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Abstract

Object detection is one of the most important research topics in autonomous vehicles. The
detection systems of autonomous vehicles nowadays are mostly image-based ones which detect
target objects in the images. Although image-based detectors can provide a rather accurate
2D position of the object in the image, it is necessary to get the accurate 3D position of
the object for an autonomous vehicle since it operates in the real 3D world. The relative
position of the objects will heavily influence the vehicle control strategy. This thesis work
aims to find out a solution for the 3D object detection by combining the Lidar point cloud and
camera images, considering that these are two of the most commonly used perception sensors
of autonomous vehicles. Lidar performs much better than the camera in 3D object detection
since it rebuilds the surface of the surroundings by the point cloud. What’s more, combing
Lidar with the camera provides the system redundancy in case of a single sensor failure.
Due to the development of Neural Network (NN), past researches achieved great success in
detecting objects in the images. Similarly, by applying the deep learning algorithms to parsing
the point cloud, the proposed 3D object detection system obtains a competitive result in the
KITTI [1] 3D object detection benchmark.
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Chapter 1

Introduction

1-1 Background

Autonomous vehicle has been a hot topic both in the research field and in the industry during
the last few years. The development of the new technology has also made a great impact on
the public. The autonomous vehicles will definitely change the lifestyle of people all over the
world.

Autonomous vehicle is not a new concept, it starts in the 1980s [19] and has been widely
researched during the past 30 years. There are a lot of advantages the autonomous vehicle
can bring us. Autonomous vehicles will greatly reduce of the price of the transportation.
If people all use the shared autonomous vehicles for the transportation, there will be less
CO2 emission. What’s more, the autonomous vehicle will make the city a better place for
humans to live in instead of a place where cars stuck everywhere. Autonomous vehicles will
also enhance the road safety and cause fewer fatalities than the human-driving vehicles.

Early products in the form of Advanced Driver-Assistance Systems (ADAS) have already
been applied to the vehicles nowadays. The two of the most widely used ADAS are Lane
Keeping Assistance (LKA) and Adaptive Cruise Control (ACC). LKA is a system helping to
control the heading of the vehicle [20] and ACC helps the car to keep a safe distance from the
front car. The ADAS is attracting large expectations and undergoing vast improvements in
recent years. The goal of such a system is to protect both the occupants and the Vulnerable
Road Users (VRU) to enhance the road safety and to make the driving easier. With the
development of the state-of-the-art technologies, the ADAS on board nowadays makes the
vehicle closer to the real autonomous vehicle. However, there are still some technical gaps
between those ADAS systems and a real autonomous vehicle. One of the most important
challenge is that the autonomous vehicle requires a great perception system to perceive the
environment. Only when the autonomous vehicle has a great perception system, the vehicle
control system can take a meaningful control strategy.

The perception module has to perform multiple tasks including building a detailed map, lo-
calization, recognizing objects and so on. This thesis work will mainly focus on the object
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2 Introduction

recognition task. Knowing where and what the obstacles are is rather import for an au-
tonomous vehicle, especially when the obstacles are VRU like pedestrians and cyclists. Any
recognition failure might arise serious consequences like the personal injury or death.

1-2 Sensors and Data Format

The perception systems for an autonomous vehicle nowadays are mainly equipped with three
types of sensors: camera, radar and Lidar. This thesis work will focus on using the camera
and Lidar for the object recognition. The camera is an optical instrument for recording or
capturing images [21] and is the most widely used sensor for the perception task because
it is accurate, cheap and quite similar to the way how humans perceive the world. Most
Lidar used on the autonomous vehicle is a rotating sensor that keeps transmitting lasers
(light amplification by stimulated emission of radiation) and receiving the reflected lasers.
The interval between the transmitted laser and reflected laser can be used to determine the
distance between the obstacle and the sensor. The interior rotating mirror distributes the
laser ray in any direction, which provides Lidar with a 360◦ field of view. Lidar provides the
point cloud of the surroundings as shown in Figure 1-1. Each point represents the relative
position of the obstacle surface point to the sensor.

Figure 1-1: Point cloud

Due to the development of machine learning algorithms in the field of Computer Vision (CV),
algorithms to detect objects in the camera image are becoming more mature, which makes
the image-based detection results rather reliable. The image-based detection algorithms like
Dalal-Triggs [16], Single-Shot-Detector (SSD) [6], Fast R-CNN [22], Faster R-CNN [5], Mask
R-CNN [23], etc., have achieved great success over the years. On the other hand, the strong
computational capability of the new Graphics Processing Unit (GPU) like NVIDIA TITAN
V, NVIDIA TITAN XP, etc., and even some AI platform designed for autonomous driving
like NVIDIA DRIVE PX2 makes these complex algorithms to be possible to run in real time
with the help of CUDA. CUDA is a parallel computing platform and programming model
that enables dramatic increases in computing performance by harnessing the power of GPU
[24]. However, a big problem the camera is facing is that it suffers from illumination changes
and weather conditions. The image-based detectors sometimes perform really bad under
certain illumination conditions like the dark night. Another shortage is that camera is not
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good at getting the relative 3D position of the object to the sensor. Since the autonomous
vehicle operates in the real 3D world, perception systems equipped with only cameras are not
sufficient for the autonomous driving.

(a) Point Cloud (b) Mesh (c) Volumetric (d) Projected View

Figure 1-2: Common representations of 3D point clouds [2]

The Lidar point cloud provides the accurate depth information which can be used for 3D object
detection and it performs better than the camera in the localization of the object [25]. Since
the point cloud is composed of unordered and scattered points, there are several commonly
used representations for such 3D data as shown in Figure 1-2. Among all the related works
trying to implement object detection algorithms in the point cloud, most of them choose to
project the point cloud onto the image plane to get an RGB-D image (RGB image with depth
information for each pixel) as shown in Figure 1-2d. Other works like VoxelNet [9] discretizes
the point cloud into 3D voxel grids and represents each grid with the feature of those points
inside the grid as shown in Figure 1-2c. Recent researches like Pointnet [2], Pointnet++ [26]
create a novel type of Neural Network (NN) that directly consumes the point cloud as shown
in Figure 1-2a. The point cloud is probably the closest 3D representation to the raw sensor
data so it is the most expected representation when dealing with object detection tasks.

Combining the point cloud and image information can make the most of both sensors and
provide a more convincing detection results, which is also the research topic of this thesis.

1-3 Problem Statement

There are two research questions in the thesis: What is the best solution to build a 3D
object detector? and What is the best solution to fuse the data from Lidar and
camera for 3D object detection? For now,there are mainly two types of sensors that the
existing 3D object detection algorithms are using: stereo cameras and Lidar. Lidar can easily
rebuild the 3D surface of the surroundings. However, for the stereo vision, two cameras have
to see the same pixel at the same time, which might be hard when occlusion occurs. What’s
more, for detecting objects far away, two cameras have to be further apart, which makes the
stereo vision less advantageous. So, the Lidar is used in the thesis for 3D object detection and
the first research question becomes What is the best solution to build a Lidar-based
3D object detector? in the thesis context.

The Lidar-based object detection is still a new research topic. A few years ago, after the
research on autonomous vehicle becomes popular, more and more researchers start using Lidar
for object detection tasks since it retrieves more accurate 3D information of the surroundings.
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However, the object detection algorithms in the Lidar point cloud so far are still not good
enough.

The sensor data fusion of Lidar and camera for the object recognition is also a new research
topic. Generally, there are three main types of fusion structure as shown below in the Figure 1-
3. The three main types of fusion are:

M M M M

C C

Input Intermediate layers Output

C

Concatenation

M

Element-wise Mean

(a) Early Fusion (b) Late Fusion

(c) Deep Fusion

Figure 1-3: Different fusion structures [3]

• Early fusion
In an early fusion structure, only one classifier is used in the system. The feature is
extracted from multiple sensors. The system might need a preprocessing stage to either
combine the raw data or combine the feature maps from different sensors.

• Late fusion
In a late fusion scheme, independent classifiers are applied to individual sensor data.
For example, in the thesis context, the Lidar-based detector and image-based detector
work separately in the beginning. A final fusion stage is used to combine the detection
results according to the low-level detectors and their certainties [27].

• Deep fusion
With the development of the Neural Network (NN), researchers find it possible to fuse
the information from individual sensors in the network. Wang et al. [28] proposes
the Deeply-fused Net. It repeats a base module which combines shallow and deep
subnetworks to construct a network with an exponentially increasing path. So, basically,
Deep fusion is also a type of Early Fusion, but it has a special design of the network.
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1-4 Thesis Outline 5

1-4 Thesis Outline

This thesis report presents the proposed approach and the results from the thesis work. A 3D
road user detection system using the sensor data from the camera and Lidar is implemented.
This thesis report is organized as follows: Chapter 2 gives an introduction to the state-of-the-
art researches working on object detection, either using camera or Lidar. Chapter 3 explains
the designed detection system in detail. Chapter 4 presents the experiments designed for
the system validation and the parameter tuning together with the results of the experiments.
Chapter 5 is the conclusion of the thesis work and some recommendations for the future
research.
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Chapter 2

Related Works

Object detection has arisen a lot of research interest over the years. As one of the main task of
the autonomous vehicle perception system, the importance of 3D object detection is obvious
since the later vehicle control algorithms need the accurate position of the obstacles to make a
better evasive action. According to Section 1-2, Lidar and camera are two of the most widely
used sensors in the automated vehicle perception systems. In this chapter, related works
among three different research topics are introduced: the image-based object detection, the
Lidar-based object detection and the multimodal object detection.

2-1 Image-based Object Detection

Due to the wide usage of Computer Vision (CV) in all aspects of modern life like medical,
industry, public security, etc., the parsing algorithms of camera images have been thoroughly
researched. The image-based object detection is also a hot research topic in the field of CV.

2-1-1 Classical detection system

About ten years ago, researchers were still focusing on creating hand-crafted features to
represent objects in the image. In 2003, Viola and Jones detector (VJ detector) [29] was
applied to the pedestrian detection. The VJ detector was originally designed for the face
detection. It extracts the Haar features from the image patch. The patches shown in Figure 2-
1a are overlayed on the face area in Figure 2-1b. The Haar feature is calculated by subtracting
the sum of the pixel values within the white rectangles from the sum of the pixel values in
the black rectangles.

In 2005, Dalal and Triggs created a new feature representation named Histogram of Oriented
Gradients (HOG) for the pedestrians detection as illustrated in Appendix B-1-1, which mainly
cues on silhouette contours [16]. A few years later, HOG was used as the building block for
the Deformable Part Model (DPM) [18] which gives the state-of-the-art pedestrian features
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(a) Rectangle features [30] (b) Example of Feature Value [30]

Figure 2-1: Feature of VJ detector

before the popularity of the Convolutional Neural Networks (CNN). After the DPM feature
achieving success, a lot of detectors apply DPM in the feature extraction.

Felzenswalb et al. [18] used a latent SVM classifier to do the classification after extracting
the DPM features. Park et al. [31] treat objects of different size differently because finite
sensor resolution poses an undeniable limit to the scale invariance. Recognizing an object
occupying 3 pixels is much harder than the one occupying 300 pixels. DPM is applied for the
feature extraction for the large-scale objects and a rigid template is applied for scoring the
small objects. Yan et al. [32] also applies a similar approach which treats the different size
objects differently.

2-1-2 Region-based Convolutional Neural Networks

As one of the pioneering researches applying CNN to the object detection, Girshick et al.
[33] made a great progress in the image-based object detection research. The authors created
a popular detection pipeline named Region-based Convolutional Neural Networks (R-CNN),
which first proposes Region of Interests (ROI) and then classifies the ROIs using the CNN.
Researchers found that CNN is able to extract more distinctive features than the former
hand-crafted methods. Due to its good performance in the image parsing, CNN also becomes
the most successful Neural Network (NN) architecture so far.

The first step is to get the ROIs. Girshick et al. [33] propose ROIs with a selective search
method [4] which first applies a segmentation algorithm named hierarchical grouping [34]
to the image as shown in Figure 2-2. Different proposals of different size come from the
segmentation blocks. Then, each ROI is fed into the CNN to be classified. This algorithm is
super slow because it performs a CNN forward pass for each object proposal, without sharing
computation [22]. Girshick [22] makes some improvements based on his former work [33]. He
feeds the whole image and multiple ROIs into a fully convolutional network. Each ROI is
pooled into a fixed-size feature map and then mapped to a feature vector by Fully Connected
Layer (FC) [22]. This algorithm is 18.3 times faster than [33] when training and 213 times
faster than [33] when testing.

Ren et al. [5] propose the Faster R-CNN which makes a big improvement based on the former
works. They introduce a Region Proposal Network (RPN) for ROI proposals. The structure
of Faster R-CNN detection algorithm is shown in Figure 2-3. The whole image is first fed into
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Figure 2-2: Selective search [4]

a few CNN layers to extract a feature map. The RPN generates high-quality region proposals,
which are used by Fast R-CNN for detection [5]. The RPN is merged with Fast RCNN [22]
by sharing the feature map. The final detection system has a frame rate of 5 Frames Per
Second (FPS) and achieves state-of-the-art object detection accuracy on PASCAL VOC [35]
and MS COCO [36] datasets.

image

conv layers

feature maps

Region Proposal Network

proposals

classifier

RoI pooling

Figure 2-3: Faster R-CNN [5]
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2-1-3 Detection without region proposals

Instead of detecting objects in two steps like R-CNN methods, some researchers are seeking
algorithms that do the detection in a single feed-forward pass, like Single-Shot-Detector (SSD)
[6], You Only Look Once (YOLO) [37], etc. Rather than doing independent processing for
region proposals, the bounding box regression is treated as a subtask of the network. Finally,
the network produces a collection of bounding boxes and scores for the presence of object
class instances in those boxes [6].

In SSD, the image is fed to the base network with a standard architecture used for high-quality
image classification [6]. The convolutional feature layers are added to the base network later.
These feature maps are divided into some coarse grids as shown in Figure 2-4. Here the
authors chose two different feature map splits: 8-by-8 and 4-by-4 for the objects in different
scales. For each cell of the feature map, a set of base bounding boxes of different aspect ratios
are evaluated (as shown in dash lines). For each box, they predict both the shape offsets and
the confidence score for all object categories in the CNN.

(a) Image with GT boxes (b) 8 × 8 feature map (c) 4 × 4 feature map

loc : ∆(cx, cy, w, h)
conf : (c1, c2, · · · , cp)

Figure 2-4: SSD framework [6]

Detection algorithms without region proposals are simpler in the structure and faster while
inference comparing to the R-CNN methods. However, the R-CNN tends to provide more
accurate results since it deals with the bounding box proposal separately which makes the
predicted bounding box more accurate.

2-2 Lidar-based Object Detection

Lidar-based object detection systems use the point cloud as the input. Dealing with the point
cloud is much more difficult than the image since it is unordered, scattered data structure. As
introduced in Section 1-2, the point cloud has multiple commonly used representations. The
point cloud detection algorithms heavily depend on the encoding method of this 3D data.
Different encoding methods and different parsing algorithms lead to different solutions for
the Lidar-based detection. There are three most commonly representation methods among
the existing works. The first representation, which is also the most widely used method, is
to project the point cloud onto the image plane or multiple views like front views, bird’s eye
views, etc. Then the point cloud is encoded as one image or a few images that can be fed into
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2-2 Lidar-based Object Detection 11

the image parsing networks. The second representation is to voxelize the point cloud into 3D
grid cells, which is also called Volumetric Voxelization. This converts the point cloud into an
organized data structure. The third representation is to keep the point cloud as its origin and
parse the point cloud directly. In this section, the detection algorithms applying these three
different representation methods are introduced.

2-2-1 2D projection

Generally, there are three different kinds of point cloud projection methods. The first one is to
project the point cloud onto the image plane and to get a depth map, which is also called the
RGB-D projection since projection in this way gives some pixels in the RGB image a depth
information. Papers such as [38][39] are applying this kind of projection. The image-based
detectors can also be applied here to parse the extra depth map.

The second commonly seen method is to project the point cloud onto a spherical image,
which will also be explained in Section 3-2-1. Each pixel of such a spherical image represents
the distance from the scanned point to the sensor. This projection method is especially
suitable for those rotating Lidar like Velodyne HDL64E. Since the Lidar is a rotating sensor,
a spherical image makes use of most of the scanned points and keeps as much information
from the point cloud as possible. Li et al. [25] apply this projection method and then use a
fully convolutional network to parse the spherical image for the object detection.

The third projection method is to project the point cloud to the bird’s eye view. Papers like
[3][40] also combine the information from the point cloud bird’s eye view map and all achieve
great performance on 3D object detection.

2-2-2 Volumetric voxelization

To keep the data in 3D, some researchers choose to voxelize the point cloud, which means
that the 3D space of the point clouds is divided into small grid cells of a certain size.

Song et al. [7] divide the 3D point cloud into cubic cells of size 0.1 meter and a feature vector
is extracted from the points inside each cell. The features used in this paper are hand-crafted
features like the point density feature, 3D shape feature, 3D normal feature and Truncated
Signed Distance Function (TSDF) feature [41], which are shown in Figure 2-5.

TSDF is a measure of the self-occlusion. For each cell, it is further divided into 6 × 6 × 6
voxels. TSDF value of each voxel is defined as the signed distance between the voxel center
and the nearest object point on the line of sight from the camera [7]. The distance is clipped
to be between -1 and 1 and the sign here indicates whether the cell is in front of or behind the
surface [7]. After extracting the features, a linear classifier is applied to classify the feature
vectors.

Wang et al. [42] apply a similar pipeline to [7]. They also divide the point cloud into
3D cells and apply a linear classifier on the extracted feature vector. However, they use a
different feature representation and a different computational tractability. For the feature
representation of each cell, they compute three shape factors, the mean and variance of the
reflectance values of points, and a binary occupancy feature that is 1 for an occupied cell
and 0 for an empty cell [42]. Engelcke et al. [43] improve Wang’s work by substituting the
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Figure 2-5: Visualization of 3D Features [7]

Support Vector Machine (SVM) classifier with a 3D CNN since a linear classifier in the case
of the sliding window is equivalent to convolution [42]. For the computational tractability,
they prove that the sparse convolution in the 3D point clouds is mathematically equivalent
to the process of voting [42].
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Figure 2-6: Multi-scale 3D amodal RPN of [8]

Song et al. [8] also make some improvements to their former work [7]. The point cloud is first
voxelized and each voxel is encoded with the TSDF feature. Inspired by the RPN created by
Faster R-CNN [5], this paper creates the first 3D RPN. RPN, which tells the machine where
to focus on, is rather important since the computation in 3D is much more time-consuming
than that in the 2D situation. Since different objects have different 3D size, they used a
multi-scale 3D RPN which is shown in Figure 2-6. After the ROI have been proposed, a
3D Non-maximum suppression (NMS) is performed before each proposed region is fed into
the object recognition network. The structure of the object recognition network is shown in
Figure 2-7. The object recognition network shows that the RGB image feature vector and
the point cloud feature vector are concatenated into a single vector that is further fed into a
fully connected layer, which provides a simple fusion method for deep network features.

Zhou et al. [9] use a different method to avoid making hand-crafted features for each voxel.
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Figure 2-7: Object Recognition Network of [8]

They introduce a network named Voxelnet to simultaneously extract features and predict
accurate 3D bounding boxes from the point cloud. The architecture of the network is shown
in Figure 2-8. The points in each voxel are fed into multiple Voxel Feature Encoding (VFE)
layers to extract local features. Then a 3D convolution layer further aggregates all local
features. Finally, an RPN is applied to estimate the bounding box of the object. This paper
gives the best Lidar 3D detection results in the KITTI benchmark so far. The VFE layer is
similar to the architecture of Pointnet [2], which is one of the pioneer network for the point
cloud parsing.

Figure 2-8: Architecture of the Voxelnet [9]

2-2-3 Original point cloud

The point cloud is probably the closest 3D representation to the raw sensor data. This avoids
any kind of the man-made bias for the feature representation and makes the feature more
precise.

Pointnet [2] is one of the pioneer work in feeding the original point cloud into the networks.
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Each point is represented by its coordinates and sometimes with extra features such as colour,
normal, etc. The network will have an n×3 array as the input if only the coordinates (x, y, z)
are used where n corresponds to the number of points. The architecture of the network is
shown in Figure 2-9. There are three special designs in the network. First, the network needs
to be invariant to the input permutation since the point cloud fed to the network is unordered.
A max pooling layer is applied to satisfy this demand, which is a simple symmetric function
to aggregate the information from each point [2]. Second, the structure combines the local
and global features in the segmentation network. Third, they apply an affine transformation
matrix to the input coordinates by a mini-network (T-net in Figure 2-9). This mini-network
aligns all input set to a canonical space to make the learned feature by the point set is invariant
to certain geometric transformations [2].
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Figure 2-9: Architecture of the Pointnet [2]

Pointnet is originally designed for the indoor scene point cloud classification and segmentation
tasks. Researchers are trying to apply Pointnet to the road scene. The most successful works
are Voxelnet [9] as introduced in Section 2-2-2 and Frustum PointNets [10].
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Figure 2-10: Architecture of the Frustum PointNets [10]

Frustum PointNets [10] is among the top ranking 3D detection algorithms in KITTI 3D
object detection benchmark (accessed August 3, 2018). This paper uses image-based detection
results for the region proposals in the point clouds. Pointnet [2] is applied in this work to
parse the ROIs in the point cloud. Compared to Pointnet, the main contribution of this paper
is to efficiently propose possible 3D locations of the object. The authors take advantage of
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the image-based detection methods and propose 3D frustum of the object by extruding 2D
bounding boxes from image-based detectors [10]. Basically, there are three modules in the
system pipeline which is shown in Figure 2-10. The first module is Frustum Proposal. It
adopts a Feature Pyramid Networks (FPN) [44] based model as the image-based detector
to propose 2D ROIs. The object class also comes from the image-based detection results.
According to the camera projection matrix, the 2D bounding box can be lifted to a frustum
that defines a 3D search space for the object. The second module is 3D Instance Segmentation.
They did not apply a 3D object location regression because there might be occluding objects
and background in the frustum as well. A Pointnet-based segmentation network is applied
here. The third module is the Amodal 3D Box Estimation that provides the 3D bounding
box of the object. A T-Net [10] is first applied to estimate the object center. Then the
author transforms the coordinate such that the predicted center becomes the origin [10]. The
output will be an amodal 3D bounding box of the object. Though the detection results are
satisfying, there is a shortage of this method. The model is not robust enough since it relies
on the image-based detector for the ROI proposal. As introduced in Section 1-2, the camera
suffers from the weather conditions. The system is still suffering from illumination changes.

2-3 Multimodal Object Detection

One of the main concern in this thesis is about the Lidar and camera sensor fusion. In
this section, the multimodal object detection is also referring to object detection algorithms
combining Lidar and camera. As introduced in Section 1-3, there are three main fusion
methods: early fusion, deep fusion and late fusion.

2-3-1 Early fusion systems

An early fusion system fuses the sensor data in the feature level and applies a unique classifier
that is able to retrieve information from several sensors [27]. A preprocessing stage is needed
to extract feature vectors from different types of sensor data. Here, three different types of
early fusion methods are introduced and the biggest difference between these methods is the
design of the data preprocessing stage.

Premebida et al. [38] project the point cloud onto the image plane and generate a depth map
aligned with the RGB image. Since the point cloud is a sparse data structure, an upsampling
algorithm is applied to the sparse depth map to create dense alignment with the RGB image.
Then the upsampled depth map is treated as extra image channel. This paper extracts the
HOG feature from the depth map and the RGB image. Finally, an SVM classifier is trained
from both HOG features of RGB image and depth map.

Gonzalez et al. [39] make an improvement on the Premebida’s work. They project the point
cloud in the same way with Premebida’s work. However, different from Premebida’s work,
they also extract Local Binary Pattern (LBP) features except for HOG features both from
the depth map and RGB image. This multi-cue features may provide a more discriminative
feature than a single one. On the other hand, this paper splits the training data according to
the orientation of the object to train an orient-discriminative classifier.
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Another commonly used early fusion scheme is to use the point cloud to propose 3D ROIs
and project the ROIs to the RGB image plane for the image-based classification. Jafari et
al. [45] do the early fusion in this way. The first step is to segment the points into three
categories: objects, fixed structures and ground plane. The fixed structures are removed before
further processing. Then a Random Sample Consensus (RANSAC) plane-fitting algorithm
is applied here to find the ground plane. After getting the ground plane, all the points that
have been segmented as objects are projected to the ground plane forming point blobs. Then
the 3D ROIs are extracted from the point blobs on the ground [45]. Then the 3D ROIs are
back-projected onto the RGB image plane for the 2D proposals, which will be fed into the
image-based detector. However, the fusion scheme is only applied to the close range objects
detection. For the far range objects, only the image is used for detection because of the
limitation of the distance of the point clouds.

2-3-2 Late fusion systems

For a late fusion system, one or several low-level classifiers are applied to different sensor data
independently. In the final stage, all the low-level classification results are combined using
different fusion methods such as Bayesian classifier, Global Nearest Neighbor, fuzzy logical
model, Dempster-Shafer theory, etc. Since the image-based detection and the Lidar-based
detection are dealt with separately, basically, all the image-based detectors and Lidar-based
detectors can be applied here for the low-level detection. This can make the most of the
available successful detectors.

Figure 2-11: Fuzzy Logic Model [11]

Zhao et al. [11] apply a late fusion scheme in their work. For the Lidar-based detection,
three steps are applied here for the obstacle detection. The first step is to voxelize the
point cloud. Then, the ground points are separated according to a RANSAC plane-fitting
algorithm [46]. Finally, the above ground points are clustered according to 3D adjacency.
All the clusters are possible obstacles. For the image-based detection, both bottom-up and
top-down classification is applied. The image is divided into small batches and each batch is
classified according to its feature vectors in the bottom-up classification. Then a top-down
contextual analysis process is applied to correct the classification mistakes. In the final stage,
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a fuzzy logic inference fusion method is applied as shown in Figure 2-11. There are 5 inputs
fed into the fuzzy logic model: the size of the obstacle, the image classification result, the
spatial context, the temporal context and the absolute height of the candidate obstacles. The
output is the final detection results for the obstacles. All the five input are inferred from
the detection results of the camera and Lidar. There are 20 rules applied in this model that
are based on the human experience and knowledge of the road scene. No exact class of the
obstacle is further determined. A problem with the fuzzy logic model is that there might be
mistakes in human experience which might result in mistakes in the rule definition.

Figure 2-12: Fusion Architecture of [12]

Vu et al. [12] apply a different way of the late fusion, which is called Dempster-Shafer theory.
The authors use a 2D Lidar here. The point cloud from the Lidar is on the same horizontal
plane. The detection methods of the objects might be quite different from the 3D one. For
the image-based detection, a Dalal and Triggs detector [16] is applied here. Vu makes an
improvement to this by applying a Sparse HOG feature method which selects a few discrim-
inative areas for the feature extraction. What’s more, Vu uses the Lidar and Radar data for
the ROI proposals in images for a faster detection. In the final stage, a late fusion approach
based on Dempster-Shafer theory [47] is implemented to combine instantaneous information
from current environment state gathered from multiple sensors. The approach applies a rule
of combination taking into account classification evidence from different sources of evidence
(Lidar/camera) [48]. After the fusion of current information, the proposed approach fuses it
with the previous combination results. The basic fusion architecture is shown in Figure 2-12.
There are three inputs here for the proposed approach: several lists of detected objects and
their class information, the reliability of the sources of evidence and the precision detection
for certain type of classes [48]. The final output of the proposed method comprises a list of
objects with combined class information [48].

2-3-3 Deep fusion systems

The former two types of fusion are the conventional ways of sensor fusion. Wang et al. [28]
name the conventional fusion methods as the shallow fusion and they create a new type of
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fusion: Deep Fusion. This method relies on the development of the neural networks and the
fusion is implemented in the network. NN has proved its capability of learning the features
from a large amount of data. In the research of multimodal sensor fusion, researchers are also
seeking methods to make the network learn to fuse the information from two different sensor
data.

Song’s Deep sliding shapes [8] fuses the two features in the network. The architecture of the
network is shown in Figure 2-7. It is shown that the voxelized point cloud and the RGB image
are first fed into different networks to extract feature vectors. Then the two feature vectors
are concatenated in a layer and further fed into a fully connected layer for the classification
and the bounding box regression.

Height

Distance

IntensityHeight   Maps                                       Density                                          Intensity

(a) Bird’s eye view features                                                     (b) Front view features                                   (c) RGB image

Figure 2-13: Multi-view representation of MV3D [3]

Different from Song’s [8], MV3D [3] projects the point cloud into multiple views. The first
view is the bird’s eye view representation. The bird’s eye view is composed of the height map,
intensity map and density map according to different clues. It is voxelized into 2D grids of
size 0.1m. The height map comes from the height of the points in each cell. The intensity map
uses the reflectance value of the point as the clue. The density map is the number of points
in each cell. Another view is the front view. The front view is also a spherical projection of
the point cloud as in [49]. The multi-view representation is shown in Figure 2-13. The 3D
object proposals are generated from the bird’s eye view. The bird’s eye view is better for
object proposals than the front view. First, the objects need to be detected preserve the size
in bird’s eye view. Second, there will be no occlusion problems in bird’s eye view. Third, the
vertical locations of the road users, such as Pedestrian, Cyclist and Car, have less variance
since they all lie on road.

For the sensor data fusion, MV3D [3] also uses the idea of combining features of different
sensor data in the network. The network architecture of the MV3D is shown in Figure 2-
14. As illustrated before, the 3D object proposals (represented by 3D bounding boxes) are
extracted from the bird’s eye view. MV3D first designs a set of 3D prior boxes according to
the ground-truth object sizes in the training set [3]. After getting the corresponding bird’s
eye view of the 3D prior boxes, the bird’s eye view of the point cloud is searched for 2D
boxes similar to prior boxes. There are seven parameters for each 3D bounding box including
the center point coordinates (x, y, z), the size of the 3D bounding box (l, w, h) and the
orientation of the bounding box (γ). The proposal from the bird’s eye view provides five of
the parameters (x, y, l, w, γ). The height of the box and z come from the object height and
camera height separately. After getting the 3D object proposals, the 3D bounding boxes are
projected onto the feature maps of each view. Then features from all views are fused with
the Region-based Fusion Network. The Region-based Fusion Network of this paper is more
complicated than Song’s [8], which fuses multi-view features hierarchically. The final step is
the classifier and the oriented 3D box regression.
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Figure 2-14: Architecture of the MV3D network [3]

2-3-4 Comparisons of different fusion structures

Early fusion Basically, the deep fusion is also one kind of early fusion, which combines
different information clues in the network. The early fusion method combines different sensor
data in an early stage. So, the feature map combines different clues from different sensors,
which makes the feature map more discriminative. What’s more, early fusion makes the
system cleaner in the system structure.

However, one shortage of the early fusion systems is that the system lacks redundancy. If
a single sensor is not working properly, the performance of the whole system will be largely
affected. For example, the camera might have a poor performance in detecting objects at
night.

Late fusion Since the detection is first carried out for every single sensor in the late fusion
systems, it is possible to apply the existing successful detectors for a single sensor, such as the
successful image-based detectors nowadays. It is also possible for a late fusion system to pro-
vide the preliminary results from every single sensor, which provides the system redundancy
in case of a single sensor failure.

A shortcoming of the late fusion systems is that the fusion stage should be carefully designed
to provide more reliable results than the single sensor detector.

2-4 Theories

2-4-1 Object classification

Object classification is one of the hottest research fields in Machine Learning (ML). In the
context of this thesis, object classification refers to judge which category a certain part of an
image or the point cloud belongs to. The categories will usually be defined according to the
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context. In this thesis work, the road users are mainly concerned such as Cars, Pedestrians,
Cyclists, etc.

The classification is executed by a classifier. Instead of feeding the raw data (the image
and the point cloud) into the classifier, the researchers usually will feed the feature vector
extracted from the image or the point cloud to represent the raw data. The ML process here
is to find the mapping function f between the input feature vector (x) and the output class
decision (y) as illustrated in Eq. (2-1).

y = f(x) (2-1)

The feature can be a hand-crafted one such as HOG, DPM, etc., extracted from the image.
They come from the human knowledge about the raw data. More detailed information will
be given in Appendix B-1. Since the popularity of the NN, researchers find that the network
is able to learn a more distinctive feature than the hand-crafted one.

2-4-2 Neural Network

NN provides a new idea of doing the classification. A NN is basically composed of the artificial
neurons as shown in Figure 2-15. Each input is multiplied by a weight factor wi and added
together with a bias term. The sum is fed into an activation function which is usually a non-
linear function to get the output. Such an artificial neuron is also named as a perceptron.
The mathematical explanation of the perceptron can be described in Eq. (2-2), where f is
the activation function.

x W1

x W2 Sum

Input 1 

Input 2 

Bias 

Activation Output 

Figure 2-15: Artificial neuron

Output = f(
n∑

i=0
wixi + b) (2-2)

Connecting multiple perceptrons together makes a simple NN example as shown in Figure 2-
16. The inputs are called input layer and the output is called output layer. The layers between
the input layer and the output layer are called hidden layers. In the thesis context, the input
can be the image or the point cloud and the output is the classification result. A loss will
be designed to measure the difference between the output and the true value. The training
of the NN is to optimize the weight and bias values to minimize the designed loss. Then the
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gradient descent can be backpropagated through multiple layers, from the output layer back
to the input layer.

Input Layer 1 Layer 2 Output

Figure 2-16: Multiple Perceptron Network

2-4-3 Convolutional Neural Networks

For the image parsing, the most successful network is CNN. CNN is mostly composed of
convolutional layers and pooling layers.

A convolutional layer is basically a perceptron with special inputs and weights. A grayscale
image is a 2D matrix and the colour image is a 3D matrix with an extra colour dimension.
The weight used in the convolutional layer is called kernels, which has the number of same
dimensions as the image. A simple 2D convolutional layer example is shown in Figure 2-17.
The kernel will slide across the input image in a certain stride through both columns and
rows. The stride in the given example is 1 both in columns and rows. For each position the
kernel passing by, the result of the convolution is the sum of the element-wise multiplication
of the kernel and its receptive field (the red patch in the example figure). There is a problem
here that the feature map generated in this way is smaller than the input image. If the feature
map has to keep the same size with the input image, a zero-padding step can be applied to
the input image as shown in Figure 2-18.
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Figure 2-17: Convolution example with kernel size 3 × 3 and stride 1
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Figure 2-18: Zero padding
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Figure 2-19: 2 by 2 max pooling

The second most commonly seen layer type is the pooling layer. Pooling layers will subsample
the input image, which reduces the memory use and the number of parameters in the network.
A simple example of the 2 by 2 max pooling is shown in Figure 2-19. Except for the max
pooling, another commonly seen pooling method is the average pooling which calculates the
average.

Instead of dealing with the images, CNN is also capable of dealing with all data format that
can be encoded as a multi-dimensional tensor. As introduced in Section 2-2-3, Pointnet [2]
encodes the point cloud into a N × 3 matrix and use a CNN to parse the point cloud as well.
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2-4-4 Recurrent Neural Network

Different from the normal neuron in the feed forward network as described in Section 2-4-2,
the recurrent neuron sends the output back to itself as shown in Figure 2-20.

x W1

x W2 Sum

Input 1 

Input 2 

Bias 

Activation Output 

Figure 2-20: Recurrent neuron

Recurrent Neural Network (RNN) is usually used to deal with the sequential data. A simple
RNN layers with the data flow overtime is shown in Figure 2-21. RNN is also flexible in their
inputs and outputs, for both sequences and single vector values.

Input 
at t=0 

Output 
at t=0 

Input 
at t+1 

Output 
at t+1 

Input 
at t+2 

Output 
at t+2 

Time
Figure 2-21: Recurrent neuron layer and the data flow over time

2-4-5 Loss

Except for the network architecture, the loss function is another key component of NN. The
loss function measures how far off the predicted value is from the true value. Several types
of the loss function are introduced in this section.

Classification loss

The L1 loss is the absolute difference between the predicted value and the truth value as
following:
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l1 loss =
n∑

i=0
|yi − f(xi)| (2-3)

where yi is the truth value and f(xi) is the predicted value.

The L2 loss is the square difference between the predicted value and the truth value as
following:

l2 loss =
n∑

i=0
(yi − f(xi))2 (2-4)

where yi is the truth value and f(xi) is the predicted value.

Hinge loss is one of the most commonly used loss function in classification tasks. The equation
describing the hinge loss is:

hinge loss =
∑
j ̸=c

(sj − sc + 1) (2-5)

where sc is the classification score of the correct class and the sj is the classification score of
the other classes. Hinge loss is specially designed for the SVM classifier.

Cross-entropy loss is another commonly used loss function in classification tasks. The input
of the cross-entropy function should be the class probability vector that is composed of the
probability value between 0 and 1 and the elements of the class probability vector sum up
to 1. So it is usually used with the softmax activation function which is shown in Eq. (3-8).
The formula of the cross-entropy loss is:

cross-entropy loss = −
N∑

c=1
yc log(pc) (2-6)

where N is the number of classes, yc is the true probability value for class c and pc is the
predicted probability value for class c.

Regression loss

Huber loss is the loss commonly used for regression tasks. It is less sensitive to the outliers.
The function of the Huber loss is shown in Eq. (2-7) where y is the true value , f(x) is the
predicted value and δ is the hyperparameter.

Huber loss =
{

1
2(y − f(x))2 for |y − f(x)| < δ

δ |y − f(x)| − 1
2δ

2 otherwise (2-7)
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Chapter 3

Proposed Approach

As illustrated in Section 2-3-4, both the early fusion and the late fusion have their advantages
and disadvantages. In the proposed approach, a late fusion system is built since it provides
redundancy and robustness. Without any human intervention, the future autonomous vehicles
have to deal with all possible situations that might happen while driving. The redundancy
and robustness might be one of the top requirements for an autonomous vehicle because of
the injury and fatality to human it might cause in case of the detection failure. It is quite
necessary for an autonomous vehicle to operate normally under all kinds of circumstances.
Considering that different sensors are good at operating in different circumstances, the late
fusion might be a better choice for the future autonomous vehicle.

An overview of the system built in the thesis work is shown in the Figure 3-1. The image-
based detector and the Lidar-based detector first work separately. The image-based detector
supplies the detection results as the 2D bounding box in the image and the classification
vector of each detected object. Elements of the classification vector is the probability of
the detected object belonging to each class. The Lidar-based detector supplies the detection
results as the 3D bounding box in the point cloud and the classification vector of each detected
object. After getting the results from these two single sensor detectors, a final fusion stage
will combine the two different results to a final result, which can be more convincing. Details
of each module of the system will be introduced in this chapter.

Image-based detector

Lidar-based detector

Late fusion

3D bounding boxes

Classification vectors 

2D bounding boxes
Classification vectors

3D bounding boxes
Classification vectors

Figure 3-1: System overview
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3-1 Image-based Object Detection

There are many state-of-the-art works performing really well on the image-based detection
tasks as illustrated in Section 2-1. The output expected from an image-based detector is
the object location (2D bounding box) in the RGB image and the classification vectors of
the detected objects. So, basically, all state-of-the-art works can be used as the image-based
detector in the system since they all can provide the expected results. After searching most of
the existing image-based detectors, SqueezeDet is not only accurate but also small, fast and
energy-saving [13], which makes it a real-time detection system that can reach 57.2 Frames
Per Second (FPS) with 1242x375 image resolution. Finally, the SqueezeDet [13] is chosen as
the image-based detector used in the thesis.

3-1-1 SqueezeDet network

The detection pipeline of SqueezeDet [13] is shown in Figure 3-2. The input image first
goes through a convolutional neural network and becomes a low-resolution, high dimensional
feature map. Then, the feature map is fed into a ConvDet which predicts tens-of-thousands
of possible bounding boxes. The final step filters the detection results and only the top N
detection results with the highest probabilities are kept. A final Non-maximum suppression
(NMS) step is also performed to remove the duplicated detection results.

Figure 3-2: SqueezeDet detection pipeline [13]

The cornerstone of this algorithm is the ConvDet layer. ConvDet is basically a convolutional
layer that predicts the bounding box coordinates and the class probabilities as shown in
Figure 3-3. Similar to Single-Shot-Detector (SSD), SqueezeDet also divides the image into
H ∗W grids. In each grid, K anchor boxes are set as the reference box. The ConvDet works
as a sliding window that goes through H ∗W positions in the feature map and each position
corresponds to the grid center of the original image. In each position, ConvDet computes
K ∗ (4 + 1 + C) values as the prediction in the current grid. K is the number of the anchor
boxes. 4 corresponds to the residual value of the box center (∆x and ∆y) and the box size

Xinyu Gao Master of Science Thesis



3-1 Image-based Object Detection 27

(∆w and ∆h). 1 corresponds to the predicted confidence score which will be described as
in Eq. (3-1). C corresponds to the class probabilities of each class. So the output of the
ConvDet has a size of H ∗W ∗K ∗ (4 + 1 + C).

Wf

Hf

Chf

Hf

Wf

K ⇥ (4 + 1 + C)

Feature	map	

																	convolu9on	

Detec9on	
output	

K ⇥ (4 + 1 + C)

Fw ⇥ Fh

Figure 3-3: ConvDet layer [13]

3-1-2 SqueezeDet training loss

During training, a confidence score is defined similar to You Only Look Once (YOLO) [37]
as following:

confidence score = Pr(Object) ∗ IOUpred
truth (3-1)

where Pr(Object) is the classification probability of the object existing in the bounding box
and Intersection Over Union (IOU) measures the overlap between the predicted bounding
box and the ground-truth bounding box. The confidence score is a measure of the accuracy
of the detection results and is also used in the training loss.
The designed loss for the SqueezeDet training is composed of three parts as follows:

Lsqueezedet loss = Lbox_reg + Lconf_reg + Lcls

Lbox_reg = λbbox

Nobj

W∑
i=1

H∑
j=1

K∑
k=1

Iijk[(δxijk − δxG
ijk)2 + (δyijk − δyG

ijk)2 + (δwijk − δwG
ijk)2

+(δhijk − δhG
ijk)2]

Lconf_reg =
W∑

i=1

H∑
j=1

K∑
k=1

λ+
conf

Nobj
Iijk(γijk − γG

ijk)2 +
λ−

conf

WHK −Nobj
Īijkγ

2
ijk

Lcls = 1
Nobj

W∑
i=1

H∑
j=1

K∑
k=1

C∑
c=1

Iijkl
G
c log(pc)

(3-2)

Bounding box regression loss The first part is the L2 loss (Section 2-4-5) for the bounding
box regression. Each anchor box is compared to the ground-truth bounding box that has
the biggest overlapped area with it. Iijk equals to 1 if the k-th anchor at position-(i, j) has
the largest overlap with a ground-truth box, and to 0 if no ground-truth is assigned to it
[13]. This way, only the loss generated by the anchors having corresponding ground-truth
bounding boxes are included [13].
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Confidence regression loss The second part of the loss is the L2 loss (Section 2-4-5) for the
confidence score regression. γijk is the output from the ConvDet representing the confidence
score and γG

ijk is the actual confidence score calculated by Eq. (3-1). Īijkγ
2
ijk (Īijk = 1−Iijk) is

a term used to penalty those anchors that do not have corresponding ground-truth bounding
boxes. λ+

conf and λ−
conf are two weights used to balance the two loss components.

Classification loss The last part of the loss is the cross-entropy loss (Section 2-4-5) for the
classification.

3-2 Lidar-based Object Detection Design

Inspired by the Region-based Convolutional Neural Networks (R-CNN) works like [33][22][5]
detecting the objects in two steps: region proposal and classification, the Lidar-based detector
proposed in this thesis work also takes similar two steps. The first step is to find out possible
objects in the point cloud using a segmentation algorithm. All clusters from the segmentation
might be a possible object in reality. The second step is to feed the clusters into a classification
and bounding box regression network to determine which class each cluster belongs to and to
estimate an amodal bounding box of the object. An overview of the Lidar-based detector is
shown in Figure 3-4.

Point cloud

Region proposal Classification and bounding
box regression

3D bounding boxes

Classification vectors

Clusters

Figure 3-4: Lidar-based detector overview

Region proposal The are multiple existing point cloud segmentation algorithms. Generally,
there are three different types of point cloud segmentation. The first group segments the
point cloud in the 3D domain. Choe et al. (2012) [50] first remove the ground and then
segment the rest point cloud with a nearest neighbour approach. Douillard et al. (2014) [51]
extracted a hand-crafted 3D features for the segmentation. The second group projects the
point cloud onto the ground plane and the segmentation is carried out in the image plane, such
as [52][53]. The third group segments the point cloud in the range image such as [14][54][15].
Two segmentation methods are introduced here: Depth clustering [14] and SqueezeSeg
[15].

3-2-1 Depth clustering

Depth clustering is an easy and fast segmentation algorithm which can produce good seg-
mentation results [14]. After getting the point cloud from the Lidar, the point cloud is first
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projected onto a spherical range image for faster computation. The number of rows of this
range image is the number of laser beams in the vertical direction. For a Velodyne HDL-64E,
there will be 64 rows in the range image. The number of columns is related to the range read-
ings per 360◦resolution of the laser. The value in each pixel of the range image represents the
distance of the scanned point to the sensor. An example range image is shown in the top left
of Figure 3-5. After such conversion, the sparse and unordered point cloud is transferred into
a dense and organized image, which allows faster computation. Depth clustering is composed
of two parts: Ground removal and Segmentation.

Ground removal

In order to make the clusters more likely to be the real road users in the thesis context,
the ground points should be removed. Similar to [14], three assumptions are made here to
estimate the ground points. First, the Lidar is roughly horizontally mounted to the vehicle.
Second, the curvature of the ground is low [14]. Third, there are some pixels in the last row
of the range image is reflected from the ground. In another word, the lowest laser ray can see
the ground at some point.

Figure 3-5: Top left: range image, Middle left: α angle image, Bottom left: smoothed α angle
image, Top right: definition of angle α [14]

After making such assumption, the range image is converted into an α angle image by com-
puting the α angle for every two neighbouring points in each column as shown in top right
of Figure 3-5. The angle α represents the inclination of the line connecting two neighbouring
points in the same column of the range image. Rr−1,c, Rr,c denote the distances from point
A and point B of row r− 1 and r to the sensor, which can be read from the range image. The
angle α can be computed from Eq. (3-3):

αr
r−1,c = atan2(∥BC∥ , ∥AC∥) = atan2(∆z,∆x)

∆z = |Rr−1,csinξa −Rr,csinξb|
∆x = |Rr−1,ccosξa −Rr,ccosξb|

(3-3)

where ξa and ξb are defined in top right of Figure 3-5.
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Then, replacing the distance value in each pixel of the range image by αr
r−1,c (c represents

the column and r represents the row) makes an α angle image as shown in the middle left
of Figure 3-5. Since Lidar will provide a substantial amount of outliers when scanning, a
SavitskyGolay filter [55] is used here to smooth the α angle image. This filter performs
least-squares optimization to fit a local polynomial for a given window size to the data [14].

After getting the smoothed α angle image, the ground points labelling is carried out. The
bottom row of the α angle image is first labelled according to the α angle value. Those
columns of the bottom row are labelled as the ground if the angle value is smaller than 45◦.
According to the third assumption made before, there must be some columns of the bottom
row been labelled as the ground. Starting from these ground points on the bottom row, an N4
neighborhood search is executed to find out if those neighbouring points around the labelled
ground points belong to the ground as well. The threshold used here is to judge if the angle
difference ∆α between the neighbouring points and the ground points is less than 5◦. If ∆α
is less than 5◦, the neighbouring point will also be labelled as the ground.

Figure 3-6: Angle-based segmentation [14]

Segmentation

After removing the ground points from the range image, the rest points will be segmented.
The segmentation is also an angle-based method. Similar to the ground removal step, the
segmentation algorithm is judging if the neighbouring points belong to the same object in
an N4 neighborhood. Starting from the top left corner of the range image, the algorithm
passes through all the pixels in the range image from top to bottom, left to right. For each
point that does not have an assigned cluster, the algorithm will search its N4 neighborhood.
For each neighbouring point (denoted as A) of the current point (denoted as B), angle β is
calculated as shown in the middle of Figure 3-6, where O is the position of the sensor and
OA/OB represent the laser ray from the sensor to A/B. The angle β can be calculated as
follows:

β = atan2(∥BH∥ , ∥HA∥) = atan2(d2sinψ, d1 − d2cosψ) (3-4)

where ψ is related to the angular resolution either in the column direction or the row direction.

The intuition behind the angle β is that it will become rather small if the depth difference
between neighbouring points is substantially large, in which case, it is highly possible that the
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Conv1b

Figure 3-7: SqueezeSeg network architecture [15]

neighbouring two points belong to two different objects. Setting a threshold θ to the angle β
makes it possible to decide whether the neighbouring points belong to the same object. If β
is smaller than the threshold θ, the two points will be segmented into two different clusters.
Otherwise, the two points will be considered belonging to the same cluster. The computation
is directly approached in the range image. A possible failure circumstance is that the object
is planar, such as a wall, and oriented nearly parallel to the laser beam [14]. In this case, a
single object will be separated into multiple clusters.

3-2-2 SqueezeSeg

Similar to Depth clustering [14], SqueezeSeg [15] also segments the point cloud in the range
image as described in Section 3-2-1. However, different from Depth clustering, SqueezeSeg uses
Convolutional Neural Networks (CNN) and Conditional Random Field (CRF) to parse the
range image for the semantic segmentation. The CRF model is reformulated as a Recurrent
Neural Network (RNN) module and can be trained end-to-end together with the CNN model
[15].

Network architecture

The network architecture of SqueezeSeg is shown in Figure 3-7. The input is the range image
and the output is the label prediction for each pixel in the range image. The structures
of the FireModule and the FireDeconv layers are shown in Figure 3-8. Comparing to the
normal convolution and deconvolution layers, the FireModule and the FireDeconv have less
parameters and make the training and inference faster [15].

Due to the loss of low-level details in down-sampling operations such as max-pooling, semantic
segmentation label maps predicted by CNN models tend to have blurry boundaries [15].
Accurate point-wise label prediction requires understanding not only the high-level semantics
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Figure 3-8: Structure of a FireModule (left) and a FireDeconv (right). [15]

of the object and scene but also low-level details [15]. Following [56], SqueezeSeg uses a CRF
to refine the label map generated by the CNN [15]. The CRF model employs the following
energy function for the label prediction c:

E(c) =
∑

i

ui(ci) +
∑
i,j

bi,j(ci, cj) (3-5)

where ci denotes the predicted label of the i-th point. The unary potential term ui(ci) =
−logP (ci) considers the predicted probability P (ci) from the CNN classifier [15]. The binary
potential terms define the “penalty” for assigning different labels to a pair of similar points
and is defined as bi,j(ci, cj) = µ(ci, cj)

∑M
m=1 ωmk

m(fi, fj) where µ(ci, cj) = 1 if ci ̸= cj and 0
otherwise, km is the m-th Gaussian kernel that depends on features f of point i and j and
ωm is the corresponding coefficient [15]. In SqueezeSeg, two Gaussian kernels are used:

ω1exp(−
∥∥pi − pj

∥∥2

2σ2
α

−
∥∥xi − xj

∥∥2

2σ2
β

) + ω2exp(−
∥∥pi − pj

∥∥2

2σ2
γ

) (3-6)

where p(θ̃, ϕ̃) is the angular position and x(x, y, z) is the cartesian coordinates. σα, σβ, σγ

are three hyperparameters chosen empirically [15].

Minimizing the above CRF energy function yields a refined label assignment [15]. In the
SqueezeSeg, the minimization of the energy function is reformulated as a RNN module as
shown in Figure 3-9.

After getting the probability map from the CNN layers, it is filtered by the Gaussian kernel
calculated according to Eq. (3-6). This step is also called message passing in [57] since it
essentially aggregates probabilities of neighbouring points. Then, a 1 × 1 convolution layer
is applied to the aggregated probability map to re-weight the probability map and use a
“compatibility transformation” to decide how much it changes each point’s distribution [15].
The initial probability map is added to the output of the 1 × 1 convolution and fed into a
softmax function. This procedure is iterated 3 times to achieve an accurate label map.
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Message	passing	
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Figure 3-9: Conditional Random Field (CRF) as an RNN layer. [15]

Instance-level segmentation

Since SqueezeSeg only provides the semantic segmentation of the point cloud, the instance-
level labels are then obtained by applying a conventional clustering algorithm: Density-Based
Spatial Clustering of Applications with Noise (DBSCAN).

DBSCAN first finds the core samples in the point cloud. A core sample is a point with a dense
neighborhood. Two parameters are used to decide a core sample: the number of neighbouring
points (min_samples) and the maximum distance (eps) [58]. More formally, a core sample is
defined as a sample in the dataset such that there exist min_samples other samples within a
distance of eps [58]. A cluster is a set of core samples that can be built by recursively taking
a core sample, finding all of its neighbors that are core samples, finding all of their neighbors
that are core samples, and so on [58]. A cluster also has a set of non-core samples, which
are samples that are neighbours of a core sample in the cluster but are not themselves core
samples [58].

3-2-3 Pointnet classification and box regression

The region proposal step introduced in Section 3-2-1 and 3-2-2 will segment the point cloud
into clusters that are possible to be the target objects. However, knowing that there are
possible objects in the point cloud is not enough for the perception system of the autonomous
vehicle. It’s necessary that the object class and an amodal 3D bounding box can also be
provided which can help the later system do a better judgment. So, in the second step of the
Lidar-based detector, a classifier and a bounding box regressor are designed to classify the
object and estimate the object bounding box.
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Figure 3-10: Three different Pointnets used in the thesis work. They are modified according to
the networks in [2] and [10]. The MLP extracts the feature from each point and the max pooling
layer aggregates the global feature from all the point features.

Network details

Pointnet [2] and it’s optimized version Pointnet++ [26] are two of the most successful networks
so far that directly consume the point cloud and learn the point cloud features. As introduced
in Section 1-2, there are multiple encoding methods of the point cloud. To extract the feature
from the data, the data should be kept in its original formation and should not pass through
too many preprocessing stage. That’s why the authors of Pointnet and Pointnet++ feed
the point cloud directly into the network. Due to the success achieved by Pointnet in the
classification benchmark in ModelNet40 [59], this thesis work modifies the original Pointnet
for the road users classification and bounding box regression.

Three different Pointnets are applied in the thesis: a classification network, a center estimation
network and an amodal 3D box estimation network. The basic structures of the three different
Pointnets used in the thesis work are shown in Figure 3-10. Before feeding the clusters into the
network, the cluster point cloud coordinates will be centralized to the center of the coordinate
system as shown in Figure 3-12.
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Classification network As can be seen in the top image of Figure 3-10, the input of the
classification network is a n × 3 matrix, where n is the number of points in each object and
3 corresponds to the x, y, z information channel of each point. Extra information channels
like the reflectance and norm of each point can also be used as input. However, results in the
experiment show that the coordinates information is already enough for the classification and
bounding box regression.

0 0 0 0 1 1
1 0 0 0 0 0
1 0 0 1 1 0
0 1 1 1 0 1
1 1 1 0 1 0
1 1 0 0 0 0

Point feature map

* 1 0 0 0 1 1

Kernel

=

2
1
2
1
2
1

Point feature map

Figure 3-11: MLP example

Since the point cloud is composed of unordered points, the calculated global feature should
be invariant to the input permutations of the points. The designed symmetric function is as
follows:

global feature = f(h(p1), h(p2), h(p3), ..., h(pn)) (3-7)

where pi represents the information vector of i-th point, h is the MLP and f is the max
pooling layer. The MLP extracts the feature from each point and the max pooling layer
aggregates the global feature. Since the max pooling layer is a symmetric function, the global
feature is invariant to the input permutations. The MLP used in the network is basically a
convolutional layer (Section 2-4-3) with a one-dimensional kernel as shown in Figure 3-11.

After getting the global feature vector of the object point cloud, the feature vector is further
fed into a few MLPs to get the output. The output of the classification network is a vector
of length k, where k is the number of classes. Feeding this output vector into the softmax
function (Eq. (3-8)) gives the classification vector whose elements represent the probabilities
of the object belonging to each class. Choosing the index of the maximum argument in the
classification vector gives the classification result.

σ(z) = ezj∑K
k=1 e

zk
for j = 1, ...,K (3-8)

Center estimation network Since the center of the cluster point cloud is usually not the real
center of the object, a center estimation network is built to estimate the amodal object center.
The design of the center estimation network is quite similar to the classification network. The
outputs of the center estimation network are the first stage residual values (∆x1, ∆y1, ∆z1)
between the point cloud center and the real object center as shown in the right figure of
Figure 3-12.
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Figure 3-12: Before feeding the cluster into the network, the cluster point cloud coordinates will
be centralized to the center of the coordinate system. After feeding the cluster into the network,
the class and the bounding box will be estimated.

Amodal 3D Box estimation network The output vector of the amodal 3D box estimation
network is a bit more complicated due to the parameters for a 3D bounding box. The first
three values are the second stage residual values (∆x2, ∆y2, ∆z2) between the point cloud
center and the real object center. In the final step, the residual values from the two stages
will be added up together to estimate the real object center as in Eq. (3-9). (The point cloud
center is the origin of the coordinate system since the point cloud is centralized.)

x = 0 + ∆x1 + ∆x2

y = 0 + ∆y1 + ∆y2

z = 0 + ∆z1 + ∆z2

(3-9)

It is assumed that all the bounding boxes are parallel to the z axis as shown in Figure 3-13.
In this case, after getting the estimated amodal object center coordinates (x, y, z), four more
parameters are required for the bounding box to be settled: height (h), width (w), length
(l) and heading angle (γ) (around z axis). Following the previous works [10][5], a hybrid of
classification and regression formulations is used here to estimate the box size and heading
angle. NH anchor heading angles and NS anchor box sizes are predefined. Here, one anchor
box is predefined for each class. The classification results of the classification network will
decide which anchor box to use. The residual box size (∆h,∆w,∆l) for each predefined will
also be predicted, which brings 3×NS more output values. The network will classify heading
(NH scores for heading) to those predefined heading categories as well as predict residual
values (∆γ) for each category, which brings 2 × NH more output values. Finally, there are
3 + 2NH + 3NS output values from the amodal 3D Box estimation network.

Object point cloud resampling

In the original definition of Pointnet, there are no limitations on the number of points for
each object fed into the network, so each cluster from the former step can contain any number
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Figure 3-13: All the object bounding boxes are assumed to be parallel to the z axis.

of points. In this case, the objects cannot be concatenated together and the batch size of the
Pointnet can only be 1. The experiment shows that if the training batch size equals 1, it leads
to the training loss of Pointnet not converge after 0.9 million steps of training. The more
detailed information will be presented in Section 4-3-3. A good solution is to resample all
the clusters and to make them have the same number of points and to concatenate multiple
clusters into a single tensor. Following Frustum Pointnet[10], the number of points in each
object is chosen as 512.

Upsampling For the objects having less than 512 points, the point cloud has to be upsampled
to make up for 512 points. One commonly used upsampling method is Moving Least Squares
(MLS). It first fits a surface to the local neighborhood points within a certain distance
and new points come from the surface. A newly released research PU-Net [60] use deep
learning method for the point cloud upsampling. However, these methods are expensive in
the computation and time-consuming for an online detection system. Following Frustum
Pointnet[10], random points from the original point cloud are repeated until there are 512
points in the point cloud.

Downsampling For the objects having more than 512 points, the point cloud has to be
downsampled to 512 points. One commonly used downsampling method is the farthest points
downsampling. It chooses a random point as the starting point and finds the farthest point
to the current point as the next point. This process is finished until 512 points are found.
However, this method is expensive in the computation since it keeps computing the distances
from one point to the rest points. Finally, a random downsampling method is applied in the
thesis which randomly picks up 512 points in the point cloud.

Though the resampling method is simple, the experiment in Section 4-3-3 shows that resam-
pling the objects does little influence on the results while the inference.

Networks training loss

The final multi task training loss is composed of two parts: object classification loss (Lobj_cls)
and bounding box regression loss. The bounding box regression loss is composed of: stage
one center regression loss (Lc1_reg), stage two center regression loss (Lc2_reg), box regression
loss (Lbox_reg), heading angle classification loss (Lhead_cls), heading angle regression loss
(Lhead_reg) and the corner loss (Lcorners) as follows:
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Lmulti−task loss = λ1Lobj_cls+λ2(Lc1_reg +Lc2_reg +Lbox_reg +Lhead_cls+Lhead_reg +Lcorners)
(3-10)

All the classification loss is the cross-entropy loss (Section 2-4-5) and all the regression loss
is the Huber loss (Section 2-4-5). The last term corner loss (Lcorners) is the L1 loss (Section
2-4-5) calculated by comparing the eight corners of the estimated bounding box and the eight
corners of the ground-truth bounding box. λ1 and λ2 are the two coefficient to balance the
classification loss and bounding box regression loss.

3-3 Multimodal Fusion Design

The final step of the system is to fuse the results from the image-based detector and the
Lidar-based detector to get more convincing results.

3-3-1 Correspondence

In order to fuse the detection results from two different sensors, the first step is to find out
the correspondence between the two types of results. The basic scheme is shown in Figure 3-
14. Since the Lidar point cloud is a 3D data format while the image is a 2D data format,
the detected 3D bounding box from the Lidar detector should first be projected to the RGB
image plane to find the correspondence with the Image detection results in the same scope.

Image-based detector

Class vectors

2D bounding boxes

Lidar-based detector

Class vectors

3D bounding boxes 2D bounding boxProjection

IOU matrix Correspondence 
Hungarian
Algorithm

Figure 3-14: Scheme to find out the correspondence between image-based detection results and
Lidar-based detection results

After projecting the 3D bounding box from Lidar detector to the image plane, a rough 2D
bounding box can be extracted according to the projection of the 3D bounding box. After
getting the 2D bounding box of the Lidar detection results, an IOU matrix can be computed
by calculating the IOU of every two detected 2D bounding boxes from the image detector
and the Lidar detector. The IOU matrix is shown in Figure 3-15. Each element of the IOU
matrix a(i,j) represents the IOU between the two 2D bounding boxes of the ith detection result
of the Lidar detector and the jth detection result of the image detector. So, each element
0 ≤ a(i,j) ≤ 1 where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1. Those columns and rows that only have
zeros inside will be removed from the matrix because there is no correspondence for these
objects.
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a(0, 0), a(0, 1), ... , a(0, m-1)
a(1, 0), a(1, 1), ... , a(1, m-1)

...

a(n-1, 0), a(n-1, 1), ... , a(n-1, m-1)

......

n Lidar
detected
objects

m image detected objects

Figure 3-15: n-by-m IOU matrix

Hungarian algorithm

After getting the IOU matrix, the Hungarian algorithm is applied here to find the one-to-
one correspondence. Hungarian algorithm is a good solution for the assignment problem. It
consumes the cost matrix and finds the minimum cost assignment between the column and
row indexes. So, before feeding the IOU matrix to the Hungarian algorithm, each element
in the IOU matrix should be substituted by its additive inverse since the corresponding IOU
need to be maximized. An example is given in Table 3-1.

Image
detected
object 1

Image
detected
object 2

Image
detected
object 3

Image
detected
object 4

Lidar detected
object 1 -0.62 -0.76 -0.26 -0.74

Lidar detected
object 2 -0.83 -0.28 -0.40 -0.91

Lidar detected
object 3 -0.45 -0.48 -0.09 -0.35

Table 3-1: Example results from the Hungarian algorithm. Each element of the IOU matrix is
substituted by its additive inverse. The column and row indexes of the bold values are the indexes
of the corresponding detection results found by the Hungarian algorithm. (Correspondence: Image
detected object 1 & Lidar detected object 3, Image detected object 2 & Lidar detected object 1,
Image detected object 4 & Lidar detected object 2)

After finding the corresponding detection results, the IOU between all the corresponding
results will be checked. Those corresponding results that have a rather low IOU (smaller
than the set threshold) will be given up.

3-3-2 Fusion of classification vectors

In the former step, the corresponding objects are founding in the two different results. Then
the classification vectors of the corresponding results have to be fused since the classification
from the two different detectors might be different. The combination of the classification can
be implemented in multiple ways. Basically, the methods can be classified into two categories:
Fixed combination rules and Trained combination rules.
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Fixed combination rules

The fixed combination rules refers to those methods based on a fixed rule that does not depend
on the data-driven training, such as mean, maximum and voting combination. Different
classification vector can be combined with the mean value of each class probability. This is a
simple combination but if some classifiers are badly trained, the output is not reliable. The
maximum combination is to trust the most confident classifier.

The voting method is another commonly used method. Assume the output of all the classifiers
form the decision vector d defined as d = [d1, d2, d3, ..., dn]T where di ∈ {c1, c2, c3, ..., cm}, ci

denotes the label of the i-th class [61]. A binary characteristic function be defined as follows:

Bj(ci) =
{

1 if dj = ci

0 if di ̸= ci
(3-11)

Then the general voting routine is defined as:

E(d) = ci if ∀t∈{1,...,m}

n∑
j=1

Bj(ct) ≤
n∑

j=1
Bj(ci) ≥ α ·m+ k(d) (3-12)

where α is a parameter and k(d) is a function that provides additional voting constraints
[61]. A commonly used conservative voting rule is given if k(d) = 0 and α = 1, meaning
that the class is chosen when all classifiers produce the same output [61]. This rule can be
liberalised by lowering the parameter α [61]. If α = 0.5, it is the commonly known majority
vote combination.

Another commonly known fixed combination rule is Dempster-Shafer theory, which is
also used in the thesis work.

Dempster-Shafer theory

The Dempster-Shafer theory is a generalization of the Bayesian theory of subjective proba-
bility [48]. Whereas the Bayesian theory requires probabilities for each question of interest,
Dempster-Shafer (DS) theory allows us to base degrees of belief for one question on proba-
bilities for a related question [62], which makes it possible to represent evidence about the
object features coming from individual sensor detectors and their classification likelihood into
a common representation [12].

DS theory represents the world in a set of mutually exclusive propositions known as the
frame of discernment (Ω) [48]. It applies belief functions to distribute the evidence about
the propositions, which is also known as a Basic Belief Assignment (BBA) as described in
Eq. (3-13) [48].

m(∅) = 0∑
A⊆Ω

m(A) = 1 (3-13)
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In the application of this thesis, A represents the classification vector computed by feeding the
output of the classification network into the softmax function in Eq. (3-8) and Ω represents
all the possible classification vectors. Any subset A of Ω with m(A) > 0 for a particular
belief function is called a focal element of that function [48]. Beliefs from different sources
can be combined with specific fusion operators in specific situations. The most commonly
used combining rule proposed by [62] is shown as follows:

m12(A) =
∑

B∩C=Am1(B)m2(C)
1 −K12

; A ̸= ∅

K12 =
∑

B∩C=∅
m1(B)m2(C)

(3-14)

where K12 is known as the degree of conflict. B and C are the class probabilities from the
image-based detector and Lidar-based detector separately, while A is the class probabilities
after fusion. Dempsters rule analyses each piece of evidence to find conflicts and uses it to
normalize the masses in the set [48].

The DS theory is finally chosen as the applied combination rule in the thesis work since
it is possible to combine the classification vectors from different sensors using a different
confidence.

Trained combination rules

The trained combiner combines the classification vectors from different classifiers into a single
feature vector and feeds them into a new classifier as shown in Figure 3-16.

Classification vector 1

Classification vector 2

Classification vector 3

Fusion Classifier Fused classification vector

Classifier 1

Classifier 2

Classifier 3 

Figure 3-16: Trained combination rules

The fusion classifier can be designed as a classical classifier such as a Support Vector Ma-
chine (SVM) or a simple Neural Network (NN). The trained rules have potentially better
performance than fixed rules. However, this combination rule is data-driven and requires high
memory and longer time to run.

3-3-3 Residual detection results

There are probably some detection results either from the image-based detector or from the
Lidar-based detector that have no corresponding results.

For those detection results from the Lidar-based detector that do not have the correspon-
dence in the image-based detection results, they can be either kept or given up since the
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2D information can be extracted by projecting the 3D bounding box onto the RGB image.
Whether to keep those Lidar detection results that do not have correspondence will be tested
in Section 4-4. However, for those detection results from the image-based detector that do
not have the correspondence in the Lidar-based detection results, they are given up since it is
not possible to get the depth information from only a single RGB image and it is not possible
to get the 3D position of the detection results. This will have to be improved in the future
research.

3-4 Conclusion

The example outputs of each module are shown in Figure 3-17. The image-based detection
results are presented in the RGB image as the 2D bounding boxes and the class labels. The
Lidar-based detection results are presented in the Lidar point cloud as the 3D bounding boxes
and the class labels. The results after fusion are the final detection results. The 3D bounding
boxes in the point cloud are projected onto the RGB image.
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(a) Image-based detection results.

(b) Lidar-based detection results.

(c) Fusion results.

Figure 3-17: Example detection result.
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Chapter 4

Experiments and Results

In this chapter, the dataset used in all the experiments, the designed experiments and the
results are presented. The dataset used in the thesis work is KITTI [1] that will be introduced
in Section 4-1. The training and validation split used in all the experiments is also presented
in Section 4-1. The training parameters of SqueezeDet [13] and the image-based detection
results will be presented in Section 4-2. The following Section 4-3 presents the validation
and parameter tuning of each part of the Lidar-based detector (Region proposal and Pointnet
classification and regression). Section 4-4 presents the results of the late fusion part. The
comparisons of the proposed method to other state-of-the-art works are shown in Section 4-5.
Typical failure modes are also presented in Section 4-6.

4-1 KITTI Dataset

KITTI Vision Benchmark Suite [1] is a dataset created by Karlsruhe Institute of Technol-
ogy and Toyota Technological Institute at Chicago. It is one of the biggest computer vision
benchmarks in the autonomous driving research field. The dataset is collected by their au-
tonomous driving platform Annieway. The setup of the sensors on Annieway is shown in the
Figure 4-1. There are two grayscale cameras, two colour cameras, a Velodyne Laser-scanner
and an inertial navigation system. The cameras and Lidar are all mounted on top of the car.
Besides the raw dataset, KITTI also provided multiple benchmarks including stereo, flow,
odometry, object detection or tracking benchmarks. The datasets provided in each bench-
mark are slightly different. This paper uses the dataset from the object detection benchmark
which provides 7481 labelled frames as training data, and another 7518 unlabelled frames as
testing data. Here, a frame means all the data (RGB image, point cloud, etc.) collected by
different sensors at the same time step. Submitting the detection results of the testing data
to the server will get a ranking among all the submitted methods.

The label files from the object detection benchmark are supplied as text files. Each row in a
label file describes a single ground-truth object, which contains the following information of
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Column number Name Description
1 type The label of the objects.
2 truncated Float from 0 (non-truncated) to 1 (truncated), where

truncated refers to the object leaving image bound-
aries.

3 occluded Integer (0,1,2,3) indicating occlusion state: 0 = fully
visible, 1 = partly occluded, 2 = largely occluded, 3 =
unknown.

4 alpha Observation angle of object.
5-8 bbox 2D bounding box of object in the image (0-based in-

dex): contains left, top, right, bottom pixel coordi-
nates.

9-11 dimensions 3D object dimensions: height, width, length (in me-
ters).

12-14 location 3D object location x, y, z of the mid-point of the object
in camera coordinates (in meters).

15 rotation_y Rotation ry around Y-axis in camera coordinates.

Table 4-1: KITTI label file format [1]

the ground-truth object as listed in the Table 4-1. There are eight classes labeled in KITTI:
Car, Van, Truck, Pedestrian, Person_sitting, Cyclist, Tram and Misc.

As shown in the Figure 4-1a, camera and Lidar use two different coordinates (red for the
camera and blue for the Lidar) and all the ground-truth information is given in the camera
coordinates but it’s easy to convert it to the Lidar coordinates according to the calibration
information. In all the experiments below, the Lidar coordinates will be used since the Lidar-
based object detection is one of the main tasks of the thesis.

(a) Fully equipped vehicle (b) Setup top view

Figure 4-1: Setup of KITTI’s autonomous driving platform Annieway [1]

An example frame from KITTI is shown in Figure 4-2. The upper figure is the RGB image
of size 1242 × 375. The bottom figure is the visualization of the point cloud corresponding to
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the upper RGB image.

(a) KITTI image example

(b) KITTI point cloud example

Figure 4-2: Example KITTI frame [1]

The difficulty to detect objects in different circumstances is different. Some objects are harder
to detect such as the occluded objects, objects in the far range, etc. The further an object
is from the vehicle, the smaller the object is in the RGB image and the fewer points are
reflected by the object in the point cloud. So, KITTI object detection benchmark provides
three difficulty levels to evaluate the object detection system as listed in Table 4-2. These
three levels are separated by the object size in the image, the occlusion and the truncation.

Mode Description
Easy The object is bigger than 40 pixels in the RGB image and fully visible

in the RGB image. The maximum truncation is 15%.
Moderate The object is bigger than 25 pixels in the RGB image and partly oc-

cluded in the RGB image. The maximum truncation is 30%.
Hard The object is bigger than 25 pixels in the RGB image and difficult to

see in the RGB image. The maximum truncation is 30%.

Table 4-2: Three difficulty levels of KITTI object detection benchmark [1]
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Training and validation split

Since KITTI only provides the label files for the 7481 training frames, the training dataset
is split into 3712 training frames and 3769 validation frames exactly the same with MV3D
[3]. The split provided by MV3D [3] takes into account that the dataset in the KITTI
object detection benchmark comes from the sequential raw data of KITTI, so there are some
quite similar frames in the dataset. The split provided by MV3D [3] separates the different
frames into the training and validation sets. After the training and validation split, the data
composition is shown in Figure 4-3.

Training set 
(7418 labelled frames)

Testing set 
(7512 unlabelled frames) 

Training set 
(3712 labelled frames)

Testing set 
(7512 unlabelled frames) 

Validation set 
(3769 labelled frames)

Training set 
(19216 ground-truth objects)

Testing set 
(number of objects unknown) 

Validation set 
 (20618 ground-truth objects)

Original Training and validation split 
(number of frames) 

Training and validation split 
(number of objects) 

Figure 4-3: KITTI dataset for object detection benchmark

Unless otherwise specified, the presented results in this chapter like the results of the image-
based detector, the results of the Pointnet classification and box regression and the results of
the Lidar-based detection are all the results on the validation set.

4-2 Experiments on Image-based Detector

The validation of the image-based detector is based on the metric provided by the KITTI 2D
object detection benchmark.

4-2-1 Metric

The metric used to measure the 2D object detection in the RGB image plane is the Average
Precision (AP). AP is the summary of the precision-recall curve. Recall is basically a mea-
surement of the fraction of ground-truth annotations covered by the detection results and
precision is the fraction of the correct detection among all the detection results. Precision
and recall can be calculated by the following function:

recall = #TP
#TP + #FN

precision = #TP
#TP + #FP

(4-1)

where #TP is the number of True Positives (TP), #FN is the number of False Negatives (FN)
and #FP is the number of False Positives (FP). The TP is judged by the Intersection Over
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Union (IOU) between the detected 2D bounding box and the ground-truth 2D bounding box
and the estimated probability. If both the IOU and the estimated probability are bigger than
the thresholds, the detected object will be considered as a TP. So the thresholds for IOU
and the estimated probability will have a large influence on the value of recall and precision.
Choosing the different thresholds makes different pairs of precision and recall values. In
the KITTI evaluation metric, the threshold for the IOU is fixed and the threshold for the
estimated probability is changed to get the precision-recall curve. The AP is calculated by
the following function:

AP =
∑

n

(Rn −Rn−1)Pn (4-2)

where Rn denotes the nth value of recall and Pn denotes the nth value of precision.

4-2-2 Training

The hyperparameters of the training process are listed in the Table 4-3.

Optimizer Stochastic Gradient Descent (SGD)
Initial learning rate 0.01

Learning rate decay factor 0.5
Learning rate decay step 10000

Batch size 20

Table 4-3: SqueezeDet training parameters

4-2-3 Results

The precision-recall curves of the SqueezeDet detection results on the validation set are shown
in Figure 4-4. The average precision for Car, Pedestrian and Cyclist is listed in Table 4-4.
The mean detection time for each image is 0.059s. More visualization of the image-based
detection results will be shown in Appendix A-1.
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Figure 4-4: Precision-recall curve of SqueezeDet detection results on validation set
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Easy Moderate Hard
Car 0.820 0.805 0.676

Pedestrian 0.676 0.586 0.507
Cyclist 0.708 0.503 0.457

Table 4-4: SqueezeDet 2D detection AP on validation set

4-3 Experiments on Lidar-based Detector

In this section, each module of the Lidar-based detector will be evaluated and the parameters
will be tuned to optimize the output of each part.

4-3-1 Data preprocessing

KITTI ground-truth objects

Since the Pointnet from the Lidar-based detector deals with the object point cloud instead
of the whole point cloud to decide the object class and the bounding box, the training of the
Pointnet is based on the ground-truth object point cloud. Then, the original point cloud has
to be preprocessed to get the ground-truth object point cloud.

According to the provided information for each ground-truth object as listed in Table 4-1,
the position of the ground-truth object and the size of the bounding box are provided in the
camera coordinates. After converting the camera coordinates to the Lidar coordinates, the
position and size of the ground-truth bounding box can be obtained in the Lidar point cloud.
Then, those points inside the bounding box becomes the ground-truth object point cloud.
The object point cloud together with the bounding box parameters and the class label will
be saved both for the training set and validation set.

The numbers of all the objects from both the training set and the validation set are listed in
Table 4-5. The ground-truth objects that do not have any point inside are ignored. As given
in Table 4-5, the number of ground-truth objects is unbalanced. KITTI provides much more
training data for Car than the others.

Class Training Validation
Car 13941 14214
Van 1294 1580

Truck 481 597
Pedestrian 2183 2279

Person_sitting 56 166
Cyclist 720 888
Tram 205 264
Misc 336 630
Total 19216 20618

Table 4-5: Numbers of objects in KITTI object detection benchmark
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Extra training data: Miscs

If using the Depth clustering (Section 3-2-1), there will be a problem that the class distribution
of the clusters from the Depth clustering is different from the class distribution of the KITTI
training data. In other words, the clusters can be any of the objects existing in reality like
road users, bushes, buildings, fences, etc. However, the KITTI training data only provides
ground-truth objects from eight classes as listed in Table 4-5.

Training Pointnet with only the data from KITTI ground-truth objects might leads to all
the clusters be classified into these eight classes, which might cause a lot of false positives.
A visualization of such a problem is shown in Figure 4-5. The bounding boxes in the image
come from the projection of the Lidar detected bounding boxes. From the projected results
in the image, it is easy to see that a lot of FP appears. For example, some fences are wrongly
classified into Truck.

Figure 4-5: Training Pointnet with KITTI ground-truth objects might lead to all the clusters
be classified into the eight classes labelled in KITTI. Top: Classification and box regression
results projected to the image plane. Bottom: Classification and box regression results on the
point cloud clusters. Bounding box color and class correspondence: Car, Van, Truck, Pedestrian,
Person_sitting, Cyclist, Tram, Misc.

A possible solution is to add some more training data of all kinds to balance the class distri-
bution of the training data and the clusters. The newly collected training data comes from
the clusters in the training set. Those clusters in the training set that do not have overlapped
area with the ground-truth objects are collected as extra training data and labelled as Misc.
Since there are too many new Miscs from the clusters, only part of them are randomly se-
lected as extra training data. The collected clusters are added according to the percentage
and will be evaluated in Section 4-3-4.
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4-3-2 Experiments on the region proposal

The region proposal is the first step of the Lidar-based detector, so it is quite important to
ensure that the output of the segmentation algorithm makes sense. In other words, clusters
from the segmentation algorithm should cover the target objects (road users) in the thesis
context.

Metrics

Segmentation recall = # found ground-truth object
# all ground-truth object

(4-3)

The metric to evaluate the segmentation algorithm is defined as the recall of the results
as described in Eq. (4-3), where # represents “the number of ”. A ground-truth object is
defined as found if there exists a cluster that has a point-wise IOU over 0.7 with it. A more
clear visualization of the definition is shown in Figure 4-6. The points inside the green box
represent the ground-truth object and the points inside the red box represent the cluster.
The point-wise IOU is defined as Eq. (4-4). If point-wise overlap ratio is bigger than 0.7, the
ground-truth object is defined as found.

Ground-truth object

Cluster
Overlap

Figure 4-6: A ground-truth object (green) has a point-wise overlap with a cluster (red)

Point-wise IOU = # Overlap points
# Cluster points + # Ground-truth object points - # Overlap points

(4-4)

Results of Depth clustering

For the Depth clustering, different angle thresholds (θ) are set to the angle β and the seg-
mentation results are shown in Figure 4-7.
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Figure 4-7: Depth clustering segmentation recall with different angle thresholds θ

As can be seen in the Figure 4-7, the segmentation recall is the best under the angle threshold
as 9◦. However, the recall is only 55% at the best performance. The result has been analyzed
as follows.
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Figure 4-8: Depth clustering segmentation recall in different ranges (θ = 9◦)

Figure 4-8 shows that the distance from the object to the sensor has a large influence on the
segmentation recall. The segmentation recall in the close range (0-20m) can reach about 75%.
However, for the objects that are far away, the recall turns out to be really low as shown in
Figure 4-8.
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Figure 4-9: Depth clustering segmentation recall in different number of points in each object
(θ = 9◦)

Figure 4-9 shows that the number of points also has a large influence on the segmentation
recall. For those objects that have fewer points (less than 100 points), the segmentation
performs worse. Among all the 39834 ground-truth objects in KITTI dataset, about one-
third of the objects (14958 objects) have less than 50 points. Since the segmentation recall
for objects having less than 50 points is very low, this has a large impact on the overall
segmentation recall. There are two main reasons for an object having few points. The first
one is that the object is far away from the sensor. The second one is that the object is
occluded by other objects.
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Figure 4-10: SqueezeSeg segmentation recall with different min_samples and eps
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Results of SqueezeSeg

If using the combination of SqueezeSeg and DBSCAN for the region proposal, the two param-
eters that have to be tuned are the number of neighbouring points (min_samples) and the
maximum distance (eps) as described in Section 3-2-2. After applying different min_samples
and eps, the segmentation results are shown in Figure 4-10.

From Figure 4-10, the segmentation recall reaches the top (43.40%) at min_samples = 2 and
eps = 0.5. However, the recall of the segmentation is still low.

Similar to the Depth clustering, the influence of the distance and the number of points is
given in Figure 4-11 and Figure 4-12. The influence is quite similar to the Depth clustering.
SqueezeSeg also performs better in the close range. However, SqueezeSeg performs better
when the number of objects is around 1000.
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Figure 4-11: SqueezeSeg segmentation recall with different ranges (min_samples = 2 and
eps = 0.5)

4-3-3 Experiments on Pointnet

The modified Pointnet is the classifier and the bounding box regressor of the Lidar-based
detection system. The validation of the Pointnet for classification and bounding box regression
is to make sure that the modified Pointnet gives the meaningful outputs.

Training

As already said in Section 3-2-3, if the training objects are not resampled and all the training
objects might have different numbers of points, the objects cannot be concatenated into a
single array and the training batch size cannot be changed and is always 1. However, it turns
out that training Pointnet with batch size 1 will make the model heavily over-fitting and the
training loss will never converge.
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Figure 4-12: SqueezeSeg segmentation recall with different number of points in each object
(min_samples = 2 and eps = 0.5)

The proposed solution is to resample all the training objects to the same number of points
using the method illustrated in Section 3-2-3. After resampling, all objects have 512 points and
can be concatenated together in the form of three-dimensional arrays with size Batch size×
512×3, where 3 corresponds to the number of information channels that are used to represent
each point. Here, the x, y, z coordinates of each point are used.

All the training objects used to train the Pointnet are collected from the training set and all
the validation objects are collected from the validation set as described in Section 4-1. The
training parameters of the Pointnet is listed in Table 4-6.

Optimizer Adam
Initial learning rate 0.001

Learning rate decay factor 0.7
Learning rate decay step 20000

Batch size 32

Table 4-6: Pointnet training parameters

Results when training without extra Miscs

The training data used in this section is only the ground-truth objects from KITTI and no
extra Miscs are added into the training data.

The classification performance is evaluated on the classification accuracy: the fraction of the
correctly classified objects among all the objects. The bounding box regression performance
is evaluated on the average IOU between the estimated bounding box and the ground-truth
box and the bounding box accuracy. If the estimated bounding box and the ground-truth
box have an IOU over 0.7, the estimated bounding box is considered as an accurate bounding
box. The bounding box accuracy is the fraction of the correctly estimated bounding boxes

Xinyu Gao Master of Science Thesis



4-3 Experiments on Lidar-based Detector 57

Classification accuracy Average bounding box IOU Bounding box accuracy
Resampling 88.36% 0.80 76.97%

No Resampling 88.54% 0.79 77.14%

Table 4-7: Pointnet classification and bounding box regression results on the objects from the
validation set

among the number of objects. The results are shown in Table 4-7. The validation objects are
either resampled or unresampled before feeding into the network. The classification confusion
matrix while resampling the objects is also shown in Table 4-8. For Car, Pedestrian and
Cyclists, the classification accuracy is beyond 80%. The results is good since the 3D object
point cloud scanned by the Lidar is incomplete since Lidar only sees one side of the object.

Actual
Prediction Car Van Truck Pedestrian Person sitting Cyclist Tram Misc

Car 13904 230 8 32 0 20 2 18
Van 627 829 86 23 0 6 4 5

Truck 35 160 340 0 0 1 59 2
Pedestrian 42 0 0 2195 11 30 1 0

Person sitting 7 0 0 104 46 9 0 0
Cyclist 56 3 0 90 0 716 2 21
Tram 22 34 127 5 0 0 76 0
Misc 172 167 123 32 5 9 9 113

Table 4-8: Pointnet classification confusion matrix on the objects from the validation set

An important step while training is to resample all objects to 512 points. It is quite necessary
to ensure the resampling makes little influence while the inference.

From Table 4-7, it can be seen that the chosen resampling method has little influence on the
results of the Pointnet. However, resampling the objects makes the inference much faster
than before. Since without resampling, the batch size while the inference can only be 1. The
average inference time for each frame was 0.04548s before resampling. After resampling, the
average inference time for each frame is 0.02747s. Since resampling has little influence on the
inference accuracy and makes the system faster, it will be applied in the future experiments.

Results when training with extra Miscs

As mentioned in Section 4-3-1, refining the model with extra Miscs is necessary. The extra
training data (Miscs) comes from the clustering results. Those clusters from the training set
that do not have any overlap with the ground-truth objects are randomly picked up as the
extra Miscs. Difference portions of Miscs are added to the training data and the trained
model in the previous section has been refined. The evaluation dataset is still based on the
ground-truth objects from the validation set. The result is shown in Figure 4-13.
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Figure 4-13: Pointnet classification and bounding box regression results on the objects from the
validation set

From Figure 4-13, it is shown that adding too many Miscs to the training data will make the
classification and bounding box regression results worse.

4-3-4 Experiments on Lidar-based detection system

The Lidar-based detection system is composed of the former two parts (region proposal and
Pointnet). The validation of the Lidar-based detection system will be based on the metric
for 3D object detection evaluation from the KITTI 3D object detection benchmark.

In Section 4-3-3, it shows that adding a different portion of the Miscs will influence the
performance of the Pointnet. At the same time, it will also influence the Lidar-based detection
results.

Metrics

The metric used to evaluate the Lidar-based detector is the 3D object detection metric same as
the KITTI object detection benchmark. Similar to the 2D object detection metric described
in Section 4-2-1, the performance of the 3D object detection is also evaluated on the AP

Xinyu Gao Master of Science Thesis



4-3 Experiments on Lidar-based Detector 59

calculated from the precision-recall curve. The difference here is that the TP is judged by
the IOU between two cuboids: the estimated 3D bounding box and the ground-truth 3D
bounding box and the estimated probability.

Results with Depth clustering as the region proposal

After adding different portions of Miscs to the training data, the detection AP of the Car,
Pedestrian, Cyclist under Easy mode is shown in Figure 4-14.
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Figure 4-14: The performance of the Lidar-based detector (Depth clustering as the region
proposal) on KITTI 3D object detection benchmark Easy mode. AP: Average Precision. The
dash lines represent the results from the ground-truth object point cloud and the solid lines
represent the results from the region proposal clusters.

Figure 4-14 shows that adding Miscs to the training data improves the detection AP a lot.
For Car category, the AP improves from 22% to 65%. However, the influence of the Miscs
portion on the detection results is not obvious. Combining the results from Section 4-3-3,
adding 5% of the Miscs becomes the final decision.

The dash lines in Figure 4-14 are the results if feeding the ground-truth object point cloud into
the Lidar-based detector instead of the clusters from the region proposal. The gap between
the dash lines and the solid lines are mainly caused by the region proposal step. One reason
is that the region proposal provides a lot of false positives. Another reason is that the region
proposal does not give the right object point cloud, such as including multiple objects in a
single cluster or separating a single object into multiple clusters.
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Results with SqueezeSeg as the region proposal

After the parameters optimization for the number of neighbouring points (min_samples = 2)
and the maximum distance (eps = 0.5) in Section 4-3-2, the clusters from the SqueezeSeg
and DBSCAN are fed into the Pointnet. The detection results are shown below in Table 4-9
together with the best performance Depth clustering can get.

Method Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Depth clustering + Pointnet 54.40 30.40 22.33 44.14 33.69 27.90 46.07 31.66 25.86
SqueezeSeg + Pointnet 42.32 36.72 33.47 9.36 7.54 6.38 19.62 14.98 14.46

Table 4-9: 3D object detection AP (%) on KITTI validation set of the Lidar-based detector

4-4 Experiments on Late Fusion

With all the parameters optimized in the former sections, the whole system combining the
image-based detector and the Lidar-based detector together will be evaluated in this section.
The parameters of the late fusion scheme will be optimized as well. The metric used here is
the 3D object detection AP as well.

Results with Depth clustering as the region proposal

A rough idea should be acquired how each step of the late fusion influences the detection
results. The detection results of different classes on the validation set are listed in Table 4-
10(Car), Table 4-11(Pedestrian), Table 4-12(Cyclist). The parameters are explained in the
following paragraphs.

Method
Multiple
cluster
settings

RGB
filter

Lidar
confidence

Camera
confidence

IOU
threshold Easy Moderate Hard

Lidar only 9 - - - - 54.40 30.40 22.33
Lidar only 9+30 - - - - 53.50 35.56 22.08
Lidar only 9+30+50 - - - - 52.86 34.94 21.62

Fusion 9 No 0.85 0.95 0.0 53.95 32.74 22.09
Fusion 9+30 No 0.85 0.95 0.0 48.14 38.91 27.92
Fusion 9+30 Yes 0.85 0.95 0.0 65.60 40.82 32.46
Fusion 9+30+50 Yes 0.85 0.95 0.0 65.93 42.96 33.80
Fusion 9+30+50 Yes 0.85 0.95 0.5 65.56 50.01 40.77

Table 4-10: 3D object detection AP (%) on KITTI validation set (Car)
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Method
Multiple
cluster
settings

RGB
filter

Lidar
confidence

Camera
confidence

IOU
threshold Easy Moderate Hard

Lidar only 9 - - - - 44.14 33.69 27.90
Lidar only 9+30 - - - - 43.72 31.96 26.27
Lidar only 9+30+50 - - - - 31.47 23.39 19.10

Fusion 9 No 0.85 0.95 0.0 45.54 35.92 28.98
Fusion 9+30 No 0.85 0.95 0.0 46.18 34.78 28.96
Fusion 9+30 Yes 0.85 0.95 0.0 57.70 46.24 38.05
Fusion 9+30+50 Yes 0.85 0.95 0.0 62.06 46.45 38.33
Fusion 9+30+50 Yes 0.85 0.95 0.5 57.74 48.63 40.35

Table 4-11: 3D object detection AP (%) on KITTI validation set (Pedestrian)

Method
Multiple
cluster
settings

RGB
filter

Lidar
confidence

Camera
confidence

IOU
threshold Easy Moderate Hard

Lidar only 9 - - - - 46.07 31.66 25.86
Lidar only 9+30 - - - - 23.44 16.76 14.28
Lidar only 9+30+50 - - - - 20.95 15.77 14.32

Fusion 9 No 0.85 0.95 0.0 48.09 37.91 34.54
Fusion 9+30 No 0.85 0.95 0.0 33.34 23.75 20.77
Fusion 9+30 Yes 0.85 0.95 0.0 50.57 37.27 35.87
Fusion 9+30+50 Yes 0.85 0.95 0.0 53.45 38.67 34.64
Fusion 9+30+50 Yes 0.85 0.95 0.5 55.38 39.58 31.56

Table 4-12: 3D object detection AP (%) on KITTI validation set (Cyclist)

Applying multiple cluster settings means that the clusters come from different angle thresholds
(θ) of the Depth clustering. This is quite necessary since setting a smaller angle threshold
tends to get bigger clusters and setting a bigger angle threshold tends to get smaller clusters.
If the clusters are too big, multiple objects could be segmented into a single cluster, which is
hard to fix in a future step. If the clusters are small, a single object could be segmented into
multiple clusters, which makes the Pointnet harder to recognize the object. A possible solution
is to include multiple angle thresholds during the segmentation. However, this also causes
some problems like that it brings more FP. Non-maximum suppression (NMS) can solve part
of these duplicated detection results, but there are some irrelevant detection results from the
multiple cluster settings that are hard to fix. That is the reason why adding multiple clustering
settings will make the Lidar-only detection accuracy lower, which is especially obvious in the
performance on Pedestrian (Table 4-11) and Cyclist (Table 4-12).
The IOU threshold is a parameter used when finding the correspondence as illustrated in
Section 3-3-1. The IOU between the corresponding objects should have a bigger value than
the IOU threshold to make the correspondence convincing and reliable.
RGB filter is a method to filter the detection results from Lidar detector. If RGB filter is
applied, those Lidar-based detection results that do not have the corresponding image-based
detection results will be given up. This can remove a lot of FP coming from the Lidar-based
detector.
Lidar confidence and camera confidence are the parameters while applying the Dempster-
Shafer theory. The confidence score is a measure of the reliability of the detection results
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from a single sensor. A higher confidence score means the results coming from this single
sensor is more reliable.

From all the three tables, the results show that adding RGB filter and multiple cluster settings
at the same time will largely improve the detection accuracy.

After figuring about the effect of each step, the numerical parameters are fixed. First, the
two confidence scores are set according to the accuracy of the single detector. Finally, the
Lidar confidence is set to be 0.85 and the camera confidence is set to be 0.95. The final IOU
threshold chosen for the correspondence is 0.5 according to the KITTI settings in the object
detection benchmark.

Results with SqueezeSeg as the region proposal

SqueezeSeg is used to enhance the segmentation performance. The detection results with
SqueezeSeg are shown in Table 4-13. Results from three different segmentation algorithms
are all listed in the table. The third method is to combine all the clusters from both the
Depth-clustering and SqueezeSeg.

Segmentation Method Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Depth-clustering 65.56 50.01 40.77 57.74 48.63 40.35 55.38 39.58 31.56
SqueezeSeg 62.24 55.77 48.09 23.41 23.07 17.11 38.18 31.13 27.62

Depth-clustering + SqueezeSeg 70.87 62.09 52.81 64.27 48.46 40.47 62.38 47.58 38.64

Table 4-13: 3D object detection AP (%) on KITTI validation set of the fusion system

4-5 Comparison

After the optimization of the former sections, the best result is got for the KITTI validation
set. The optimized algorithm is to combine the clusters from both the Depth clustering and
the SqueezeSeg. The final multiple cluster angle thresholds used for the Depth clustering
are 9◦, 30◦, 50◦. RGB filter is applied. Lidar confidence is set to be 0.85 and the camera
confidence is set to be 0.95. The IOU threshold is set to be 0.5.

4-5-1 KITTI validation set

There are a few top-ranking works in the KITTI 3D object detection benchmark like F-
Pointnet [10], MV3D [3], VeloFCN [49], etc. applying a same training and validation split as
described in Section 4-1. The comparisons to these works on the validation set are shown in
Table 4-14 (Car). Only the comparisons on the Car category are shown below since most of
these works only publish the results on Car.

From the comparisons on the validation set, the proposed late fusion system still has a gap
comparing to the results of the state-of-the-art F-Pointnet [10]. However, the proposed system
provides more redundancy comparing to these works, since it can provide some intermediate
results from the image-based detector and the Lidar-based detector.
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Method Easy Moderate Hard
F-Pointnet [10] 83.76 70.92 63.65

MV3D [3] 71.29 62.68 56.56
VeloFCN [49] 15.20 13.66 15.98

Thesis (Fusion) 70.87 62.09 52.81

Table 4-14: 3D object detection AP (%) on KITTI validation set (Car only)

4-5-2 KITTI test set

Method Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

F-PointNet [10] 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39
AVOD-FPN [40] 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61

VoxelNet [9] 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37
MV3D [3] 71.09 62.35 55.12 - - - - - -

F-PC_CNN [63] 60.06 48.07 45.22 - - - - - -
Thesis 65.54 58.48 46.54 35.85 31.65 26.94 50.58 35.39 33.55

Table 4-15: 3D object detection AP (%) on KITTI test set (accessed August 3, 2018)

The detection results on the KITTI test set are shown in Table 4-15. For the Car detection,
the results are better than the Pedestrian and Cyclist. The cause can be that KITTI provides
a lot more Car instances in the training data than the Pedestrian and Cyclist. The proposed
detection system ranks 17-th among all the submitted results and ranks 5-th among all the
published works for Car class on the KITTI 3D object detection benchmark (accessed August
3, 2018).

4-6 Failure Analysis

There are a few typical failure modes that the proposed system might encounter.

4-6-1 Sparse points inside an object

For those objects far away, there will be sparse points reflected, which makes it difficult to
be segmented from the whole point cloud and also makes the classification and the bounding
box regression pretty hard.
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(a) Detection results (b) Ground truth

Figure 4-15: Failure because of sparse points

As can be seen in the Figure 4-15, the two cars far away that really have few points inside
are not detected. There is also a car with sparse points whose detected bounding box is not
correct.

4-6-2 Occlusion

Another commonly seen failure mode is that the object is occluded by other things.

(a) Detection results (b) Ground truth

Figure 4-16: Failure because of the occlusion

As can be seen in Figure 4-16, the person behind the wall is failed to be detected and the
bounding box of the car behind the wall is wrongly estimated as well.

Occlusion sometimes will make the object have few points, which makes the segmentation
and classification both harder.
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4-6-3 Close objects from the same class

When cars parking closely by the road, the detection might fail as well.

(a) Detection results (b) Ground truth

Figure 4-17: Failure when objects from the same class are really close

As can be seen in Figure 4-17, there are a few cars being missed in the left side since they are
really close. There are also two cars being detected as a single car.

The close objects will make the segmentation difficult. It is not easy to separate the close
objects. If the segmentation fails, the classification and bounding box regression will fail as
well.
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Chapter 5

Conclusion

5-1 Conclusion

As mentioned in Section 1-3, the motivation of the thesis work is to propose a 3D object
detection system by using the sensor data from the Lidar and camera for the autonomous
vehicle. The two main research questions of the thesis are: What is the best solution to
build a Lidar-based 3D object detector? and What is the best solution to fuse the
data from Lidar and camera for 3D object detection?

5-1-1 Lidar-based object detection

There are several challenges in the 3D road user detection using Lidar. The first challenge is
that the points from the background are dominant in the point cloud, which makes the ROI
proposal difficult in the point cloud. The second challenge is that the scanned object point
cloud is incomplete since Lidar only sees one side of the object. The third challenge is that
it is not easy to deal with the scattered, unordered Lidar point cloud. The fourth challenge
is that the resolution in the far range is low and few points are reflected by the objects far
away, which makes the detection range of the Lidar limited.

In this thesis, two point cloud segmentation algorithms are applied. The Depth clustering
brings not only the target objects but also the objects that are not concerned about in this
thesis context. Although this becomes a big challenge for the later classifier to judge whether
the clusters belong to the target objects in the thesis context, it is necessary for a future
autonoumous vehicle to be able to detection all kinds of objects. The Depth clustering used
in the thesis can still be applied if more classes have to be taken into consideration. The
SqueezeSeg combined with DBSCAN is a deep-learning based segmentation algorithm. The
final detection performance with SqueezeSeg might be better if combining the SqueezeSeg
network with Pointnet into an end-to-end network.

The Pointnet is one of the state-of-the-art networks which are able to parse the point cloud
directly. In their original work [2], the dataset used provides the full point cloud of an object.
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In the thesis results, it turns out that modified Pointnet (Section 3-2-3) is able to estimate the
class and the amodal 3D bounding box even with part of the object points since the object
point cloud provided by Lidar is incomplete. However, in order to improve the accuracy
of the Pointnet, the points of an object should be able to represent the object well, which
means that the number of points should be enough and the points should cover as much the
object surface area as possible. What’s more, Pointnet requires the point cloud of different
objects having the same number of points. In this thesis, the upsampling is implemented by
the random duplication and the downsampling is implemented by the random pickup. This
works for the current research, but in the future work, a better resampling method can be
explored (Section 5-2-2).

5-1-2 Late fusion

The first step of the late fusion is to find the correspondence between detection results from
the Lidar and camera. The information used in the thesis to find the correspondence is the
Intersection Over Union (IOU) between the bounding boxes of the two detection results in
the image plane. It works most of the time but sometimes fails when the object is occluded
by the other things. After getting the corresponding results, the classification vectors from
the two different sensors are combined by Dempster-Shafer theory, which provides a more
convincing probability.

There are some detection results that have no corresponding detection results that cannot go
through the late fusion scheme. A possible solution is to include multiple cameras to provide
a wider field of view. This is feasible since a camera costs much less than a Lidar.

5-1-3 Detection results analysis

The 3D object detection system proposed in the thesis work is getting competitive results
with the former state-of-the-art works like MV3D [3], etc. The designed system is good at
the detection the objects in the close range which have enough points. What’s more, the
Lidar-based detector and image-based detector work separately, which provides the system
redundancy in case of a single sensor failure. The Lidar-based detector also compensates the
shortcoming of the camera-based object detection that camera suffers a lot from some certain
weather conditions and illumination changes.

However, there are some typical failure patterns as described in Section 4-6. They are sparse
points inside an object, occlusion and close objects from the same class. These three failure
modes mainly challenges the Lidar-based detection system.

5-2 Recommendations

5-2-1 Point cloud segmentation

Since the segmentation of the point cloud is the first step of the Lidar-based detection system,
it is quite necessary to improve the segmentation results. The segmentation results from the
two algorithms used in the thesis work (Depth clustering and SqueezeSeg) are still not so
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good as expected. Future works can be done to explore a better segmentation algorithm.
Recent works like SPLATNet [64] that segments the original point cloud are also possible to
be applied in the pipeline. SPLATNet allows flexible specifications of the lattice structure
enabling hierarchical and spatially-aware feature learning [64].

5-2-2 Object point cloud resampling

The resampling method proposed in the thesis work can be improved. The upsampling can
be implemented in the network as PU-Net [60] which get a rather good reconstruction of the
object point cloud. PU-Net learns multilevel features per point and expand the point set via
a multibranch convolution unit implicitly in feature space [60].

5-2-3 Different classification model

Based on Pointnet [2], many works improve the architecture of the network. Pointnet++
[26] is an improved work by the authors of Pointnet, which extracts the deep hierarchical
feature from the point cloud. It achieves better performance and generalizability in complex
scenes and is able to deal with non-uniform sampling density [26]. DGCNN builds a different
classification model which incorporates local neighborhood information [65].

5-2-4 Bounding box fusion

In the thesis context, the fusion of 2D and 3D bounding boxes is not implemented. 2D
bounding box from the image-based detector tends to provide a more convincing boundary
in the RGB image but 3D bounding box from the Lidar-based detector can provide more
information of the 3D position and object size. A fuzzy logic model could be applied to
combine different information from the 2D bounding box and the 3D bounding box, which
might provide a better 3D detection result.

5-2-5 Dataset

As mentioned in Section 4-3-1, the class distributions of the KITTI dataset and the Depth
clustering segmentation result are different. In Section 4-3-1, random percentage of the Miscs
are collected as the extra training data. However, it might be better to first feed the Miscs into
the Pointnet trained with the ground-truth objects and choose those Miscs that are wrongly
classified as the extra training data. This will make the extra Miscs more meaningful and
help improve the classification accuracy.

On the other hand, the Neural Network (NN) methods for the road user detection are heavily
data-driven. For now, the KITTI [1] is almost the only open source dataset available in the
context of 3D object detection in the road scene. Only 8 classes are labelled in KITTI and
only the Car have enough number of instances. Bigger dataset should be collected with more
classes in the future.
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Appendix A

Visualization of Detection Results

Bounding box color and class correspondence: Car, Van, Truck, Pedestrian, Person_sitting,
Cyclist, Tram, Misc.

A-1 Image-based Detection Results

Figure A-1: Visualization of image-based detection results

A-2 Lidar-camera Fusion Detection Results

Master of Science Thesis Xinyu Gao



72 Visualization of Detection Results

Figure A-2: Visualization of Lidar-based detection results
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Appendix B

Theories

B-1 Image Features

B-1-1 Histogram of Oriented Gradients (HOG)

Figure B-1: HOG feature extraction scheme[16]

Dalal and Triggs create the HOG, which is based on evaluating well-normalized local his-
tograms of image gradient orientations in a dense grid [16]. The image is first divided into
small spatial regions (’cells’). The feature extraction process is shown in Figure B-1. Color
normalization is applied to the image to make the descriptor invariant to the color. Then
Gaussian smoothing is applied to the image and the gradients are calculated by applying a
1D filtering mask [−1, 0, 1] to the image. Each pixel calculates a weighted vote for an edge
orientation histogram channel based on the orientation of the gradient element centred on it,
and the votes are accumulated into orientation bins over the ’cells’ [16]. After getting the
histograms of oriented gradients, local contrast normalization is applied to avoid the effect
of the illumination and foreground-background contrast. After all the ’cells’ are normalized,
the feature vector of all the regions are concatenated into a single one, which is the feature
vector of the image.
The basic idea of HOG is that local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or edge directions [16].

B-1-2 Deformable Part Model (DPM)

After the success of HOG, Felzenszwalb et al. (2010) [18] use HOG as a building block of
their DPM feature. They find that there are still a lot of problems that HOG cannot solve,
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such as the occlusion, deformation, photometric variation, viewpoint variation, intra-class
variability, etc. They are inspired by the pictorial structures [66], which model the object
as a constellation of parts as shown in Figure B-2. So the DPM captures local appearance
properties of an object while the deformable configuration is characterized by spring-like
connections between certain pairs of parts [18].

Figure B-2: Pictorial structure [17]

In Dalal’s work, only one filter is applied to the whole object. Felzenszwalb et al. (2010) [18]
enrich the Dalal-Triggs model using a star-structured part-based model defined by a ’root’
filter (analogous to the Dalal-Triggs filter) plus a set of part filters and deformation models
[18] as shown in up-right corner of Figure B-3. The part filters capture features at twice the
spatial resolution relative to the features captured by the root filter [18] in order to model
visual appearance at multiple scales. In the final step, a latent SVM is trained. In the latent
SVM, each example x is scored according to the following function [18]:

fβ(x) = max
z∈Z(x)

β · Φ(x, z) (B-1)

β is the concatenation of the root filter, the part filters and deformation cost weights, z is a
specification of the object configuration, and Φ(x, z) is a concatenation of sub-windows from
a feature pyramid and part deformation features [18]. A score function is defined for each
hypothesis. It is composed of three parts: the global object model (from the root filter), the
object part model (from the part filters) and the deformation model. The matching process
is shown in Figure B-3. A root location where the score is high corresponds to the detection
result. According to the connection between the score function and the latent Support Vector
Machine (SVM) score function B-1,the model parameters are learned with the latent SVM
framework.
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Figure B-3: Matching process of DPM [18]
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Glossary

List of Acronyms

ADAS Advanced Driver-Assistance Systems

LKA Lane Keeping Assistance

ACC Adaptive Cruise Control

VRU Vulnerable Road Users

CV Computer Vision

SSD Single-Shot-Detector

GPU Graphics Processing Unit

NN Neural Network

R-CNN Region-based Convolutional Neural Networks

FPS Frames Per Second

YOLO You Only Look Once

IOU Intersection Over Union

NMS Non-maximum suppression

ROI Region of Interests

MLP Multi-layer Perceptron

AP Average Precision

TP True Positives

FP False Positives

FN False Negatives
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84 Glossary

SGD Stochastic Gradient Descent

CNN Convolutional Neural Networks

HOG Histogram of Oriented Gradients

DPM Deformable Part Model

FC Fully Connected Layer

RPN Region Proposal Network

TSDF Truncated Signed Distance Function

SVM Support Vector Machine

VFE Voxel Feature Encoding

FPN Feature Pyramid Networks

LBP Local Binary Pattern

RANSAC Random Sample Consensus

ML Machine Learning

MLS Moving Least Squares

DS Dempster-Shafer

BBA Basic Belief Assignment

CRF Conditional Random Field

RNN Recurrent Neural Network

DBSCAN Density-Based Spatial Clustering of Applications with Noise

List of Symbols

α Ground removal angle in depth clustering
β Clustering angle in depth clustering
θ Threshold for the clustering angle
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