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Abstract

Adaptive optics are often operated in wavefront-sensorless control fashion, since this requires
no sensors. These devices often make use of piezoelectric actuators, which exhibit creep and
hysteresis. In open loop operation, hysteresis and creep limit the performance. Hysteresis
limits the precision of the compensation and creep reduces the performance during extended
periods of time. In research, many feedforward compensation methods for these effects have
been developed. In this thesis, a dynamic Generalized Prandtl-Ishlinskii model is constructed,
consisting of a Generalized Prandtl-Ishlinskii model to compensate for the hysteresis and a
feedforward zero phase error tracking controller to compensate the creep. The dynamic
Generalized Prandtl-Ishlinskii model is tested on a deformable mirror and lens. The single-
input and single-output performance is evaluated for step signals, a sawtooth signal and a
more realistic signal. The multiple-input and multiple-output performance is tested for a
realistic signal as well. It is found that the dynamic Generalized Prandtl-Ishlinskii model
reduces the normalized root mean square of the tracking error by 38.5% on the mirror and
by 53.8% on the lens for multiple-input and multiple-output operation. This reduction is
larger compared to a static Generalized Prandtl-Ishlinskii model. At the end of the thesis,
propositions for future improvements of the identification of the model are made.
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Chapter 1

Introduction

In this thesis, methods for compensating hysteresis and creep are tested on a deformable lens
and a deformable mirror. This has been done with the goal to improve the performance of
the devices. Many methods for hysteresis and creep compensation have been described in
literature. The focus of this thesis is on Feedforward (FF)methods, since FFmethods do not
require sensors to perform their function. The following research questions will be answered
in this report:

• To what extent can a Generalized Prandtl-Ishlinskii (GPI) model in series with a dy-
namic model compensate hysteresis and creep in a deformable lens?

• To what extent can a GPImodel in series with a dynamic model compensate hysteresis
and creep in a deformable mirror?

• What is the advantage of adding a dynamic model in series with a GPI model for
compensation of hysteresis and creep in a deformable lens and a deformable mirror?

• Are there differences in the compensation of hysteresis and creep between the deformable
lens and deformable mirror?

The outline of the thesis is as follows:

• Chapter 2 Background explains some fundamentals of Adaptive Optics (AO)and its
applications. Also, some details are given on the lens and mirror used in the experiments.
Then, information is given on compensation methods for hysteresis and creep. Finally,
the state of the art in hysteresis and creep compensation in AOsystems is summarized.

• Chapter 3 Methods describes the experimental setups used and shows how measure-
ments with the Shack-Hartmann (SH) sensor are converted to Zernikes. The hysteresis
and dynamics models used are described and the model identification and compensation
methods are introduced.

Master of Science Thesis H.K. Bijlsma



4 Introduction

• Chapter 4 Results shows the identified models and their characteristics. Subse-
quently, the results of the compensation are shown for both the operation of one ac-
tuator at the time (Single-Input and Single-Output (SISO)) as well as for operation of
multiple actuators at the same time (Multiple-Input and Multiple-Output (MIMO)).
The results are compared to the same experiments without compensation and a static
hysteresis compensation method. This is done for both a deformable lens and a de-
formable mirror.

• Chapter 5 Conclusion and recommendations draws conclusions and recomenta-
tions based on the results.

At the back of the thesis, all used symbols and abbreviations are listed.

H.K. Bijlsma Master of Science Thesis



Chapter 2

Background

In this chapter, the principle of Adaptive Optics (AO) is introduced and Piezoelectric Actu-
ators (PEAs) are discussed. Then, the devices used are described, with particular focus on
the hysteresis and creep behaviors of PEAs. Finally, previous research on the compensation
of hysteresis and creep is summarized.

2-1 Adaptive optics

The field of AO deals with the compensation of disturbances in the wavefront of optical
systems. This is done by manipulating the incoming wavefront in such a way that it precisely
compensates the disturbances in the incoming wavefront, see Figure 2-1.

Figure 2-1: Working principle of AO [1]

Master of Science Thesis H.K. Bijlsma



6 Background

2-1-1 Wavefront aberrations

Some properties of light can be explained by expressing them as waves. Therefore, light from
a coherent and monochromatic source can be described by its amplitude and phase. The
wavefront is defined as the surface on which light has the same phase.

For example, in the case of a point source emitting light at a given wavelength, a spherical
wavefront is emitted see Figure 2-2, due to the constant speed of light in a homogeneous
medium. Based on the laws of refraction, a lens can change the shape of the wavefront. This
principle can be used to generate an image, by converting diverging spherical wavefronts to
converging ones.

Figure 2-2: Wavefronts in a lens system with a point source

However, in many applications imaging is hindered by the fact that the wavefront is not
spherical. This can be caused by inhomogeneities in the medium through which the light
propagates, see Figure 2-3.

Figure 2-3: Distorted wavefront of a point source

These distortions of the wavefront will cause the image of the point source to become blurry,
see Figure 2-4. Distortions of the wavefront are called aberrations.

H.K. Bijlsma Master of Science Thesis



2-1 Adaptive optics 7

Figure 2-4: Effect of distortion of the wavefront on imaging of a point source

Aberrations of the wavefront can be expressed as series of Zernike polynomials Zvu [2]. These
are orthogonal polynomials, expressed on the unit disk, which are defined as follows:

Zvu(ρ, θ) =
√

2(u+ 1)Rvu(ρ, θ) cos vθ even terms when v 6= 0 (2-1)

Zvu(ρ, θ) =
√

2(u+ 1)Rvu(ρ, θ) sin vθ odd terms when v 6= 0 (2-2)

Zvu(ρ, θ) =
√

(u+ 1)Rvu(ρ, θ) when v = 0 (2-3)

with

Rvu(ρ, θ) =
u−v

2∑
s=0

(−1)s(u− s)!
s!(u+v

2 − s)!(
u−v

2 − s)!
ρu−2s (2-4)

and the radius ρ and angle θ which define a point on the unit disk. Zernikes can also be
expressed in Cartesian coordinates. These expressions are given in Appendix A. There, the
numbering of the Zernikes that is used in this report is also given.

2-1-2 Shack-Hartmann sensor

In the setup, a Shack-Hartmann (SH) sensor is used to measure the wavefront (aberrations).
The working principle of a SHsensor is shown in Figure 2-5. In [3] a more detailed description
of the working principle is given. The SH sensor is formed by an array of microlenses and a
camera detector, and needs a point source to operate. Due to wave propagation, the light
incident on a single lenslet will focus on the detector at a distance which is equal to the focal
length F of the lenslets, with a lateral displacement proportional to the average gradient of
the wavefront over the lenslet surface. From the average gradients measured on all lenslets,
the shape of the wavefront can be reconstructed. This procedure will be explained in more
detail in Section 3-2.

Master of Science Thesis H.K. Bijlsma



8 Background

Figure 2-5: Working principle of a SH sensor [3]

2-1-3 Applications

The main application of AOis astronomy, where the presence of point-like bright stars enables
the use of a SHsensor for real time correction of the atmospheric turbulence. However, there
are many other applications of AO. In [4], applications in multiphoton, confocal, structured
illumination, light sheet-microscopy and STED microscopy are mentioned. In [5] applications
in three-dimensional displays and zoom systems are mentioned. The lens that is used for
experiments in this thesis has been used for OCT [6].

2-1-4 Adaptive optics control techniques

Generally, there are two kinds of control used in AO. These are feedback and Feedforward
(FF) control. Feedback (FB) control is control that makes use of the signals from sensors (as
shown in Figure 2-1) to drive the output to a given reference. FF control is control which
constructs the input from the reference (so without sensors), in such a way that the output
y tracks the reference ref (see Figure 2-6).

FF Plant
ref u y

Figure 2-6: Feedforward control

In AO, several correction techniques have been developed to apply control without the use of
a wavefront sensor. A motivation for this is that guide stars, which provide the signal that
the SH sensor uses, are not always available. Other motivations are lower costs, a simpler
system and a higher signal to noise ratio. This higher signal to noise ratio is achieved by
using all photons for imaging, instead of using part of them for wavefront sensing. This leads
to a shorter exposure time and/or a better image quality.
Without a wavefront sensor, aberrations can not be measured directly. Therefore, the extent
to which they are compensated by the AO is unknown. In order to deal with this, different
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2-2 Piezoelectric Actuators 9

metrics have been developed to provide information about the correction performance, but
do not require a wavefront sensor [7, 8, 9, 10]. This signal can serve as feedback signal for
control.
Wavefront sensorless techniques can be divided in different categories:

• Model free
By taking measurements and applying a derivative-free optimization algorithm on the
input u, a metric is maximized [11, 12], see Equation 2-5. Examples of optimization
algorithms that can be used are simulated annealing or the SPGD algorithm [13] and
an example of a metric is intensity I.

u = arg max
u

I(u) (2-5)

• Model based
First, an estimate of the current aberrations in Zernike modes zest is made on basis
of measurements. When this is completed, control is applied which compensates those
aberrations, see Equation 2-6. In order to be able to do this, the influence functions of
the control on the aberrations have to be measured during calibration of the system.
Subsequently, the estimate of the aberrations is updated and the new estimated optimal
control is applied. The advantage of this technique is that the optimization is faster
compared to model free methods [12, 14].

u = f−1(zest) where f(u) = z is the model of the AO device (2-6)

In this thesis, FFmethods for hysteresis and creep compensation in wavefront sensor-less AO
applications are developed. To evaluate the performance of the methods, a wavefront sensor
is used. However, this sensor is not longer necessary when these compensation methods are
used in a system.

2-2 Piezoelectric Actuators

In AO, the most common adaptive elements used are deformable mirrors [6]. However, recently
a deformable lens has been developed as well [15]. Replacing a deformable mirror with a
deformable lens offers the advantage that a lens is much easier (and therefore cheaper) to
implement in an existing system. However, deformable mirrors have the advantages that
they have a higher optical efficiency and no chromatic aberration [4]. These AO devices
mostly make use of PEAs, because of their fast response and high resolution [16].
PEAs are actuators made of a piezoelectric material, which exhibits strain depending on the
voltage applied. The direction in which this strain occurs is determined by the manufacturing
process. The general model that is used for PEAs is in matrix form [17]:

[δ] =[sE ][σ] + [d]′[E] (2-7)
[D] =[d][σ] + [εT ][E] (2-8)

Master of Science Thesis H.K. Bijlsma



10 Background

with as inputs the stress σ and the electric field E. The outputs are the displacement δ and
the dielectric displacement D. The other variables are the compliance sE while a constant
electric field is applied, the piezoelectric constant d and the permittivity εT while a constant
mechanic force is applied.

However, this linear model is unable to describe the nonlinear effects and dynamics, including
creep, in PEAs. Two of these nonlinear effects that occur in PEAs are hysteresis and satu-
ration. These dynamics and nonlinear effects cause tracking errors [1, 16] which can degrade
the performance of the system in which they are used. In AO, these will result in errors
in the wavefront correction which is produced with the AO device [1]. Various methods to
deal with the hysteresis are described in literature [16]. Most of the compensation techniques
make use of (inverse) models of these (non)linear effects. The methods used in this thesis to
compensate the hysteresis and the dynamics are explained in Section 3-3.

2-3 Adaptive optics devices

In this section, the physical structure of the lens [15] and mirror [18] are investigated. Also,
the mechanics are briefly discussed.

2-3-1 Lens

The lens used in the experiments consists of two transparent solid surfaces with a transparent
fluid in between [6]. A piezoelectric ring is placed on the outside of both solid layers. Both
rings are divided in 9 equal sections, which can be actuated separately. This gives a total of
18 actuators. The location of these actuators in the solid layers is shown in Figure 2-7. The
cross section of the lens is shown in Figure 2-8. The piezoelectric ring is made as a bending
actuator. An applied voltage makes the inside of the piezoelectric ring bend up or down
and therefore displaces the layer of liquid in between. The difference between the two solid
layers is that one side is constrained in the movement, while the other side is connected to
an elastomer foam. This causes the actuators on the different solid layers to have different
influences on the wavefront. Unlike previously reported lenses implantations [15], the one
reported can generate aberrations up to the fourth order [15], see Figure 2-9.
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Figure 2-7: Location of the actuators of
the lens

Figure 2-8: Drawing of the cross section of
the lens, adapted from [6]

Figure 2-9: Different wavefronts produced by the lens [6]

2-3-2 Mirror

The mirror used in the experiments is a Piezoelectric Deformable Mirror (PDM) from OKOTech
(30mm 19ch PDM [18]). Technical data on this mirror can be found in Table 2-1. It consists
of a base on which PEAs are placed. On these, a flexible faceplate is mounted, see Figure
2-10. By applying a voltage to the PEAs, the shape of the faceplate can be changed. The
actuators of the mirror used for the experiments are placed in a hexagonal pattern, shown in
Figure 2-11. According to its specifications, it can correct aberrations up to the fourth order
[18].
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Aperture shape circular 30 mm in diameter
Mirror coating Metal or Metal + dielectric

Actuator voltages 0 . . . + 300V (with respect to the ground electrode)
Number of electrodes 19

Actuator capacitance Ca 5 nF
Main initial aberration sphere

Initial Root Mean Square (RMS) deviation less than 1 µm from reference sphere
Maximum stroke 8µm at +400V
Actuator pitch 7 mm

Weight 320 g

Table 2-1: Technical properties of the mirror PDM30-19 [18]

Figure 2-10: Schematic drawing of a PDM
[18]

Figure 2-11: Placement of te actuators of
the mirror [18]

2-4 Hysteresis

In this section the hysteresis phenomenon and its properties are investigated. Compensa-
tion methods for hysteresis are then discussed. Subsequently, different hysteresis models are
explained and their properties and implementation are discussed.
The hysteresis curve is defined as the curve of the output y as function of the input u. An
example of a hysteresis curve of an actuator in the mirror is shown in Figure 2-12. Hysteresis
can also be expressed as a percentage h, which is the maximum size of the opening of the
hysteresis curve divided by the full stroke:

h = max(yd(u)− ya(u))
max (y)−min (y) for any u (2-9)

where yd is the output at the interval where u̇ < 0 and ya is the output at the interval where
u̇ > 0.
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Figure 2-12: Hysteresis curve of actuator 19 of the mirror

Prandtl-Ishlinskii model

The Prandtl-Ishlinskii (PI) model is composed of play operators Fr, and is defined as follows
[16]:

y(t) = p0v(t) +
∫ ∞

0
p(r)Fr[v](t)dr (2-10)

The definition of the play operator Fr is:

Fr[v](0) =fr(v(0), 0) (2-11)
Fr[v](t) =fr(v(t), Fr[v](ti)) (2-12)

fr(v, Fr[v]) =max(v − r,min(v + r, Fr[v])) (2-13)

where p(r) is an arbitrary function determining the weight of the operators and ti is the
previous time instant.

A geometric illustration of the play operator is shown in Figure 2-13
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Figure 2-13: The mathematical behavior of the operator of the PI model Fr[v](t)

The PI has the advantages that it is invertible [19] and that it can represent asymmetric
hysteresis curves by turning it into a Generalized Prandtl-Ishlinskii (GPI)model [20].

The infinite integral complicates the implementation of the PI model [16]. Therefore, the
integral is mostly expressed as a sum of a finite amount of operators with the threshold and
weight functions expressed as vectors [21], see Equation 2-14.

∫ ∞
0

p(r)Fr[v](t)dr ≈
n∑
i=1

piFri [v](t) (2-14)

However, this leads to a less smooth hysteresis curve, since a finite amount of functions are
now used to approximate the hysteresis. The smoothness and fit of the hysteresis can be
improved by using more terms, but requires a higher computational cost. [22]

2-5 Creep

Creep is the phenomenon causing a small drift-like behavior in the output of the system, while
the input is constant. This occurs in the low frequency range. The difference between creep
and drift is that the direction and size of the creep can be predicted based on the history of
the input [23], while drift has an unpredictable behavior. PZT actuators are known to exhibit
creep [23]. An example of creep in a PEA is given in Figure 2-14.
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Figure 2-14: Creep in a piezoelectric actuator [23]

In applications in which FB is applied, the inaccuracies which creeps leads to are small,
because it is measured and the FB controller compensates for it [24]. However, when only FF
is applied and the dynamics of the creep are not considered, the creep is not measured and
can lead to inaccuracies [25].

Different logarithmic models have been developed for creep [23, 25]. Also, linear dynamics
can model creep as well [26]. Due to its simplicity, the linear model will be used in this thesis
and the creep will be modeled by a transfer function.

2-6 Previous research

Previous research has been done on the compensation of creep and hysteresis of an actuator
in a deformable mirror [27]. Also, inverse hysteresis compensation has been applied in control
with both FF and FB on a deformable mirror [28]. Adaptive identification [29, 30] and iden-
tification based on least squares [31] are mentioned as methods to identify the hysteresis and
creep models. Different kinds of datasets are used for this purpose. [31] makes use of random
signals with no spectral density above a specific frequency, while most rely on a sinusoid with
a varying amplitude, for example [26, 32]. However, the frequency of this sinusoid should
be chosen carefully such that the dynamics or creep do not influence the identification of
the hysteresis [32]. For the identification of creep, step functions can be used [32]. Further-
more, some research identifies the hysteresis, dynamics and creep from one dataset [31], while
other research [26] first identifies a hysteresis compensator and then identifies the creep on a
dataset which is already compensated for the hysteresis. The dynamics are then identified on
a dataset compensated for hysteresis and creep.
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Chapter 3

Methods

In this chapter, the setup is described and the model structure of the compensator is explained.
Then, the identification of this model is discussed and the way in which the compensation
is evaluated is presented. At the end of the chapter an overview of the MATLAB codes
employed is reported.

3-1 Setup

The hysteresis compensation method is tested on an adaptive lens [15] and a deformable
mirror from OKOTech (30mm 19ch PDM [18]). A picture of the test setups can be seen in
Figure 3-1 and Figure 3-3. Schematic overviews of these setups are shown in Figures 3-2 and
3-4.

Figure 3-1: Picture of the setup with the
lens. Photo by Martino Quintavalla (Istituto
di Fotonica e Nanotecnologie), used with
permission

Figure 3-2: A schematic view of the setup
with the lens. Adapted from schematic
drawing provided by Martino Quintavalla
(Istituto di Fotonica e Nanotecnologie),
used with permission
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Figure 3-3: Picture of the setup with the
mirror

Figure 3-4: A schematic view of the setup
with the mirror

In the mirror setup, a pinhole of 30 µm is placed in front of the source to provide a point like
light source. In order to make the wavefront flat, a lens is placed after the pinhole. This lens
has a focal length of 10 cm and is equal to its distance to the pinhole. Then, an aperture is
used which limits the size of the beam to 2.5 cm such that only the active part of the mirror
is shined upon. After the light beam has reflected off the mirror (path below in Figure 3-4),
a telescope is used to make sure that the beam with a diameter of 2.5 cm is reduced to a
diameter of 0.5 cm, which can be registered by the Shack-Hartmann (SH) sensor. A similar
setup is used for the lens.

3-2 Reconstruction of the Zernikes

The camera in the SH sensor measures the intensity as a number between 0 and 255. The
image that is captured is thresholded so that all intensity values of Imincentroid or less are set
to 0. Then, the centroids Ix and Iy of the spots (recognized as a square with at least one
pixel with a brightness value of Iminspot or higher during calibration), are determined as:

Ix =
∑
x(x

∑
y I(x, y))∑

x

∑
y I(x, y) (3-1)

Iy =
∑
y(y

∑
x I(x, y))∑

x

∑
y I(x, y) (3-2)

The size of the edge of the square that is taken into account to calculate the centroid is
rcentroid. Also, the minimum distance between spots that are detected is rcentroidmin . The
parameters Imincentroid , Iminspot , rcentroid and rcentroidmin are setup dependent and should be
determined every time a new setup is used.

Then, reference positions are calculated for these centroids by fitting a grid of equidistant
points while the actuators of the Adaptive Optics (AO)device are at mid stroke. Subsequently,
the displacement of these centroids Ix and Iy compared to their reference position can be used
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3-2 Reconstruction of the Zernikes 19

to determine the Zernike expansion of the wavefront. This reconstruction is explained in the
rest of this section.

The displacement of the centroids S are related to the Zernikes z as follows:

S = Zxyz (3-3)

with

Zxy =
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(3-4)

Where
(
dZN
dx

)
k
and

(
dZN
dy

)
k
are the average derivatives of the Zernike term N to respectively

x or y over the subaperture of spot k [33], see Figure 3-5.

Figure 3-5: The geometrical properties of the image of the SH sensor with the subaperture of
spot Ak in yellow
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In Equations 2-1 to 2-3 the Zernikes are defined in polar coordinates. These can also be
represented in Cartesian coordinates, see Appendix A. From these the derivatives of the
Zernike terms with respect to dx and dy can be obtained for a spot at position Akref . These
are [33]:

(
dZi
dx

)
Ak

=
∫ xAkref

+ρsa

xAkref
−ρsa

∫ sin
(

cos−1

(
x−xAkref

ρsa

)
ρsa

)
+yAkref

− sin
(

cos−1

(
x−xAkref

ρsa

)
ρsa

)
+yAkref

dZi
dx

dydx (3-5)

(
dZi
dy

)
Ak

=
∫ xAkref

+ρsa

xAkref
−ρsa

∫ sin
(

cos−1

(
x−xAkref

ρsa

)
ρsa

)
+yAkref

− sin
(

cos−1

(
x−xAkref

ρsa

)
ρsa

)
+yAkref

dZi
dy

dydx (3-6)

where ρsa is the radius of the subaperture and xAkref and yAkref are the x and y position of
the reference spot.

Solving Equation 3-3 in least squares sense gives:

z =(ZTxyZxy)−1ZTxyS = BS [m] with (3-7)

S = 1
F

δx1 δy1
...

...
δxk δyk

 (see Figure 2− 5 and 3− 5) (3-8)

The procedure in which the matrix B relating the displacement of the centroids to the Zernike
modes causing them is calculated during the calibration of the AOdevice.

During the experiments, 27 Zernikes (up to the 6th order and not including the piston)
are measured. Since it is the purpose in this thesis to let the induced aberrations follow a
reference, the aberrations that are present in the setup are not relevant. Therefore these are
determined at the start of each measurement by taking the mean of 10 measurements while
the actuators are at mid stroke, and subtracted from every measurement.

3-3 Model

The dynamic hysteresis compensation model consists of two parts: A Generalized Prandtl-
Ishlinskii (GPI)model [20] H to model the hysteresis and a transfer function G to model the
dynamics (including creep). The description of the hysteresis model H is:

H(u(t)) = g4 + p0g(u(t)) +
N∑
j=1

pj(r)Frj [g(u)](t) (3-9)

Where the play operators (see Figure 2-13 for the behavior of play operators) are defined as:
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Frj [g(u)](0) =frj (g(u(0)), g(0)) (3-10)
Frj [g(u)](t) =frj (g(u(t)), Frj [g(u)](ti)) (3-11)

frj (g(u), Frj [g(u)]) =max(g(u)− rj ,min(g(u) + rj , Frj [g(u)])) (3-12)

In order to account for asymmetry of the hysteresis curve, the polynomial function g(u) is
introduced as:

g(u) = g1u
2 + g2u+ g3 (3-13)

Then a constant g4 is added to the model to make sure that the output y is 0 for an input u
of 0:

g4 = −H(g(0)) (3-14)

The dynamics are modeled by the transfer function G(q):

G(q) = b1q
n + · · ·+ bn−2q + bn−1

a1qn + · · ·+ an−1q + an
(3-15)

The models are integrated as shown in Figure 3-6. This results in the mathematical descrip-
tion:

y = G (q) ∗H (g (u (q))) (3-16)

Figure 3-6: The integration of the hysteresis and dynamics model

In this thesis, a dynamic GPI model refers to a GPI model in series with a dynamic model
and a static GPImodel refers to a GPImodel alone.

3-4 Model inversion

In order to perform compensation of the hysteresis and the dynamics, both the GPI model
and the dynamic model have to be inverted. In this section, it is described how an inverse of
these models can be estimated. The full inverse model is:

u(q) = H−1 (GZPET (q) ∗ y(q)) (3-17)

In the next two sections, it is explained how H−1 and GZPET (q) are constructed.
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3-4-1 Inversion of the hysteresis model

When the GPImodel is given as in Equation 3-9, the inverse can be constructed according to
[20]:

H−1(y(k)) = g−1

p−1
0 (u(k)− g4) +

m∑
j=1

p̂jFr̂j [u(k)− g4]

 (3-18)

This inverse H−1 is also a hysteresis model with thresholds r̂j and weights p̂j :

r̂j =p0rj +
j−1∑
i=1

pi(rj − ri) (3-19)

p̂j =− pj

(p0 +
∑j
i=1 pi)(p0 +

∑j−1
i=1 pi)

(3-20)

3-4-2 Inversion of the dynamic model

An approximate inverse of the transfer function can be constructed with Zero Phase Error
Tracking (ZPET) Feedforward (FF) control [34]. This is done by using the poles P of the
transfer function of the system as zeros and the zeros Zs of the original system (Equation
3-21) as poles.

G(q) = K
(q − Zs1)(q − Zs2) . . . (q − Zsn)(q − Zus1)(q − Zus2) . . . (q − Zusn)

(q − P1)(q − P2) . . . (q − Pn) (3-21)

However, in case a zero is located outside the unit circle (Zus), it not used as a pole, as it
would make the system unstable. Instead, this zero is kept as zero multiplied by −1. This
results in the transfer function in Equation 3-22, which has the same phase as the perfect
inverse:

Ginvphase(q) = (q − P1)(q − P2) . . . (q − Pn)(q + Zus1)(q + Zus2) . . . (q + Zusn)
(q − Zs1)(q − Zs2) . . . (q − Zsn) (3-22)

Also, in order to make sure that the inverse has more poles than zeros, η high frequency poles
are added, see Equation 3-23.

Ginvproper(q) =
Ginvphase(q)

(q − Pωn1)(q − Pωn2) . . . (q − Pωnη) (3-23)

Finally, the transfer function is multiplied by a factor such that the dc-gain of the inverse
transfer function is equal to 1 divided by the dc-gain of the original transfer function. The
final transfer function that will be used as inverse is:

GZPET (q) =
Ginvproper(q)
Gproper(1)G(1) (3-24)
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3-5 Identification

The identification is performed with a specifically designed dataset, described in Section
3-5-3. An algorithm that is based on least squares is used to identify a dynamic Prandtl-
Ishlinskii (PI) model and serves as an initial guess of the parameters of the GPI model.
The values of the transfer function are then determined by fitting a transfer function to a
step response. Subsequently, the parameters of the GPI model are fitted while the transfer
function is kept constant. This is done to prevent the dynamics and creep from influencing the
identified hysteresis. In section 4-2-1 the effects of neglecting the dynamics in this estimation
are shown. As mentioned before, the weights of the regular PImodel are used as initial guess.

3-5-1 Influence functions

In order to simplify the modeling of the system, it is assumed that the effect of each actuator
on the system is not influenced by the input on the other actuators. Also, it is assumed that
the influence of an actuator on the wavefront is linear, and can be described as a series of
Zernike coefficients. The vector of coefficients is called the influence function of the actuator.
The determination of the influence functions ζ is shown in Equation 3-25. z(uj) is a vector
containing 27 Zernikes (up to the 6th order and not including the piston) and uj is the
voltage on the j’th actuator. In order to reduce the influence of noise on the determination
of the influence function, the Zernikes z(uj) are measured for 31 successive instances and the
mean value is used in the calculation. This is done for both the maximum and minimum
voltage, see Figure 3-7. After determining the influence function, its magnitude can be
considered the output y of the actuator (such that the system becomes Single-Input and
Single-Output (SISO)when only one actuator is used). The determination of the magnitude
of the influence function of the j’th actuator yj is done by solving the least squares problem
in Equation 3-26.

ζj = 0.5
(
z(ujmin)
ujmin

+ z(ujmax)
ujmax

)
(3-25)

min
yj
||ζjyj(k)− z(k)||2 (3-26)

3-5-2 Identification procedure

First, the procedure in [31] is used to identify the parameters of a symmetric PImodel. The
values found are used to provide a starting point for the optimization of the GPI model in
series with a dynamic model. The thresholds r of the symmetric PImodel are calculated with
Equation 3-27 and 3-28. This formula is used, because it provides an equidistant spread of
the threshold values ri.

r0 =0 (3-27)

ri =max(u)i
N + 1 (3-28)
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The system is then represented as a linear regression model.

y(k) =φ(k)Θ (3-29)

=



y(k − 1)
y(k − 2)

...
y(k − n)


T

,


w1(k − 1)
w1(k − 2)

...
w1(k − n)


T

,


w2(k − 1)
w2(k − 2)

...
w2(k − n)


T

. . .


wN (k − 1)
wN (k − 2)

...
wN (k − n)


T

×



a2
a3
...
an


T

,


b1p1
b2p1
...

bn−1p1


T

,


b1p2
b2p2
...

bn−1p2


T

. . .


b1pN
b2pN
...

bn−1pN


T

T

where the coefficients a and b are from the transfer function:

G(q) = b1q
n + · · ·+ bn−2q + bn−1

a1qn + · · ·+ an−1q + an
with a1 = 1 (3-30)

and w contains the outputs of the play operators as:

wj = frj (u, Frj [ui]) = max(u− rj ,min(u+ rj , Frj [ui])) (3-31)

and p are the weights of the PI model

Equation 3-29 is in matrix form:

Y = ΦΘ + Ξ (3-32)

with

Y =

 y(1)
...

y(M)

 ,Φ =

 φ(1)
...

φ(M)

 ,Ξ =

 ξ(1)
...

ξ(M)

 (3-33)

where ξ is noise.

The parameters Θ minimizing the difference between the measured output ymeas and simu-
lated output ysim can be found from:

min
Θ
||Y − ΦΘ||2 (3-34)

which is a least squares problem. Several ways to solve this minimization problem can be
found in [35]. However, by solving Equation 3-34, only the values of the multiplication of the
coefficients b with the weights p are known and not the coefficients themselves, see Equation
3-29. The least squares solution which gives the solution of the weights and coefficients of
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Equation 3-35 can be found by constructing Ψ and taking the singular value decomposition,
see Equation 3-36.

Ψ =

 b1p1 . . . b1pN
... . . . ...

bn−1p1 . . . bn−1pN

 =

 b1
...

bn−1

 [p1 . . . pN
]

= bp (3-35)

SV D(Ψ) =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T

1
V T

2

]
(3-36)

b =U1 (3-37)
p =V1Σ1 (3-38)

This procedure does provide coefficients for a transfer function. However, it is found that
identifying a transfer function from a step response with the MATLAB command tfest is more
accurate for the lens. Therefore, this MATLAB command is used instead. The coefficients
found in this procedure are used as initial weights p.

Now the GPI model in series with a dynamic model is identified. This is done with an
optimization algorithm searching the solution of the optimization problem in Equation 3-39.

Θ = arg min
Θ

J(Θ, u) with (3-39)

J(Θ, u) =
∑M
k=1(ysim(Θ, u)− ymeas)2∑M

k=1 ysim(Θ, u)2
(3-40)

ysim(Θ, u) =G(H(Θ, g(Θ, u)),Θ) (3-41)

For this purpose, the command fminunc is used in MATLAB (with the default BFGS Quasi-
Newton algorithm). The parameter g4 is not included in this optimization, but is determined
by its definition instead, shown in Equation 3-14.

3-5-3 Dataset for identification

The signal used as input for identifying the dynamic GPImodel is shown in Figure 3-7. All
inputs to the AOdevices in this thesis are scaled, where 1 normalized voltage corresponds to
the max voltage and -1 normalized voltage to the minimal voltage. This signal is chosen since
both the dynamics and the hysteresis have to be identified. It can be seen that it contains
three different parts:

• In order to determine the influence function of every actuator, steps from maximum to
minimum amplitude (ujmin = −1 normalized voltage) and from minimum to maximum
amplitude (ujmax = 1 normalized voltage) are applied to the actuator at the beginning of
the identification dataset. This is done at the beginning since in that case the influence
of creep is minimal. The dynamics are identified from this part of the identification
dataset as well.
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• At the second part of the identification dataset, positive and negative steps in the voltage
are alternated, with amplitudes ranging from -1 normalized voltage to 1 normalized
voltage in steps of 0.05 normalized voltage. This is done to cover a large part of the
amplitude range of the actuator.

• At the end of the dataset, the whole amplitude range of the actuator is covered and the
dynamics at many frequencies are excited. For this purpose, a frequency sweep with
frequencies from 0.01 Hz to 1 Hz plus a sine with a frequency of 0.08 Hz with both an
amplitude of 0.5 normalized voltage is used.
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Figure 3-7: The dataset used for identification

3-6 Compensation

The performance of the compensation is evaluated for SISO and for Multiple-Input and
Multiple-Output (MIMO)actuation. The performance of the hysteresis compensation is eval-
uated by actuating the system with the response of the inverse system to a reference and then
computing the normalized Root Mean Square (RMS) of the difference between the reference
and the output. A reference is given for all Zernikes up to the third order, excluding piston
and including spherical aberration. The other Zernikes that are measured are only measured
in order to make sure that higher order Zernikes that occur do not influence the values of the
estimated lower order Zernikes. SISO performance is tested for a steps and sawtooth signal
and both SISOand MIMOare tested for a more realistic reference. This more realistic refer-
ence contains multiple frequencies and amplitudes, which makes sure that the compensation
of the dynamics can be evaluated as well. At last, the compensation method is compared to
the conventional compensation method: A GPImodel without dynamics.
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3-6-1 Single actuator

The SISO compensation is tested with a reference consisting of steps of 10 seconds and a
sawtooth signal. The experiment with the reference consisting of steps can be used to check
whether the dynamics are compensated well. The performance of the hysteresis compensation
can be checked with the sawtooth signal. The used reference signals are shown in Figures 3-8
and 3-9.

Figure 3-8: Used steps signal for evaluation
of SISO compensation

Figure 3-9: Used sawtooth signal for eval-
uation of SISO compensation

In order to evaluate the performance of the compensation for a more realistic reference a
new reference trajectory is generated. This starts with a dynamic part which resembles the
optimization of the input. At the end of the dataset, a static reference is given, resembling
the found optimum. The signal is constructed as follows: First 10 samples at mid stroke are
applied. Then, 201 samples of random numbers τ between -1 and 1 and a constant random
value τ for the remaining 190 samples are filtered with a 6th order Butterworth filter with
a cutoff frequency of 0.5 Hz and applied to the actuator, see Equation 3-42 and Figure 3-
10. This reference signal is then scaled such that actuator inputs do not exceed the device
limitations. The performance measure that is used is the RMSerror normalized by the RMS
value of the reference, given in Equation 3-43.

refyj =
[
0, · · · , 0, fbutter(1.25τ(201), 0.5τ(1)

[
1, · · · , 1

]
)
]T

(3-42)

eNRMS =

√∑M
k=1(refy(k)− ymeas(k))2√∑M

k=1 ref
2
y (k)

(3-43)
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Figure 3-10: The reference used for testing the SISO compensation

3-6-2 Multiple actuators

In order to evaluate the performance when multiple actuators (MIMOperformance) are used,
the same procedure (Equation 3-42) as for the single actuators is used to create a realistic
reference signal refz for all Zernikes up to the third order, excluding piston and including
spherical aberration. Then, the required magnitudes of the influence functions of each ac-
tuator (refyj) are calculated with the minimization given in Equation 3-44, in which Q is
the cost of a tracking error and R is the cost of control. The solution of the minimization
can be formulated as the constrained least squares problem in Equation 3-45, where l is the
maximum absolute value of the voltage on the actuators. This magnitude is used as input for
the inverse compensator, which then gives the input for the actuators of the lens. The whole
process is shown in the flowchart in Figure 3-11.

min
y

((refz − z(y)))TQ((refz − z(y))) + yTRy (3-44)
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miny

([√
Q[ζ1 . . . ζj ]√

R

] [
y
]
−


√
Q refz

0
...
0


)2

(3-45)

s.t.
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Figure 3-11: Flow scheme MIMOcompensation

The used performance measure is given in Equation 3-46 and is the mean value of the RMS
of the tracking error normalized by the RMSof the reference of all actuators.

eNRMS =

∑NZernikes
i=1

√∑M

k=1(zmeas(k,i)−zref (k,i))2√∑M

k=1 zref (k,i)2

NZernikes
(3-46)

3-7 MATLAB files

In order to perform the methods in this chapter, some MATLAB functions have been created.
These MATLAB functions with their uses are given in Table 3-1 All the code of these function
can be found in Appendix C.
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MATLAB function Use
calccentroid Calculates the centroid of the intensity

in a region of interest as described in Secton 3-2
fit_dyn_PI Fits a (dynamic) (G)PI model for every actuator

of the AOdevice with a dataset
measzer Reconstruction of the Zernikes as explained in section 3-2
derzer Calculates the average derivatives in Equation 3-4
cali Performs the calibration of the AOdevice

simPI Simulates a PImodel
simPIasym Simulates a GPImodel
simPIasymi Simulates an inverse GPImodel

invPI Inverts a PImodel
createinvmodel Identifies a (dynamic) (G)PI model

driver Runs the identification dataset on the AOdevice
mols Runs the algorithm in Section 3-5 used to identify a dynamic PImodel

and serves as an initial guess of the parameters of the GPImodel
testcomp Runs a compensation test on the AOdevice
LocReg Solves the minimization in Equation 3-45
makegrid Creates a grid with equidistant points
fitgrid Calculates the mismatch between the fitted grid

and the observed centroid locations

Table 3-1: MATLAB functions and their uses
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Chapter 4

Results

In this chapter, the obtained results are discussed. First, the properties of the identified (dy-
namic) Generalized Prandtl-Ishlinskii (GPI)models are shown. Then, the remaining normal-
ized Root Mean Square (RMS)error is given for both Single-Input and Single-Output (SISO)
and Multiple-Input and Multiple-Output (MIMO) operation of the system with a dynamic
GPImodel compensator. These values are compared to using a static GPIto study the added
value of adding a dynamic model. Finally, the results are commented in the discussion.

4-1 Identified models

The fit of the identified dynamic GPI model to the dataset for identification is shown in
Figure 4-1. The characteristics of the models that are identified for an actuator are shown in
Figures 2-12 and 4-2. In the hysteresis curve in Figure 2-12 it can be seen that the identified
dynamic GPI model for actuator 1 of the mirror exhibits hysteresis. Hysteresis curves for
other actuators look similar. The transfer functions of the actuators are not the same for all
of them. Either a first order or a second order transfer function is fitted for the mirror and
a second or third order transfer function for the lens. The order is decided on basis of visual
inspection of the step responses of the fitted transfer functions and the real step responses,
see for example Figures 4-2 and 4-3.

The Variance Accounted For (VAF) (see Equation 4-1) values of the identified dynamic GPI
models of the actuators of the lens are shown in Table 4-1. In Table 4-2 the VAF values of
the identified dynamic GPImodels of the actuators of the mirror are shown.

VAF = 1−
∑M
k=1(ymeas(k)− y(k))2∑M

k=1 ymeas(k)2
(4-1)

It can be seen that the VAF for some actuators is higher than for others. This is caused by
the amount of noise on the measurements. The magnitude of this noise varies for different
Zernikes modes. Since the influence function of every actuator is not influenced to the same
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extent by noise on an individual Zernike mode, the noise levels varies for different actuators.
The parameters of the Shack-Hartmann have a lot of influence on this noise. This is discussed
further in the discussion in Section 4-3.

Actuator 1 2 3 4 5
VAF 0.9994 0.9986 0.9922 0.9993 0.9993

Actuator 6 7 8 9 10
VAF 0.9994 0.9978 0.9985 0.9991 0.9994

Actuator 11 12 13 14 15
VAF 0.9994 0.9981 0.9989 0.9989 0.9988

Actuator 16 17 18 mean
VAF 0.9991 0.9992 0.9993 0.9986

Table 4-1: VAFvalues for identification of the dynamic GPImodels for each actuator of the lens
for the identified model with 6 operators and a dynamic model

Actuator 1 2 3 4 5
VAF 0.9979 0.9978 0.9305 0.9891 0.9530

Actuator 6 7 8 9 10
VAF 0.9974 0.9993 0.9997 0.9880 0.9843

Actuator 11 12 13 14 15
VAF 0.9960 0.9994 0.9994 0.9983 0.9921

Actuator 16 17 18 19 mean
VAF 0.9972 0.9992 0.9799 0.9996 0.9894

Table 4-2: VAF values for identification of the dynamic GPI models for each actuator of the
mirror for the identified model with 5 operators and a dynamic model
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Figure 4-1: The fit of the identified dynamic GPImodel to the identification dataset for actuator
19 of the mirror with 5 operators
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Figure 4-2: Simulated step response of the
fitted transfer function compared to the step
response of actuator 1 of the mirror. Chosen
order is 2.
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Figure 4-3: Simulated step response of the
fitted transfer function compared to the step
response of actuator 11 of the mirror. Cho-
sen order is 1.

The SISO results can be used as a validation dataset for the identified models. The VAF of
the fitted model on these datasets is given in Appendix B.
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4-2 Compensation performance

In this section, the measured compensation performance is shown for both single actuators
and MIMOactuation. First, a comparison of models obtained with and without consideration
of the dynamics during identification is presented. Then, with MIMO experiments, different
values of parameters for the model are tested to evaluate which give the best results. The
section is concluded with SISO results.

4-2-1 Influence of dynamics on the hysteresis identification

The importance of taking the dynamics into account during the identification of the hysteresis
can be seen by looking at the hysteresis percentage h. This percentage is 15.29% for the model
in which the dynamics are not taken into account and 7.52% when they are taken into account
for actuator 19 of the mirror. Two experiments with both these models are compared in Figure
4-4. In this Figure, the reference tracking of a static GPImodels is shown while the dynamics
have been taken into account during the identification of one of them and not during the
other. It can be clearly seen that if the dynamics are not taken into account, hysteresis is
overestimated.

Figure 4-4: The effect of (not) taking into account dynamics during identification on the reference
tracking of a static GPImodel with 5 operators on actuator 19 of the mirror.

4-2-2 Variables

Before identifying the model, the amount of operators of the GPImodel has to be specified.
Also, a choice should be made whether or not a dynamic model will be included. In this
section, the influence of these choices is examined.

Increasing the amount of operators can make the model more accurate. However, a high
amount of parameters can also result in overfitting, which can decrease the compensation
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4-2 Compensation performance 35

performance. Another reason for performance decrease when increasing the amount of pa-
rameters is the fact that there is no guarantee that the global minimum of the cost function
is found. Therefore, increasing the complexity of the model increases the chance that the
optimization gets stuck in a (worse) local minimum and decreases the likelihood that a good
solution is found. Fitted models have been tested for multiple operator values and with or
without a dynamic model. The tracking error as defined in Equation 3-46 is shown for mul-
tiple parameter values for MIMO actuation in Figures 4-5 and 4-6. Note that for the model
with 1 operator g is set to be: g(u) = u. This is essentially is a static gain. Combining
this with a dynamic model allows compensation by only inverting the transfer function. The
combination with a static gain results in essentially no compensation at all. These numbers
can be used to compare the compensated results.

Figure 4-5: eNRMS for MIMOactuation of
the lens for different amounts of operators

Figure 4-6: eNRMS for MIMOactuation of
the mirror for different amounts of operators

4-2-3 Response to simple signals

The responses to steps are shown in Figures 4-7 and 4-8. It can be seen that for the mirror, the
dynamics are reduced by the dynamic GPI model compared to the other models. However,
for the lens it can be observed that the dynamics for a positive step are reduced, but for
a negative step, it overcompensates the dynamics. It should be noted that the dynamics
are compensated less well for most actuators, which is expected to be due to identification
problems. Those will be discussed further in Section 4-3. A steady state error is observed for
positive step, which was also present in sawtooth signal. This does not occur every time, but
more often than not. This will be discussed further in Section 4-3.

The responses to a sawtooth signal are shown in Figures 4-9 and 4-10. It can be seen that
the systems without a compensator deviate much more from the reference compared to the
other models. However, by visual inspection there is no clear difference in the quality of the
reference tracking between the static and dynamic GPImodel.
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Figure 4-7: Responses of the lens compen-
sated with the different models to a signal
composed of steps

Figure 4-8: Responses of the mirror com-
pensated with the different models to a sig-
nal composed of steps

Figure 4-9: Responses of the lens compen-
sated with the different models to a saw-
tooth signal

Figure 4-10: Responses of the mirror com-
pensated with the different models to a saw-
tooth signal

The input-output plot of the response to the sawtooth signal in Figures 4-9 and 4-10 is shown
in Figure 4-11 and 4-12. It can be seen that the hysteresis is decreased for both the static as
well as the dynamic GPImodel. The hysteresis percentage h is shown for these experiments
in Table 4-3.

H.K. Bijlsma Master of Science Thesis



4-2 Compensation performance 37

Figure 4-11: Hysteresis loop of the lens
compensated with different models for a
sawtooth signal

Figure 4-12: Hysteresis loop of the mir-
ror compensated with different models for a
sawtooth signal

Actuator Dynamic GPI Static GPI No compensation
Lens actuator 8 6.70 6.33 18.3

Mirror actuator 19 4.06 4.48 11.8

Table 4-3: Hysteresis percentage h in % for different models

4-2-4 Single-input and single-output

The results for a single actuator are shown in Figure 4-13 and 4-14. The values of the
normalized RMS error as given in Equation 3-43 are given in Table 4-4, 4-5 and Figure 4-6.
It can be seen that actuators with a model with a higher VAF (see Appendix B) also have
a better performance. Individual numbers on the SISO performance of the actuators can be
found in Appendix B. The results are split in different time intervals, where the performance
from 0-25 seconds can be seen as the performance during dynamics. The performance from
25 to 30 seconds can be seen as a measure of the steady state error for static operation. 0-30
seconds gives an overall measure of both dynamic operation and static operation. It can
be seen that the GPI model removes the tracking error due to hysteresis from the system.
This is mostly visible for the constant voltage at the end of the dataset, where the dynamic
and static GPImodel outperform the dynamic model and the system without compensator.
Furthermore, it can be seen that the dynamic GPImodel has less tracking error at the peaks
of the dynamic part of the dataset compared to a static GPImodel. For most actuators, this
results in a smaller tracking error, but not for all. However the mean of the tracking errors
of all actuators decreases by adding a dynamic model.
The results of the SISO compensation are shown in Table 4-4, 4-5 and 4-6. Differences were
observed in the lens between the response to a negative step and a positive step of the input,
see the Figure 4-15 later in this section. Therefore the SISO operation of the lens is tested
for a randomly generated dataset according to Section 3-5-3 and its negative counterpart.
It can be seen that the results for the dataset with the positive step (multiplied by −1) are
slightly better. This was to be expected, since the dynamics are identified on a step response
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to a positive step in the input. Overall, the mean of the SISO performance of all actuators
improves by adding a dynamical model. Dynamic compensation brings improvement in the
SISO performance in 18

19 of all the actuators in mirror, compared to 10
18 for the lens. For

different actuators, steady state offsets of different sizes are observed for SISOoperation. One
thing that is observed is that the output at t > 25s of the dynamic GPI model is always
smaller compared to the output of the static GPImodel. Therefore, for individual actuators,
the normalized RMS tracking error is sometimes larger for the dynamic GPImodel compared
to the static GPI model. In general, the steady state error for the lens increases by using
a dynamic model. This increase is larger for the normal dataset compared to the dataset
multiplied by −1. Due to the better reference tracking during t ≤ 25s, the dynamic GPI
model has a smaller normalized RMS tracking error if the mean is taken over all actuators.

Time interval Dynamic GPI Static GPI No compensation
0-25 sec 0.0565 0.0677 0.1439
25-30 sec 0.0296 0.0611 0.1274
0-30 sec 0.0449 0.0684 0.1428

Table 4-4: Mean of the Normalized RMS values of the error for all actuators of the mirror

Time interval Dynamic GPI Static GPI No compensation
0-25 sec 0.0458 0.0693 0.2224
25-30 sec 0.0494 0.0328 0.1740
0-30 sec 0.0491 0.0514 0.1948

Table 4-5: Mean of the Normalized RMS values of the error for all actuators of the lens

Time interval Dynamic GPI Static GPI No compensation
0-25 sec 0.0451 0.0716 0.2025
25-30 sec 0.0433 0.0426 0.1037
0-30 sec 0.0454 0.0570 0.1511

Table 4-6: Mean of the Normalized RMS values of the error for all actuators of the lens for the
dataset multiplied by minus 1
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Figure 4-13: Reference compared to the
output for a system compensated with a dy-
namic GPImodel and no compensation dur-
ing SISOactuation of actuator 1 of the lens

Figure 4-14: Reference compared to the
output for a system compensated with a
dynamic GPI model and no compensation
during SISOactuation of actuator 19 of the
mirror

4-2-5 Multiple-input and multiple-output

In order to illustrate the effect of the compensator, the output of the compensated system is
compared with a static GPImodel and no compensation at all. The used static GPImodel is
the same as the dynamic GPImodel, but the transfer functions that are used for the dynamic
models are static gains. The results for MIMOapplication are shown in Figures 4-15 and 4-16.
It can be seen here that during the peaks in the dynamic part of the dataset the dynamic
GPI model performs better than the static one. Not all Zernikes are as accurate as the one
shown in the Figures 4-15 and 4-16. Especially the tip-tilt has some steady state error. From
Figures 4-5 and 4-6 it can be seen that overall, adding a GPImodel reduces the tracking error.
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Figure 4-15: Reference compared to the
output for a system compensated with a dy-
namic GPI model, a static GPI model and
no compensation during MIMOactuation on
the lens

Figure 4-16: Reference compared to the
output for a system compensated with a dy-
namic GPImodel and no compensation dur-
ing MIMOactuation on the mirror

4-2-6 Reproducibility

In order to show the reproducibility of the system, multiple measurements are made with the
same settings, both for SISO and MIMO operation. The results are shown in Figures 4-17
to 4-20. It can be seen that the response of the mirror is reproducible. However, the lens
measurements show some variance in the both the SISOexperiments as well as in the MIMO
experiments for the Zernikes 1, 6 and 7 (see Appendix A for the numbering of the Zernikes).

Figure 4-17: Reproducibility of the lens
system for SISO actuation with compensa-
tion with a dynamic GPImodel with 6 oper-
ators

Figure 4-18: Reproducibility of the lens
system for MIMO actuation with compen-
sation with a dynamic GPImodel with 6 op-
erators
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Figure 4-19: Reproducibility of the mirror
system for SISO actuation with compensa-
tion with a dynamic GPImodel with 5 oper-
ators

Figure 4-20: Reproducibility of the mirror
system for MIMOactuation with compensa-
tion with a dynamic GPImodel with 5 oper-
ators

4-3 Discussion

The fact that not taking in account the dynamics during identification results in an overes-
timation of the hysteresis is as expected. This is due to the fact that dynamics cause phase
delay, which has a similar shape as hysteresis in the input-output plot. It should be noted
that no special attention has been taken to minimize this influence by choosing a identifica-
tion frequency which does not contain a lot of dynamics. Instead, the identification dataset
described in Section 3-5-3 is used. However this method would be useful in case no frequency
can be found on which the dynamics have a small enough influence or when this frequency is
not previously known.

In the proposed models, there is no influence between the actuators. Also, it is assumed that
the second order polynomial g (see Equation 3-13) can approximate the asymmetry of the
hysteresis. Furthermore, it is assumed that the hysteresis and dynamics are the same for all
Zernikes in the same influence function. However, in reality these assumptions might not hold.
These influences could be modeled, but this would significantly increase the model complexity.
This would require a more refined identification and it would increase the computational
cost of identification and compensation. Also, many high frequency dynamics can not be
measured at 10 Hz, the limiting frequency of the wavefront sensor employed. When these can
be measured accurately, the performance of the compensators can most likely be improved.

Adding a dynamic model does not reduce the tracking error for all actuators for SISO oper-
ation. Also, adding the dynamic model does increase the hysteresis percentage h of the lens
for some actuators for the lens. A possible explanation is the observed difference between
the response to a positive step and negative step. This modeling error of the dynamics will
also impact the hysteresis identification, which could explain some of the remaining hysteresis
errors in the system.

It is observed that the amount of noise of the measured Zernikes is influenced by the chosen
parameters of the camera and the Zernike reconstruction algorithm (Imincentroid , Iminspot ,
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rcentroid and rcentroidmin). The alignment of the setup influences this noise as well. This noise
influenced the identification of the dynamics and is one of the reasons that this identification
did not work well. More sophisticated and robust methods exist to identify dynamics, for
example [36, 37]. However, those require datasets which consist of more data than only a step
response. A step response was chosen here to identify the dynamics, since this response is
not influenced by the hysteresis according to the assumed model. However, previous research
[26] has indicated that identifying the dynamics from a hysteresis compensated system is
possible. Perhaps a longer dataset would make the dynamics identification better, as done
in [26]. However, it has also been shown that identifying the hysteresis with the procedure
described in this thesis results in better hysteresis compensation compared to not taking the
dynamics into account. Therefore, it is advised to use this method to identify a dynamics
model on a dataset which is compensated by a hysteresis model identified in the procedure
in this report.

It is also observed that not all Zernikes are as well compensated as others. Especially the tip
and tilt show some steady state errors. These could be issues with the hysteresis compensa-
tion, but could also be issues in the alignment.

Dynamic compensation brings improvement in 18
19 of all the actuators in mirror, compared

to 10
18 for the lens. A possible explanation for this is that besides the problems with the

identification of the dynamics mentioned before, the dynamics of the lens exhibit nonlinearity
as well, which can not be modeled by a transfer function. This can be seen by the fact that
the increase of the steady state error by adding a dynamic model is larger for the normal
dataset compared to the dataset multiplied by −1. This is expected, since the dynamics are
identified on a positive step only. Therefore, it is recommended to explore the use of some
nonlinear dynamic models in the future for modeling of the dynamics of the lens. It should be
noted that for no compensation, the steady state error at 25− 30 seconds is larger, see Table
4-5 and 4-6. This could be explained by the fact that there is more creep for a positive step,
since creep leads to a higher output for the same input, while hysteresis does the opposite.
This larger creep for a positive step is also confirmed by the response to the steps signal, see
Figure 4-7.

The steady state error that is observed for a positive step in the sawtooth signal might
indicate a modeling error or a mistake in modeling the virgin curve of the hysteresis. Another
cause could be that the assumption that the asymmetry can be described by a second order
polynomial does not hold. For now the cause remains unknown and this could be studied in
the future.
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Chapter 5

Conclusion and recommendations

In this report, experiments are described from which the following conclusions can be drawn:

• It is possible to compensate for hysteresis and creep with a model based on a Generalized
Prandtl-Ishlinskii (GPI)model and a transfer function. This has been verified on both
a deformable lens as well as a deformable mirror for both Single-Input and Single-
Output (SISO) operation and Multiple-Input and Multiple-Output (MIMO) operation.

• On both of these devices, the dynamic hysteresis compensator decreased the tracking
error more compared to the conventional static hysteresis compensation for the SISO
and for the MIMOcase.

• Dynamics compensation decreases the tracking error during dynamic parts, but in-
creases the steady state error for the lens. For the mirror, the error is reduced during
both parts.

• A difference was observed between the response to a negative step and a positive step
of the input in the lens: The creep is larger for a positive step. This causes modeling
errors in both the dynamic model and hysteresis model.

Therefore, the following recommendations are made:

• When an application requires a smaller tracking error than the device with hysteresis
and creep can provide, it is recommended to consider using a GPImodel with a dynamic
model to compensate for this hysteresis and creep.

• Future research is recommended on the application of a compensator based on a GPI
model and a transfer function on systems with higher frequency dynamics.

• Future research is recommended into the steady state error observed for a positive step.
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44 Conclusion and recommendations

• Future research in finding a more robust way to fit the model in order to enable com-
pensation with models with more parameters and thereby increasing the performance
even further.

• Find a better way to identify the dynamics of the lens. A suggestion is to identify
those from a system compensated with a static GPI model [26] and using a nonlinear
dynamics model should be considered.
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Appendix A

Zernikes in Cartesian coordinates

Zernike n m Zmn (x, y)
number

0 0 0
√

2
1 1 -1 2y
2 1 1 2x
3 2 -2

√
62yx

4 2 0
√

3(−1 + 2y2 + 2x2)
5 2 2

√
6(−y2 + x2)

6 3 -3 2
√

2(−y3 + 3yx2)
7 3 -1 2

√
2(−2y + 3y3 + 3yx2)

8 3 1 2
√

2(−2x+ 3x3 + 3y2x)
9 3 3 2

√
2(x3 − 3y2x)

10 4 -4
√

10(−4y3x+ 4yx3)
11 4 -2

√
10(−6yx+ 8y3x+ 8yx3)

12 4 0
√

5(1− 6y2 − 6x2 + 6y4 + 12y2x2 + 6x4)
13 4 2

√
10(3y2 − 3x2 − 4y4 + 4x4)

14 4 4
√

10(y4 − 6y2x2 + x4)
15 5 -5 2

√
3(y5 − 10y3x2 + 5yx4)

16 5 -3 2
√

3(4y3 − 12yx2 − 5y5 + 10y3x2 + 15yx4)
17 5 -1 2

√
3(3y − 12y3 − 12yx2 + 10y5 + 20y3x2 + 10yx4)

18 5 1 2
√

3(3x− 12x3 − 12y2x+ 10x5 + 20y2x3 + 10y4x)
19 5 3 2

√
3(−4x3 + 12y2x+ 5x5 − 10y2x3 − 15y4x)

20 5 5 2
√

3(x5 − 10y2x3 + 5y4x)
21 6 -6

√
14(6y5x− 20y3x3 + 6yx5)

22 6 -4
√

14(20y3x− 20yx3 − 24y5x+ 24yx5)
23 6 -2

√
14(30x5y + 60x3y3 + 30xy5 − 40x3y + 40xy3 + 12xy)
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50 Zernikes in Cartesian coordinates

Zernike n m Zmn (x, y)
number

24 6 0
√

7(−1 + 12y2 + 12x2 − 30y4 − 60y2x2 − 30x4

+20y6 + 60y4x2 + 60y2x4 + 20x6)
25 6 2

√
14(−6y2 + 6x2 + 20y4 − 20x4 − 15y6 − 15y4x2 + 15y2x4 + 15x6)

26 6 4
√

14(−5y4 + 30y2x2 − 5x4 + 6y6 − 30y4x2 − 30y2x4 + 6x6)
27 6 6

√
14(−y6 + 15y4x2 − 15y2x4 + x6)

Table A-1: Zernike polynomials in Cartesian coordinates
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52 SISO results

Actuator Dynamic GPI model Static GPI model No compensation
1 0.0375 0.0494 0.1352
2 0.0428 0.0426 0.1710
3 0.0431 0.0773 0.2469
4 0.0916 0.0442 0.1604
5 0.0596 0.0487 0.2274
6 0.0780 0.0511 0.2278
7 0.0463 0.0408 0.1784
8 0.0336 0.0697 0.1725
9 0.0367 0.0526 0.1120
10 0.0528 0.0598 0.2483
11 0.0307 0.0483 0.2178
12 0.0514 0.0434 0.1626
13 0.0355 0.0562 0.2302
14 0.0501 0.0318 0.1451
15 0.0397 0.0633 0.2503
16 0.0532 0.0362 0.1520
17 0.0546 0.0592 0.2338
18 0.0471 0.0506 0.2353

mean 0.0491 0.0514 0.1948

Table B-1: eNRMS of single actuators of the lens with a GPImodel without dynamics compared
to a GPImodel with dynamics and no compensation
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Actuator Dynamic GPI model Static GPI model No compensation
1 0.0431 0.0639 0.1681
2 0.0760 0.0438 0.1136
3 0.0441 0.0944 0.1684
4 0.0618 0.0387 0.1487
5 0.0483 0.0562 0.1696
6 0.0425 0.0549 0.1741
7 0.0713 0.0463 0.1311
8 0.0506 0.0701 0.1217
9 0.0540 0.0471 0.1207
10 0.0220 0.0630 0.1773
11 0.0250 0.0614 0.1670
12 0.0505 0.0487 0.1104
13 0.0348 0.0668 0.1850
14 0.0457 0.0387 0.1180
15 0.0462 0.0627 0.1700
16 0.0411 0.0489 0.1322
17 0.0322 0.0596 0.1698
18 0.0289 0.0601 0.1742

mean 0.0454 0.0570 0.1511

Table B-2: eNRMS of single actuators for the dataset multiplied by minus 1 of the lens with a
GPImodel without dynamics compared to a GPImodel with dynamics and no compensation
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54 SISO results

Actuator VAF
1 0.9997
2 0.9995
3 0.9937
4 0.9962
5 0.9959
6 0.9994
7 0.9996
8 0.9997
9 0.9970
10 0.9906
11 0.9966
12 0.9995
13 0.9996
14 0.9997
15 0.9937
16 0.9982
17 0.9991
18 0.9909
19 0.9992

Mean 0.9972

Table B-3: VAFof a dynamic GPImodel with 6 operators of the mirror on a validation dataset

Actuator VAF
1 0.9985
2 0.9980
3 0.9980
4 0.9901
5 0.9960
6 0.9930
7 0.9977
8 0.9989
9 0.9986
10 0.9969
11 0.9990
12 0.9971
13 0.9987
14 0.9973
15 0.9983
16 0.9969
17 0.9967
18 0.9976

Mean 0.9971

Table B-4: VAFof a dynamic GPImodel with 6 operators of the lens on a validation dataset
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Appendix C

MATLAB code

C-1 calccentroid

1 function [x,y]=calccentroid(I_ROI,c_x,c_y)
2 % Calculates centroid of region of interest
3 % Inputs:
4 % I_ROI = measured intensity in ROI
5 % c_x = x coordinates of ROI
6 % c_y = y coordinates of ROI
7 % Outputs:
8 % x = x coordinate of centroid
9 % y = y coordinate of centroid

10
11 x=sum(c_x*sum(I_ROI,1)')/sum(sum(I_ROI));
12 y=sum(c_y*sum(I_ROI,2))/sum(sum(I_ROI));

C-2 calimirror

1 function calimirror(t_end,newcali)
2 % This function calibrates the lens
3 % with a exponentially decaying sinusoid
4 % Inputs:
5 % t_end = duration of calibration (min 10 seconds)
6 % preferably 50 seconds or more
7 % newcali = toggle 1 to create new calibration file cali.mat
8
9 N_act=20; % Amount of actuators

10 idedactuators=[2:20]; % Used actuators
11 dt=0.1; % Actuating frequency
12 t=0:dt:t_end; % Time vector
13
14 n=16; % Amount of different x positions in grid
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56 MATLAB code

15 m=15; % Amount of different y positions in grid
16
17 pitch_camera=5.2*1e−6; % from specsheet [m]
18 pitch_lenslets=300*1e−6; % from specsheet [m]
19 sa_radius_m=(300e−6)/2; % pitch lenslets/2
20 pixsize=5.2e−6; %pixel size camera
21
22 I_min_centroid=20;
23 I_min_spot=50;
24 r_centroid=15; % Radius of spot
25
26 %sinusoid with amplitude 1 followed by an
27 % exponentially decaying sinusoid and zeros
28 v=zeros(length(t),N_act);
29 for k=idedactuators
30 v(:,k)=[[sin(4/3*pi*t(1:30))]';[0.89.^(t(31:end−1)...
31 −1).*sin(4/3*pi*t(31:end−1))]';0];
32 end
33
34 %% Apply exponentially decaying sinusoid
35 tic
36 for i=1:length(t);
37 %% Apply voltages
38 % please change when using another device
39 edac40('write',1,1.8*v(i,:)+1.8);
40 while toc<dt*i
41 end
42 end
43
44 %% Take image
45 if newcali==1
46 % please change when using another device
47 image = ueye('capture', 1);
48
49 %% Finds local maxima and constructs a new calibration image
50
51 % Filter image
52 mask=image>I_min_centroid;
53 imagesub=double(image).*mask;
54 maximage=255;
55 i=0;
56
57 centers=zeros(1024,1280);
58
59 % While loop that detects all spots with a brightness
60 % above I_min_spot with ROI inside the image
61 while double(maximage)>I_min_spot
62 i=i+1;
63 [maximagesub,imax]=max(imagesub);
64 [maximage,imax2]=max(maximagesub);
65 if ((imax<(r_centroid+1)|imax>length(imagesub(:,1))−...
66 (r_centroid+1))|(imax2<(r_centroid+1)|...
67 imax2>length(imagesub(1,:))−(r_centroid+1)))
68 % If the ROI falls outside the acquired image,
69 % the spot is not taken into account
70 imagesub(max(imax(imax2)−r_centroid,1):min(imax(imax2),end)+...
71 r_centroid,max(imax2−r_centroid,1):min(imax2+r_centroid,end))=...
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72 zeros(size(imagesub(max(imax(imax2)−r_centroid,1):min(...
73 imax(imax2),end)+r_centroid,max(imax2−r_centroid,1):min(...
74 imax2+r_centroid,end))));
75 i=i−1;
76 else
77 [centrs(i,1),centrs(i,2)]=calccentroid(imagesub...
78 (imax(imax2)−r_centroid:imax(imax2)+r_centroid,imax2−...
79 r_centroid:imax2+r_centroid),imax2−r_centroid:imax2+...
80 r_centroid,imax(imax2)−r_centroid:imax(imax2)+r_centroid);
81 cvmax(i,1:3)=[double(imax2),double(imax(imax2)),...
82 double(maximage)];
83 imagesub(imax(imax2)−r_centroid:imax(imax2)+r_centroid,...
84 imax2−r_centroid:imax2+r_centroid)=zeros(2*r_centroid+1);
85 centers(round(centrs(i,1)),round(centrs(i,2)))=255;
86 end
87 end
88
89 %% Determine reference coordinates
90 pitch=pitch_lenslets/pitch_camera; %pitch of lenslets in pixels
91 % Determine spot in the middle
92 theta0=[(max(centrs(:,1))+min(centrs(:,1)))/2,...
93 (max(centrs(:,2))+min(centrs(:,2)))/2];
94 % Find parameters of the grid with equally spaced spots that
95 % matches the found spots in an optimal way
96 theta=fminsearch(@(theta)fitgrid(theta,pitch,centrs,n,m),theta0);
97 % Create grid with found parameters
98 centrsref=makegrid(theta,pitch,centrs,n,m);
99

100 %% Toggle on to view the fitted reference positions to
101 % the observed spots
102 % figure
103 % hold on
104 % plot(centrs(:,1),centrs(:,2),'*')
105 % plot(centrsref(:,1),centrsref(:,2),'*')
106
107 %% Calculate the derivates of all the Zernike modes at all the
108 % normalized reference locations
109 for i=1:length(centrsref)
110 radius_spot(i)=norm(centrsref(i,:)−theta0)*...
111 pixsize+sa_radius_m;
112 end
113 pupil_radius_m=max(radius_spot);
114
115 %% Fill matrix E with zernike derivates to dx and dy
116 for k_subap=1:length(centrsref);
117 E([k_subap,k_subap+length(centrsref)],:)=...
118 derzer((centrsref(k_subap,1)−theta0(1))*...
119 pixsize/pupil_radius_m,(centrsref(k_subap,2)−theta0(2))*...
120 pixsize/pupil_radius_m,sa_radius_m/pupil_radius_m)...
121 /pupil_radius_m;
122 end
123
124 %% Calculate matrix B which relates the measured zernikes z and
125 % the observed displacements of the spots S as follows: z=B*S
126 B = pinv(E(:, 2:end));
127
128 % Save coordinates of spots in grid to cali.mat (reference
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129 % position for no zernike abberations) and setup
130 % Guang−Ming Dai's reconstruction matrix
131 save('cali.mat','centrsref','B')
132 end

C-3 createinvmodel

1 function [invp,invr,p,r,vaf,offset,Hestinv,Hest]=...
2 createinvmodel(u,y,dt,N_op,n,wn,order_act)
3 % This function calculates the model and inverse model with
4 % input and output data
5 % Inputs:
6 % u = input
7 % y = output
8 % N_op = amount of operators
9 % n = toggle 0 for static model, toggle 1 for dynamic model

10 % wn = frequency at which an extra pole is
11 % added to make the inverse
12 % order_act = order of identified model
13 % Outputs:
14 % invp = weights of inverse model
15 % invr = thresholds of inverse model
16 % p = weights of model
17 % r = thresholds of model
18 % vaf = residual of the cost function
19 % offset = parameters of the polynomial of the GPI model
20 % Hestinv = transfer function of inverse model
21 % Hest = transfer function of model
22
23 x0est=zeros(1,N_op); % Initial value of operators
24
25 r=max(abs(u))*(0:N_op−1)/(N_op); %thresholds
26 %% Calculate operator values
27 xest(:,1)=u;
28 xest(1,2:N_op)=max(u(1)−r(2:end),min(u(1)+r(2:end),x0est(2:end)));
29 for k=2:length(u);
30 xest(k,2:end)=max(u(k)−r(2:end),...
31 min(u(k)+r(2:end),xest(k−1,(2:end))));
32 end
33
34 %% Determine weights and transfer function
35 [~,~,p]=mols(xest,y,max(order_act,1));
36 opt=tfestOptions('InitMethod','all');
37 Hest=tfest(iddata(y(1:100),u(1:100),dt),order_act,order_act,...
38 'Ts',dt,'InputDelay',0,opt);
39
40 %% Refine estimate
41
42 options=optimset('MaxfunEvals',20000,'MaxIter',20000);
43 theta=fminunc(@(theta)errormodel(theta,u,y), [p;0;1;0]',options);
44
45 if n==0;
46 G=fminunc(@(G)optgain(G,theta,u,y),1,options);
47 [~,y_est]=optgain(G,theta,u,y); % Calculate y_est
48 p=p*G; % Include the static gain in p
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49 else
50 [~,y_est]=errormodel(theta,u,y); % Calculate y_est
51 end
52 vaf=(1−sum((y−y_est).^2)/sum(y.^2));
53
54 %% Function which gives the error with as input the weights p and
55 % the polynomial offset
56 function [e,y_est]=errormodel(theta,u,y)
57 p=theta(1:N_op)';
58 if N_op>1
59 offset=theta(end−2:end)';
60 else
61 offset=[0,1,0]; % If only 1 operator is used, set g(u)=u
62 end
63 % Calculate operator values
64 xest(:,1)=polyval(offset,u);
65 xest(1,2:N_op)=max(polyval(offset,u(1))−r(2:end),min(...
66 polyval(offset,u(1))+r(2:end),x0est(2:end)+offset(end)));
67 for k=2:length(u);
68 xest(k,2:end)=max(polyval(offset,u(k))−r(2:end),min(...
69 polyval(offset,u(k))+r(2:end),xest(k−1,(2:end))));
70 end
71 offset(end+1)=−xest(1,:)*p; % Calculate g_4
72 % Calculate output
73 y_est=xest*p+offset(end);
74 if order_act>0
75 y_est=lsim(Hest,y_est,0:dt:dt*(length(y_est)−1));
76 end
77 e=((y_est−y)'*(y_est−y)/(y'*y));
78 end
79
80 %% Function to compute a static gain G instead of
81 % a the transfer function Hest
82 function [e,y_est]=optgain(G,theta,u,y)
83 p=theta(1:N_op)';
84 if N_op>1
85 offset=theta(end−2:end)';
86 else
87 offset=[0,1,0]; % If only 1 operator is used, set g(u)=u
88 end
89 % Calculate operator values
90 xest(:,1)=polyval(offset,u);
91 xest(1,2:N_op)=max(polyval(offset,u(1))−r(2:end),min(...
92 polyval(offset,u(1))+r(2:end),x0est(2:end)+offset(end)));
93 for k=2:length(u);
94 xest(k,2:end)=max(polyval(offset,u(k))−r(2:end),min(...
95 polyval(offset,u(k))+r(2:end),xest(k−1,(2:end))));
96 end
97 % Calculate output
98 offset(end+1)=−xest(1,:)*(p*G); % Calculate g_4
99 y_est=xest*(p*G)+offset(end);

100 e=((y_est−y)'*(y_est−y)/(y'*y));
101 end
102
103 %% Plot fit to hysteresis curve
104 % figure
105 % plot(u,y)
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106 % hold on
107 % plot(u,y_est)
108
109 %% Plot fit to identification data
110 figure(1)
111 plot(y)
112 hold on
113 plot(y_est,'*')
114 axis('tight')
115 grid on
116 set(gca,'FontSize', 12);
117 xlabel('Time [s]')
118 ylabel('Influence function [−]')
119 legend('Identification data','Fitted model','Location','best')
120
121 %% Invert PI model
122 if N_op>1
123 [invp,invr]=invPI(p',r);
124 else
125 invp=1/p;
126 invr=r;
127 end
128
129 %% Create inverse transfer function (ZPET)
130 if not(n==0)
131 Hest=tf(Hest.num,Hest.den,dt);
132 [Z,P,~] = tf2zp(Hest.num{1,1},Hest.den{1,1});
133 Zinv=P;
134 Pinv=[];
135 for i=1:length(Z)
136 if abs(Z(i))<1
137 Pinv=[Pinv;Z(i)];
138 else
139 Zinv=[Zinv;−Z(i)];
140 disp('RHP zero fitted')
141 end
142 end
143 Hestinv=zpk(Zinv,Pinv,1,dt);
144 Hestinv=Hestinv*c2d(tf(1,[1/wn,1]),dt)^...
145 (length(Zinv)−length(Pinv));
146 Hestinv=Hestinv*dcgain(1/Hest)/dcgain(Hestinv);
147 end
148 end

C-4 derzer

1 function e=derzer(X,Y,r_sa)
2 % This function calculates the derivate Z_n to
3 % dx and dy for the position
4 % Outputs
5 % e = vector with derivates to to zernike terms to dx and dy
6 % Inputs
7 % X = x coordinate of reference spot
8 % Y = y coordinate of reference spot
9 % r_sa = radius of subaperture
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10
11 %% Integration limits for y as function
12 % of x when the area to be integrated
13 % is a circle with radius r_sa
14 ymin=@(x)−sin(acos(x/r_sa)).*r_sa;
15 ymax=@(x)sin(acos(x/r_sa)).*r_sa;
16
17 %% Derivates to dx
18 ex1=@(x,y)0+0*(x+X)+0*(y+Y);
19 ex2=@(x,y)0+0*(x+X)+0*(y+Y);
20 ex3=@(x,y)2.0+0*(x+X)+0*(y+Y);
21 ex4=@(x,y)sqrt(6.0).*(y+Y).*2.0;
22 ex5=@(x,y)sqrt(3.0).*(x+X).*4.0;
23 ex6=@(x,y)sqrt(6.0).*(x+X).*2.0;
24 ex7=@(x,y)sqrt(2.0).*(x+X).*(y+Y).*1.2e1;
25 ex8=@(x,y)sqrt(2.0).*(x+X).*(y+Y).*1.2e1;
26 ex9=@(x,y)sqrt(2.0).*((x+X).^2.*9.0+(y+Y).^2.*3.0−2.0).*2.0;
27 ex10=@(x,y)sqrt(2.0).*((x+X).^2.*3.0−(y+Y).^2.*3.0).*2.0;
28 ex11=@(x,y)sqrt(1.0e1).*((x+X).^2.*(y+Y).*1.2e1−(y+Y).^3.*4.0);
29 ex12=@(x,y)sqrt(1.0e1).*((y+Y).*−6.0+(x+X).^2.*(y+Y).*2.4e1+...
30 (y+Y).^3.*8.0);
31 ex13=@(x,y)sqrt(5.0).*((x+X).*−1.2e1+(x+X).*(y+Y).^2.*2.4e1+...
32 (x+X).^3.*2.4e1);
33 ex14=@(x,y)−sqrt(1.0e1).*((x+X).*6.0−(x+X).^3.*1.6e1);
34 ex15=@(x,y)−sqrt(1.0e1).*((x+X).*(y+Y).^2.*1.2e1−(x+X).^3.*4.0);
35 ex16=@(x,y)sqrt(3.0).*((x+X).*(y+Y).^3.*2.0e1−(x+X).^3.*(y+Y)...
36 .*2.0e1).*−2.0;
37 ex17=@(x,y)sqrt(3.0).*((x+X).*(y+Y).*−2.4e1+(x+X).*(y+Y).^3.*...
38 2.0e1+(x+X).^3.*(y+Y).*6.0e1).*2.0;
39 ex18=@(x,y)sqrt(3.0).*((x+X).*(y+Y).*−2.4e1+(x+X).*(y+Y).^3.*...
40 4.0e1+(x+X).^3.*(y+Y).*4.0e1).*2.0;
41 ex19=@(x,y)sqrt(3.0).*((x+X).^2.*(y+Y).^2.*6.0e1−(x+X).^2.*...
42 3.6e1+(x+X).^4.*5.0e1−(y+Y).^2.*1.2e1+(y+Y).^4.*1.0e1+3.0).*2.0;
43 ex20=@(x,y)sqrt(3.0).*((x+X).^2.*(y+Y).^2.*3.0e1+(x+X).^2.*1.2e1−...
44 (x+X).^4.*2.5e1−(y+Y).^2.*1.2e1+(y+Y).^4.*1.5e1).*−2.0;
45 ex21=@(x,y)sqrt(3.0).*((x+X).^2.*(y+Y).^2.*−3.0e1+(x+X).^4.*...
46 5.0+(y+Y).^4.*5.0).*2.0;
47 ex22=@(x,y)sqrt(1.4e1).*((x+X).^2.*(y+Y).^3.*−6.0e1+(x+X).^4.*...
48 (y+Y).*3.0e1+(y+Y).^5.*6.0);
49 ex23=@(x,y)−sqrt(1.4e1).*((x+X).^2.*(y+Y).*6.0e1−(x+X).^4.*...
50 (y+Y).*1.2e2−(y+Y).^3.*2.0e1+(y+Y).^5.*2.4e1);
51 ex24=@(x,y)sqrt(1.4e1).*(y+Y).*(((x+X).^2+(y+Y).^2).^2.*1.5e1−...
52 (x+X).^2.*2.0e1−(y+Y).^2.*2.0e1+6.0).*2.0−sqrt(1.4e1).*(x+X).*...
53 (y+Y).*((x+X).*4.0e1−(x+X).*((x+X).^2+(y+Y).^2).*6.0e1).*2.0;
54 ex25=@(x,y)sqrt(7.0).*((x+X).*2.4e1+(x+X).^3.*(y+Y).^2.*2.4e2−...
55 (x+X).*(y+Y).^2.*1.2e2+(x+X).*(y+Y).^4.*1.2e2−(x+X).^3.*...
56 1.2e2+(x+X).^5.*1.2e2);
57 ex26=@(x,y)sqrt(1.4e1).*((x+X).*1.2e1+(x+X).^3.*(y+Y).^2.*6.0e1−...
58 (x+X).*(y+Y).^4.*3.0e1−(x+X).^3.*8.0e1+(x+X).^5.*9.0e1);
59 ex27=@(x,y)−sqrt(1.4e1).*((x+X).^3.*(y+Y).^2.*1.2e2−(x+X).*...
60 (y+Y).^2.*6.0e1+(x+X).*(y+Y).^4.*6.0e1+(x+X).^3.*2.0e1−(x+X).^5.*3.6e1);
61 ex28=@(x,y)sqrt(1.4e1).*((x+X).^3.*(y+Y).^2.*−6.0e1+(x+X).*...
62 (y+Y).^4.*3.0e1+(x+X).^5.*6.0);
63
64 %% Derivates to dy
65 ey1=@(x,y)0+0*(x+X)+0*(y+Y);
66 ey2=@(x,y)2.0+0*(x+X)+0*(y+Y);
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67 ey3=@(x,y)0+0*(x+X)+0*(y+Y);
68 ey4=@(x,y)sqrt(6.0).*(x+X).*2.0;
69 ey5=@(x,y)sqrt(3.0).*(y+Y).*4.0;
70 ey6=@(x,y)sqrt(6.0).*(y+Y).*−2.0;
71 ey7=@(x,y)sqrt(2.0).*((x+X).^2.*3.0−(y+Y).^2.*3.0).*2.0;
72 ey8=@(x,y)sqrt(2.0).*((x+X).^2.*3.0+(y+Y).^2.*9.0−2.0).*2.0;
73 ey9=@(x,y)sqrt(2.0).*(x+X).*(y+Y).*1.2e1;
74 ey10=@(x,y)sqrt(2.0).*(x+X).*(y+Y).*−1.2e1;
75 ey11=@(x,y)−sqrt(1.0e1).*((x+X).*(y+Y).^2.*1.2e1−(x+X).^3.*4.0);
76 ey12=@(x,y)sqrt(1.0e1).*((x+X).*−6.0+(x+X).*(y+Y).^2.*2.4e1+...
77 (x+X).^3.*8.0);
78 ey13=@(x,y)sqrt(5.0).*((y+Y).*−1.2e1+(x+X).^2.*(y+Y).*2.4e1+...
79 (y+Y).^3.*2.4e1);
80 ey14=@(x,y)sqrt(1.0e1).*((y+Y).*6.0−(y+Y).^3.*1.6e1);
81 ey15=@(x,y)−sqrt(1.0e1).*((x+X).^2.*(y+Y).*1.2e1−(y+Y).^3.*4.0);
82 ey16=@(x,y)sqrt(3.0).*((x+X).^2.*(y+Y).^2.*−3.0e1+(x+X).^4.*5.0+...
83 (y+Y).^4.*5.0).*2.0;
84 ey17=@(x,y)sqrt(3.0).*((x+X).^2.*(y+Y).^2.*3.0e1−(x+X).^2.*...
85 1.2e1+(x+X).^4.*1.5e1+(y+Y).^2.*1.2e1−(y+Y).^4.*2.5e1).*2.0;
86 ey18=@(x,y)sqrt(3.0).*((x+X).^2.*(y+Y).^2.*6.0e1−(x+X).^2.*...
87 1.2e1+(x+X).^4.*1.0e1−(y+Y).^2.*3.6e1+(y+Y).^4.*5.0e1+3.0).*2.0;
88 ey19=@(x,y)sqrt(3.0).*((x+X).*(y+Y).*−2.4e1+(x+X).*...
89 (y+Y).^3.*4.0e1+(x+X).^3.*(y+Y).*4.0e1).*2.0;
90 ey20=@(x,y)sqrt(3.0).*((x+X).*(y+Y).*−2.4e1+(x+X).*...
91 (y+Y).^3.*6.0e1+(x+X).^3.*(y+Y).*2.0e1).*−2.0;
92 ey21=@(x,y)sqrt(3.0).*((x+X).*(y+Y).^3.*2.0e1−(x+X).^3.*...
93 (y+Y).*2.0e1).*2.0;
94 ey22=@(x,y)sqrt(1.4e1).*((x+X).^3.*(y+Y).^2.*−6.0e1+(x+X).*...
95 (y+Y).^4.*3.0e1+(x+X).^5.*6.0);
96 ey23=@(x,y)sqrt(1.4e1).*((x+X).*(y+Y).^2.*6.0e1−(x+X).*(y+Y).^4.*...
97 1.2e2−(x+X).^3.*2.0e1+(x+X).^5.*2.4e1);
98 ey24=@(x,y)sqrt(1.4e1).*(x+X).*(((x+X).^2+(y+Y).^2).^2.*1.5e1−...
99 (x+X).^2.*2.0e1−(y+Y).^2.*2.0e1+6.0).*2.0−sqrt(1.4e1).*(x+X).*...

100 (y+Y).*((y+Y).*4.0e1−(y+Y).*((x+X).^2+(y+Y).^2).*6.0e1).*2.0;
101 ey25=@(x,y)sqrt(7.0).*((y+Y).*2.4e1+(x+X).^2.*(y+Y).^3.*2.4e2−...
102 (x+X).^2.*(y+Y).*1.2e2+(x+X).^4.*(y+Y).*1.2e2−(y+Y).^3.*...
103 1.2e2+(y+Y).^5.*1.2e2);
104 ey26=@(x,y)−sqrt(1.4e1).*((y+Y).*1.2e1+(x+X).^2.*(y+Y).^3.*...
105 6.0e1−(x+X).^4.*(y+Y).*3.0e1−(y+Y).^3.*8.0e1+(y+Y).^5.*9.0e1);
106 ey27=@(x,y)−sqrt(1.4e1).*((x+X).^2.*(y+Y).^3.*1.2e2−(x+X).^2.*...
107 (y+Y).*6.0e1+(x+X).^4.*(y+Y).*6.0e1+(y+Y).^3.*2.0e1−(y+Y).^5.*3.6e1);
108 ey28=@(x,y)−sqrt(1.4e1).*((x+X).^2.*(y+Y).^3.*−6.0e1+(x+X).^4.*...
109 (y+Y).*3.0e1+(y+Y).^5.*6.0);
110
111 %% Derivates to dx integrated over a circle with
112 % radius r_sa and center (X,Y)
113 e(1,1)=integral2(ex1,−r_sa,r_sa,ymin,ymax);
114 e(1,2)=integral2(ex2,−r_sa,r_sa,ymin,ymax);
115 e(1,3)=integral2(ex3,−r_sa,r_sa,ymin,ymax);
116 e(1,4)=integral2(ex4,−r_sa,r_sa,ymin,ymax);
117 e(1,5)=integral2(ex5,−r_sa,r_sa,ymin,ymax);
118 e(1,6)=integral2(ex6,−r_sa,r_sa,ymin,ymax);
119 e(1,7)=integral2(ex7,−r_sa,r_sa,ymin,ymax);
120 e(1,8)=integral2(ex8,−r_sa,r_sa,ymin,ymax);
121 e(1,9)=integral2(ex9,−r_sa,r_sa,ymin,ymax);
122 e(1,10)=integral2(ex10,−r_sa,r_sa,ymin,ymax);
123 e(1,11)=integral2(ex11,−r_sa,r_sa,ymin,ymax);
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124 e(1,12)=integral2(ex12,−r_sa,r_sa,ymin,ymax);
125 e(1,13)=integral2(ex13,−r_sa,r_sa,ymin,ymax);
126 e(1,14)=integral2(ex14,−r_sa,r_sa,ymin,ymax);
127 e(1,15)=integral2(ex15,−r_sa,r_sa,ymin,ymax);
128 e(1,16)=integral2(ex16,−r_sa,r_sa,ymin,ymax);
129 e(1,17)=integral2(ex17,−r_sa,r_sa,ymin,ymax);
130 e(1,18)=integral2(ex18,−r_sa,r_sa,ymin,ymax);
131 e(1,19)=integral2(ex19,−r_sa,r_sa,ymin,ymax);
132 e(1,20)=integral2(ex20,−r_sa,r_sa,ymin,ymax);
133 e(1,21)=integral2(ex21,−r_sa,r_sa,ymin,ymax);
134 e(1,22)=integral2(ex22,−r_sa,r_sa,ymin,ymax);
135 e(1,23)=integral2(ex23,−r_sa,r_sa,ymin,ymax);
136 e(1,24)=integral2(ex24,−r_sa,r_sa,ymin,ymax);
137 e(1,25)=integral2(ex25,−r_sa,r_sa,ymin,ymax);
138 e(1,26)=integral2(ex26,−r_sa,r_sa,ymin,ymax);
139 e(1,27)=integral2(ex27,−r_sa,r_sa,ymin,ymax);
140 e(1,28)=integral2(ex28,−r_sa,r_sa,ymin,ymax);
141
142 %% Derivates to dy integrated over a circle with
143 % radius r_sa and center (X,Y)
144 e(2,1)=integral2(ey1,−r_sa,r_sa,ymin,ymax);
145 e(2,2)=integral2(ey2,−r_sa,r_sa,ymin,ymax);
146 e(2,3)=integral2(ey3,−r_sa,r_sa,ymin,ymax);
147 e(2,4)=integral2(ey4,−r_sa,r_sa,ymin,ymax);
148 e(2,5)=integral2(ey5,−r_sa,r_sa,ymin,ymax);
149 e(2,6)=integral2(ey6,−r_sa,r_sa,ymin,ymax);
150 e(2,7)=integral2(ey7,−r_sa,r_sa,ymin,ymax);
151 e(2,8)=integral2(ey8,−r_sa,r_sa,ymin,ymax);
152 e(2,9)=integral2(ey9,−r_sa,r_sa,ymin,ymax);
153 e(2,10)=integral2(ey10,−r_sa,r_sa,ymin,ymax);
154 e(2,11)=integral2(ey11,−r_sa,r_sa,ymin,ymax);
155 e(2,12)=integral2(ey12,−r_sa,r_sa,ymin,ymax);
156 e(2,13)=integral2(ey13,−r_sa,r_sa,ymin,ymax);
157 e(2,14)=integral2(ey14,−r_sa,r_sa,ymin,ymax);
158 e(2,15)=integral2(ey15,−r_sa,r_sa,ymin,ymax);
159 e(2,16)=integral2(ey16,−r_sa,r_sa,ymin,ymax);
160 e(2,17)=integral2(ey17,−r_sa,r_sa,ymin,ymax);
161 e(2,18)=integral2(ey18,−r_sa,r_sa,ymin,ymax);
162 e(2,19)=integral2(ey19,−r_sa,r_sa,ymin,ymax);
163 e(2,20)=integral2(ey20,−r_sa,r_sa,ymin,ymax);
164 e(2,21)=integral2(ey21,−r_sa,r_sa,ymin,ymax);
165 e(2,22)=integral2(ey22,−r_sa,r_sa,ymin,ymax);
166 e(2,23)=integral2(ey23,−r_sa,r_sa,ymin,ymax);
167 e(2,24)=integral2(ey24,−r_sa,r_sa,ymin,ymax);
168 e(2,25)=integral2(ey25,−r_sa,r_sa,ymin,ymax);
169 e(2,26)=integral2(ey26,−r_sa,r_sa,ymin,ymax);
170 e(2,27)=integral2(ey27,−r_sa,r_sa,ymin,ymax);
171 e(2,28)=integral2(ey28,−r_sa,r_sa,ymin,ymax);
172
173 %% Divide by integrated area such that
174 % average derivative is calculated
175 e=e./(pi.*r_sa.^2);
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1 % This file creates an identification dataset
2 % for an actuator of the lens
3 % Output format: 'testdata',[date],'act',[actuatornumber],'.mat'
4 % Parameters in output file:
5 % t = time vector
6 % v = voltage
7 % z = measured zernikes
8 close all
9 clear all

10
11 N_act=20; % Amount of actuators
12 idedactuators=[2:20]; % Used actuators
13
14 %% Open camera
15 % please change when using another device
16 ueye('open',1, 1);
17 ueye('configure', 1, 0, [0,0,1280,1024], −1);
18 ueye('settiming', 1, 0.4, 30, 35);
19
20 %% Apply voltages
21 % please change when using another device
22 edac40('open',1,'169.254.159.198');
23 edac40('write',1,1.8*zeros(20,1)+1.8);
24 %%
25
26 N_zer=6; % Max order of measured zernikes
27
28 for k=idedactuators; % Actuator number to be run
29 %% Calibrate
30 calimirror(50,1); % Calibrate lens
31
32 dt=0.1; % sample time
33 t_end=200−dt; % duration of experiment
34 t=0:dt:t_end;
35
36 %% Actuate and measure
37 v=zeros(length(t),N_act);
38 % Create frequency sweep + low frequency sinusoid
39 v(1301:end,k)=(chirp(t(1:end−1300),0.01,t(end−1300),1,...
40 'quadratic')+sin(4/25*pi*t(1:end−1300)))/2;
41 v(:,k)=[zeros(40,1);ones(60,1);zeros(10,1);−ones(40,1);...
42 zeros(10,1);ones(40,1);zeros(10,1);−0.95*ones(40,1);...
43 zeros(10,1);0.95*ones(40,1);zeros(10,1);−0.9*ones(40,1);...
44 zeros(10,1);0.9*ones(40,1);zeros(10,1);−0.85*ones(40,1);...
45 zeros(10,1);0.85*ones(40,1);zeros(10,1);−0.8*ones(40,1);...
46 zeros(10,1);0.8*ones(40,1);zeros(10,1);−0.7*ones(40,1);...
47 zeros(10,1);0.7*ones(40,1);zeros(10,1);−0.6*ones(40,1);...
48 zeros(10,1);0.6*ones(40,1);zeros(10,1);−0.5*ones(40,1);...
49 zeros(10,1);0.5*ones(40,1);zeros(10,1);−0.4*ones(40,1);...
50 zeros(10,1);0.4*ones(40,1);zeros(10,1);−0.3*ones(40,1);...
51 zeros(10,1);0.3*ones(40,1);zeros(10,1);−0.2*ones(40,1);...
52 zeros(10,1);0.2*ones(40,1);zeros(10,1);−0.1*ones(40,1);...
53 zeros(10,1);0.1*ones(40,1);v(1301:end,k)/max(abs(...
54 v(1301:end,k)))]; % Add steps in beginning of the dataset
55 z=zeros(length(t),sum(2:N_zer+1));
56
57 %% Run identification
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58 tic % Start timer
59 for i=1:length(t);
60 [z(i,:)]=measzer_mirror(v(i,:)); % Measure zernikes
61 while toc<dt*i
62 % wait till the time of the next sample is reached
63 end
64 end
65
66 save(strcat('testdata',date,'act',num2str(k),'.mat'),...
67 't','v','z') % Save identification data
68 % Set zero voltage to actuator
69 [~,~]=measzer_mirror(0*v(i,:),N_dis_spots,N_zer);
70 end
71 %% Set zero voltage at actuator and close connection
72 % please change when using another device
73 edac40('write',1,1.8*zeros(N_act,1));
74 edac40('close');

C-6 fit_ dyn_ PI

1 function [p,r,invp,invr,inffun,e,offset,Hest,Hinv]=...
2 fit_dyn_PI(N_op,order_act,wn,k,datstr,n)
3 % This function calculates loads identification data and
4 % identifies a model and an inverse model, as well
5 % as the influence function
6 % Inputs
7 % N_op = amount of operators
8 % n = toggle 0 for static model, toggle 1 for dynamic model
9 % wn = frequency at which an extra pole is added to make

10 % the inverse transfer function causal
11 % k = actuator number
12 % datstr = date of the used identification dataset
13 % order_act = order of identified model
14 % Outputs:
15 % p = weights of model
16 % r = thresholds of model
17 % invp = weights of inverse model
18 % invr = thresholds of inverse model
19 % inffun = influence function of the actuator
20 % e = residual of the cost function
21 % Hest = transfer function of model (if n>0)
22 % Hinv = transfer function of inverse model (if n>0)
23
24 %load identificationdata
25 load(strcat('testdata',datstr,'act',num2str(k),'.mat'))
26
27 %%
28 z0=mean(z(1:35,:)); %Initial offset
29 % Zernike values at max and min voltage
30 vsub=[mean(v(120:150,k));mean(v(170:200,k))];
31 zsub=[mean(z(121:151,:)−ones(length(z(121:151,1)),1)*z0);...
32 mean(z(171:201,:)−ones(length(z(171:201,1)),1)*z0)];
33
34 % Determine influence function
35 for i=1:length(zsub(1,:));
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36 inffun(1,i)=lsqlin(ones(length(zsub(:,i)),1),zsub(:,i)./vsub);
37 end
38
39 % Calculate magnitude of the influence function (output of actuator)
40 for i=1:length(v(:,k));
41 Minffun(i,1)=lsqlin(inffun(1,:)',[z(i,:)−z0]');
42 end
43
44 % Identify models
45 if n==0
46 [invp,invr,p,r,e,offset]=createinvmodel(v(:,k),...
47 Minffun(:),t(2)−t(1),N_op,n,wn,order_act);
48 else
49 [invp,invr,p,r,e,offset,Hinv,Hest]=createinvmodel(v(:,k),...
50 Minffun(:),t(2)−t(1),N_op,n,wn,order_act);
51 end
52 end

C-7 fitgrid

1 function e=fitgrid(theta,pitch,centrs,n,m)
2 % This function calculates the error of the fit of
3 % the grid with the measured spots
4 % Inputs
5 % theta = coordinates of the middle position of the
6 % grid in the image
7 % pitch = distance between spots
8 % centrs = measured positions of the spots
9 % n = amount of rows of the grid

10 % m = amount of columns of the grid
11 % Ouput
12 % e = error between measured spots and fitted grid
13
14 centrsref=makegrid(theta,pitch,centrs,n,m); % Create grid
15 e=sum((centrs(:,1)−centrsref(:,1)).^2+(centrs(:,2)...
16 −centrsref(:,2)).^2); % Calculate error of fitted grid

C-8 invPI

1 function [invp,invr]=invPI(p,r)
2 % This function creates the inverse of a PI model
3 % Based on Al Janaideh, Mohammad, et al. "Generalized
4 % Prandtl−Ishlinskii hysteresis model: Hysteresis modeling and
5 % its inverse for compensation in smart actuators." Decision and
6 % Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE, 2008.
7 % Inputs
8 % p = vector with weights of PI model
9 % r = vector with threshold values of PI model

10 % Outputs
11 % invp = vector with weights of inverse PI model
12 % invr = vector with threshold values of inverse PI model
13
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14 if abs(r(1))>0
15 error('r(1) should be zero')
16 end
17
18 % First term is linear and its threshold does not have to be inverted
19 q=p(1);
20 p=p(2:end);
21 r=r(2:end);
22
23 % Initialize matrices
24 invr=zeros(size(r));
25 invp=zeros(size(p));
26
27 % Calculate parameters of inverse model
28 invr(1)=q*r(1);
29 invp(1)=−p(1)/((q+p(1))*(q));
30
31 for j=2:length(p);
32 s1=0;
33 for i=1:j−1
34 s1=s1+p(i)*(r(j)−r(i));
35 end
36 invr(j)=q*r(j)+s1;
37 invp(j)=−p(j)/((q+sum(p(1:j)))*(q+sum(p(1:j−1))));
38 end
39
40 invr=[0,invr];
41 invp=[1/q,invp];

C-9 LocReg

1 function Theta=LocReg(X,Y,Q,R,l)
2 % This function solves the least squares problem min_y
3 % ((ref_z−z(y)))Q((ref_z−z(y)))^T+Ry^1 with the
4 % constraint that the min/max value of
5 % an element in y is l
6 % Inputs:
7 % X = matrix with influence functions
8 % Y = vector with desired zernikes
9 % R = cost of control

10 % Q = cost of tracking error
11 % l = min/max value of an element of y
12 % Outputs:
13 % Theta = vector y that gives the
14 % solution of the minimization problem
15 warning('off','all')
16 Theta=lsqlin([diag(sqrt(Q))*X;diag(sqrt(R))],[diag(sqrt(Q))*Y;zeros(...
17 length(X(1,:)),1)],[diag(ones(length(X(1,:)),1));−diag(ones(length(...
18 X(1,:)),1))],l*ones(2*length(X(1,:)),1));

C-10 makegrid
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1 function centrsref=makegrid(theta,pitch,centrs,n,m)
2 % This function creates a grid with equally spaced points fitted
3 % to the measured measured position of the spots
4 % Inputs
5 % theta = coordinates of the middle position
6 % of the grid in the image
7 % pitch = distance between spots
8 % centrs = measured positions of the spots
9 % n = amount of rows of the grid

10 % m = amount of columns of the grid
11 % Outputs
12 % centrsref = grid with reference position of the spots
13
14 % Create rectangular grid with parameters
15 centrsgrid=[combvec(−pitch*((n−1)/2)+theta(1):pitch:pitch*...
16 ((n−1)/2)+theta(1),−pitch*((m−1)/2)+theta(2):pitch:pitch*...
17 ((m−1)/2)+theta(2))]';
18
19 % Initialize vector with used points in grid
20 % (since the used grid is not rectangular)
21 centrsref=zeros(length(centrs),2);
22 for i=1:length(centrs)
23 % Calculate squared error between
24 % every point of fitted grid and measured point
25 e=(centrs(i,1)−centrsgrid(:,1)).^2+...
26 (centrs(i,2)−centrsgrid(:,2)).^2;
27 [~,I]=min(e);
28 % Fill vector with nearest point in grid to measured points
29 centrsref(i,:)=centrsgrid(I,:);
30 end

C-11 measzer_ mirror

1 function [z]=measzer_mirror(v)
2 % This function calculates the zernike coefficients
3 % and puts a new voltage on the mirror
4 % Inputs:
5 % v = voltage to put onto the mirror
6 % Outputs
7 % z = measured zernike values
8
9 I_min_centroid=20;

10 r_centroid=15; % Radius of region which is taken into account
11 % for calculating the centroid of the spot
12 r_centroid_min=35; % Radius of region of interest
13
14 %% Characteristics SH
15 f = 18.6e−3; % focal length lenslets SH from specsheet [m]
16 pitch_camera=5.2*1e−6; % from specsheet [m]
17
18 %% Take image
19 % please change when using another device
20 image = ueye('capture', 1);
21 %% Determine position of centroids from image
22 load('cali.mat') % Import calibration positions of spots
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23
24 % Filter image
25 mask=image>I_min_centroid;
26 imagesub=double(image).*mask;
27
28 % Determine maximum in ROI
29 for i=1:length(centrsref);
30 image_ROI=imagesub(round(centrsref(i,2))−r_centroid_min:...
31 round(centrsref(i,2))+r_centroid_min,round(centrsref(i,1))...
32 −r_centroid_min:round(centrsref(i,1))+r_centroid_min);
33 [maximagesub,imax]=max(image_ROI(R+1:end−R−1,:));
34 [maximage,imax2]=max(maximagesub(R+1:end−R−1));
35 imax=imax+R;
36 imax2=imax2+R;
37 if maximage==0 % Check if spot is there
38 error('Spot has dissappeared')
39 else
40 [centrsx,centrsy]=calccentroid(image_ROI(imax(imax2)−R...
41 :imax(imax2)+R,imax2−R:imax2+R),imax2−R:imax2+R...
42 ,imax(imax2)−R:imax(imax2)+R);
43 centrs(i,1:3)=[round(centrsref(i,1))−r_centroid_min+...
44 centrsx,round(centrsref(i,2))−r_centroid_min+centrsy,maximage];
45 end
46 end
47
48 %% Calculate zernikes
49 xcoordinate_wfs=centrs(:,1);
50 ycoordinate_wfs=centrs(:,2);
51 xcoordinate_ref=centrsref(:,1);
52 ycoordinate_ref=centrsref(:,2);
53
54 %% Calculate the displacements in the X and Y directions
55
56 disp_x = (xcoordinate_wfs − xcoordinate_ref); %[pix]
57 disp_y = (ycoordinate_wfs − ycoordinate_ref); %[pix]
58
59 %% Construct the S with the wavefront gradients
60 S = (pitch_camera)*[disp_x ; disp_y]/f;
61
62 %% Reconstruct the zernikes in [m]
63 z=(B*S);
64
65 %% Apply voltages
66 N_act=20; % Amount of actuators
67 v=min([ones(1,N_act)],max(−[ones(1,N_act)],v));
68 edac40('write',1,1.8*v+1.8); % please change when using another device

C-12 mols

1 function [a,b,p]=mols(u,y,n)
2 % This function calculates the weights p and coefficients
3 % a and b of the transfer function with as input the
4 % operator values and the output
5 % Inputs:
6 % u = matrix of values of operators
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7 % y = vector with output
8 % n = order of transfer function to be identified
9 % Outputs:

10 % a = denominator coefficients of fitted model
11 % b = numerator coefficients of fitted model
12 % p = weights of fitted model
13
14 [k,N]=size(u);
15 U=zeros(k,n*(N+1));
16
17 for i=n+1:k
18 for j=1:n
19 for m=1:N
20 U(i,1+n*(m−1):n*m)=u(i−1:−1:i−n,m);
21 end
22 end
23 U(i,N*n+1:(N+1)*n)=y(i−1:−1:i−n);
24 end
25 U=U(n+1:end,:);
26 y=y(n+1:end);
27
28 %% Calculate least squares solution
29 Theta=lsqlin(U,y);
30
31 %% Fill matrix Psi and compute its SVD
32 H=zeros(n,N);
33 for i=1:N
34 H(:,i)=Theta(1+n*(i−1):n*i);
35 end
36
37 [svd1,svd2,svd3]=svd(H);
38
39 %% Calculate parametervalues
40 p=svd3(:,1).*svd2(1,1);
41 b=svd1(:,1);
42 a=[1;−Theta(n*N+1:end)];
43
44 %% Make first weight positive
45 if p(1)<0
46 p=−p;
47 b=−b;
48 end

C-13 simPI

1 function y=simPI(u,r,p,x0)
2 % This function simulates a PI model
3 % Inputs:
4 % u = input
5 % r = threshold values
6 % p = weights
7 % x0 = previous value
8 % Outputs
9 % y = output

10
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11 N_op=length(p);
12
13 % Calculate operator values
14 x(:,1)=u;
15 x(1,2:N_op)=max(u(1)−r(2:end),min(u(1)+r(2:end),x0(2:N_op)));
16 for k=2:length(u);
17 x(k,2:N_op)=max(u(k)−r(2:end),min(u(k)+r(2:end),x(k−1,2:N_op)));
18 end
19
20 % Calculate output
21 y=x*p';

C-14 simPI_ asym

1 function y=simPI_asym(u,r,p,offset,x0)
2 % This function simulates an assymetric PI model
3 % Inputs:
4 % u = input
5 % r = threshold values
6 % p = weights
7 % offset = polynomial values of model
8 % x0 = previous value
9 % Outputs

10 % y = output
11
12 N_op=length(p);
13
14 % Calculate operator values
15 xest(:,1)=polyval(offset(1:3),u);
16 xest(1,2:N_op)=max(polyval(offset(1:3),u(1))−r(2:end),...
17 min(polyval(offset(1:3),u(1))+r(2:end),x0(2:end)+offset(3)));
18 for k=2:length(u);
19 xest(k,2:end)=max(polyval(offset(1:3),u(k))−r(2:end),...
20 min(polyval(offset(1:3),u(k))+r(2:end),xest(k−1,(2:end))));
21 end
22
23 % Calculate output
24 y=xest*p'+offset(end); % add g_4

C-15 simPI_ asymi

1 function y=simPI_asymi(u,r,p,offset,x0)
2 % This function simulates an assymetric PI model
3 % Inputs:
4 % u = input
5 % r = threshold values
6 % p = weights
7 % offset = polynomial values of model
8 % x0 = previous value
9 % Outputs

10 % y = output
11
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12 N_op=length(p);
13
14 % Calculate operator values
15 x(:,1)=u−offset(end);
16 x(1,2:N_op)=max(u(1)−r(2:end)−offset(end),min(u(1)+r(2:end)−...
17 offset(end),x0(2:N_op)−offset(end)));
18 for k=2:length(u);
19 x(k,2:N_op)=max(u(k)−r(2:end)−offset(end),min(u(k)+...
20 r(2:end)−offset(end),x(k−1,2:N_op)));
21 end
22
23 % Calculate output
24 y=(−offset(2)+sqrt(offset(2)^2−4*offset(1)*...
25 (offset(3)−(x*p'))))/(2*offset(1));
26 % since if ax^2+bx+c−y=0 −−> y=(−b+−sqrt(b^2−4a(c−y)))/(2a)

C-16 Testcomp_ mirror

1 % This function tests the compensation of the inverse model
2 % Output file is: 'comp',[date of identification dataset],'act',
3 % [actuator number],'N_op',[amount of operators],'n',[0 for
4 % static model, 1 for dynamic model]
5 clear all
6 close all
7 warning('off','all')
8 N_zer=6; % Maximum order of measured zernike
9 N_act=20; % Amount of actuators

10 idedactuators=[2:20]; % Used actuators
11 for N_op=[1:10]; % Amount of operators
12 for n=[0,1]; % toggle 1 for dynamic model, 0 for static
13 identifynew=1; % Toggle 0 to use previously identified
14 % models
15 datstr='09−Oct−2016'; % Choose date of identification
16 if identifynew==0;
17 try
18 load(strcat('fittedmodelsN',num2str(N_op),'n',...
19 num2str(n),datstr)) % Check if there is a
20 % previously identified model
21 catch
22 identifynew=1; % If not found, identify new model
23 end
24 end
25 if identifynew==1
26 % Order of the identified model for each actuator
27 % Chosen on basis of visual inspection of fitted tfs
28 % to step responses
29 order_act=[0,2,2,2,2,2,2,2,2,2,2,1,2,2,2,1,2,2,1,2];
30
31 %% Initialize sizes of matrices of model parameters
32 inffun=zeros(N_act,sum(2:N_zer+1));
33 p=zeros(N_act,N_op);
34 r=zeros(N_act,N_op);
35 invp=zeros(N_act,N_op);
36 invr=zeros(N_act,N_op);
37 offset=zeros(N_act,4);
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38
39 %% Fit model
40 wn=2000; % Frequency at which poles are added to
41 % ensure causality of the inverted transfer function
42 if not(n==0) % Actuators to be identified
43 parfor k=idedactuators;
44 [p(k,:),r(k,:),invp(k,:),invr(k,:),...
45 inffun(k,:),e(k),offset(k,:),Hest(k),...
46 Hinv(k)]=fit_dyn_PI(N_op,order_act(k),...
47 wn,k,datstr,n);
48 end
49 else
50 parfor k=idedactuators;
51 [p(k,:),r(k,:),invp(k,:),invr(k,:),...
52 inffun(k,:),e(k),offset(k,:)]=...
53 fit_dyn_PI(N_op,order_act(k),wn,k,datstr,n);
54 end
55 end
56
57 %% Save model
58 disp(strcat('fittedmodelsN',num2str(N_op),'n',...
59 num2str(n),datstr,' fitted'))
60 if n==0;
61 save(strcat('fittedmodelsN',num2str(N_op),'n',...
62 num2str(n),datstr),'N_op','order_act','n',...
63 'inffun','p','r','invp','invr','offset','wn','e')
64 else
65 save(strcat('fittedmodelsN',num2str(N_op),'n',...
66 num2str(n),datstr),'N_op','order_act','n',...
67 'inffun','p','r','invp','invr','offset',...
68 'wn','Hest','Hinv','e')
69 end
70 end
71
72 edac40('open',1,'169.254.159.198'); % Connect to mirror,
73 % please change when using another device
74
75 for rngseed=[1]; % Use another number to generate
76 % different references for MIMO datasets
77 testedactuators=[2:20]; % Actuator number to be
78 % tested, toggle N_act+1 to test MIMO
79 %% Test compensators
80 for k=testedactuators
81 ueye('open',1, 1);
82 ueye('configure', 1, 0, [0,0,1280,1024], −1);
83 ueye('settiming', 1, 0.4, 30, 35);
84
85 calimirror(50,1); % Calibrate lens
86
87 % set same seed for random numbers
88 % for reproducecibility
89 clear rng
90 rng(1)
91
92 dt=0.1; % Sample time
93 t_end=40; % Duration of experiment
94 t=0:dt:t_end;
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95 v=zeros(length(t),N_act);
96 yd_ref=zeros(length(t),N_act);
97
98 %% Calculate input signal
99 % Create Butterworth filter

100 [b_filt,a_filt]=butter(6,0.1);
101 x0=zeros(1,N_op);
102 if not(k==N_act+1)
103 %% Calculate input for SISO
104 ref=zeros(length(t),N_act);
105 ref(:,k)=zeros(length(t),1);
106 rng(1)
107 ref(1:end,k)=2.5*(−0.5+rand(length(t),1));
108 rng(19)
109 ref(:,k)=[zeros(11,1);filter(b_filt,a_filt,...
110 [ref(1:end−200,k);ones(189,1)*(rand(1,1)−0.5)])];
111 % scale reference such that max value is
112 % 0.9 of influence function
113 ref(:,k)=0.9*ref(:,k)/max(abs(ref(:,k)));
114 if n==0 % If n=1, apply inverse transfer function
115 % Reference is added at the end to make
116 % the voltage that is applied after the
117 % last measurement existent
118 yd_ref(:,k)=[ref(2:end,k);ref(end,k)];
119 else
120 % Reference is added at the end to make
121 % the voltage that is applied after the
122 % last measurement existent
123 yd_ref(:,k)=lsim(Hinv(k),[ref(2:end,k)...
124 ;ref(end,k)],t);
125 end
126 if N_op>1 % Simulate GPI if operators is
127 % larger than 1, otherwise
128 % just use the static gain
129 v(:,k)=simPI_asymi(yd_ref(:,k),...
130 invr(k,1:N_op),invp(k,1:N_op),...
131 offset(k,1:4),x0);
132 else
133 v(:,k)=invp(k,1)*yd_ref(:,k);
134 end
135
136 else
137 %% Calculate input for MIMO
138 rng(rngseed)
139 refz=zeros(length(t),sum(2:N_zer+1));
140 % sum of all influence functions, used to
141 % determine range is which a reference is given
142 Q=1./sum(abs(inffun));
143 % Only give a reference to the second and
144 % third order zernikes and
145 % the spherical abberation
146 Q=Q.*[ones(1,9),0,0,1,zeros(1,sum(2:N_zer+1)−12)];
147 for k2=[1:9,12];
148 refz(:,k2)=2.5*(−0.5+rand(length(t),1));
149 refz(:,k2)=[zeros(11,1);filter(b_filt,...
150 a_filt,[refz(1:end−200,k2);ones(189,1)...
151 *(rand(1,1)−0.5)])];
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152 refz(:,k2)=12e−2*refz(:,k2)/...
153 max(abs(refz(:,k2)))/Q(k2);
154 end
155 ref_y=zeros(size(v));
156 ref_y(1,2:N_act)=LocReg(inffun(2:N_act,:)'...
157 ,refz(1,:)',Q,1e−9*ones(1,19),0.8);
158 for i3=2:length(refz(:,1))
159 ref_y(i3,2:N_act)=LocReg(inffun(2:N_act,:)'...
160 ,refz(i3,:)',Q,1e−9*ones(1,19),0.8);
161 end
162
163 %% Uncomment to plot predicted reference
164 % tracking performance with given cost function
165 % for i3=1:length(ref_y(:,1))
166 % y(i3,1:sum(2:N_zer+1))=...
167 % inffun'*ref_y(i3,:)';
168 % end
169 %
170 % for i3=1:N_act
171 % figure(1)
172 % subplot(5,4,i3)
173 % plot(refz(:,i3))
174 % hold on
175 % plot(y(:,i3))
176 % for k4=1:18
177 % figure(1+k4)
178 % subplot(5,4,i3)
179 % plot(ref_y(:,k4)*inffun(k4,i3))
180 % end
181 % end
182
183 %% Calculate input voltage
184 for k2=idedactuators % run for all actuators
185 % If n=1, apply inverse transfer function
186 if n==0
187 % Reference is added at the end to make
188 % the voltage that is applied after the
189 % last measurement existent
190 yd_ref(:,k2)=[ref_y(2:end,k2);ref_y(end,k2)];
191 else
192 % Reference is added at the end to make
193 % the voltage that is applied after the
194 % last measurement existent
195 yd_ref(:,k2)=lsim(Hinv(k2),...
196 [ref_y(2:end,k2);ref_y(end,k2)],t);
197 end
198 if N_op>1 % Simulate GPI if operators is
199 % larger than 1, otherwise just
200 % use the static gain
201 v(:,k2)=simPI_asymi(yd_ref(:,k2),...
202 invr(k2,1:N_op),invp(k2,1:N_op)...
203 ,offset (k2,1:4),x0);
204 else
205 v(:,k2)=invp(k2,1)*yd_ref(:,k2);
206 end
207 end
208 end
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209
210 z=zeros(length(t),sum(2:N_zer+1));
211
212 % Stop if maxvoltage is exceeded or NaNs are present
213 if max(abs(v))>1||isnan(ref_y)==1
214 error('max voltage exceeded or NaN present')
215 end
216
217 %% Run measurement
218 tic % start timer
219 for i=1:length(t);
220 % Measure zernikes
221 [z(i,:)]=measzer_mirror(v(i,:));
222 while toc<dt*i % wait till the time of
223 % the next sample is reached
224 end
225 end
226 elapsedtime=toc % show elapsed time.
227 % If this is larger than t_end,
228 % the sample time is too short to handle
229
230 disp(strcat(num2str(N_dis_spots),' have disappeared'))
231 %% Save data
232 if n==0
233 if k==N_act+1
234 save(strcat('comp',datstr,'act',...
235 num2str(k),'N_op',num2str(N_op),'n',...
236 num2str(n),'rngseed',num2str(rngseed))...
237 ,'t','v','z','elapsedtime','ref_y'...
238 ,'refz','N_op','order_act','n','inffun'...
239 ,'p','r','invp','invr','offset','wn')
240 else
241 save(strcat('comp',datstr,'act',...
242 num2str(k),'N_op',num2str(N_op),'n',...
243 num2str(n),'rngseed',num2str(rngseed))...
244 ,'t','v','z','elapsedtime','ref','N_op'...
245 ,'order_act','n','inffun','p','r'...
246 ,'invp','invr','offset','wn','k')
247 end
248 else
249 if k==N_act+1
250 save(strcat('comp',datstr,'act',...
251 num2str(k),'N_op',num2str(N_op),'n',...
252 num2str(n),'rngseed',num2str(rngseed))...
253 ,'t','v','z','elapsedtime','ref_y'...
254 ,'refz','N_op','order_act','n','inffun'...
255 ,'p','r','invp','invr','offset','wn'...
256 ,'Hest','Hinv')
257 else
258 save(strcat('comp',datstr,'act',...
259 num2str(k),'N_op',num2str(N_op),'n',...
260 num2str(n),'rngseed',num2str(rngseed))...
261 ,'t','v','z','elapsedtime','ref','N_op'...
262 ,'order_act','n','inffun','p','r'...
263 ,'invp','invr','offset','wn'...
264 ,'Hest','Hinv','k')
265 end
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266 end
267
268 %% Put zero voltage on mirror
269 [~,~]=measzer_mirror(0*v(i,:),N_dis_spots);
270 end
271 end
272 end
273 end
274 %% Set zero voltage at actuator and close connection
275 % please change when using another device
276 edac40('write',1,1.8*zeros(N_act,1));
277 edac40('close');
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Appendix D

Glossary

List of Acronyms

AO Adaptive Optics

FB Feedback

FF Feedforward

GPI Generalized Prandtl-Ishlinskii

MIMO Multiple-Input and Multiple-Output

PDM Piezoelectric Deformable Mirror

PEA Piezoelectric Actuator

PI Prandtl-Ishlinskii

RMS Root Mean Square

SH Shack-Hartmann

SISO Single-Input and Single-Output

VAF Variance Accounted For

List of Symbols

δ Displacement
ε Permittivity
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η Added poles to make transfer function proper
p̂ Weights of the inverse model
r̂ Thresholds of the inverse model
Φ Matrix with regressors for multiple time instances
φ Vector with regressors
Ψ Matrix with parameters
ρ Radius
ρsa Radius of subaperture
Σ Singular values of SVD
σ Stress
τ(M) Vector with random numbers between -1 and 1 of length M
Θ Vector containing the model parameters
θ Angle
Ξ Vector with noise
ξ Noise
ζ Influence function
A Spot number
a Denominator coefficients of a transfer function
B Matrix relating the displacement of the centroids of the spots to the Zernike

modes
b Numerator coefficients of a transfer function
D Dielectric displacement
d Piezoelectric constant
E Electric field strength
eNRMS Normalized root mean square error used as performance measure
F Focal length
f Function
Fr Operator in the PI model
fbutter Butterworth filter
G Dynamic model
g Polynomial in GPI model
H Hysteresis model
h Hysteresis percentage
I Intensity
Ix X-coordinate of centroid
Iy Y-coordinate of centroid
Imincentroid Minimum intensity value to be recognized as contributing to the location of the

centroid of the spot
Iminspot Minimum intensity value to be recognized as a spot
J Cost function
K Gain
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l Maximum value of the input
M Amount of samples
N Amount of operators in (G)PI model
n Order of dynamic model
P Poles
p Weight
Q Output weight
q Discrete transfer function variable
R Control weight
r Threshold
Rvu Radial term in Zernike polynomial
rcentroidmin Minimum distance between detected spots in either x- or y- direction
rcentroid Maximum distance in either x- or y- direction from the peak intensity in order

to be taken into account for the calculation of the centroid
ref Reference
S Matrix with measured wavefront slopes
s Compliance
t Time instant
U Left-singular vectors of SVD
u Input
ujmax Maximum voltage during identification
ujmin Minimum voltage during identification
V Right-singular vectors of SVD
v Voltage
w Value of an operator of the PI model
x X-coordinate
xAkref X-coordinate of reference spot
Y Vector with outputs
y Either the output of the system or y coordinate, depending on the context
ya Output on the ascending interval u̇ > 0
yd Output on the descending interval u̇ < 0
yAkref Y-coordinate of reference spot
ymeas Measured output
ysim Simulated output
z Vector with Zernikes
Zs Zeros inside the unit circle
Zvu Zernike mode
zmeas Measured Zernike
Zns Zeros outside the unit circle
Zxy Matrix with derivates of Zernikes to x and y
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