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Abstract

In this project, Boltzmann’s H -theorem is studied and applied to prove a general convergence to equilibrium
for the adiabatic piston paradox, governed by a specially-derived kinetic Fokker-Planck equation. We review
general results in kinetic theory on the Boltzmann collision operator, and rates of convergence to equilib-
rium. Furthermore, we turn our attention to simulations of the piston paradox, and apply the algorithm of
Sigureirsson et al. for particle-particle collision dynamics to the piston setting, determining empirically the
optimal parameters.
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1
Introduction

The adiabatic piston paradox has been a thermodynamical peculiarity since it was first introduced around
the 1960s in [5]. A seemingly innocent problem, it describes a isolated cylinder of gas split into two volumes
by a friction-less, heavy, adiabatic piston. The core of the paradox lies in taking the correct thermodynamic
limits and applying the correct principles, to find the action of the piston as the pressures on both sides of the
piston become equal. To this end, elementary thermodynamics could not accurately describe the final equili-
birum state (of equal temperatures), requiring the use of non-equilibrium thermodynamics [26] to do so. One
approach is to look at the problem from the micro- and mesoscopic point of view. That is to say, to account for
each individual gas molecule (microscopic scale) and its dynamics through classical mechanics, and derive
general trends by describing the probability distributions governing the gas molecules (mesoscopic scale).

This approach lies at the heart of kinetic theory, bridging the gap between the microscopic description
and bulk properties of materials and gases. For gases, this was predominantly formalized through Boltz-
mann’s work [3] in the 1870s, though the ideas existed in some form already in the times of Clausius [24]. At
the time, the theory was controversial, as even the existence of atoms was not yet fully agreed upon. In the
many years since, we find it now accurately describes a whole range of physics, from aeronautics at high alti-
tudes, to plasma physics. As long as the gas is dilute enough it can often be well described through the kinetic
framework introduced by Boltzmann [30].

With his treatise work, however, Boltzmann also showed from some assumptions, in particular on the
micro-reversibility of the system and the molecular chaos assumption, that a macroscopic property H is
strictly non-decreasing in time, the result being known as the (Boltzmann) H -theorem. This property was
namely entropy (up to a sign), and can be considered a manifestation of the second law of thermodynamics.
This also formalized the beginnings of the study of convergence to equilibrium in kinetic models. Since then,
results from varying fields, in particular information theory [16, 17] have been used to prove both conver-
gence and the rate of convergence to equilibrium for a growing variety of kinetic equations [1, 22].

This convergence to equilibrium is of particular interest for the piston paradox. Models have been made
in simplified versions of the paradox, where certain scaling limits are taken to retrieve different descriptions
[6, 21]. Under these limits, and with the help of some assumptions, results on the (in)stability of the piston
paradox help shed more light on the long-term dynamics of the system [4].

However, as with a lot of results in kinetic theory, many arguments are difficult to prove from a rigor-
ous mathematical perspective. With the increasing processing capabilities of modern computers, large-scale
models have become feasible and indeed actively sought after, to confirm assumptions or numerically de-
termine new results [6, 19, 21]. Results on equilibrium convergence, for example, can be tested empirically
by running simulations for long time frames [4, 9, 10]. In order to maximize the available processing power,
more efficient algorithms are employed [29], enabling more results to be obtained in a shorter time-span.

We will mention that when it comes to the topics of kinetic theory, the treatise works of Villani [30] and
Cercigani [7] are invaluable. Not only do they cover a broad number of topics within the field, but with plenty
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2 1. Introduction

of detail, referring as necessary to further reading. This thesis is in large part a combination of the results of
[30], [29] and [9]. The aim of this thesis is to introduce the framework of kinetic theory in the context of the
adiabatic piston paradox, allowing us to eventually prove an equivalence to equilibrium using a specially de-
rived kinetic Fokker-Planck equation for the paradox. Furthermore, we discuss simulation techniques and
adapt them in the piston context, allowing for future work to validate the assumptions made during the
derivation of the Fokker-Planck equation.

In Chapter 2, we cover the physics behind the paradox, and the main assumptions and results of kinetic
theory, deriving some simple results to be used in future chapters.

In Chapter 3, we discuss in depth the paradox from a simulation perspective, recapping and reproducing
some results, and implementing and optimizing a new algorithm.

In Chapter 4, we state and prove general convergence to equilibrium results, and where possible the rate
of convergence too. In doing so, we provide an insight of how such results are proven in the general case.

In Chapter 5, we derive a Fokker-Planck equation for the piston in the near-equilibrium paradox setting
in a torus.

And lastly a conclusion and discussion on future work in Chapter 6.



2
Adiabatic piston paradox & a brief

introduction to kinetic theory

In this chapter, we will describe more thoroughly the details of the adiabatic piston paradox, and some of the
mathematical language that will be recurring throughout this thesis.

2.1. The Paradox
We consider an isolated cylinder, split into two equal volumes, V1,V2, by a piston. This piston can move
freely along the cylinder without friction, and does not permit the transfer of particles nor heat between the
two compartments. The prohibition of heat transfer is why the piston is called adiabatic. We also set the
pressures P1,P2 to be equal on both sides of the piston, but the temperatures are different: T1 ̸= T2. The
paradox is then as follows: Does the piston move?

2.1.1. Why the piston shouldn’t move
Heuristically, one may argue that the piston can only move due to mechanical work in the system. Since work
done by a system is given by dW = PdV , and the pressures on both sides are equal, we would expect there to
be no work done, and consequently that the piston cannot move. For a formal description of this argument,
we follow Callen [5], who introduced the paradox in the first place. We note first that this whole setup is quasi-
static, so we can freely work with most of the thermodynamical machinery. The first law of thermodynamics,
following the convention of Clausius, can be written as∆U =Q−W , where∆U denotes the change in internal
energy of a system, Q the heat transferred to the system, and W the work done by the system (hence the minus
sign). This is in effect a conservation of energy equation, which can be re-written for quasi-static processes
in terms of each variable’s differentials, namely dU = dQ −dW . We have established that there is no heat
transfer, so dQ = 0. Moreover, we know dW1,2 = P1,2dV1,2 so we have an expression for the change in internal
energies. The system is wholly isolated, so the total internal energy must remain constant. This gives rise to:

dU = dU1 +dU2 = 0 =⇒ P1dV1 +P2dV2 = 0 (2.1)

We also have that the total volume V =V1 +V2 is fixed, giving us dV1 =−dV2. It is evident that equation (2.1)
holds only if P1 = P2, which is the case. We consider now entropy, S(U ,V ). For both sides we have:

dS1,2 =
dU1,2

T1,2
+

(
P

T
dV

)
1,2

However, from our conclusion that dU1,2 =−P1,2dV1,2 it’s clear that dS1,2 = 0 and so the total entropy change
dS = dS1 +dS2 = 0 is constant. The entropy maximum principle, often referred to as the second-law, tells us
dS = 0 only holds at equilibrium, and so the piston will not move.

2.1.2. Why the piston should move
However, if the problem was this open-and-shut, it wouldn’t be a paradox. There is a second, more subtle
argument that argues the converse, that the piston does move. It involves the second law of thermodynamics,
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4 2. Adiabatic piston paradox & a brief introduction to kinetic theory

and very careful algebraic manipulations. There is a heuristic argument too, outlined in Feynman’s famous
lectures [14, Ch. 39-4]. Although the pressures are equal, they describe only the average kinetic energy density
of the particles. The temperatures themselves describe the average kinetic energy, and so the warmer side will
hit the piston wall with (on average) higher velocities. This would lead to the piston drifting towards the colder
side, where there would be a higher particle density and so more collisions, which would pick up the excess
speed of the piston. This transfer of kinetic energy would continue until the kinetic energies are equal, giving
us T1 = T2.

Making this argument precise is more tedious. The principal disagreement with the former argument
is that dU1,2 ̸= −P1,2dV1,2, and thus that the whole application of the entropy maximum principle is wholly
inappropriate [18]. Indeed, if this were the case, then the total energy would not be constant in the general
case. We would have the change in total energy

dU = dU1 +dU2 =−P1dV1 +P2dV2 =−(P1 −P2)dV1 ̸= 0

be in general non-zero for P1 ̸= P2. We would then be maximizing entropy for a system that is potentially los-
ing or gaining energy, and if we cannot quantify such gains then applying the second law of thermodynamics
would be nonsensical. As [18] describes, the lost energy must be accounted for in some way or other, most
naturally through ’heat’ dQ = (P1 −P2)dV1. The paper goes through in detail of different approaches to then
derive the conclusion that equilibrium is only found at thermal equilibrium (that is to say, P1 = P2 is neces-
sary, but not sufficient). If we accept the general formulation of internal energy to be dU = T dS −PdV (even
though the former term is often associated with ’heat’), then we can assure total energy remains constant. We
now get:

dU = dU1 +dU2 = 0 =⇒ T1dS1 −P1dV1 = P2dV2 −T2dS2

Assuming P1 = P2, and applying once again dV2 =−dV1, this gives us the relation

T1dS1 =−T2dS2 (2.2)

By the second law of thermodynamics, we have dS = dS1 +dS2 ≥ 0, and multiplying throughout by T1 gives
T1dS1 +T1dS2 ≥ 0. Substituting in (2.2) gives us:

(T1 −T2)dS2 ≥ 0 (2.3)

Equality holds when T1 = T2, though care must be taken to not discount dS2 = 0. In particular, for the case
where T1 > T2, we see that dS2 ≥ 0, so the entropy of the colder subsystem increases over time. Returning to
the paradox, since we start with T1 ̸= T2, it is clear that the entropy of the system is not maximal, and so the
system is not in an equilibrium state, so the piston will move to accommodate it.

2.1.3. General remarks
There are many discussions and subtleties in the arguments presented above. Some argue that the whole
paradox is not a feasible setup as no rigid body like the piston in our setup can act as a perfect insulator.
By virtue of the fact that it allows for the transfer of kinetic energy between the two compartments, it must
therefore allow the transfer of heat. Then there is also the question of how quickly the system converges
to first mechanical equilibrium P1 = P2 and then thermal equilibrium, T1 = T2. The latter is expected to
occur on a timescale much larger than the former. We will be taking a microscopic approach to the problem,
accounting for each gas particle and seeing how its velocity develops over time. For this, we need to describe
the mathematical language in this setting.

2.2. Mathematical description of kinetic theory
In this section, we will follow the treatise work of Villani [30].

2.2.1. Modelling framework
The objective of kinetic theory, is to model the evolution of gas by a distribution function in the particle
phase space. In the simplest case, for a classical gas made up of only one type of particle, we find that the
corresponding kinetic model is the function:

f (t , x⃗, v⃗) : [0,T ]×Ω×Rd → [0,∞)



2.2. Mathematical description of kinetic theory 5

Where Ω ⊂ Rd is the spatial domain of the gas (that may or may not be bounded) and d the dimension of
the space (typically 3). For any time t , the quantity f (t , x⃗, v⃗)d x⃗d v⃗ gives the density of particles in the volume
element d x⃗d v⃗ centered on (⃗x, v⃗). This interpretation means that f must act as a scaled probability measure
over (⃗x, v⃗), and since we are dealing with the case of finite number of particles, we quickly conclude that
f (t , ·, ·) ∈ L1(Ω,Rd ). From the probability density function, we can recover measurable macroscopic quanti-
ties. Indeed, we have the following:

Definition 2.2.1 (Macroscopic qualities). From the density function we can define:

• ρ, the local density, by: ρ(t , x⃗) := ∫
Rd f (t , x⃗, v⃗) d v⃗

• u⃗, the local macroscopic velocity, by the relation: ρu⃗ = ∫
Rd f (t , x⃗, v⃗)v⃗ d v⃗

• T , the local temperature, by the relation: ρ|u|2 +dρT = ∫
Rd f (t , x⃗, v⃗)|v |2 d v⃗

To describe the time evolution of gas, the first commonly encountered term is the transport operator.
If we completely neglect interaction between particles, then each particle travels at constant velocity and
so the probability density is constant along characteristic lines d x⃗/d t = v⃗ ,d v⃗/d t = 0. Indeed, under these
circumstances, we can compute f at any arbitrary time t simply from the initial distribution at time 0:

f (t , x⃗, v⃗) = f (0, x⃗ − v⃗ t , v⃗)

Functions that satisfy the above equation are weak solutions to the following equation of free transport:

∂t f + v⃗ ·∇x f = 0 (2.4)

Where ∂t f denotes the partial time derivative of f (also often written as ∂ f /∂t ), and ∇x denotes the gradient
operator in the x⃗ components of f , i.e. [∂x1 , . . . ,∂xd ]T . Whilst the transport operator, v⃗ ·∇x crops up in many
equations in kinetic theory, we will not be using it in this thesis. The principle reason for this is that all solu-
tions of the transport equation (2.4) do not contribute to a change in functionals of the form

∫
Ω×Rd A( f )d x⃗d v⃗ .

More strongly, the transport operator itself does not contribute a change to the aforementioned functional.

Lemma 2.2.2. In the case ofΩ=Rd , the transport operator v⃗ ·∇x does not contribute to the change of function-
als of the form

∫
Rd×Rd A( f ) d x⃗ d v⃗. More specifically, if f satisfies the equation:

∂t f + v⃗ ·∇x f =Q( f , t , x⃗, v⃗)

Where Q is some arbitrary function that may or may not depend on the listed variables, then the time evolution
of the functional is decided entirely by Q:

d

d t

∫
Rd×Rd

A( f ) d x⃗ d v⃗ =
∫
Rd×Rd

A′( f )Q d x⃗ d v⃗

Proof. Ignoring any particular regularity constraints, we have that:

d

d t

∫
Rd×Rd

A( f ) d x⃗ d v⃗ =
∫
Rd×Rd

A′( f )∂t f d x⃗ d v⃗ =
∫
Rd×Rd

A′( f )Q d x⃗ d v⃗ −
∫
Rd×Rd

A′( f )v⃗ ·∇x f d x⃗ d v⃗

The claim is equivalent to showing that the last integral evaluates to 0. In 1D this is clear, asΩ= (−∞,∞). The
last integral reads: ∫

R×R
A′( f )v∂x f d x d v =

∫
R

v
∫ ∞

−∞
A′( f )∂x f d x d v =

∫
R

v
[

A( f )
]∞
−∞ d v

But at the boundary, it is clear f (t ,−∞, v) = f (t ,∞, v) = 0, due to the convergence on the integral
∫
R f d x and

so the boundary term evaluates to A(0)− A(0) = 0. In the higher dimensional case, we would have the exact
same argument, with the boundary term evaluated on the limiting disk |⃗x| = r as r →∞ (or really any other
unbounded domain that reaches infinity in all coordinates. A hypercube also works here). The integrability
of f demands lim|⃗x|→∞ f (t , x⃗, v⃗) = 0. Suppose it didn’t, i.e. lim|⃗x|→∞ f (t , x⃗, v⃗) = C (t , v) > 0 for some constant
C possibly depending on t , v . Then there certainly is a disk r such that ∀x⃗ ∈Rd , |⃗x| ≥ r, f (t , x⃗, v⃗) ≥ C

2 . Then:∫
Rd

f d x⃗ ≥
∫
|⃗x|≥r

f d x⃗ ≥
∫
|⃗x|≥r

C

2
d x⃗ →∞
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Where we note the last integral diverges to infinity. This contradicts the integrability of f , and so we con-
clude that f vanishes at the boundary (and so A( f ) is constant at the boundary). In peculiar cases where
lim|⃗x|→∞ f (t , x⃗, v⃗) does not exist, then one can find a ray from the origin where f > 0 infinitely many times,
and apply a similar argument on this ray.

We remark that the transport operator also doesn’t contribute to functionals whenΩ=Td , the d-dimensional
torus (which can be thought of, in a physical sense as a constrained space of the form [⃗0,⃗1], with periodic
boundary conditions). In any case, the transport operator is not the only term that can influence the progres-
sion of f over time. External forces can also impact f (giving rise to linear Vlasov equation, see [30, p. 10]),
but we are more interested in the impact of gas particle collisions. For this, we have the Boltzmann collision
operator.

2.2.2. Boltzmann collision operator
To describe the evolution of f due to collisions, a series of assumptions must be made.

Assumption 1. Particles interact via binary collisions, that is to say collisions only occur between two parti-
cles, and the chances of a collision involving three or more particles is vanishingly small, which implies that
the gas is dilute. Indeed, for a 3 dimensional gas of N hard spheres with radius r , this would mean:

N r 3 ≪ 1, N r 2 ≃ 1 (2.5)

Assumption 2. These collisions are localized in both space and time, so they are brief events that occur at a
position x⃗ and time t .

Assumption 3. The collisions are elastic, momentum and kinetic energy are conserved in the collision pro-
cess. If v⃗ , v⃗∗ are the velocities of two particles before colliding, and v⃗ ′, v⃗ ′∗ the respective velocities after collid-
ing, then we find these variables must satisfy:

v⃗ + v⃗∗ = v⃗ ′+ v⃗ ′
∗ (2.6)

|v⃗ |2 +|v⃗∗|2 = |v⃗ ′|2 +|v⃗ ′
∗|2 (2.7)

Equation (2.6) is over d dimensions, and equation (2.7) is 1 equation, but together they can be used to cal-
culate the 2d unknown values, v ′, v ′∗. As a consequence, we expect to describe the solutions to the equa-
tions in terms of d −1 parameters. There is a convenient representation of these solutions, aptly called the
σ-representation, where the parameter σ ∈Sd−1 lies on the (d −1)-dimensional unit sphere in Rd . The rep-
resentation is as follows:

v⃗ ′ = v⃗ + v⃗∗
2

+ |v⃗ − v⃗∗|
2

σ

v⃗ ′
∗ = v⃗ + v⃗∗

2
− |v⃗ − v⃗∗|

2
σ

Assumption 4. We assume the collisions to be microreversible. There are two interpretations of this. One is
deterministic, that the microscopic dynamics are time-reversible. The other is probabilistic, that the proba-
bility that the velocities (v⃗ , v⃗∗) are changed to (v⃗ ′, v⃗ ′∗) is equal to the probability that the velocities (v⃗ ′, v⃗ ′∗) are
changed to (v⃗ , v⃗∗)

Assumption 5. Lastly, we have the Boltzmann chaos assumption, or more broadly, molecular chaos: the
velocities of the two particles which are about to collide are uncorrelated. This assumption implies an asym-
metry between past and future, as collision velocities are certainly correlated. For a deep and entertaining dis-
cussion on the physical validity of this assumption and its apparent contradiction with the microreversibility
assumption, see [30, pgs. 34-37]

Under the above 5 assumptions, Boltzmann [3] was able to derive the following collision operator:

Definition 2.2.3 (Boltzmann collision operator). The Boltzmann collision operator is given by:

Q( f , f ) =
∫

Rd

∫
Sd−1

B(v⃗ − v⃗∗,σ)
(

f ′ f ′
∗− f f∗

)
dσd v⃗∗ (2.8)

Where we use the abbreviations f ′ = f (t , x⃗, v⃗ ′), f∗ = f (t , x⃗, v⃗∗), f ′∗ = f (t , x⃗, v⃗ ′∗) and where B (⃗z,σ) is called the
Boltzmann collision kernel. The function is non-negative and can be simplified further as a function of
|⃗z| and the scalar product ẑ ·σ = cosθ, where θ is the deviation angle (between the pre- and post- collision
velocities).
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Before we proceed, let us observe a few critical properties about the form of the Boltzmann collision oper-
ator. Firstly, it is quadratic in f , which follows from assumption 1, namely the binary nature of the collisions.
Moreover, the operator can be split into a gain and loss term Q( f , f ) =Q+( f , f )−Q−( f , f ). The interpretation
of these terms are as follows, Q−( f , f )d x⃗d v⃗d t is the expected number of particles whose position and veloc-
ities are in the ranges [⃗x, x⃗ +d x⃗] and [v⃗ , v⃗ +d v⃗] at time t , but leave these range in the time interval [t , t +d t ]
due to a collision. This is why Q− ∝ f f∗, the distribution evaluated at the pre-collision velocities. The gain
term is analogous, it is the number of particles whose position and velocities are outside the aforementioned
ranges at time t , but enter it due to a collision. The collision kernel B(|⃗z|,cosθ) varies significantly between
different physical situations of interest, and in some cases has no explicit form.
In any case, with the Boltzmann collision operator, we can describe the full time evolution of a particle by the
Boltzmann equation:

∂t f + v⃗ ·∇x f =Q( f , f ) (2.9)

Of interest is what physical properties are conserved for solutions of (2.9). For this we must introduce Maxwell’s
weak formulation.

2.2.3. Maxwell’s weak formulation and conserved quantities
We note that the change of variables of (v⃗ , v⃗∗,σ) → (v⃗ ′, v⃗ ′∗,k) where k = (v⃗ − v⃗∗)/|v⃗ − v⃗∗| has unit Jacobian and
is clearly involutive, as in, reapplying the change of variables returns the original (v⃗ , v⃗∗,σ). By Assumption 4 -
of microreversibility - the collision kernel B is invariant under this transformation. Additionally, the transfor-
mation (v, v∗) → (v∗, v) is also an involution with unit Jacobian, and as we have established B is invariant to
this transformation (as |v − v∗| remains constant under the transformation). These two invariances give rise
to the weak formulation of the Boltzmann equation:

Lemma 2.2.4 (Maxwell’s weak formulation). For an arbitrary continuous function of velocity,ϕ(v⃗), the follow-
ing holds: ∫

Rd
Q( f , f )ϕd v⃗ =

∫
Rd×Rd

∫
Sd−1

B(v⃗ − v⃗∗,σ)( f ′ f ′
∗− f f∗)ϕdσd(v⃗ , v⃗∗) (2.10)

=
∫
Rd×Rd

∫
Sd−1

B(v⃗ − v⃗∗,σ) f f∗(ϕ′−ϕ) dσd(v⃗ , v⃗∗) (2.11)

= 1

2

∫
Rd×Rd

∫
Sd−1

B(v⃗ − v⃗∗,σ) f f∗(ϕ′+ϕ′
∗−ϕ∗−ϕ) dσd(v⃗ , v⃗∗) (2.12)

Where ϕ′ =ϕ(v⃗ ′),ϕ∗ =ϕ(v⃗∗),ϕ′∗ =ϕ(v⃗ ′∗).

Proof. We will omit the integration bounds to reduce unnecessary notation throughout this proof. Starting
from the relation (2.10), which follows by plugging in the definition of Q( f , f ), we can apply the transforma-
tion (v⃗ , v⃗∗,σ) → (v⃗ ′, v⃗ ′∗,k). Note that k still runs along the unit (hyper-)sphere in Rd .∫

Q( f , f )ϕd v⃗ =
∫ ∫

B(v⃗ ′−v⃗ ′
∗,k)( f f∗− f ′ f ′

∗)ϕ′dkd(v⃗ ′, v⃗ ′
∗) =

∫ ∫
B(v⃗−v⃗∗,σ)( f f∗− f ′ f ′

∗)ϕ′dkd(v⃗ ′, v⃗ ′
∗) (2.13)

Where in the second equality we use the invariance of the Boltzmann collision kernel. We will exploit this
invariance notationally by omitting the parameters of B . Since both the right hand terms in (2.10) and (2.13)
are both equal to

∫
Q( f , f )ϕd v⃗ , we can freely add them together to get:

2
∫

Q( f , f )ϕd v⃗ =
∫ ∫

B · ( f f∗− f ′ f ′
∗)(ϕ′−ϕ) dk d(v⃗ ′, v⃗ ′

∗)

=
∫ ∫

B · f f∗(ϕ′−ϕ) dk d(v⃗ ′, v⃗ ′
∗)+

∫ ∫
B · f ′ f ′

∗(ϕ−ϕ′) dk d(v⃗ ′, v⃗ ′
∗) (2.14)

The second integral involving f ′ f ′∗ can be rewritten in terms of the first by reapplying the transformation.
Although it is not immediately obvious, since (v⃗ ′, v⃗ ′∗,k) runs along all values of Rd ×Rd ×Sd−1, we can ’re-
label’ the parameters to (v⃗ , v⃗∗,σ), so the first integral reads

∫
B f f∗(ϕ′−ϕ)d(v⃗ , v⃗∗,σ). Proceeding then with

the second integral we have:∫ ∫
B · f ′ f ′

∗(ϕ−ϕ′) dk d(v⃗ ′, v⃗ ′
∗) =

∫ ∫
B · f f∗(ϕ′−ϕ) dσd(v⃗ , v⃗∗)
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Plugging this and our earlier observation into (2.14) gives us:

2
∫

Q( f , f )ϕd v⃗ = 2
∫ ∫

B · f f∗(ϕ′−ϕ) dσd(v⃗ , v⃗∗)

Which, upon dividing throughout by 2 yields us (2.11) as required.
For the second equation, we use the transformation (v, v∗) → (v∗, v) on (2.11). We get:∫

Q( f , f )ϕd v⃗ =
∫ ∫

B · f f∗(ϕ′−ϕ) dσd(v⃗ , v⃗∗) =
∫ ∫

B · f∗ f (ϕ′
∗−ϕ∗) dσd(v⃗∗, v⃗)

Adding the two latter integrals and dividing throughout by 2, in a similar fashion to the previous proof, gives
the result (2.12) as desired.

This weak formulation of the collision operator is often more useful than the definition provided in (2.8),
as there are occasions where (2.12) is well-defined but Q( f , f ) is not. Moreover, from a formal point of view,
for any solution f of the Boltzmann equation (2.9) we have:

d

d t

∫
f (t , x⃗, v⃗)ϕ(v⃗) d x⃗ d v⃗ =

∫
Q( f , f )ϕd x⃗ d v⃗ (2.15)

where we used our previous observation that the transport operator does not contribute. So Maxwell’s weak
formulation allows us to describe the change of

∫
f ϕd v⃗ with respects to time. Additionally, if f satisfies the

equation (2.15) for all functions ϕ ∈C (Rd ), it is called a weak solution to the Boltzmann equation, as in every
macroscopic sense it is indistinguishable from a solution of (2.9). This notion of weak solutions (or forms or
derivatives) crops up a lot in analysis as it allows for a relaxation of the more stringent requirements (solu-
tions, differentiability, etc.). Nonetheless, it is clear from the shape of (2.12), that if ϕ satisfies the equation:

∀(v⃗ , v⃗∗,σ) ∈Rd ×Rd ×Sd , ϕ(v⃗ ′)+ϕ(v⃗ ′
∗) =ϕ(v⃗)+ϕ(v⃗∗)

Then d
d t

∫
f ϕd v⃗ = 0, for solutions of the Boltzmann equation. Under weak conditions [7, pgs. 36-42], solu-

tions of the equation for ϕ are only linear combinations of the so-called collision invariants:

ϕ(v⃗) = 1, vi , |v⃗ |2, 1 ≤ i ≤ d

Which we would expect from the conservation of kinetic energy and momenta (1 is just a constant function,
and so trivially satisfies the equation). The corresponding conserved macroscopic observables are namely:

M =
∫
Rd

∫
Rd

f (t , x⃗, v⃗) d v⃗ d x⃗ (mass) (2.16)

P⃗ =
∫
Rd

∫
Rd

v⃗ f (t , x⃗, v⃗) d v⃗ d x⃗ (momentum) (2.17)

E =
∫
Rd

∫
Rd

|v⃗ |2 f (t , x⃗, v⃗) d v⃗ d x⃗ (energy) (2.18)

2.3. The Boltzmann collision kernel for hard spheres
In the following section, we will formally derive the Boltzmann collision kernel for hard sphere interactions
in 3D space. To this end we will need to use a two-particle distribution function f (2)(t , x⃗, v⃗ , x⃗∗, v⃗∗). We will
be following the work of Cercignani [7, pgs. 19-23] as the basis of this derivation. We suppose the gas consists
of N hard spheres, each with radius r . Let us examine how the loss term can be derived Q−.

As elaborated earlier, Q−d x⃗d v⃗d t gives the expected number of particles with position between x⃗ and
x⃗ +d x⃗, and velocities in [v⃗ , v⃗ +d v⃗] that leave these ranges due to a collision in a time interval between t and
t+d t . If the first particle, which we will label particle 1, is in the position and velocity ranges described earlier,
any collision with any particle will send it out of the range. So to calculate Q− we simply need to count the
expected collisions of particle 1 with the remaining N −1 particles, which are all identical, as by assumption
1 we discard non-binary collisions . So Q− = (N −1)q−, where q− is the expected number of collisions with a
single fixed particle, say particle 2.
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Figure 2.1: (a) A plot of an example collision between particles 1 (black) and 2 (blue) and (b) the same collision with the changes in frame
of reference described below. The slanted cylinder is the enclosed red region. Both plots made using GeoGebra

To count these collisions, we will employ the following trick: we imagine the first particle (i.e. 1 with po-
sition x⃗ and velocity v⃗) as a sphere of radius 2r , and the second colliding particle (2, with position x⃗∗ and
velocity v⃗∗) as a point mass. Moreover, we will change our frame of reference so that the first particle is at rest
and the second particle has a velocity v⃗∗− v⃗ .

At the moment of collision, we expect x⃗∗ = x⃗ + 2rσ, where σ ∈ S2, so the momentum distribution of
particle 2 at the moment of collision (as a function of v∗) is f (2)(t , x⃗, v⃗ , x⃗ +2rσ, v⃗∗). If we wish to count the
collisions on an infinitesimal area (2r )2dσ on the sphere of radius 2r , then the second particle collides in
the time interval if and only if it lies in a slanted cylinder with height |(v⃗∗ − v⃗) ·σ|d t and base 4r 2dσ, see
Figure 2.1. So the number of collisions of particle 2 with particle 1, occurring on an area 4r 2dσ, when particle
1’s coordinates lie in the ranges [⃗x, x⃗ + d x⃗], [v⃗ , v⃗ + d v⃗] and particle 2 lies onx⃗∗ = x⃗ + 2rσ, with velocity in
[v⃗∗, v⃗ +d v⃗∗], is given by:

f (2)(t , x⃗, v⃗ , x⃗ +2rσ, v⃗∗)|(v⃗∗− v⃗) ·σ|4r 2 dσd x⃗d v⃗d v⃗∗d t

Integrating over all possible velocities v⃗∗, and possible collision locations on the sphere (which will be a
hemisphere S2−, where (v⃗∗− v⃗) ·σ< 0 so the particles are moving towards each other), gives us:

q−d x⃗d v⃗d t = d x⃗d v⃗d t
∫
R3

∫
S2−

f (2)(t , x⃗, v⃗ , x⃗ +2rσ, v⃗∗)|(v⃗∗− v⃗) ·σ|4r 2 dσd v⃗∗

Evidently the loss term Q− then reads:

Q− = (N −1)4r 2
∫
R3

∫
S2−

|(v⃗∗− v⃗) ·σ| f (2)(t , x⃗, v⃗ , x⃗ +2rσ, v⃗∗) dσd v⃗∗

Now, we recall assumption 1, namely the dilute gas assumptions. Since N r 3 ≪ 1 and N r 2 ≃ 1, we will take a
scaling limit N →∞,r → 0, N r 2 →C <∞. Absorbing constants, and assuming continuity on f (2), we get:

Q− ≈C
∫
R3

∫
S2−

|(v⃗∗− v⃗) ·σ| f (2)(t , x⃗, v⃗ , x⃗, v⃗∗) dσd v⃗∗ (2.19)

We note the only σ dependent terms now is the absolute value term, which will be positive regardless of the
sign of the inner product. Hence we can integrate over the whole S2, scaled down by 1

2 . The scaling limit we
used to derive this expression is known as the Boltzmann-Grad limit, and describes the asymptotic regimes
wherein the Boltzmann equation (2.9) is expected to accurately describe particle dynamics.
Whilst equation (2.19) is starting to look like what we ultimately desire, it is unfortunately in terms of the two-
particle distribution f (2), and so we are still none the wiser on how f evolves due to collisions. To this end,
we recall Assumption 5, of molecular chaos. Boltzmann’s insight was as N →∞, for any two fixed particles
a collision between the two is a rare event, and so we consider them as random events, consisting of an
interaction between randomly chosen particles. Moreover, since we assume the pre-collision velocities of the
two particles are uncorrelated, we have:

f (2)(t , x⃗, v⃗ , x⃗∗, v⃗∗) = f (t , x⃗, v⃗) · f (t , x⃗∗, v⃗∗)
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And from this result, substituted into (2.19), gives us an expression we are familiar with:

Q− = C

2

∫
R3

∫
S2

|(v⃗∗− v⃗) ·σ| f (t , x⃗, v⃗) · f (t , x⃗, v⃗∗) dσd v⃗∗ (2.20)

We see that this expression is of the form of Q− = ∫ ∫
B(v⃗∗−v⃗ ,σ) f f∗dσd v⃗∗, and we conclude that the collision

kernel for hard-spheres is given (up to a constant) by:

B(v⃗∗− v⃗ ,σ) = |(v⃗∗− v⃗) ·σ|, B(|v⃗∗− v⃗ |,cosθ) = |v⃗∗− v⃗ ||cosθ|. (2.21)

The two expressions are identical, but the second more clearly indicates how the collision kernel is a function
of solely the absolute difference in speeds and the deviation angle θ.

A few remarks can be said about this derivation process. Firstly, we will discuss the derivation of the gain
term Q+. Whilst the procedure is identical in many of the steps, except that σ is integrated overS2+ = {σ ∈S2 :
(v⃗∗− v⃗) ·σ > 0}, at some point we must rewrite the expression in terms of the post-collision velocities. This
comes before the Boltzmann-Grad limit, where we assume on physical grounds that f (2) is continuous at a
collision, i.e.:

f (2)(t , x⃗, v⃗ , x⃗∗, v⃗∗) = f (2)(t , x⃗, v⃗ ′, x⃗∗, v⃗ ′
∗)

It should then be clear how f ′ f ′∗ appears in the gain term, by again applying the scaling limit and using the
molecular chaos assumption. A full treatment of the derivation of the gain term can be found in Cercigani’s
work [7].
Secondly, we find that the molecular chaos assumption is a strong one. Coupled with the continuity assump-
tion of f (2) at the time of collision, it is logical to conclude that the uncorrelated pre-collision velocities give
rise to uncorrelated post-collision velocities. But this is nonsense from a rigorous probablistic standpoint: the
moment the particles collide their velocities must be correlated. An interpretation of the assumption, then,
is that these correlations are negligible in the scaling limit.
Lastly, though we started this derivation explicitly in a 3 dimensional space, we only used this fact in the scal-
ing limit. As such, we find that much of the same analysis can be reused to conclude that in any dimension,
the Boltzmann collision kernel has the shape of (2.21) for hard sphere elastic collisions.

2.4. Fokker-Planck equations
Another set of kinetic equations that describe the evolution of certain gas processes is the Fokker-Planck
equation. Described in 1914 by Dutch physicist Adriaan Fokker [15] and then in 1917 by the well-known Ger-
man Physics Nobel Prize winner Max Planck [27], the equation is a diffusive model. Based on the assumption
that the particle dynamics can be treated as Brownian motion, and that the process is independent of the
past, i.e. a Markov process, it appears in many diverse fields of mathematics: economics, information theory,
and kinetic theory, to name a few. The full derivation in the physical context is handled in detail by the com-
prehensive review paper by Chandrasekhar [8, pgs. 31-33]. The linear kinetic Fokker-Planck equation, which
will be of interest in future chapters, reads as follows:

∂t f + v ·∇x f =∇v · (σ∇v f +βv⃗ f ) (2.22)

Where as before ∇x represents the gradient in the position coordinates, and ∇v the gradient in the veloc-
ity coordinates. σ > 0 is known as the diffusion coefficient, and β ≥ 0 is known as the friction coefficient.
In the case of spatial homogeneity, we see that an equilibrium distribution of f is the Maxwellian velocity
distribution. Indeed, this becomes clear by rewriting (2.22) into:

∂t f =σ∇v ·
(
∇v f + β

σ
v⃗ f

)
Then the Maxwellian distribution below, for some normalization constant C , is an equilibrium distribution:

f (t , v⃗) =Ce
−β|v⃗ |2

2σ =⇒ ∇v f =−β
σ

v⃗Ce
−β|v⃗ |2

2σ =−β
σ

v⃗ f =⇒ ∂t f = 0 (2.23)

We will derive, in Chapter 5, that the dynamics of the piston in a spatially homogeneous environment, located
on a mathematical torus, under a certain scaling limit (the grazing collision limit), can be accurately described
by a Fokker-Planck-type equation, namely:

∂t f =∇v · (|v |∇v f + v⃗ |v | f ) (2.24)
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A more detailed analysis of solutions of this equation and their convergence to equilibrium can be found in
Section 4.2.





3
Computer simulations

We will first outline previous work done in simulating the adiabatic piston problem, then introduce a new
approach for computer simulations of this sort, with a relevant discussion on optimal running times. The
implementation of this algorithm led to two different approaches discussed, and then we experimentally
determined what the optimal parameters are for the algorithm, and how they scale with N the number of
particles. Future improvements to the algorithm are handled briefly at the end. We make use of standard
notation for algorithmic analysis, with f (n) = O (g (n)) meaning that there exists a constant n0,c > 0 such
that for all n ≥ n0, f (n) < c · g (n), f (n) = Ω(g (n)) meaning that there exists a constant n0,c > 0 such that
for all n ≥ n0, f (n) > c · g (n). Hence, f (n) = O (g (n)) means that f is bounded above by (a multiple of)
g (n) as n → ∞, and Ω denotes a bound from below. We also note that the code is publicly available on
https://github.com/Blasylf/BEP .

3.1. Prior work
Due to the curious nature of the adiabatic piston paradox, there have been multiple simulations concerned
with the different characteristics and regimes of the scenario [6, 9, 21]. In all of them, the piston is perturbed
from its initial rest state to an unstable oscillatory regime (assuming the pressures P1 ̸= P2 are not equal). This
regime stabilizes to a decaying oscillatory regime, where the piston moves to ensure mechanical equilibrium.
Afterwards, once achieving this intermediate equilibrium, the piston relaxes further until equal temperatures
are reached over a long time frame. This can be clearly seen in Figure 3.1.
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Figure 3.1: A typical plot of piston position over time, for unequal beginning temperatures and pressures (T1 ̸= T2,P1 ̸= P2). Using the
same configuration as [9], the piston is in a cylinder of length L = 30, with N /2 ≈ 13500 particles on either side of the piston. Zoomed in
portions of this plot can be found in Fig. 3.2

First we have Chernov and Lebowitz’s simulation [9]. We will base our simulation work on this paper,
and so will be handling it in detail in the algorithmic sense in Section 3.1.2. Nonetheless, in [9], they were
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interested in confirming the hydrodynamics limit through means of a large simulation, in the ’simple’ sce-
nario of particles that only interact with the piston (and so not with each other) through elastic collisions.
They considered in effect a one dimensional cylinder of length L, and observed the limit as L → ∞. This
was initially motivated by prior work [10] that derived deterministic equations for the piston’s position (as
a Ornstein–Uhlenbeck process, which is both a Gaussian and a Markov process - details of which can be
found in [25, Ch. 9]), ignoring the case of particle re-collisions, where a particle collides twice or more with
the piston. Of course, the finite cylinder forces re-collisions, and these give rise to auto-correlations that ruin
the Markov property as they build up with each re-collision [10]. In order to accurately describe the limiting
regime through means of computer simulations, they ran a comprehensive model for N = 27 ·106 particles,
for a long time period (roughly ∼ 103 collisions per particle).

Next we have Cencini et al.’s work [6]. In their paper, they derive a set of macroscopic equations for the
adiabatic piston in the thermodynamic limit of N ,mp ,L → ∞, where N is the number of particles, L the
length of the cylinder, and mp the mass of the piston (the masses of the particles remain fixed). They then
verify these derivations through means of a computer simulation, on two different types of gas. Since they
posit a few assumptions in their derivation, the second type of gas explicitly satisfies those assumptions. Cu-
riously, it is modelled through constantly ’resampling’ the gas from the macroscopic variables. That is to say,
an initial configuration of the system is generated, corresponding to the macroscopic variables, and develops
(with no particle-particle interactions) until the first collision with the piston. The transferred kinetic energy
is then used to determine the new temperatures across both sides of the piston, and then the particles are re-
sampled according to this new macroscopic configuration. Whilst the number of particles wasn’t particularly
large at N = 103, the simulations were run until t ∼ 107, and then re-run ∼ 100 times to take an average across
multiple runs. Therein they confirm that the second gas type agrees with their model, but the standard ideal
gas does not when the total mass ratio is too small (it converges far slower to an equilibrium state).

Lastly of interest is Mansour et al.’s work [21]. They consider the cylinder in 2 dimensional space, and ap-
proached the entire problem, in the theoretical sense, from the hydrodynamical perspective. There they used
the molecular dynamics simulation and compared them against numerically solved hydrodynamic equa-
tions. Moreover, they take a limit as the piston mass mp →∞ to derive a set of macroscopic equations for the
piston’s dynamics, and use the simulation to test these results.

3.1.1. Introduction of discrete model
In order to describe the time evolution of a kinetic system in the adiabatic piston context, we simulate N
individual particles, each of mass m. Recall in Chapter 2 that the piston is found in a cylinder, of length L, and
cross-sectional area A. Often times it is convenient to reduce the problem to one dimension, as the piston
can only move along the axis of the cylinder. Then the piston position and velocity (xp , vp ) ∈ [0,L]×R are
strictly one dimensional. We must also take into account the piston mass mp . Returning to the N particles,
we split these into N1 particles left of the piston, and N2 particles right. For all of these, we must track their
velocities (xi , vi ) ∈ [0,L]×R,1 ≤ i ≤ N . For the simplest model, which we will be using here on out, the particles
solely interact through elastic collisions with the piston. This means between collisions, xi can be recovered
directly from vi , through simply:

xi (t ) = xi (t0)+ vi (t0)(t − t0), (3.1)

where t0 is the time since last collision for particle i with the piston. If particle i collides with the piston, its
new velocity can be computed by:

v ′
i =

m −mp

m +mp
vi +

2mp

m +mp
vp , v ′

p = 2m

m +mp
vi +

mp −m

m +mp
vp , (3.2)

where once again the primes denote the post-collision velocities. Then there is the question of boundary con-
ditions. Since the model has been reduced to one dimension, there is only two types of boundary conditions
possible:

1. Elastic collisions with the cylinder walls at x = 0 and x = L. In this case, particle velocities simply get
reflected v ′

i =−vi .

2. Periodic boundary conditions, wherein a particle upon reaching xi (t−) = 0 (or L respectively), contin-
ues with the same velocity vi (t ) from the other side xi (t+) = L (or 0 respectively).
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The computer model then calculates the velocities and positions of the particles and pistons (representing
2N +2 variables) according to the collision laws (3.2) and boundary conditions, from an initial time t = 0 up
to some finite time t . The initial configuration also needs to be given as an input for the computer model.
Since it is generally unwieldy to specify all 2N parameters for the particles, it is common to simply describe
the initial probability density function f0(x, v), and then take 2N samples of it. However, in most simula-
tions and indeed in later parts of this thesis for theoretical work, we consider only the spatially homogeneous
case. In this regime, the positions of particles are distributed uniformly across the cylinder (or, eventually,
across either the interval [0, xp (t = 0)] for particles on the left side of the cylinder, and [xp (t = 0),L] for the
right). Then f0 becomes solely a probability density function over velocities, and such N samples are taken
to determine the particle velocities vi .
So all in all, we have the following degrees of freedom for input:

• The mass ratio m
mp

exclusively determines the shape of the collision laws in (3.2).

• The number of particles N1 on the left of the piston, and N2 on the right.

• The initial velocity distribution f0(v) for the particles, from which the initial particle velocities are ran-
domly generated.

• Likewise, the initial velocity and position of the piston, of which it is customary to take xp (t = 0) = L
2

and vp (t = 0) = 0.

• The length of the cylinder L.

• The boundary conditions, either specular reflection or periodic.

From this construction, it is clear to see that N1, N2, the masses, and total kinetic energy are conserved.
Let us gain some insight on the macroscopic variables outlined in Section 2.1 from the simulation variables
described above. Since we have an ideal gas setting - elastic collisions, gas particles modelled as hard spheres
(of radius r = 0!) - we can link the temperatures T1,T2 to the average kinetic energy of the molecules. Indeed,
we have the well-known relation for ideal gases:

1

2
m〈v2〉 = 3

2
kB T,

where 〈v2〉 = 1
N

∑N
i=1 v2

i is the sample average of v2 and kB is the Boltzmann constant (1.38 ·10−23 J/K ) . We

will denote 〈v2〉1,2 = 1
N1,2

∑N1,2

i=1 v2
i the sample averages for the left and right sides respectively. To avoid dealing

with kB , we set it to 1 (which is equivalent to taking the masses of the particles in the order of kB ). Then we
have:

m〈v2〉1 = 3T1, m〈v2〉2 = 3T2

This result can also be recovered directly from the equipartition theorem. To derive the pressures, one can
use the relation PV = N kbT . Since we have V1 = Axp , V2 = A(L−xp ), we get:

P1 = N1T1

Axp
∝ N1m〈v2〉1

xp
, P2 = N1T1

A(L−xp )
∝ N1m〈v2〉2

L−xp
.

In the case that xp = L
2 , equal pressures only holds if N1〈v2〉2 = N2〈v2〉2 which, as noted in Chapter 2, is

a looser condition to equal temperatures. If we have additionally that N1 = N2, then equal pressures and
equal temperatures occur simultaneously, and so the situation is of no particular interest. Due to the random
nature of sampling the velocities, in general 〈v2〉1 ̸= 〈v2〉2 and so every computer simulation deals with a state
that is not in thermal equilibrium.

3.1.2. Chernov and Lebowitz’s simulation
As mentioned previously, Chernov and Lebowitz [9] were interested in the scaling limit as L →∞. To this end,
they fixed some of the degrees of freedom outlined before as functions of L. To ensure a distinction between
the mechanical (equal pressures) equilibrium and thermal equilibrium regime, they sampled N1, N2 from a
Poisson process with parameter L3/2. As a consequence, N ∼ L3 and N1 ≈ N2. Moreover, they fixed the piston
mass to scale as mp = 2mL2 and hence the mass ratio is given by ∼ L−2. They used hard boundaries and an
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initial piston state of vp (0) = 0, xp (0) = L/2. The scaling of N ,mp with respects to L was chosen so that, if the
particles are initially distributed with velocities of order O (1) and density O (1), the acceleration of the piston
remains fixed at order O (1). Then, under the hydrodynamic scaling limit τ = t/L, yp (t ) = xp (t )/L, one finds
that the piston satisfies hydrodynamic questions so long as M ∼ Nα for α ∈ (0,1) [10]. They had also shown,
for particular velocity distributions, these solutions are unstable with the initial conditions provided. One of
these velocity distributions is a bimodal uniform distribution, i.e.:

f0(v) =
{

p0, vmin ≤ |v | ≤ vmax

0, otherwise
(3.3)

For some normalizing constant p0. In the case of the simulation in [9], vmin = 0.5, vmax = 1. What was not
clear from the theoretical point of view is for how long the hydrodynamic equations represented an approx-
imate solution to the evolution of the particle system, for large N , hence motivating the intensive computer
simulation [4]. In the simulation, L was at most 300, giving rise to N = 27 · 106 particles. Their numerical
results studied also how long the unstable regime lasted (∼ L logL) and how long the relaxation to the equi-
librium took (∼ L7/2). The instability and relaxation was observed in our recreation, see namely Figure 3.2.

3.2. An efficient algorithm for particle collisions
As we saw in the previous section, some of the computer simulations involve a lot of particles or are run for a
long amount of time. As such, it is in our best interest to find an efficient algorithm to simulate the procedure.

3.2.1. Initial approaches
In recreating [9], we found that the computations for L = 300 was quite slow. Naively, a natural approach for
many trained in numerical methods is to discretize time, and integrate over a time step ∆t . Since in our case
we have point masses, one can check during a time-step if a particle is going to collide with the piston, and
handle it accordingly. However, this raises many complications. Firstly, if many particles are identified as
going to collide with the piston, then there is the matter of picking which one collides first, as the order of
collision matters. Worse still, after the first collision, the new piston velocity v ′

p may be such that the initially
calculated order is completely wrong. Moreover, this method cannot detect if a particle collides twice (or
more) in a time step.

A smarter approach, is noting the fact that between collisions the system is fully deterministic from some
initial position and the velocities. As mentioned before, the position at an arbitrary time can then be recov-
ered by (3.1). So it would be logical to simply determine the first particle to collide with the piston, and then
update the system accordingly to the new time. The problem with this, however, is that after each collision,
the piston velocity changes, and so the first particle to collide has to be redetermined. If Nc is the number of
collisions, then we would expect the computation time to scale with O (Nc N ). We can quantify this further
if we assume that the particle velocities are on the order of 〈|v |〉 (i.e. close to the sample mean in absolute
value), the piston starts at rest in the middle and the situation is such that:

∀t ≥ 0 : |xp (t )−xp (0)|≪ L, |vp (t )|≪ 〈|v |〉
i.e. the oscillations of the piston are small compared to the particle motion, then it is reasonable to assume
that the time t∗ between a particle’s collision is given by t∗ ∼ L

〈|v |〉 (if the piston is fixed at L/2, the particle must
travel to the wall and back to collide again). Hence the number of collisions would scale with Nc = N t/t∗, and
so the naive approach of recalculating the collision times for every collision would cost

O (N 2t〈|v |〉/L) =O (N 2)

Which is quadratic in N , and so not ideal. What would be the ideal algorithm, then? Well, if we take the
strategy of updating the system due to the collisions, any algorithm would have to run at least as often as there
are collisions, so an optimal algorithm has complexity Ω(Nc ). Indeed, if the output of the program includes
the ordered collision times, then one could argue that an optimal algorithm has complexityΩ(Nc log N ). [29]

3.2.2. Description of algorithm
Fortunately, we find an improved algorithm in [29]. Instead of trying to recalculate the collision times for
every particle after every collision, instead we group up the particles (and piston) into cells, and only recom-
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Figure 3.2: Above, plots of the re-scaled piston position yp = xp /L over re-scaled time τ= t/L using the same configuration as [9]. Here
L = 30 and so N ≈ 27000. (a) The piston begins to oscillate with an exponential amplitude growth, which then quickly stops to give rise
to a damped oscillation. (b) These damped oscillations then persist for a long time in comparison to the unstable period and (c) after
sufficiently long times, the piston enters a noisy regime.

pute the collision times for particles in the neighbouring cells of the collision (which, in our case will always
be the piston). In the case of [29], these cells are uniform in length, and so if we have mc cells (not to be
confused with mass), then each cell with have a length l = L/mc . In the higher d-dimensional case, the side-
lengths of the cells will be l = Lm−1/d

c assuming the simulation’s spatial space is [0,L]d . Whilst these cells
cut down on the computational costs for collisions, some computation time must be spent on keeping track
of which particle belongs to which cell. Moreover, we incur a minor memory cost on storing the cell structure

Formalizing this idea, we have then an event queue. Each particle corresponds to one event in the queue,
and there are two types of events:

1. Collision events, in which the particle in question collides with the piston. If this happens, both the
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particle and the piston’s velocities need to be updated in accordance to the collision laws (3.2), with
their positions set to the point of impact.

2. Transfer events, in which a particle moves from one cell to another (adjacent) cell. If this happens, the
particle’s position needs to be updated.

The event queue is implemented as a heap, and ordered by the system time of the occurrence of the event (so
not necessarily the time until the event happens). One can note that each event only leads to the updating
of one or two objects (the particle, and eventually the piston). Indeed, we can delay the update of the whole
system by keeping track, for each particle, the time since the last event (involving said particle) t0. Once
again, (3.1) recovers the position of the particle at time t , if needed, for example, to compute collision times.
However, in doing so, it is critical that the queue is ordered by the system time of the event occurring, and
not the event duration (as otherwise slow-moving particles will never get updated, without forcing an update
across the system, which brings us back to the non-optimal algorithm). In the case of a transfer event, we also
need to ensure that we are not approaching the piston, otherwise we need to compute the collision time. So
in general, we get an algorithm of the form:

• Step 1: Find the next event in the event queue.

• Step 2: Handle the event

– If it is a collision event, update the relevant velocities

– If it is a transfer event, update the cell structure

• Step 3: Compute the next transfer time for the particle corresponding to the event

• Step 4: Compute the next collision time with particles in the appropriate neighbouring cells

• Step 5: Adjust the position of the event and, in the general case, the other colliding particle’s event in
the queue (in our case it is always the piston).

• Step 6: Return to Step 1

We note that Step 4 is slightly less computation work than it initially seems. If the event is a transfer event,
then we only need to compute the collision times for the ’new’ neighbouring cells, see for example Figure 3.3
from [29].

Figure 3.3: The black particle just transferred from cell A to cell B, and so only needs to compute collisions in the dark-shaded cells, as it
already computed collisions in the lightly shaded cells. Taken from Sigurgeirsson et al., 2001 [29, Fig. 3]

We have, up until this point, avoided mentioning boundary conditions. In reality, they are not that difficult
to implement in this system. Under the two types of boundary conditions mentioned in Section 3.1.1, we find
that it is sufficient to treat the boundary as a collision event. In the case of hard boundaries, these are in fact
collisions, and in the case of periodic boundaries, the particles are transferred to the other side of the piston
(and their respective cell position updated).
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We will now remark the following significant divergence from [29]. Since we only have the colliding piston,
there is no need to consider collision events as pairs (and so avoiding the "check" events described in the
paper). Moreover, we need to handle the piston differently, as it is the only particle that can transfer between
cells and get collided on. In our implementation, we give the piston an event that is exclusively a transfer
event, with collisions against the piston handled by the particles’ collision events. More details on how this
algorithm is implemented will be elaborated in Section 3.3.

3.2.3. Running time analysis
Following the steps of [29], we see that:

• Step 1 is a single operation (as the event queue is a heap, so the smallest element is always ’on top’)

• Steps 2 & 3 involves a constant number of operations

• Step 4 involves a constant number of operations for each particle in the neighbouring cells. If we denote
ns (i ) as the number of particles in the neighbouring 3 (in the 1D case) cells, at the occurrence of event
i , then this step incurs ns (i )−1 operations

• Step 5 involves at most log N operations.

Combining these, we find that the total computational cost satisfies:

O

( ∑
i∈events

(1+ns (i )+ log N )

)

If we assume a uniform spatial distribution, then the number of particles per cell is (in the 1D case) N /mc ,
where again mc is the number of cells. So we can expect ns (i ) = O (N /mc ). We can then rewrite the sum
over the events as a multiplication over the expected number of events. This expectation can be bounded
from above as the expected number of collisions Nc and the expected number of transfers, Nt . In the general
case, for particle-particle collisions, Sigurgeirsson et al. derive that the average complexity of the algorithm
satisfies:

O

((
1+ log N + N

mc

)(
σc

N

L
+ mc

L

)
E[|v |]N t

)
(3.4)

Where σc is the collision cross-section. We note that E[|v |] denotes the expected absolute particle velocity.
In the second pair of brackets one sees clearly the expected number of collisions and transfers, respectively.
From (3.4), [29] concludes that the ideal number of cells should scale with N , so that N /mc ∼ 1 in the first
brackets and equivalently the number of transfers scales with the number of collisions in the second set of
brackets. Under this configuration, we would expect that (3.4) simplifies to:

O

(
(1+ log N )

N

L
E[|v |]N t

)
=O

(
N 2 log N

)=O (Nc log N )

Where in the last step we note in 1D, particle-particle collisions gives Nc ∼ N 2. In our case, however, we have
only the piston colliding and so the computing time should scale differently in N . In particular, the expected
number of collisions should scale more slowly, but Step 5 should incur a larger cost as every particle is "part-
ners" with the piston. Due to time constraints, however, the exact details of this scaling was not confirmed.

3.3. Implementation
We implemented the algorithm outlined in Section 3.2.2, under the variable constraints given in 3.1.2 (as we
were interested in reproducing the results of [9]). The spatial positions are distributed uniformly over [0,L]
and the velocity distribution was of the form (3.3), with vmin = 0.5, vmax = 1. These distributions were sam-
pled using a random number generator known as the Mersenne Twister (for more details see [23]).
As mentioned previously, the algorithm in Section 3.2.2 requires an event queue which needs to act as a heap.
Each event corresponds 1-1 to a particle, so naturally it would make sense to have one point to the other. We
managed to implement this by keeping the list of particles fixed, and having each particle keep track of its
own events. The event queue, then, would order a set of pointers to the events. The associated particle to an
event can be recovered as each event stores the index of the particle in the particle list associated to the event.



20 3. Computer simulations

The exceptional case is the piston. Since the piston is handled differently in terms of events (it only trans-
fers between cells, collision computations are ’offloaded’ to the particles), its event is stored separately, and
points to an index of −1 to identify it as the piston.
The cell structure was relatively easy to implement, being a list (of length mc ) of lists containing the indices of
the particles. As mentioned earlier, boundary conditions were handled as collision events, with a flag .wall
to indicate if the event was a collision.

Due to the nature of floating point precision, some adjustments had to be made. Rounding errors could
mean that if one computed the position of impact for a particle and a piston by (3.1) separately, one would
find xp (t ) ̸= x(t ) at the time of impact. Fortunately this was not that bad in most cases, if v ′, v had opposite
signs (because then the particle would transfer back to its correct positions, albeit at a slightly slower pace).
The problem became more serious if the piston was on the boundary between two cells, as it could lead to
a particle erroneously thinking it is in the right cell, and transferring further rightwards or re-colliding with
the piston, when it should remain in the left cell. In general, these errors led to particles phasing through the
piston, but were fixed by simply forcing the position of the particle to match that of the piston at the time of
impact, and forcing the two to lie in the same cell.

A bigger problem, however, was Step 5. Indeed, whenever a collision occurs against the piston, all the
neighbouring particle’s collision times need to be updated, and correspondingly shifted in the queue. If we
directly updated the events from inside the heap, it would no longer be well-ordered. As such one would have
to either maintain the heap structure using bubble up/down methods (using the pre-existing well-ordering
of the heap, prior to updating the event), re-order the heap structure ’from scratch’ (which costs O (3N ) com-
parisons), or remove (or mark the old event as void) and re-insert the event into the heap, which is often
O (log N ). The problem is made even worse that typically we do not know the index of the event in the heap
array, so we need to find it first (which is either O (N ) or O (log N ) depending on implementation. Because of
this, we identified two different approaches and compared them.

3.3.1. A comparison between heaps and red-black trees
We remark that all algorithmic running times stated in this section can be found in [11]. First, we have the
regular binary heap structure. It is a binary tree, where each event is a node whose key is the system time
upon realizing the event. Then, one finds that every parent node’s key is smaller than its children (also known
as a min-heap). This is a relatively simple data structure that is provided in the C++ standard library through
the header file <algorithm>. Namely it offers make_heap to make a heap out of an array (which is a O (n) pro-
cess, for n the length of the array), and then pop_heap, push_heap to be used when removing (the smallest
element) and inserting elements in the heap, both O (logn) processes. The standard library, however, did not
provide a method to re-position an updated node in the heap (decrease/increase-key, or in general heapify).
Unfortunately, these methods generally require as input the index of the node in the array to update, but we
have no way to extract that index without finding it first, which was a O (n) process. As such, changing the
data structures and code so we could maintain the heap property was not seen as feasible due to time con-
straints. We resorted to simply updating the events as needed, and then calling make_heap to re-create the
heap, incurring a O (N ) computational cost, before returning back to Step 1.

An alternative to this was to use red-black trees. These are also binary heaps, but with the property that
it is self-balancing. Unlike in the simple binary heap structure, the children of a parent node are ordered in
such a way that the tree is roughly balanced, i.e. if there are 2n −1 nodes in the tree, then the tree height is n.
Due to this property, searches and deletions are O (logn) (as they scale the depth of the tree), at the cost of an
extra bit to keep track of if a node is red or black. Full details about how such a data structure is implemented
can be found in [11, Ch. 13]. This data structure is also provided in the C++ standard library, using either the
header files <set> for trees with just keys or <map> for trees with key, value pairs. In this case, we used the
set structure, and for each event that needed to be updated in the queue, we would find, remove and then
re-insert them into the queue, which was all O (log N ).

Due to the differences in implementation, the heap method performs better for small simulations (Fig
3.4a) but ultimately the O (log N ) scaling wins out for the red-black tree. We note that the computation times
increase significantly as mc becomes small, where in mc = 1 gives the inefficient naive algorithm described
in Section 3.2.1, giving us the motivation to pursue the algorithm described by [29].
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Figure 3.4: The computation times against the number of cells mc using either a binary heap (black dot) or red-black tree (blue cross) as
the event queue for (a) N = 5000 particles and (b) N = 20000 particles, simulated over a time frame t = 5, using the same parameters as
[9]. The random number generator was seeded to ensure identical calculations were carried out between the two data structures.

Another artifact of note is the difference in the scaling of the optimum number of cells. The optimum for
Figure 3.4a is for the heap structure mopt = 43, and for the red-black structure mopt = 85, whilst in Figure 3.4a
it is mopt =,155 for the heap and red-black structures respectively. Unsurprisingly, the differences in the com-
putation costs have an impact in the optimal choice for mc , though it is surprising that the optimums for the
red-black approach is higher than the slower heap approach. This suggests the constants associated with the
log N scaling of the red-black approach are significantly larger than that of the heap approach. Nonetheless,
meaningful conclusions cannot be taken from two data points (in mopt) alone, and so we next sought out to
optimize over the number of cells.

3.3.2. Optimizing the number of cells
As mentioned in Section 3.2.2, there is an interplay in the computational costs of determining the next col-
lision (for particles in cells neighbouring the piston), and the costs of transferring particles between cells.
As suggested in Figure 3.4, picking mc too low or high can lead to a slower algorithm. To make this more
concrete, we sought to determine mopt over varying N , and how the computation time scales with N in this
optimum. The former, to then use for large scale simulations where optimizing over mc would simply take
too much time, and the latter to confirm the efficiency of the algorithm.
Before we delve into the data, we must remark that computation times are quite peculiar to measure. In-
deed, depending on the presence of background tasks, computer specs, power settings and if the program
is running in the foreground or not, one can get wildly different results. Moreover, it does not necessarily
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represent the actual CPU or processor time spent running the program. Unfortunately, measuring the CPU
cycles a program uses during its runtime is practically impossible to measure, so the computation time acts
as a barometer in this regard. As such, it is more worthwhile to comment on the trends in computation time,
which persist provided the compared scenarios were run in the same environment.

We first see how the optimum number of cells mopt scales with respects to N , in Figure 3.5. As we saw in
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Figure 3.5: Here we find the optimum number of cells mopt against N for the two data structures, for simulations up to t = 4 with the

configuration of [9]. They were then fitted against aN b . For the heap (black dots), we get a = 0.7±0.8, b = 0.4±0.1, and for the red-black
method (blue crosses), we get a = 1.6±0.5,b = 0.45±0.03

Figure 3.4, the red-black approach has a higher mopt than the heap approach. We also note that mopt is very
noisy for the heap approach. This is because for the heap, the computational time increase for going over
mopt is low (see the tail ends in Fig. 3.4). Since in [29] the computed relation is of the form mopt ∼ N b , we then
also curve-fitted the data points against the relation aN b . As we can see in Fig. 3.5, the heap data is too noisy
and level to draw any meaningful conclusions, but the red-black approach seems to have mopt ∼

p
N .

Of interest is also the relation between the computation time and N. Since [29] predicts that the computa-
tion time scales with O (N 2 log N ), we initially plotted the computation time against this parameter. For the
heap approach, this gives a relatively smooth linear relation (see Fig. 3.6a), with disturbances caused pre-
dominantly due to computation time randomness. However this linear fit was not observed for the red-black
approach (against N 2 log N the computation time was sub-linear). Since we incur a cost of O (N ) extra in the
heap approach which becomes O (log N ) in the red-black approach, an alternative plot would be the red-black
computation time against N log(N )2, which gives back a linear relation again (see Fig 3.6b).

Alternatively, one could also plot the computation times against N b log(N ). This was investigated in Fig-
ure 3.7. Here we can clearly see that the heap is better for low N but the red-black approach quickly be-
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Figure 3.6: (a) The computation time for the heap approach plotted against N 2 log N , which was found in [29] (albeit in a different
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comes better as N increases. Moreover, the curve fits of the form aN b log N are pretty close to the data, with
a = 1.4± 0.5 · 10−7,7.9± 0.8 · 10−5 and b = 1.95± 0.03,1.304± 0.009 for the heap and red-black approaches
respectively. Unfortunately, we find that the heap approach is actually not that much better than the naive
approach described in Section 3.2.1 (that scales, intuitively, with O (N 2)).
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Figure 3.7: The computation time against N for mopt found in Fig. 3.5, for both the heap (black dots) approach and the red-black (blue

cross) approach. Both were then curve-fitted against aN b log N , where a = 1.4±0.5 ·10−7,7.9±0.8 ·10−5 and b = 1.95±0.03,1.304±0.009
for the heap and red-black approaches respectively.

3.4. Concluding remarks
The implementation led to two different approaches, but it is clear from Fig. 3.7 that the red-black approach
is better for large N . In this approach, we have found mc ∼

p
N from Fig. 3.5. To compare, the paper that we

base the algorithm on [29] found in the 1D case that mc ∼ N , and in general, the optimum cell sizes are such
that there is on average one particle per cell. Such a result would be logical for particle-particle collisions,
but too stringent for our case of only the interacting piston. So we could, heuristically, argue that the change
mc ∼ N →p

N follows from the change Nc ∼ N 2 → N (with Nc being the number of collisions), though this
argument proves tedious to formalize. Nonetheless, though the results in 3.7 are in agreement with the re-
sults found in [29, Figs. 8,9], we suspect that the implementation could be further refined so that it scales with
O (Nc log N ) =O (N log N ) in the non-interacting particles scenario. A rigorous derivation of this result, in the
spirit of Section 3.2.3, would also be of interest, where the interplay of all the parameters can be investigated
separately.

We would also like to remark the data requirements for the algorithm in Section 3.2.2. For example, in the
case of L = 300 as was [9], with the scaling described in Section 3.1.2, around 4GBs of data was needed to store
all the details of the particles. No doubt some of this can be optimized, but at that level, having an event for
each particle can incur a major memory cost. Avoiding storing these events, however, incurs an additional
computational cost, which at N ∼ 107 is hard to ignore.

There are also a few issues with floating point numbers that normally do not affect the simulation but that
may be a concern for large simulations. We noted that each event is keyed by the system time at the event’s
occurrence. Likewise, particles store the time since their last collision, to allow for the use of Eq. 3.1 to delay
the positional updates. Towards the end of a simulation run, these times are ≈ t . But the successive times
between collisions, seems to scale with 1/N . If one uses floats (32-bit precision), then for N ∼ 107 one already
that t cannot be much larger than 1 (otherwise the 7 decimal places of precision gives t + 1

N ≈ t , and so the
event does not progress the system time.
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3.4.1. Future work
Our approach treated the piston separate from the particles, and so made the piston the only particle without
collision events. An alternative, would be to have the piston handle all the collision events, and the particles
would simply have transfer or wall collision events. One could also improve the implementation, in partic-
ular the process of maintaining the heap after updates, with custom code to at least reduce the expensive
constants incurred by finding, removing and reinserting in the red-black approach. An example of this is us-
ing the C++17 standard, which gives the method std::set<key>.extract. This both finds and removes the
node, whose key-value can then be modified freely and then reinserted.

Another potential improvement for the optimality of the algorithm, is by making the cells non-uniform
in length. In particular, for the case of a piston centered in the middle of the cylinder, that oscillates around
this initial position (as in Figure 3.1), it may be better to pick cell lengths that decrease as one approaches the
center. Assuming the number of cells mc remains fixed, this should not meaningfully change the number of
transfer events handled per collision, but the thinner cells around the piston could significantly reduce the
number of collision events updated. Such dynamic cell shape algorithms have been explored [13, 28], but
for complicated shapes lead to problems in determining which particle is in which cell (and which cells are
neighbouring). We can, however, exploit the regularity of our 1 dimensional case to, for example, make the
cells lengths geometric as one approaches the hard boundaries to the center.

Whilst we predominantly concerned ourselves with recreating the results of Lebowitz and Chernov’s sim-
ulation [9], with eventually the optimal algorithm in Sigurgeirsson et al.’s [29], one may be interested in adjust-
ing the degrees of freedom in the simulation given in Section 3.1.1. Some do not majorly affect the simulation
(changing the mass ratio in the scaling given in Section 3.1.2, for example, only reduces the amplitude of os-
cillations across the board). But others are of particular interest, namely different initial distributions f0, and
periodic boundary conditions. Other parameters can be investigated over different scaling limits, too. And
one could see if forcing 〈v2〉1 = 〈v2〉2 to be equal on both sides at the start may kill off any oscillation, or if the
spatial component of the simulation still forces a very minor degree of oscillation.

Lastly, one can also look at collecting different types of data. Due to time constraints, we could not dis-
cuss in detail how the particle distributions evolve over time, by running an ensemble of simulations (with
the same parameters, just different random realizations of f0), which would’ve been of particular interest in
Chapter 5. One can also look at how the macroscopic temperature of both sides evolve over time, as was
done in [6, 21]. The derived relations for mopt, then, allows for future simulations to be done without major
concern for optimality.



4
The H-theorem and convergence to

equilibrium

The H-theorem is a series of results, varying on the kinetic equation used, that implies a convergence to
equilibrium. In the most general sense, there is often a functional H( f ) = ∫

A( f )d v⃗ , such that solutions to
the kinetic equation give rise to d

d t H( f ) ≤ 0. In nice enough cases, one can find an equilibrium distribution
f∞ that minimizes H , and so in a sense one would expect limt→∞ f (t , x⃗, v⃗) = f∞ (⃗x, v⃗). Thankfully, such a H-
theorem has been described for the general case of the Boltzmann equation (2.9), although rigorous proofs,
as like many other topics in the field, prove to be far more elusive. Given we have a sense of convergence
towards equilibrium through the H-theorem, it is natural to ask what the rate of convergence is. Often times
it is very difficult to show the rate of convergence, but if the rate of change of H given by the H-theorem can be
bounded by H , then exponential convergence quickly follows. Fortunately, in the case of the Fokker-Planck
equation found in Section 2.4, we can find the relevant H functional, the corresponding H-theorem and an
exponential rate of convergence, which we will show at the end of the chapter. Unfortunately the results do
not extend to our kinetic Fokker-Planck equation (Eq. 2.24), but a generalized convergence to equilibrium is
still recovered. To start off, we will state and prove the general H-theorem.

4.1. H-theorem for the Boltzmann equation
We consider the time evolution of the functional:

H ( f ) =
∫
Rd

∫
Rd

f log f d v⃗ d x⃗ (4.1)

This functional is sometimes called the Boltzmann’s H functional, or the entropy functional. Indeed, if the
reader is familiar with information theory, this is equivalent to Shannon’s entropy, up to the sign [30]. The
time evolution of this functional is as follows:

d

d t
H ( f ) =

∫
∂t ( f log

(
f
)
) d(v⃗ , x⃗) =

∫
∂t f log

(
f
)+ f

∂t f

f
d(v⃗ , x⃗) =

∫
∂t f log

(
f
)

d(v⃗ , x⃗)+ d

d t

∫
f d(v⃗ , x⃗)

For the last term in the equation, we see that this expression is the same as the rate of change of the total
mass (Eq. 2.18), which is a conserved quantity for solutions of the Boltzmann equation, so it evaluates to 0.
Substituting the Boltzmann equation (Eq. 2.9) in for ∂t f and using the fact that the transport term does not
contribute to this functional (Lemma 2.2.2), we get:

d

d t
H ( f ) =

∫
Rd

∫
Rd

Q( f , f ) log
(

f
)

d v⃗ d x⃗ (4.2)

We see that this is of the form of one of the expressions in Maxwell’s weak formulation. Indeed, if we sym-
metrize equation 2.12, by bringing it back to something of the form

∫
B · ( f ′ f ′∗− f f∗) · · ·d v⃗ , we get:∫

Rd
Q( f , f )ϕd v⃗ =−1

4

∫
Rd×Rd

∫
Sd−1

B(v⃗ − v⃗∗,σ)( f ′ f ′
∗− f f∗)(ϕ′+ϕ′

∗−ϕ∗−ϕ) dσd(v⃗ , v⃗∗) (4.3)

25
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We see that the left-hand side of this equation is of the same form as the right-hand side of (4.2), where
ϕ= log

(
f
)
. Indeed, plugging this expression in, without care for regularity constraints, gives us:

d

d t
H ( f ) =−

∫
Rd

D( f ) d x⃗, D( f ) := 1

4

∫
Rd×Rd

∫
Sd−1

B(v⃗ − v⃗∗,σ)( f ′ f ′
∗− f f∗)(log

(
f ′ f ′

∗
)− log

(
f f∗

)
) dσd(v⃗ , v⃗∗)

(4.4)
Where D( f ) is the entropy dissipation functional. To see that D( f ) ≥ 0, we need to observe the fact that the
function (X ,Y ) 7→ (X −Y )(log(X )− log(Y )) is non-negative. We will prove this below:

Lemma 4.1.1. The function F : (R≥0)2 →R given by F (x, y) = (x − y)(log(x)− log
(
y
)
) is non-negative.

Proof. We see that for x = y , F (x, x) = 0. We will prove that this is the global minimum. The partial derivatives
of F are as follows:

∂x F = (log x − log y)+ x − y

x
, ∂y F = (log y − log x)+ y −x

y

Any critical point must satisfy both ∂x F = 0 and ∂y F = 0. If we let t = y
x , we see that:

∂x F = 0 =⇒ log

(
x

y

)
− y

x
+1 = 0 =⇒ log(t )+ t = 1

∂y F = 0 =⇒ log
( y

x

)
− x

y
+1 = 0 =⇒ log(t )− t−1 =−1

Subtracting the two equations from each other we get:

t + t−1 = 2 =⇒ t 2 −2t +1 = 0 =⇒ (t −1)2 = 0

So the only critical points are at t = 1, i.e. x = y . To determine if this is then a global minimum, we must
compute the Hessian. The second partial derivatives are as follows:

∂xx F = 1

x
+ y

x2 = x + y

x2 , ∂x y F =− 1

x
− 1

y
=−x + y

x y
= ∂y x F, ∂y y F = 1

y
+ x

y2 = x + y

y2

Hence, the Hessian matrix is given by:

HF (x, y) = (x + y)

[
1

x2
−1
x y

−1
x y

1
y2

]
= x + y

x2 y2

[
y2 −x y
−x y x2

]
To determine whether or not this matrix is positive semi-definite, we will compute the eigenvalues of the
re-scaled matrix, λ̃1, λ̃2. We see very clearly that the determinant det = y2x2 − (−x y)2 = 0, so one of the
eigenvalues is λ̃1 = 0. The associated eigenvector is [x, y]T , and so we can find the associated eigenvector for
the second eigenvalue by finding the perpendicular vector [−y, x]T . Computing the matrix-vector product
gives us λ̃2 = x2 + y2. Re-scaling the eigenvalues so that they represent the eigenvalues of H f , we get λ1 =
0,λ2 = (x2 + y2)(x + y)/x2 y2. Since both eigenvalues are non-negative for any x, y ∈R≥0, we conclude that HF

is positive semi-definite. Through Taylor’s theorem in 2 variables, this gives us that F (x, x) = 0 is the global
minimum. Indeed, we get:

F (x, y) = F (0,0)+∇F (0,0) ·
[

x
y

]
+ 1

2

[
x y

]
HF (ξx ,ξy )

[
x
y

]
= 0+ c2

1λ1|u1|2 + c2
2λ2|u2|2 ≥ 0

Where [x, y]T = c1u⃗1+c2u⃗2 and u⃗1, u⃗2 are an orthogonal basis of eigenvectors for HF (ξx ,ξy ), and ξx ∈ (0, x),ξy ∈
(0, y) are unknown error terms. So we have that F (x, y) ≥ 0 as required.

With this result, it is clear that D( f ) = ∫
B ·F ( f ′ f ′∗, f f∗)d(σ, v⃗∗, v⃗) and so is non-negative, a consequence

of this is then:

Theorem 4.1.2 (Boltzmann’s H theorem). For all solutions of the Boltzmann equation (2.9), the entropy func-
tional H , as given in Eq. 4.1, is non-increasing in time, i.e.:

d

d t
H ( f ) =−

∫
Rd

D( f ) d x⃗ ≤ 0
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Evidently, this suggests a sort of convergence to the solutions of the functional equation D( f ) = 0, or more
clearly that f ′ f ′∗ = f f∗ almost everywhere over the integration range (σ, v⃗∗, v⃗) ∈ Sd−1 ×Rd ×Rd . That these
would give rise to an equilibrium solution of the Boltzmann equation is self-evident. If we recall the chaos
assumption in Chapter 2, we can link f f∗ to a two particle distribution f (2). Then, the equality f ′ f ′∗ = f f∗
simply assigns the same probability to a pair of particles with pre-collision velocities (v, v∗), and to a pair with
post-collision velocities (v ′, v ′∗). One can check that the Maxwellian distribution satisfies this, and hence is
an equilibrium solution of the Boltzmann equation.

4.2. H-theorem for our Fokker-Planck equation
We will derive in chapter 5 that the following Fokker-Planck equation describes the time evolution of the
particles:

∂t f =∇v · (|v |∇v f +|v |v⃗ f ) (4.5)

In comparison to the generic linear Fokker-Planck equation introduce in section 2.4, namely Equation 2.22,
we find that the dissipation and friction coefficients have both been made functions of v⃗ . We remark that we
are dealing with a spatially homogeneous scenario, that is to say f no longer explicitly depends on x⃗ (it is a
uniform probability density over x⃗). That is why the transport operator does not appear in Eq. 4.5.
We will now compute the time evolution of Boltzmann’s H -functional for some f that solves Eq. 4.5, and see
where it goes wrong in recreating a H -theorem result.

4.2.1. Determining the appropriate functional
We note that in Chapter 5, we will be deriving (4.5) in only one dimension d = 1. As such, we will proceed with
our computations in 1D. We will see towards the end of this section how the argument generalizes to higher
dimensions. As we computed earlier, we find that the time evolution of H is given by:

d

d t
H ( f ) =

∫
R
∂t f log f d v =

∫
R
∂v

(
|v |∂v f +|v |v f

)
log f d v

Where for the second equality we used the fact that f is a solution of (4.5). Integration by parts yields:

d

d t
H =

∫ ∞

−∞
∂v

(|v |∂v f +|v |v f
)

log f d v =
[

(|v |∂v f + |v |v f ) log f
]∞
−∞ −

∫ ∞

−∞
(|v |∂v f + |v |v f )∂v (log f ) d v

(4.6)

We now consider the case of the boundary term. Since f is a probability distribution, we know that limv→±∞ f (v, t ) =
0 (otherwise integrability fails). Intuitively, one would argue that as a consequence the boundary term in (4.6)
goes to 0. However, we also have the issue of log f going to −∞, and naturally the v terms blowing up to in-
finity. So we will approach this with some care. We note that there are additional integrability constraints on
f .

Assumption. For f , the macroscopic properties given in Definition 2.2.1 are finite. In other words, the inte-
grals

∫
f d v,

∫
v f d v,

∫ |v |2 f d v all converge and are finite.

From this integrability of
∫ |v |2 f d v , we have that limv→±∞ | f v2| = 0, using the fact that f is non-negative.

We can now employ L’Hopital’s rule, on α= f |v |2. Indeed, we know as v →±∞, α→ 0. We observe:

lim
α→0

α logα= lim
α→0

logα

1/α
= lim
α→0

1/α

−1/α2 = lim
α→0

−α= 0

Hence we have shown |v |2 f log
(|v |2 f

) → 0 as |v | → ∞. However, in this limiting regime, we certainly have
|v |2 ≥ 1 so log

(|v |2)≥ 0 and so we can say

∀|v | ≥ 1 : f log f ≤ |v |2 f log f ≤ |v |2 f
(
log f + log |v |2)= |v |2 f log

(
f |v |2)

Since we have both sides converging to 0 as |v |→∞, we conclude |v |2 f log f → 0 by the Squeeze Lemma. The
|v |(∂v f ) log f term converges faster to 0, as |v |∂v f is integrable in the same order as f . Indeed, see:∫ ∞

−∞
|v |∂v f d v =

∫ ∞

0
v∂v f d v +

∫ 0

−∞
−v∂v f d v

= [
v f

]∞
0 + [− v f

]0
−∞−

∫ ∞

0
f d v +

∫ 0

−∞
f d v
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The boundary term vanishes by the integrability of
∫

v f d v , and so we find we can bound
∫ |v |∂v f d v both

above and below by ±∫ ∞
−∞ f d v , which is again finite.

So we have shown that the boundary term in (4.6) vanishes, and the remaining integral gives:

d

d t
H =−

∫ ∞

−∞
(|v |∂v f +|v |v f

)
∂v (log f ) d v =−

∫ ∞

−∞
(|v |∂v f +|v |v f

) 1

f
∂v f d v =−

∫ ∞

−∞
|v |(∂v f )2 +|v |v∂v f d v

Now we see how d
d t H ≤ 0 need not hold, due to the −∫ |v |v∂v f d v term. Indeed, if v and ∂v f have opposite

signs then the integral is negative, and thus its contribution to d
d t H is positive. This suggests that we should

cancel out this |v |v∂v f term in some way by adding a term to the functional. Since the functional undergoes
an integration by parts, it would be illustrative to guess something of the form f · g (v).
So now let us consider the functional

H( f ) =
∫ ∞

−∞
f log f + f g (v) d v (4.7)

We can reuse our earlier computations to find:

d

d t
H( f ) =

∫
∂t f log f +∂t f g (v) d v

Substituting the kinetic Fokker-Planck equation (4.5) and applying integration by parts as before (assuming
the g term does not cause a non-zero boundary term), we get:

d

d t
H( f ) = −

∫ ∞

−∞
(|v |∂v f +|v |v f

)( 1

f
∂v f + g ′(v)

)
d v = −

∫ ∞

−∞
|v |
f

(
∂v f + v f

)(
∂v f + g ′(v) f

)
d v (4.8)

A natural choice for g would be such that it solves g ′(v) = v , namely g (v) = v2/2. Then the two bracketed
terms at the end of the equation are identical, and thus we get:

d

d t

∫ ∞

−∞
f log f + f · v2/2 d v =−

∫ ∞

−∞
|v |
f

(
∂v f + v f

)2 d v (4.9)

The term in the integral is clearly non-negative, and so we find that d
d t H( f ) ≤ 0.

The generalization to higher dimensions is achieved by replacing regular integration by parts with the product
rule for the divergence operator, namely: ∇· (g F⃗ ) = (∇· F⃗ )g +∇g · F⃗ . Following the same steps, one finds that
the extra term g in the H functional (see equation 4.7) must satisfy ∇g = v⃗ which suggests g = |v⃗ |2/2. To
summarize, we have shown the following:

Theorem 4.2.1 (H-theorem for Eq. 4.5). For solutions of (4.5), the functional:

H( f ) =
∫
Rd

f log f + f
|v⃗ |2

2
d v⃗ (4.10)

satisfies the H-theorem, with the entropy dissipation D( f ) given by:

d

d t
H( f ) =−D( f ) :=−

∫
Rd

|v⃗ |
f

∣∣∣∇v f + v⃗ f
∣∣∣2

d v⃗ (4.11)

The functional (4.10) we have found is known as the free energy [30, pg. 108] of the system, or the relative
Maxwell-Boltzmann entropy (for the Fokker-Planck equation).

4.3. Convergence to equilibrium
Whilst the H-theorem(s) imply a convergence to an equilibrium, it is often a more difficult process to quantify
the rate of this convergence. Nonetheless, in introducing the Boltzmann collision kernel and H -theorem,
Boltzmann showed convergence towards a Maxwellian distribution [3]. As such, it is of greater interest to see
if the rate of convergence can be proven, or at the very least bounded.
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4.3.1. General approaches
One of the easiest approaches to show a convergence to equilibrium is through Grönwall’s Lemma. We will
restate it below:

Lemma 4.3.1 (Grönwall’s Lemma). We present the lemma in its differential form. Let I ⊂ R be a non-empty
interval, t0 ∈ I and u, v : I →R be continuous. If we have:

∀t ∈ I , t ≥ t0 : u′(t ) ≤ v(t )u(t )

Then u is bounded by the solution of the corresponding differential equation u′ = vu, i.e.:

∀t ∈ I , t ≥ t0 : u(t ) ≤ u(t0) ·e
∫ t

t0
v(s)d s

Proof. Let w(t ) = exp
(∫ t

t0
v(s)d s

)
. We have, by the quotient rule:

d

d t

u(t )

w(t )
= u′(t )w(t )−w ′(t )u(t )

w(t )2 = u′(t )w(t )− v(t )w(t )u(t )

w(t )2 = 1

w(t )

(
u′(t )− v(t )u(t )

)
Now w(t ) > 0 for all times t ≥ t0, and since u′ < vu, we conclude d

d t
u
w ≤ 0. So the derivative of the function

u/w is non-positive, and the function is therefore decreasing for t ≥ t0. Therefore, it obtains its maximum at
t = t0, so we have:

u(t )

w(t )
≤ u(t0)

w(t0)
= u(t0) =⇒ u(t ) ≤ u(t0)w(t ) = u(t0) ·e

∫ t
t0

v(s)d s

If one can acquire a bound on d
d t H( f ) in terms of H( f ), then Grönwell’s Lemma gives a direct pathway to

determining the rate of convergence. Indeed, suppose we had a bound of the form:

λH( f (t , ·)) ≤ D( f (t , ·)), λ> 0. (4.12)

Then noting that d
d t H( f ) =−D( f ), we get:

d

d t
H( f ) ≤−λH( f ) =⇒ H( f (t , ·)) ≤ H( f (0, ·))e−λt

How does this then prove convergence? Depending on the functional and equation, one can link H( f ) to the
’distance’ between the function and the equilibrium distribution (and in the special case, the real distance,
as we will see in Section 4.3.2). Let us take, as an example, the original H functional (Eq. 4.1). If ρ, u⃗,T
are all defined by the formulas given in Definition 2.2.1, and we are dealing with the spatially homogeneous
case (this makes the macroscopic observable constant), then it is clear that the equilibrium solution to the
Boltzmann equation (2.9) is given by [30, pg. 107]:

M f (v⃗) = ρ

(2πT )d/2
e−

|v⃗−u⃗|2
2T (4.13)

Since M f and f share the same moments up to order 2, we can rewrite H ( f ) in terms of something known
as the Kullback relative entropy of f with respect to M f .

Lemma 4.3.2. For a solution f of the Boltzmann equation (2.9) in the spatially homogeneous setting, and for
H given by (4.1), M f given by (4.13), we have:

H ( f )−H (M f ) =
∫
Rd

f log
f

M f
d v⃗ =: H ( f |M f ) (4.14)

Proof. The crux is an algebraic trick, made possible by the fact that f and M f share the same moments up to
order 2. That is to say:∫

Rd
f d v⃗ =

∫
Rd

M f d v⃗ ,
∫
Rd

v⃗ f d v⃗ =
∫
Rd

v⃗ M f d v⃗ ,
∫
Rd

|v |2 f d v⃗ =
∫
Rd

|v |2M f d v⃗ .
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That this holds is unsurprising given the definition of M f . Nonetheless, starting from the left hand side of
(4.14) we have:

H ( f )−H (M f ) =
∫
Rd

f log f −M f log M f d v⃗

We would like to add a
∫

(M f − f ) log M f term, so that we can recover
∫

f log f − f log M f giving us the right
hand side of (4.14). Thankfully, this is the same as adding zero. See:∫

Rd
(M f − f ) log M f d v⃗ =

∫
Rd

(M f − f )

(
−|v⃗ − u⃗|2

2T
− d

2
log(2πT )+ logρ

)
d v⃗

=
∫
Rd

(M f − f )

(
−|v |2

2T
+ v⃗ · u⃗

T
− |u|2

2T
− d

2
log(2πT )+ logρ

)
d v⃗

Again, since ρ, u⃗,T are constants, and the moments are equal for M f and f , the integral evaluates to 0. So:

H ( f )−H (M f ) =
∫
Rd

f log f −M f log M f + (M f − f ) log M f d v⃗ =
∫
Rd f log f − f log M f d v⃗ =

∫
Rd

f log
f

M f
d v⃗

What is nice about this result, is that the Boltzmann H-theorem, Theorem 4.1.2, still applies for the relative
entropy H ( f |M f ). Moreover, we can show that H ( f |M f ) ≥ 0 as f and M f have the same mass ρ. Indeed,
from the inequality log x ≤ x −1 one can then acquire H ( f |M f ) ≥ ∫

M f − f = 0

Lemma 4.3.3 (Gibb’s Lemma). For the relative entropy one has H ( f |M f ) ≥ 0 with equality if and only if
f = M f .

Proof. The proof follows from the inequality log x ≤ x − 1. If we let φ(x) = x − 1− log(x), then it has a clear
root at x = 1. Taking derivatives, we see φ′(x) = 1− 1

x ,φ′′(x) = 1
x2 . We see that φ′(1) = 0,φ′′(x) > 0 so we

conclude that x = 1 is a global minimum. Moreover, it is the only solution of φ′(x) = 0, so it is the unique
global minimum. Applying this on the relative entropy, we have:

H ( f |M f ) =
∫
Rd

f log
f

M f
d v⃗ =

∫
Rd

f
(
− log

M f

f

)
d v⃗ ≥

∫
R0

f
(
1− M f

f

)
d v⃗

Expanding the last integral, and noting f and M f have the same mass ρ, gives us the desired inequality.
Equality holds again if M f / f = 1, giving us the desired statement.

Hence, through Gibb’s Lemma and Boltzmann’s H -theorem, we get a generalized convergence to equi-
librium. H [ f |M f ] is decreasing and bounded from below, and only achieves its lower bound when f = M f ,
as expected. We can analogously derive this generalized convergence result for our H-functional (4.10) and
kinetic Fokker-Planck equation (4.5), by noting that the H-function is already in the form of a Kullback relative
entropy functional. Indeed, we have:

H( f ) =
∫
Rd

f log f + f
|v⃗ |2

2
d v⃗ =

∫
Rd

f

(
log f − log

(
e−

|v⃗ |2
2

))
d v⃗ =

∫
Rd

f log

(
f

e−|v⃗ |2/2

)
d v⃗ =H ( f |M)

Although M = e−|v⃗ |
2/2 doesn’t have the same mass as f , one can bound H( f ) from below again through the

fact:

H( f ) =
∫
Rd

f log

(
f

Ce−|v⃗ |2/2

)
+ f logC d v⃗ =H ( f |Ce−|v⃗ |

2/2)+ρ logC

For any constant C (and so in particular for the normalization constant that gives the same mass).

4.3.2. Rates for the Fokker-Planck equation
Although the result of convergence to equilibrium is nice for both the generic Boltzmann case and our specific
kinetic Fokker-Planck equation (4.5), one may wonder what the rate of convergence is. As we mentioned
before, Grönwall’s Lemma is an excellent tool for this, provided a bound can be found of the form (4.12).
Fortunately, in the case of the linear Fokker-Planck equation (2.22), we can find such a bound.
We will be working with the general equation:

∂t f =∇v · (∇v f +αv⃗ f ) (4.15)
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Which is of the same form as (2.22), up to a constant. As outlined in Eq. (2.23), we have that the equilibrium

solution is proportional to e−α|v |
2/2. For this equation, the natural functional for a H-theorem is (4.10), and

from the same analysis we have performed earlier in Section 4.2.1, we can conclude H( f ) ≥ 0 for solutions of
the Fokker-Planck equation above. We will now state, without proof, the crucial bound we need:

Theorem 4.3.4 (Stam-Gross logarithmic Sobolev inequality). For any probability distribution f (absolutely

continuous with respects to e−|v |
2/2), one has:

2H ( f |M) ≤ I ( f |M)

Where M = (2π)−d/2e−|v |
2/2 is the standardized Maxwellian distribution, H ( f |g ) is the (Kullback) relative en-

tropy (4.14), and I ( f |M) := ∫
f |∇v (log f /M)|2 = ∫ |∇v f + v f |2/ f is known often as the (relative) Fisher infor-

mation.

We note that I ( f |M) is almost identical to the form of D( f ) given by (4.11), which has an extra |v | term.
By a simple rescaling then, if Mσ is a Maxwellian distribution with variance σ, we have: [22]

2

σ
H ( f |Mσ) ≤ D( f ) (4.16)

From this and the framework we set out in Section 4.3.1, we can derive that H ( f |M) decays exponentially in
time. However, this result is made even stronger by the following inequality:

Theorem 4.3.5 (Csiszár-Kullback inequality). Let f , g be non-negative functions in L1(Rd ) with
∥∥ f

∥∥
1 =

∫
Rd | f | =

1, and
∥∥g

∥∥
1 = 1. Then we have: ∥∥ f − g

∥∥2
1 ≤ 2H ( f |g )

Where H ( f |g ) = ∫
Rd f log f

g is the (Kullback) relative entropy. [16, Thm. 3]

To prove this, we need to use the following property of the functionΦ(x) := x log x −x +1.

Lemma 4.3.6. It holds that:

Φ(x) := x log x −x +1 ≥ 3(x −1)2

2(x +2)
=: F (x), ∀x ≥ 0 (4.17)

Proof. Taking first and second derivatives on both sides gives Φ′(x) = log x,Φ′′(x) = 1/x and for the other
function F we have:

F (x) = 3(x +2−1)2

2(x +2)
= 3

2

(
x +2−3+ 9

x +2

)
= 3

2
(x −1)+ 27

2(x +2)

Hence: F ′(x) = 3
2 − 27

2(x+2)2 and F ′′(x) = 27
(x+2)3 . If we show the inequality:

Φ′′(x) = 1

x
≥ 27

(x +2)3 = F ′′(x)

holds, we can integrate twice to recover our desired inequality. In other words, we must show (x +2)3 ≥ 27x,
or equivalently x3 + 6x2 − 13x + 8 ≥ 0. This has the obvious root at x = 1, and we find the first derivative
3x2+12x−13 (which is greater than 0 at x = 1) and second derivative 6x+12 ≥ 0 for all non-negative x. Since
this inequality holds, the inequalityΦ′′ ≥ F ′′ holds and we recoverΦ≥ F as desired.

Proof of Theorem 4.3.5. LettingΦ(x) = x log x −x +1, we have:∫
Rd
Φ

(
f

g

)
g =

∫
Rd

f log
f

g
− f +1 =H ( f |g )−∥∥ f

∥∥
1 +1 =H ( f |g )

Where we used the fact that f has norm 1 and f , g are non-negative. Then we have:

∥∥ f − g
∥∥2

1 =
(∫
Rd

| f − g |
)2

=
(∫
Rd

∣∣∣∣ f

g
−1

∣∣∣∣g

)2

=
(∫
Rd

[∣∣ f /g −1
∣∣ p

g√
f /g +2

][√
( f /g +2)g

])2

≤
[∫
Rd

( f /g −1)2

f /g +2
g

]
·
[∫
Rd

(
f

g
+2

)
g

]
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Where the inequality follows through Cauchy-Schwarz on the square-bracketed terms. (The expressions
in the square roots are well defined, as g non-negative). Expanding the right most integral gives

∫
f +2g =∥∥ f

∥∥
1 +2

∥∥g
∥∥

1 = 3 and hence we have:

∥∥ f − g
∥∥2

1 ≤ 3
∫
Rd

( f /g −1)2

f /g +2
g ≤ 2

∫
Rd
Φ( f /g )g = 2H ( f |g )

Where we identify the middle inequality corresponding to Lemma 4.17.

Taken all together, the results from both Theorems 4.3.4 and 4.3.5, combined with our previous analysis
in Section 4.3.1, gives us an exponential convergence. Recalling that the equilibrium distribution for the
Fokker-Planck equation (4.15) is the Maxwellian distribution with variance 1

α , i.e. M1/α, we get:

d

d t
H ( f |M1/α) =−D( f )

(4.16)≤ −2αH ( f |M1/α)

By Grönwall’s lemma and the Csiszár-Kullback inequality we get:∥∥ f (t , ·)−M1/α
∥∥2

1 ≤ 2H( f (t , ·)|M1/α) ≤ 2e−2αt H ( f (0, ·)|M1/α) = e−2αt ∥∥ f (0, ·)−M1/α
∥∥2

Hence we have strong convergence under the L1 norm, with an exponential rate of −α.

4.4. Closing remarks
We note that one can find stronger generalized convergence results for Fokker-Planck equations with a con-
fining potential [1, 22]. However, in our case (4.5) is not generated by a potential, as it has an extra |v | term.
This throws a wrench in the machinery outlined in the above section, as this extra |v | term appears in the
entropy dissipation functional D( f ) (given by Eq. (4.11)). Nonetheless, we still managed to successfully prove
convergence to equilibrium by means of bounding H( f ). One may note that a lot of the terminology used in
this chapter has its roots in information theory, and indeed that is the case. For example, theorems 4.3.5 and
in particular 4.3.4 follows from results deep in information theory and this link comes (in part) from the sim-
ilarity in thermodynamic entropy, and information entropy in encoding theory. In fact, many initial results
on entropy in information theory were inspired (though not always derived from) physics’ entropy.



5
Derivation of Fokker-Planck equation for

piston paradox

In order to derive the kinetic Fokker-Planck (Eq. 4.5) equation described in Chapter 4, we will start with a
kinetic theory approach, using the Boltzmann collision operator as given in Section 2.3, and then seeing how
the equation develops in the limiting case as the piston mass blows up to infinity (relative to the particle
mass), and a time-scaling known as the grazing collision limit. To this end, however, many assumptions
have to be made. Furthermore, this derivation will be formal, in which we will not concern ourselves with
regularity conditions nor a mathematically rigorous derivation (which would prove exceedingly difficult!).
Indeed, although it is known that Fokker-Planck type equations can be recovered from the Boltzmann equa-
tion through the grazing limit, the formal proof has been done only in the spatially homogeneous setting with
smoothness constraints on the collision kernel B [2] [30, pgs. 98-101]. With this in mind, let us introduce the
setup.

5.1. Modelling framework
We consider the one dimensional adiabatic piston problem. We are dealing with a flat torus, which gives
rise to periodic boundary conditions, and a spatially homogeneous setting. We have a heavy piston and
many identical, non-interacting particles. The particles and piston interact through elastic collisions, and the
particles do not collide with each other. The mass of the piston is mp = 1

ϵ , and the mass of the particles is fixed
at m = 1. We will tag a particle, and follow how its velocity develops over time by describing the probability
density function fϵ(t , v). As in Chapter 2, we note that fϵ(t , v)d v denotes the probability of finding the tagged
particle with a speed between v and v +d v at time t . Our goal is to then derive how fϵ(t , v) evolves over time.
To facilitate this, we make a few assumptions.

Assumption 1 (Maxwellian Piston). The piston is already in an equilibrium state, and each time the tagged
particle hits the piston it is in the same ’fresh’ Maxwellian state (effectively negating previous collisions). That
is to say, the velocity distribution for the piston velocity, vp , can be described by a Maxwellian distribution:

M (vp ) = 1p
2πϵ

e−
v2

p
2ϵ

Whilst this is a strong assumption, we will eventually make the masses of the particles relative to the
piston extremely small, and so the assumption seems well-founded for this limit. The specific form of M is
also with this limit in mind.

Assumption 2 (Elastic collisions). As described earlier, the piston and tagged particle interact by elastic col-
lisions. Their post-collision velocities can be easily computed to be:

v ′
p = vp + 2ϵ

1+ϵ (v − vp ) (5.1)

v ′ = v + 2

1+ϵ (vp − v) (5.2)

33
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To describe how the particles interact, however, we need another assumption, namely.

Assumption 3 (Hard spheres). The particles and piston can be modelled as hard spheres. From our deriva-
tion in Section 2.3, we see that a consequence of this assumption is that the Boltzmann collision kernel is
given by:

B(|v − vp |,cosθ) = |v − vp |
Wherein we used the fact that we are in 1D space to remove the dependency of cosθ entirely, see Eq. 2.21
(σ ∈S0 gives σ=±1)

Assumption 4 (Symmetry). Due to the periodic nature of the torus with which this model takes place in
spatially, we will assume that the probability density function fϵ is symmetrical in v , i.e:

∀t : fϵ(t , v) = fϵ(t ,−v)

Lastly, we want to know how the system acts in the limit ϵ→ 0. We introduce for this two variables. We
have first the substitution:

vp =p
ϵω (5.3)

Motivated by Assumption 1, since we have vp ∼ p
ϵ, this substitution ensures that ω is standard normally

distributed. It also gives rise to the following expression for ω′ (corresponding to v ′
p )

ω′ =ω+ 2
p
ϵ

(1+ϵ)
(v −p

ϵω) (5.4)

Time is made dimensionless through the substitution

τ= 2ϵt (5.5)

The combination of a substitution like (5.5) and ϵ→ 0 is known as the collision grazing limit. With these
assumptions in mind, we will formally derive the Fokker-Planck equation.

5.2. Derivation
We note that the expressions of (5.1), (5.2) are derived from the conservation of kinetic energy and momen-
tum. Since we are interested in the limiting case of ϵ→ 0, we will linearize equations (5.4) and (5.2). In the
case of ω′, it is easy to see that we have:

ω′ =ω+2
p
ϵ(v −p

ϵω)+O (ϵ3/2) (5.6)

Indeed, expanding 2ϵ
1+ϵ in terms of orders of ϵ gives:

2ϵ

1+ϵ = 2ϵ−2ϵ2 +2ϵ3 ± . . . = 2ϵ
∞∑

n=0
(−ϵ)n

As expected. For v ′ the situation is a little more involved. From (5.2), applying the substitution (5.3), we can
recover a linear term through algebraic manipulations:

v ′ = v + 2

1+ϵ (
p
ϵω− v) = v + 2+2ϵ−2ϵ

1+ϵ (
p
ϵω− v) = v +2(

p
ϵω− v)− 2ϵ

1+ϵ (
p
ϵω− v)

This gives us:
v ′ =−v +2

p
ϵω+2ϵv +O (ϵ3/2) (5.7)

These approximation terms will allow us to compute a Taylor expansion on the kinetic equation.

5.2.1. Taylor expanding the kinetic equation
Since the only collisions occurring in the modelling framework outlined in Section 5.1 are between the parti-
cle and the piston, it is reasonable to assume that the Boltzmann operator (Eq. 2.8) will be linear in fϵ, with
f∗ →M . In fact, these sort of linear Boltzmann equations where f∗ taking the shape of a known distribution
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appear frequently in kinetic theory applications [30, pg. 17]. From the spatial homogeneity and Assumption
3, on hard spheres, we find that the kinetic equation takes the form:

∂t fϵ =
∫
R
|v − vp |

[
fϵ(v ′)M (v ′

p )− fϵ(v)M (vp )
]

d vp

Applying the substitution vp =p
ϵω gives d vp =p

ϵ ·dω, but this
p
ϵ term is cancelled by the Maxwellian M

function. Indeed:

M (vp ) = 1p
2πϵ

e−v2
p /2ϵ = 1p

ϵ
· 1p

2π
e−ω

2/2 =:
1p
ϵ
·M (ω)

So we will abuse notation and refer to M (ω) as the standard Gaussian distribution, even though it is derived
from M (vp ) which has an extra ϵ−1/2 factor. The crucial takeaway is that the net effect of the substitution
(5.3) in terms of ϵ terms is none. Under this substitution, the kinetic equation takes the form:

∂t fϵ =
∫
R
|v −p

ϵω|
[

fϵ(v ′)M (ω′)− fϵ(v)M (ω)
]

dω (5.8)

We will now seek to expand the terms in the square brackets in increasing orders of ϵ through a Taylor ex-
pansion. That this is permissible is motivated by the form of v ′,ω′ found in (5.7) and (5.6), we see that
−v ′ − v = O (ϵ1/2) = ω′ −ω, and so we will treat these terms as the ’deviation’ term in the Taylor expansion
(even though they are self-referential, that is to say, ω′−ω = f (ω)). The expansion of M is easy to compute
and its first terms read:

M (ω′) =M (ω)+2
p
ϵ(v −p

ϵω)M ′(ω)+2ϵ(v −p
ϵω)2M ′′(ω)+O (ϵ3/2)

The expansion of fϵ is not immediately obvious. To this end we need to use Assumption 4 to apply an alge-
braic trick:

fϵ(v ′) = fϵ(−v ′) = fϵ(v −2
p
ϵ(ω+p

ϵv))

Then the expansion is easy to compute:

fϵ(v ′) = fϵ(v)−2
p
ϵ(ω+p

ϵv)∂v fϵ(v)+2ϵ(ω+p
ϵv)2∂v v fϵ(v)+O (ϵ3/2)

With these expansions, we can find an approximation of the product. To simplify notation, we will omit the
points of evaluation for fϵ,M and their derivatives, and denote ∂v fϵ as f ′

ϵ (not to be confused with f ′, the
post-collision distribution term that appeared often in Chapter 2). We have:

fϵ(v ′)M (ω′) = fϵ(v)M (ω)

+2
p
ϵ
[

(v −p
ϵω) fϵM

′− (ω+p
ϵv) f ′

ϵM
]

+2ϵ
[

(v −p
ϵω)2 fϵM

′′−2(v −p
ϵω)(ω+p

ϵv) f ′
ϵM

′+ (ω+p
ϵv)2 f ′′

ϵ M
]

+4ϵ3/2
[
− (v −p

ϵω)2(ω+p
ϵv) f ′

ϵM
′′+ (v −p

ϵω)(ω+p
ϵv)2 f ′′

ϵ M ′
]
+O (ϵ3/2)

We expand the round bracketed terms and disregard the high orders of ϵ. Moreover, we will use the fact that

M (ω) ∝ e−ω
2/2. Evidently, we have M ′ =−ωM and consequently M ′′ = (ω2 −1)M . This gives us:

fϵ(v ′)M (ω′) = fϵ(v)M (ω)

+2
p
ϵ
[
− vω fϵ−ω f ′

ϵ

]
M (5.9)

+2ϵ
[

v2(ω2 −1) fϵ+2vω2 f ′
ϵ +ω2 f ′′

ϵ +ω2 fϵ− v f ′
ϵ

]
M +O (ϵ3/2) (5.10)

It is clear that the first term will cancel out when we substitute this expansion into the kinetic equation (5.8).
We will compute the action of the integral

∫ |v −p
ϵω|◦dω for the terms (5.9) and (5.10) separately. Before we

do so, we will make one last remark.

Assumption. Since the piston travels at the velocity vp =p
ϵω and we will be taking the limit ϵ→ 0, we find

that the absolute difference |v − vp | is predominantly given by the particle velocity v , and so we have the
following approximation:

|v −p
ϵω| ≈

{
|v |−p

ϵω, v ≥ 0

|v |+p
ϵω, v < 0

= |v |∓p
ϵω (5.11)
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5.2.2. Computing integrals
The first integral we need to compute, from the term (5.9), is:

2
p
ϵ

∫ ∞

−∞
|v −p

ϵω|[− vω fϵ−ω f ′
ϵ

]
M dω

Using (5.11) we can rewrite the absolute value term. Moreover, we will make use of the fact that v = ±|v | to
bring the whole expression in terms of |v |. Hence the integral we need to compute is:

2
p
ϵ

∫ ∞

−∞
(|v |∓p

ϵω)
[∓|v |ω fϵ−ω f ′

ϵ

]
M dω (5.12)

Expanding the bracketed terms we have:

(5.12) = 2
p
ϵ

∫ ∞

−∞

(
∓|v |2 fϵω+p

ϵ|v | fϵω2 −|v | f ′
ϵω±p

ϵ fϵω
2
)
M dω

Using the following shorthand In = ∫ ∞
−∞ωnM (ω) dω, we can rewrite this into the following:

(5.12) =∓2
p
ϵ|v |2 fϵI1 +2ϵ|v | fϵI2 −2

p
ϵ|v | f ′

ϵ I1 ±2ϵ fϵI2 = 2
p
ϵ
(∓|v |2 fϵ−|v | f ′

ϵ

)
I1 +2ϵ

(|v | fϵ± f ′
ϵ

)
I2 (5.13)

We will now proceed onto the next integral, from the term (5.10). Using the same substitutions (Eq. 5.11 and
v =±|v |), we get:

2ϵ
∫ ∞

0
(|v |∓p

ϵω)
[|v |2(ω2 −1) fϵ±2|v |ω2 f ′

ϵ +ω2 f ′′
ϵ +ω2 fϵ∓|v | f ′

ϵ

]
M dω (5.14)

We will discard the
p
ϵω term at the start, as it gives us a total O (ϵ3/2). Using the same notational shorthand

of In we get:

(5.14) = 2ϵ
(
|v |3 fϵ(I2 − I0)±2|v |2 f ′

ϵ I2 +|v | f ′′
ϵ I2 +|v | fϵI2 ∓|v |2 f ′

ϵ I0

)
+O (ϵ3/2) (5.15)

We will now compute the simpler integrals I0, I1, I2 to obtain a closed expression for (5.13) and (5.15). These
are well-established results, they are namely the moments up to the second order of the standard normal
distribution, hence:

I0 :=
∫ ∞

−∞
M dω= 1

I1 :=
∫ ∞

−∞
ωM dω= 0

I2 :=
∫ ∞

−∞
ω2M dω=

(
Var(M )−E[M ]2

)
= 1

In the last integral, we note that we are computing the second moment, which can be linked to the variance
and mean (as Var(X ) = E[X 2]−E[X ]2). Since M (ω) is a standard normal distribution in ω, the mean is 0, and
the variance is 1, giving the result. With these integrals evaluated, we can evaluate and combine Eqs. (5.13)
and (5.15) into:

2ϵ
(
|v | fϵ± f ′

ϵ ±2|v |2 f ′
ϵ +|v | f ′′

ϵ +|v | fϵ∓|v |2 f ′
ϵ

)
+O (ϵ3/2)

We simplify this by noting that ±= sgn(v), and ±|v | = v . This gives us our final result:

∂t fϵ = 2ϵ
(
2|v | fϵ+ sgn(v) f ′

ϵ + v |v | f ′
ϵ +|v | f ′′

ϵ

)
+O (ϵ3/2) (5.16)

5.2.3. Identifying the Fokker-Planck equation
Applying the time scaling limit (5.5), we get ∂t = ∂τ ·∂t (τ) = 2ϵ∂τ. Hence rearranging (5.16) gives us our final
equation:

∂τ fϵ = 2|v | fϵ+ sgn(v) f ′
ϵ + v |v | f ′

ϵ +|v | f ′′
ϵ +O (ϵ1/2)

Taking the limit of ϵ→ 0, the higher order terms of ϵ will naturally go to zero. Hence:

lim
ϵ→0

∂τ fϵ = 2|v | f + sgn(v) f ′+ v |v | f ′+|v | f ′′
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This equation is what we desired! How so? See that we can rewrite the f ′′ term as the derivative of a product.
We get:

2|v | f + sgn(v) f ′+ v |v | f ′+|v | f ′′ = ∂v (|v | f ′)+2|v | f + v |v | f ′ = ∂v (|v | f ′+ v |v | f )

This is exactly of the form of our desired kinetic Fokker-Planck equation (4.5), restated below:

∂t f =∇v · (|v⃗ |∇v f + v⃗ |v⃗ | f )
v⃗∈R1

= ∂v (|v |∂v f + v |v | f )

So we have successfully derived the kinetic Fokker-Planck equation as we set out to do.

5.3. Discussion
One may comment on the presence the 2 in the substitution expression for τ (5.5). This is merely a scaling
constant to account for the extra 2 acquired in the derivation. One may also wonder to what extent the
assumption giving rise to Eq. 5.11 actually holds, and how much of an error this approximation incurs. In
any case, the validity of the assumptions are of interest, and future work may perhaps delve into the use
of simulation work to validate (in particular) assumption 1 of the Maxwellian piston, for a general particle
simulation on a mathematical torus near an equilibrium state (e.g. that the particle velocity distribution is
Maxwellian).





6
Conclusion

In this thesis, we discussed at length the adiabatic piston paradox, the kinetic theory behind it and the simu-
lation techniques. General results on the convergence of equilibrium provided us with a toolkit of mathemat-
ical techniques to determine the rate of convergence of a set of Fokker-Planck equations. These results have
been generalized in [1, 22] for a more elaborate set of Fokker-Planck equations. Throughout our derivation
process, we used the assumption of spatial homogeneity to greatly simplify our work. Introducing the spatial
dimensions, the results become a lot harder to derive, as the system tends to approach a local equilibrium (for
each x⃗, the velocity distribution f (t , x⃗, ·) converges to the entropically minimal distribution). This, however,
introduces a degree of degeneracy. Fortunately, for the linear Fokker-Planck equation, one has a set of results
[12], once again based on logarithmic Sobolev inequalities like that of Theorem 4.3.4.

For the adiabatic piston paradox itself, we have noted there are many different limiting schemes, involving
taking the piston mass, number of molecules, and volume of the box to infinity (without diluting the dilute
gas assumptions). We investigated the scaling limits of Chernov and Lebowitz’s work [9, 10], and separately
derived a different macroscopic equation in Chapter 5. The variety of limits and the different equations that,
then, describe the piston paradox adds a level of complexity. Although it is rather well-established that the
piston will move to accommodate thermal equilibrium, it is unclear if random thermal fluctuations will still
cause minor fluctuations. These fluctuations would not appear in any scaling analysis where N →∞ as they
get ’averaged out’, but fortunately the recent work of Khalil [20] has derived a kinetic equation of motion
(similar to the Boltzmann equation) for the finite case, though with still a few assumptions. Furthermore,
they have managed to prove a H-theorem result, implying a generalized level of convergence.

As we have seen before, the theoretical scaling limits and subsequent equations that describe the pis-
ton motion can be investigated through computer simulations [6, 21]. We would therefore hope to use the
efficient algorithm we implemented from [29] in Chapter 3 to confirm the theoretical assumptions for our
derivation in Chapter 5. Indeed, the case of the adiabatic piston paradox in a mathematical torus/periodic
boundary conditions leads to the additional conservation of momentum, which may lead to the piston drift-
ing in one direction. To this end, we expect the optimization results from Figure 3.5 to be useful.

One could also use the algorithm to see what happens in the context of the scaling limits of Section 3.1.2,
for different initial velocity distributions. Although this is mentioned briefly in the works of [4], that the spe-
cific distribution they chose (Eq. 3.3) leads to unstable results, one may wonder how the Maxwellian distri-
bution would fare, and a convex combination of the two distributions. One could also investigate through
means of an ensemble of simulation runs how the velocity distribution of a particle develops over time, and
if it agrees with any particular derived equation.

There is also the question of the optimality of the algorithm in the context of the piston paradox. We
expect that the empirical scaling relations in Figures 3.6 and 3.7 can be derived in the context of the piston
paradox, and that eventually the theoretical minimum of O (Nc log N ) = O (N log N ) can be recovered. To do
so, however, one would also have to account for the influence of other parameters, such as the piston length,
on the computation times. This optimal algorithmic running time relation could also be potentially recov-
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ered through implementing the varying cell lengths, as discussed in Section 3.4.1.

Although the piston paradox is one that is firmly rooted in theoretical physics - no real-life piston wall
could exist without permitting heat to pass through the two systems (by conduction, or friction, etc.) - re-
search into the paradox has uncovered the intricate dance between mesoscopic and microscopic descriptions
of physical systems. And from a mathematical perspective, the task of formalizing the physical intuitions and
assumptions, i.e. deriving them from a generic mathematical description, is still an unfinished job.
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