,
we should make use of the strengths of both humans and technology. Human expertise and experience
remains unbeaten in rapidly assessing (complex) situations. Technology on the other hand, can rapidly
acquire, process and digest large amounts of information, which, in our view, is under-exploited. We
perceive integrated semi-automatic decision-support as the next step in increasing the safety and success
of crowd events.

In this paper we aim to give guidance towards integrated crowd management support by providing a
decision-support framework INCROWD. INCROWD is an integrated framework for crowd interaction (ac-
tuating and sensing), mining, predicting, and making decisions to manage the behavior in a crowd, relat-
ing to the diverse practices of crowd management (observing, interpreting, predicting, decision-making).
The framework functions as an architecture for a decision-support system for crowd management as well
as model development framework towards operational support. Moreover, in this paper the INCROWD

framework is also used for identifying areas in need of more research by classifying existing literature
on crowd-behavior understanding and management, simultaneously allowing us to substantiate our claim
that an integrative approach is needed.

We organize this paper by first providing an overview of crowd research as communicated in other
review papers. We continue by looking at how crowd management is practiced today in section 2. In
section 3 we discuss the means of operational support for crowd management, concentrating on the core
elements of our framework and illustrating how operations can be supported in real-time, i.e., operations
engineering. In section 5 we focus on the importance of supporting model development and show that
model development and operational crowd management are actually closely related. The framework then
allows us to provide a status report on the status of the current literature in section 6, where we assess
and categorize 237 papers. Finally, we come to our conclusions in section 7.

1.1. Background: existing reviews
Numerous review papers on understanding crowd behavior are available in the literature. For instance,

Reicher [2001] and Challenger et al. [2009b] provide a (historical) overview including different schools
of thought in the psychology of crowds (theoretical models). Bryan [1999] studies the maturity of human
behavior in the context of fire. Others consider state-of-the-art techniques, such as the development
of intelligent distributed surveillance systems and image processing technologies [Valera and Velastin,
2005], recognition and wearable sensors [Atallah and Yang, 2009] or advocate a particular type of crowd
modelling [Hughes, 2003]. A majority of these review papers addresses emergency evacuation, either
to highlight the importance of taking a more integrative approach of the relevant connected research
fields [Santos and Aguirre, 2004; Sime, 1995; Venuti and Bruno, 2009], to reflect on existing guidelines

2



for facility design [Stanton and Wanless, 1995], or to provide insights into the most often used methods
of modelling [Gwynne et al., 1999; Alsnih and Stopher, 2004].

Each review paper targets its own (disciplinary) crowd niche, the exception being the report of Chal-
lenger et al. [2009b] that covers a range of mathematical models, theoretical crowd-behavior models and
crowd-simulation tools (i.e., predicting techniques), but also a wealth of information regarding crowd
behaviors, characteristics, and typologies. Moreover, the report provides an extensive list of guidelines
for crowd management and emergency situations, and identifies challenges in crowd management as well
as existing gaps and makes recommendations for future crowd research. Despite its broader view, the fo-
cus lies on the prediction aspect of crowd management. This reflects a general tendency of these review
papers focusing on only one or, at the most, two aspects of crowd management. Bellomo and Dogbe
[2011]; Duives et al. [2013]; Challenger et al. [2009b]; Venuti and Bruno [2009] and Alsnih and Sto-
pher [2004], for instance, solely focus on predicting models or techniques. Bellomo and Dogbe [2011]
present a review and critical analysis of existing mathematical models of vehicular traffic and crowd phe-
nomena, addressing different representation scales (i.e., microscopic, macroscopic, and statistical) and
the corresponding mathematical structures. The authors critically analyse the presented models, discuss
their limitations and focus on the identification of new research perspectives which concern both mod-
eling and analytic issues. Moreover, they include a review of the empirical data that is used to design
and validate models. Similarly, Duives et al. [2013] provide an overview of a range of crowd simula-
tion models and assess these models regarding their precision in simulating known crowd phenomena
and their computational load. Their assessment shows that the models can be roughly divided into two
groups: (1) computationally expensive, but highly precise microscopic models, and (2) computationally
inexpensive, but inaccurate macroscopic models. Their review concludes that since practical applications
actually require both precision and efficiency, e.g. real-time decision-support for crowd management, the
current pedestrian simulation models are inadequate.

While the above review papers focus solely on predictive models, others solely focus on the mining
aspect. For instance, the review presented in Valera and Velastin [2005] describes the state of devel-
opment of intelligent distributed surveillance systems, including a review of current image processing
techniques that are used in different modules as part of the surveillance systems. Surveillance activities
addressed involve the recognition of humans and objects as well as the description of their actions and in-
teractions. Areas for further research are also identified. These include data fusion and tracking methods
in a cooperative multi-sensor environment. Their review focuses on techniques for mining crowd data
stemming from visual sensors (e.g. video cameras), which so far have been the most prevalent type of sen-
sors used in crowd monitoring. Other reviews focus on two distinct aspects of crowd management [Zhan
et al., 2008; Atallah and Yang, 2009; Santos and Aguirre, 2004; Alsnih and Stopher, 2004; Gwynne
et al., 1999]. For instance, Zhan et al. [2008] present a review of crowd-analysis methods employed
in computer vision, including methods for automatic crowd-feature extraction to provide crowd-density
measurement, object recognition and object tracking. The review thus focuses on mining and prediction
techniques. Moreover, the paper presents a review of computational crowd models, classifying them into
physics-inspired, agent-based, cellular-automata and nature-based models. The paper also presents sev-
eral approaches that combine computational crowd models with vision-based techniques, pointing out
that it is possible to develop intelligent systems that combine these approaches. Atallah and Yang [2009]
present a review on the use of pervasive sensing for understanding human activities in general (and not
only crowd behavior). The focus of their review lies on sensing and mining techniques targeted at mea-
suring, recognizing and understanding human behavior. Their review includes current work on activity
recognition based on a vast range of ambient and wearable sensors, as well as methods for modelling
human behavior, such as probabilistic models and approaches for anomaly detection. Moreover, chal-
lenges and new research opportunities are discussed, which include incorporating temporal information
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in behavior modeling and unsupervised anomaly detection.
In existing reviews on understanding crowd behavior, the aspects of sensing, mining, and predicting

are commonly, yet separately, covered, whereas the practice of decision-making, e.g. which interventions
are effective, is generally addressed to a lesser extent beyond stressing the importance of a particular
study.

In our present review we aim at providing an overview of all aspects of crowd management by giving
an overview of the work done in each of these stages and notably how they are connected. Multiple re-
views highlight the need for a more multidisciplinary scientific approach, i.e., adopting the often ignored
insights from social psychology, e.g. [Santos and Aguirre, 2004; Sime, 1995]. Although we second this
need wholeheartedly, we stress that this needs to be carried out in a problem-driven, not discipline-driven
integrative approach. We look at crowd management as a whole and thus adopt an integrative approach
involving actuating and sensing (crowd interaction), mining, predicting, and decision-making, which is
formalized by means of the INCROWD framework.

2. How crowd management is currently performed

When looking at the wealth of information available on crowd management (see, for example, [Chal-
lenger et al., 2009b; Health and Executive, 2000; Martella et al., 2013]), a majority concentrates on the
preparation for potential or expected situations or events. We refer to this phase of crowd management as
the “event preparation” phase. During an event, crowd management goes through an “event execution”
phase, for which the available literature focuses mostly on the monitoring of the crowd. The crucial
processes of situation assessment and decision-making are however treated superficially in the literature.

In this section, we give an overview of how management of crowds is currently planned and executed,
including the processes of situation assessment and decision-making. Much of the information we present
is based on [Challenger et al., 2009c,a; Health and Executive, 2000; Martella et al., 2013], as well as work
on decision-making in complex, uncertain, and highly dynamic situations [Klein, 1999]. Furthermore, we
indicate existing approaches and technologies from the literature that are relevant to crowd management
at its various stages.

2.1. The event preparation phase
Crowd management typically refers to the systematic planning, and providing guidance for the safe

and orderly development of events where large numbers of people come together. Event preparation thus
focuses on planning, which is considered to be the largest part of efforts in crowd management [Martella
et al., 2013]. Planning typically involves anticipating what might happen regarding a crowd in a given
context and preparing for it. As such, preparation includes designing for the desired behavior of the
crowd, but also foreseeing potential issues and devising contingency and emergency plans to deal with
them [Health and Executive, 2000, p. 33]. The resulting plan usually targets the site design, a supporting
technical infrastructure, a number of assigned personnel, and prescribed operational interventions for
dealing with ‘normal’ as well as anticipated critical situations [Health and Executive, 2000, p. 27],
[Challenger et al., 2009c, p. 13], [Challenger et al., 2009a, p. 250], [Martella et al., 2013]. The quality of
the anticipatory analysis in combination with the effectiveness of the planned or operationalized measures
are particularly critical to effective crowd management. Automated support for what-if analyses can play
a crucial role.

Planning is typically carried out in a team using a multidisciplinary approach that draws on the per-
spectives and expertise of a wide range of individuals. These include the event organizers, crowd man-
agers, police, stewards, first-aid representatives, local authorities, transportation operators, and crowd
simulation experts, etc. [Challenger et al., 2009c, p. 71], [Challenger et al., 2009a, p. 260], [Health and
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Executive, 2000, p. 7]. These highly multidisciplinary efforts required for planning a crowd event may
partially explain why it is so difficult to provide an adequate decision-support system.

Planning involves a wide range of activities, addressing, among others, the critical moments when
people enter and/or exit the event site, their activities and movements within and around the site. Also,
strategies for improving flows and preventing densities from reaching critical values at any given location
and time need to be taken into account [Health and Executive, 2000, p. 7], [Martella et al., 2013]. The lit-
erature points out several approaches regarding the improvement of crowd flows [Challenger et al., 2009c,
p. 74]. These include the use of separate doors for entry and exit [Helbing et al., 2002], placing obstacles
to encourage lane formation [Helbing et al., 2002], ensuring that entry and exit points are wide enough to
accommodate groups of people to pass through [Pan et al., 2007], and making line-of-sight paths as long
as possible to allow individuals to see their destination and choose the most direct route [Davies et al.,
1995]. Advanced 3D simulations are increasingly used to assist the experts in planning [Van Toll et al.,
2012].

These approaches represent universally applicable interventions for crowds and should be relatively
easy to integrate into a simulation environment for planning crowd events. However, crowd management
also requires the consideration of aspects that are not easily formalized into a simulation environment.
For example, the purpose of a crowd event, the profiles of visitors, visitor’s knowledge of and experience
with the event, the characteristics of the event site, the effect of the weather, etc. [Challenger et al., 2009c,
p. 133], [Health and Executive, 2000, p. 7], [Martella et al., 2013].

Another important part of crowd planning is risk assessment. In order to identify risks, a common
approach involves the generation of possible what-if scenarios regarding event disruptions and emergen-
cies [Health and Executive, 2000, p. 19]. An automated example is the work by Schubert and Suzic
[2007] who introduce assistance by means of an evolutionary algorithm that selects interventions for a
given scenario. Nevertheless, devising courses of action for dealing with a given situation typically relies
solely on expert knowledge.

2.2. The event execution phase
During the event, the situation in a crowd must be continuously monitored, assessed, and appropri-

ate actions (typically according to the original plan) need to be selected and implemented. In all these
processes, communication is a key element [Challenger et al., 2009a, p. 263]. This includes both commu-
nication among crowd management team members as well as communication between the crowd man-
agement team and the crowd itself. A solid command and control structure must also be in place, with a
central control point responsible for the overall event management across multiple locations [Challenger
et al., 2009a, p. 269].

During the event, crowd observation and monitoring enables the assessment of a situation and the
detection of potential problems at an early stage, ultimately allowing the selection of appropriate action.
The most common monitoring strategy for large crowds uses stewards and officers on the ground near or
inside a crowd, as well as surveillance cameras whose output is watched by (human) agents in a control
room [Martella et al., 2013]. Information that is typically monitored includes counts of people in a small
identifiable area, the space between people, the rate of flow into or out of an area, the overall number
and distribution of people in the crowd, the general crowd mood, signs of distress, pushing or surging,
indications of bad temper or excitement as well as any signs of other potential crowd problems [Health
and Executive, 2000, p. 47]. To what extent such observations can be carried out in an (semi-)automated
fashion is subject to research as addressed in this paper.

Other monitoring systems and strategies include the deployment of helicopters and Unmanned Aerial
Vehicles equipped with video cameras, turnstiles linked to automatic counting systems as well as scan-
ning social media for the usage of certain keywords [Martella et al., 2013]. As monitoring information
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becomes available, experienced stewards and officers combine and interpret the information in real-time
and translate it—by means of mental models—into a higher-level assessment of the crowd situation: a
state of situational awareness [Klein, 1999]. Therefore, it is crucial that personnel with extensive expe-
rience in understanding and managing crowds (hereinafter referred to as “crowd experts”) are involved
in these assessments [Challenger et al., 2009a, p. 268], [Klein, 1999]. On a higher abstraction level, a
situation in a crowd may be classified according to, for example, known crowd behaviors and patterns,
or assessed as a normal, abnormal, dangerous, or emergency situation. Moreover, once a certain situ-
ation has been detected, crowd experts anticipate resulting events [Klein, 1999]. Here lie considerable
challenges if the goal is to support, enhance or even replace the human experts by automated means.

As indicated, the use of technology and automation in the process described above is still limited.
The processing of video data by means of video-analysis algorithms [Davies et al., 1995] is performed
automatically in some simpler cases (e.g. when having relatively low densities) to provide counting,
density, and flow estimations for crowd management [Martella et al., 2013]. However, these algorithms
do not address emotional and psychological aspects of the individuals in a crowd. Insights into these
aspects may be obtained in an automated fashion by mining social media [Martella et al., 2013] as well
as automated self-reporting applications [Li et al., 2014]. Regarding high-level assessments and interpre-
tations of a crowd situation, a number of algorithms have been proposed. Examples include classification
into ‘normal’ and ‘abnormal’ behaviors, mostly based on video data[Rodriguez et al., 2011; Mahadevan
et al., 2010; Mehran et al., 2009; Pathan et al., 2010], but also based on multiple sensors[Andersson et al.,
2009; Drews et al., 2010]. The recognition of crowd-behavioral patterns [Roggen et al., 2011] and the
unveiling of social-network structures [Isella et al., 2011] based on on-body sensor data have also been
addressed. Of these types of approaches, none have been reported to be used in real-time crowd man-
agement [Martella et al., 2013; Challenger et al., 2009b], possibly due to performance issues and due
to limitations with regard to the situations that these solutions can address. Finally, currently available
monitoring and assessment technologies are also limited in that they can provide only real-time inter-
pretations of a situation, but not predictions, due to the apparent lack of appropriate models. Predictive
models have been proposed in abundance, as we discuss in this paper, but their use in real-time crowd
management is lacking.

Achieving situation awareness is key in any process of decision-making, most notably in complex,
uncertain, and highly dynamic situations [Klein, 1999; Osinga, 2007]. For crowd experts, the awareness
of the current situation allows for selecting a matching scenario and an appropriate course of action. In
case the current situation does not satisfactorily match any of the prepared scenarios, expert knowledge
needs to be brought in to modify selected actions or devise completely new ones from scratch [Martella
et al., 2013]. The scenario-based approach described in [Schubert and Suzic, 2007], in contrast, au-
tomates the decision-making process by representing scenarios (as well as the current situation) in a
computer-understandable format. The proposed representation is, however, quite simplistic and does not
allow for the representation of complex scenarios as found in typical crowd situations.

Finally, once a course of action has been selected, the actual action takes place and its consequences
must again be monitored to evaluate whether it had the desired effect. In fact, the processes of monitoring,
interpreting, predicting, deciding as well as acting takes place continuously. They are part of a continuous
decision cycle which, according to [Osinga, 2007], all intelligent organisms and organizations undergo.
The crowd situation may of course change while these processes are taking place, therefore it may be
necessary to change or cancel planned actions to accommodate such changes.

2.3. Beyond preparation - a focus on real-time support
There is no doubt that preparation is key in crowd management. At the same time, the processes

that occur in real-time are just as crucial. Particularly, support in decision-making would be a major
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contribution. Therefore, in this paper we focus our attention on real-time processes of crowd manage-
ment: situation monitoring, interpretation and prediction as well as decision-making. Our focus does
not exclude the use of the framework for preparation purposes through predicting expected scenarios.
Furthermore, we focus on the processes that are relevant for decision support, i.e., those leading to a
decision, but not on the implementation of the decision itself. We adopt an integrative approach towards
real-time crowd management support which clearly reflects and describes decision-making in complex
and dynamic situations [Klein, 1999; Challenger et al., 2009c,a; Osinga, 2007].

3. INCROWD

We now turn to detailing our framework, called INCROWD which we use for two purposes: First,
our framework can be seen as a proposal for organizing decision-support systems for crowd manage-
ment, and thereby represents an architecture for such systems. We deliberately incorporate the human
expert into our framework, since they are, and possibly will remain, the providers of the most adequate
(mental) models used in crowd management. Second, INCROWD provides a basis for identifying various
elements that are needed to support crowd management. In other words, it is problem-driven and opens
connections to relevant knowledge, methods, and techniques in other fields relevant to crowd manage-
ment. By subsequently classifying existing research in the context of INCROWD, we arrive at a proposal
for a research agenda in section 6.

3.1. Overview
At a high level, INCROWD consists of four major subsystems, as shown in Figure 1.

• The crowd-interaction subsystem provides the interface between the actual crowd and (real-time)
support systems for crowd management. We distinguish two types of interfaces. Actuators are
used to intervene in a crowd. Typical examples of actuators are mobile barriers, traffic lights,
displays, and tailor-made smartphone applications. Sensors are used for measuring, or sensing the
state of a crowd, and typically include cameras and microphones, but also smartphones and social
media.

• The mining subsystem is responsible for interpreting the raw data that captures the state of a
crowd. Typically, it deploys many data-mining techniques and various methods for crowd analytics,
along with interpretations provided by human experts.

• The predicting subsystem is responsible for predicting the state of a crowd. It typically contains
predictive simulation models, but also models for generating synthetic data sets that are subse-
quently fed into the mining subsystem for further analysis. Practice shows, however, that human
expert knowledge provides a significant contribution to predicting future crowd states.

• Finally, the decision-making subsystem encapsulates the methods and techniques for arriving at a
decision regarding adequate crowd intervention. It involves selecting or generating an intervention,
which is then implemented by using the actuators available in the crowd-interaction subsystem.
The actual implementation of a decision in crowd management lies beyond the scope of decision-
support (and thus of this paper).

We further draw a distinction between computational and noncomputational instruments for crowd
management support, visualized as black and grey elements in Figure 1. Computational instruments can,
in principle, be executed in a fully automated, mechanized fashion. Noncomputational instruments do
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SUBSYSTEM

Computational

Noncomputational

Figure 1: The four major components of INCROWD.

Table 1: Examples of instruments available for crowd management.

Crowd interaction Mining Predicting Decision-making
Sensing Actuating

C
om

pu
ta

tio
na

l Simple data, collected
by digital sensor or a
human, that can be
directly fed into a
computer.

Feedback through
smartphones,
billboards, traffic
lights, fully
computer-controlled.

Standard data-mining
techniques

Model-based
computer simulations

Analytical
decision-making
strategies, e.g.
Multi-Criteria Decision
Analysis
(MCDA) [Figueira
et al., 2005;
Anonymous, 2009]

N
on

co
m

pu
ta

tio
na

l Advanced data,
purposefully designed
questionnaires or
observations by
humans: visual,
auditory

Intervention by
security officers,
manually controlled
traffic lights, mobile
barriers

Mental analyses
(experience based),
e.g. a sense that
something is going on
given observations.

Theoretical or mental
analysis, e.g. a (social
science) theory or
mental simulations
such as scenario
thinking to predict

Naturalistic
decision-making
strategies, e.g., the
Recognition-Primed
Decision (RPD)
model [Klein, 1989]

not act automatically, either because that is (still) impossible or impractical. The distinction is important
since effective crowd management cannot solely rely on automated means: it requires input from both
human experts and noncomputational knowledge. Recognizing which parts of a decision-support system
cannot (or should not) be automated is key for its design. Examples of computational and noncomputa-
tional crowd management instruments are shown in Table 1, which considers the four major components
in INCROWD.

3.2. Continual example: Large-scale outdoor event in the city of Arnhem
In order to illustrate our framework and its components, we use a continual example of a crowd in

a large-scale outdoor event. As a representative example we choose the World Living Statues Festival,
an annual event in the city of Arnhem (The Netherlands) where over 200 live statues attract more than
300,000 visitors. Arnhem is situated in the Eastern part of the Netherlands, with a population of 150,000
and a dense downtown area covering only a few square miles (where the festival is located). Managing the
expected crowd is essential for reaching the goals of the event organizers (e.g., enjoyment, safety, public
order). The existing crowd management in this example uses various methods, including a combination
of computational and noncomputational approaches.
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Figure 2: The overall flow associated with the iterative process of crowd management.

The crowd is observed with some 80 video cameras at various locations in the festival site. In addi-
tion, approximately 50 Wi-Fi hotspots are deployed to detect smartphones (as anonymized data). These
detections provide additional data on the whereabouts of crowd members: how fast people are moving
through the area, what their general trajectories are, what the estimated crowd densities are, to name but
a few. Security officers walk around and act as observers, regulate the streams of visitors, and intervene
in various ways where deemed necessary. Observation data is gathered in a control room where opera-
tional managers observe the video streams and other incoming data, and where automated tools estimate
the amount of people and densities at various locations, along with other spatio-temporal metrics. Secu-
rity officers within the crowd send in their reports, again in various forms: through special smartphone
applications, but also by more traditional means like calls to the control room.

Based on what is visually seen, detected from hotspots, communicated on-site, own personal ex-
periences, and information automatically computed and retrieved by the decision-support system, the
control room can direct cameras to points of attention and direct mobile teams of security officers to
certain locations. Having identified a specific situation, be it potentially dangerous or otherwise, a crowd
manager may need to decide on an intervention. Automated support is provided in the form of auto-
matically deduced scenarios, together with interventions that are most appropriate for each scenario. A
crowd manager will try to select the scenario that best matches the current situation and then select the
corresponding cataloged intervention.

4. Operational support with INCROWD

INCROWD’s four subsystems together provide the basis for a crowd management support system. By
measuring the state of a crowd, correctly interpreting that state, and being able to predict the effects of
an (non-)intervention, a crowd manager is able to use an implementation of INCROWD as an instrument
to manage a crowd, as reflected in Figure 2. Crowd management in light of INCROWD reflects the
integration of many different models. The aim of this framework is to allow crowd managers to effectively
manage the behavior of crowd members regarding the aspects considered relevant.

The overall flow of crowd management is as follows. INCROWD collects information on the state of a
crowd in the form of a continuous stream of (heterogeneous and potentially complex and/or conflicting)
raw data. This data stream is fed into the mining subsystem that provides crowd managers with a mean-
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ingful interpretation of unfolding events (arrow 1). Using either the raw crowd data or its interpreted
state, the prediction subsystem is ideally capable of predicting what may happen in the near future (ar-
rows 2 and 3, respectively). Typically, the interpreted state (arrow 4) is used for selecting scenarios as
well as making suggestions for crowd interventions in the decision-making subsystem, which can then
be applied to the crowd (arrow 5).

We envision this system as a continuous loop that may include an evaluation of the effects of inter-
ventions as well as an evaluation of the mining and predictive models in the framework. Models are thus
expected to be learned and improved in operation as increasingly more experience is gained. Here we
enter the grey area between operations engineering and model development. For reasons of comprehen-
sibility we keep them strictly separated and will discuss model development in the next section. We will
now elaborate in more detail on the operational use of the framework for each subsystem.

4.1. Operational: Crowd interaction subsystem – Sensing and Actuating
As mentioned above, the crowd interaction subsystem represents the interface between support tools

and the actual crowd. The interaction includes both actuating (intervening in a crowd) and sensing (mea-
suring a crowd state).

From an abstract point of view, the state of a crowd can be represented by a collection of state
variables. Typical state variables include:

• spatio-temporal variables: density, size, position, movement, and acceleration of (parts) of the
crowd.

• social variables: purpose, age distribution, gender distribution, group membership, social struc-
ture, leadership, status, and social identity.

• psychological-cognitive variables: mood, mindset, intentions, and beliefs.

There are at least three independent problems with measuring the state of a crowd. First and foremost,
there is definitely a modelling and representation issue, as what exactly comprises the state of a crowd
is difficult to decide. The result is that often a semantically rich and potentially large dataset is acquired
which is expected to capture what crowd managers are looking for. This dataset then needs to be further
analyzed. Indeed, it is often unknown in advance whether certain data elements are relevant at all.

Second, a state variable σ may be complex, in the sense that it is a composition of other, simpler
variables σ1,σ2, . . . ,σn. Both, the exact composition, and each constituent element σk may be (partially)
unknown, nor is their potential interaction clear. Psychological-cognitive variables such as the ones
mentioned above are examples of complex state variables.

Third, even if a state variable is well understood, as is the case with many spatio-temporal variables,
it may still be difficult to measure it, let alone measure accurately. A representative example is measuring
the size of a crowd. Although its semantics are well defined, in practice it turns out that accurately
counting how many people constitute a specific crowd requires highly advanced techniques and skills.
Measuring complex variables such as those for mood or emotion is even more challenging.

Sensing a crowd is all about acquiring values for state variables. As mentioned, we distinguish com-
putational from noncomputational methods for data acquisition. For a crowd management framework,
both types are important. Yet it seems that the digital sensing of crowd-state variables is still in its in-
fancy, with the exception of video-based solutions. Capturing and analyzing social-media data obtained
from, e.g. Twitter or Facebook, can sometimes give an impression of the overall mood of a crowd. More
direct measurements of mood can be supported through smartphone applications. Arguably, these are
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hybrid computational methods of input, as they require explicit actions from users and combine these
with automatically sensed input.

The most commonly used, fully automated sensing of a crowd is performed by using video cameras,
which can be classified as a computational data acquisition method. A camera is a typical example
of an external sensor (also referred to as an ambient sensor): a sensor that is placed externally to the
crowd. Another example is that of an ambient microphone. Typically, internal sensors are worn by crowd
participants and include accelerators, proximity detectors, (wearable) microphones, etc. Smartphones are
a common carrier for these type of sensors, yet it is clear that much work needs to be done before such
sensors can be used for practical crowd-state measurements.

Referring to our continual Arnhem city example, sensing or acquiring data about the crowd is per-
formed via video cameras and the Wi-Fi hotspots (automated sensors) and observations by security offi-
cers (human sensors). Note that in the case of a human sensor, observing the crowd and interpreting the
observations (discussed in the next section) can happen together, in a seamlessly coupled manner.

Actuators are tightly coupled to the actual decision-making: they comprise the instruments that can
be used for managing or intervening in a crowd. For the purposes of this paper, the actuators themselves
are less interesting, except with regard to their effectiveness and efficiency. For example, if a decision
is made to stop people from entering a certain area, different instruments can be used: security officers,
barriers, displays, and so on. Each of these will most likely have different effects and will attain those
effects at different costs. We expect that effectiveness and (cost) efficiency of an instrument is taken into
account when making a decision on how to manage a crowd, but we consider it of minor importance for
our further discussion herein.

4.2. Operational: Mining subsystem
Sensors deliver what we refer to as raw data: data representing the uninterpreted observations of vari-

ous aspects of the current state of a crowd. This raw data generally requires proper interpretation in order
to derive meaningful information about what is going on in a crowd. The mining subsystem therefore
typically contains many data-mining techniques: classifiers, clustering algorithms, techniques for feature
extraction, information-fusion algorithms etc., all aimed at making (more) sense of raw observations.

Human analysis plays a key element in the interpretation of observations. This is clearly the case
when dealing with video footage where humans are generally much better at interpreting a situation
than any automated analysis. However, computational mining instruments do exist and are important.
Consider the following examples:

• Video feature extraction: In their review paper on crowd analysis, Zhan et al. [2008] describe
different techniques for extracting crowd-related variables from video footage such as density,
acceleration, etc. It is not difficult to imagine that video analysis alone may easily contribute many
different instruments for interpreting raw crowd data.

• Proximity graphs: In another, recent example, Martella et al. [2014] discuss how so-called prox-
imity sensors can be used to represent a crowd as a dynamic graph in which a vertex represents a
person, and a link represents the fact that two people are in each other’s proximity. This proximity
graph can subsequently be used to discover patterns in a crowd, like the formation of lanes, iden-
tify if and where clogging occurs, etc. Extracting data from the sensors is part of the measurement
system, but the instruments for constructing and subsequently interpreting the resulting proximity
graph are part of the mining subsystem.

The effect of the mining subsystem is that observations are brought to a higher level of abstraction by
adding a layer of interpretation. The level of abstraction depends on the mining instrument and purpose.
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Computational models

Theoretical models

Mental models

Figure 3: Distinction of model types based on their increasing degree of formalism. An
inclusion relation between computational, theoretical, and mental models.

Note that the division between a measured crowd state and the interpreted state is not strict. There are, for
example, collaborative sensing systems that can estimate the size and density of a crowd [Cattani et al.,
2014].

The output of the mining subsystem will often be presented to human crowd experts through vi-
sualizations in order to assist them in decision-making. However, we do not exclude the situation in
which interpretations can be directly used for crowd interventions as can be the case for automatically
controlling traffic lights or what is being displayed on a public screen.

In our continual example in Arnhem city, mining happens while the video images (i.e., the raw ob-
servations) are interpreted by humans at the control room. For instance, the operational manager may
interpret the images to define a clogging situation in a narrow street. The Wi-Fi hotspot detections of
smartphones add automated support making it possible to identify trajectories of people moving through
streets. In this case, combining hotspot information, a city map, and knowledge regarding the location of
the living statues and other attractors, and then mining the hotspot data, may reveal particularly popular
locations (i.e., where many people stay for a relatively long time), unexpected routes (e.g. related to local
densities), or potentially hazardous situations (when multiple trajectories are targeting the same location).

4.3. Operational: Prediction subsystem
The predicting subsystem contains the instruments that generate a possible future state of the crowd. It

forms a key component of our framework as predicting possible futures is crucial for making intervention
decisions. It uses models as instruments.

We distinguish three types of models in this paper to allow for a meaningful distinction of the level
of formalism:

• mental models,

• theoretical models,

• computational models.

Figure 3 shows the inclusion relation of the model types to each other. Models with a high degree of
formalism are considered computational models. This includes models that are not actually implemented
in a computer system if the level of specification is high enough that the model could be implemented.
A theoretical model is a noncomputational model that has been formalized and has scientifically been
evaluated, for instance in a social-science theory on crowd behavior. As an example, the initiation-
escalation model [Adang, 2011] is a theory that explains under which (social) circumstances the initiation
and escalation of violence is more likely to occur.

A mental model is an image of the world that humans have for making sense of and be able to engage
with the world. It is an informal model that has not been formalized, scientifically evaluated, (e.g., not
communicated, not specified, not written down, not generalized, not systematically analyzed, not peer-
reviewed). Compared to a computational model, mental models are mostly tacit, i.e., not precise, but
ambiguous and not necessarily conscious [Forrester, 1971]. To illustrate, an expert is often not able to
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externalize her knowledge, but still has an internal representation of the world that allows her to perform
her expert task.

The output of the predicting subsystem depends on the type of model that is used. Both mental and
theoretical models produce a future interpreted state of the crowd. In other words, the state of a crowd is
already formulated in relatively high-level semantic descriptions.

In the case of computational models, there are essentially two options. First, a model may generate
raw crowd data, similar to raw observation data coming from original sensors. Typically, this is done
by crowd simulators whose aim is to extrapolate a given trace of raw input data with new data points.
A trace, in this context, is a sequence of timestamped events, comparable to a traditional event log. By
feeding a simulator with a trace, and subsequently comparing its output (which may again be a trace
of predicted events) to the originally captured data from sensors, the predictive ability of the simulation
model can be evaluated. The output of such predictors will often need to be processed by the mining
subsystem before it can be further handled.

As an alternative, a predictive model may have integrated the generation and interpretation of raw data
and instantly produce data at a higher level of abstraction. Its output would then be seen as interpreted
data, meaning that it embeds elements that fall under the mining subsystem. An example of this is a
model that directly predicts where clogging will take place without first generating the relatively low-
level raw-data traces. Normally, the phenomenon of clogging would have to be derived from interpreting
such raw data.

In our continual example in Arnhem city, a decision-support system for crowd managers would typ-
ically run trace-driven simulations of crowd movements in the downtown area of Arnhem. Those sim-
ulations, based on models for predicting how people behave in a crowd, would take recent data from
various Wi-Fi hotspots as input and allow an operational manager to perform an analysis given the cur-
rent situation. In other cases, video footage, perhaps combined with information from the hotspots as
well as input from security officers, would allow an operational manager to anticipate what might happen
through visual inspection, and take actions accordingly.

4.4. Operational: Decision-making subsystem
Finally, the models, tools, and techniques in the crowd management framework includes support

in the form of recommendations for interventions in a crowd. Note that this support is different from
providing predictions: the output of this component are recommendations for using(or not using) specific
intervention instruments.

The decision-making subsystem focuses on crowd-level goals. An example is safety which could
be expressed in terms of maximal acceptable densities, lack of violence, entertainment, etc. The crowd
management actions chosen or suggested by the models in this subsystem thus aim to identify the actions
required to prepare for, maintain, prevent, or go back to an overall desired crowd state. To illustrate, in
order to identify what should be done when clogging could potentially lead to a dangerous situation, a
number of steps must take place before the decision-making subsystem is involved: data must be gathered
on the clogging, the situation at hand must be recognized as “clogging”, and the context in which the
clogging is taking place must be determined. Then, for this recognized situation in context, the decision-
making subsystem must identify specific interventions (e.g. opening additional exits) that could work
given the decision-making goals in the context and be able to assess the effects of these interventions.
The more global view on what is going on in a crowd—which corresponds to the recognized situation in
context in the example above —can be captured in terms of scenarios. A scenario, as we define it herein,
is a description of the situation which in essence represents the state of knowledge on the situation (i.e.,
situation awareness). Ideally, it is expressed as a formal computational model, so that it can be used to
support decision-making in an automated fashion.
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A scenario effectively limits the number of situations that need to be evaluated for selecting an inter-
vention action. For example, in the case of clogging in narrow streets, it may be necessary to facilitate
additional exit routes or prevent two-way pedestrian traffic. Whereas, when dealing with high-density
crowds in front of a stage, the only alternative may be to close-off entire sections and allow people only
to move away from the stage. We can assume the decision-making subsystem to consist of a generic rule-
based approach towards such a selection, forming the operational output of INCROWD. In this generic
rule-based approach, each of a number of possible scenarios is related to one (or more) intervention(s).
In this case, we intend context-rich rules, which means that context information (which is part of the
scenario description) is essential in triggering the rules (i.e., in determining which interventions are ap-
propriate for a given scenario). Arriving at an appropriate set of rules is also part of our framework,
namely as a separate case of model development, to which we return in Section 5. Selecting the appro-
priate scenarios becomes an essential element of the operational framework, and as noted in Figure 1,
this will be carried out by humans as well as automatically.

Finally, we note that a natural way to come to a final recommendation for crowd intervention is by
means of what-if analyses which here refer to (mental or computational) simulations of how interventions
will play out in context. Such what-if analyses may be performed automatically, but human participation
will often be needed, certainly in complex situations. In the context of operations engineering, there are
multiple objectives in decision-making:

• match the situation at hand to one or more recognizable scenarios,

• select one or several intervention instruments,

• simulate and subsequently evaluate what happens when those interventions are exerted,

• possibly modify the selected interventions to fulfill decision-making goals.

Challenging enough, these objectives must also be met in real-time.

5. Model development with INCROWD

Most crowd models are not ready for operational use. To guide the development for operational
models further, it is crucial that these crowd models capture and connect the various aspects of crowd
management. Consequently, support for models in development embeds models that target the diverse
stages of crowd management: crowd-interaction (actuating & sensing), mining, prediction and decision-
making. The INCROWD framework provides a process structure that embeds model development within
the overall decision support aim of crowd management. INCROWD as a framework for model develop-
ment makes a distinction between (1) models in development and (2) a testing subsystem.

• Crowd-interaction models, relate to both actuation models and sensing models. An actuation
model describes the anticipated effect of using a specific actuator on the state of a crowd, e.g., mo-
bile barriers to affect flow. A sensing model aims at capturing the state of a crowd, and essentially
consists of choosing the variables for representing that state, and subsequently the sensors and their
values for instantiating those variables, e.g., determining local density.

• Mining models are developed for analyzing the measured crowd state and are typically aimed at
feature extraction, classification etc.

• Predictive models describe the future or anticipated state of a crowd, given an initial state, a
situation and possibly data from a mining model.
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Figure 4: The overview of model development with INCROWD. The mining, prediction, and
decision-making subsystems generally develop their models by giving some input and subse-
quently test a model’s output against expected output.

• Decision-making models select effective intervention instruments based on a current (high level)
description of a (part of a) crowd.

The testing component’s purpose is to test how well a model performs by giving feedback and an indi-
cation whether the model is considered to be “accepted”.

Analogous to operations engineering where the goal is to manage the behavior of a crowd in a con-
tinuous iterative process, we speak of model development, or model engineering, emphasizing that
development of models is also a continuous iterative process: a model in development receives input
and generates output that is tested by the testing subsystem. The generated output needs to be compared
against the expected output as shown in Figure 4.

Although the process of handling input, generating output, and providing feedback holds for every
model in development, the actual model development may differ per subsystem as we explain next.
The following subsections will elaborate in more detail on model development related to the mining,
predicting and decision-making subsystem, respectively. We concentrate on explaining computational
models, but note that our observations equally hold for noncomputational models, such as theory testing
using empirical data (theoretical model) or training stewards and crowd managers (mental models). We
exclude actuation and sensing models for the reasons that these models are often formed in an ad-hoc
and often even implicit fashion, and are not easy to generalize.

5.1. Developing a crowd-mining model
The mining model in development as well as the testing subsystem receive data on the crowd state

as input (Figure 4, streams 1a and 1b). This data is considered to be ground truth. Data may come from
actual measurements or be synthetic. The mining model in development uses the input data and produces
output. Both input data and model output feed into the testing subsystem (2). The testing subsystem then
produces feedback based on its acceptance procedure (3). Note that the preprocessing of the input data
(i.e., an accepted mining model) for the testing subsystem can also reside within the testing subsystem.
Given the feedback, the mining model is adapted and the next iteration takes place until the model in
development becomes accepted.

Take, for example, the development of a model M̂ for the identification of crowd patterns based on
smartphone detection through the Wi-Fi hotspots in our continual Arnhem example. In this case, model
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M̂ needs to extract a pedestrian lane within a crowd from the smartphone movement detections. At
the same time, there may be video footage available for the area in question that allows an operational
manager to detect whether lanes have formed. Using human (dis)approval, model M̂ can be gradually
refined until it is accepted as a lane extraction technique. Note that input 1b is not strictly necessary, in
which case a modeler will be dealing with unsupervised learning.

5.2. Developing a crowd-predictive model
The process involved in developing a crowd-predictive model is very similar to that of a crowd-mining

model. Data is received on the state of a crowd (1a,1b), and is again considered to be ground truth. The
model produces output (2) that needs to be checked against the original input, leading to feedback (3) for
further fine-tuning. The input-output-feedback cycle typically iterates until the performance feedback is
considered validated and the model is considered an “accepted” model in the prediction subsystem. Note
that the generated output of the prediction subsystem and the ground truth need to be “comparable”. This
means that either or both types of data may need to be first interpreted by an accepted mining subsystem
model, which takes place inside the testing subsystem, see e.g. [Antonini et al., 2004a].

In our continual example of the city of Arnhem, sequences of movement measurements over time,
i.e. traces, from smartphone movement detections could be used as input to models that simulate crowd
movement, i.e., can predict clogging. Assuming a trace spanning a time interval [0,T ]. By using a
subtrace [t1, t2]⊂ [0,T ] as input for simulations, a modeler can observe the state σ∗(τ) of (a part of) the
crowd at any time τ ∈ (t2,T ] as produced by the simulator and compare it to the actual observed state
σ(τ). Such comparisons will allow for refining the simulation model.

5.3. Developing a decision-making model
A model in development as part of the decision-making subsystem aims at developing a generic rule-

based decision-making model that is able to suggest situation-based action for intervention. Typically,
such a decision-making model relates each of the (possible) scenarios it receives, or extrapolates itself,
to a matching intervention.

The process for developing a model in this case is somewhat different than in the previous two cases.
First, the input (1a in Figure 4) is a “scenario”. As an example, consider the scenario of a crowd in front
of a stage at a festival. Another scenario is that of a crowd waiting to enter a building. Both scenarios
describe a situation in which many people are standing still. However, for each scenario different density
levels should alert a crowd manager but also might involve suggesting different interventions to lower the
density.

Based on the crowd scenario, the decision-making model provides an intervention as output, which
then needs to be evaluated. The testing subsystem receives a scenario-based goal (1b in Figure 4) and the
generated intervention to evaluate whether applying the intervention for the given scenario likely results
in the predefined goal or not. The goal is based on the prescribed standards related to that particular
scenario. Usually these goals revolve around safety, public order, or fun levels. For example, keeping
crowd density in a given area below a certain value is a typical safety goal. In order for the testing
subsystem to come to an evaluation, the impact of the suggested intervention first needs to be ‘produced’.
This can be accomplished either by implementing the intervention using an accepted model from the
prediction subsystem (e.g., computationally simulating what happens if the intervention is executed) or
by sensing (and mining) the results of an actual intervention implementation in a crowd. Given the
feedback of the testing subsystem, the decision-making model is adapted and enters a next iteration until
the scenario-intervention link is considered suitable by the testing subsystem [Schubert and Suzic, 2007].

For a decision-making model in development to become accepted, multiple embedded iterations of the
scenario-intervention rule-learning cycle need to take place. This requires that appropriate rules relating
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Table 2: Key differences in model development between the different subsystems.

Mining models Predictive models Decision-making models
Goal of
model

Classify, or cluster raw crowd data;
extract specific features from raw
data

Generate a future (interpreted)
state

Select a crowd intervention action
for a given interpreted state (a
scenario)

Input Data Data Scenario
Output Data interpretation Crowd state Intervention action
Feedback Match output interpretation to

expected interpretation
Match generated state to expected
next state

Indicator on impact of suggested
intervention in the given scenario,
given decision making goals

Learning
Process

Iterate until accepted Iterate until accepted Iterate until all links between
scenario and interventions are
learned and accepted

Testing Comparison: has the model mined
what was to be expected?

Validation: how good is the
predicted output?

Sensibility: is the proposed
intervention reasonable for the
given scenario?

scenarios and interventions should be learned for all concerned scenarios. Therefore, only when the
appropriateness of the rules for all scenarios has been established, will the model be considered validated
and thus become an accepted model.

In our continual example, we assume that a potentially dangerous situation is encountered, e.g., clog-
ging at a narrow street in the downtown area. The context, consisting of a narrow street and two streams
of pedestrians moving in each others direction, as well as several pedestrian movements from side streets,
may lead to the conclusion that barriers need to be placed to direct pedestrians in a single direction only,
corresponding to a possible intervention for handling the scenario. To predict whether the intervention
will likely produce the expected results for that scenario, the scenario-intervention pair can be fed to a
real-time simulator (an accepted predictive model) and the simulated results can be analyzed (by humans
or an accepted mining model) against the decision-making goals. If deemed effective, the barriers could
be implemented in a fully automated manner as well as information boards providing information, traf-
fic lights, or even automated road blocks. In a practical setting, an operational manager would provide
instructions to security officers to move to one end of the street to prevent more people from entering
through that end.

Table 2 summarizes the various approaches we have discussed.

6. Research on crowd management: a status report

Crowd management commonly strives for safe and enjoyable crowd events. We regard crowd man-
agement as a chain of integrated stages in which crowd managers (possibly aided by automated systems)
monitor, interpret, anticipate, and act, as described in Sections 2 and 3). The ways in which crowd
research addresses this objective of crowd management are rather diverse. We will use the INCROWD

framework as a lens to provide an extensive overview of the various foci and practices. Particularly, as
we shall motivate below, we focus on models in development: what subsystems they focus on, whether
they make use of input, and their testing practices.

This review covers 237 papers, selected as a representative sample of crowd models. The base set
consists of 59 papers and was mainly derived from several review papers [Challenger et al., 2009b;
Bellomo and Dogbe, 2011; Davies et al., 1995; Wijermans, 2011; Zhan et al., 2008]. Each of these review
papers had its own aim and purpose. However all addressed a relevant scope of crowd models from the
perspective of operational support ([Challenger et al., 2009b]), sensors (see, for example, [Baratchi et al.,
2013]), or models in the social sciences ([Wijermans, 2011]). To ensure that we capture a representative
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set, we extracted 142 papers from the references of the base-set papers and 36 from the Safety Science
journal based on a key-word search (crowd).

The papers included in this review aim to contribute to crowd management and together represent the
modeling diversity in crowd research. The extended set of papers were extracted from the papers found
in the review paper references (310) and in the Safety Science journal (144). We excluded a paper when
it was considered off-topic, had an equipment testing focus or was a reflection on crowd management.
More specifically, of the papers that discussed models, two types of models were typically excluded.
Firstly, we excluded models that do not aim to contribute to crowd management but aim to demonstrate a
particular method (e.g. [Epstein, 2002]). Secondly, we excluded models that were already represented by
one or more core models. For instance, there exist many adaptations or specifications of the social-force
model [Helbing and Molnar, 1995]. We thus do not claim completeness in this review, but rather the
representativeness of the wide range of crowd research and reflect on the foci and practices in model
development.

6.1. Review protocol
Our review uses the INCROWD framework as a lens, which means that each paper in the review has

been classified: the framework view, the type of model, and subsystems involved were identified. The
framework view (operational or development) was identified based on whether the model is in use (op-
erational) or in development. The type of the model (actuating, sensing, mining, prediction, or decision-
making) relates to the subsystem in focus. Any other subsystem involved in the model was also indicated.
For the set of models in development, we also indicated whether they had some input and how they were
tested, if at all. If a model reported to make use of an input, we specified whether this input was used
for model design or as input data. Model design input specifies which type of input the model design
choices were based on, e.g., use of a mental model, theoretical model, computational model, or data-
driven design choices. The data input specifies the purpose for which data was used besides model de-
sign, e.g., training, calibration, initial settings, or scenarios. To consider whether a model was tested, we
identified the model aim, the evaluation procedure and whether the authors considered their model tested.
For details on the mapping procedure and also the extensive final dataset of mapped papers, please see
the supplementary data. The classification work was carried out as follows.

For the base set, consisting of 59 papers:

Phase 1, parallel classification The papers were divided into two subsets (A and B). For each subset of
papers, two of the authors (A1, A2, B1, B2) were assigned to review and classify the papers inde-
pendently in parallel. This procedure allowed us to test the applicability of our framework, while
also reducing the influence of our unavoidable disciplinary biases in classifying models from other
disciplines. We note that the five authors all have different disciplinary backgrounds: cognitive
science, physics, computer science, and industrial design and engineering.

Phase 2, preparing the merge Each subset (A and B) were then prepared by one reviewer from the
respective other subset (A by B1 and B by A1). The preparation consisted of finalizing a classifi-
cation (possible when a paper was put in the same category by both reviewers), and highlighting
differences when a paper was not unanimously classified.

Phase 3, the merge In a meeting, with the original reviewers of each subset, the incongruent catego-
rizations were discussed and decided together on the papers final classification. In the process of
discussion, the framework description was reflected upon and improved. Finally, all classifications
were merged into the final dataset.

For the additional 142 + 36 papers, we proceeded as follows:
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Phase 1, individual classification All papers were distributed among the team of five author-reviewers
according to expertise, and subsequently classified individually. In doubt, a second opinion was
sought from within the team.

Phase 2, second opinion Papers marked for a second-opinion where evaluated, discussed and decided
upon together in a meeting.

6.2. Results
Mapping the 237 papers, at first glance shows a major division in model types: 89% of the models are

computational models, the remaining 11% are theoretical models. No mental models were covered. This
skewed distribution of models may be attributed to the different traditions of the natural sciences versus
the social sciences: The use or reference to existing models and a formal level of description are more
present in natural sciences that produce computational models, compared to the social sciences that, if
any, produce theoretical models. The result of no paper discussing a mental model was to be expected.
Mental models are generally not described and form part of the tacit expertise of crowd management
practitioners. Regarding the operational versus the developmental view of the INCROWD framework,
most models (94%) are in development. The relatively low presence of operational models in our litera-
ture review is more difficult to explain. It may indicate that these models are typically developed outside
of academia, hence not reported as publications in academic journals, or that these models are simply
not so abundant. We therefore continue by concentrating on the models in development (223), see the
supplementary data for the dataset and analysis of mapped papers.

Model focus
As shown Figure 5, most models in development belong to the prediction subsystem, followed by

mining subsystem models, while only a few papers focus on the sensing and decision-making subsystems
and, in fact, only one single paper addresses the actuating subsystem. All of the models in development,
except for six, indicate the use of design or data input for their models. This concerns any input for
model design or the use of raw or interpreted data that feeds into the model due to, for example, training,
calibration, initial settings, and scenarios.

The INCROWD framework emphasizes the importance of an integrative view on crowd management:
each subsystem is needed and is dependent on every other subsystem. Without making any judgments
regarding the applicability of current developments for crowd management, the presence of these inter-
dependencies embodies a promise for the (future) ability to support crowd management. As shown in
Table 3 most models depend on an (accepted) model from another subsystem. For example, Anders-
son et al. [2009] train their mining model to detect abnormal behavior using sensing data from a mix of
sensors, such as surveillance cameras, thermal infrared cameras, radar, and acoustic sensors.

The development of sensing and decision-making models show a strong dependence on the use of
accepted models from the mining and the predicting subsystem. Furthermore, as to be expected, the
development of sensing and mining models depend less on the predictive and decision-making models
than the other way around. There are, of course, exceptions of sensing and mining models that make use
of predictive models (such as [Antonini et al., 2004c]) or decision-making models (such as [Andersson
et al., 2009; Drews et al., 2010; Roggen et al., 2011]), respectively. The predictive models vary in their
incorporation of other subsystems. Most of them do not rely on any other subsystem. However, of
those that do relate to other subsystems, we see a variation of combinations. For instance, combinations
with sensing models [Drury and Reicher, 1999, 2000; Moussaı̈d et al., 2011]; with decision-making
models [Helbing, 1992; Helbing et al., 2000]; with mining models [Murakami et al., 2002]; with both
sensing and mining models [Lee and Hughes, 2007; Moore et al., 2008]; and even combinations that
relate the predictive model to all other three subsystems [Johansson et al., 2008; Still, 2000].
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Figure 5: Overview of the 223 papers describing models in development. Shows the research
attention, the input and evaluation of the models per subsystem. Provided in fractions, with
absolute numbers in parentheses.

Table 3: The fraction of models in development that depend on other subsystems. Absolute
numbers are in parentheses.

Subsystem on which model depends
Model in development↓ A S M P DM

Actuating (A) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 (1) 1.00 (1)
Sensing (S) 0.00 (0) 1.00 (12) 0.58 (7) 0.33 (4) 0.00 (0)
Mining (M) 0.00 (0) 0.33 (10) 1.00 (30) 0.20 (6) 0.13 (4)

Predictive (P) 0.01 (2) 0.17 (29) 0.20 (34) 0.99 (170) 0.15 (25)
Decision-making (DM) 0.00 (0) 0.11 (1) 0.33 (3) 0.89 (8) 1.00 (9)

Context
Crowd management is related to a wide range of crowd contexts. Table 4 gives an impression of the

range and attention for different contexts by the models in development. Note that for each paper number
(refID), the corresponding citation and reference can be obtained using Table A.7 and the references.

The context of a model refers to the situation or phenomenon the model is supposed to operate within.
In our review we discern:

• Extreme context: the models apply to extreme crowd situations, such as emergencies (panic,
danger, evacuation), escalation (violence, aggression, conflict), military context (urban combat,
peacekeeping) and large-scale crowd situations where density or size are the defining characteristic
for the extreme setting.

• Generic context: the models apply to non-extreme, general crowd contexts including normal
pedestrian situations and gatherings.

• Context-independent context: the models operate in any context, not restricted to a particular
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crowd context or crowds.

Table 4 shows our findings regarding the context of models in development. Most attention is dedi-
cated to the generic, non-extreme crowd context, of which the majority focuses exclusively on pedestrian
crowds. For example, Moore et al. [2008] aim to generate walking behavior of pedestrian crowds in city
centers while being under the influence of alcohol. The remaining generic models do not specifically
focus on pedestrians.

The second largest group of models target extreme contexts. However, what is considered extreme is
quite diverse: emergencies, escalation, military context, or the large scale of a crowd event. Lastly, there
are a few context-independent models applied to a crowd context. For example, Martella et al. [2014] aim
to sense social dynamics of a group of people in the form of a spatio-temporal social graph from noisy
proximity data applicable in any crowd context (emergencies, riots etc.). The same holds for Roggen et al.
[2011] who aim for recognizing crowd behavior from on-body sensors (i.e., from mobile phones). The
majority of the predictive models cluster around the generic-pedestrian and extreme-emergency contexts,
whereas mining models pay attention to the generic-pedestrian and extreme-large scale contexts.

Table 4: Models in development categorized based on context. Context refers to the situation
in which the model is supposed to actuate (A), sense (S), mine (M), predict (P) or decide (DM).
Provided in fractions, with absolute numbers in parentheses.

Context Sum A S M P DM refID
Extreme:
Emergency

0.36
(81)

0.00
(1)

0.01
(3)

0.01
(3)

0.31
(69)

0.02
(5)

1, 3, 8, 10, 16, 17, 18, 20, 26, 28, 32, 33, 34, 35, 41, 42,
48, 50, 55, 56, 57, 61, 65, 66, 70, 71, 73, 75, 79, 80, 93,
94, 99, 102, 114, 115, 116, 118, 119, 120, 121, 122,
123, 124, 125, 139, 140, 150, 151, 152, 153, 155, 156,
157, 159, 160, 162, 165, 166, 179, 180, 181, 186, 187,
190, 191, 192, 198, 199, 200, 213, 215, 216, 218, 219,
221, 222, 228, 231, 235, 238

Extreme:
Escalation

0.05
(11)

0.00
(0)

0.00
(0)

0.01
(2)

0.03
(7)

0.01
(2)

2, 37, 44, 45, 53, 89, 98, 169, 176, 193, 194

Extreme:
Large scale

0.07
(16)

0.00
(0)

0.00
(1)

0.03
(7)

0.03
(7)

0.00
(1)

5, 6, 7, 9, 27, 87, 90, 91, 108, 110, 134, 147, 161, 168,
171, 223

Extreme:
military

0.01
(3)

0.00
(0)

0.00
(0)

0.00
(0)

0.01
(3)

0.00
(0)

149, 177, 184

Generic:
pedestrian

0.41
(92)

0.00
(0)

0.03
(7)

0.07
(16)

0.31
(69)

0.00
(0)

4, 13, 14, 15, 19, 21, 24, 25, 29, 30, 36, 38, 39, 40, 51,
58, 59, 60, 62, 63, 64, 67, 68, 69, 72, 76, 77, 81, 82, 83,
84, 85, 86, 95, 100, 101, 103, 106, 107, 109, 111, 112,
113, 126, 127, 128, 130, 131, 133, 135, 136, 137, 138,
141, 142, 143, 145, 146, 148, 154, 158, 163, 164, 167,
170, 173, 174, 175, 178, 182, 183, 188, 189, 202, 203,
205, 206, 207, 209, 211, 212, 220, 224, 225, 226, 227,
230, 232, 233, 234, 236, 237

Generic: Other 0.04
(10)

0.00
(0)

0.00
(0)

0.00
(0)

0.04
(10)

0.00
(0)

23, 46, 47, 52, 54, 92, 196, 201, 208, 214

Context-
independent
(neutral)

0.04
(8)

0.00
(0)

0.00
(1)

0.01
(2)

0.02
(4)

0.00
(1)

12, 49, 132, 172, 185, 195, 204, 210

Not fitting 0.01
(2)

0.00
(0)

0.00
(0)

0.00
(0)

0.01
(2)

0.00
(0)

22, 144

Total 1.00
(223)

0.00
(1)

0.04
(12)

0.13
(30)

0.76
(171)

0.03
(9)

Behavior target
We now concentrate on the behavior that the models are targeting. In this case, we refer to the

behavior the authors claim to (re)produce, measure, influence etc. with their model. In our review we
distinguish between the following behavior targets:
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• Motion: when authors focus on movement, walking, grouping, collision avoidance, crowd dy-
namics, queuing, herding, lane formation, flow oscillations, competition, density, clogging, etc.
They typically aim at modeling movement from a start position to a final goal position, taking into
account direction, speed, and obstacle avoidance [Moussaı̈d et al., 2011].

• Collective violence: when authors focus on fights, riots, robbery, incidents, public order, as well
as anomalous behavior related to violence.

• Conformity: when authors focus on consensus, exemplified by aligned behaviors, same opinions,
and/or emotions, and so on (see, e.g. [Feinberg and Johnson, 1990; Johnson and Feinberg, 1977;
Tarnow, 1996]).

• Psychological change: when authors focus on internal, mental processes. For example, there are
various papers that describe the process in which behaviors change based on individuals identifying
themselves as part of a social group [Drury and Reicher, 2000; Drury et al., 2009].

• Diversity of crowd behaviors: in case the authors target a multiplicity of behaviors. For exam-
ple, Nguyen et al. [2005] aim to simulate a large repertoire of behaviors in a crowd relevant to
modern military operations, such as wandering, standing, climbing, pushing, and shooting.

• No behavior target: when authors do not focus on any specific behavior type, but more on e.g.
measuring proximity or tracking people in a crowd.

We summarize our findings in Table 5. Models with motion as the behavior target form by far the
largest group. This group is often also referred to as crowd dynamics models. The group largely intersects
with the groups with a generic-pedestrian context and an extreme-emergency context. In addition, the
motion-model group is mainly populated by predictive and mining models. Models that target a diversity
of crowd behaviors and collective violence reflect the next biggest behavior target focus. Like the motion
models, they are both dominated by predictive models. The models target at no specific behavior and the
motion models are relatively diverse in terms of focal subsystem, but mostly they involve sensing and
mining models.

Model input
Almost without exception, the investigated models in development make use of inputs for their design

or use input data to train, calibrate, or initialize their model (recall Figure 5). In this subsection we
highlight what is communicated about the design of models as well as the use of (interpreted) data in
model development.

Model design is one of the most important—and at the same time the least communicated—stages
of modeling. Therefore, we provide an impression of the sources of crowd models, at least for the cases
in which these were mentioned, and summarized in Figure 6. The design of computational models is
often based on other computational models, and to a lesser extent on theoretical models, or on data.
Often a combination of sources was used to develop computational models. For example, for the Legion
model of crowd dynamics during emergencies, Still [2000] uses data for calibration as well as theoretical
models to derive psychology-based rules to design his agents. In the CROSS model, both theoretical
and computational models are used to model crowd behavior [Wijermans et al., 2013]. In CROSS, the
theoretical model adopts psychology-based variables and rules for model design, similar to Legion. The
computational model used in CROSS refers to the model design choice to adopt the structure of cognitive
architectures. When we look at the design of theoretical models, they are based on other theoretical
models, on data, on computational models, or on a combination of them.
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Table 5: Models in development categorized based on the behavior they target. The behavior
target refers to the behavior the model targets to affect (actuate - A, or sense - S), to interpret
(mine - M), to (re)produce (predict (P), to decide on (DM).

Behavior target Sum A S M P DM refID
Collective
violence

0.05
(11)

0.00
(0)

0.00
(0)

0.01
(2)

0.03
(7)

0.01
(2)

2, 37, 44, 45, 53, 89, 98, 169, 176, 193, 194

Conformity 0.03
(6)

0.00
(0)

0.00
(0)

0.00
(0) 0.03(6)

0.00
(0)

23, 54, 92, 186, 195, 196

Diversity of
crowd
behaviors

0.07
(16)

0.00
(0)

0.00
(0)

0.00
(1)

0.06
(14)

0.00
(1)

3, 9, 21, 26, 49, 52, 57, 149, 177, 184, 187, 200, 204,
214, 225, 228

Motion 0.75
(167)

0.00
(0)

0.03
(6)

0.10
(22)

0.61
(135)

0.02
(4)

1, 4, 5, 6, 7, 8, 10, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25,
28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 50, 51, 55,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 91, 93, 94,
95, 99, 100, 102, 103, 106, 107, 109, 110, 111, 112,
113, 114, 115, 118, 119, 120, 121, 122, 123, 124, 125,
126, 128, 130, 131, 133, 134, 136, 137, 138, 139, 140,
141, 142, 143, 145, 146, 147, 148, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 167, 170, 172, 173, 174, 175, 178, 179, 180, 181,
182, 183, 188, 189, 190, 191, 192, 198, 199, 201, 202,
203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215,
216, 218, 219, 220, 221, 222, 224, 226, 227, 230, 231,
232, 233, 234, 235, 236, 237

Psychological
change

0.02
(5)

0.00
(0)

0.00
(1)

0.00
(0)

0.01
(2)

0.01
(2)

46, 47, 48, 166, 185

No behavior
target

0.06
(13)

0.00
(0)

0.02
(4)

0.01
(3)

0.03
(6)

0.00
(0)

22, 56, 87, 90, 101, 108, 116, 127, 132, 135, 144, 168,
171

Not fitting 0.02
(5)

0.00
(1)

0.00
(1)

0.01
(2)

0.00
(1)

0.00
(0)

12, 27, 42, 223, 238

Total 1.00
(223)

0.00
(1)

0.05
(12)

0.13
(30)

0.77
(171)

0.04
(9)

Model testing
To assess the quality of a model and its application domain, model testing plays a crucial role in

model development. Most models were considered ‘tested’ by their authors. Among the tested models,
a striking diversity in evaluation procedures appeared (see Table 6). If the goal is to develop accepted
models for crowd management, model validation must be part of the evaluation procedure. However,
model validation means different things for each model type in our framework, as it involves determining
whether the model can accurately:

• capture relevant data for the target behavior (sensing model),

• detect or recognize the target behavior (mining model),

• represent or anticipate the target behavior (predictive model) [Law, 2015; Balci, 1995],

• suggest the adequate intervention for handling the target behavior (decision-making model), or

• handle or deal with the target behavior (actuating model).

Departing from the models that were considered tested by their authors, we consider further classi-
fying models based on whether or not they include a reference to an empirical crowd phenomenon. The
evaluation of the models that exclude an empirical phenomena include tests of computational perfor-
mance, e.g. tests of computational speed [Narain et al., 2009], and theory testing, i.e., model explorations
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Figure 6: Design input used by models in development, specified for computational (left) and
theoretical (right) models.

as an evaluation of their model. The theory testing group thus use their models as an accepted model,
i.e., a model that has been tested positively in relation to the empirical phenomenon. For instance, Moore
et al. [2008] test the influence of alcohol on gait, whereas Feinberg and Johnson [1990] test the influence
of the presence of social bonds on the emergence and speed of consensus.

The majority of the tested models incorporate a reference to an empirical crowd phenomenon in their
evaluation. Mostly used is output validation, i.e., the evaluation of the model based on the link be-
tween the behavioral target and the empirical phenomenon. The papers performing output validation are
grouped into nonsystematic and systematic evaluation procedures. Of the models referring to an empiri-
cal crowd phenomenon, about half have a nonsystematic evaluation procedure. This concerns papers that
make loose referrals to reality, for instance, tests based on visual inspection by the model designer, use of
stylized or general observed empirical patterns, references to common knowledge, anecdotal evidence,
etc. Of these papers in the nonsystematic group, most are both predictive and computational models.
Nonsystematic evaluation usually involves no external source of evaluation other than the modeler in
person. The focus lies on finding evidence to support the model, not on explicitly testing them in a way
that could lead to a negative evaluation.

The other half of the models evaluated with a reference to real-world phenomena are categorized as
systematically evaluated. A systematic testing procedure includes comparisons following a method, such
as measuring a goodness-of-fit using statistical analysis or a comparison with other accepted models. In
contrast to the nonsystematic group, which is dominant among predictive models, the systematic group
includes models from all subsystems. Interestingly, the predictive and mining models in our review
dominate in the group using a systematic evaluation procedure. Zooming in a bit further, systematic
evaluation making use of qualitative (descriptive) data is done to a lesser extent than systematic evaluation
using quantitative (numerical) data.

These results indicate that there is not one “common rigor” when it comes to model evaluation.
This diversity concerns particularly the predictive models, whereas all the mining models seem to have
a higher demand for evaluation as well as a common way to perform and communicate their model
evaluation. In the conclusions, we will further reflect on these results and propose a research agenda for
crowd management.

7. Conclusions

In this paper, we proposed the decision-support framework INCROWD guiding towards more inte-
grated support in operational crowd management. Managing crowds is important, if only for purposes of
general safety. As explained, current practice is such that much effort is spent on preparing events so that
no or minimal intervention is needed during an event. However, it is generally accepted that preparation
alone is not sufficient, meaning that monitoring crowds during an event and anticipating interventions
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Table 6: Models in development categorized based on the evaluation procedure of those models
for which the authors consider the models tested. Provided in fractions, with absolute numbers
in parentheses.

Eval. Sum A S M P DM refID
I 0.32

(53)
0.01
(1)

0.01
(1)

0.02
(4)

0.28
(47)

0.00
(0)

7, 10, 14, 16, 19, 24, 28, 29, 42, 52, 56, 58, 59, 63, 68,
69, 70, 71, 73, 89, 91, 92, 100, 106, 107, 109, 113, 133,
146, 161, 162, 163, 173, 175, 180, 181, 188, 189, 191,
193, 201, 202, 203, 208, 209, 210, 213, 215, 223, 225,
226, 236, 237

II 0.13
(21)

0.00
(0)

0.00
(0)

0.02
(4)

0.09
(15)

0.01
(2)

13, 36, 39, 45, 46, 60, 72, 79, 81, 90, 99, 114, 122, 131,
166, 183, 194, 220, 227, 233, 238

III 0.34
(57)

0.00
(0)

0.05
(8)

0.10
(17)

0.17
(29)

0.02
(3)

3, 9, 15, 25, 27, 37, 38, 44, 48, 50, 51, 61, 64, 75, 87,
95, 101, 102, 108, 110, 112, 115, 118, 119, 120, 126,
127, 128, 132, 134, 135, 137, 138, 139, 140, 145, 156,
157, 167, 168, 170, 171, 172, 174, 176, 179, 182, 186,
192, 195, 199, 206, 222, 224, 231, 232, 234

IV 0.10
(16)

0.00
(0)

0.00
(0)

0.01
(1)

0.08
(13)

0.01
(2)

12, 49, 57, 65, 66, 116, 143, 144, 147, 151, 153, 160,
185, 187, 204, 218

V 0.05
(9)

0.00
(0)

0.00
(0)

0.01
(1)

0.05
(8)

0.00
(0)

33, 53, 54, 80, 93, 94, 136, 164, 198

VI 0.06
(10)

0.00
(0)

0.02
(3)

0.00
(0)

0.04
(7)

0.00
(0)

4, 8, 17, 26, 41, 76, 125, 154, 178, 216

Total 1.00
(166)

0.01
(1)

0.08
(12)

0.16
(27)

0.71
(119)

0.04
(7)

I: Link to real phenomenon: nonsystematic
II: Link to real phenomenon: systematic, descriptive

III: Link to real phenomenon: systematic, numerical
IV: No link to real phenomenon: computational performance
V: No link to real phenomenon: theory testing

VI: Not fitting

remains essential. To do so, it is important to accurately measure what is going on, properly interpret
what is being measured, predict what may happen and select suitable interventions by making optimal
use of expertise, knowledge, data and tools, i.e. integrating different crowd models. INCROWD reflects
and integrates these different aspects needed to support crowd management: crowd interaction (actuating
and sensing), mining, predicting, and decision-making. In other words, (semi-)automated support for
decision-making during crowd events, if only for the sake of safety, is important.

Our framework functions as an architecture for supporting decision-making in crowd management
as well as for the development of accompanying models. In particular, for real-time support during a
crowd event, we regard crowd management as a continuous process in which operations are continuously
refined by making use of new information, feedback on earlier interventions etc. This is the reason why
we speak of operations engineering: INCROWD assists in engineering and developing the operations
of managing a crowd. Developing such models is an integral part in our framework, an integration we
consider to be important, reflecting the same continuous development until a model is acceptable for use,
where it can be further refined.

The INCROWD framework thus provides guidance towards integrated support by making crowd man-
agement explicit as subsystems in a decision-support system; how these connect and depend on each
other towards an actual decision; and how the sequence of iterations through the subsystems reflect a
continuous process for decision support. In particular, we firmly believe in the integration of the strength
of both human expertise (assessing complex situations) and computational power (obtaining, processing
and filtering huge amounts of information in little time).

The direct use of the INCROWD framework for crowd practitioners and crowd researchers is to enable
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reflection and actually seek and connect to relevant crowd models. The framework provides concepts to
identify the main focus of their work within the chain of crowd management tasks; helps identify which
relevant connections can be made to other subsystems; and provides a common language to address these
connections irrespective of the type of model (be it a mental, a theoretical or a computational model).
The literature review thus also serves as a set of examples to facilitate the search for relevant models
beyond task or disciplinary scope.

In particular, for crowd research we used our integrative INCROWD framework as a lens to reflect
on the current state of crowd research. In this reflection, we firstly consider the way research is actually
(close to) providing operational support; and secondly, what future crowd research should focus on.

7.1. Actual operational support
In our review we find only few models that can be considered operational, i.e., usable for actual

crowd management. Our research suggests several reasons for this lack of operational support. Model
development is still mainly work in progress and there is a mismatch between, on the one hand, the need
for data, testing, and making models fit for operation, and on the other hand, the relatively little attention
these issues receive in research. Most scholarly attention is dedicated to model development.

The diversity of existing models reflects the diverse reality of crowd behavior and events. It comes as
no surprise that there is no definitive model that captures all necessary knowledge about crowd behavior;
it might even be impossible to strive for one. Somewhat troublesome is the fact that almost a quarter of
the models under development seem not to have been tested or systematically validated, which obviously
hinders their acceptance in actual crowd management support systems.

Although predictive models receive relatively much attention, the opposite can be said for research on
how to sense a crowd. Apart from a study on ways to monitor wildlife [Baratchi et al., 2013], which also
refers to the applicability in the case of monitoring human mobility, there is, to the best of our knowledge,
no systematic study on how to gather information on crowd movements. In addition, although there are
by now datasets on mobility (see, for example, the CRAWDAD collection [Kotz and Henderson, 2005]),
few datasets are available on massive crowd movements. Effectively, the lack of a systematic study on
how to best measure crowd movements, combined with few available datasets, puts model developers in
a challenging position: it becomes difficult to develop models that have been scientifically validated, let
alone develop models that can justifiably be put to operational use. Similar conclusions can be drawn for
the relatively few papers on the decision-making subsystem. In light of our discussion, we see two reasons
for this. First, crowd management support is still in a phase of developing appropriate models, and before
research can even focus on the decision-making phase, it is essential that those predictions can be trusted.
Second, (semi-)automated decision-making support requires more than just computational models: there
is also a need to include context information and involvement from human operators. In other words,
(semi-)automated decision-making is an inherently difficult task. Nevertheless, we would have expected
to see more scientific work in this area as there is so much need for proper support [Challenger et al.,
2009b].

To summarize, although much research on crowds is currently undertaken, actual operational support
is provided only scarcely. We expect that an operational decision-support system for crowd management
would incorporate a multitude of models, each operating at different scales (a person, a group, the crowd
as a whole), and validated through proper data sets and testing. Besides the need for sensing, mining,
prediction and decision-making research, a rather necessary improvement lies in validation. Moreover,
much work is still needed to put developed models to work: how can predictions be used effectively? Do
scientists actually study the crowd behaviors that would support crowd managers? Is there a dialogue
between researchers and crowd managers to align needs and focus?
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7.2. Points of attention for crowd research
Taking this review as our starting point, it is now possible to identify several areas of crowd research

that deserve more attention to move closer to operational crowd management support. We distinguish
between improvements that involve aspects of model development, i.e., validation, multi-scale techniques
and interaction between disciplines (within and outside of science), as well as particular needs to sense
and mine data for decision-making tools to bring it all together and move towards more actual support.

Model development – general points for improvement. It is clear from our review that much scholarly
attention is already dedicated to model development. We explained that model validation is an important
issue that needs improvement. This is crucial if research wants to take the next step toward practical
crowd management support. Apart from validation issues, crowds remain difficult phenomena to model,
and it can be expected that models are needed at different crowd scales: a person, a group, a whole crowd.
The need for multiple scales brings us to a general observation that has also been made in other fields,
namely that there is a need for developing multi-scaling techniques. In essence, such techniques allow for
linking micro-level models to models that comprise the collective behavior of a crowd (see,e.g. [Bellomo
et al., 2013; Tosin, 2014]). Although research is already being conducted in this area, we anticipate that
much more is needed for arriving at crowd management support systems.

Lastly, we want to stress the importance of more interaction within crowd research (i.e., connecting
to other disciplines and fields) and between crowd research and practice. Conducting interdisciplinary
integration can help make use of and focus on necessary knowledge and tools accumulated in relevant
disciplines. It can also contribute to working with a relevant focus that aligns crowd research with the
needs of crowd managers. In particular, within (crowd) research it seems quite common to stay within
ones own discipline or niche. Particularly, the connection between computer science and the social
sciences is not well developed. Hence, our paper also serves to point out relevant existing models,
valuable for crowd researcher in any discipline. Ignorance of former research, even if stemming from
other domains, holds the danger of using outdated ideas i.e., perpetuating myths and thus potentially
cause (or not prevent) harmful operational consequences [Wijermans et al., 2013].

The need for more data – more focus on crowd sensing and mining. As noted, there is relatively little
research on how to automatically sense what is happening in a crowd. Data sets are gradually becoming
available, but little systematic thought has been given to the data that scientists would need, and subse-
quently how such data could be automatically obtained through various sensing mechanisms, exceptions
are, for instance, [Bernardini et al., 2016; Siddiqui and Gwynne, 2012]. Related, we also observe that
mining crowd data is still in its infancy; not surprisingly, since crowd research is still dealing with the
lack of sufficient data. It appears to us that there is a lot to gain here, if only for the reason that mining
crowd data sets will help researchers validate predictive models. The use of sensing data may lead to an
impulse towards developing and validating adequate models and tools for crowd management [Gwynne
et al., 1999; Bryan, 1999].

The need to move to actual operational support – a prominent role for decision-making. Another con-
clusion from our review is that research needs to come to more reliable predictions on which subsequent
intervention decisions can be based. In essence, what is needed in our opinion, is research on the semi-
automated selection of possible scenario-intervention pairs: Once data sensed from a crowd has been
analyzed (mined) and predictions on its future have been made, it should, at least theoretically, be possi-
ble to suggest interventions for managing the crowd toward a desirable state. However, such suggestions
are highly dependent on the context in which an observed crowd is considered. Subsequently, data is
needed for studying similar situations on which new decisions could then be based. Such situations need
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to be recognized, i.e., described, searchable, and identifiable in an automated fashion. It is clear that
much more research is needed to advance especially this part of the field.

To conclude, in order to address the shortcomings in research identified, our INCROWD framework
makes two valuable contributions. First, it describes a high-level architecture for decision-support in
crowd management. Second, by integrating the diverse crowd management tasks and stages with the
necessary model development steps, we structure the field in a way that it becomes easier to identify
where to focus scholarly attention.
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Appendix A. Review references

This appendix contains an overview of the 237 papers used in the survey. Each paper is referred to
by a number throughout our status report on crowd research in section 6. For each paper number, the
corresponding citation and reference can be obtained using Table A.7 and the references.
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Kretz, T., Grünebohm, A., Schreckenberg, M., 2006b. Experimental study of pedestrian flow through a bottleneck.

Journal of Statistical Mechanics: Theory and Experiment (10), P10014.
Kretz, T., Schreckenberg, M., 2006. F.A.S.T. - Floor field- and Agent-based Simulation Tool. ArXiv Physics e-

prints.
Kretz, T., Wölki, M., Schreckenberg, M., 2006c. Characterizing correlations of flow oscillations at bottlenecks.

Journal of Statistical Mechanics: Theory and Experiment (02), P02005.
Lakoba, T. I., Kaup, D. J., Finkelstein, N. M., 2005. Modifications of the Helbing-Molnar-Farkas-Vicsek social

force model for pedestrian evolution. Simulation 81 (5), 339–352.
Langston, P. A., Masling, R., Asmar, B. N., 2006. Crowd dynamics discrete element multi-circle model. Safety

Science 44 (5), 395–417.
Law, A. M., 2015. Simulation Modeling and Analysis, 5th Edition. McGraw-Hill.
Lee, K. H., Choi, M. G., Hong, Q., Lee, J., 2007. Group behavior from video: a data-driven approach to crowd

simulation. In: Proceedings ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM, pp.
109–118.

Lee, R. S., Hughes, R. L., 2006. Prediction of human crowd pressures. Accident Analysis & Prevention 38 (4),
712–722.

Lee, R. S., Hughes, R. L., 2007. Minimisation of the risk of trampling in a crowd. Mathematics and Computers in
Simulation 74, 29–37.

Leggett, R., 2004. Real-time crowd simulation: A review. http://www.leggettnet.org.uk/docs/
crowdsimulation.pdf, online; accessed 19 January 2015.

Leibe, B., Seemann, E., Schiele, B., 2005. Pedestrian detection in crowded scenes. In: Proceedings Conference on
Computer Vision and Pattern Recognition. Vol. 1. IEEE, pp. 878–885.

Lerner, A., Chrysanthou, Y., Lischinski, D., 2007. Crowds by example. In: Computer Graphics Forum. Vol. 26.
Wiley, pp. 655–664.

Li, D., Han, B., 2015. Behavioral effect on pedestrian evacuation simulation using cellular automata. Safety Science
80, 41 – 55.
URL http://www.sciencedirect.com/science/article/pii/S0925753515001678

Li, J., Cai, R., de Ridder, H., Vermeeren, A. P., van Egmond, R., 2014. A study on the relation between crowd
emotional feelings and action tendencies. In: Proceedings of the 8th Nordic Conference on Human-Computer
Interaction: Fun, Fast, Foundational. ACM, pp. 775–784.

34



Li, M., Zhao, Y., He, L., Chen, W., Xu, X., 2015. The parameter calibration and optimization of social force model
for the real-life 2013 ya’an earthquake evacuation in china. Safety Science 79, 243 – 253.
URL http://www.sciencedirect.com/science/article/pii/S0925753515001605

Liao, W., Zheng, X., Cheng, L., Zhao, Y., Cheng, Y., Wang, Y., 2014. Layout effects of multi-exit ticket-inspectors
on pedestrian evacuation. Safety Science 70, 1 – 8.
URL http://www.sciencedirect.com/science/article/pii/S0925753514001003

Lin, P., Lo, S. M., Yuen, K., Huang, H.-C., Liang, J., 2007. A granular dynamic method for modelling the egress
pattern at an exit. Fire Safety Journal 42 (5), 377–383.

Lo, S., Fang, Z., 2000. A spatial-grid evacuation model for buildings. Journal of Fire Sciences 18 (5), 376–394.
Lo, S., Fang, Z., Lin, P., Zhi, G., 2004. An evacuation model: the SGEM package. Fire Safety Journal 39 (3),

169–190.
Lo, S. M., Huang, H.-C., Wang, P., Yuen, K., 2006. A game theory based exit selection model for evacuation. Fire

Safety Journal 41 (5), 364–369.
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