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Abstract—In the rapidly evolving decentralized finance (DeFi)
ecosystem, ensuring efficient and interoperable transaction mech-
anisms is a critical challenge. To address this issue, this paper
introduces a strategic optimization model for a blockchain-
based token exchange platform. By leveraging the principles
of Coincidence of Wants (CoWs) and multi-chain Automated
Market Makers (AMMs), our model enhances interoperability
and efficiency of token exchange in the DeFi space. Users
specify their transaction intents and solvers compete to find
the most efficient execution pathways, considering factors such
as available liquidity and market constraints. This approach
not only facilitates seamless cross-chain transaction flows, but
also optimizes the efficiency of existing solvers and reduces the
reliance on centralized mechanisms. To validate the effective-
ness of the proposed model, we conducted extensive simulation
experiments assessing the model’s performance with various
order inputs and AMM constraints. The results show that
our optimization model significantly increases the transaction
completion rate. This improvement ranges from 26.1% to 46.1%
compared to the CoWs-only model under different experimental
settings. This enhances user welfare and market fairness. The
proposed optimization model has broad applicability to efficient
and interoperable cross-chain token transactions. Thus, it has a
significant potential impact on the DeFi landscape.

Index Terms—Solvers, coincidence of wants, automated market
makers, user welfare optimization, cross-chain liquidity

I. INTRODUCTION

A blockchain is a ledger or database of digital transactions,
shared among nodes of a computer network [1]. This comput-
ing solution has risen in popularity over the years since the
first blockchain, Bitcoin, was created in 2008 [2]. For example,
the banking and financial services sector of the blockchain
market alone grew from $1.89 billion in 2022 to $3.07 billion
in 2023 (a compound annual growth rate of 62.1%) [3]. Cryp-
tocurrencies (“crypto”) and other digital assets that operate
in blockchain networks have been a significant factor in this
growth, with the total crypto market capitalization doubling
in 2023 [4]. Together, crypto and blockchain technology have
enabled a robust market for decentralized finance (DeFi), an
industry of crypto-based transactions, exchanges, and other
financial services.

Within DeFi, there are a number of mechanisms that
facilitate the settlement of crypto transactions. Automated
market makers (AMMs) play a particularly important role.
AMMs are institutions that stand ready to buy or sell assets
automatically. They do so by allowing traders to place orders
within the AMM using algorithmic pricing [5]. These entities

are an improvement of traditional market makers, which are
not automated and thus required more intensive means of
establishing prices.

While AMMs are important in crypto transactions, it is pos-
sible to settle transactions without them. Notably, transactions
can be settled via the Coincidence of Wants (CoWs) principle
[6]: an economic phenomenon where two or more parties
coincidentally hold an item or asset that the other wants.
Thus, these parties can exchange directly with one another
without an intermediary exchange like an AMM. In the case
of crypto, a CoW occurs when transactions are coincidentally
the opposite of one another (i.e. a transaction swapping asset
A for asset B and another to swap asset B for asset A form a
CoW) [7]. By removing the need for a market maker, settling
a crypto transaction via a CoW requires less information to be
processed on-chain. This is often more time- and cost-efficient,
and thus considered preferable to AMM settlement.

Despite its many advancements such as AMMs, DeFi is
still an evolving industry [8]. One persisting limitation is
the lack of interoperability between blockchains. Specifically,
interacting with DeFi processes across multiple blockchains
is quite complex; users must navigate between many apps
and wallets, perform multiple transactions, and identify op-
portunities quickly before they disappear. Moreover, there are
many barriers between different blockchains, meaning users
and subsequently liquidity cannot seamlessly transact between
ecosystems. Existing crypto transaction settlement tools do not
address these issues. For example, there is a lack of cross-chain
AMM solutions.

As a result, in the blockchain and DeFi space, popular areas
of research and development include cross-chain interoperabil-
ity [9], [10] and advanced intents/solvers [11], [12]. However,
these ideas have yet to be combined; there is not a cross-
chain intent settlement framework available on the market.
Such a framework would enable users to simultaneously take
advantage of the benefits of both intents/solvers and cross-
chain interoperability.

To this end, this paper aims to propose a strategic opti-
mization model for enhancing solvers that compete to facilitate
crypto transaction intents using CoWs and multi-chain AMMs.
We further outline the expected impacts and contributions of
our model to the DeFi ecosystem. When integrated with cross-
chain infrastructure (like the Picasso Network [13] and Mantis
[14] developed by the Composable Foundation [15]) our opti-

97

2024 IEEE International Conference on Blockchain (Blockchain)

2834-9946/24/$31.00 ©2024 IEEE
DOI 10.1109/Blockchain62396.2024.00022

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

lo
ck

ch
ai

n 
(B

lo
ck

ch
ai

n)
 |

 9
79

-8
-3

50
3-

51
59

-0
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
BL

O
CK

CH
AI

N
62

39
6.

20
24

.0
00

22

Authorized licensed use limited to: TU Delft Library. Downloaded on October 14,2024 at 09:43:39 UTC from IEEE Xplore.  Restrictions apply. 



mization model simplifies cross-chain token intent settlements
and token exchanges, thereby improving completion rates and
delivering significant benefits to users.

The remainder of this paper is organized as follows: Sec-
tion II (Background and Related Work) defines and describes
relevant concepts. Section III (Proposed Optimization Model)
details a system designed to optimally solve intents within
a cross-chain context. The experimental results are presented
in Section IV (Experimental Results). Finally, Section V
(Conclusion and Future Work) summarizes the findings and
discusses areas for future research.

II. BACKGROUND AND RELATED WORK

This section outlines the foundational concepts and prior
research pertinent to our study, encompassing topics such
as intents and solvers, CoWs, types of market makers, and
cross-chain interoperability. These areas form the theoretical
underpinnings of our proposed models and are critical for
understanding the subsequent discussions.

A. Intents and Solvers

In the evolving blockchain and DeFi ecosystem, “intents”
and “solvers” have become pivotal concepts, exemplified by
platforms like Anoma [11], SUAVE by Flashbots [16], and
CoW Swap by CoW Protocol [12]. An intent generally refers
to a user-defined set of constraints for cryptocurrency trans-
actions, outlined as an off-chain signed message indicating
desired state transitions [11]. Unlike fixed transactions, intents
allow for flexibility in the execution path, aiming for optimal
outcomes such as cost savings.

Solvers, on the other hand, are entities that devise the most
efficient execution pathway for these intents. They compete
to provide the best price or terms for a user’s order. The suc-
cessful solver executes the transaction and potentially receives
rewards [17]. This competition ensures users receive favorable
transaction terms. Moreover, the use of uniform clearing
price batch auctions within this system helps prevent miner
extractable value (MEV) attacks by eliminating disparities in
order fulfillment prices, thereby safeguarding against front-
running and similar strategies [7].

B. Coincidence of Wants

Coincidence of Wants (CoWs) is an economic phenomenon
wherein each party possess an item or items that the other party
desires, and thus are able to exchange these items directly to
meet their wants [7]. When applying this concept to blockchain
and cryptocurrency, a CoW enables two users’ orders to be
matched for settlement without the need for an external market
maker or liquidity provider. In the case of intents, this principle
means that a user’s intent can coincidentally be the opposite
of another user’s intent (e.g. one intent to swap A for B and
another to swap B for A form a CoW).

In the intent settlement framework discussed presently,
CoWs are one means in which solvers may settle user intents
[17]. This is arguably the optimal means for intent settlement
whenever CoWs are available, due to the lack of a need for

an external market or liquidity (which thus eliminates any
fees associated with use of external markets). Therefore, in
the optimization model presented in this paper, CoWs are a
prioritized form of intent settlement.

C. AMMs, CFMMs, and Cross-Chain Interoperability
Automated market makers automate the traditional market-

making process, which typically requires maintaining a con-
stant presence to buy or sell assets. By enabling users to place
orders at algorithmically determined prices, AMMs facilitate
efficient trading in decentralized markets [5]. By contrast,
constant function market makers (CFMMs) are a specialized
subset of AMMs that operate through smart contracts. Liq-
uidity providers contribute capital to CFMMs, which then
continuously facilitate trades based on a predefined trading
strategy articulated through a function of its asset reserves
[18]. This model ensures liquidity and price stability within
DeFi platforms.

Several notable types of CFMMs include the constant prod-
uct model, exemplified by Uniswap v2 [19], which maintains
a constant product of the reserves of two assets to ensure
liquidity regardless of market size. The constant sum model
[5] trades assets such that the sum of the reserves remains
unchanged. This model is suitable for markets with stable
asset values. Meanwhile, the constant mean model, used by
Balancer [20], employs a weighted average of several assets
to define the trading function, accommodating diversified
liquidity pools.

Cross-chain interoperability is crucial in blockchain tech-
nology, enabling asset and information flows between inde-
pendent blockchains. It involves asset exchanges and commu-
nication between disparate ledgers, extending to synchronized
transactions across multiple ecosystems [9]. This capability
unlocks new functionalities in cryptocurrency, such as effi-
cient asset bridging, unified governance, and enhanced cross-
chain DeFi activities like liquidity pooling, lending, and yield
farming. These functions significantly broaden potential user
engagement and returns within the DeFi sector [21]. Prominent
technologies enabling this include the Inter-Blockchain Com-
munication Protocol, exemplifying progress in the field [10].
Despite advancements, there remains a lack of comprehensive
frameworks for cross-chain intent settlement. This paper pro-
poses an optimization model for solvers to establish a robust
framework for this purpose.

III. PROPOSED OPTIMIZATION MODEL

In this section, we first present a system overview of the
proposed intent settlement framework. Then, we detail our
optimization model, which consists of a main CoWs-based
model and a CFMM-based nested optimization model. Finally,
we discuss other constraints and considerations for refining the
integrated model.

A. System Overview
The system presented in this section is an intent settlement

framework designed to optimize the settlement of cryptocur-
rency transactions across multiple blockchain networks. The
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Fig. 1. System overview of the proposed intent settlement framework.

system’s goal is to enhance the DeFi ecosystem’s efficiency
and interoperability.

The system overview is depicted in Fig. 1. The process
begins when users submit their intents. The solver protocol
then collects these intents. Each intent specifies parameters
of the desired transaction, such as swaps between differ-
ent cryptocurrencies. At the core of the model is a solver,
which executes an optimization algorithm to match orders.
In practice, to avoid a centralized single point of failure, the
distributed solvers compete to solve the optimization model
separately. The solver that provides the most user welfare will
be selected as the winner and granted the right to settle the
intent.

In this system, solvers make an initial attempt to ensure that
direct matches between opposite user intentions are prioritized
using the principle of CoWs, thus reducing transaction costs
and increasing speed. This matching is facilitated through a
uniform price batch auction system where transactions are
aggregated and executed at a uniform price. This makes
transaction order irrelevant within the block, undermining the
ability for MEV bots to extract value [7]. For intents that
cannot be directly matched via CoWs, the solver routes these
orders to CFMMs located on various blockchain networks.
This ensures that liquidity is utilized efficiently and that
transactions are completed even when direct counterparties are
not immediately available. The architecture supports multiple
CFMMs across different chains, reflecting a robust approach
to handling a diverse set of transaction scenarios and user
demands. The model’s integration of CoWs with cross-chain
CFMM routing optimizes the flow of digital assets across
disparate blockchain environments. Accordingly, the model
significantly enhances user experience by providing faster,
cheaper, and more reliable transaction settlement.

B. Main Optimization Model for CoWs

In this section, we discuss the CoWs optimization model
that dictates the decision-making process among users. This
is designed to maximize trading utility. The utility function
integrates the individual utilities of a set of trading orders,
factoring in the specifics of each order type—either limit-buy
or limit-sell—and relevant parameters.

The utility functions for limit-buy and limit-sell orders are
designed to accommodate both full and partial executions at

a specified limit exchange rate π. This ensures adherence to
quantity and price constraints. For a limit-buy order involving
the purchase of x units of token k and the sale of y units
of token j at rate π, the utility is (x · π − y) · pb,k. Here,
x · π is the ideal payment in token j for x units of token
k, and y is the actual payment. The utility captures the net
benefit, factoring in the internal clearing price pb,k. Similarly,
the utility for a limit-sell order which entails selling y units
of token k to buy x units of token j at rate π, is calculated
as

(
x− y

π

)
·pb,j . This formula evaluates the trade’s efficiency

when fully or partially executed. y
π represents the received

equivalent in token j. The difference between the ideal and
actual tokens received, multiplied by the internal price pb,j ,
quantifies the utility derived from the transaction. Thus, we
can define objective as:

1) Objective: The main goal of the CoWs optimization
model is to maximize the total trading utility uCoWs:

max

[
uCoWs =

No−1∑
i=0

(ui − gi)

]
where ui, gi, and No are defined as follows:
• If order i is a limit-buy order, then ui = (xi ·π−yi) ·pb,k.
• If order i is a limit-sell order, then ui =

(
xi − yi

π

)
· pb,j .

• gi is the constant cost incurred by the order execution.
• No is the total order number.
2) Constraints: The trading rules for CoWs are adapted

from the CoW Swap model [12]. CoW Swap uses the follow-
ing definition of a set of valid trading constraints for limit-buy
and limit-sell orders based on exchange rates and order size
limits: “the order either is fully executed and the limit price is
respected, or it is partially executed and is traded at its limit
price.” [22]. To simulate this scenario, we can set a binary
variable bi to enforce these constraints. bi = 1 corresponds to
one set of conditions and bi = 0 corresponds to another.
Trading volume limit: We first set the maximum values of
xi and yi. For all i ∈ N0, we set:

xi ≤ xmax

yi ≤ ymax

Trading rules for limit-buy orders: For all i ∈ N0 with limit-
buy order, we set M = xmax + 0.001, where 0.001 serves as
an arbitrary small adjustment value to ensure the constraints
are properly implemented.

xi · (π − 0.001) · bi ≤ yi ≤ xi · π
xi + 0.001−M · (1− bi) ≤ xmax ≤ xi +M · bi

Trading rules for limit-sell orders: Similarly, for all i ∈ N0

with limit-sell order, we set N = ymax + 0.001:

xi · (π − 0.001) · bi ≤ yi ≤ xi · π
yi + 0.001−N · (1− bi) ≤ ymax ≤ yi +N · bi

Here, we employ the Big-M formula, using large constants
M and N for limit-buy and limit-sell orders respectively. This
introduces a linear relaxation of binary constraints, simplifying
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the solution process. For both order types, setting bi = 1
ensures that orders are executed exactly at the specified limit
exchange rate ( yi

xi
= π), with xi < xmax for buys and

yi < ymax for sells, respectively. Conversely, when bi = 0,
the constraint yi

xi
≤ π maintains that no orders exceed the

limit exchange rate, with xi set at xmax for buys and yi at
ymax for sells.

These constraints effectively capture the dynamics of trad-
ing with limit orders, accurately reflecting the strategic
decision-making based on traders’ risk tolerance and market
expectations. Resultantly, we enhance the realism and appli-
cability of our trading model.

C. Combined Volume Constraints

To execute asset swaps, we initially use the CoWs method
due to its efficiency in facilitating direct trades among users.
If a trade cannot be fully executed using CoWs, we employ
CFMMs to process the remaining portion. This approach en-
sures swift and streamlined execution, optimizing the trading
process and minimizing potential delays and slippage. In cases
where CoWs is insufficient, CFMMs serve as an alternative to
complete the transaction.

1) Partial Execution with CoWs: Given the available vol-
ume limit for the CoWs model:

xi ≤ VCoWs,xi

yi ≤ VCoWs,yi

Here, VCoWs,xi and VCoWs,yi are maximum volumes set by
the solver, adjusted dynamically based on operational needs
and strategy to optimize trading efficiency. Conversely, xmax

and ymax (which are discussed in the previous section) are
user-set upper limits on the order sizes, defining the maximum
tokens to be traded. The distinction is critical as VCoWs,xi

can be altered to facilitate more transactions within the limits
of xmax and ymax, or to manage risk and adapt to market
conditions. This ensures transactions under CoWs operate
within user constraints and maintain flexibility in execution.

2) Remaining Trades in CFMMs: When a trade surpasses
the available volume in CoWs, the residual trade for assets is
represented by ∆xi and ∆yi and is redirected to the CFMMs:

∆xi = max(0, xi − VCoWs,xi)

∆yi = max(0, yi − VCoWs,yi)

Here, the max function ensures the residual trade amounts
(∆xi and ∆yi) are not less than zero. Specifically, if the vol-
ume of the trade exceeds the available volume in CoWs orders,
the surplus is calculated using this function and redirected
to CFMMs. This ensures that any excess demand is properly
managed.

CFMMs, with their inherent constant functions, are
equipped to handle these trades. Taking the constant product
CFMM as an example, for a liquidity pool with assets e1,i and
e2,i, the constant product is:

ki = e1,i × e2,i

For a given trade volume ∆xi in asset 1, the corresponding
trade in asset 2 is:

∆yi =
ki

e1,i +∆xi
− e2,i

To maintain pool liquidity, we can set:

∆xi ≤ α× e1,i

∆yi ≤ α× e2,i

where α is the pool liquidity coefficient.

D. Nested Optimization Model for CFMMs

To optimize a trade in CFMMs, we seek to maximize a
utility function, U(Ψ), that accounts for the total value of the
trade and subtracts any fixed transaction costs. The variables
and constraints encapsulate the trade volumes, liquidity con-
siderations, and fees associated with the CFMMs.

To model an optimization problem for CFMM-based opti-
mal routing across multiple blockchains, we need to incorpo-
rate an additional dimension that represents each blockchain
platform. Let us denote the set of blockchain platforms as B
and its cardinality (the number of blockchains) as n.

1) Objective: The main goal is to maximize the utility
derived from trading while accounting for fixed transaction
costs that may vary across different blockchains.

max

uCFMMs = U(Ψ)−
n−1∑
j=0

g′jηj


where U(Ψ), Ψ, g′j , and ηi,j are defined as follows:
• U(Ψ) is an equation mapping the number of traded tokens

to utility, which can be defined as an arbitrary function.
• Ψ is the total net number of tokens tendered to the

CFMMs in the network. Specifically:

Ψ =

n∑
j=1

m∑
i=1

Ai,j(∆yi,j −∆xi,j)

where Ai,j is the coefficient matrix that shows the
weights of trade on CFMM i on blockchain j.

• g′j is the constant cost incurred by the order execution.
• ηi,j is a binary decision variable indicating whether or

not to trade on CFMM i on blockchain j.
2) Constraints: The constraints considered for multi-chain

CFMM transactions include:
Liquidity Constraint: This ensures the liquidity of any
CFMM does not go below its initial state after a trade.

φi,j(Ri,j + γi,j∆xi,j −∆yi,j) ≥ φi,j(Ri,j) ∀i, j

where φi,j is the trading function of CFMM i on blockchain
j. Examples of trading functions are the product function, the
sum function, and the weighted geometric mean function [23].
Ri,j is the current reserves and γi,j is the commission fee.
Trading Volume Limit: This bounds the trade volume based
on the liquidity and decision to trade on a specific CFMM on
a blockchain.
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0 ≤ ∆xi,j ≤ ηi,j∆
max
x,i,j ∀i, j

∆yi,j ≥ 0 ∀i, j

E. Other Considerations

1) Uniform Clearing Prices: For each batch (for CoWs
and CFMMs), a uniform price is applied to constrain market
volatility. Uniform pricing ensures all transactions in a batch
are executed at the same price, enhancing market fairness and
stability.

• ∀i ∈ {0, 1, . . . , No − 1} , xi · pb,j = yi · pb,k
• ∀i ∈ {0, 1, . . . , Nc − 1} , a1,i · pb,ju,i

= a2,i · pb,ku,i

2) Gas Cost Incorporation: In the optimization of trading
models, accounting for gas costs is critical for achieving
realistic assessments of net gains and losses. Each order

i

incurs not only a straightforward gas cost gi in the CoWs
model, but also complex and varied costs when routed through
CFMMs. Specifically, CFMM gas costs g′i can be broken down
into three main components: gswap,i, gdelay,i, and gnetwork,i.

g′i = gswap,i + gdelay,i + gnetwork,i

gswap,i covers transaction fees for asset swaps facilitated
by the market maker’s smart contracts. gdelay,i accounts for
costs associated with execution delays, which can arise from
blockchain congestion or sequential processing, reflecting
price slippage and opportunity costs. Lastly, gnetwork,i includes
fees paid to the blockchain network, varying with network
demand, which ensure prompt trade execution. These com-
ponents together encapsulate the primary expenses incurred
during CFMM routing.

The total gas cost for order i is then: gtotal,i = gi+ g′i. The
constraints related to the total gas costs include:

No∑
i=1

gtotal,i ≤ G

Based on the whole model presented in this section, the flow
of transaction processing can be described as an integrated
optimization algorithm (as shown in Algorithm 1).

IV. EXPERIMENTAL RESULTS

This section shows the experimental results for our proposed
optimization model. We first describe the settings and then
present the experimental results for CoWs, CFMMs, and the
integrated optimization model.

A. Experiment Settings

1) Solver Configuration: The experiments were conducted
using the Gurobi Optimizer version 9.5.1. The optimization
model is implemented using Python.

Algorithm 1 Integrated Optimization Algorithm for Solvers
Require: N0 (total number of orders), Nc (total number of CFMMs),

x and y (trade volume vectors), π (exchange rate), pb,k and pb,j
(buy and sell clearing prices), gi (gas costs for CoWs), g′i (gas
costs for CFMMs)

Ensure: Optimized trade execution strategy via CoWs and CFMMs
1: Initialize binary variables bi for CoWs to
2: Define utility functions ui for orders and a global utility maxi-

mization goal
3: for i = 0 to N0 − 1 do ▷ Iterate through each order
4: if Order i is limit-buy then
5: Compute utility ui = (xi · π − yi) · pb,k
6: else if Order i is limit-sell then
7: Compute utility ui =

(
xi − yi

π

)
· pb,j

8: end if
9: Apply CoWs trading rules to attempt full execution

10: if order i not fully executed then
11: Calculate unexecuted volumes ∆xi, ∆yi
12: Route remaining volume to CFMMs for execution
13: end if
14: end for
15: for i = 0 to Nc − 1 do ▷ Optimize trade execution in CFMMs
16: Apply CFMM trading constraints for liquidity and execution
17: end for
18: Compute total gas costs gtotal,i = gi + g′i for each order
19: Apply gas cost constraints and ensure net utility exceeds gtotal,i
20: return Comprehensive trade execution strategy

2) Order Details: Orders are represented as tuples consist-
ing of buy/sell token indices j and k, buy and sell limits xm

and ym, exchange rate π, and order type t (where ‘b’ indicates
a limit-buy order and ‘s’ indicates a limit-sell order). Below
are the details of the simulated five orders:

TABLE I
DETAILED INFORMATION OF EACH SIMULATED ORDER

Order j k xm ym π t
1 0 1 11 74 6.73 b
2 0 1 65 10 0.15 b
3 0 1 57 89 1.56 b
4 1 0 73 100 1.37 b
5 1 0 35 56 1.6 s

3) CFMM Configuration: Experiments involved five simu-
lated CFMMs. Each was on a different blockchain with fixed
transaction costs, fees, token indices, and specific reserves:

TABLE II
CFMM TRANSACTION COSTS, FEES, RESERVES, AND TOKEN INDICES

CFMM Transaction Cost Fee Token Indices Reserves
1 0.1 2% [0, 1, 2] [3, 0.2, 1]
2 0.2 1% [0, 1] [10, 1]
3 0.15 4% [1, 2] [1, 10]
4 0.25 3% [0, 2] [20, 50]
5 0.1 1% [0, 2] [10, 10]

B. Optimization Model of CoWs

The four figures (Section III-E2) in the first row of Fig. 2
depict variations in objective values in relation to order buy
and sell limits, under different exchange rate scenarios. No-
tably, the first figure illustrates a declining trend in objective
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values as the buy limit increases for a limit-buy order sce-
nario. This suggests that higher buy limits may lead to less
favorable outcomes under certain conditions, potentially due
to diminishing returns on increased buy limits. Conversely, the
second figure in the row shows an ascending trend in objective
values with increasing sell limits, indicating that higher sell
limits can enhance outcomes by facilitating better matching
opportunities or more favorable sell conditions. The third
and fourth diagrams in the sequence further investigate the
complex interplay between order limits and objective values.
Within the context of a limit-sell order, the objective value is
shown to escalate swiftly. This value reaches a peak as both
the buy limit and sell limit are increased, then declines and
subsequently stabilizes. The time required to reach this peak
correlates with the value of π. These observations underscore
the intricacies involved in optimizing trading strategies within
a simulated CoWs environment.

The second row of Fig. 2 presents figures that explore the
relationship between clearing prices and various factors such
as order limits and pricing strategies. The plots illustrate how
clearing prices adjust in response to changes in the order buy
and sell limits across different settings. In scenarios involving
both limit-buy and limit-sell orders, the variation in the clear-
ing price exhibits greater stability upon incrementing the sell

limit. Here, the clearing price of token 1 consistently remains
marginally higher, albeit with minimal fluctuation. Conversely,
when the buy limit is elevated, the clearing prices of the two
tokens exhibit more pronounced shifts and may even intersect.
These dynamics may be attributed to the intricacies inherent
in the settings of the order parameters and the constraints of
the model.

The final row of Fig. 2 provides a detailed examination of
the number of tokens transacted, exploring how this metric
adapts to varying buy and sell limits as well as exchange
rates. The analysis reveals that for limit-buy orders, as the buy
limit increases, the number of tokens initially rises to a peak
and then sharply declines. This trend suggests that, within a
certain range of increased buy limits, initial increments can
enhance economic benefits such as average pricing. However,
surpassing a specific threshold may lead to increased costs
due to constraints imposed by other market conditions. For
limit-sell orders, the number of tokens remains more stable
with increasing sell limits, indicating that the model is less
sensitive to changes in sell limits.

C. Optimization Model of CFMMs

The diagrams in Fig. 3 offer a comprehensive analysis of
dynamics across three different CFMM types: 1) constant
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Fig. 2. Results of different simulation experiments for the optimization model of CoWs (fully executed).
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product (using Uniswap v2 [19] as an example); 2) constant
sum [5]; and 3) constant mean (using Balancer [20] as an
example). Each set of four figures within this section explores
the impact of varying parameters—blockchain transaction
costs, trade volume limitations, CFMM commission fees, and
reserves—on the objective value in relation to the number of
token 1. Below are analyses for each CFMM type based on
the figures:

The first set of figures (the first row in Fig. 3) illustrates the
behavior of Uniswap v2 under different market conditions.
Notably, the impact of blockchain transaction costs on the
objective value shows a pronounced decrease as costs in-

crease. This reflects the sensitivity of Uniswap v2 to on-chain
transaction fees. Trade volume limitations reveal that tighter
constraints lead to diminished objective values, indicating
the critical role of liquidity in optimal market functioning.
Similarly, variations in CFMM commission fees highlight the
trade-offs between transaction costs for users and revenue for
liquidity providers. Here, higher fees leading to lower objective
values. Lastly, increasing the reserves demonstrates a positive
effect on the objective value, emphasizing the importance of
ample liquidity in fostering a robust trading environment.

For Constant Sum and Balancer CFMMs, the change in
objective value follows a similar trend. Comparatively, the
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Fig. 3. Results of different simulation experiments for the optimization model of CFMMs routing (fully executed).
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Fig. 4. Results of different simulation experiments with CoWs and CFMM routing integration optimization models.
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growth trends of the three CFMMs vary significantly with
increases in the number of token 1. Both Uniswap v2 and Bal-
ancer follow a logarithmic growth in objective value, whereas
Constant Sum CFMMs exhibit initial linear growth before
stabilizing. Overall, under similar data settings, Balancer
achieves the highest objective values, followed by Uniswap v2,
with Constant Sum CFMMs trailing. This comparison under-
scores the distinct operational dynamics and efficiency of each
CFMM, highlighting Balancer’s superior ability to optimize
trading outcomes through strategic liquidity management.

D. Integrated Optimization Model

In Fig. 4, we analyze and compare the completion rates of
CoWs and CFMMs for executing trades under various order
constraints. We include both buy and sell orders with limit-buy
and limit-sell conditions. Through a series of graphs, it be-
comes evident that the completion rate of CoWs and CFMMs
varies significantly depending on the order type and limit. In
general, the percentage of total tokens executed through CoWs
surpasses that of CFMMs, indicating a higher efficiency in
certain market conditions. Conversely, CFMMs have a higher
execution ratio in the case of limit-sell orders. This is due to
their flexible liquidity pools, which more effectively match sell
orders with buy orders. Moreover, from a holistic perspective,
the results show that our integrated optimization model results
in a significant improvement in the order completion rate
(26.1% to 46.1%) compared to the CoWs-only model under
different experimental settings. Thus, our model improves user
welfare and market fairness significantly.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an intent settlement frame-
work and a novel strategic optimization model for enhancing
solvers that facilitate cryptocurrency transaction intents using
the principles of CoWs and multi-chain AMMs. This model
aims to overcome interoperability and efficiency challenges
in DeFi ecosystems. By integrating cross-chain capabilities,
our framework enables seamless interactions across different
blockchain platforms, thereby enhancing liquidity and transac-
tion flexibility. Our experimental results demonstrate that the
proposed model effectively optimizes solver operations, ensur-
ing transactions are settled efficiently and at minimal costs.
By leveraging multi-chain AMMs and the CoWs principle,
the model reduces the dependency on centralized mechanisms
and enhances the privacy and security of transactions. The
implementation of this model, combined with cross-chain
bridging infrastructure developed by Composable, validates
our approach and aligns with the projected impacts on the
DeFi ecosystem.

Our future work will focus on two main areas: enhancing
the solver algorithms and extending the cross-chain function-
ality. For the solver algorithms, we plan to incorporate more
sophisticated decision-making capabilities that can dynami-
cally adjust to varying market conditions. Additionally, we
aim to broaden the cross-chain functionality to include more

blockchains and improve the integration with existing and
emerging DeFi applications.

REFERENCES

[1] Z. Shi, V. Ivankovic, S. Farshidi, J. Surbiryala, H. Zhou, and Z. Zhao,
“Awesome: an auction and witness enhanced sla model for decentralized
cloud marketplaces,” Journal of Cloud Computing, vol. 11, no. 1, p. 27,
2022.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] “Global projections 2023: Blockchain utilization in finance sector,”
2024. [Online]. Available: https://www.reportlinker.com/p06244972/
Blockchain-In-Banking-And-Financial-Services-Global-Market-Report.
html?utm source=GNW

[4] “2024 crypto market outlook,” 2023. [Online]. Avail-
able: https://www.coinbase.com/institutional/research-insights/research/
market-intelligence/2024-crypto-market-outlook

[5] V. Mohan, “Automated market makers and decentralized exchanges: a
defi primer,” Financial Innovation, vol. 8, p. 20, 2022. [Online]. Avail-
able: https://link.springer.com/article/10.1186/s40854-021-00314-5

[6] A. E. Roth, T. Sönmez, and M. U. Ünver, “Efficient kidney exchange:
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