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Abstract

Energy-harvesting cognitive radio network has emerged as a solution to
increase energy and spectrum efficiency. In this thesis, we propose short-
term offline optimal power allocation algorithms for multi-user energy-
harvesting cognitive radio networks considering interference between sec-
ondary users. Assuming finite and rechargeable batteries for secondary
users and a time-slotted operation model, an off-line optimization prob-
lem is formulated so as to maximize the network throughput during finite
time-period. To that aim, the design of a power allocation and the spec-
trum sensing strategy is required. Together with the inherent constraints
imposed by the use of energy-harvesting devices, a collision constraint is
also required to limit the probability of interference with the primary user
and to guarantee the quality of service. Because of the intractability of
the power allocation problem in the interference channel, we spilt the op-
timization task for two different size cognitive radio networks: a) 2-user
network, and b) multi-user network (i.e. more than 2 users). The opti-
mal algorithms are developed for a sharing single-frequency band, and a
multi-band scenario for the two-user network. We derive the optimal so-
lution following a two-step strategy in case of a 2-user energy-harvesting
CR network. A suboptimal algorithm that entails reduced computational
cost and performs very close to the optimal one is also proposed for the
single-band sharing scenario. In case of multi-user energy-harvesting cog-
nitive radio networks, a SQP-based sub-optimal algorithm is derived for
single-band sharing scenario. Besides, a optimal solution is proposed for a
CR network applying interference cancelation techniques sharing the sin-
gle band. At last, we derive the optimal power allocation strategies for the
multi-user multi-band sharing scenario. Simulation results of the optimal
(and suboptimal) solutions outperform those achieved by a random or pri-
ority best-user power allocation algorithms for the AND and OR fusion
rules.
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Abstract

Energy-harvesting cognitive radio network has emerged as a solution to increase energy and
spectrum efficiency. In this thesis, we propose short-term offline optimal power allocation
algorithms for multi-user energy-harvesting cognitive radio networks considering interfer-
ence between secondary users. Assuming finite and rechargeable batteries for secondary
users and a time-slotted operation model, an off-line optimization problem is formulated so
as to maximize the network throughput during finite time-period. To that aim, the design
of a power allocation and the spectrum sensing strategy is required. Together with the in-
herent constraints imposed by the use of energy-harvesting devices, a collision constraint is
also required to limit the probability of interference with the primary user and to guarantee
the quality of service. Because of the intractability of the power allocation problem in the
interference channel, we spilt the optimization task for two different size cognitive radio net-
works: a) 2-user network, and b) multi-user network (i.e. more than 2 users). The optimal
algorithms are developed for a sharing single-frequency band, and a multi-band scenario for
the two-user network. We derive the optimal solution following a two-step strategy in case of
a 2-user energy-harvesting CR network. A suboptimal algorithm that entails reduced compu-
tational cost and performs very close to the optimal one is also proposed for the single-band
sharing scenario. In case of multi-user energy-harvesting cognitive radio networks, a SQP-
based sub-optimal algorithm is derived for single-band sharing scenario. Besides, a optimal
solution is proposed for a CR network applying interference cancelation techniques sharing
the single band. At last, we derive the optimal power allocation strategies for the multi-user
multi-band sharing scenario. Simulation results of the optimal (and suboptimal) solutions
outperform those achieved by a random or priority best-user power allocation algorithms for
the AND and OR fusion rules.
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Energy-harvesting cognitive
radios: state-of-the art and
problem statement

This Master thesis focuses on energy-harvesting cognitive radio (CR) networks. In this chap-
ter, we introduce the background information about energy-harvesting CR networks, the re-
lated work in the field, and the problem statement. The objectives, the outline of the presen-
tation as well as the main contributions are also described.

1.1 Introduction to cognitive radios and energy harvesting techniques

In this section, we give an overview of cognitive radio and energy harvesting techniques.
First, an introduction and a description of CR networks are presented. Later, the energy
harvesting techniques that can be applied to CR devices in order to prolong their lifetime are
stated.

1.1.1 Cognitive radio networks

In most countries, radio users that provide different services are licensed to specific frequency
bands by government regulators such as the Federal Communications Commission (FCC).

Fig. 1.1 shows the frequency allocation of the radio spectrum in the United States. We
can observe that the radio spectrum is almost fully occupied by the different types of radio
users. On the one hand, the telecommunication data volume of different applications in-
creases explosively [!], which calls for more frequency spectrum resources. On the other
hand, the usage rate of the licensed spectrum is very low [2]. Fig. 1.2 shows the spectrum
occupancy rate averaged over seven locations reported by Shared Spectrum Company and
IIT Wireless Interference Lab. It shows that the spectrum occupancy is always almost under
25 percent for any frequency band [3]. Thus, a more efficient spectrum sharing strategy is
urgently needed.

Since CRs were first introduced by Mitola [4] in 1999, there has been an increasing in-
terest in CRs in order to solve the spectrum scarcity problem. In CR networks, there are two
classes of users with different spectrum utilization priorities, as it is shown in Fig. 1.3: a) pri-
mary users (PU) with certificated licenses which can access the spectrum with no restriction,
and b) CR users (also called secondary users, SU) which gain spectrum access after sensing
the activity of the PU.

Depending on how secondary users share the spectrum with the PU, three schemes can
be identified (see Fig. 1.4): a) interweave, where SUs identify spectrum holes by performing
periodic spectrum sensing and employ the empty frequency bands while avoiding harmful
interference to the PUs; b) underlay, where SUs always transmit data under the maximum
allowable interference to the PU; c) overlay, where SUs cooperate with the PUs while trans-
mitting their own signal [5]. In this thesis, we consider interweave CR networks. As it was
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Figure 1.1: United States frequency allocations chart. Radio spectrum in 2011 (FCC)
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Figure 1.2: Bar graph of the spectrum occupancy averaged over seven locations [3]
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Figure 1.3: Cognitive radio architecture

aforementioned, this scheme avoids the interference with the PUs by only allowing secondary
users to access the spectrum holes. The use of interweave CRs enhances spectrum efficiency
because of the opportunistic access of cognitive devices to the underutilized spectrum which
is licensed to primary users [6]. The major task in interweave CR networks is to detect the
PU activity with allowable error. This task becomes more difficult when the PU activity is
highly dynamic and the distance between the PUs and SUs increases (in this case, the PU
signal is very weak at the CR user) [5].

We use cooperative spectrum sensing in order to improve spectrum sensing performance
in CR networks. Previous studies [7—9] have reported that reliability of spectrum sensing in
CR networks can be improved by applying cooperative spectrum sensing techniques. The
work in [7] shows that the detection time decreases by allowing SUs cooperating and op-
erating in the same band. The hidden terminal problem occurs when SUs are shadowed in
severe multi-path fading or inside buildings with high penetration loss while a PU is active
in the neighborhood area, which is a great challenge when implementing spectrum sensing.
The authors of [&] state that the use of cooperative spectrum sensing can solve this hidden
terminal problem successfully.

In this work, we consider a CR network where the SUs perform cooperative sensing by
first performing local spectrum sensing. Then, SUs transmit the sensing results to a fusion
center (FC) that is in charge of determining the presence or absence of the PU. Here, the
FC is an information-sharing center for the SUs. The FC collects the individual sensing
information from every SU and makes a global decision based on the collected results and
following a fusion rule in order to allow SUs to access the idle spectrum band [10]. Fusion
strategies can be divided into three types: a) hard fusion decision, b) soft fusion decision,
and c) quantized (softened hard) fusion. In the hard fusion decision scheme, users forward
their one-bit decision regarding the existence of the PU to the FC, and the FC makes a global
decision based on a logic hard decision combing rule. In the soft fusion decision scheme,
the SUs forward the entire sensing result to the FC instead of only the local decision [11].
Although the soft fusion scheme may have more precise sensing results [ | 1], the hard fusion
scheme is considered in this work due to its energy and bandwidth efficiency [9].
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Figure 1.4: Different types of CR schemes: interweaved transmission of PU and CR signals, underlay
of CR signal, and cooperative overlay of CR signal [5].

1.1.2 Energy harvesting and power management techniques

CR networks are required to run for long periods of time, often several years, without human
intervention. However, CR networks are typically and widely deployed with battery-powered
devices rather than wires connecting the device to the electrical power source. Thus, CR de-
vices suffer from finite lifetime and energy shortage problem. In the past decades, researchers
oriented their efforts to maximize the battery capacity (with the goal of extending the system
lifetime) by using new battery materials. Nevertheless, the technologies used for improving
the battery capacity have reached their ceiling, which means that the improvement achieved
by the use of the newest developed batteries is not enough to extend the lifetime of the sys-
tem [12]. Besides, although users can also extend the lifetime by using larger batteries, the



increase in size, weight and cost will cause other problems which need to be taken into ac-
count [13]. Even more, replacing the batteries is either impossible or expensive because
the number of CR devices can be high or may be deployed in unreachable places, such as
mountains or underground [ 14].

Apart from energy-efficient strategies, which aim at minimizing the energy consump-
tion [15—17] or preserving it, energy harvesting also emerged as a promising technique to
achieve energy efficiency. Energy-harvesting devices have the ability of capturing energy
from ambient sources, such as solar, wind, thermal, etc., or other energy sources (e.g., electro-
magnetic energy or human movements) and then are converted into electrical energy. Thus,
it allows extending the operation lifetime of CR networks without requiring battery replace-
ment or external wired charging power.

Sources for harvesting energy can be classified into four categories: a) uncontrollable
but predictable energy, which cannot be controlled but its behavior can be observed and
modeled, such as solar energy, wind energy, etc.; b) uncontrollable and unpredictable energy,
which cannot either be controlled or predicted, such as vibrations in an indoor environment;
c) fully controllable energy, which can be produced whenever the user asks for it, such as
finger-vibration energy that is harvested by piezoelectrical material devices; and d) partially
controllable energy, which is controlled by designers but the resultant behavior is not fully
deterministic, such as the received radio frequency (RF) source, which not only depends
on the RF signals but also is influenced by the propagation environment [|8]. In summary,
most of the energy resources are not totally deterministic and always follow a time-dynamic
behavior.

Besides, the energy-harvesting architectures can be categorized into two types, as it is
shown in Fig. 1.5: a) harvest-use architecture, in which the harvested energy is immediately
ready for use after being captured by the harvesting device; b) harvest-store-use architecture,
where the system harvests energy whenever it is possible and stores it for future use [12].

DIRECT FROM SOURCE SINGLE/DOUBLE STAGE STORAGE
Harvesting Harvesting Sensor
System System node
Sensor Primary Secondary
node storage storage
(a) Harvest-use architecture (b) Harvest-store-use architecture

Figure 1.5: Energy harvesting architechtures [12]

The choice of the energy architecture model depends on the hardware, the energy source
and the working mode of the system. For instance, considering a solar energy harvesting
system, it would be wise to combine the harvest-use and harvest-store-use architectures so
that the harvesting device could capture the solar energy in the daytime. Thus, an amount of
the energy can be powered directly to the device, and the remaining one can be stored in the
system for future use.



Therefore, the power management task in energy-harvesting networks, which indicates
when and how much energy should be used or stored so as to optimize the performance in
order to maintain the permanent life of the system without hardware breakdown, becomes
a key challenge. Different from the traditional finite battery-powered networks, the power
management task in energy-harvesting networks sets limits on the maximum and minimum
energy usage rate rather than on the maximum energy.

Two requirements should be satisfied to make the energy-harvesting battery-limited sys-
tem operate during a long time without hardware failures [18]:

e Energy causality control
Each device is limited to use at most the amount of currently available energy. This is
a natural bound to ensure the permanent operation of the system.

e Maximum battery limit control
As devices are battery-limited, control over the energy level should be carried out in
order to assure that it never exceeds the maximum battery capacity whenever energy is
harvested.

1.2 State-of-the-art

In this section, we present the state-of-the art in energy-harvesting CR networks and power
allocation techniques in CR networks.

A vast amount of research has been devoted to energy harvesting in wireless networks
[14,20-23] and cognitive radio networks [24-28]. However, the performance analysis of
energy harvesting in cognitive radio networks has only recently been considered in the lit-
erature. In [29], a Markov decision process (MDP) framework is used to investigate the
trade-off between the sensing and access policies in a cognitive radio network with a single
energy-harvesting cognitive radio with finite battery capacity. In [30], an energy-harvesting
secondary user coexists with a PU and helps the PU to deliver its undelivered packets when
the PU is not active. In [31], a cognitive radio optimizes the sensing duration time in order
to maximize its mean data service rate when the CR and the PU harvest energy. The authors
of [32] propose an optimal mode decision policy for a single cognitive radio with a non-RF
energy harvester to maximize the system throughput. An optimal sensing energy algorithm
and an adaptive transmission power control algorithm is also proposed. In [33], the au-
thors maximize the spatial throughput of the secondary network and node density based on
a stochastic-geometry model under outage-probability constraints for coexisting networks.
The secondary users coexist with the PUs, harvest energy from the RF transmission of the
nearby primary transmitters, and use all the available energy for subsequent transmission
when the batteries are fully charged. The authors of [34] determine an optimal spectrum
sensing policy that maximizes the expected total throughput subject to an energy-causality
constraint and a collision constraint for a single-user single-band energy-harvesting CR net-
work with an infinite battery capacity. In [35], the same authors derive an upper bound on the
achievable throughput, and in [36] they design an optimal spectrum access policy in order to
achieve the previous upper bound of the achievable throughput.

However, none of the previous related works have dealt with the design of a power alloca-
tion strategy in energy-harvesting multi-user cognitive radio networks. The main reason for



addressing the power allocation problem in this scenario is the following: the maximization
of the achievable throughput of SUs while controlling the sensing error to protect the licensed
users is a key challenge in CR networks driven by energy-harvesting devices.

The throughput of the CR network is tightly related to the transmission power, the trans-
mission time, the environmental noise, and the probability of accessing the idle spectrum;
and the probability of unexpected interference to the PU which in turn depends on the proba-
bility of successful detection [37]. On the one hand, a lower detection threshold will increase
the probability of accessing the idle spectrum although it will increase the chances to inter-
fere with the PU. This leads to solving the trade-off between the throughput maximization
and the interference control by setting a proper detection threshold (e.g., maximizing the
probability of accessing the idle spectrum limiting the interference with the PU). This prob-
lem has been studied in [34] considering a single user energy-harvesting CR network. On
the other hand, power allocation in CR networks is an important issue in order to optimize
the network performance. Among the different power allocation strategies, maximizing the
network throughput by assigning the proper transmission power to SUs becomes a major
challenge. However, this problem is a non-deterministic polynomial-time hard non-convex
problem for the multi-user case when interference between SUs is considered [47].

The approaches to solve the power allocation optimization problem in CR networks can
be classified mainly in two trends: A) Based on convex optimization techniques [38—42].
The optimization problem aimed at maximizing the throughput is solved using convex op-
timization techniques that consider an OFDM/FDMA-based CR network model. In the
OFDM/FDMA-based CR network model, the interference between SUs can be ignored ren-
dering the resulting power allocation problem to be a convex one. The authors of [38, 39]
maximize the network sum-rate considering the primary user interference. The authors
of [40] propose a two-step scheme to maximize the throughput by choosing first the opti-
mal sub-channel, and then assigning the power to the sub-channels according to a barrier-
based method. In [39], a sub-carrier and power allocation method for a joint overlay and
underlay spectrum access is performed. However, the main limitation of these works is that
the interference between SUs cannot be ignored in practice. B) Based on the Nash Equilib-
rium [43—45]. Playing a multiple user game to achieve the Nash equilibrium so as to solve the
optimization problem. In [43], the weighted sum of utilities corresponding to all the users is
maximized using a price-based iterative water-filling power allocation algorithm which con-
siders the power budget of each user. The authors of [44] propose a dynamic sub-channel and
power allocation scheme based on the Nash Bargaining game. In [45], the authors perform
rate and power distribution among SUs to achieve the Nash equilibrium by minimizing the
total transmission power and maximizing the transmission rate while satisfying a quality of
service (QoS) requirement for SUs at the same time. The main challenge for algorithms play-
ing the Nash Bargaining game is that the Nash equilibrium is not always the Pareto (global)
optimal point [46]. Improvements or verifications to achieve the Pareto optimum still remain.

Nevertheless, none of these works consider CR networks where SUs are equipped with
energy-harvesting devices.



1.3 Problem statement

In this section, we address the motivation of the Master thesis, the objectives of the work,
and the outline of the dissertation together with the main contributions.

1.3.1 Motivation

Energy-harvesting CR networks emerged as a promising solution to improve energy and
spectrum efficiency. CR networks increase the usage rate of the spectrum by accessing the
spectrum holes left by the inactivity of the licensed users. Besides, the use of cooperative
spectrum sensing techniques improves the CR system performance by solving the hidden
terminal problem by decreasing the sensing time. Even more, the use of energy-harvesting
devices can extend the CR system lifetime significantly. As it has been aforementioned, one
of the remaining challenges in energy-harvesting CR networks is to find an optimal power
allocation and spectrum sensing strategy, which also sets the optimal detection threshold.

Despite the great variety of the strategies proposed in the literature, there is no approach
that optimally allocate the power among CR users in energy-harvesting multi-user CR net-
works. Although some of the recent research works previously mentioned are aimed at max-
imizing the throughput (as we do in this work), they direct their efforts at finding the optimal
spectrum sensing or access policy, instead of tackling the power allocation problem. This is
mainly due to the fact that they all (except [33]) consider a single cognitive radio network.
Further, in spite of employing energy-harvesting techniques, few works [34, 36] incorporate
a constraint derived from the use of energy harvesting devices in their formulation problem.

The power allocation problem in multi-user networks with channel interference is
proved to be a non-convex optimization problem [47], which is more intractable than
OFDM/FDMA-based networks where the power allocation problem is a convex one. In
spite of solving the non-convex optimization problem by formulating the duality problem,
which needs to minimize the duality gap of the optimal problem [48], or by playing a Nash
Bargaining game to achieve the Nash Equilibrium which may not be the optimal solution,
a power allocation algorithm which finds the global optimal or at least a local optimal so-
lution and assigns the transmission power among CR users in energy-harvesting networks
is needed. Even more, the power management task in energy-harvesting networks is even
more complex compared to traditional battery-powered networks [ 8]. The dynamic nature
of energy-harvesting CR users incurs a different design philosophy from the one concerning
the energy-efficient battery-limited CRs. In order to make an efficient use of the harvested
energy and make CR networks work permanently without hardware failure, some issues re-
garding the battery capacity and energy use should be satisfied.

Besides, two approaches can be considered for designing optimal transmission power
strategies, namely, online and offline. The online approach assumes that CR users only have
some statistical knowledge of the dynamics of the energy harvesting process. However, the
offline approach assumes that CRs have complete knowledge about the amount and arrival
time of the harvested energy. Clearly, this second approach is more idealistic, and only makes
sense in the short term, although it has been recently considered in the literature trying to
solve a similar problem [19,49-51]. However, it provides analytical and intuitive solutions
that can be later used to gain insight for the subsequent design of online transmission power
strategies.



Moreover, the value of the detection threshold will affect the probability that CR users
access the spectrum. With the decrease of the detection threshold, the probability of accurate
detection is higher, while the chances to access the spectrum decreases. For that reason, when
the chances to access the spectrum decreases, it is necessary to increase the transmission
power when the CR user has the opportunity to transmit in order to use the harvested energy
efficiently during a fixed time period. Thus, the power allocation scheme is also influenced
by the detection threshold in energy-harvesting CR networks.

Based on the above discussion, in this thesis we propose offline algorithms that assign the
transmission power to CRs and set the detection threshold in order to maximize the system
throughput in energy-harvesting multi-user CR networks when CR users have finite batteries.

1.3.2 Objectives of the work

As stated above, the thesis is framed within the energy-harvesting CR field. The main global
objective pursued in this thesis consists of

designing, for different scenarios, optimal offline power allocation schemes subject to
interference constraints in order to maximize the network throughput in energy-harvesting
CR networks composed of battery-limited CR users which perform cooperative spectrum
sensing.

The aim is to obtain analytical results from a mathematical formulation which provide
the optimal power allocation strategy and the detection threshold under an offline approach
where knowledge about the amount and arrival time of the harvested energy as well as other
information, such as the probability of activity of the PU or the static channel gains, are
known beforehand by CR users.

The detailed objectives of the thesis can be split into specific ones, which are listed below:

o Identify the optimization function of the problem.
We want to maximize the throughput of the CR network, which depends mainly on the
probability of accessing the spectrum and the transmission power of CR users. Once the
spectrum is sensed to be idle, CR users transmit their data according to the transmission
power policy designed beforehand.

e Determine the adequate constraints in order to limit the interference with the PU

and to manage properly the energy resources considering the energy-harvesting
nature of CR devices.
The most important task in interwave CR networks is to avoid the interference with the
PU while optimizing the network performance. The interference control requirement is
considered in the spectrum sensing part, so that the appropriate threshold should be set
in order to limit the interference with the PU to a value below the required one while
the chances to access the spectrum increase. Further, because of the dynamic nature of
the energy-harvesting CR users, the CR transmitters have to adapt their transmission
power at every time instant.

e Define an appropriate system model.
First, we should define an appropriate energy-harvesting system model. We consider
two scenarios, a single frequency band scenario and a multi-band scenario, for two
types of situations: interference among users and non-interference because CR devices



apply interference cancellation techniques. We also need to define an energy model for
the energy-harvesting process, which should satisfy the nature of the energy-harvesting
principle.

e Propose an optimal offline power allocation and detection threshold strategy for
multi-user energy-harvesting CR networks in the different scenarios.
Based on the defined system model, we want to get analytical solutions using mathe-
matical optimization tools. Thus, we optimize the transmission power and the detection
threshold for the spectrum sensing in the different scenarios.

e Evaluate the proposed strategies.
As a final step, the performance of the algorithms in the different scenarios should be
compared and analyzed with regard to a benchmark solution.

1.3.3 Outline of the dissertation and main contributions

In this subsection, the outline of the dissertation and main contributions are presented. The
dissertation of this thesis consists of three chapters.

Once exposed the relevant background information, the state-of-the-art and the problem
statement, chapter 2 proposes an optimal offline power allocation and spectrum sensing al-
gorithm for energy-harvesting CR networks in a 2-user scenario. Initially, a CR network
model is defined as well as a time-slotted energy-harvesting model, which tries to reflect the
dynamic nature of an energy-harvesting system.

Then, the scheme for determining the optimal transmission power of the two users as
well as the detection threshold is designed to maximize the throughput of the CR users, yet
limiting the probability of interfering with the primary user and adhering the energy causality
and limited battery constraints. The constraint on the probability of detection ensures that the
PUs are not interfered with. The energy causality constraint yields that each cognitive user
transmitter is limited to use at most the amount of currently available energy; and finally, the
last constraint originates from the limited battery capacity, and is necessary to assure that the
energy level never exceeds the maximum battery capacity whenever energy is harvested.

A two-step strategy is implemented to solve the problem. In the first step, the optimal
transmission power is considered assuming that the detection threshold is given. We solve
the non-convex optimization problem by studying the objective function shape to find the
global optimum. In the second step, the solution of the first step is used as input to find the
optimal detection threshold. Besides, for those scenarios where computational issues are a
requirement, we propose a suboptimal algorithm, which performs very close to the optimal
algorithm for the one sharing frequency band scenario.

In chapter chapter 3, the problem is solved for a multiple (more than 2)-user energy
harvesting CR network scenario. We split the problem into two cases: a) a single band case
and b) a multi-band case. In the first scenario, all users share the band by opportunistically
accessing the spectrum, so they interfere with each other. In the second scenario, the users
apply an FDMA scheme (so interference can be ignored), or the access to each band is limited
up to a certain number of users, so that the single frequency band-sharing algorithm can be
used. A generalization of the network model is presented while the energy model remains
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the same as in chapter 2. As it was done before, the CR network throughput is maximized
subject to the same interference and energy constraints.

The offline transmission power algorithm for the single frequency band spectrum sharing
is solved using the Sequential Quadratic Programming (SQP) method. This method shows
fast convergence rate for non-linear programming problems, and the local optimum can be
found efficiently. As the objective function is shown to be non-convex, it is hard to find out
the global optimum without global searching in the feasible value set, so a local optimum is
found.

Later, the problem is extended to the case where multiple CR users use interference can-
cellation techniques. In this case, the interference between CR users can be ignored. In fact,
this scenario is the same as one proposed in the 2-user scenario for the multi-band case. At
the end of the chapter, a multi-band scenario with multiple users is considered.

Finally, chapter 4 addresses the main results and points out further research lines.

The main contributions of the thesis is listed as below:

e The model construction of the energy-harvesting CR networks.
We define the network model as a cooperative spectrum sensing CR network and also
construct a time-slotted energy-harvesting model that shows the dynamic nature of
the energy-harvesting process. What’s more, we introduce PU interference control
constraint and power management constraints that should be considered in energy-
harvesting CR networks.

e Chapter 2 derives the short-term optimal offline power allocation and detec-

tion threshold set scheme for energy-harvesting 2-user CR networks composed
of battery-limited CR users performing cooperative spectrum sensing.
We solve the short-term offline power allocation problem for single band sharing and
multi-band sharing case. In the single frequency band sharing case, we derive the op-
timal allocating power by comparing the vertices of the quasi-convex channel capacity
function; and the best spectrum sensing strategy is set by a through-search process for
the detection threshold. Besides, in the multi-band sharing case, the optimal power allo-
cation algorithm is achieved by assigning power to SUs solving a convex optimization
problem and a through-search for detection threshold. A sub-optimal solution is also
proposed to reduce computation time. And a benchmark solution named as random
power allocation scheme is constructed in the end.

e Chapter 3 proposes the short-term offline optimal/ sub-optimal power allocation
schemes for energy harvesting multi-user CR networks in different scenarios.
Firstly, an SQP-based sub-optimal power allocation algorithm is derived for the single-
band sharing case. And we show its advantages over the benchmark solution in different
channel environments. We also investigate the power allocation problem in energy-
harvesting CR networks using interference control techniques and also in the multi-
band scenario and give their optimal solution.

o Apply the offline power allocation algorithms to a realistic scenario: solar energy
harvesting.
We apply the power allocation algorithms to a solar energy harvesting CR network

11



case. And the simulation results show that the optimal/ sub-optimal power allocation
algorithms improve the network output significantly in different settings.
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Power allocation and detection
threshold set for 2-user energy
harvesting CR networks

In this chapter, we consider a 2-user energy-harvesting CR network that aims at using the
spectrum holes left by a PU. We aim at solving the offline optimization problem by allo-
cating the optimal power and setting the best threshold for SUs in a short-term time period.
As we consider a short-term period, the energy-harvesting behavior can be predicted before-
hand. One typical example that may happen in practice is the solar-energy harvesting system.
The solar-energy harvesting rate mainly depends on the weather conditions, the collectors’
surface and the mounted angle [52]. Once the CR system is deployed and the weather con-
ditions are known (or can be predicted) during a certain time period, it is possible to model
the solar-harvesting behavior beforehand. In particular, the CRs perform spectrum sensing
by employing energy detectors, which use the optimal detection threshold, in order to deter-
mine the presence or absence of the primary user in the bands. A local hard decision is then
made at each cognitive radio for each band, and sent to the fusion center (FC), which makes
the final decision based on the AND or the OR fusion rule. If the spectrum is deemed to be
idle, then the CRs start to transmit data following the predetermined optimal power alloca-
tion strategy carried out in the previous offline step. We only consider a scenario where at
most two available bands are accessed at the same time. Then, two spectrum access strate-
gies are considered. a) In the first scenario, the cognitive users share one or the two available
frequency bands, so that channel interference should be taken into account. b) In the second
one, each CR is assigned to a different band, and thus, there is no cross channel interference
between cognitive users. In case only one channel is deemed to be available at a specific time
instant, the channel shall be assigned to the CR user with the best channel quality.

2.1 System model

In this section, we construct the energy-harvesting CR network model and energy model
together with the considered constraints.

2.1.1 Network model

We consider a cognitive radio network composed of S = 2 secondary users (SUs) (each
user includes a transmitter and a receiver) which opportunistically use the frequency bands
licensed to a PU, as it is shown in Fig. 2.1 [19]. To that aim, SUs should sense the spectrum,
i.e., detect the licensed users, and identify the free spectrum holes in order to use efficiently
the scarce frequency resources.

Hence, sensing for the primary user detection can be formulated as a binary hypothesis
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Figure 2.1: Network Model
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where y is the received signal vector at the SU, x is the signal vector transmitted by the PU,
and w is the noise vector. H, and H; denote the hypothesis of the absence and the presence,
respectively, of the PU signal in a band of interest. To decide whether y was generated under
hypothesis H, or H;, every SU should form a test statistic 7" (y) from the received data y,
and compare it with a predetermined threshold e,

’;’;1
T(y) - e (2.2)

Ho

The local detection technique that we consider in this paper is the Neyman-Pearson
energy detector, which detects the signal of the PU based on the sensed energy, i.e.,
T(y) = |yl’ = ]kvil y;|>, where N, denotes the number of collected samples (N, < 7, f.
where f; is the sampling frequency and 7 the sensing time [53]). Also, we assume that the
signal transmitted by the primary user, x, and the noise, w, are i.i.d. zero-mean circularly
symmetric complex Gaussians with variance afc and afu, respectively, which can be written
as x ~ N(0,02I) and w ~ N(0,021), where 1 is the identity matrix. Then, 7' (y) follows
a Chi-square distribution with 2N, degrees of freedom under hypothesis Hy and H; [54]:

,T(Y> N X2
ozj2 A
T(y) ~ 2
(02+02) /2 7

To evaluate the detection performance of the cognitive radios, the probabilities of detec-
tion and false alarm are used, which are defined as

H (2.32)

H (2.3b)

Pd (E) = P (Hl | Hl) == P (T (y) Z 6‘7‘[1) (243.)
Pra(e) =P (Hi | Ho) =P (T (y) = e|Ho) , (2.4b)
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where ¢ is the detection threshold. For the energy detector, the local probabilities of detec-
tion, Py, and false alarm, P;,, are computed as

Pa(e) =1- FZQNS <m> ) (2.5a)

P (e) =1— F2 (%/2) , (2.5b)

where [ is the cumulative distribution function of the Chi-square distribution with 2N de-
grees of freedom.

In a centralized cooperative sensing scheme, a fusion center (FC) is responsible for receiv-
ing and combining the local decisions of all the secondary users in order to make a common
decision about the presence or absence of the PU. Later it diffuses the common decision back
to the SUs. In a two-user cognitive radio network, two different rules (AND and OR) can
be used for combining the hard decisions. In the AND rule, the FC decides that the PU is
present if the two SUs detect the signal, i.e., 2;9::01 T) = 2. If the OR rule is considered,
the FC decides the presence of the PU if any of the two SUs reports signal detection, i.e.,
Zf:ol T®) > 1. Hence, the global probability of detection, QJp, and the global probability
of false alarm, Qga, for the two aforementioned fusion rules can be computed based on the
local probabilities of detection and false alarm of the two SUs, Py ; and P, ;(j € {1, 2}),
as [8]:

Qpor = (1 —Pa1) Paz+ (1 —Pa2) Pag + PaiPas

Qp,axp = P41 P42, (2.6)
Qra,or = (1 = Pra1) Prao + (1 — Pra2) Prag + Pra1Pra2
QraAND = Pra1 Pra2- (2.7)

Without loss of generality, we assume that the detection threshold and the received SNR
of the PU are the same at every time instant for the two SUs, and thus, they have identical
Pd (8) and Pfa (8)

Because our aim is designing an offline optimization scheme, we need to know how many
chances SUs may have to access the spectrum during the short-term time period. Defining
m = P(H1) and mg = P (Ho) (m1 + mp = 1) as the probability that the PU is present or
absent in the spectrum, respectively, the probability that a SU accesses the spectrum (denoted
by P(.A)) can be expressed in terms of Q)p and Qp as

P(A) = P(A|H1)P (H1) + P(A|Ho)P (Ho)
= (1-Qp) i+ (1 = Qpa) mo. (2.8)

Besides, we consider an energy-harvesting scenario. SUs harvest energy independently
and store it in a rechargeable finite battery with F; ,,,,« denoting the maximum battery capac-
ity for SU 7. Further, we assume a continuous traffic model where the SU transmitters always
have data to transmit to their corresponding receivers '. Denoting z; as the transmitted sig-
nals at SU j; y; as the received signals at secondary receiver j; n; as the noise received by

'The analysis can be also extended to a more general traffic model in which SU have intermittent traffic.
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SU receivers; and hji, (7, k € {1, 2}) as the channel coefficients (see Fig. 2.1), where h;;, for
J = k are the channel gains and hj;, for j # k are the interference coefficients, the channel
output in a two-user scenario is represented by

y1 = hi1xy + ho1o + ni; Yo = hosy + higwy + . (2.9)

2.1.2 Interference control constraint

Cognitive radios will inevitably create interference to the primary users and therefore, the
quality of service (QoS) of the system will be degraded. In order to reduce the impact on
the primary user performance and assure a stable and efficient transmission environment,
the interference should be controlled. This is achieved by limiting the interference that the
PU may have to a certain value. To that aim, the detection performance of the system is
lower-bounded by «, a pre-specified detection design parameter,

@p > «, (2.10)

or alternatively, the maximum probability of collision should be 1 — a.

2.1.3 Energy model and power management constraints

As mentioned above, cognitive radios are considered in an energy-harvesting scenario.
Assuming a time-slotted model of duration 7 [55], the energy-harvesting and energy-
consumption processes for user j € {1,2} are shown in Fig. 2.2.

E,/ .2 E/,J E/ N-1
P‘ PJ/ P\ P/z P P N
et >y
T T T T T =
0 ot tog (N-DT Ne t

Figure 2.2: Energy-harvesting and energy-consumption models for user j € {1, 2}.

The energy consumed by a SU may include the energy spent for sensing the channel,
reporting the sensing result, the data transmission, the energy leakage caused by the device,
the inefficient energy harvesting, etc. [24]. Usually, the main sources of energy consumption
are the sensing and transmitting processes, being the energy consumption due to the other
tasks negligible [56] [57].

At the beginning of time slot ¢, SU j harvests a random amount of energy, £;, > 0, which
is immediately available in the same time slot. To avoid collisions with the PU, user j senses
the spectrum during 7, (consuming a constant sensing power F;), and reports the sensing
result to a FC. If the spectrum is free, then the users can access to the channel and transmit
data during the remaining time of the slot, 7, = 7 — 7,, consuming a transmission power
P;; [34]. As it was mentioned above, we are solving a short-term optimization problem.
It means we can model and predict the current working environment of the system. Thus,
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the harvested energy can be predicted, i.e., we can know the harvested energy packages
E;; beforehand. This scheme assumes that both, secondary transmitters and receivers are
synchronized with the slot structure of the primary network.

Different from the scenarios where cognitive radios are battery-operated, several consid-
erations need to be taken into account in an energy-harvesting scenario [|8]. These consid-
erations come from the dynamic nature of the energy-harvesting process, so that dynamic
power management plays a key role. Specifically, two constraints should be considered [19].

a) The energy causality constraint, which is due to the random harvested energy. It is
based on the idea that the total energy consumption should not exceed the maximum amount
of current available energy, and can be expressed as

> P(A) Pami+iP7 <Y Ejg, (2.11)
k=1 k=1
where: = 1,2,--- | N denotes the current time slot. Atevery time slot, the Implicitly, the

transmission power is assumed to be constant during each time slot. Clearly, more accurate
expressions for the energy causality constraint can be defined if the leakage from the battery
or the inefficiency in storing energy is taken into account [?], but as it was aforementioned,
we neglect them. Note that the consumed energy up to time slot 4, » ., _, P (A) P, is
computed as a statistical average value for each user.

b) The overflow constraint, which comes from the fact that the battery size is finite. Phys-
ically, overflow can happen when the battery capacity is not enough to store the newest har-
vested energy package. However, in most cases overflow is not desirable because it would
lose capacity in the sense that the excess of energy could have been consumed previously to
the overflow situation [49,50], and further overflow of energy can harm the radio electronics.
See Section 2.4 at the end of the chapter for a discussion about this constraint. Therefore,
it is necessary to assure that the battery level never exceeds the maximum battery capacity
whenever energy is harvested, which can be expressed as

i+1 7
Z E}k’ - Z P (“4) Pj,k’Tt —iBT, < Ej,max- (212)
k=1 k=1

Thus, the interference constraint (2.10) together with the two power management con-
straints (2.11) - (2.12) are accounted for in the offline optimization problem presented in the
next section. Clearly, more accurate expressions for the transmission power can be consid-
ered using statistical models in more dynamic decision frameworks. This would lead to a
nondeterministic computation of the energy consumption, which is out of the scope of this
work.

2.2 Optimal power allocation for a single-frequency-band scenario

In this scenario, the two secondary transmitters share the spectrum with the primary net-
work, and both of them opportunistically access and share the primary user spectrum (a
single-frequency band) when the primary user is deemed to be absent. We formulate the
underlying problem in order to set the appropriate detection threshold and optimally allocate
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the available power between the SUs under the interference and power management con-
straints. The optimal power allocation and detection threshold will be viewed as the solution
of a constrained optimization problem, which is dealt in the next subsections.

2.2.1 Problem formulation

The objective function is defined as the total throughput of the cognitive radio network over
a time period 7' = N7. Let C;; denote the channel capacity of SU j at time slot 7. The
throughput of the cognitive radio network at time slot ¢ can be expressed as

R, = (Ci; 4+ Co,) 7. (2.13)

As the two SUs share a common communication medium, interference between them
should be considered (look at Fig. 2.1). Assuming that the noise received at both SUs is
additive white Gaussian noise (AWGN) with variance IV ;, the channel capacity at time slot
1 for both users is computed as follows

hii| Py
Cl,’i = W10g2 1 + |211’ L
|ho1|" Py + Noa

ha|* Pa;
Chi = Wlog, [ 1+ |222’ 2 : (2.14)
|haa|"Pr; + Noa

where W is the spectrum bandwidth (a single-frequency band in this scenario), and h;, are
the channel coefficients between the j-th cognitive transmitter and the k-th cognitive receiver,
which are assumed to be constant.

Thus, the total throughput at time 7" is

N
Ry = (moP (AlHo, &) P (S|Ho) Ri + mP (A[H1, ) P (S|Hy) Ri), (2.15)

i=1

where P (S|H,), p = {0, 1} is the probability that a SU can successfully transmit the data
to its receiver when the spectrum is idle or occupied, respectively. In case of a successful
detection of a spectrum hole, P (S|Hy) — 1 because that frequency band is completely free
for being used by the SU. On the other hand, in case of miss detection of the PU, P (S|H;) —
0 since the bandwidth is completely occupied by the PU [9]. Hence, the second term in (2.15)
is negligible, and the total throughput function can be simplified as

N
RT = Zﬂ'op (A|H0,€i) Rz (216)
i=1
The transmission power and the detection threshold at every time slot are the optimiza-
tion (design) variables, namely ¢;, P; ;. And the conditions presented in the previous section,
(2.10) - (2.12), are imposed as constraints. Thus, based on the above discussions, the opti-
mization problem for finding the optimal transmission power and the detection threshold at
every time instant 7 can be formulated as
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maximize Ry (2.17a)
61‘,7Pj7i

subject to P;>0 je{1,2},i=12,--- N (2.17b)
(2.10), (2.11), (2.12) (2.17¢)

Note that the power constraint (2.17b) should be always satisfied since obtaining a nega-
tive transmission power is meaningless.

2.2.2 Offline solution

Based on the assumption that at time instant 7 there is no prior knowledge about the harvested
energy and the transmission power at time instants n > ¢, the optimization problem has to be
solved in an iterative way. In this section, we propose the optimal solution for the problem
stated in (2.17), which aims at maximizing the total throughput during a short-term period 7°
by designing the power allocation and the detection threshold strategy that should be used at
every time slot 7. Remind that we are using an offline approach for solving the optimization
problem, i.e., we optimize the power and detection threshold that should be used at any
time slot ¢ from an initial time slot 0. In order to reduce the computational complexity, a
suboptimal solution is also proposed.

2.2.2.1 Optimal power allocation algorithm

By exploring the structure of (2.16), three different terms can be identified in the total
throughput. a) P(A|H,), which is related to the detection threshold ¢;; b) R; (2.13, 2.14),
which depends on the channel and the transmission powers P;;; and ¢) 7y, which is deter-
mined by the primary user activity (and it is assumed to be constant). Further, ¢; influences
not only P(.A|H,), but also the energy constraints (2.11) and (2.12), which in turn will influ-
ence the range of feasible values of the transmission powers P, ;, and consequently, I?;.

For that reason, we propose to solve the optimization problem in two steps. In the first
step, we assume that the detection threshold ¢; is known at time slot ¢ and we aim at allocating
the SUs transmission powers P;; by maximizing the throughput. In a second step, the optimal
detection threshold is determined using the transmission power result achieved in the first
step.

Energy constraints (2.11) and (2.12) should be taken into account in the first step. How-
ever, since the interference control constraint (2.10) only affects the detection threshold ¢, it
can be neglected. Therefore, this optimization problem can be expressed as

magﬁlize (Cri+ Coy) T (2.18a)

subje;:tto Pi;>0 j€ {1 2}si,k=1,2,--- N (2.18b)
Z Ejj— ZP (Ale) Pjyry — iPsty — P (Ale;) Pyam > 0 (2.18¢)
i+1

ZE kT Z,P ‘gk th - ZP sTs — ( ’gl) th < Ej max (2.18d)
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Note that 7; is constant. From (2.18c) and (2.18d), a lower and upper bound of P;;

can be derived. Let us denote ¢; (P;;) = (1 + %) (1 + %) where N; =

No;/ |hj;|” denotes the normalized background noise power, and o = |hyy /hyy|* and 3 =

|hia/ h22|2 are the normalized crosstalk coefficients from transmitter 1 (or 2) to receiver 2 (or
1), respectively. Thus, the previous problem can be reduced to

ma)gmize W log, [c; (P})] (2.19a)
subject to P, >0, je{1,2};i=1,2--- N (2.19b)
Pjﬁ' S Uj,i (219C)
Pji 2 Ly (2.19d)

where the upper and lower bounds for the transmission powers are given by
U. — She1 Bik =iy P(Alex) Pk me—iPots and L. — St B k=i P(Aler) Py kTt —iPsTs—Ej max
Js P(Alei) Tt ’ Js P(Alei)m 2

respectively.

Note that (2.19) is only feasible if the upper bound Uj ; is positive and bigger than or equal
to lower bound L;; (i.e., U;; > L;;). If U;; < 0orU;; < Lj;, then P;; is not meaningful
and there will not be a feasible solution. In order to satisfy the condition U;; > L;;, the
condition F;.x > FE;; should be satisfied for every SU j and every time slot 7. If the
condition U;; > 0 is not satisfied, it means that the residual energy is not enough to provide
energy to transmit or perform spectrum sensing. Thus, we set the transmission power to be
zero 1n this case.

As the spectrum bandwidth W is constant, and taking into account that log, (z) is a
monotonic increasing function of z, the optimization problem (2.19) is equivalent to

.. P Py
maximize 1+ — 1+ — 2.20a
Pjq ( Oéz‘P2,i+N1) ( ﬁipl,H-NQ) ( )
subject to (2.19b), (2.19¢), (2.19d) (2.20b)

The optimization problem formulated in (2.20) is not convex. However, its objective func-
tion ¢; (P;;) is quasi-convex on its domain [47]. Fig. 2.3 represents the objective function
for different values of the transmission power and the parameters.

It can be seen that, independently of the channel parameters, the objective function always
achieves the largest value at the vertices. Therefore, the maximum value of (2.20a) is attained
at the vertices, i.e.,

Ci,max = max{c,- (Ll+a L2+) ) Ci (L1+, U2) ) Ci (Ula L2+) ) Ci (U17 UQ)}a (221)

where (2)* = max{z, 0}, for any 2. Then, the optimal transmission powers, denoted as P,
correspond to those transmission power values which contribute to attain the largest value of
the objective function c;.

In the second step, we solve the optimal detection threshold ¢; at every time slot ¢ using
the solution of the first step. Initially, we analyze the impact of the detection threshold ¢;
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(b)

Figure 2.3: Objective function of the optimization problem (2.20), ¢(P;), for (a) Ny = No = 1 and
a==1,and (b) Ny =20, Ny =10, =0.1,and 5 = 1.

on both, P (A|Ho,¢;) and the SU capacity R;, which are the terms appearing in the total
throughput R, given by (2.16).

The maximum value of P (A|Hg,e;) = 1 — Qpa(e;) is achieved when the detection
threshold ¢; is maximal. However, the higher the detection threshold value is, the lower QJga
and @)p are. Hence, as ()p decreases with an increase of ¢;, (2.10) states an upper bound for
€;, denoted as &),

& < Qp " (@) = eo. (2.22)

Specifically, for the AND and OR fusion rules, the upper bound for the detection threshold
can be expressed as
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2 2
o+ 0

£0.aND = — Ly (1= Va) (2.23a)
o2+ o2
00r = ———2Fy (V1—a). (2.23b)

2

On the other hand, the opposite effect is observed in R;. Remark that P (.A) is a mono-
tonic increasing function of the detection threshold € when the energy detector is applied.
According to (2.5), when the threshold ¢ increases, the local probabilities of detection and
false alarm (P4 and P,) decrease, as well as the global probabilities of detection and false
alarm, Qp and Qs (see (2.6) and (2.7)). Yet P (A|H,) increases with a decrease of )p and
Qra (2.8). A larger value of ¢; increases P (A). However, the upper and lower bounds of the
transmission powers (U;; and L;;, respectively) decrease, in the same way as the range of
possible values for the optimal transmission values do.Therefore, the channel capacity C; de-
creases. An intuitive explanation for this may be the following. When the chances to access
the channel increase, the optimal solution may tend to assign less power during each access
for a given finite harvested energy (in a short time period), which results in fewer channel
capacity for a successful transmission.

In short, the election of the optimal detection threshold states a trade-off between maxi-
mizing P (A|Ho, €;) and the throughput R;. Further, the influence of ¢; on the total through-
put Ry does not obey a monotonic rule. To get some intuition about the curve shape, Fig. 2.4
shows the total throughput for () varying from 0.01 to 0.99 and two SNRs values: —10, —5
dB.

As it was aforementioned, parameter « establishes an upper bound for the value of the
detection threshold, and influences the achievable throughput. Fig. 2.4 shows a concave be-
havior, whose mathematical closed-form expression is still left to be proved in future work.
Further, the particular shape of the curve depends on the considered SNR value. Therefore,
we solve the problem by performing a bounded exhaustive search over the detection thresh-
old. Setting an appropriate step size for ()p, the optimal value £ corresponds to the one that
maximizes the throughput for the optimal P;; obtained after solving (2.19).

The algorithm to jointly optimize the detection threshold and the power allocation for the
SUs is shown in Algorithm 1. ()p max denotes the maximum probability of detection (which
ideally is 1), P is the length of the set of values ()p, and AQ)p is the step size to search for
the optimal detection threshold when the transmission powers are unfeasible.

2.2.2.2 Suboptimal power allocation algorithm

To overcome the computational cost of searching for the optimal detection threshold, we
present a suboptimal approach, which operates under less demanding, conditions. Instead of
performing a bounded exhaustive search over ¢;, we set its initial value to the one correspond-
ing to the interference constraint boundary (i.e., (2.23a) or (2.23b)). The related algorithm is
summarized in Algorithm 2.
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Figure 2.4: Total throughput versus Qp for (a) SNR = —10 dB, and (b) SNR = —5 dB.

2.2.2.3 Random power allocation algorithm

Finally, we introduce a simplified version of the suboptimal approach as a benchmark for
the performance evaluation. In this benchmark algorithm, we select the transmission pow-
ers I;; from the real set which is uniformly distributed in the interval (Ljﬁ, Uji). As it
can be expected, the assigned powers might not be the optimal ones, however, they satisfy
the power management constraints. Similar to the suboptimal approach, we consider the
detection threshold value such that ()p = «. The benchmark algorithm is summarized in
Algorithm 3.

2.2.3 Simulation results

In this subsection, we present some simulation results in order to compare the performance
of the proposed algorithms (the optimal and suboptimal strategies) with the benchmark al-
gorithm for the AND and OR fusion rules. Results are also compared with an approach that
we call as the priority best-channel power allocation algorithm. In this strategy, the free fre-
quency band is assigned to the SU with the best channel gain. In case the channel gains of
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Algorithm 1 Optimal power allocation and detection threshold

Require: Ejnax > Eji,forj=1,2and7=1,2,---

1: Initialize Qp,0 = @; @D, max = 0.99
2: forp=1,2,--- ,P;P = Mdo

, N

3: Qp,p = QD,O +®-1) AQD
4: fori =1to N do
S €i €0, €0 = Qg}p.
Forj =1,2do
. ZI-H =LY P(Aler) Py k7t —iPsms — Ej max
6: Lji <+ B, k= 11 PAT J
. i1 By =l P(Aler) Py uTe—iPaTs
’ Ui < S e Ch
8: if UJ,Z > 0 then
9: {Pm,p, Pz,i,p} = arg max c;,
}Ll K3 L;’L{
Ul I3
10: h P P L
where { 1,i,py 2,1,1)} S {Ul . U2 ’L}
{Ll i’ Uz 1}
11: else
12: Pjﬂ‘,p = 0
13: end if
14: end for
Piip, Py
15: {Plﬂp, Pgﬂ,} = P?f,p P.212.,p
Piny Ponp
16: end for

17: Choose {Pl,Pg} = arg max Rr; where {P1,P2} c {Plyp,Pg,p}.

Algorithm 2 Suboptimal power allocation and detection threshold

Require: F;max > Ej; forj=1,2andi=1,2,--- /N
1: Initialize g0 = Q" (@); Ae
2: fori=1to N do
3: Ei < €0
For j = 1,2 do v
4: Lji AR ) DY ;ﬂls:l i 1Tt —iPsTs — B max
5: Uji Zh=1 Eyykfzkb(lA‘E(:‘;zk) Tt~ PsTs
6: if Uj; > 0 then
7: {Prip, Paip} = argmaxci,
}Ll ,40 {
Ul i
8: h P 7P' i c Vi 2,1
w ere{ 1,i,p5 £2, ,p} (U1, Usi}
{L1+,27 U2,i}
9: else
10: Pjip=0
11: end if
12: end for

both users are identical, the spectrum is assigned with equal probability to one of them. We

denoted this approach as priority.

[

Secondary users are equipped with a heliomote harvesting system which uses a solar
panel and Nickel Metal Hydride (NiMH) batteries, whose capacity is 2500mAMh, i.e. 3 Joules
]. The recharge cycle is 1000. The maximum harvesting rate can vary from 190 mJ/s to
240 mJ/s from 12:30 pm to 3:00 pm if the 4-4.0-100 solar panel is used [58].
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Algorithm 3 Random power allocation and detection threshold
Require: Ejnax > Eji,forj=1,2andt=1,2,---,N

1: Initialize 0 = Qp' (a); Ae

2: fori =1to N do

3: €i €0
Forj=1,2do
4: Lji 22111 E.f,k=—2§%;11 7;(;‘17:1))12,th—iPsTs—Ej,max
5: Uji Thet Ej,k*Z%}(ai(ﬁ\;k)ﬂ‘kﬂ*il’sfs
6: if Uj_yi Z 0 then
7. Pj’i — Pj,i,random elU (L;L’i, Uj,i);
8: else
9: Pj,i,random =0
10: return to Step 4
11: end if
12: end for

The primary user sends a complex QPSK signal with variance 02 = 1. The probability of
the PU activity is known by the cognitive radios and, unless stated otherwise, a low proba-
bility of the PU to be present is considered, m; = 0.2 (and my = 0.8), so that SUs may access
the spectrum. In practice, estimates of m; and 7, can be obtained via spectrum measure-
ments. The SNR of the PU signal measured at both SUs is the same and varies in the interval
[-20,30] dB. The spectrum bandwidth is W = 6 KHz, and the sampling frequency f, = 12
KHz. AWGN noise is added to the channel (with noise power Ny; = Ny2 = 1 mW). The
channel gain coefficients are set to h;; = hoy = —10 dB and the interference coefficients to
h15 = ho; = —20 dB. The detection design parameter « is set to 0.9 and the sensing power to
P, = 0.12 mW. The time slot duration is 7 = 100 ms, where 7, = 10 ms and 7 = 90 ms, and
a total period time 7" = 10 s is considered. The battery capacities are finite and identical for
both SUSs, ' max = Famax = 3 J. Further, each SU harvest energy independently according
to the system described before, so that the F;; varies uniformly from 19 mJ to 24 mJ. Results
are averaged over 200 simulation runs.

Fig. 2.5 illustrates the total throughput of the cognitive network for different values of
the primary user SNR. Both, the optimal and suboptimal power allocation policies, always
perform better than the benchmark and the priority algorithm for a given fusion rule. By
far, the worst performance corresponds to the priority approach, independently of the fusion
rule. Optimal and suboptimal approaches obtain almost a similar performance. For SNR
values larger than -7 dB, the performance of the optimal algorithm for the AND and OR rule
is identical, and differences with their corresponding suboptimal algorithm are minimal. For
lower SNR values, the OR rule performs slight better than the AND rule, and there are no
differences between the optimal and suboptimal algorithms. Also, remark that differences
between optimal and suboptimal algorithms reduces with regard to the random power allo-
cation approach for low SNR values.

Fig. 2.6 shows the allocated transmission power to both SUs when the SNR = 0 dB
for the AND and OR rules. Although the random power allocation algorithm sometimes
assigns a higher transmission power, the optimal and suboptimal algorithms using a lower
transmission power achieve a better performance, as the total throughput also depends on
the detection threshold. Further, it can be confirmed that the priority approach only assigns
transmission power to one of the users.
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Figure 2.5: Throughput of the SUs versus the SNR of the PU.

2.2.3.1 Severe change in the energy harvesting rate

In the previous scenario, energy was harvested from a single source (solar panels). In
practice, different energy sources can be combined in the device (e.g., solar, wind, vibra-
tions [13]), so that the harvested energy (and consequently, the harvesting rate) may vary
severely. This is the scenario considered in this subsection. To that aim, we consider that the
harvested energy at each time instant, £, ;, varies between [0,100] mJ. The other parameters
remain the same as in the previous scenario.

Fig. 2.7 depicts the SU throughput for different values of SNR. Given a fusion rule,
the optimal and suboptimal algorithms also outperform the benchmark and the priority al-
gorithm. As it was expected, the worst performance corresponds to the priority approach.
For SNR values larger than -5 dB and independently of the fusion rule, the optimal approach
improves slightly the suboptimal one. Remark that there is a significant difference between
the performance achieved by the AND rule and that achieved by the OR rule. If the SNR
decreases, differences in performance between the algorithms following both fusion rules
tend to reduce, although the algorithms under the AND rule perform still better. As it hap-
pened in the previous scenario, under low SNR scenarios, there is no difference between the
optimal and suboptimal algorithms. Note also that an increase in the throughput is observed
compared to the previous scenario since the harvested energy may be greater. Fig. 2.8 shows
the allocated transmission power to both SUs when the SN R = 0 dB and under the AND
fusion rule. In this case, there are no huge differences in the manner of (sub) optimal policies
assigning the transmission power to the users.

2.2.3.2 Different channel environments

Next, the optimal power allocation under different channel environments is analyzed.

o Asymmetric channel gains
In this first setup, we assume that the channel gain for the first SU is larger than for the
second SU, while the interference coefficients are the same for both users. Specifically,
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Figure 2.6: Allocated transmission power to the SUs for all the algorithms for SNR=0 dB using (a)
AND, and (b) OR fusion rule.

hiy = 0dB, hos = —20 dB, h1s = hg; = —20 dB. The remaining parameters are the
same as in the initial scenario.

Regarding the throughput (see Fig. 2.9), the optimal and suboptimal algorithms per-
form evenly for both fusion rules. In this case, the worst behavior corresponds to the
random approach. This can be explained by looking at the transmission power alloca-
tion under the AND rule in Fig. 2.10. The optimal and suboptimal policies allocate
all the transmission power to the first SU because the channel gain is larger. However,
the random policy still assigns power to both users, which is not efficient. Remind
that assigning a high transmission power to SUs is not enough to maximize the total
throughput since the detection threshold should be jointly optimized with the trans-
mission powers. Further, the optimal approach becomes the priority one, since all the
transmission power is assigned to the user with the best channel gain.
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Figure 2.8: Allocated transmission power to the SUs for all the algorithms when SNR=0 dB under
severe changes in the energy harvested rate under the AND fusion rule.

e Asymmetric interference channel
In the second case, channel gains are the same for both SUs; but the interference coeffi-
cients differ: h1y = hoy = —10dB, his = —15dB, hyy = —5dBfori =1,2,--- , N.

In Fig. 2.11, where the throughput versus the SNR is depicted, the better performance
of the optimal and suboptimal algorithms with regard to the benchmark and the priority
algorithms is clearly observed. Even the priority approach works better than the random
one. Besides, for low SNR values, the OR rule gets a slightly better performance
than the AND rule, while their behavior is identical for high SNR values. Differences
between the optimal and suboptimal algorithms are negligible. On the other hand,
the (sub) optimal transmission power allocation, which is shown in Fig. 2.12 for the
AND rule, follows a TDMA scheme as all the available transmission power is allocated
alternatively to only one user at every time slot. The priority and the random policies
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Figure 2.10: Allocated transmission power to the SUs for all the algorithms for asymmetric channel
gains when SNR=0 dB under the AND fusion rule.

allocate power to one or both SUs, respectively, at every time slot. In both cases, the
allocated power is approximately half of the transmission power assigned to the optimal
and suboptimal approaches.

e Strong symmetric interference channel
Finally, we consider a scenario with a strong interference, where the interference coef-
ficients are even greater than the channel gain coefficients, i.e., h;; = hoy = —10 dB,
h12 - h21 - O dB

In this scenario, performance results are similar to those that were obtained in the pre-
vious scenario, except for the benchmark algorithm. The total throughput achieved by
the random power allocation policy is close to zero (see Fig. 2.13), while the allocated
transmission powers (see Fig. 2.14) follow a similar trend to that observed in the pre-
vious scenario. Analyzing the similarities between both scenarios, at least one of the
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Figure 2.12: Allocated transmitted power to the SUs for all the algorithms for asymmetric interference
coefficients when SNR=0 dB under the AND fusion rule.

interference coefficients is larger than the channel gain. Hence, under these channel
conditions, the advantage of using the optimal or suboptimal schemes is remarkable.

2.2.3.3 Influence of other parameters

In this subsection, the influence of other parameters over the proposed algorithms, such as
the sensing time 7, or the probability of the PU being absent in the spectrum 7y, is explored.

o Influence of the sensing time
In this scenario, the sensing time 7, varies from 0.1 ms to 100 ms with step size 0.1 ms.
Remind that 100 ms is the duration of the time slot 7. Fig. 2.15 illustrates the through-
put for two different values of the SNR: -10 dB and 0 dB under the AND and OR fusion
rules. The other parameters remain the same as those set in the initial scenario.
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Figure 2.14: Allocated transmitted power to the SUs for the all the algorithms for a strong symmetric
interference channel when SNR=0 dB under the AND fusion rule.

It can be observed that the throughput curve varies with the sensing time 7, as a concave
function. For this reason, the performance of the optimal algorithm could be improved
if the sensing time is included as a parameter to be optimized (so the optimal 7 that
maximizes the throughput is taken into account). Further, as the optimal 7, depends
on the SNR value, it would be necessary to measure or estimate the SNR at the SU at
every time slot in order to always consider the optimal value.

e Influence of the probability of idle spectrum
Finally, the influence of the probability of idle spectrum (i.e., the probability that the
PU is absent) over the throughput is analyzed. To that aim, 7, varies from O to 1 with

step size 0.05, and results are explored for two values of the SNR: -10 dB, and 0 dB for
the AND and OR fusion rules (see Fig. 2.16).
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Figure 2.15: Influence of the sensing time 7, over the throughput for (a) SNR=-10 dB, and (b) SNR=0

dB.

As expected, the higher the probability of the PU being absent is, the larger the through-
put is, since the SUs can take advantage of the free spectrum and transmit data. Also,
and depending on the SNR value and the fusion strategy, results differ. For instance,
for low SNR (Fig. 2.16(a)), the OR fusion rule performs slightly better than the AND
rule, while differences tend to disappear when the SNR increases (Fig. 2.16(b)). In
the last case, the performance of the optimal and suboptimal algorithms converge when
mo = 1, while for a lower SNR value, the performance of both is the same even for low

values of 7.
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2.3 Optimal power allocation for a multi-frequency-band scenario

In this section we consider a two-user multi-band cognitive radio network, i.e., the two SUs
want to gain opportunistic access to a wide-band spectrum consists of 2 sub-bands that is
licensed to the PU. The same system model presented before is also considered here. How-
ever, some details need to be specified. Each cognitive radio employs a multi-band energy
detector to look for empty bands in the spectrum. We only consider a scenario where at
most two available bands are accessed at the same time. Two spectrum access strategies are
analyzed and compared. a) In the first case, the empty channels are assigned so as to each
cognitive radio can access at most one band at each time instant. This way, in case more
than two channels are deemed to be empty at a specific time instant, the two best channels
in terms of gain are assigned individually to the SUs. Therefore, each SU can access the
spectrum with no cross channel interference from the other user. Further, in case that at a
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specific time instant, only one channel is deemed to be empty, the channel is assigned to the
SU with the best channel gain, and if the channel gains are identical, the channel is assigned
with equal probability to one of the SUs. b) In the second case, both SUs share the empty
bands, so channel interference should be taken into account. This context is similar to the
single-frequency band scenario described in Section 2.2. We also assume that the SUs can
adapt their transmission bandwidth according to the bandwidth of the available channels.
Therefore, the available bandwidth can be different for each SU. However, as shall be shown
later, such a bandwidth difference has no effect on the proposed optimal algorithm. Note that
although the channel is frequency-selective between the PU and SUs in such a multi-band
scenario, for mathematical simplicity, we assume that both SUs experience the same SNR
from the PU in each band. However, the extension of the proposed method to a more general
one that considers different SNRs is straightforward.

2.3.1 Optimal power allocation in a multi-band non-sharing frequency bands scenario

In this first scenario, we consider a multi-band case where each cognitive user is assigned
to at most one band that is deemed to be empty. As in the previous scenario, we aim at
jointly allocating the transmission powers and setting the detection thresholds in order to
maximize the total throughput of the cognitive network. To properly formulate the prob-
lem, the objective function, the variables to be optimized and the constraints to be satisfied
need to be identified. The optimization variables and the constraints are the same as in the
single-frequency band scenario: €; and P;; for j € {1, 2} and 7 = 1,2, ...N as optimization
variables, and conditions (2.10)- (2.12) are the constraints. Denoting I¥/; as the spectrum
bandwidth accessed by SU j, and C; as the channel capacity for user j at time slot 7, the
objective function to be optimized is the total throughput of the whole frequency band W,
which is denoted as RYP,

N
Ry = Z P (AlHo, €i) T (chff? + W2C§l'o) : (2.24)

=1

Since 7; and 7y are assumed to be constant, and P (A|Ho, &;) = 1 — Qpa (&;), given by (2.7)
and (2.5b) when the energy detector is considered, only the channel capacity needs to be
specified.

As SUs do not interfere with each other (i.e., interference coefficients hi; and hg; are
disregarded), and assuming that the noise received at both SUs is AWGN with variance Vg ;,
the channel capacity C}; at time slot 7 is given by

hiil* P
CP = Wjlog, (1 + m) : (2.25)

In case only one SU accesses the spectrum at a specific time slot, then the channel gain
corresponding to the non-transmittting SU shall be set to zero in (2.24)-(2.25) in that time
slot.
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Taking into account all the components for the optimization problem, the optimal detec-
tion threshold and transmission power allocation at each time slot is obtained by solving the
following constrained maximization problem:

maximize RyP (2.26a)
subject to P,>0 je{1,2},i=12--- N (2.26b)
(2.10), (2.11), (2.12) (2.26¢)

Following a similar procedure to that exposed for the single-frequency band scenario, we
initially assume that the detection threshold ¢; is known, and we aim at optimally allocating
the user transmission powers by maximizing the term (W1 C’fﬁ’ + WQC’X}’ ) Thus, the power
allocation problem can be stated as

N
maximize Z (WlC’mo + WQCX? ) (2.27a)

“ i=1
subject to P;>0 je{1,2},i=12,--- N (2.27b)
(2.11),(2.12) (2.27¢)

Considering the fact that the SUs have independent energy budget and harvesting pro-
cesses, and the channel capacity is completely independent from the other SU transmission
power, power allocation can be performed independently at each SU. Therefore, the opti-
mization problem (2.27) for a given ¢; at time slot ¢ can be reduced to

hiil? Pis
ma);i]glize log, <1 + %) (2.28a)
subject to P;>0 je{1,2},i=12--- N (2.28b)
(2.11),(2.12) (2.28¢c)

The objective function in problem (2.28) is concave in its domain and the constraints are
convex [59]. Therefore, the optimization problem in (2.28) is a convex one and has a unique
optimal solution. We solve the problem using the Lagrange dual function. Let7; > 0, \; > 0,
and p; > 0 denote the Lagrange multipliers associated with the constraints in (2.28b), (2.11),
(2.12), respectively. The Lagrangian function of problem (2.28) is

]h-<7i|2 P, ‘ g .
Lj; = log, <1 + ”T,j] +niPji— N | — Z Ejr+ Z P (Aleg) Pjxmi + i PsTs

k=1 k=1

i+1 7
T M (Z Ejx— Y P (Alex) Pyri — iPers — Ejm> : (2.29)
k=1 k=1
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And the complementary slackness conditions are

i (— Z Eng + Z P <A|€k) PngTt + iPSTS> =0 (2.30a)
k=1 k=1
i+1 %
" (Z Ejr— > P(Alex) Py — iPr, — E]-,max> =0 (2.30b)
k=1 k=1
niP;; = 0. (2.30¢)

Noting that we are willing to assign transmission powers to the users, i.e., P;; > 0,
1; = 0 to make (2.30c) hold. Applying the Karush-Kuhn-Tucker (KKT) conditions to the
Lagrangian function (2.29), the optimal transmission powers P; ;" must satisfy the following
conditions

1
v s ( s ) 1112<NJ,1+P]71*) P<A’€)Tt+MP(A‘€)Tt ( a)
=Y Ejx+ Y P (Alex) Pami + iP7 <0 (2.31b)
k=1 k=1

i+1 i

> Ejx— Y P (Ale) Pisri — iPity — Ejax < 0 (2.31c)

k=1 k=1

P;; >0, (2.31d)
where N; = ‘i\f% is the normalized background noise power.

From (2.31a), the optimal transmission power is given by

Py = (Vii— Nj)™ (2.32)

where V;; = DTl A\Eil)n o Note that the optimal policy to assign the transmission power

is a time-dynamic water-filling strategy where V;; represents the power water level at time
slot ¢ for SU ;.

Considering the slackness conditions (2.30a) and (2.30b), and in oder to V; ; have physical
meaning (i.e., \; > p; so that the power water level V} ; is positive), the optimal transmission
power solution only exists in the following two cases:

ea))\;, >0and pu; =0
As p; = 0, the term that is multiplying y; in (2.30b) is different from zero, so KKT
condition (2.31c¢) is strictly lower than 0, which means that the battery capacity is large
enough. Given that \; > 0, the term <Z§c:1 P (Alex) Pjpmi + iPyts — 22:1 Ej,k)
should be zero in order to satisfy slackness condition (2.30a). Thus, the optimal trans-
mission power is

Pji = Ujys, (2.33)

LB =T P(Aler) Py i —iPs .
where U, = 2=t ik Z%(1A|s(~):k) 2T ST Note that U, has the same expression

that the upper bound found in constraint (2.19¢) in Section 2.2.2.
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.b))\i>,ui>0

If both Lagrange multipliers, x; and J\;, are positive, then \; should be larger than p; to
have (2.32) feasible meaning. To make slackness conditions (2.30a) and (2.30b) hold,
the equality ), _, P (Aler) Pixm + iP7e — 30y Ejie = D1 P (Aler) P +
1PsTs + Fj max — ;;11 Ej; ;; = 0 should be satisfied. This implies that £ 0 = Ej 11,
i.e., the energy harvested at time slot 7 + 1 should be equal to the maximum battery

capacity. In this case, the optimal transmission power can be also calculated using
(2.33).

In case that (2.31b) does not hold (i.e., U;,; < 0), P (A) should be decreased by choosing
a lower ¢;. Also, the harvested energy should not be larger than the battery capacity, as it
happened for the single-frequency band case.

Following the same procedure, the next step consists of performing the optimization of
the detection threshold ¢;. As it was mentioned in Section 2.2.2.1, P(.A) and P(A|H,) both
increase with the increase of ¢;, but the optimal transmitting power U ;“l (2.33) decreases
as well as the total throughput. The same trade-off between maximizing P (A|Ho, ¢;) and
C;ff appears. Again, we solve the problem by performing a bounded exhaustive search over
the parameter ¢;, so that the optimal value €] corresponds to the one that maximizes the
throughput for the optimal P;; obtained after solving (2.28).

The related algorithm is summarized in Algorithm 4.

Algorithm 4 Optimal power allocation and detection threshold for a multi-band non-sharing frequen-
cies scenario
Require: Ejax > Ej,forj=1,2ande=1,2,--- ,N

1: Initialize Qp,0 = @; QD,max = 0.99

2: forp=1,2,--+, P; P = 2me== go

AQ

3: Qpp=Qpo+(p—1)AQp
4: fori =1to N do
S €i < €0, €0 = Qg}p

Forj=1,2do
6: Ui k=1 Ej,k—Z%}ATE(;‘)\‘\F?)PNCH—iPs‘rs
7. if Uj,i Z 0 then
8: Pjﬂ',p = Ujﬂ'
9: else
10: P]ﬂﬁp =0
11: end if
12: end for

Pl,l,p P2,1,p

13: {Prp, Pop} = P.l.’2.’p P.27.2.’p

Pl,N,p PQ,N,p
14: end for
15: Choose {P1,P2} = argmaXRT, {P1,P2} € {Plﬂp,PQJ)}.

2.3.1.1 Simulation results

In order to test the performance of the proposed algorithm, a simple experiment is carried
out in a multi-band scenario. The total bandwidth is set to 12 KHz, which is divided into
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two subchannels of bandwidth 6 KHz. The sampling frequency is 24 KHz. The remain-
ing parameters are the same as the ones exposed initially in Section 2.2.3. For comparison
purposes, the random algorithm is considered.
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Figure 2.17: Throughput of the SUs versus the SNR of the PU in a multi-band non-sharing frequencies
scenario.

Fig. 2.17 shows the SU throughput for different values of the SNR. It shows that the
optimal power allocation policy outperforms the random one. For high SNR values, both
fusion rules behave identically; however, for SNR values lower than —9 dB, again we observe
a slightly better performance when the OR fusion rule is applied. Fig. 2.18 depicts the
allocated power to both SUs when the SNR = 0 dB. As it was previously observed for the
single-frequency band scenario, although the random power allocation algorithm sometimes
assigns a higher transmission power, the optimal scheme achieves better performance given
that it should be jointly optimized with the detection threshold.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 2.18: Allocated transmission power to the SUs for SNR=0 dB under both fusion rules in a
multi-band non-sharing frequencies scenario.
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Figure 2.19: Throughput of the SUs versus the SNR of the PU for the two multi-band power allocation
strategies and fusion rules in a weak interference environment.

2.3.2 Optimal power allocation in a multi-band sharing frequency bands scenario

In the second scenario, the two SUs share the empty bands, allocating the same transmission
power to each band. As empty bands are shared, interference between SUs cannot be ignored.
Clearly, this scenario is similar to the one exposed in Section 2.2, so the optimal power
allocation and detection threshold detailed in Algorithm 1 can be applied to each empty band
of the multi-band scenario.

Finally, we analyze and compare the performance of the sharing and non-sharing fre-
quency band schemes in a multi-band scenario under different channel environments. First,
a weak interference scenario is considered. The channel coefficients are set as follows:
hiy = hes = —10 dB and h1y = ho; = —20 dB. The remaining parameters are those
detailed in Section 2.3.1.1.

Fig. 2.19 shows the total throughput for different values of the SNR and for the two
strategies and fusion rules. It can be observed that the strategy where the SUs share all the
frequency bands benefits significantly from a better use of the bandwidth usage and achieves a
higher throughput. Not surprisingly, the use of the OR rule improves slightly the performance
for SNR values lower than —10 dB. Over this value, both rules perform similar.

On the other hand, we consider a strong interference scenario, where coefficient values
are set to hy; = hgs = —10 dB and hy5 = hy; = 0 dB (see Fig. 2.20). For this setup, there
are no differences between the sharing and non-sharing strategies; and regarding different
fusion rules, the results are very close. As it was highlighted in the single-frequency band
scenario, the optimal transmission strategy applied to each band follows a TDMA scheme,
assigning at every time slot all the transmission power to only one of the SUs.
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Figure 2.20: Throughput of the SUs versus the SNR of the PU for the two multi-band power allocation
strategies and fusion rules in a strong interference environment.

2.4 Discussion about the overflow control constraint

In this section, we open a discussion about the necessity of the overflow control constraint.
In practice, we can never have an ideal battery with infinite capacity. Thus, when the left
space of the battery is not large enough to accommodate the incoming harvested energy, the
excess of energy will be discarded.

In this thesis, we include the overflow control constraint based on the following two as-
pects.
a) From the channel capacity point of view, the overflow leads to energy inefficiency be-
cause the energy could have been consumed before the overflow situation happens in order
to achieve a higher channel capacity. This idea has been summarized as a lemma and proved
in [50]. This lemma has been applied to achieve the optimal power policies for energy-
harvesting networks in [19,49]. Besides, several works also try to avoid the energy overflow
in order to find a optimal transmission strategy [51,60,61]. The authors of [60] have showed
that the optimal scheduling algorithm should avoid energy overflow to get more system re-
ward. And in [61], the authors designed an algorithm that speeds up the task execution (i.e.,
the data transmission rate) when overflow is predicted. Also, the work in [51] designs an
offline optimal data transmission scheme in order to minimize the transmission time when
the overflow constraint is considered.
b) From a practical point of view, energy overflow is not desirable because the line voltage
should be limited within certain boundaries [62]. When the peak overflow is too high, it
may even destroy the system. To solve this problem, the energy-harvesting device can be
shut down, the electrical energy can be converted to other energy source such as thermal
energy, a larger storage can be considered or power allocation schemes to avoid overflow
can be designed. On the one side, frequent starts and shut down are not desired in most of
the energy-harvesting systems for saving reasons [63]. For example, the windmills do not
have automatic shut off in case of overflow, and it would require the human intervention. In
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order to let the energy-harvesting system operate in a continuous way, it is better to consider
devices that can either convert the harvested electrical energy into another type of energy or
provide larger storage space to devices. But the cost of implementing such functionalities is
still left to be account and in some cases, it is even not possible. Therefore, the most efficient
way to avoid the overflow is the use of power allocation schemes.

However, if we only consider the channel capacity, algorithms that avoid overflow may
turn to be suboptimal in some scenarios, such as the strong interference environment. In an
interference channel, with the increase of the transmission power of one user, the interfer-
ence to other users increases. Thus the total channel capacity may decrease with the increase
of user transmission power. When the battery is limited and the cross-channel gain is very
strong, the energy overflow control constraint will force all users to exhaust the residual
battery energy, which causes undesirable interference. In this case, the power allocation al-
gorithms that consider the energy-overflow constraint may become sub-optimal approaches,
so that the aforementioned lemma in [50] does not hold anymore.

Thus, the transmission power is only constrained by the energy causality constraint and
the maximum battery capacity as follows

i i—1
P(A) Py — Prg <min [ Y Ejp = > P (A) Pigri — (i — 1) PiTa, Bjmax, | (2.34)
k=1

k=1

Equation (2.34) reflects that if the harvested energy at time slot - overflows, then the available
energy is fixed to the maximum battery capacity F; ... Also, the energy expected spent
should not excess the current energy of the battery.

In the following, we perform optimal power allocation in the value range bounded by con-
straint (2.34). Then, we apply the resulting optimal power allocation algorithm to a scenario
where CRs have a very low maximum battery capacity (i.e., Ej 4, = 24mJ = FE;;) and we
compare the results with those obtained by the optimal algorithm that considers the overflow
control in two different channel environments: a) a weak interference environment, where
hiy = hgy = —10dB, h1s = hoy = —20dB; b) a strong interference environment where
h11 = hos = his = hoy = —10dB. Fig. 2.21 shows how the throughput varies with the PU’s
SNR for algorithms allowing (and not) the overflow under AND and OR fusion rules. In the
weak interference environment, both optimal approaches perform similarly. Even more, the
performance of the random power allocation scheme considering the overflow control con-
straint approximate the optimal solutions. As expected, the random power allocation solution
not considering overflow control constraint performs significantly worse than the other solu-
tions. Fig. 2.22 shows the allocated power to SU; and SU, for the different power allocation
schemes for both fusion rules. It can be observed that the transmission power level is much
lower in the random power allocation scheme not considering overflow control constraint
than in the other power allocation schemes. Therefore, for the weak interference channel
scenario we may indicate that the energy overflow constraint (overflow not allowable) is a
necessary constraint that should be satisfied.

In Fig. 2.23, we observe the throughput with regard to the SNR of PU in a strong in-
terference environment for the same power allocation algorithms analyzed in the previous
scenarios under the AND and OR fusion rules. It is observed that the optimal power allo-
cation scheme not considering overflow control constraint outperforms the optimal power
allocation scheme. When the SNR of PU is under about -10 dB, even the random power
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Figure 2.21: Throughput of the SUs versus the SNR of the PU for the power allocation strategies
controlling overflow and allowing overflow in a weak interference environment with a very limited
battery capacity, F1 maz = 2 maz = 24 mJ.
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Figure 2.22: Allocated transmission power to the SUs for SNR=0 dB for the power allocation strate-
gies controlling overflow and allowing overflow in a weak interference environment with a very lim-
ited battery capacity, £ jnaz = Fomae = 24 ml.

allocation algorithm not considering overflow control constraint performs better than the two
power allocation algorithms considering overflow control constraint. Checking Fig. 2.24,
although less power allocated to SUs decreases in the optimal power allocation scheme al-
lowing overflow, the throughput increases because less interference in total. While in the
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Figure 2.24: Allocated transmission power to the SUs for SNR=0 dB for the power allocation strate-
gies controlling overflow and allowing overflow in a strong interference environment with a very
limited battery capacity, F1 jar = F2 maz = 24 ml.

power allocation schemes considering overflow control constraint, residual battery energy is
forced to spend in order to avoid overflow, which will cause more interference resulting in
the decrease of throughput. Recall the throughput versus SNR of PU in Fig. 2.13, where
the interference is even stronger, but the throughput is even larger comparing with Fig. 2.23.
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Fig. 2.14 shows that the optimal power allocation solution that considers the overflow control
constraint avoid severe interference by applying a TDMA strategy when the battery capac-
ity is large enough to store the current energy package to next time slot. And in this case,
all the harvested energy can contribute to the system and also avoid too much interference.
Therefore, we can intuitively indicate that energy overflow will cause the lost of through-
put anyway. However, the overflow control constraint should not force the optimal solution
degrading to a sub-optimal one. The best solution to solve this problem is to set the low-
est bound for the battery capacity so that the overflow constraint won’t degrade the optimal
solution.

In this work and for simulation purposes, we consider a solar-energy harvesting CR net-
work. In practice, the battery capacity is generally larger than the energy-harvesting rate
according to the considered simulation environment. For that reason, the harvested energy
would not originate energy overflow. Hence, the optimal power allocation scheme showed in
this thesis is practically the optimal one.
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Power allocation and detection
threshold set for multiple-user
energy-harvesting CR
networks

The previous chapter introduced a joint design of a power allocation and detection threshold
strategy for a sharing single-frequency band and a multi-band scenarios in two-user energy-
harvesting cognitive radio networks. However, the main limitation of the previous approach
is the number of cognitive radio users. Usually, cognitive networks are composed of multiple
users. Hence, in this chapter we generalize the previous model to energy-harvesting cognitive
radio networks composed of more than two users.

In this scenario, the cognitive radio network is composed of K secondary users that op-
portunistically use the frequency bands licensed to a PU, as it is shown in Fig. 3.1. Similar to
the two-user scenario, the SUs first sense the spectrum and transmit their individual sensing
results to the fusion center, which makes the final decision about the presence or absence
of the PU according to a fusion rule. Due to the higher mathematical complexity of some
fusion rules, such as the %k out of N rule, we consider again the AND and OR fusion rules.
Whenever the spectrum is deemed to be free, SUs can access the spectrum and transmit their
data.

SU1Rx SU2Rx

Frequency Band

Figure 3.1: Multi-user cognitive radio network

Assuming finite and rechargeable batteries for SUs and a time-slotted operation model as
in the previous chapter, the aim is to optimally allocate the transmission power corresponding
to each secondary user and select the detection threshold taking into account the interference
with the PU and the energy constraints (imposed by the use of energy-harvesting devices)
while the network throughput is maximized. However, we should keep in mind that the
increase of users will increase exponentially the computation complexity and the difficulty
of power allocation [47].

Following the scheme of the previous chapter, the problem is analyzed in two scenarios:
a) a single-frequency band case, and b) a multi-band case. In the first scenario, all cognitive
users share the empty frequency band, so they will interfere with each other if no interference
cancellation (IC) technique is used. On the other hand, in the multi-band case users can
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access independently without interference to the different frequency bands of the spectrum.

3.1 Optimal power allocation for a single-frequency-band scenario

In the single-frequency band case, all SUs transmit their data when the spectrum is deemed
to be free. Fig. 3.2 shows the channel model for a multi-user cognitive radio network, where
hjr (J, k € {1, 2, ... K}) are the channel coefficients: hj;, for j = £ are the channel gains
and h;, for j # k are the interference coefficients between SU transmitter j and SU receiver
k. As SUs share the same communication channel, interference between SUs should be
considered.
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Figure 3.2: Channel model for a multi-user cognitive radio network

Denoting P;; as the transmission power of SU j at time slot 4, and Ny ; as the AWGN
channel noise for SU j, the channel capacity at time slot ¢, C;, is given by

C f:vm <1+ sl P ) (3.1)
i 089 K p) ’ .
j=1 NO»J' + Zk;ﬁj ‘hkj’ Pk,z’
where IV is the empty spectrum bandwidth.

Following the same procedure as the one used for the two-user case, our goal is to maxi-

mize the network throughput during N time slots, which is defined as

N
RT = Zﬂ'op (A|7'[0,6i) TtCZ', (32)
n=1
where 7 is the probability that the PU is absent in the spectrum, 7; is the transmission time
in a time slot and P (A|H,, ;) is the probability of accessing the spectrum under hypothesis
‘H, for a given detection threshold ¢;.

Note that since the probability of reaching a successful transmission is approximately 0
upon miss detection of the PU, the throughput due to miss detection is approximately zero and
thus, it is not taken into account. Also, we include the QoS (2.10) and the power management
conditions (2.11)(2.12) as constraints.
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Thus, the optimal detection threshold and transmission power allocation at each time slot
is obtained by solving the following constrained maximization problem:

maxi}gnize Ry (3.3a)
subject to P,>0 je{1,2,..,K},i=12--- N (3.3b)
Qp > « (3.3¢)
Y Eix—Y P(A)Pyr —iPr >0 (3.3d)
k=1 k=1
i+1 7

D Ejk— > P(A) Pixr — iPTy < Ejmax (3.3¢)
k=1 k=1

3.1.1 Multi-user cognitive network with interference

In this setup, we try to solve the problem formulated in (3.3) using the Sequential Quadratic
Programming (SQP) method. Again, a two-step strategy is implemented to solve the offline
optimization problem. In the first step, the optimal transmission power is considered assum-
ing that the detection threshold is given. Since the interference control constraint (3.3c) is not
considered because it only affects the detection threshold, and taking into account that the
terms 7o, P (A|Ho, €;), and 7; in the throughput (3.2) are constant, the optimization problem
is reduced to

mi > (1 Nl ) (342
maximize 085 K 2 aa

P;; =1 N(),j —+ Zk?ﬁ] ‘hkj| Pk,i
subject to P, <Uy, je{l,2,..,.K};i=1,2--- N (3.4b)
P > L;:i (3.4¢)

? Sl i kTt—iPsTs
Where UJ’Z _ Zk:l E],k I,CP:(%,ZTS(:;‘_?C)P]’]C + —1Ps T and LJ,z —
i+l o il c o —iPTe—E .

k=1 ik Zk:li(ﬁlfi))g,k BT Bimax are the upper and lower bounds for the trans-

mission powers, respectively. Remark that (3.3b) is already included in (3.4c) since
L;:z = maX{LM,O}.

T .
Letp; = [Pi; Py --- Pg;] denote the transmission power vector,
T . .
and h; = [|h17j]2 ]hg,jﬁ e \hK,jﬂ the channel coefficient vector associated to SU
10 00 00
01 00 00
receiver j. Also,let O; = |~ "6 © " " | bethe K x K cancellation matrix, which

1
Loo . i | |
cancels the local channel gain in order to compute the interference with other users. Thus,
the previous optimization problem is expressed in matrix form as follows
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minimize f(p;) =— lo (3.5a3)

S (P:) ; 2 No, + 1, O,p;
subject to IF —p; <0 (3.5b)
Pi — 4 < 07 (3 5C)

where u; = [Ul,i UQJ' s UK}Z‘]T and lj_ = |:L17Z-+ L2,i+ . LK,i+:|

3.1.1.1 SQP method

Given the non-linear objective function (3.5a), and the linear constraints (3.5b)(3.5¢c), we
propose an algorithm based on the SQP method, which is effective for solving constrained
optimization problems with smooth non-linear functions in both, the objective and constraint
functions [69].

The basic idea of the SQP algorithm is to model the original optimization problem as a
sub-quadratic problem and get our approximation solution. Then the solution of this sub-
quadratic problem is used to construct a better approximation of the optimal value in the next
iterate [70]. The standard formulation of the SQP algorithm is based on a equality constrained
problem. First, let us introduce one nonnegative 2K x 1 slack variable vector, denoted by
z (z > 0), in order to convert the inequality constraints to equality constraints. Hence, the
optimization problem can be formulated as

minimize f(Py) (3.6a)

7

subject to g(P;))+z=0, (3.6b)

where g (p;) = {—II} pi — [B{] (I'is a K x K identity matrix), and O is 2/K X 1 vector

composed of zeros.
Being A; > 0 (2K x 1) the Lagrange multipliers associated with constraint in (3.6b), the
Lagrangian function of problem (3.6) is

L(pi, i) = f (pi) + Al (9(pi) —2). 3.7

In this constrained optimization problem, , the local optimal solution P} and the optimal

multiplier vector A7should satisfy the first order necessary condition that the gradient of (3.7)
depending on p; equals

VL (pi,A)) =0 (3.8)

We approximate the Lagrangian objective function at the optimal values (P}, A7). In

order to construct a quadratic problem, we approximate the Lagrangian function by means
of Taylor series, which at iteration n is given by

L(p;, ) =L (P!, A]) + V(L (pi A))) (Pi — i)

1
+ 5 (0) = Pi) H (L (P}, X)) (P} — P (3.9)
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The motivation to use this approximation for the Lagrangian as the objective function of op-
timization problem is due to the fact that it not only iterates to achieve the local minimum of
(3.5a), but also includes the first order necessary condition (3.8) and the constraints (3.6b). It
means that the resulting algorithm will have good local convergence property [71]. Following
the same reasoning for the constraint (3.6b),

g(py)+ Vg (pi) (p; —pi) —z=0. (3.10)

Then, the optimization problem is transferred to minimize (3.9) subject to (3.10).
Observing that £ (P,;", A7) is known at iteration n (3.9), we want to update the step
size, denoted as dP;, from the present power vector p} to the optimal power vector P} (i.e.
Thus, we can formulate the quadratic programming (QP) subproblem at 7 iteration as

1
minimize V(£ (07 X)) dps + L. HE (b X)) dp, (3.11a)
P
subject to g(P})+Vyg(p})dp;+z=0 (3.11b)

Note that £ (p7, A;) is constant, the solution of dp; can be used to generate a new iterate
p;"! by forward a step from p7 in the direction of dp,. As the first order necessary condition
(3.8) should hold, we compute its expression for problem (3.11) with regard to variable dp;,

V(L)) +H (L (P! A))dpi = VI (p!') + Vg (P! ' Af + HL (p!, A\") dp; = 0
= VI +Vg®e) N+ V() (A =X+ HL (pP, ) dp; = 0 (3.12)

Thus, let us denote the step size for the Lagrange multiplier as dA; = A7 — A!". The first
order KKT conditions for problem (3.11) are

HL(p}, X)) Vg (pp) '] [dpi] _ [=VL (P}, A)) (3.13)
Vg(py) 020 [ ldX —9(p}) =2 '

Based on (3.13), and in order to obtain a better approximation to the optimal value in the
next iteration, new estimate for the multiplier are needed. We can update the step size vectors
(dp;, dA;) as
p"t! = p" + adp; (3.14)
AT =N+ ad), (3.15)
for a step size parameter «.

Hereby, step length parameter « is introduced to ensure the convergence of the algorithm.
We define the merit function ¢ to measure the progress of the algorithm convergence as

6= F(p), (3.16)

and for every iteration, if condition ¢ (p;," + adp;) < ¢ (p;") holds, then the algorithm
converges. So that step size parameter « should be adjusted to satisfy the previous condition.

Besides, there is one slack variable variable z that needs to be determined. It can be
noticed that the change of z only affects constraints (3.11b)

g9 (p;) + Vg (p;)dpi +2z" +dz = 0. (3.17)
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Noting that z is a nonnegative slack variable, we can derive step size for z from (3.17) and
then update
2" = max (z" + adz,0) . (3.18)

Moreover, to guarantee P} to be an isolated local minimum of problem (3.6), the
strong second order sufficient conditions should also be satisfied: a) the update matrix
HE(pr AT) Vo(pr)
vg(pw 02K x2K

is positive definite on the tangent space of the constraint [71], i.e.,

(3.13) has full row rank; [70] b) the Hessian of Lagrangian function

d"HLd > 0, foralld # 0 such that g (p;)'d = 0. (3.19)

We compute the Jacobian and Hessian of the Lagrange function (3.7) to check whether
the strong second order sufficient condition is satisfied. From the expression of f (P;) in
(3.5a), we derive the Jacobian

K
Vf (pz) = Z \V4 [— 10g2 (NOJ‘ + thpi) + 10g2 (NOJ‘ + thiji)]
=1
K T
Z - (_ J - + O] T] ) 7 (3.20)
iz In2 NO,j + hj P N()J + hj iji

1

.

and the Hessian of the objective function is

K T T T
1 h;h; O."h:h:'O.
v2f(pi):Zﬁ[ Rt T e (3.21)
=1 2 L(Nog +h; pi)” (Noj+h; O;p))
Thus, the Jacobian of the Lagrange function (3.7) is given by
K<k 77
VL(pi) =Vf(p:)+ |:_IK><K:| Ai, (3.22)
and the Hessian of Lagrange function is
HL((p):) = V[ (p:). (3.23)

KxK
Here, HL is a full rank K x K matrix, and Vg (p;) = {_II Kx K] , so the update matrix

[Hﬁ(p?vx?) vo(er)"
v Q(P?) 02K x2K
Besides, because it is hard to ensure H L to be positive definite on the tangent space of the
constraint, we approximate the Hession of Lagrange to be positive definite using Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method in implementation [71],

1 has full row rank.

qnan . H/:ndp@deTH,CnT
q, " dp; dpiTHE"dpi
where q, = (V£ (pi) + Vg (p™) A1) = (VL (p) + Vo (PHTAT) - (324)

HL™' = HL" +

Y
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After assigning the optimal transmission power, we need to find the optimal detection
threshold ;. Recall the conclusion we get in subsubsection 2.2.2.1: that with the increase
of €;, P (A|Hp) and P (A) increases, yet the bounds of the transmission power (17, u;)
decrease. This means that by increasing the detection threshold, although the opportunities to
access the spectrum increase, the power that can be assigned decreases for one transmission.
This fact calls for the search of the optimal detection threshold search follows the same
procedure that we used in subsubsection 2.2.2.1. Thus the whole algorithm is summarized in
Algorithm 5

Algorithm 5 SQP Power Allocation for Multi-User Interference Case
Require: Ej 0 > Ejj forj=1,2,--- ,Kandi=1,2,--- ,N

1: Initialize Qp1 =

2 forp=1,2,--.  P; P = Y2me=a g,

AQp
3: Qpp=Qpo+ (p) AQD
4 fori =1to N do
5: En < €0, 0 = Qg’lp,
6 forj=1,2,--- /K do _ .
7 Compute  Uj; = Zia Ej"“72’33:(1“47‘);;‘?")})"’”’571]35“, and L;; =
o Bk =3y P(Aleg) P kTt —iPsTs — Ej max
P(Ale;)Te
8: end for
9: ifUj; > 0forall j then
10: Initialize PY, A?,z" set merit function ¢
11: for Interation n do
12: Form and solve (3.11) to obtain dp; d\; (3.13) and dz (3.17),
13: Choose step length parameter « so that ¢ (p;" + adp;) < ¢ (p;™)
14: Update p/"*, \;" ™! (3.14) and 2"+ (3.18)
15: Stop if converged (i.e. p?“ — pj’ < g, € is a small value)
16: end for
17: Record p; , = p?“
18: else
19: ijp =0
20: end if
21: end for
22: Choose p; = argmax Rp, p; € {pi,l, Pi2, " ,piyp}.
23: end for

3.1.1.2 Simulation Results

We first apply Algorithm 5 to a 2-user scenario to test its performance as we can compare
them with those obtained in the previous chapter and then apply it to a 3-user case. For the
two scenarios, we set two different channel environments: weak interference environment,
hj; = —10dB, hy; = —20dB,k # j; and a strong interference environment, h;; = hy; =
—10dB, k # j. We also consider a total time period of 7" = 1 s; and the SNR of the PU
signals measured at SU varies in the interval [-20, 10] dB. The other parameter settings are
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the same as those selected in subsection 2.2.3. All results are averaged over 200 simulation
results and compared to the random power allocation and detection threshold scheme 3.
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Figure 3.3: Throughput of SUs versus SNR of the PU for a 2-user scenario in a weak interference
environment

Fig. 3.3 and Fig. 3.5 present how the throughput varies with measured SNR of PU for
weak interference and strong interference scenario. Although they show that Algorithm 5
outperforms the random allocation algorithm, the improvement is limited comparing with
the optimal solution proposed in subsubsection 2.2.2.1 as in Fig. 2.5 and Fig 2.13. Espe-
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Figure 3.4: Allocated transmission power to SUs for a 2-user scenario in a weak interference environ-
ment when SNR=-5 dB
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Figure 3.5: Throughput of SUs versus SNR of the PU for a 2-user scenario in a strong interference
environment
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Figure 3.6: Allocated transmission power to SUs for a 2-user scenario in a strong interference envi-
ronment when SNR=-5 dB

cially in the strong interference environment, when PU’s SNR is under -5 dB, the random
power allocation scheme performs approximately as SQP based power allocation scheme.
Comparing power allocation details in Fig. 3.4 with Fig. 2.6, we can find that the SQP
power allocation scheme assigns maximal power only to SU1, while the optimal power al-
location scheme assigns power to both SUs. In Fig. 3.6, the SQP algorithm assigns power
to both users while the optimal one behaves as TDMA strategy (i.e. one time slot only one
SU transmits) in Fig. 2.14 and 3.6. Recall the capacity function shape shows in Fig. 2.3,
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the allocated power pair either in Fig. 3.4 or in Fig. 3.6 is only a local optimum where the
optimal algorithm will choose from the set given by equation (2.21).
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Figure 3.7: Throughput of SUs versus SNR of the PU for a 3-user scenario in a weak interference
environment

The performance of this algorithm follows a similar trend when the CR network is com-
posed of 3 users. In the weak interference environment, the SQP power allocation scheme
still outperforms the random allocation scheme as it can be seen in Fig. 3.7 shows. In the
strong interference environment, the advantage of using the SQP power allocation scheme
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Figure 3.8: Allocated transmission power to SUs for a 3-user scenario in a weak interference environ-
ment when SNR=-5 dB
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Figure 3.9: Throughput of SUs versus SNR of the PU for a 3-user scenario in a strong interference
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Figure 3.10: Allocated transmission power to SUs for a 3-user scenario in a strong interference envi-
ronment when SNR=-5 dB

reduces as shown in Fig. 3.9. In the environment that interference is extremely strong
(h;; = —10dB, hy; = 0 dB, k # j), the SQP power allocation algorithm gets better perfor-
mance for low SNR, however, the random power allocation scheme performs approximately
as good as the SQP scheme when SNR is above -5 dB. Fig. 3.12 shows the power alloca-
tion behavior of SQP scheme for 3-user case in the extreme interference environment. In
this case, the power is only assigned to SU1 and SU2 while SU3 does not transmit. It is
worth remembering that (3.1) is a non-convex function, and the SQP-based power allocation
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Figure 3.12: Allocated transmission power to SUs for a 3-user scenario in a extremely strong interfer-
ence environment when SNR=-5 dB

algorithm may only find a local optimum. As a result, its performance of algorithm depends
mainly on the initial point. To find the global optimum, we can apply the outer approximation
method [66] by searching all the boundaries of the value set. However, this method remains
plausible only for small-to-medium problems [67].
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3.1.2 Multi-user CR network with interference cancelation (IC) technique

In this subsection, we consider a multi-user CR network where SUs apply IC technique, such
as filter-based approaches, transform-domain approaches or spatial processing [68]. Because
of the use of IC techniques, interference between SUs can be ignored. Thus the channel
capacity at ¢ th time slot is given by

K 2
hi:l* Pin
Cl =Y Wlog, (1 - M) : (3.25)

Note that the capacity function (3.25) has the same expression as the capacity function for
the multi-band case (2.25) in the previous chapter. As a result, the optimization problem is a
convex one, so we can solve the problem by applying the KKT conditions as we did before.
It is apparent that we get the same optimal power allocation scheme as in subsection 2.3.1.

To test its behavior, we apply algorithm 4 to 3-user case. We set h;; = —10d B, and the
other parameters are the same of those chosen in subsubsection 3.1.1.2. Figure 3.13 shows
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Figure 3.13: Throughput of SUs versus SNR of the PU for a 3-user scenario using IC technique in a
weak interference environment

the throughput versus SNR of the PU using optimal and random power allocation scheme
under AND and OR fusion rule in the weak interference environment for the 3-user case
when each user applies IC technique. It is clearly observed that optimal algorithm performs
better than the random one. As expected, the OR rule performs better for low SNR value.
Fig. Figure 3.14 shows the transmission power allocation to different users when the SNR
of the PU is -5 dB for different schemes. Although at some time slots, the random power
allocation scheme assigns more power to the users, however the network performance of the
SQP approach is better.
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Figure 3.14: Allocated transmission power to SUs for a 3-user scenario using IC technique in a weak
interference environment when SNR=-5 dB

3.2 Optimal power allocation in multi-frequency-band case

In this section we analyze the transmission power allocation in a multi-frequency-band sce-
nario. As it was mentioned in section 2.3 we can access the spectrum under two strategies:
a) applying FDMA; b) or allowing limited number of users to share each narrowband. In
the FDMA case, the algorithm 4 which was obtained for the 2-user CR network follows the
power allocation algorithm in 2-user widenand case. For the sub-band sharing case, we apply
SQP-based power allocation scheme 5 to each sub-channel, assigning the same transmission
power to each band.

We simulate a multi-band scenario for the weak interference and the strong interference
environment. Parameter settings follows subsubsection 3.1.1.2. In the sub-band sharing case,
we allow up to 3 users to share each equally divided sub-band (2 KHz, the total bandwidth is
6 KHz) for the SQP-based and random power allocation schemes. And in the FDMA case,
each SU accesses one sub-band, so the interference between SUs can be ignored.

In the weak interference environment, the sub-band sharing strategy outperforms the
FDMA scheme 3.15. Although for SNR values are lower than -10 dB, the FDMA scheme
performs better than random allocation scheme even if the improvement is small, the SQP
scheme always gets a higher throughput. However, the opposite behavior is observed for the
strong interference scenario, see Fig. 3.16. FDMA algorithm outperforms the SQP-based
one in regards of throughput. However, both get better performance than the random one.
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Figure 3.15: Throughput of the SUs versus the SNR of the PU for the 3-user scenario of the two
multi-band power allocation strategies and fusion rules in a weak interference environment.
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Figure 3.16: Throughput of the SUs versus the SNR of the PU for the 3-user scenario of the two
multi-band power allocation strategies and fusion rules in a strong interference environment.
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Conclusions and future work

In this chapter, we summarize the work of the thesis and derive the final conclusions. Future
research directions are drawn at the end.

4.1 Conclusions

This thesis designed offline short-term optimal power allocation and spectrum sensing strate-
gies for multi-user energy-harvesting cognitive radio networks which perform cooperative
spectrum sensing in different scenarios.

In chapter 2, we proposed an algorithm for allocating the transmission power and setting
the detection threshold for energy-harvesting CR networks which consists of 2 secondary
users and one primary user. The optimal transmission powers, and the detection threshold
were obtained in a two-step procedure for the AND and OR hard fusion rules under a time
slotted energy model and considering different scenarios where at most two available bands
were accessed at the same time : a) the empty frequency bands were shared by the cognitive
users (so that interference between users played a key role), and b) the frequency bands were
accessed independently so that cross channel interference was avoided. First, we analyzed
the channel capacity function shape to look for the optimal transmission power. As the op-
timization function was quasi-convex, the maximum channel capacity was achieved at the
vertices of the power value set for the 2-user interference channel. Second, we discovered
that with the increase of detection threshold, the probability to access the idle spectrum in-
crease, while the available power can be assigned in each access decreases that leads to the
decrease of the channel capacity. So we set the optimal detection threshold by a through-
search approach. We compared via simulation the results of applying the optimal algorithm
with a benchmark algorithm. The simulation results showed that the network throughput is
improved by applying the optimal algorithm under different energy-harvesting and channel
scenarios. A suboptimal scheme that needed less computational requirements was also pro-
posed for the single-frequency band case. Interestingly, results showed that the suboptimal
algorithm performed nearly as the optimal one under different setups. In general, the AND
and OR fusion rules performed almost evenly in terms of the throughput; however, a slightly
better performance of the OR rule was observed when the SNR is considerably low. Further,
results also evidenced the advantages of SUs sharing all the available bands instead of each
SU accessing a different empty frequency band.

Chapter 3 investigated the power allocation and detection threshold problem for multi-
user (including more than 2 SUs) energy-harvesting CR networks in single-band and multi-
band scenario. We followed an SQP formulation in order to optimally allocate the transmis-
sion power and later, we used the same detection threshold search procedure followed in the
two-user case. Although the simulation results showed that this algorithm can only achieve
a local minimum for the non-convex power allocation problem, it still outperformed the ran-
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dom allocation algorithm, even in the extremely strong interference case for a 3-user scenario
when the SNR of PU is low. We also extended the power allocation problem to CR networks
which use interference cancellation techniques and we showed that the the algorithm devel-
oped for the 2-user CR network scenario can be applied to the multi-band sharing power
allocation case. Finally, we found out that the scenario where all SUs share all the available
bands obtained better performance than the case where SUs access different idle frequency
bands for the weak interference environment. On the other hand, making SUs access the
different bands is wiser for scenarios with strong interference.
In short, the conclusions are summarized below:

e The offline short-term optimal/ sub-optimal power allocation and detection

threshold shall improve the energy-harvesting CR network throughput signifi-
cantly.
The offline power allocation and detection threshold algorithm is proposed for a short-
time period under the assumptions of predicting the energy-harvesting behavior and
being the channel environment approximately static. This algorithm provides insights
for designing energy-harvesting CR networks which operate in short-term periods, i.e.,
the optimal transmission power adjusting to the predicted energy-harvesting process
and the the spectrum sensing detection threshold can be determined before the CR net-
work starts to work in finite time period. Simulation results showed that the optimal/
sub-optimal solution outperforms the benchmark solution in different environments for
different CR network sizes.

e The total CR network throughput can be improved by assigning higher transmis-
sion power when the chances to access the spectrum decrease.
This conclusion is derived based on the mathematical analysis of detection threshold
influence and observation of Fig. 2.4. Given the allowable detection threshold range, it
is possible to elect a optimal detection threshold that provides higher detection proba-
bility and also can achieve larger network throughput by allocating more transmission
power for one access.

e The OR hard fusion rule outperforms the AND fusion rule when the SNR of the
PU is low.
This conclusion is corroborated via simulations for different environments and differ-
ent CR network sizes. By applying power allocation schemes using OR fusion rule, the
network throughput is slightly bigger then the AND fusion rule when SNR is consider-
ably low.

e Allowing CR users to share the same single frequency band by applying optimal/
sub-optimal power allocation algorithm can gain more throughput when the in-
terference between them is considerable weak in the multi-band spectrum
In Fig. 2.19 and Fig. 3.15, we can observe that the throughput is much higher by allow-
ing finite CR users share the same single frequency band than simply applying FDMA
scheme that only one user access one single band in the multi-band scenario when the
interference between SUs is weak (cross channel gain smaller than the local channel

gain).
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4.2 Future works

As mentioned before, this offline short-term optimal power allocation algorithm and detec-
tion threshold strategy is proposed under some idealistic assumptions. Although it was an
initial approach to the power allocation problem in energy-harvesting CR networks which
allow us to gain some insights into the problem, better approaches can be proposed which
deal with unpredictable energy-harvesting resources and more dynamic channel.

Hereby, we propose several interesting research lines:

e Define a time-dynamic decision-making framework to solve the power allocation
problem in energy-harvesting CR networks.
In practice, it is hard to predict the long-term energy-harvesting behavior, the primary
users’ activity and the channel environment. Thus, the short-term optimal power al-
location scheme cannot be adjusted to the long-term dynamic nature of the energy-
harvesting CR networks. Therefore, a more realistic time-dynamic decision-making
framework is desired in order to form a more accurate on-line power allocation and
detection threshold scheme.

o Investigate the interference channel capacity function for the multi-user CR net-

work in order to find the global optimal solution for the non-convex power alloca-
tion problem.
The SQP-based sub-optimal power allocation scheme is shown to be a local minimizer
for the power allocation problem in chapter 3. However, to find the global optimal so-
lution is still left to be a strong NP-hard problem. And the global optimum maybe be
achieved by outer approximation method searching all the boundary values. Thus, a
more efficient algorithm that can find a global optimum is strongly expected. Inspired
by the optimal power allocation solution for 2-user energy-harvesting CR network, we
expect to solve this optimization problem by analyzing the function shape of the inter-
ference channel capacity in order to gain analytically accurate results.

¢ Explore different band-sharing strategies for multi-band case and find the optimal
band-sharing strategy.
In this thesis, we only considering two band-sharing strategies for SUs in the multi-
band case: a) all SUs access the whole frequency band, i.e. SUs transmit data in all
sub-bands and they interfere each other; b) each SU access one separate band in one
time instant. However, in practice there exist more situations such as 1 SU use one sub-
band and the others sharing another sub-band while one other sub-band is occupied
by PU. This leads to the frequency-band allocation task that how to allocate SUs to
different sub-bands to achieve the optimal performance of the CR network. When this
frequency allocation task is considered in the energy-harvesting networks, the problem
is more sophisticated because the SUs access depends not only on the PU’s activity and
the sensing error but also on the dynamic energy-budget.

e Analyze the detection threshold impact on the power allocation scheme.
This thesis has shown that the power allocation scheme depends on the detection thresh-
old. And we optimize the detection threshold by through-search in the optimal power
allocation scheme. However, a mathematically analytical analysis is still left to be done.
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