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As a generic example of a voltage-driven superconducting structure, we study a short superconductor
connected to normal leads by means of low transparency tunnel junctions with a voltage bias V between the
leads. The superconducting order parameter � is to be determined self-consistently. We study the stationary
states as well as the dynamics after a perturbation. The system is an example of a dissipative driven nonlinear
system. Such systems generically have stationary solutions that are multivalued functions of the system pa-
rameters. It was discovered several decades ago that superconductors outside equilibrium conform to this
general rule in that the order parameter as a function of driving may be multivalued. The main difference
between these previous studies and the present work is the different relaxation mechanisms involved. This does
not change the fact that there can be several stationary states at a given voltage. It can however affect their
stability as well as the dynamics after a perturbation. We find a region in parameter space where there are two
stable stationary states at a given voltage. These bistable states are distinguished by distinct values of the
superconducting order parameter and of the current between the leads. We have evaluated �1� the multivalued
superconducting order parameter � at given V, �2� the current between the leads at a given V, and �3� the
critical voltage at which superconductivity in the island ceases. With regards to dynamics, we find numerical
evidence that only the stationary states are stable and that no complicated nonstationary regime can be induced
by changing the voltage. This result is somewhat unexpected and by no means trivial, given the fact that the
system is driven out of equilibrium. The response to a change in the voltage is always gradual even in the
regime where changing the interaction strength induces rapid anharmonic oscillations of the order parameter.
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I. INTRODUCTION

Electron transport devices combining superconducting
�S�, insulating �I�, and normal-metal �N� elements are known
as superconducting heterostructures. Often such heterostruc-
tures are more than the sum of their parts.1,2 Phenomena that
are not present in bulk S, I, or N systems appear when a
device contains junction between these components. The fol-
lowing examples are well known: �1� the conductance of a
high transparency NS junction does not equal the conduc-
tance of the normal metal on its own, as one might naively
expect. If the normal metal is free of impurities, the conduc-
tance is higher than that of the normal metal.3 This surprising
effect is due to a process known as Andreev reflection.4 Dur-
ing Andreev reflection at an NS interface, an electron im-
pinging on the interface from the N side is reflected back as
a hole while a Cooper pair propagates away from the inter-
face on the S side. �2� In Josephson junctions, the simplest of
which is perhaps the SIS heterostructure,5 a dc current can
flow at zero-bias voltage. This happens when the supercon-
ducting phase difference across the junction is nonzero.6

The above examples can be understood in terms of equi-
librium properties of the heterostructure. When a supercon-
ducting device is perturbed outside equilibrium, yet more
interesting effects can occur,7 for instance, oscillations under
stationary nonequilibrium conditions. An elementary ex-
ample: if a Josephson junction is biased with a dc �i.e., fixed�
voltage, an ac �i.e., oscillating� current flows through the
junction.6 Another example of the kind has been investigated

in the context of cold Fermi gases in optical traps. In these
systems, the interaction between atoms can be tuned and
changed by means of a so-called Feshbach resonance. If the
interaction is attractive, the gas forms a BCS condensate.
Recent studies8,9 have considered what happens if the value
of the attractive pairing interaction is changed abruptly. It
was discovered that, depending on the ratio between the ini-
tial and final values of the interaction strength, the conden-
sate order parameter can perform anharmonic oscillations
that do not decay in time.

The initial motivation for the research presented in this
paper came from the study of Keizer et al.,10 where the au-
thors investigated the suppression of the superconducting or-
der parameter by a voltage applied to a superconducting
wire. It was assumed that � remains stationary. However,
this assumption does not seem well justified: the stationary
voltage could induce periodic oscillations of ��� or even
richer chaotic dynamics. Thus prompted, we wanted to ad-
dress the validity of this assumption for a decidedly simpler
NISIN structure, namely, a short superconductor connected
to normal leads by means of tunnel junctions. The structure
is biased with a voltage V.

We require that �1� the dominant energy relaxation
mechanism in the superconductor is the tunneling of elec-
trons to the leads, and �2� spatial variations in the supercon-
ducting order parameter inside the superconductor are negli-
gible. To meet the first requirement, the superconductor must
have dimensions smaller than the inelastic-scattering length
of quasiparticles. This is not an unrealistic requirement given
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current experimental techniques. To meet the second require-
ment, the superconductor should contain impurities or have
an irregular shape so that the electron wave functions of the
isolated island are isotropic on the scale of the superconduct-
ing coherence length.11 Furthermore, the tunnel junctions
connecting it to the leads should have a bigger normal-state
resistance than that of the superconductor proper. In this
case, opening up the system by connecting leads does not
reintroduce spatial anisotropy of wave functions inside the
island.

The study of NISIN structures has a long history.12,13 Our
study complements several previous studies.10,14,15 These
dealt with quasi-one-dimensional superconducting wires be-
tween normal leads. Setups where either the superconductor
was impurity free or the transparency of the NS interfaces
was high were considered. For these setups, spatial varia-
tions in the order parameter, specifically the spatial gradient
of the superconducting phase, can be large. Including these
spatial variations in the description of the superconductor
significantly complicates matters. Hence these studies fo-
cused on numerical calculations and assumed that the super-
conducting order parameter and all other quantities of inter-
est were stationary. It should also be mentioned that
asymmetric couplings, where the superconductor is coupled
more strongly to one lead than the other, did not receive
detailed analysis. The only asymmetric setup considered con-
sisted of one interface with tunable transparency and the
other perfectly transparent.15 One of the main conclusions of
these studies is that, if the bias voltage is large enough, the
system switches to the normal state. Some evidence for a
bistable region, where, depending on the history of the sys-
tem, either the superconducting or the normal state can occur
at a given voltage, was reported.10

The absence of spatial variations in the system we study
allows us to perform analytical calculations, provided we
assume stationarity. Results are obtained for an arbitrary ra-
tio of the coupling strengths to the leads. We derive transcen-
dental equations relating the superconducting order param-
eter to the bias voltage and derive an explicit formula for the
current between the leads. As mentioned, the assumption of
stationarity is however not a priori justified. As was seen in
the examples mentioned at the beginning of this introduction,
nonequilibrium conditions in superconductors often go hand
in hand with nonstationary behavior of observable quantities.
Indeed, the NISIN junction that we study is a nonlinear sys-
tem subjected to a driving force �and to damping�. Nonlin-
earity here means that the dynamical equations for one-
particle Green’s functions are not linear in the Green’s
functions. This is due to the existence of a nonzero super-
conducting order parameter. The driving force is provided by
the voltage �and the damping by tunneling of electrons from
the island into the leads�. Nonlinear driven systems �think of
the nonlinear pendulum� often have chaotic dynamics. The
assumption of stationarity would miss this. We therefore
supplement our analytical calculation with numerical calcu-
lations that study the dynamics in real time.

Our main results are the following: the stationary states
that we found analytically are stable. Furthermore, there is a
parameter region where two different stationary states are
stable at the same voltage. �This multivaluedness of the order

parameter is by no means a new phenomenon. It is a com-
mon feature of superconductors outside equilibrium.16,17� For
a symmetric coupling to the source and drain leads, one of
the two states we find is superconducting �characterized by a
nonzero order parameter� and the other is normal. Since we
are in the regime of high tunnel barriers, at a given voltage,
the superconducting island allows less current to flow be-
tween the leads than the island in the normal state.3 This
current is a directly measurable quantity and allows one to
distinguish between superconducting and normal states. For
some asymmetric couplings however, both the stable states
are superconducting. We have calculated the current that
flows between the leads at a given voltage and at arbitrary
asymmetry of the coupling to the two leads. We find that the
value of the current also allows one to distinguish between
different stable superconducting states at a given voltage.

The time-dependent calculations revealed that, once the
bias voltage becomes constant in time, the system always
relaxes into one of the stationary states. Nonstationary be-
havior of physical quantities always decays in time, unlike in
the case of a dc-biased Josephson junction. �Despite it being
a nonlinear system, a superconductor driven by a voltage is
therefore fundamentally different from a nonlinear pendulum
driven by an external force.� If the bias voltage is changed
slowly, an initial stationary state evolves adiabatically. By
changing the voltage slowly we have observed the expected
hysteresis associated with the existence of two stable states
at some voltages.

The study presented here is complementary to earlier
studies of bulk nonequilibrium superconductors. There, the
superconducting order parameter is very sensitive to the de-
tails of the quasiparticle distribution function.18 Owing to
long inelastic relaxation times in the bulk superconductors,
driving by either microwave radiation or tunnel quasiparticle
injection may result in sufficient modification of the distri-
bution function. General reasoning predicts multiple super-
conducting states in this situation, and indeed they have been
found in Refs. 16 and 17. The stability of these states
strongly depend on the nature of the quasiparticle distribu-
tion function and the relaxation mechanism.16,17,19 Proper ac-
count of superconducting fluctuations may be required to
understand the transitions between the stable states and even-
tually to recover adiabaticity of the superconductor dynamics
in the low-frequency limit.20 In distinction from previous
work, we assume that the relaxation is provided by tunneling
to/from the leads rather than by inelastic processes in the
bulk. The relaxation time is therefore �� /ETh and may be-
come comparable with inverse of the energy scales � and
eV. The latter forbids the use of the Boltzmann equation for
the distribution function implemented in earlier studies.16,17

Therefore our work is based on a Green’s function technique.
The rest of the paper is structured as follows. In Sec. II we

specify the model to be studied, and present the equations
that determine its state. In Sec. III we solve these equations
analytically, assuming that the system is in a stationary state.
We analyze the stationary states we find and calculate the I-V
characteristic of the system. In Sec. IV we establish that the
stationary states are the only stable states of the dc-biased
system. We do so by studying the dynamics of the system
after a perturbation. In Sec. V we summarize our main re-
sults.
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II. MODEL

As stated in Sec. I, we consider a superconducting island
connected to two normal leads by means of low transparency
tunnel barriers. The superconducting order parameter is
taken to be spatially isotropic inside the island. The physical
requirements for this condition to hold have already been
discussed in Sec. I. We assume that the dominant energy
relaxation mechanism for the superconductor is tunneling of
electrons to the leads. For given barrier transparencies, this
restricts the size of the superconductor to less than the
inelastic-scattering length of quasiparticles inside the super-
conductor.

Our analysis of the system is based on the Keldysh
Green’s function technique.21–23 We start our discussion of
the equations governing the system by defining the necessary
Green’s functions.

A. Definition of Green’s functions

The Green’s functions are expectation values of products
of the Heisenberg operators am�

† �t� and am��t� that create
and annihilate electrons in levels of the isolated island. Here
m labels single-particle levels. The � index accounts for
Kramer’s degeneracy. As we are dealing with a problem in-
volving superconductivity, all Green’s functions are 2�2
matrices in Nambu space. It is useful to define Nambu space
matrices � j, j=0, . . . ,3 such that �0 is the identity matrix,
and �1, �2, and �3 are the standard Pauli matrices. We also
define matrices ��= ��1� i�2� /2.

The retarded �R�, Keldysh �K�, and advanced �A� Green’s
functions of each level are defined as24

Rm�t,t�� = − i�3���am+�t�,am+
† �t��� �am+�t�,am−�t���

�am−
† �t�,am+

† �t��� �am−
† �t�,am−�t���

	

���t − t�� , �2.1a�

Km�t,t�� = − i�3���am+�t�,am+
† �t��� �am+�t�,am−�t���

�am−
† �t�,am+

† �t��� �am−
† �t�,am−�t���

	
 ,

�2.1b�

Am�t,t�� = �3Rm�t�,t�†�3. �2.1c�

The Green’s functions are grouped into a matrix

Gm�t,t�� = �Rm�t,t�� Km�t,t��
0 Am�t,t��

	 . �2.2�

This further 2�2 matrix structure is referred to as Keldysh
space. As with Nambu space, it is useful to define matrices
� j, j=0, . . . ,3. The matrix � j is the same as the matrix � j but
now operating in Keldysh space. We also carry over the defi-
nition of �� from Nambu space. A basis for the 4�4 matri-
ces that results from combining Keldysh and Nambu indices
is constructed by means of a tensor product � j � �k, with the
�’s always acting in Keldysh space and the �’s in Nambu
space.

The quantities that we calculate, namely, the order param-
eter ��t� and the current I�t�, are collective in the sense that

they result from the sum of the contributions of all the indi-
vidual levels. Accordingly a formalism exists that does not
require knowledge of the Green’s functions of individual lev-
els but only the sums22,25–28

G�t,t�� =
i	s




m

Gm�t,t��, G = G,R,K,A , �2.3�

which are known as quasiclassical Green’s functions. Here 	s
is the mean level spacing of the island.

We will work with the quasiclassical Green’s functions
throughout the present section. The advantage of doing so is
that the theory can be formulated with the least amount of
clutter. When doing time-dependent numerics in Sec. IV
however, we find it more convenient to work with the
Green’s functions of the individual levels.

B. Equations of motion

The equations that determine the Green’s functions can be
derived from the circuit theory of nonequilibrium
superconductivity.26–28 Viewed as a matrix in time, Nambu,
and Keldysh indices, the Green’s function G satisfies the
commutation relation29

�H − �,G� = 0. �2.4�

Here H describes the dynamics of the isolated supercon-
ductor:

H�t,t�� = �0 � �3	�t − t���i�t − h�t�� , �2.5a�

h�t� = �− �s�t� ��t�
��t�� �s�t�

	 . �2.5b�

The matrix h�t� is a remnant of the Bogoliubov–de Gennes
Hamiltonian.11 Bearing in mind that we consider a nonequi-
librium setup, we must allow the order parameter ��t� and
the chemical potential �s�t� of the superconductor to be time
dependent. Their values at each instant in time are deter-
mined by imposing self-consistency.

The time derivative standing to the right of G in the term
GH of Eq. �2.4� can be shifted to act on the second time
argument of G at the cost of a minus sign, i.e.,

� dt̃G�t, t̃��t̃	�t̃ − t�� = −� dt̃�t̃G�t, t̃�	�t̃ − t�� = − �t�G�t,t�� .

�2.6�

The self-energy contains a term corresponding to each
lead, i.e.,

� = ��l� + ��r�, �2.7�

l and r referring to the left and right leads, respectively. The
leads act as reservoirs, broadening the island levels to a finite
lifetime and determining their filling. The self-energy of lead
j is ��j�=−i jG

�j�, where Green’s function G�j� of lead j is
defined similarly to the Green’s function of the supercon-
ductor �Eq. �2.3�� with the sum now running over states in
the lead. Here  j is the tunneling rate from any island level
to lead j. �For simplicity, we take the rates associated with
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different levels to be the same.� The leads are large compared
to the superconductor, and therefore Gj does not depend on
the state of the superconductor. Furthermore, since the leads
are normal, the off-diagonal Nambu space matrix elements
of the lead Green’s functions are zero. Explicitly then, the
Green’s function for lead j= l ,r has the form

G�j��t,t�� = �R�j��t,t�� K�j��t,t��
0 A�j��t,t��

	 , �2.8�

with

R�j��t,t�� = 	�t − t���3 = − A�j��t,t�� , �2.9a�

K�j��t,t�� = 2�� j�t,t�� 0

0 � j�t,t��� 	 . �2.9b�

The function � j describes the distribution of particles in lead
j. In general it is given by

� j�t,t�� =� dE

2

e−iE�t−t���1 − 2f j�E��e−i��j�t�−�j�t���,

�2.10�

where f j�E� is the filling factor of states at energy E in lead
j. The phase � j sets the time-dependent chemical potential
� j�t�=�t� j�t� in lead j. The time-dependent bias voltage be-
tween the leads is

V�t� = ��l�t� − �r�t��/e , �2.11�

where e is the electron charge. It is convenient to define the
total inverse lifetime or Thouless energy ETh=l+r and a
dimensionless symmetry parameter �= �l−r� /ETh. For a
perfectly symmetric coupling to the leads, �=0 while �
= �1 corresponds to the island being coupled to only one of
the two leads.

The commutator Eq. �2.4� on its own is not enough to
specify G uniquely. Indeed what Eq. �2.4� says is that G has
the same eigenstates as H−� but it does not say anything
about the eigenvalues of G. Additional to Eq. �2.4� there is
also a relation between the eigenvalues of G and those of
H−�.30 Let ��� be a simultaneous eigenstate of H−� and G,
such that its eigenvalue with respect to H−� is �. Then its
eigenvalue with respect to G is sgn�Im����. �One can show
that the eigenvalues of H−� come in complex-conjugate
pairs and that there are no purely real eigenvalues.� Hence G
squares to unity, i.e.,

G2 = I . �2.12�

C. Gauge invariance

At this point we have defined three different Fermi ener-
gies, namely, that of the superconductor �s�t� and those of
the leads � j�t� with j= l ,r. Since the reference point from
which energy is measured is arbitrary, there is some redun-
dancy. This redundancy is encoded in a symmetry of the
equations for the Green’s function and boils down to gauge
invariance. Consider a transformation on the Green’s func-
tion

G → G̃ = UGU†, �2.13a�

U�t,t�� = 	�t − t���0 � exp�i�3��t�� . �2.13b�

As is easily verified, G̃ obeys equations of the same form as
G, with chemical potentials and the order parameter trans-
formed according to

� j�t� → �̃ j�t� = � j�t� + �t��t�, j = s,l,r , �2.14a�

��t� → �̃�t� = ��t�exp�2i��t�� . �2.14b�

When considering stationary solutions we will fix the gauge
by demanding that � is time independent. When considering
nonstationary solutions we will fix the gauge such that the
reference point from which chemical potentials are measured
is halfway between the chemical potentials of the reservoirs,
i.e., �r�l��t�= + �−�eV�t� /2.

D. Self-consistency of �

The value of the order parameter is set by the self-
consistency condition

��t� = g	s
m

�am−�t�am+�t�� = −

g

2
Tr��−K�t,t�� ,

�2.15�

where g�0 is the dimensionless pairing interaction strength.
This self-consistency equation suffers from the usual loga-
rithmic divergence which requires regularization by intro-
ducing a large energy cutoff Eco. We define �0 as the order
parameter of an isolated superconductor at zero temperature
for given g and Eco,

�0 =
Eco

sinh
1

g

⇒
1

g
= �

0

Eco dE

�E2 + �0
2

. �2.16�

This definition then allows us to express � in Eq. �2.15� in
terms of �0 rather than in terms of Eco and g.

E. Current and chemical potential

The current from the superconductor into reservoir j is31

Ij�t� =



2e
Gj� dt� Tr��− � �3�G�t,t��G�j��t�,t�

− G�j��t,t��G�t�,t��� ,

Gl�r� = �1 + �− ���
ETh

	s

e2

���
. �2.17�

Here Gj is the tunneling conductance of the tunnel barrier
between lead j and the superconductor, and we have indi-
cated in square brackets a factor of � which equals unity in
the units we use throughout the paper. The total rate of
change in the charge in the superconductor is equal to the
negative of the sum of the currents to the leads, i.e.,
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−
d

dt
Q�t� = Il�t� + Ir�t� . �2.18�

The charge in the superconductor is related to the chemical
potential �s by means of the capacitance C of the supercon-
ductor so that �s has to obey

1

e

d

dt
�s�t� = C

d

dt
Q�t� . �2.19�

When the system is not stationary, this equation sets the
value of �s�t� at each instant in time since dQ�t� /dt can be
calculated directly from G�t , t��.

F. Summary

In summary then, our task is to find the Green’s function
G as defined in Eq. �2.3� of the superconductor. In general,
the procedure for doing this is as follows: we make an ansatz
for the order parameter ��t� and the chemical potential �s�t�.
We then diagonalize the operator H−� �that depends on �
and ��. The Green’s function G is constructed in the eigen-
basis of H−�, according to the prescription of Sec. II B.
Subsequently we judge the correctness of the ansatz for ��t�
and ��t� by inquiring whether Eqs. �2.15� and �2.19� are
satisfied.

III. STATIONARY SOLUTIONS

We consider a time-independent bias voltage between the
left and right reservoirs. In this case the chemical potentials
�l and �r of the reservoirs are time independent. We make
the ansatz that the chemical potential �s and the order pa-
rameter � of the superconductor are also time independent.
The Green’s function G�t , t�� only depends on the time dif-
ference t− t�. It is convenient to work with the Fourier-
transformed Green’s function G�E� which is related to
G�t , t�� by

G�t,t�� =� dE

2

e−iE�t−t��G�E� . �3.1�

It is also convenient to construct a traceless operator M =H
−�−�0 � �0�s with Keldysh structure

M = �MR MK

0 MA
	 . �3.2�

In the energy representation, the components of M have the
explicit form

MR�E� = �E + iETh − �

�� − E − iETh
	 , �3.3a�

MA�E� = �E − iETh − �

�� − E + iETh
	 , �3.3b�

MK�E� = 2iETh���E� 0

0 ��− E�
	 , �3.3c�

��E� =
1 − �

2
�l�E� +

1 + �

2
�r�E� . �3.3d�

We take the left and right leads to be in local zero-
temperature equilibrium at Fermi energies �l=�+eV /2 and
�r=�−eV /2 so that the filling factors in both reservoirs is a
step function f j�E�=��−E� and from Eq. �2.10� follows

�l�E� = sgn�E − � − eV/2� , �3.4a�

�r�E� = sgn�E − � + eV/2� , �3.4b�

where � is the average chemical potential ��r+�l� /2 in the
leads, in the gauge where the phase of the order parameter is
time independent. The value of � will later be determined by
requiring self-consistency of the order parameter �. The
Green’s function G�E� obeys �M�E� ,G�E��=0. The retarded,
advanced, and Keldysh components of this equation are

�MR�E�,R�E�� = �MA�E�,A�E�� = 0, �3.5a�

MR�E�K�E� + MK�E�A�E� − R�E�MK�E� − K�E�MA�E� = 0.

�3.5b�

With the aide of the prescription below Eq. �2.11� for
choosing the eigenvalues of G, one then readily finds for the
retarded and advanced Green’s functions

R�E� =
1

c�E�
�E + iETh − �

�� − E − iETh
	 , �3.6a�

A�E� =
1

c�− E�
�E − iETh − �

�� − E + iETh
	 , �3.6b�

c�E� = ��E + iETh�2 − ���2. �3.6c�

The function c�E�, which we will frequently encounter, is
defined with branch cuts along the lines E�= � ����x
− iETh where x is real and positive. The branch with
limE�R→�� c�E� /E=1 is taken. Considered as a function of
real E, the real part of c�E� is odd, and the imaginary part is
even and positive so that

c�E�� = − c�− E� . �3.7�

The real and imaginary parts of c�E� are plotted for real E in
Fig. 1.

Note that R�E�2=A�E�2=�0 as required by Eq. �2.12�. In
general the superconducting density of states is ��E�
=Tr �3�R�E�−A�E�� /2	s so that we find from the solutions
for R and A �Eq. �3.6��

��E� =
2

	s
Re�E + iETh

c�E� � . �3.8�

The density of states for an isolated superconductor has sin-
gularities at energies E= � ��� of the form 1 /�E2− ���2. The
coupling to the leads regularizes the singularities at an en-
ergy scale of ETh. Furthermore, whereas the density of states
of the isolated superconductor vanishes for energies �E�
� ���, the coupling to the leads softens the gap so that there
are some states for energies �E�� ��� as shown in Fig. 2.
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The next step is to solve Eq. �3.5b� for K�E�. Here we use
the fact that R�E�K�E�A�E�=−K�E�, which follows from the
requirement that G2= I �Eq. �2.12��. Note also that R�E�
=MR�E� /c�E� and A�E�=MA�E� /c�−E�. Using these identi-
ties and multiplying Eq. �3.5b� from the left by R�E�, we find

K�E� =
1

c�E� + c�− E�
�MK�E� − R�E�MK�E�A�E�� .

�3.9�

After some algebra we obtain

K�E� = � K�1��E� K�2��E�
− K�2��E�� K�1��− E�

	 , �3.10�

where

K�1��E� = 	s��E���E� −
���2

E
Re� 1

c�E�����E� + ��− E�� ,

�3.11a�

K�2��E� = − � Re� 1

c�E������E� − ��− E��

−
iETh

E
���E� + ��− E��� . �3.11b�

Having obtained K�E� we can find ��� and � from the self-
consistency condition �Eq. �2.15��. Below we write the real
and imaginary parts of the self-consistency equation sepa-
rately. The real part reads

0 =� dE�Re� 1

c�E����E� − ��− E�
2

−
1

�E2 + �0
2� ,

�3.12�

while the imaginary part reads

0 =� dE
1

E
Re� 1

c�E�����E� + ��− E�� . �3.13�

These integrals can be done explicitly. We use the identities

�
0

E

dE� Re
1

c�E��
= FR�E� − FR�0� , �3.14a�

�
0

E

dE�
1

E�
Re

1

c�E��
=

1

�ETh
2 + ���2

FI�E� , �3.14b�

where

FR�E� = ln�E + iETh + c�E�
�0

� , �3.15a�

FI�E� = arctan� Re�c�E��
�ETh

2 + ���2
� . �3.15b�

Here the branch for which −
 /2�arctan�x��
 /2 is im-
plied. Thus we obtain the transcendental equations

0 = �1 − ��FR� eV

2
+ �	 + �1 + ��FR�� −

eV

2
	 ,

�3.16a�

0 = �1 − ��FI� eV

2
+ �	 + �1 + ��FI�� −

eV

2
	 ,

�3.16b�

that determine ��� and � for given V, ETh, and �. Below we
solve these equations analytically in certain limiting cases
and numerically for more general cases. Only the amplitude
of � is fixed by these equations. By choosing the appropriate
gauge �cf. Eq. �2.14b��, we can set the phase of � to any
value. In the rest of this section we therefore drop the abso-
lute value notation, and take � as real and positive.

Before explicitly finding � and �, we calculate the cur-
rent from Eq. �2.17� and the solution for K�E�. Assuming that
the self-consistency equation �Eq. �3.13�� is fulfilled, we find
that the current Ir from the superconductor to the right lead is
equal to the negative of the current Il from the supercon-
ductor to the left lead, as it should. For the current I= Ir
=−Il from the left lead to the right lead, we find

�3 �2 �1 0 1 2 3
0

1

2

3

4

5

E/|∆|

δ s
�

FIG. 2. The density of states of the superconducting island �Eq.
�3.8�� for finite Thouless energy �solid line�. The dashed line shows
the density of states of the isolated superconducting island with the
same ��� while the horizontal dot-dashed line shows the density of
states of the normal island. A value of ETh=0.1��� was used.

�2 �1 0 1 2

�1

0

1

E/|∆|

c(
E

)/
|∆

|

FIG. 1. The function c�E� as defined in Eq. �3.6c� frequently
appears in expressions associated with stationary solutions. The
solid line represents the real part and the dashed line the imaginary
part. The Thouless energy was taken as ETh=0.1���.
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I =
�1 − �2�eETh

2
�

�−eV/2

�+eV/2

dE��E�

=
GN

e
Re�c�� +

eV

2
	 − c�� −

eV

2
	� . �3.17�

Here GN is the series conductance of the tunneling barriers to
the leads

GN = �Gl
−1 + Gr

−1�−1, �3.18�

and Gl and Gr are the junction conductances given in Eq.
�2.17�.

Now we investigate the transcendental equations �Eqs.
�3.16�� for � and �. There are three parameters, namely, ETh,
�, and V, which determine the solution. Two of these, ETh
and �, are fixed for a given device while the voltage V can be
varied for a given device. �Recall that ETh measures the over-
all coupling to the leads while � measures the degree of
asymmetry between the two lead couplings.� Hence it is
natural to specify values for ETh and �, and then consider �,
�, and I as functions of V. In Fig. 3 we show four curves of
� versus V, each corresponding to a different choice of pa-
rameters ETh and �. In Fig. 4 we show the corresponding
curves of � versus V.

Let us first note the general trend that increasing ETh leads
to a smaller order parameter. The reason for this is that ETh

−1 is
the typical time an electron remains in the superconductor.

The shorter this time �the larger ETh� the harder it is for
electrons to form Cooper pairs, and superconductivity is in-
hibited. Second, note that at large enough ETh the order pa-
rameter is a decreasing function of V. We can therefore ob-
tain the critical Thouless energy ETh

�c� beyond which
superconductivity vanishes by setting V to zero and asking
how large can we make ETh before � becomes zero.

In the case of V=0, the self-consistency equations are
solved by �=0 and

� = ��0�1 −
2ETh

�0

ETh � �0/2

0 ETh � �0/2
� . �3.19�

From this we conclude that the critical Thouless energy is
ETh

�c�=�0 /2.
Having established the range of ETh in which supercon-

ductivity persists, we now take a closer look at � as a func-
tion of V. We have chosen the parameters of the four solu-
tions in Fig. 3 to show all the different possible shapes that
curve of � versus V can take. We see that at a given voltage
V there can be either zero, one, two, or three nonzero solu-
tions �. We note that this behavior is qualitatively similar �as
is to be expected� to that of a driven bulk superconductor in
which the electron-phonon interaction is responsible for
relaxation.16,17 As explained in Sec. I, quantitative differ-
ences are accounted for by the different relaxation mecha-
nism �tunneling� that operates in the present system.

To characterize the different types of curve, we consider V
as a function of � on the interval �� �0,�0

�1−2ETh /�0�. In
curves of the type A in Fig. 3, V is a monotonically decreas-
ing function of �. In contrast, curves of type B, C, and D
have local extrema. A curve of type B has a local minimum
at the left boundary �=0 of the � interval on which the
function V��� is defined. Then the curve reaches a maximum
at some intermediate value �1 before dropping to zero at the
right boundary �=�0

�1−2ETh /�0. Curves C and D are dis-
tinguished from curve B by the fact that V reaches a local
maximum instead of a minimum at the left boundary �=0 of
the � interval. There is another local maximum at interme-
diate �1 before V drops to zero at �=�0

�1−2ETh /�0. In
curves of type C, the absolute maximum of V as a function
of � is at the intermediate value �1 while for curves of type
D the absolute maximum of V is at �=0.

Next we ask how the ETh-� parameter space is divided
into regions A, B, C, and D corresponding to the respective
types of solution of the self-consistency equations. Specifi-
cally, which regions share a mutual border? Assuming that
the function V��� changes smoothly as ETh and � are varied,
the transitions A↔B, B↔C, C↔D, and D↔A are possible.
The transition A↔C is not possible. Whenever one tries to
smoothly deform a curve of type A in Fig. 3 to a curve of
type C, one invariably reaches a curve of type B or D during
an intermediate stage of the deformation. Similarly the tran-
sition B↔D is impossible. A smooth deformation of a curve
of type B into one of type D passes through an intermediate
stage where the curve is of types A or C. To illustrate these
ideas we consider a polynomial equation of the form

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

∆
/
∆

0

eV/∆0

AA BB CC

DD

FIG. 3. The order parameter � versus voltage V, for given ETh

and �. Curves A, B, C, and D, respectively, correspond to ETh

=0.35�0 and �=0.2, ETh=0.2�0 and �=0.075, ETh=0.1�0 and �
=0.1, and ETh=0.01�0 and �=0.3.
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FIG. 4. The chemical potential � versus voltage V, for given
ETh and �. Curves A, B, C, and D correspond to the same parameter
values as in Fig. 3.
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Ṽ

�0
=

V0

�0
−

1

6
� �

�0
	6

−
a

4
� �

�0
	4

−
b

2
� �

�0
	2

. �3.20�

We ask: what are the respective regions of the a-b plane in

which Ṽ��� is a curve of type A, B, C, and D? Region A,

where Ṽ��� is of type A, is given by a�0, b�0 or a

�0, b�a2 /4. Region B where Ṽ��� is of type B consists of
all points �a ,b� such that b�0. Region C consists of all
points �a ,b� such that a�0 and 0�b�3a2 /16. Region D
consists of all points �a ,b� such that a�0 and 3a2 /16�b
�a2 /4. The regions and their borders are shown in the inset
of Fig. 5. The most pertinent feature of the figure is that the
four distinct regions meet in the single point a=b=0.

Based on a combination of numerical and analytical re-
sults, we have concluded that the ETh-� parameter space has
a very similar topology to this polynomial example. �In prin-
ciple it could have differed from the polynomial example by
having disconnected regions of the same type, for instance
two islands of region D with one embedded in a sea of re-
gion A and the other in a sea of region C.� Figure 5 is a
schematic diagram of how the ETh-� parameter space is par-
titioned into regions A, B, C, and D. The following features
of the diagram are conjectures based on numerical evidence:
�1� the regions of types A, B, C, and D are simply connected.
�2� The border between regions A and D starts at the corner
�=1, ETh=0. Other features are deduced from analytical re-
sults: �1� the line �=0, ETh��0 /2�2 belongs to region B.
�2� The line �=0, �0 /2�2�ETh��0 /2 belongs to region A.
�3� For ETh��0 /2 the system is in the normal state while it
is superconducting for ETh��0 /2. �4� The border of regions
D and C meets the border of region B and C at ETh=0, �
=0.

In region D, superconductivity can persist up to voltages
that are large compared to �0. For given ETh and � there is
however always a critical voltage Vc beyond which super-
conductivity ceases. �This is a second-order phase transi-
tion.� For the voltage Vc we have obtained the following
analytical result from Eq. �3.16�. At finite � and for ETh that
is sufficiently small, Vc obeys the power law

V�c� =
�0

2e
�2ETh

�0
sec


�

2
�−1/�

, � =
1 − ���
1 + ���

. �3.21�

This power law is valid as long as V�c���0 /e. It is from this
result that we are able to conclude that the region of finite �
and infinitesimal ETh belongs to region D.

Another analytical result can be obtained for the case of
perfectly symmetric coupling to the leads, i.e., �=0. In this
case, Eq. �3.16b� is solved by �=0 and the relation between
� and V can be stated as

eV = �0�1 +
�2

�0
2	�1 −

4ETh
2 /�0

2

�1 −
�2

�0
2	2 . �3.22�

This result is plotted for several values of ETh in Fig. 6. It is
from this result that we are able to conclude that the line
segment �=0, 0�ETh��0 /2�2 belongs to region B while
the line segment �=0, �0 /2�2�ETh��0 /2 belongs to re-
gion A. The ETh→0 limit of Eq. �3.22� can be obtained by
considering a bulk superconductor and assuming a quasipar-
ticle distribution function n�E�= ���−eV /2−E�+��eV /2
−E�� /2. It is also worth noting that the same result is ob-
tained for a T junction where the stem of the T is a super-
conductor and the bar a voltage-biased dirty normal-metal
wire.10

Finally, we consider the I-V curves associated with the
solutions � and � of Figs. 3 and 4. The results are shown in
Fig. 7. From these curves we can infer the results that will be
obtained in an experiment in which the voltage V is swept
adiabatically from zero to several �0 /e and back to zero. In
region A of parameter space, there is a single current associ-

�

� �

�

0.0 0.5
0.0

0.5

1.0

0

0

γ

ETh/∆0

AA

AA

BB
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CC

CC

DD

DD

NN

1/2
√

21/2
√

2

QQ

a

b

FIG. 5. Schematic diagram of the partitioning of the ETh-� pa-
rameter space into regions where the curve of � versus V is of the
types A, B, C, and D �Fig. 3�. The regions A, B, C, and D meet at
point Q. The line ETh=�0 /2 separates the normal and supercon-
ducting regions of parameter space. The dots in the figure indicate
the parameter values that correspond to the curves in Fig. 3. The
inset shows the regions A, B, C, and D in the parameter space a-b

of the polynomial Ṽ��� of Eq. �3.20�. The topology of the ETh-�
parameter space of the superconductor in the region of point Q can
be understood by considering the topology of the parameter space
of the polynomial.
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0.0

0.5
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∆
/
∆
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FIG. 6. The order parameter � versus voltage V for symmetric
coupling to the leads, i.e., �=0, according to Eq. �3.22�. Different
curves correspond to different ETh. From the top to bottom curve
we took ETh /�0= .01, 0.14, 0.26, 1 /2�2��0.35�, 0.42, and 0.47.
The curve corresponding to ETh=1 /2�2�0 is plotted thicker than
the others. For smaller ETh, curves are of type B with two nonzero
values for � at some voltages. For larger ETh, curves are of type A,
with at most one nonzero � at every voltage.
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ated with each voltage. At some voltage V+ of order �0 /e,
the system makes a phase transition to the normal state but
this does not lead to a discontinuity in the current versus
voltage curve. In contrast, in regions B, C, and D, the current
will make discontinuous jumps as the voltage is swept. Hys-
teresis will also be observed. Suppose the device is in region
B of parameter space, as V is swept from zero upward, a
voltage V+ is crossed where the current makes a finite jump.
After the jump, the system is in the normal state and the
current is GNV. �GN is the normal-state conductance of the
setup, cf. Eq. �3.18�.� On the backward sweep from V�V+ to
zero, the system remains normal when V+ is reached. At
some voltage V−�V+ the current jumps from its value GNV−
in the normal state to a smaller value, signaling the onset of
superconductivity. The behavior of the system in region C of
parameter space is similar. The upward sweep of the voltage
produces a jump in the current at a voltage V+. After the
jump the system is normal and the current is given by I
=GNV. The difference from region B appears when the volt-
age is swept back from V+ to zero. At some voltage smaller
than V+ the current starts deviating from its value in the
normal state but there is no discontinuous jump yet. Even so,
the system has turned superconducting. When the jump in
current now occurs at V−�V+, the system switches between
two different superconducting states. Finally, for parameters
in region D, the voltage sweep produces results similar to
that in region C. The difference between regions C and D is
that in D the system also jumps between two superconduct-
ing states at V+ during the forward sweep.

IV. DYNAMICS

We concluded the previous section with a discussion of
hysteresis in the current-voltage characteristic of the super-
conducting island. The conclusions we drew rely on the as-
sumption that after the system is perturbed by a change in the
bias voltage, it relaxes into a stationary state. The validity of
this assumption is by no means obvious since the system is
driven �by the bias voltage� and the stationary state is not an
equilibrium state. Frankly, our own initial expectation was
that the presence of a bias voltage would cause the dynamics

of ���t�� to be quasiperiodic or chaotic. We therefore did
numerical simulations in order to investigate the dynamics of
���t�� in the presence of a bias voltage. Our main result is
this: suppose the bias voltage assumes the constant value Vf
for times t� tf, then �contrary to our original expectations� at
t� tf the superconductor will always be found in one of the
stationary states associated with Vf. This is true regardless of
the history of the system prior to t� tf. In particular, the time
dependence of the bias voltage prior to tf does not matter.
Nor does the state of the superconductor prior to tf matter.
Only when there is more than one nonzero stationary solu-
tion associated with Vf does the history of the system have
any bearing on its final state. In this case, the history of the
system determines which of the possible stationary states
eventually becomes the final state of the superconductor. For
slowly varying voltages, the predictions of Sec. III regarding
hysteresis are confirmed. In this section we discuss the nu-
merics that yielded the above results.

For the purpose of numerics we find it advantageous not
to take the sum over levels of the Green’s function as we did
in the previous sections. Instead we work with the Green’s
functions of each individual level. The advantage of this
scheme is that it allows us to work with ordinary differential
equations. From these differential equations it is straightfor-
ward to construct a time series in which the next element can
be calculated if the present elements are known. As far as we
can see, no such “local in time” update equations exist for
the Green’s functions summed over levels. Naturally there
are disadvantages to working with the individual level
Green’s functions as well; the number of equations to be
solved numerically is increased significantly. As a result the
calculation is computationally expensive and therefore time-
consuming.

The Green’s functions of the individual levels obey the
equations

�Hm − ��Gm = Gm�Hm − �� = I . �4.1�

Here Hm differs from the operator H that appeared in Eq.
�2.5� in that it contains the energy �m of level m. It is explic-
itly given by

Hm�t,t�� = �0 � �3	�t − t���i�t − hm�t�� , �4.2a�

hm�t� = ��m − �s�t� ��t�
��t�� �s�t� − �m

	 . �4.2b�

The operator hm�t� is the time-dependent Bogoliubov–de
Gennes Hamiltonian.11 The self-energy � is the same as in
Sec. II B.

We measure energies from a point halfway between the
chemical potentials of the leads. As a result the phases � j�t�
that appear in the reservoir self-energies are �r�l��t�
= + �−���t� /2 where � is related to the voltage V by V�t�
=�t��t� /e.

We parametrize the Green’s functions in terms of a set of
auxiliary functions. This eliminates some redundancies that
are present due to symmetries of the equations of motion. We
start by noting that, since the retarded and advanced Green’s
functions are related by Eq. �2.1c�, we do not need to con-
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FIG. 7. The current I through the superconductor versus the
voltage V across it. Curves A, B, C, and D correspond to the re-
spective parameter values quoted in Figs. 3 and 4. The dashed line
shows the current through the system in the absence of
superconductivity.
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sider both. We work with the retarded Green’s function. We
define a matrix rm�t ,�� that is related to Rm�t , t−�� by the
equation

Rm�t,t − �� = i�3rm�t,�� , �4.3a�

rm�t,�� = rm
�0��t,���0 + irm�t,�� · � . �4.3b�

Here the component rm
�0��t ,�� of rm�t ,�� is a scalar function

whereas the other three components are grouped into a vec-
tor rm�t ,�� such that

rm�t,�� = �rm
�1��t,��,rm

�2��t,��,rm
�3��t,��� . �4.4�

The vector �= ��1 ,�2 ,�3� contains the Pauli matrices in
Nambu space. Before the voltage bias between the leads is
established �i.e., for t�0 and all ��, the functions rm

�0��t ,��
and rm�t ,�� are real. When the equations of motion �Eq.
�4.1�� for the retarded Green’s function are rewritten in terms
r�0� and r, we find that their reality is preserved at all times.

Next we consider the Keldysh Green’s function. In order
to calculate the time evolution of the order parameter, we
only need to know the Keldysh Green’s function at coincid-
ing times. Here the parametrization

Km�t,t� = i�3km�t� · � , �4.5�

in terms of a real vector,

km�t� = �km
�1��t�,km

�2��t�,km
�3��t�� , �4.6�

is respected by the initial condition and preserved by the
equations of motion.

From the equations of motion �Eq. �4.1��, we derive dif-
ferential equations

d

dt
rm�t,�� = bm�t�rm�t,�� − rm�t,��bm�t − �� , �4.7�

d

dt
km�t� + 2bm�t� � km�t� + 2EThkm�t� = 4EThfm�t� ,

�4.8�

for the matrix rm�t ,�� and the vector km�t�. Equation �4.8�
with ETh=0 was studied in Refs. 8 and 9. In these references
the dynamics of the order parameter of an isolated supercon-
ductor was calculated. We see that coupling the system to
leads introduces two terms proportional to ETh. One �on the
left-hand side of Eq. �4.8�� can be considered a damping
term and is proportional to km�t�. The other �on the right-
hand side of Eq. �4.8�� can be considered a driving or source
term.

In Eq. �4.8�, bm�t� is a matrix and bm�t� a vector such that

bm�t� = ibm�t� · � , �4.9a�

bm�t� = �Re ��t�,− Im ��t�,�s�t� − �m� . �4.9b�

The equation for km�t� contains a source term 4EThfm�t�. The
vector fm�t� is given by

fm�t� = �
0

�

d��rm
�0��t,��s�t,�� − rm�t,��s�0��t,�� − rm�t,��

� s�t,��� . �4.10�

In this equation the scalar function s�0��t ,�� and the vector
s�t ,�� parametrize the Keldysh component of the self-energy
as follows:

�K�t,t�� = 2ETh�3s�t,�� , �4.11a�

s�t,�� = s�0��t,���0 + is�t,�� · � . �4.11b�

Referring back to Sec. II, where �K is expressed in terms of
the Fourier transform of the reservoir filling factors, we find
explicitly

s�0��t,�� =
1



P�1

�
	cos

��t� − ��t − ��
2

, �4.12a�

s�t,�� = −
�


�
�0,0,sin

��t� − ��t − ��
2

	 . �4.12b�

By imposing self-consistency, the order parameter ��t� is
expressed in terms of the components of km�t� as

��t� =
g	s

2 
m=−�

�

km
�1��t� − ikm

�2��t� , �4.13�

where the number of levels on the island is 2�+1. This
makes the differential equations nonlinear since they contain
terms in which ��t� multiplies km and r. We eliminate the
dimensionless pairing strength g and the mean level spacing
	s in favor of �eq, the order parameter of the island in equi-
librium, by means of the equilibrium self-consistency rela-
tion

2

g	s
= 

m=−�

�
1

�m

2



arctan

�m

ETh
, �4.14�

where

�m = ��m
2 + �eq

2 . �4.15�

As with ��t�, the chemical potential �s�t� is determined
by a self-consistency equation. The chemical potential takes
into account the work that must be performed against the
electric field of the excess charge on the superconductor in
order to add more charge. Thus �s�t� is related to the charge
of the island by �s�t�=e�Q�t�−Q0� /C, where C is the capaci-
tance of the island. In this equation Q0 represents the fixed
positive background charge and Q�t� is the combined charge
of all the electrons on the island. Since the differential Eqs.
�4.7� and �4.8� only depend on the difference �s�t�−�s�t
−��, the positive background charge need not be specified.
The charge Q�t� is related to the Keldysh Green’s function.
Indeed, the average number nm�t� of electrons �with spin
degeneracy included� in level m at time t is given by nm�t�
= �1− i Tr�Km�t , t��� /2. Hence �s�t� is related to km by the
equation
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�s�t� − �s�t − �� =
e2

2C


m=−�

�

km
�3��t� − km

�3��t − �� . �4.16�

Finally, we have to specify the initial conditions for
rm�t ,�� and km�t�. We will assume for our simulations that
the voltage between the reservoirs is zero and the system is
in zero-temperature equilibrium for times t�0. The corre-
sponding initial condition at t=0 is

rm
�0��0,�� = − ����e−ETh� cos��m�� , �4.17a�

rm�0,�� = ����e−ETh�sin��m��
�m

�− �eq,0,�m� , �4.17b�

km�0� =
1

�m

2



arctan

�m

ETh
��eq,0,− �m� . �4.17c�

We are now ready to study the time evolution of ��t�
when a nonzero bias voltage V�t� between the leads is
present for times t�0. In the calculations we report on here,
we worked with ETh=0.069�0 and three different �, namely,
�=0.05, �=0.1, and �=0.2. These all correspond to points
from regions C and D in the ETh-� parameter space of Fig. 5.
Hence, for each of the parameter choices, there is a bias
voltage interval �V− ,V+� where there are more than one non-
zero stationary solutions for ���. The three curves of station-
ary ��� versus V, corresponding to the different parameter
choices, are plotted in the top panel of Fig. 8.

For given ETh and � we did two numerical runs with
different time-dependent voltages V�t�. The two voltages are
plotted as functions of time in the bottom panel of Fig. 8. In
the first run we start by rapidly establishing a bias voltage
V1�V−. Rapid here means dV /dt��0ETh /e. In this case V
changes by an amount of order �0 /e—the scale at which the
stationary solution for ��� depends on V—in a time that is

short compared to the relaxation time ETh
−1. �Slow refers to the

opposite limit.� We then keep the voltage constant at V1 for a
length of time of several ETh. This time interval is long
enough for any transient behavior induced by the rapid
change in V�t� to disappear. We then slowly increase the bias
voltage until we reach a bias voltage Vf � �V− ,V+� for which
more than one nonzero stationary solutions exist. In the sec-
ond run we start by rapidly establishing a bias voltage V2
�V+. We keep the voltage fixed at V2 for a time of several
ETh

−1. We then slowly decrease the voltage to Vf. The values of
V1, V2, and Vf were chosen V1=0.83�0, V2=1.76�0, and
Vf =1.34�0. The calculations were performed with 501
equally spaced levels with level spacing 	s=0.018�0 and the
capacitance was chosen C=0.1e2 /�0.

The resulting ��� are plotted as functions of time in Fig. 9.
They first show that after the initial rapid change in the bias
voltage the system always relaxes into a stationary state con-
sistent with the new voltage. The relaxation takes a time of
the order ETh

−1. Second, if the system is in a stationary state
and the bias voltage is changed slowly, then ���t�� adiabati-
cally tracks the stationary solution corresponding to the in-
stantaneous value of the voltage. This is seen most clearly in
Fig. 10 where we plot ���t�� as a function of V�t� and com-
pare this to the stationary ��� vs constant V curves. Our pre-
diction about hysteresis is confirmed. Systems with different
histories end up in different stationary states at the same
voltage bias. If the voltage is slowly swept from a small
initial voltage to Vf � �V− ,V+�, a stationary state with a large
value for ��� is reached. If the voltage is swept from a large
initial voltage to Vf � �V− ,V+�, a stationary state is reached
that corresponds to a small value of ���. We must mention
here that we observe some slow drift �too slow to be visible
in Fig. 9� in ��� after the voltage has reached Vf. The value of
��� seems to increase linearly at a rate d��� /dt�10−4�0

2.
Within the numerical accuracy of the calculation, this is neg-

FIG. 8. Top panel: The stationary solutions for � vs the bias
voltage V, corresponding to the parameters used in generating Fig.
9. The outer curve �dashed� corresponds to ETh=0.069�0 and �
=0.2. The middle curve �solid� corresponds to ETh=0.069�0 and
�=0.1. The inner curve �dot dashed� corresponds to ETh=0.069�0

and �=0.05. The vertical lines indicate Vf and V2. �V1 is beyond the
left edge of the figure.� Bottom panel: the time dependence of the
voltage. The upper �solid� curve corresponds to the solid curves of
� vs t in Fig. 9. The lower �dashed� curve corresponds to the dashed
curves of � vs t in Fig. 9.

FIG. 9. The amplitude of the order parameter as a function of
time. All curves are for ETh=0.069�0. The top, middle, and bottom
panels correspond to �=0.05, �=0.1, and �=0.2, respectively. The
dashed curves correspond to a voltage that is increased from V1

=0.83�0 to Vf =1.34�0. The solid curves correspond to the voltage
being decreased from V2=1.76�0 to Vf =1.34�0. The vertical lines
indicate the time interval in which the voltage changes from either
V1 or V2 to Vf. The thin horizontal lines correspond to the stationary
values of ��� for a bias voltage V=Vf as calculated from Eq. �3.16�.
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ligible and we believe the drift is simply an artifact of the
numerics.

In our data there is one exception to the rule of adiabatic
evolution. In the middle panel of Fig. 9, ���t�� takes much
longer that ETh

−1 to respond when the voltage is changed from
V2 to Vf. Hence, ���t�� as a function of V�t� does not track the
stationary solution in this instance. The reason is the follow-
ing: for a voltage V=V2, the only stationary solution has �
=0. When the voltage is decreased to Vf, a nonzero station-
ary solution for � exists. However �=0 is still a valid state,
albeit unstable. The time it takes the system to diverge from
the unstable state is not determined by ETh but rather by
small numerical errors that perturb the unstable state.

One possible explanation for the observed stability of the
stationary states is overdamping. According to this hypoth-
esis, if we decrease the Thouless energy further, thereby de-
creasing the damping, the stationary solutions will become
unstable. Some evidence for the hypothesis might be visible
in Fig. 9. After the voltage is changed rapidly, we might
expect ���t�� to perform damped oscillations while relaxing
to the new stationary state. However in Fig. 9 no such oscil-
lations are visible, apparently implying that the relaxation
rate is larger than the oscillation frequency. There is however
another possible explanation for the lack of oscillatory be-
havior after an abrupt change in V. The argument is that an
abrupt change in V cannot be communicated to the system
abruptly but only at a rate comparable to the damping rate
ETh. This is because the superconductor learns of the change
in voltage by the same mechanism as by which damping
occurs, that is, by tunneling of particles between the leads
and the island. Hence the response of the order parameter is
always gradual.

How do we test whether overdamping hypothesis is true
or false? Ideally we would have liked to repeat the above
numerical calculation with a smaller value of ETh and see if
the stationary states are still stable. However, the value ETh
=0.069�0 that we used above is close to the smallest value
for which we can do reliable numerics in reasonable time.
Since we cannot make ETh smaller, we resolve the issue of
overdamping as follows. We compare the dynamics of �
after an abrupt change in the pairing interaction strength g at
ETh=0.069�0 to the dynamics after a change in g at ETh=0.32

We know that in the isolated system, �ETh=0� ��� will per-
form persistent oscillations.8,9 The period of oscillation gives
a typical time scale for the internal dynamics of �. If, in the
open system �i.e., ETh�0�, we observe a few damped oscil-
lations �the more the better� in ��� before the system relaxes
to equilibrium, it means that damping occurs at a timescale
larger than that of the internal dynamics of the supercon-
ductor. In this case the hypothesis of overdamping is discred-
ited.

In our numerical implementation of the above, we work
with the following parameters: the initial pairing interaction
is such that for t�0, �=�i. The increased pairing interaction
strength corresponds to an equilibrium value of the order
parameter � f =20�i. The persistent oscillations of ���t�� in
the isolated system are shown in the blue curve in Fig. 11.
We repeat the calculation, which is now for a superconductor
connected to leads. We use a Thouless energy ETh=0.075� f.
The result for ���t�� in the presence of leads is the solid curve
in Fig. 11. We see that ���t�� eventually decays to a constant,
as expected. The extent of the damping is such that several
oscillations are completed within the decay time. Hence we
conclude that the numerical results that we obtained previ-
ously are outside the regime of overdamping. It follows that
the lack of oscillatory behavior in Fig. 9 is due to the fact
that the superconductor only gradually becomes aware of a
change in the voltage.

V. CONCLUSION

We have studied a voltage-biased NISIN junction, i.e., a
superconducting island connected to normal leads by means

FIG. 10. The amplitude of the order parameter ���t�� as a func-
tion of voltage V�t�. The parameter values of the three panels are
the same as those in Fig. 9, i.e., all curves are for ETh=0.069�0. The
top, middle, and bottom panels correspond to �=0.05, �=0.1, and
�=0.2, respectively. The thick dashed curves correspond to a volt-
age that is increased from V1=0.83�0 to Vf =1.34�0. The thick
solid curves correspond to the voltage being decreased from V2

=1.76�0 to Vf =1.34�0. The thin dashed lines represents the station-
ary value of ��� vs V, as calculated in Sec. III and plotted in Fig. 8.

FIG. 11. The order parameter versus time after the pairing
strength was increased from �i=0.05� f to � f abruptly at t=0. The
dashed curve is for an isolated superconductor while the solid curve
is for a superconductor connected to leads. For this case a Thouless
energy ETh=0.075� f was used. The data was obtained using 501
equally spaced levels with level spacing 	s=0.02� f. The capaci-
tance was chosen C=0.1e2 /� f.

I. SNYMAN AND YU. V. NAZAROV PHYSICAL REVIEW B 79, 014510 �2009�

014510-12



of tunnel junctions. We restricted ourselves to the regime
where the dominant energy relaxation mechanism in the su-
perconductor is the tunneling of electrons from the supercon-
ductor to the leads. We also restricted ourselves to the regime
of low transparency junctions where the position dependence
of the order parameter inside the superconductor can be ne-
glected.

In Sec. III we found the stationary states of the system.
For these, the order parameter � and the chemical potential
are implicitly determined by Eq. �3.16�. We also found the
current between the leads �cf. Eq. �3.17��. The most striking
feature of the stationary states is that, as is commonly the
case in nonequilibrium superconductors and indeed more
generally in many dissipative driven nonlinear systems, there
can be more than one stationary state at a given voltage.
These are characterized by different values of ��� and of the
current as can be seen in the I-V curves of Fig. 7. Depending
on system parameters, superconductivity can survive up to
voltages that are large compared to �0, which is the order
parameter of the isolated superconductor. In this case, in-

creasing the voltage eventually leads to a second-order phase
transition to the normal state. We have found that the critical
voltage at which the transition occurs obeys a power law �cf.
Eq. �3.21��.

In Sec. IV we studied time-dependent states of the system.
In this way we were able to demonstrate the stability of the
stationary states we have found in the previous section. Our
results also indicate that a dc-biased system always relaxes
into a stationary state. In the parameter region of multiple
stationary states we demonstrated bistability. Associated with
this are first-order phase transitions: there are critical volt-
ages where � �and the current� make finite jumps. Further-
more, there is hysteresis of ��� and the current associated
with the bistability.
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