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Summary

Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor
deformation on Earth with millimeter precision. Most InSAR applications focus on
geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring
civil infrastructure with InSAR is relatively new, with potential for operational applica-
tions, but currently not exploited to full advantage. Here we investigate how to opti-
mally assess and monitor the structural health of civil infrastructure using InSAR, and
develop methodology to improve its capability for operational monitoring.

InSAR kinematic time series analysis involves the processing of extremely large
datasets to estimate the relative movements of points on the infrastructure. The es-
timated movements may expose strain in the structure, potentially revealing struc-
tural health problems. However, the optimal mathematical model relating the satellite
observations to the kinematic parameters of interest is unknown. We propose multi-
ple hypothesis testing as a means to identify the most probable mathematical model.
For each target, the null-hypothesis of ‘steady-state’ motion is considered as default,
which is tested against a multitude of potential temporal models, built based on a li-
brary of canonical functions. If the null hypothesis is sustained, there is no (signifi-
cant) anomaly in the data. If the null hypothesis is rejected, we test the entire library of
potential alternative models with different physically realistic parameters against the
null hypothesis using the B-method of testing. Finally, using test-ratios, we select the
most likely model for each target, update the quality description of the estimates, while
avoiding overfitting.

InSAR processing strategies are designed and implemented for structural health as-
sessment of railway infrastructure and buildings. The Qinghai-Tibet railway, at 5000 m
altitude, is suspected to be affected by dynamic changes in permafrost environments.
Using medium resolution SAR data, we apply an ‘all-pixel’ approach based on statis-
tical similarity to tackle geometric decorrelation and maximize the density of InSAR
measurement points over the track. Seasonal changes in deformation are detected,
most likely due to freezing and thawing of the permafrost’s active layer. To explore
the capability of railway infrastructure monitoring using multi-track high-resolution
SAR data, we estimate the 3D temporal behavior of the Betuwe railway, the Nether-
lands, in a track-fixed reference system in the transversal, longitudinal, and normal
direction using 248 TerraSAR-X images acquired from ascending and descending or-
bits. For building monitoring, we study a shopping mall in Heerlen, the Netherlands.
Due to a developing sinkhole below, the building lost its structural support, leading to
a sudden evacuation and a near-collapse. Using consecutive InSAR data time series
acquired by four different SAR satellites between 1992 and 2011, we find significant
precursory motion. We integrate these InSAR data time series and improve the pre-
cision of geolocation of the InSAR measurement points using additional lidar-based
data. The detected localized strain appears to be related to an upward migrating cavity.
The analysis demonstrates the feasibility of an early detection of anomalous processes
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in the underground.
This study reveals the high potential of structural health monitoring using observa-

tions from satellites, either for forensic analysis—investigating the behavior of a struc-
ture after a failure manifested itself—or for preventive monitoring—to identify anoma-
lies in behavior that may be indicative for impending structural failure.



Samenvatting

Satelliet radar interferometrie (InSAR) wordt gebruikt voor het monitoren van defor-
maties op aarde, met millimeter precisie. De meeste toepassingen concentreren zich
op geofysische verschijnselen, zoals aardbevingen, vulkanen, of bodemdaling. Het mo-
nitoren van civiele infrastructuur met InSAR heeft een grote potentie, maar deze wordt
nog nauwelijks operationeel benut. In deze studie onderzoeken we hoe informatie over
de status van constructies (structural health) kan worden verzameld met behulp van
InSAR, en ontwikkelen we een methodologie om haar monitoringscapabiliteit signifi-
cant te verbeteren.

Kinematische tijdsreeksanalyse met InSAR behelst het verwerken van extreem
grote datasets om de relatieve bewegingen van (punten op) infrastructuur te schat-
ten. Deze bewegingen kunnen het gevolg zijn van spanningen in de constructie en
daarmee mogelijk constructie-technische problemen aan het licht brengen. Echter,
het mathematische model, dat de satellietwaarnemingen relateert aan de specifieke
kinematische parameters, is onbekend. Om het meest waarschijnlijke model te be-
palen gebruiken we het ‘meervoudig toetsen van hypotheses’. Voor elk punt hanteren
we de nulhypothese ‘eenparige beweging’, welke wordt getoetst tegen een groot aantal
alternatieve kinematische modellen, geconstrueerd op basis van een verzameling van
kernfuncties. Wanneer de nulhypothese wordt verworpen testen we de gehele collectie
van potentiële alternatieve modellen met verschillende fysisch-realistische parameters
tegen de nulhypothese, waarbij gebruik wordt gemaakt van de B-methode van toet-
sen. Gebruikmakend van toets-quotiënten, selecteren we hierdoor (i) het meest waar-
schijnlijke model voor elk punt, en verbeteren we (ii) de kwaliteitsbeschrijving van de
schattingen, terwijl we onrealistische overfitting van het model vermijden.

De ontwikkelde InSAR verwerkingsstrategieën zijn toegepast in drie case-studies
om informatie over de structural health van rail-infrastructuur en gebouwen te verkrij-
gen. Voor de 5000 m hoge Qinghai-Tibet spoorweg bestond het vermoeden dat deze
onderhevig kon zijn aan dynamische veranderingen door de onderliggende perma-
frost. Met behulp van SAR data met middelhoge resolutie passen we een ‘all-pixel’
benadering toe, gebaseerd op statistische eenduidigheid, om geometrische decorrela-
tie te verminderen en de dichtheid van de InSAR meetpunten op het spoor te maxi-
maliseren. Hieruit bevestigen we seizoensgebonden deformatie, waarschijnlijk door
het bevriezen en ontdooien van de actieve laag van de permafrost. Daarnaast bestu-
deren we de monitoringscapabiliteit voor complexe rail-infra (Betuweroute) met 248
hoge-resolutie SAR beelden vanuit dalende en klimmende satellietbanen. We schat-
ten hieruit 3D deformaties op millimeter-niveau in een spoor-vast referentiesysteem,
en beschrijven de haalbare precisie en betrouwbaarheid. Tot slot analyseren we span-
ningen in gebouwen bij winkelcentrum ’t Loon in Heerlen. Dit gebouw verloor haar
stabiliteit en moest plotseling werden ontruimd, naar later bleek door een zich ont-
wikkelend sinkhole eronder. Gebruikmakend van opeenvolgende InSAR tijdreeksen
van vier verschillende satellieten tussen 1992 en 2011 zien we substantiële beweging
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voorafgaand aan deze gebeurtenis. De gedetecteerde lokale spanning lijkt gerelateerd
te zijn aan een opwaarts migrerende holte. Hieruit blijkt dat vroegtijdige detectie van
processen in de ondergrond in principe mogelijk is met InSAR.

De ontwikkelde methodes in deze studie vergroten de potentie voor structural he-
alth assessment door het monitoren van infrastructuur met behulp van satellietobser-
vaties, zowel voor forensische analyse (onderzoek naar het gedrag van een constructie
nadat zich een calamiteit heeft voorgedaan) als voor preventieve controle (het vroegtij-
dig detecteren van dynamische afwijkingen in een constructie ter voorkoming van een
calamiteit).
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T satellite repeat cycle
T q test statistic of dimension q

Tq test statistic ratio of dimension q

W {.} wrapping operator
v velocity
x unknown parameters
y observations

z complex number
Z set of integers
{.}−1 inversion
{.}T transposition
.̂ estimated value
.̃ predicted value

α level of significance
η temperature related parameter
β level of false rejection of null hypothesis; height-to-phase conversion factor
δij Kronecker delta function of two integer variables i and j
∆T temperature difference
χ2(q,λ) χ2-distribution with dimension q and noncentrality parameter λ
ê estimated error
γ coherence; power of test
γs the azimuth of the track
γt temporal correlation; the cant of the track
Γ success rate of the decision
κ exponential magnitude
λ radar wavelength; noncentraility parameter
∇ vector of model imperfections
ψ SLC phase
φ interferometric phase
φk

p,q arc phase between point p and q in interferogram k
φk

p wrapped interferometric phase of point p in interferogram k
φatmo atmospheric phase
φdefo deformation phase
φnoise phase noise
φorb orbital phase
φscat scattering phase
φtopo topographic phase
φw wrapped phase
ρ slant range between ground target and satellite
σ standard deviation
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θ look angle
θinc incidence angle
$ linear expansion coefficient
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Introduction

1.1. Motivation
Monitoring civil infrastructure using satellite radar technology is feasible, but currently
not exploited to full advantage. In this work, we develop and demonstrate methodol-
ogy to improve its applicability for operational infrastructure monitoring.

1.2. Background
Civil infrastructure, such as buildings, railways, roads, bridges, dikes, dams, pipelines
and quays, forms the backbone of urbanized societies and is critical for sustainable
economic growth. Structural stability, or health, of civil infrastructure is therefore of
vital importance in modern life. Not only can failure of critical infrastructure lead to
human casualties and direct economic damage, it can also lead to ecological disasters
and be disruptive for societies at large. Clear examples include flooding disasters due
to failing water defense infrastructure, e.g. Wilnis peat dike (van Baars, 2005), New Or-
leans (Kates et al., 2006) and the Elbe river (Kreibich et al., 2005), disasters due to failure
of high-speed railway infrastructure, such as the 1998 crash of the Eschede high-speed
train in Germany (Milne et al., 2003), or the recent collapses of inferior factory build-
ings in Bangladesh (Manik et al., 2013).

Natural hazards, inferior construction, or bad foundation of structures are poten-
tial causes of failure, see Fig. 1.1. However, an even more prominent problem in today’s
developed society is aging (Chang et al., 2003). Civil infrastructure begins to deteriorate
once it is built and used, and most structures in the western world were built between
1950 and 1975. Therefore, they have now reached a critical age. The accompanied
degradation decreases the reliability of the infrastructure. In 2013, the American Soci-
ety of Civil Engineers reported that a large portion of America’s infrastructure exhibits
significant deterioration, and that the infrastructure condition and capacity are of great
concern, with a significant risk of failure. The investment required to solve these prob-
lems amounts up to 3.6 trillion USD by 2020 (ASCE, 2014). Only for dams, 262 million
USD was spent on rehabilitation for 150 dams in 26 states in 2014 (Kohler, 2014). Sim-
ilarly, in China, Europe, India, and many other countries, civil infrastructure in-service
is deteriorating fast, or even defective already.

Consequently, there is a vital need for systematic monitoring of structural safety.
Particularly, this involves the fast detection of first indications of structural health prob-
lems, such as strain or deformation, and the consecutive monitoring of such anoma-
lies. This facilitates precautionary measures, timely warnings and effective mitigation
systems to minimize economic loss and casualties.

1
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(a) (b) (e)

(c)
(d)

Figure 1.1: (a) A bridge in Beichuan County, China, damaged by the 2008 Wenchuan earthquake (Wang,
2008). (b) The 2011 collapse-sinkhole at the shopping mall ’t Loon caused by subsurface cavity migration. (c)
The buckling rail lines in Australia due to extreme heat (telegraph.co.uk). (d) The Shigan dam damaged by the
1999 Chi-Chi, Taiwan, earthquake (Shin and Teng, 2001). (e) The tilting Old Church of Delft, the Netherlands,
susceptible to groundwater variation and aging.

Conventional methods for structural monitoring of civil infrastructure use in-situ
measurement devices, such as strain gauges (Choi et al., 2008), accelerometers (Lima
et al., 2008), laser interferometers (Nassif et al., 2005), electronic distance measurement
instruments and GPS technology (Lovse et al., 1995; Lepadatu and Tiberius, 2014).
However, these methods are costly, sometimes weather dependent (Cheng et al., 2002),
and can only be applied on a limited scale, either in space or time. Moreover, they are
usually only used at locations where structural deformation is expected, requiring a-
priori knowledge that may not be available everywhere. To complement these conven-
tional methods, we propose a spaceborne approach using Synthetic Aperture Radar
Interferometry (InSAR), which we will refer to in the sequel as radar interferometry to
be concise.

InSAR is a powerful technique which can remotely measure sub-centimeter-scale
deformation over spans of days to years based on satellite SAR data analysis. A typical
SAR intensity map represents the radar reflectivity of the imaged area. The strength of
the returned radar echoes is strongly related to physical (i.e., surface roughness and
slope) and electrical (i.e., dielectric constant, absorption) characteristics of the sur-
face. Since Goldstein et al. (1988) used the phase information of SAR data in a first
application of interferometry using a spaceborne platform (the SEASAT mission in a
3-day repeat-pass mode), the InSAR technique has matured through a series of Earth
monitoring satellites. The launch of the ERS-1 satellite (European Space Agency, ESA)
in 1991 is the starting point for this epoch, overlapped by JERS-1 (Japan Aerospace
Exploration Agency, JAXA) in 1992, ERS-2 (ESA) and Radarsat-1 (Canadian Space
Agency, CSA) in 1995, Envisat (ESA) in 2002, ALOS-1 (JAXA) in 2006, and now followed
by Radarsat-2 (2007, Canadian Space Agency, CSA), four COSMO-SkyMed satellites
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Figure 1.2: Radar satellite missions with their launch dates and key design parameters: wavelength, reso-
lution and satellite repeat period. The dashed line for Envisat indicates the time period when it was not
interferometrically usable anymore and eventually lost contact.

(2007, Italian Space Agency, ASI), TerraSAR-X (2007, German Aerospace Center, DLR),
TanDEM-X (2010, DLR), ALOS-2 (2014, JAXA), Sentinel-1A (2014, ESA) and Sentinel-1B
(2016, ESA), see Fig. 1.2. These satellites deliver SAR images with a repeat interval rang-
ing from one day to more than one month, and have been widely applied in monitoring
‘natural’ geophysical processes such as glacier movements (Mohr and Madsen, 1996),
earthquakes (Massonnet et al., 1993; Hanssen et al., 2000; Feigl et al., 2002; Ćakir et al.,
2003; Fielding et al., 2013), volcanoes (Massonnet et al., 1995; Amelung et al., 2000;
Stevens et al., 2001; Usai et al., 2003; Hooper et al., 2004; Sigmundsson et al., 2010;
Takada and Fukushima, 2013), and subsidence (Amelung et al., 1999; Ketelaar, 2004;
Sousa et al., 2008; Caro Cuenca and Hanssen, 2008; Caro Cuenca et al., 2013). Yet, only
lately they have been successfully deployed for structural health monitoring of infras-
tructure, especially in the urban environment (Arikan and Hanssen, 2008; Chen et al.,
2012; Chang and Hanssen, 2011, 2014; Chang et al., 2014).

In the past two decades, diverse InSAR data processing methods have been devel-
oped for three-dimensional terrain height estimation (DEM generation) and mapping
of surface deformation. The conventional method estimates the elevation or defor-
mation using two SAR images (Bamler and Hartl, 1998; Massonnet and Feigl, 1998).
Using this method, the measurement quality can be significantly degraded by tempo-
ral and spatial decorrelation (Bamler and Hanssen, 1997; Ferretti et al., 1999b; Ciuc
et al., 2002) and atmospheric disturbances (Hanssen, 2001). Moreover, phase unwrap-
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ping (the estimation of the 2π-ambiguities in the phase measurements) becomes more
difficult with decreasing coherence (that is the decrease in the degree of correlation
between two SAR images) (Eineder and Holzner, 1999; van Leijen et al., 2006; Kam-
pes and Adam, 2006). Following the conventional two-pass InSAR method, advanced
methods wherein (i) the errors are estimated and removed, (ii) all coherent points are
recognized and used for spatial and temporal unwrapping, and (iii) the deformation
histories of all coherent points are archived, were proposed. These so-called multi-
epoch methods use a stack of radar images which is analyzed to identify all temporally
coherent points by using an optimal image combination that is capable of utilizing all
archived images over a certain study area. Then the long-term deformation time se-
ries of those coherent points are estimated. These multi-epoch methods are classified
in terms of the image combinations (such as a single master image network and the
temporal daisy chain network) or in terms of the types of scatterers (i.e. persistent scat-
terers and distributed scatterers). Multi-epoch methods include persistent scatterer
interferometry (PSI) (Ferretti et al., 1999a), small baseline permanent scatterers (SBAS)
(Berardino et al., 2002; Mora et al., 2002; Lanari, 2003; Tizzani et al., 2007; Lanari et al.,
2010) and SqueeSAR (Ferretti et al., 2011). Yet, to primarily concentrate on an efficient
and systematic methodology for monitoring civil infrastructure and detecting anoma-
lies both in space and time, for an enormous amount of targets, all InSAR methods are
considered to be potentially useful.

1.3. Problem statement
For effective civil infrastructure monitoring, InSAR methods should have some specific
capabilities. First, it is necessary to be able to detect unusual changes in the spatio-
temporal behavior of infrastructure, as these could be indicative for potential struc-
tural failure or weakening. If such anomalies are detected, the method needs to assess
when and where this change happens, accompanied by proper quality metrics, such as
precision and reliability. Then, this information can be linked to the possible driving
mechanisms. There is currently no standard methodology to reach these objectives.

In general, the InSAR observations include the contributions of relative positions of
the scatterers, deformation (kinematic time series), atmosphere and noise, which can
be parameterized based on assumptions on their expected behavior over time or in
space. Examples include assumptions of spatial smoothness of the atmospheric signal,
or temporal smoothness of the deformation signal. Although there are several classes
of problems where some of these assumptions seem to be applicable, as successfully
reported for many InSAR applications (Hooper, 2006; van Leijen and Hanssen, 2007;
Tizzani et al., 2007; Perski et al., 2008; Hanssen and van Leijen, 2008; Hooper, 2008; La-
nari et al., 2010; Lagios et al., 2013), in its origin the dependency on such assumptions
makes the techniques sub-optimal. For instance, the kinematic component is often
parameterized as a linear function of time, which may be sufficient to facilitate phase
unwrapping efficiently (Teunissen, 2006, 2003; Caro Cuenca, 2012), but it is hardly al-
ways the case for every single point since no single assumption will satisfy all points.
Moreover, this strategy does not exploit the extremely rich information content in the
data in an optimal and efficient way.

Considering the intrinsic uncertainty in resolving the 2π phase ambiguities, the
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mathematical estimation of the InSAR parameters is essentially an ill-posed problem.
It requires the inversion of a system of non-linear equation, where every new observa-
tion introduces at least three additional unknowns. There is no unique solution, and
therefore the obtained solution is dependent on the assumptions mentioned above.
Furthermore, noise in the data, or a single missing data point, may lead to deviations
in the estimated phase ambiguities, which may subsequently cause significant changes
in the estimated kinematic parameters. Finally, different processing methodologies, or
different settings/parameterizations in the estimation procedure, may lead to differ-
ent results. In terms of achieving public acceptance of InSAR as a viable and reliable
geodetic technique, such problems in the repeatability or reliability of the results are of
concern, especially in critical conditions affecting public safety. Thus, there is a strong
need to homogenize and standardize geodetic InSAR data processing.

1.4. Research objectives
Given the recent developments in InSAR and the aforementioned problems, we can
state that the monitoring of civil infrastructure with InSAR is feasible, but currently not
exploited to full advantage. In this work, our objective is to develop and demonstrate
methodology to improve the capability for operational infrastructure monitoring. The
main research question is:

How to optimally assess and monitor structural health of civil infrastructure using
satellite radar interferometry?

To address this main challenge, four specific research questions are considered.

1. How to design the optimal functional and stochastic model?

This first research question focuses on the parameterization of kinematic time
series for every single InSAR measurement point. The functional model refers to
the (linearized) relationship between the InSAR measurements (including kine-
matic time series) and the unknown parameters. The stochastic model expressed
in the (co)variance structure describes the precision of the InSAR measurements.
To design the optimal functional and stochastic model, we use the Gauss-Markov
model to describe the functional and stochastic relations (Gauss, 1809; Koch,
1999). The research question is aimed at finding a generic approach to find the
most probable model description.

2. How to detect spatio-temporal anomalies efficiently and precisely?

When the optimal functional and stochastic model for all points are well-
designed, we should detect spatio-temporal anomalies with a predefined proba-
bility of detection.

3. How to optimize InSAR data processing to monitor civil infrastructure?

The kinematic time series are estimated by InSAR data processing. To compute
the precise estimates (displacements) for the kinematic time series, we should
improve current InSAR data processing. We will specifically aim at (i) reducing
the noise due to geometric decorrelation for distributed targets; (ii) decomposing
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the satellite line-of-sight deformation measurements to a local Cartesian coordi-
nate system, analyzing how observational errors propagate into the estimates,
and detecting spatio-temporal changes in geometry; (iii) improving the geoloca-
tion for all points, by using additional information.

4. How to evaluate the quality of the obtained results?

The quality estimates and parameter estimates are mutually dependent. To eval-
uate the quality of the obtained results, we should compute the precision of the
estimates and evaluate the reliability of the model, and perform cross-validation
when additional information is available.

1.5. Research limitations
To narrow down the scope, this study will neither address the problem of finding coher-
ent points (Jiang, 2014; Jiang et al., 2015), nor the densification of persistent scatterer
networks (Mahapatra et al., 2014). It focuses on point scatterers, rather than distributed
scatterers (Samiei-Esfahany and Hanssen, 2011; Goel, 2014), but could nevertheless be
applied to distributed scatterers equally well. Rather than focusing on the direct in-
terpretation of the detected deformation signals, we attempt to facilitate the interpre-
tation by domain experts (see e.g. chapter 4). Finally, we do neither address PSI data
processing techniques (Kampes, 2005; van Leijen, 2014), nor the precise 3D position-
ing (Perissin, 2006; Dheenathayalan et al., 2014), but rather focus on post-processing
techniques, using the output of standard InSAR time series processing chains.

1.6. Methodology and outline
The current chapter briefly reviews the background of the study, and addresses the
research objectives. The main problem is formulated to reach the objectives which are
subsequently divided into four specific research questions.

Chapter 2 provides an overview of radar interferometry, introducing the existing
techniques, particularly conventional InSAR and PSI. It serves as a general reference
for SAR data processing and discusses the physical aspects of signal propagation and
scattering. A theoretical framework consisting of a functional and stochastic model is
also presented in chapter 2.

Chapters 3 to 6 are written based on manuscripts that have been published in sci-
entific journals, or have been submitted to journals.

Chapter 3 is concerned with finding the optimal kinematic model for each In-
SAR measurement point. It applies concepts of hypothesis testing and translates the
methodology developed in the Delft School for geodesy and surveying to the domain
of radar remote sensing. It is demonstrated how to detect potentially hazardous situa-
tions from millions of InSAR measurement points. This chapter has been submitted to
the IEEE Transactions on Geoscience and Remote Sensing in February 2015.

Chapters 4 and 5 focus on two domains of structural health assessment of infras-
tructure: railways (Chap. 4) and buildings (Chap. 5).

Chapter 4 starts with the detection of ground motion of the Qinghai-Tibet railway
in relation to potential permafrost thawing using medium-resolution SAR data. This
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demonstrates the advantage of using remote sensing data for structural health assess-
ment at inaccessible regions, such as the high altitudes of the Himalaya’s. The chapter
then continues with the assessment of differential 3D motion for the Betuwe railway in
the Netherlands, using multi-track high-resolution TerraSAR-X images. The chapter is
based on two publications, in the International Journal of Remote Sensing in November
2014 and the International Journal of Railway Technology in August 2014.

Chapter 5 is an example of forensic research using remote sensing, applying the
PSI time series of four SAR satellites over the site of a shopping mall in Heerlen, the
Netherlands. This building experienced a near-collapse, which appeared to be due to
a developing sinkhole, related to early mining activities. The chapter further covers the
interpretation of the driving mechanisms and the probability of precursory anomaly
detection. This chapter is extended from the material published in Remote Sensing of
Environment in April 2014. Conclusions and recommendations for future research are
given in Chapter 6.





2
InSAR Review

SAR Interferometry (InSAR) including multi-epoch processing techniques such as Per-
sistent Scatterer Interferometry (PSI) are among the rapidly developing new technolo-
gies for Earth observation from space since the late 20th century. In this chapter brief
reviews of conventional InSAR and PSI are presented in section 2.1 and 2.2, followed by
the discussion on the functional and stochastic model in section 2.3 and 2.4, respec-
tively.

2.1. Synthetic aperture radar interferometry
A synthetic aperture radar (SAR) operates at microwave frequencies and uses the phase
information in the radar’s along-track spectrum to discriminate scatterers within the
antenna beam (Wiley, 1954). It can create two-dimensional images at a wide scale with
SAR sensors mounted on an aircraft, or spacecraft. Compared with optical instruments
such as the ones on the LandSAT, SPOT and IKONOS satellites whose images are merely
acquired in daytime and would be impacted by clouds, SAR sensors utilize radio wave
signals which can penetrate the atmosphere including clouds, all-day to obtain images
with a resolution up to meters.

2.1.1. Observables
A satellite SAR system operates using a side-looking geometry and illuminates a swath
parallel to the satellite’s nadir track by transmitting a series of radar pulses from a fixed
antenna (Elachi, 1987), see Fig. 2.1a. In a single radar acquisition/image, when two
surface objects have the same slant distance to the sensor, it is not possible to separate
them. The synthetic aperture radar techniques resolves this problem by combining
overlapping radar pulse returns from different azimuth positions. This way, the slant
distances to the two objects will differ, and a high-resolution image can be computed.
However, this technique still yields a two-dimensional projection of the Earth’s surface.
The third dimension—resolving points at different elevations—requires another SAR
image which is acquired at the same time from a different orbital track or acquired at
separated time but imaging the same area. This SAR post-processing method is called
SAR Interferometry (InSAR): a form of multiplicative interferometry (Bamler and Hartl,
1998). It can potentially measure sub-centimeter-scale changes in position over time
spans of days to years. The two SAR images are called the master image and slave im-
age. The slave image must be coregistered and resampled w.r.t. the geometry of the
master image. The interferometric phase is derived from the pixel by pixel multiplica-
tion with the conjugate complex of a pixel, in the master and slave image, which yields

9
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Figure 2.1: (a) SAR and (b) repeat-pass InSAR imaging geometry, adapted from Bamler and Hartl [1998]. (a)
The satellite at height Hsat moves along the azimuth direction for y axis and the direction of the main lobe
of microwave pulse is nominated as the range direction for x axis. The area circled by black indicates the
footprint of a single pulse. (b) Two SAR sensors, master and slave are at a distance by a baseline B . The
perpendicular baseline B⊥ is defined by the effective distance between master and slave sensors, measured
perpendicular to the look direction. The angle between B and horizontal plane is defined as α. The look
angle θ is the angle with which the radar looks at the surface. The incidence angle θinc is defined w.r.t. to the
ellipsoid. The height of the object is H w.r.t. a reference surface.

a value φw ∈ [−π, π) [rad] that we refer to as the ‘wrapped’, or relative, interferometric
phase. If we would have been able to observe the ‘absolute’ phase φ ∈ R (R is the set
of real numbers), it would be directly related to the slant range difference ∆r between
master and slave (see Fig. 2.1b), as in1

E {φ} =−4π

λ
∆r, (2.1)

where E {.} expresses the expectation operator. However, the absolute interferometric
phase φ cannot straightforwardly be measured, due to the fact that the interferometric
observed phaseφw , that we measure, is a relative phase, modulo 2π radians, expressed
as W {φ} = mod

{
φ+π, 2π

}−π, where W {.} is the wrapping operator.

The absolute interferometric phase φ can be decomposed into four components
that are surface topography, temporal displacement, atmospheric delay and noise,

φw =W
{
φ

}=W
{
φtopo +φdefo +φatmo +φnoise

}
, (2.2)

where,

1Note that Eq. (2.1) holds for the repeat-pass configuration where the two SAR images are acquired at differ-
ent times.
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φtopo =− 4π
λ

B⊥
ρ sinθ H the topographic phase caused by the surface geometry, ρ is

the slant range, H is the height above a reference surface
φdefo =− 4π

λ ∆r the kinematic phase duo to surface or object displacement
φatmo the phase contribution from atmospheric signal delay
φnoise other random additive noise.

From Eq. (2.2) it is obvious that for each pixel, there is only one observation, with
four (or five, including phase ambiguities) unknown constituents. Thus, a single in-
terferogram cannot solve this estimation problem. A typical interferogram is shown in
Fig. 2.2 which depicts the west of the Netherlands (Rotterdam area) using TerraSAR-X
stripmap mode data. The phase is wrapped in the [−π, π) interval. It is impossible to
interpret this unambiguously in topographic or kinematic, or atmospheric contribu-
tions, due to too many unknowns including phase ambiguities. Phase unwrapping is
needed to estimate the number of ‘absolute’ phase ambiguities, to obtain a continuous
interferometric phase map.

The forward problem for wrapping the absolute phase to the range [−π, π) is
straightforward, whereas the inverse problem is difficult due to its inherent non-
uniqueness and non-linearity (Ghiglia and Pritt, 1998). For example, Fig. 2.3 shows
one-dimensional phase unwrapping in four cases: (a) regardless of aliasing and noise,
when the discrete wrapped phase is well-sampled, it is possible to reconstruct the con-
tinuous unwrapped phase; (b) when the wrapped phase is undersampled, the unwrap-
ping fails; (c) when the wrapped phase is affected by Gaussian noise, residues occur,
those are unwrapping errors. Residues are the evidence of phase discontinuities, indi-
cating the magnitude of incorrect multiples of 2π; (d) when both undersampling and
Gaussian noise occur, the phase unwrapping result is far away from the true absolute
phase. To unwrap an interferogram in two dimensions, the problem becomes more
complex. Various algorithms have been proposed, such as the Branch-cut method (Ar-
fken, 1985; Goldstein et al., 1988; Ching et al., 1992), the Least-squares method (Hunt,
1979; Ghiglia and Romero, 1994; Pritt, 1996) and Minimal cost flow methods (Costan-
tini, 1996). All algorithms hold two general heuristic assumptions to constrain this in-
verse problem,

1. the gradients between wrapped phase and unwrapped phase are identical;

2. the absolute phase difference for adjacent pixels is smaller than π (half a fringe
cycle).

In order to address the non-uniqueness, or rank defect in Eq. (2.2), an extension
of InSAR techniques was proposed. In Differential InSAR (DInSAR), two interfero-
grams are generated from three or more SAR images taken at different times. Gabriel
et al. (1989) first reported its application to map the surface deformation of agricul-
tural fields over a large area in California to centimeter-level accuracy using SEASAT
data. In such an approach, two interferograms were required, one of which is a so-
called topographic interferogram that is assumed to only contain the signature of to-
pography, whilst the other one is a deformation interferogram measuring both to-
pography and deformation. The phase differences in the topographic interferogram
were scaled to match the imaging geometry of the deformation interferogram and
were subtracted from each other, yielding a differential interferogram. Massonnet and
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Figure 2.2: Interferogram over the
west of the Netherlands (Rotterdam
area) in radar coordinates. It is gen-
erated by two TerraSAR-X stripmap
mode SLC images which were ac-
quired on 04 May and 15 May, 2012
from descending orbit, respectively.
The crop area is 28×49 km with a
multilook of factor 5×10. The col-
ors show the interferometric phase
ranging from −π (blue) to +π (red).
This interferogram mainly shows
the effects of atmospheric delay dif-
ferences.

Adragna (1993) detected the 1992 Landers earthquake surface deformation signature
using ERS-1 satellite repeat-pass SAR data after removing the topographic phase com-
ponent using a reference Digital Elevation model (DEM). Zebker et al. (1994b) devel-
oped the three-pass method and performed an application on the Landers earthquake
in 1992, which showed good agreements with independent Global Positioning System
(GPS) and Electronic Distance Measurement (EDM) data.

2.1.2. Limitations of conventional InSAR
InSAR is one of the most reliable technologies for 3D topographic mapping and Earth
deformation monitoring. However, the generated interferograms may include ‘decor-
related areas’, where the quality of the phase observations is mediocre or even insuf-
ficient due to temporal decorrelation effect. In addition, error sources such as those
introduced by orbital inaccuracies and atmospheric delays are an impediment to the
precise determination of surface deformation. Here we address the three main short-
comings of (conventional) InSAR techniques.

Spatial decorrelation Spatial or geometric decorrelation (Zebker and Villasenor,
1992), between two SAR images, is brought about by their different viewing angles
which degrades the coherence of the interferometric phase, for distributed scatterers.
The different viewing angles are caused by different squint angles and non-zero per-
pendicular baselines B⊥ (see Fig. 2.1b for definition) from two platform positions. It
leads to a spectral shift between the two observations and alters the coherent sum of
wavelets in a resolution pixel so that the two measurements are not exactly the same.
As the baseline B increases, the spatial decorrelation increases as well. The critical
baseline is the minimum value of B⊥ at which the backscatter signal from each pixel is
completely decorrelated. Gatelli et al. (1994) and Zebker et al. (1994a) separately pro-
posed the formula to calculate the critical baseline,

B⊥,c = ρλ

2Rg cosθinc
, (2.3)
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Figure 2.3: Reconstruction of absolute phase from wrapped phase.

where ρ represents the slant distance between the sensor and the target, Rg is the
ground resolution and θinc indicates the local incidence angle and equals to θinc − ς
where θinc represents the incidence angle for the ellipsoid and ς represents the topo-
graphic slope. Additionally, a change of squint angle is characterized by a change in the
SAR Doppler centroid frequencies between two images, and also affects the geomet-
rical distortion. Spatial correlation can be improved by means of bandpass filtering
in range and azimuth directions. Gatelli et al. (1994) showed that range filtering can
considerably improve the correlation at the cost of spatial resolution, while azimuth
filtering (Schwabisch and Geudtner, 1995) is performed whenever the difference of the
SAR Doppler centroid frequencies between two images is larger than half the processed
azimuth bandwidth.

Temporal decorrelation Every resolution cell in a SAR image is generally composed
of a collection of many small scatterers, and each of them reflects with its individual
amplitude and phase. The phase of a pixel is the vector sum of individual phases of
all these scatterers. When the phase of an individual scatterer is uniformly distributed
between −π and π, and all these individual scatterers are mutually uncorrelated (Mad-
sen, 1986), a change of the backscatter characteristics, such as the distribution of scat-
terers within a common pixel or their electrical characteristics, over the acquisition
time period between two SAR images, affects the coherence of the interferogram which
is referred to as temporal decorrelation. Especially in vegetated areas and snow-clad
mountains, where the scatterer characteristics or the position of scatterer changes over
time, the InSAR measurements are severely affected by temporal decorrelation. More-
over, temporal changes are complicated to be modeled in advance and predicted. For
instance, the vegetation growth for a certain crop may be modeled as it is based on a
natural systematic process, but the unexpected human interference or a natural haz-
ard immediately leads to inadequate modeling. Another example is that in snow-clad
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mountain areas, complete decorrelation may dramatically reduce when snow melts
away.

Zebker and Villasenor (1992) first presented an approximation of temporal decor-
relation assuming that temporal changes are merely caused by the separate motions of
scatterers, expressed as

γt = exp

{
−1

2
(

4π

λ
)2σ2

φ

}
, (2.4)

where γt denotes the temporal decorrelation, and σ2
φ is the phase variance of the mo-

tions. These motions were then specified as Brownian motion2 by Rocca (2007). He
assumed that the motion of individual scatterer is Brownian motion which implies that
the phase variance σ2

φ linearly increases with the time period nT (T is satellite repeat

cycle, n is the number of repeat cycles), that is σ2
φ =σ2

BdnT . Then the temporal decor-
relation is formulated as

γt (nT ) = exp

{
−nT

τ

}
, (2.5)

where τ= 2/σ2 and σ=σBd/
√

day 4π
λ rad where σBd/

√
day is a standard deviation in a

day which is a function of its corresponding coherence value.
With Eqs. (2.4) and (2.5), we can estimate the temporal decorrelation as a function

of the phase variance.
Atmospheric inhomogeneities As a radar signal travels through the atmosphere, it

is delayed introducing a variable phase over the image, as in Eq. (2.2) (Hanssen, 2001).
The atmospheric phase variation is contributed by (i) turbulent mixing that results
from turbulent processes in the atmosphere, which is largely uncorrelated with topog-
raphy; and (ii) a change in the vertical stratification of the troposphere between the
lowest and highest elevations in the area, which is highly correlated with topography.
The atmospheric phase variation is spatially and temporally correlated. Since the time
interval between two acquisitions is typically in the order of one week or more, the at-
mospheric phase at the two SAR acquisitions is generally decorrelated in time. A widely
used approach for reducing the atmospheric phase influence is to combine informa-
tion from a stack of interferograms using multi-epoch InSAR techniques (which will be
discussed in section 2.2) at the expense of losing information on short-term variation
in the temporal nature of deformation covering the time period of the SAR acquisitions
within the stack (Sandwell and Price, 1998; Sandwell and Sichoix, 2000).

In short, even if SAR data are acquired successfully, error sources limit the number
of effective repeat-pass interferograms.

2.2. Multi-epoch InSAR techniques: Persistent scatterer
interferometry

Although there are many techniques for InSAR data time series, such as SBAS (Be-
rardino et al., 2002; Mora et al., 2002; Lanari, 2003; Tizzani et al., 2007; Lanari et al.,

2Brownian motion is a Wiener stochastic process with stationary independent increments in time. It is a
normal distributed variable with zero expectation and time-dependent variance (Hida, 1980).
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2010) and SqueeSAR (Ferretti et al., 2011), we will only briefly discuss the concept of
PSI here, as an example of multi-epoch InSAR techniques.

PSI (Persistent scatterer interferometry) is a multi-epoch InSAR analysis technique,
aimed to overcome spatial and temporal decorrelation and atmospheric error signal
in conventional InSAR, first reported by Ferretti et al. (2000b). The concept of the PSI
technique is based on discriminating (pointwise) coherent scatterers from incoherent
ones so as to analyze the observations of those coherent scatterers that are physically
interpretable in a stack of interferograms. Those consistently coherent scatterers of-
ten have high-amplitude echoes to the satellite, and are relatively stable ground targets
which hold minimal spatial and temporal decorrelation throughout the whole stack.
The atmospheric influence for those scatterers can be estimated under the assump-
tion that the atmospheric phase is spatially correlated and temporally uncorrelated.
Since the degree of decorrelation for a pixel in an interferogram is related to the dis-
tribution of scattering centers that contribute to that pixel, the decorrelation turns
out to be zero when the phase of a pixel results from only one stable point scatterer.
However, such pixels do not exist in reality. Pixels are either dominated by pointwise
scatterers (i.e. PS) which exhibit less decorrelation than the others, or dispersed with
many distributed scatterers which are homogeneous in space. PSI considers the point-
wise coherent scatterers. PSI is widely applied in urban areas where a large number of
man-made structures with strong scattering characteristics is dominant and where the
deformation rate is assumed to be constant. In the following the generic PSI process-
ing procedure is addressed based on the DePSI methodology (Kampes and Hanssen,
2004a; Marinkovic et al., 2006; van Leijen, 2014).

2.2.1. PSI processing procedure
During PSI processing, we analyze a stack of interferograms, typically consisting of two
dozen or more SAR images. The way to generate all these interferograms is as the same
as the way in conventional repeat-pass InSAR, which basically follows the obligatory
steps: 1) reading the master image and the associated orbital data, and cropping the
area of interest; 2) reading the slave image and the associated orbital data, and crop-
ping the same area; 3) corregistering the slave image to the master grid; 4) resampling
the slave image; 5) generating the interferogram by multiplying the master image by
the complex conjugate of the slave image, pixel by pixel. We will not elaborate the pro-
cessing procedure for the interferogram generation in this section, as the detail can
refer to the literature (Hanssen, 2001; Kampes, 1999).

As the processing procedure for PSI can be subdivided in a number of subsequent
steps, here we address these steps in the order of processing. We will limit ourselves
to the processing of single-master stacks, producing m interferograms from m +1 SAR
images.

Single master selection The PSI processing procedure starts by computing inter-
ferograms. The master image is selected by maximizing the stack coherence of a batch
of interferograms (Kampes, 2005),

γk = 1

m

m∑
k=0

g (B k
⊥,B cri

⊥ )× g (B k
t ,B cri

t )× g ( f k
dc, f cri

dc ), (2.6)
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where

g (x,c) =
{

1−|x|/c, if |x| < c
0, otherwise,

(2.7)

and B k
⊥ is the perpendicular baseline between master and slave in the interferogram

k, B k
t is the temporal baseline [y] (in years) and f k

dc is the Doppler baseline (the mean
Doppler centroid frequency difference). m is the total number of interferograms. The
divisor c in Eq. (2.7) can be considered as a ‘critical baseline’, indicating the value
above which total decorrelation would occur for distributed targets. B c

⊥ can derived
by Eq. (2.3).

Persistent Scatterer Candidates (PSc) selection A preliminary estimation is per-
formed using a set of constantly coherent pixels, or first order Persistent Scatterer Can-
didates (PS1c’s), this step is aiming to construct an unwrapping network and estimate
the atmospheric phase at these pixel positions in all interferograms in order to sepa-
rate the atmospheric phase from other effects. This step is performed by a sequence
of filters at a network of first order PSc’s (PS1c’s) (Ferretti et al., 2001; Kampes and
Hanssen, 2004a). To determine whether the pixels are constantly coherent and then
build a robust PS1c network, the phase-based PS selection cannot be straightforwardly
used because the phase still contains unknown signals and the wrapped phase follows
the uniform distribution as in Eq. (2.21). Thus, as an alternative, the amplitude-based
PS selection using normalized amplitude dispersion (Ferretti et al., 2001) is treated as
an alternative method based on the assumption that a high and nearly constant ampli-
tude value has a corresponding low phase dispersion. Its formula shows

Da = σa

µa
≈ σ̂φ, (2.8)

where σa denotes the standard deviation of the amplitude and µa denotes the mean
value of the amplitude. Ferretti et al. (2001) numerically simulated the phase stability
estimation, showing that the amplitude dispersion is low when σφ < 0.25 [rad]. When
Da exceeds the critical threshold (e.g. > 0.4), there will be no linear relationship be-
tween Da and σφ. Therefore, PS1c’s are empirically detected if Da is below a given
threshold (e.g. between 0.25 and 0.4). Fig. 2.4 illustrates the behavior of the complex
numbers for 131 generated interferograms using TerraSAR-X data acquired between
April 2009 and August 2013 for a PS and a non-PS during the PS1c selection. This
demonstrates that the assumption that the stable phase corresponds to a low ampli-
tude dispersion. Fig. 2.4a shows that the angles (or phases) of the PS orientate in a
small range (−π/2, +π/2), while the angles of the non-PS distribute randomly in 2π
range as shown in Fig. 2.4b. The amplitude values for the PS are greater and stable with
a lower dispersion in time, from their similar lengths in Fig. 2.4a, while the amplitude
values for non-PS are distinctly varying with the time, as shown in Fig. 2.4b.

Adam et al. (2004) suggested another method for PSc selection using the signal-to-
clutter ratio (SCR). It is estimated by calculating the ratio of the intensity (magnitude)
of a signal s over its neighboring clutter c. The relationship between the SCR and the
phase standard dispersion can be defined as

σ̂φ = 1p
2 · s2/c2

= 1p
2 ·SCR

. (2.9)
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Figure 2.4: Illustration of the complex numbers (phase and amplitude) using TerraSAR-X data acquired be-
tween April 2009 and August 2013 from descending orbits for a PS (a) and a non-PS (b).

It is evident that σ̂φ is inversely proportional to SCR, for instance, the phase standard
deviation needs to be lower than 0.5 [rad], the SCR is 2 at least. Different from the
computation for amplitude dispersion index, see Eq. (2.8), the SCR estimation can start
with a single SAR image, and a point who bears high SCR over the full time period is
selected as a PS1c.

To tackle with the difficulty that insufficient coherent points can be identified in
a largely decorrelated environment, Hooper et al. (2004) proposed an alternative ap-
proach to analyze spatial phase stability. Under the assumption that the deformation
of adjacent PSc’s is spatially correlated, the phase stability of a certain temporally co-
herent point p is formulated as

|γp | = 1

m

∣∣∣∣∣ m∑
k=1

exp
{

j (φk
p −φk

p −∆φ̂k
p,e )

}∣∣∣∣∣ , (2.10)

where m is the number of interferograms, φk
p represents the interferometric phase ob-

servable p in the kth interferogram and φ
k
p is the mean phase of all PSc’s lying in a

circular patch centered at p, and ∆φ̂k
p,e is the estimation of the DEM (Digital Elevation

Model) error. The DEM error represents the residual topographic height after subtract-
ing an an a-priori DEM. It can be either due to inaccuracies in the DEM, or due to the
position of actual scatterers relative to the DEM, e.g., related to the elevation of a build-
ing. Considering efficiency, PSc’s are initially identified by defining a threshold in the
normalized amplitude dispersion. Then with an iterative algorithm, the points with
higher γp are considered as PSc.

Network construction and phase unwrapping After selecting the PS1c’s that satisfy
a certain criterion, e.g. amplitude dispersion index, a reference network is established
by connecting these PS1c’s based on e.g. Delaunay triangulation or a spider network
(Kampes, 2005). An ‘arc’ is defined as the spatial phase difference between two con-
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necting PS1c’s. It is first computed and used as input for the processing. The max-
imum length of an arc is defined beforehand so as to reduce or even eliminate the
atmospheric signals between two linking PS1c’s, typically between 0.5 and 2 km (van
Leijen, 2014). In the stage of phase unwrapping, the arcs are first unwrapped in time
and then integrated in space. Variance component estimation (VCE) (details in section
3.4) is employed to produce the proper weights for the arc observations. Whenever
the arc estimation is calculated via the Least-squares, the variance is calculated when
the residuals between observables and estimations approach to minimum (Teunissen,
1988).

Orbital and atmospheric phase screen estimation Orbital inaccuracies affect the
interferograms in the forms of a smooth spatial signal, and result in erroneous base-
line vector estimation, which influences the estimation of the topographic phase in
the PSI processing (Bahr and Hanssen, 2012). A first order approach to eliminate this
effect is the subtraction of a linear plane (or phase ramp) in both range and azimuth
direction. Any other spatial long wavelength signal, such as a large scale deformation
due to tectonic movements or tides, are inevitably subtracted as well by this approach.
Even though it is efficient for most cases and easy to implement, it still remains a bias
since the orbital component is not rigorously linear. More robust approaches in terms
of the measurement of phase differences or gradients between two given pixels, pro-
posed by e.g. Kohlhase et al. (2003), are applied by modification of satellite trajectories.
Another approach regardless of prior unwrapping is the gridsearch method (Bahr and
Hanssen, 2012). This approach is based on an integral transform of the wrapped in-
terferogram. For all the approaches, the orbital correction is relative and independent
for every interferogram. Therefore, orbital error estimation for a single interferogram
refers to the estimation of baseline errors, and its residual error can propagate to the es-
timated height ambiguity or to the reference phase (Hanssen, 2001). Considering that
the phase of every PS1c is unwrapped at the stage of network construction and phase
unwrapping, the phase ramp estimation can be formed as

Φk
p,unw = azp · sk

az + rgp · sk
rg + c, (2.11)

where Φk
p,unw is the unwrapped arc phase of PS1c p in the kth interferogram (Caro

Cuenca, 2012). azp and rgp denote the azimuth and range coordinates in the design

matrix, respectively. The parameters sk
az, sk

rg represent the slopes in azimuth and range
direction, and c is a constant all arcs are calculated w.r.t. a common reference PS. The
unknowns sk

az, sk
rg and c can be estimated by the Least squares estimation.

Atmospheric signal in the master and slave images limits the application of con-
ventional InSAR but can be estimated in PSI processing by window-based filter. We
assume that the phase due to the atmospheric delay is uncorrelated in time as long as
the minimum temporal baseline is larger than one day, but correlated in space. Hence,
we perform high pass filter (HP) in time, and low pass filter (LP) in space, for the un-
wrapped residual of every PSc. The unwrapped residual at position p in the kth inter-
ferogram includes non-linear displacement and unmodeled noise, which is denoted
as ek

p . Since the master atmospheric phase prevails in all interferograms, and it cannot
pass the temporal filtering, we first perform the temporal filtering on (Ferretti et al.,
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2000b)

ek
p
′ = ek

p − ēp , (2.12)

where ēp represents the master atmospheric phase which is the temporal mean phase
residual. Then we perform the spatial filtering, which can be written as, cf. Ferretti et al.
(2000b)

φ̂k
p,atmo =

[[
ek

p
′]

HP-time

]
LP-space

+ [
ēp

]
LP-space, (2.13)

where φ̂k
p,atmo is the estimated atmospheric phase at position p in the kth interfero-

gram. HP-time and LP-space represent the filtering operators: high pass filter in time
and low pass filter in space.

PS network densification The orbital ramp and atmospheric signal are estimated
and separated based on the aforementioned methods, for the PS1c’s network. A full
atmospheric phase screen (APS) is then interpolated and separated from all other PSc’s
(termed as second order PSc’s (PS2c’s)). An Ordinary Kriging method (Wackernagel,
1995) can be used to compute the APS, which is able to smoothly interpolate the atmo-
sphere phase for all PSc’s and drop the noise part by estimating the nugget in variogram
estimation (Caro Cuenca, 2012).

The PS2c’s intensify the density of the PS1c network (or the arcs) by connecting
other PSc’s (PS1c’s and PS2c’s) by means of a region growing approach, which is re-
ferred to as the PS network densification (Kampes, 2005). These newly built arcs are
first unwrapped in time and then used to determine the contribution of every phase
component (i.e. as in Eq. (2.2)). In order to guarantee the quality of results for this
network, we need to remove the specious PSc’s (which are noise but have been falsely
identified as the coherent points) in the network using spatial-temporal consistency
(STC) (Samiei-Esfahany et al., 2008).

Geocoding Geocoding is applied to convert the SAR image coordinates to a uni-
fied geodetic reference system for all PS, for instance WGS84, by using a set of Doppler,
range and ellipsoid equations (Schwäbisch and Geudtner, 1995). The geolocation error
caused by SAR system timing offsets in slant range and azimuth will be propagated to
the unified geodetic reference system. This error may result from (i) the geolocation
error of the reference PS point, as all PS heights are relative heights w.r.t. a certain ref-
erence PS point for Doris and DePSI processing, thereby we should consider the error
of the reference point; or (ii) the processing errors. For instance, every PS height can
be estimated based on a Digital Elevation Model (DEM) e.g. derived from the Shuttle
Radar Topography Mission (SRTM) (van Zyl, 2001), or GTOPO30 data (Miliaresis and
Argialas, 1999). Since the spatial resolutions of these DEM data may be lower than the
spatial resolution of SAR image, the height estimation is then biased, and the geoloca-
tion error for every PS is introduced.

WGS84 is the InSAR reference frame during the projection from the slant un-
wrapped phase to elevation, an error in the vertical direction (i.e. the PS height esti-
mation error) causes a horizontal deviation ehor[m] of approximately calculated as

ehor =
H

tan(θinc)
, (2.14)
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where θinc is the local incidence angle. The horizontal deviation is inversely propor-
tional to the local incidence angle. For instance, given TerraSAR-X data with a look
angle of 21.6◦, this horizontal deviation scales up to 2.5×H .

Moreover, inaccuracies in the orbital state vectors, radar system time errors, atmo-
spheric delay, solid Earth tides, tectonic drift, or improper interpolation degrade the
precision of geocoding. Scharroo and Visser (1998), and Doornbos and Scharroo (2004)
reported that the accuracy of along-track and radial components of ERS orbits are 4 cm
and 15 cm respectively, depending on the gravity model used during data processing.
For Envisat, the accuracy of the best orbit products provided by the DORIS (Doppler
Orbitography and Radiopositioning Integrated by Satellite) system, is estimated to be
3 cm in the radial component and 10 cm in 3D (Otten and Dow, 2004). For the GPS-
based orbits of ALOS, the deviations are between 2 to 15 cm in 3D (Nakamura et al.,
2007). Regarding TerraSAR-X, the orbital accuracy has reached to the 2 cm level (Yoon
et al., 2009; Eineder et al., 2011). Consequently, the effect of orbital errors on geocoding
needs to be taken into account in the condition of lacking of precise orbit data.

2.2.2. Limitations of PSI
PSI is a well-established technique that uses all available SAR images to estimate the
kinematic (deformation) time series for consistently coherent points (PS), in a wide
area. It allows us to semi-continuously monitor the kinematic behavior of individual
features, such as buildings and dams, with sub-centimeter accuracy. However, PSI still
has several limits because of the system setting of radar satellite (e.g. the satellite re-
peat time) and the dependency on some rather harsh assumptions needed for PSI pro-
cessing (e.g. kinematic time series are assumed as a linear function of time). Here we
address the four main limits of PSI.

Temporal sampling limit is the first limit of PSI. The capability of temporal sam-
pling is dependent on the capability of the satellite repeat time (Crosetto et al., 2010).
The sparse temporal sampling degrades the temporal ‘resolution’ and the quality of pa-
rameter estimators (e.g. kinematic parameter in Eq. (2.16)). An abrupt surface defor-
mation occurring in the time interval between two SAR acquisitions, is undetectable.
Moreover, suppose the kinematic behavior is a linear function of time with one param-
eter: the linear deformation rate. Since the true deformation cannot be retrieved un-
ambiguously when the deformation phase between two adjacent acquisitions is larger
than π, the deformation of λ/4 is the maximum value per repeat time interval T [days].
Therefore, the absolute maximum detectable deformation rate is related to the satellite
repeat time interval T [days] and radar wavelength λ, formed as (Kampes, 2005)

vmax = λ/4

T /365
, (2.15)

which implies that the PSI technique would be insensitive to measure the significant
kinematic behavior with a > vmax deformation rate.

Spatial sampling limit is the second limit of PSI. (i) It is in fact that the PSI tech-
nique is merely focused on the PS points. The density of the PS points is relatively
higher in urban areas, while it is much lower in rural areas where there are few high
reflectivity ground objects. (ii) In PSI processing, the identification of coherent points
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is required prior to the PS selection. When a spatial estimation window is used to cal-
culate the coherence, it is suboptimal to detect anomalous changes of a single scatterer
since the coherence value is treated as an indicator for all points within the spatial es-
timation window. When applying the temporal estimation window, a single scatterer
that changed would be removed from the coherent points selection due to the decrease
of its coherence value.

The third limit is related to the capability of the line-of-sight (LOS) measurements.
The observed deformation from a satellite is the projection of 3D deformation in the
LOS direction. With the lack of external information, the decomposition from the LOS
measurements to the 3D coordinates such as the North-East-Up coordinate system is
an ill-posed problem as there is no unique solution.

The fourth limit is related to the robustness against anomalies in the time series,
e.g., unwrapping errors or sudden displacements. (i) It is rather laborious to manually
check the kinematic time series of a tremendous amount of PS in order to find the
anomalous PS among them. (ii) As a new-acquired data is introduced into the existed
InSAR image stack, the parameter estimators can be readjusted by a batch processing.
However, such a batch processing strategy does not aim at the fast anomaly detection,
which is an essential goal for infrastructure monitoring.

Basically, these four limits can be overcome to some extent. The temporal and spa-
tial sampling can be improved by using high-resolution and short-wavelength SAR data
acquired by satellites having short repeat orbit cycles, such as TerraSAR-X and Cosmo-
SkyMed. The reliable 3D decomposition of the LOS measurements can be produced
when the multi-track SAR data covering a same area are available. The case studies
to show the improvement in the PSI results by using TerraSAR-X data compared with
Envisat data, and to show the reliable 3D decomposition using both ascending and de-
scending orbit data will be presented in chapter 4. The approach to detect the anomaly
based on hypothesis testing will be discussed in chapter 3. The theory of short arc and
its characteristics will be presented in the section 2.4.3.

So far the advantage and disadvantage of recent InSAR techniques and multi-epoch
InSAR processing procedure for the exploration of surface kinematic (deformation)
time series are revisited. The following sections review a generic Gauss-markov model
for multi-epoch InSAR batch data processing in the fundamentally mathematical view.

2.3. Functional model for multi-epoch processing
The interferometric phase observation of the kth interferogram of an InSAR stack can
be considered as the sum of seven terms (Hanssen, 2001), if we subdivide the noise
component of Eq. (2.2),

φk =φk
topo +φk

defo +φk
atmo +φk

orb +φk
scat −2πa +φk

noise, (2.16)

where the topographic phaseφk
topo is a function of the perpendicular baseline B k

⊥, radar

wavelength λ, incidence angle θk
inc, the slant range ρk between the satellite sensor and

a ground target, and the height H above a reference surface. The latter can be written
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as

φk
topo =− 4πB k

⊥
λρk sinθk

inc

H , (2.17)

let βk =− 4πB k
⊥

λρk sinθk
inc

be the height-to-phase conversion factor for the following part.

The component φk
defo denotes the phase change due to the deformation relative to

a postulated reference point in the direction of the radar line of sight. It can be modeled
for every point in terms of its kinematic behavior. The potential deformation models
will be discussed in section 3.1.

The third and fourth terms φk
atmo and φk

orb in Eq. (2.16) are the phase contribu-
tions due to the atmospheric delay and orbital error, respectively. The atmospheric
delay in meters (delay is often expressed in meters in this context) is referred to as S,
φk

atmo = − 4π
λ · S. The orbital error can be well calculated by Eq. (2.11) within a small

area (≤ 30 km). The fifth term φk
scat is the phase change due to a change in the ground

scatterer characteristics. a indicates the integer number of phase ambiguity. The last
termφk

noise represents the unmodeled noise caused by e.g. thermal noise, quantization
noise and phase noise due to coregistration errors. In the case of undulating terrain,
the dominant part of the topographic phase φtopo can be removed either using an ex-
ternal DEM derived from e.g. SRTM or GTOPO30, or using the estimated topographic
phase map by two SAR images with a significant perpendicular baseline, assuming that
no deformation occurred during their time interval. After removing the main part of
topography, Eq. (2.16) changes to,

φk =βk ·∆H +φk
defo −

4π

λ
·S +φk

orb +φk
scat −2πa +φk

noise, (2.18)

where ∆H is a residual height due to the inaccuracy of the reference DEM. In most
cases of both conventional InSAR and PSI, the unmodeled term φk

scat is considered as
rms of the deformation (Zebker and Villasenor, 1992) and joins into the noise part in
Eq. (2.18). The orbital error is usually accounted for in the noise. Then the remaining
parameters of interest, ∆H , v , S and a are estimated.

It is noted that φk in Eqs. (2.16) and (2.18) are the relative phase observation per
arc (w.r.t. the phase of the reference point). To simplify the functional model as in Eq.
(2.18), it can be split into real- and integer- unknown parameter vectors b = [∆H v S]T

and a, respectively, expressed as

E {φ}m×1 =
[

A1 −2π
]

m×n︸ ︷︷ ︸
A

[
b
a

]
n×1︸ ︷︷ ︸

X

, (2.19)

where m is the number of observations and n is the number of unknown parameters.
The stochastic characteristics of the observables φ will be presented in section 2.4.
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2.4. Stochastic characteristics for SAR data
2.4.1. Characteristics of scatterers within a SAR resolution element
A response element (also refers to a pixel) on the ground in a SAR image to the arriv-
ing radar pulse, comprises numerous small ground elements or scatterers (Krul, 1982).
Therefore, it is impossible to determine the response of every individual scatterer in a
response element. In practice, we measure the response of a response element in the
form of a sum of all scatterers within the response element, which is expressed as a
complex number

z =
n∑

i=1
%

i
= |z|e jψ, (2.20)

where n is the number of small scatterers, %
i

represents the observed complex num-

ber of the i th scatterer, |z| is its amplitude, ψ is its phase and j is the imaginary unit
( j = p−1). Note that the notation of a SAR phase: ψ is different from the interfero-
metric phase φ, such as in Eq. (2.16). A SAR resolution element could be dominated by
distributed scatterers that meet with Gaussian (or Rayleigh) scattering distribution, or
point(-wise) scatterer that overpowers the contribution of the others in the resolution
element (Hanssen, 2001; Bamler and Hartl, 1998).

The distributed scatterers are those that include many random small scatterers
within a resolution cell. It is essential that no single scatterer is dominant compared to
the others in a resolution cell, and it is assumed there are many mutually uncorrelated
scatterers within the element. This assumption holds mainly for natural scatterers such
as soil surfaces and agricultural fields. The phase of each individual distributed scat-
terer φ is uniformly distributed between −π and π. Its probability density function is
shown as

pdf(ψ) =
{ 1

2π , −π≤ψ<π
0, otherwise.

(2.21)

A point scatterer is considered to be a deterministic signal contaminated by clutter
which includes the random circular Gaussian noise of the distributed scatterers.

We can decompose the complex value z = |z|e jψ into a real, Re{z}, and an imagi-
nary part, Im{z}, as in

z = (|z|cosψ+er )︸ ︷︷ ︸
Re{z}

+ j (|z|sinψ+ei )︸ ︷︷ ︸
Im{z}

. (2.22)

It represents a total return signal from a SAR resolution element. The decorrelation and
thermal noise introduce the zero-mean Gaussian variables er and ei into the real and
imaginary parts.

In terms of the Circular Gaussian statistics, the generic probability density function
(PDF) of a zero-mean, complex circular Gaussian variable z (or the joint PDF of its real
and imaginary components) is described as (Dainty, 1975; Davenport and Root, 1987)

pdf(z) = pdf(Re{z} , Im{z}) = 1

2πσ2 e
(Re{z})2+(Im{z})2

2σ2 , (2.23)

where
σ2 =σ2

z =σ2
Re{z} =σ2

Im{z}. (2.24)
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The joint PDF for the amplitude a (a = |z|) and phase ψ is derived as (Hanssen, 2001)

pdf(a,ψ) =
{

a
2πσ2 e−

a
2σ2 , a ≥ 0 and −π≤ψ<π

0, otherwise.
(2.25)

Since the phase delay due to the propagation of the signal is independent of the scat-
tering amplitude, therefore a and ψ are supposed uncorrelated which suggests that
pdf(a,ψ) = pdf(a) ·pdf(ψ). The marginal PDF of a is straightforwardly found by inte-
grating ψ out in the range [−π, π) it is shown as

pdf(a) =
{

a
σ2 e−

a
2σ2 , a ≥ 0

0, otherwise.
(2.26)

The amplitude of scatterers is characterized by the Rayleigh distribution (Papoulis,
1968) based on Eq. (2.26).

2.4.2. PDF of an interferometric resolution element
The complex interferogram Z is produced by the complex multiplication of two SAR
SLC images

Z = z1z∗
2 , (2.27)

where z1 = |z1|e jψ1 , z2 = |z2|e jψ2 and the asterisk ∗ means the complex conjugate. The
amplitude and phase of Z are defined as |Z | = |z1 · z2

∗| and φ = angle
{

z1 · z2
∗}

. Even
though the PDF of the phase follows a uniform distribution as in Eq. (2.21), the PDF
of the interferometric phase which is the complex product of two circular Gaussian
signals is not necessarily uniform, when two signals have some degree of correlation.
Suppose there are two circular Gaussian signals z1 and z2 from the two SAR images
acquired at different times t1 and t2, and having same zero expectation E {z1} = E {z2} =
0 and an identical variance E

{
z2

1

}= E
{

z2
2

}
, the joint PDF of these two is formed as (Just

and Bamler, 1994; Bamler and Hartl, 1998)

pdf{z1, z2} = 1

π2 |Cz |
exp

{
−[

z1
∗ z2

∗ ]
C−1

z

[
z1

z2

]}
, (2.28)

here the complex covariance matrix is denoted as Cz and built as

Cz = E

{[
z1

z2

][
z1

∗ z2
∗ ]}=

 E
{|z1|2

}
γ
√

E
{|z1|2

}
E

{|z2|2
}

γ∗
√

E
{|z1|2

}
E

{|z2|2
}

E
{|z2|2

}
 ,

(2.29)
where the complex coherence γ is computed by

γ= E
{

z1 · z2
∗}√

E
{|z1|2

}
E

{|z2|2
} , (0 ≤ |γ| ≤ 1). (2.30)
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Just and Bamler (1994), and Tough et al. (1995) derived the PDF of phase in a single-
look case,

pdf(φ) =1−|γ|2
2π

1

1−|γ|2cos2
(
φ−φ0

)
×

1+ |γ|cos
(
φ−φ0

)
arccos

[−|γ|cos
(
φ−φ0

)]√
[1−|γ|2cos2

(
φ−φ0

)
]

 ,

(2.31)

where φ0 is the maximum likelihood estimator (or the expectation) of the interfero-
metric phase φ (Rodriguez and Martin, 1992).

Fig. 2.5 depicts the PDF distributions of the interferometric phase related to corre-
sponding coherence values in a single-look case, based on Eq. (2.31). All of these are
periodic with 2π. It shows that the PDF distribution reduces to a uniform distribution
on [−π, π) for totally decorrelated signals (|γ| = 0, e.g. water area) and approaches a
Dirac delta function δ(φ) for completely correlated signals (|γ| = 1).

The phase variance can be obtained by (Box et al., 1994)

σ2
φ =

∫ +π

−π
[φ−E

{
φ

}
]2pdf(φ)dφ. (2.32)

In the special case that a point scatterer whose |γ| is rather close to 1, its phase variance
is found by (Bendat and Piersol, 1986; Rodriguez and Martin, 1992; Just and Bamler,
1994)

σ2
φ = 1−γ2

2γ2L
[rad2], (2.33)

where L is the number of multi-looks.
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2.4.3. Characteristics of the arc phase
The interferometric phase is defined as the phase difference between two SAR images.
The noise in each SAR image is propagated into the interferometric phase in the form
of atmospheric inhomogeneities, orbital error, and temporal and spatial decorrelation.
Aiming to reduce the effect of unavoidable noise, the arc phase is the double difference
phase between two positions in an interferometric image. Whenever the atmosphere
difference between the two positions whose distance is e.g. less than ≤ 1 km, the arc
phase is mainly composed of the phase difference due to the height difference and
relative deformation difference regardless of the impact of atmospheric delay (Ferretti
et al., 2000c). In this case, the arc phase is specified as ‘short arc phase’. This section is
concerned on the short arc phase.

Functional model for short arc phase
The arc phase between pixel positions p and q from the kth interferogram can be writ-
ten as

φk
p,q =W

{
φk

p −φk
q

}
= angle

{
Z k

p ·Z k∗
q

}
, (2.34)

where W {.} is the wrapping operator, φk
p and φk

q are the wrapped phases of p and q.

Z k
p and Z k

q are the interferometric complex values for pixels p and q in interferogram
k. When the distance between p and q is rather short so that their atmospheric phase
difference is negligible, the corresponding unwrapped arc phase (that is the short arc
phase) can hence be decomposed into

φk,unw
p,q =βk ·∆H k

p,q − 4π

λ
·Dk

p,q −2πa +φk
noise, (2.35)

where ∆H k
p,q and Dk

p,q represent the relative height difference and relative displace-

ment of p w.r.t. q . φk
noise is unmodeled noise, a is the integer cycle ambiguity of arc

phase, a ∈ Z (Z is the set of integers). In case of monitoring the deformation of cer-
tain buildings and civil infrastructure, the change of the short arc phase for individual
structure in one satellite repeat cycle, is assumed to be less than π. It implies that the
phase is free from phase ambiguities (that is a = 0), and the relative movement is de-
tectable in wrapped domain. It is noted that all points may move in concert, but this is
not of practical interest (Chang and Hanssen, 2012).

Stochastic model for the arc phase
Theoretically, the (co)variance matrix for the arc phase is required to be derived from its
PDF. According to the functional model of the arc phase (see Eq. (2.34)), the joint PDF of
two interferometric phases needs to be obtained first. For every Single Look Complex
(SLC) SAR image, the real and imaginary parts of a complex number are obtained first.
The interferometric phase for a certain pixel acquired at t1 and t2 can be calculated by

φ(t1, t2) =W {ψ(t1)−ψ(t2)}, ψ ∈ [−π,+π). (2.36)

It is complex to directly derive the PDF of arc phase from the observed interferometric
phase which is bounded in 2π module. For simplicity, the interferometric phase is
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Figure 2.6: PDF of the geo-part of the phase for the ERS-1/2 satellite with 5.66 cm wavelength and 790 km
altitude, Envisat satellite with 5.62 cm wavelength and 800 km altitude, Radarsat-2 satellite with 5.55 cm
wavelength and 798 km high and ALOS (PALSAR) satellite with 23.62 cm wavelength and 700 km altitude.

supposed to be unwrapped, and the unwrapped phase at the acquisition time t for
position p is denoted as ψ(t , p). Hence a random vector is defined as

u = [ψ(t1, p),ψ(t1, q),ψ(t2, p),ψ(t2, q)]T , (2.37)

which is used to attempt to derive its joint PDF fu(u).
The individual phase of a pixel in the SAR image at time t for a certain pixel is given

by ψ(t ) =ψ
geo

(t )+ψ
scat

(t ). Here the geo-part of the phase ψ
geo

(t ) is the phase related

to the distance between the satellite and the surface target. According to the geometry
of a single-pass satellite, the slant range between sensor and surface object is denoted
as ρ while the wavelength is λ. The absolute geo-part of the phase ψ

geo
(t ) at time t is

defined as

ψ
geo

(t ) =−2 ·2π

λ
ρ. (2.38)

Fig. 2.6 illustrates the PDF distribution of geo-part of the phase for ERS-1/2, Envisat,
Radarsat-2 and ALOS satellites. It demonstrates that the PDF of ψ

geo
(t ) is rather wide

which leads to a large-value variance.
The second component for SLC phase, ψ

scat
(t ) is the random observable following

uniform distribution and its PDF is reformed from Eq. (2.21)

pdf(ψscat(t )) =
{ 1

2π , −π≤ψscat(t ) <π
0, otherwise.

(2.39)

Let d = [1,−1,−1,1] be the differencing operator. The double difference phase (or arc
phase) is written as uDD = d ·u. The dispersion D

{
u

}
can be described by a symmetric
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positive-definite covariance matrix as

D
{
u

}=Quu =


σ2
ψ(t1,p) σψ(t1,p),ψ(t1,q) σψ(t1,p),ψ(t2,p) σψ(t1,p),ψ(t2,q)

0 σ2
ψ(t1,q) σψ(t2,p),ψ(t1,q) σψ(t1,q),ψ(t2,q)

SYM 0 σ2
ψ(t2,p) σψ(t2,p),ψ(t2,q)

0 0 0 σ2
ψ(t2,q)

 , (2.40)

where σ2
ψ(t1,p), σ

2
ψ(t2,p), σ

2
ψ(t1,q) and σ2

ψ(t2,q) are the total phase variances for p and q at
t1 and t2, respectively. σψ(t1,p),ψ(t2,q) and σψ(t2,p),ψ(t1,q) are supposed to be zero under
the assumption that the signals echoed from p and q at different times are uncorre-
lated. σψ(t1,p),ψ(t2,p) and σψ(t1,q),ψ(t2,q) are the temporally-induced covariances for the
interferometric phase p and q respectively, which are proportional to the coherence.
They are simplified to σφ(t1,t2,p) and σφ(t1,t2,q) for the following equation Eq. (2.41).
σψ(t1,p),ψ(t1,q) and σψ(t2,p),ψ(t2,q) are the spatial covariances between p and q at the
same time t1 or t2, reformulated as σs(t1,p,q) and σs(t2,p,q), which are correlated via the
atmospheric and orbital errors. σs(t1,p,q) and σs(t2,p,q) decay as the distance increases
(Hanssen, 2004). It is noted that if there is no a-priori information about the weather
condition, we suggest σs(t1,p,q) =σs(t2,p,q). Then Eq. (2.40) can be rewritten as

D
{
u

}=Quu =


σ2
ψ(t1,p) σs(t1,p,q) σφ(t1,t2,p) 0

0 σ2
ψ(t1,q) 0 σφ(t1,t2,q)

SYM 0 σ2
ψ(t2,p) σs(t2,p,q)

0 0 0 σ2
ψ(t2,q)

 . (2.41)

In line with the propagation law of variances and covariances, the arc phase variance
of uDD can be derived as

σ2
uDD

= d ·Quu ·d T

=σ2
ψ(t1,p) +σ2

ψ(t1,q) +σ2
ψ(t2,p) +σ2

ψ(t2,q)

−2(σs(t1,p,q) +σφ(t1,t2,p) +σφ(t1,t2,q) +σs(t2,p,q)).

(2.42)

Due to the motion of small scatterers within a resolution cell, the phase variance,
i.e. σφ(t1,t2,p) and σφ(t1,t2,q), exponentially decays with time and approaches to the lin-
ear decrease with time for point(-wise) scatterers. Rocca (2007) assumed that this mo-
tion can be modeled as Brownian motion. Even in the case that there are many sub-
scatterers (distributed scatterers) within one resolution cell so that the observed reflec-
tivity is their summation, their PDF is characterized by the same exponential decay
with time, provided that each element is affected by independent Brownian motion.

Overall, all the elements in (co)variance matrix contain all errors and are likely to
be large numbers, but the arc phase variance σ2

uDD
decreases significantly as long as all

the elements in the (co)variance have large numbers. In this respect, the precision of
estimations improves. In general, there is no a-priori PDF knowledge of u under the
assumption that the observable is one representation out of the random variables, and
the initial (co)variance matrix should be defined at the very beginning by the empirical
methods based on the scatterers’ signatures.
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2.5. Summary
In this chapter we reviewed the traditional InSAR and PSI techniques. We discussed
the limitations of InSAR that mainly result from decorrelation and atmospheric in-
homogeneities. To overcome these limitations, we resort to the PSI technique which
can reduce the influences of temporal and spatial decorrelation, and remove the at-
mospheric delay signal. The PSI technique only focuses on monitoring the kinematic
behavior of the stable point-like scatterers (PS). We introduced the generic PSI process-
ing procedure, and described every component (e.g. height and kinematic time series)
that contributes to the PSI functional model. Particularly, for kinematic time series, a
linear deformation model as a function of time is normally used and has been success-
fully applied in many studies (Hooper et al., 2004; van Leijen and Hanssen, 2007; Caro
Cuenca, 2012; Chang and Hanssen, 2014). But this assumption cannot be applied to
all PS points as some of them may behave nonlinearly in time. Chapter 3 will discuss
how to build and decide on the optimal functional model, and evaluate the associ-
ated stochastic model. We described the stochastic characteristics of a SAR resolution
element, an interferometric resolution element, and an arc phase. The mathematical
(functional and stochastic) model will be used in our InSAR applications, as in chapters
4 and 5.





3
Kinematic Time Series Modeling

Perhaps the most relevant component of the InSAR functional model (see chapter 2) is
the kinematic component, often referred to as the deformation. The parameterization
of the kinematic behavior of InSAR measurement points is the main subject of this
chapter. It is standard practice to parameterize the kinematic behavior, in first order, as
a linear function of time. This so-called steady-state approach leads to the well-known
PSI point maps representing relative deformation velocities. However, it is unlikely that
all objects behave in this purely linear way. Ideally, the kinematic parameterization
should be optimized for each individual measurement point in the area of interest.
We introduce an easily expandable canonical library of kinematic models in section
3.1 and test these against the default linear model. In order to find the most probable
kinematic model and assign likelihoods to the results for each point, a probabilistic
method based on multiple hypotheses testing and the B-method of testing is proposed,
see sections 3.2 – 3.4. The quality of the results and the setting for the test parameters
are discussed in section 3.5 and 3.6, followed by the test on a simulated and real data
in section 3.7. The method is applied here in a ‘post-processing’ mode, i.e., it is applied
on the final results of PSI processing.

3.1. Kinematic model components
To build the deformation model for InSAR measurements is rather different from the
traditional procedure for standard geodetic networks. In the processing of geodetic
networks, such as triangulation networks, the mathematical model can be a-priori de-
signed and surveyors can check whether the observations fit to the model (Baarda,
1968, 1976, 1977). If they do not fit, e.g. due to measurement errors, parts of the net-
work can be re-surveyed until the observations fit the predefined model. Besides, for
a standard geodetic network with a known mathematical model, all quality metrics
are predefined as well, which facilitates the potential rejection of the null hypothe-
sis (Baarda, 1979). For the deformation observations yielded from InSAR processing,
where one actually still needs to establish the appropriate mathematical model and
the observations are fixed, re-surveying (‘going back’ in time) is not possible any more
(Hanssen and Kampes, 2000; Hanssen, 2001). Therefore, the mathematical model is
largely dependent on the observations, thus not predictable, and small changes in the
observations may lead to significantly different parameter estimates. In first order ap-
proach the observed kinematic, or deformation, phase is usually linked linearly to an
unknown constant velocity, as in

E {φk
defo} =−4π

λ
· t k · v, (3.1)
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where t k is the temporal baseline for the kth epoch w.r.t. the master acquisition and
v is the deformation rate. When the deformation includes a non-linear component,
φk

defo can be separated into two terms (Ferretti et al., 2000b),

E {φk
defo} =−4π

λ
· (t k · v +µk ), (3.2)

where µk represents the residual (non-linear) motion. The term µk can be formulated
using various functions related to e.g. temperature differences, seasonal changes or
abrupt movements due to, e.g., instantaneous events such as earthquakes or construc-
tion failures. Moreover, even though it is often conveniently assumed that phase un-
wrapping is flawless, in reality there are many InSAR points that are still affected by
unwrapping errors, which influence the estimated kinematic parameters.

In the following we establish a so-called library of canonical functions. These
canonical functions serve as basic building-blocks that can be used to build any type of
kinematic behavior. As any library, it is easily expandable with new functions, should
a certain case-study require this. We prefer physically realistic canonical functions
over purely mathematical constructs, such as polynomial functions, which may fit the
observed data well, but do not improve insight in the physical behavior of measure-
ment points on Earth. Subsequently, we introduce the canonical functions for the
temperature-dependent model, the piecewise linear (breakpoint) model, the exponen-
tial model, the (Heaviside) step-function, and the (Kronecker-delta) outlier model.

3.1.1. Temperature-dependent model
A change in temperature may result in a change in volume for buildings and infras-
tructure. Volume change, known as thermal dilation, causes strain and subsequently
deformation. Such deformation, driven by a change in temperature, has been reported
in C-band and X-band PSI studies, e.g. by Ferretti et al. (2005), Adam et al. (2008) and
Monserrat et al. (2011). Thermal dilation effects are expected to become significant
for structures longer than some tens of meters, depending on the materials and the
temperature differences (Tipler and Mosca, 2007).

Temperature-correlated effects can be observed for some soil types as well. Warmer
periods in summer may lead to lower ground water tables due to increased evapora-
tion, while colder periods in winter cause rising ground water tables (Morishita and
Hanssen, 2013, 2015).

It is possible to parameterize these effects in two ways. If temperature records
are available for the satellite acquisition times, an (equivalent) thermal expansion co-
efficient can be estimated, and one parameter would suffice in the model. Without
temperature records, one has to rely on sinusoidal functions to describe the behavior,
where two or three parameters are needed.

The thermal dilation,∆LT , of an object or ground target is proportional to the tem-
perature differences, as in,

µk (η) =∆LT =$ ·LLOS ·∆T k =∆T k ·η, (3.3)

where $ is the linear expansion coefficient of the material [K −1], and ∆T k represents
the temperature difference between the kth and the reference (or master) acquisition.
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Figure 3.1: Thermal expansion sketch for horizontal expansion/contraction (e.g. an elongated building) (a)
and vertical expansion/contraction (e.g. a high-rise building) (b)

A change in temperature ∆T k leads to a dilation of ∆LT for an object of length LLOS.
The thermal expansion coefficient of the object η = $ ·LLOS [m ·K ] where LLOS is the
projection of the actual length L0 in LOS direction. Fig. 3.1 depicts the horizontal and
vertical thermal expansion for an elongated and a high-rise building. Suppose a ther-
mal expansion coefficient $ = 1.2 · 10−5 for steel-reinforced concrete and an annual
temperature range of 25 K, a 50 m high building shows a range of about 14 mm of os-
cillation when observed from an incidence angle of 25 degrees.

When temperature records are not available, a periodic (sinusoidal) function can
be considered as a sub-optimal substitute. Though sinusoidal functions are inherently
non-linear, they can be re-written in a linear way as (Kampes, 2005; van Leijen and
Hanssen, 2008), (cf. appendix B)

µk (s,c) =−4π

λ
· (sin(2πt ) · s + (cos(2πt )−1) · c), (3.4)

where the coefficients s and c represent the seasonal periodic deformation in LOS di-
rection, with amplitude A =

p
s2 + c2, and time offset w.r.t. the master image time

t0 =−sgn(c) ·arccos(s/A)/2π. Note that the period of the sinusoidal function is empir-
ically assumed to be one year (to have a complete seasonal cycle). If this assumption
cannot be made, the period should be introduced as a third unknown parameter. In
contrast to the temperature-dependent model, for which the time lag between a tem-
perature change and the associated deformation of the construction can be short, the
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Figure 3.2: Sketch for (a) the linear deformation model, (b) the one breakpoint model, and (c) the double
breakpoint model

sinusoidal model would suffice for the deformation caused by the seasonal temper-
ature variation and not the day-to-day variability, which will have a much slower re-
sponse (or a larger time lag).

3.1.2. Piecewise linear (breakpoint) model
For some cases, e.g. when ground motion is directly coupled to production volumes of
water or hydrocarbons, the kinematic behavior should be modeled as a concatenation
of several different linear functions for specific time spans (Ketelaar, 2009). Every linear
function has a consistent deformation rate in its time span, as in

µk (vk ) = t k · vk , (3.5)

where vk is the deformation velocity specially for the time t k . If vk ’s are all same, Eq.
(3.5) equals to Eq. (3.1), see Fig. 3.2a.

In practice, the single and double break-point models are most common. For in-
stance, one breakpoint can be fixed at the moment of the start of oil or gas extraction,
provided that the displacement before and after that moment are both linear. The sin-
gle break-point model, as shown in Fig. 3.2b, can be expressed as

µi (v1) = t i · v1, i ∈ [1, j ]
µi (v2) = t i · v2, i ∈ [ j +1, K ],

(3.6)

where v1 and v2 are the unknown parameters at the time ranges [1, j ] and [ j +1, K ],
respectively. The temporal location of the breakpoint j can be based on a priori infor-
mation, or can be found by sequentially evaluating all possible positions.
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When the deformation profile can be characterized by three concatenating defor-
mation time spans, the double breakpoint model can be used, shown in Fig. 3.2c, which
is expressed as

µi (v1) = t i · v1, i ∈ [1, j ]
µi (v2) = t i · v2, i ∈ [ j +1, k]
µi (v3) = t i · v3, i ∈ [k +1, K ],

(3.7)

where v1, v2 and v3 are the unknown parameters at the time ranges [1, j ], [ j +1, k] and
[k+1, K ]. The temporal locations of the breakpoints j and k are either given, or need to
be estimated from the data. For instance, in the case of deformation monitoring over a
volcano, the temporal behavior for pre-eruption, co-eruption and post-eruption may
be varying over every particular phase of the volcanic eruption. The deformation rates
for pre-eruption and post-eruption are likely to be smaller than the co-eruptive phase,
e.g., Lanari et al. (2010). Based on a priori knowledge about e.g. the date of eruption of
a volcano, the three stages can be determined.

3.1.3. Exponential model
For postseismic deformation (relaxation) (Savage et al., 2003), landslides (Montgomery
et al., 1998), or soil settlement or compaction (Verruijt and Van Baars, 2007), an expo-
nential kinematic function may be the optimal parameterization,

µk (κ,β) = (1−exp(− t k

β
)) ·κ, (3.8)

whereκ scales the function, and the sign determines whether the function is increasing

or decreasing. The characteristic time β in temporal factor exp(− t k

β ) is associated with
the decreasing relaxation in time. Fig. 3.3 shows the exponential function graph when
κ = [−4, −2, +2, +4] and β = [−3, −2, +2, +3]. When κ and β are both positive or
negative, the exponential function has an increasing trend.

The exponential function is non-linear, thereby this function needs to be linearized
by a Taylor expansion (Goodwillie, 2003) in order to estimate the parameters (Teunis-
sen, 1989). Such nonlinear least squares estimation is prone to a biased estimation,
that is E

{
x̂
} 6= x, when the likelihood of the sum of second- and higher-order terms of

Taylor expansion in the nonlinear model is not negligible. Therefore, in some cases,
the piecewise linear model can be considered as an alternative approach.

3.1.4. Step model
Under the assumption that the deformation rate is constant and there are only one or
more jumps occurring due to some instantaneous events, the (Heaviside) step func-
tion is introduced. This is a discontinuous function whose value is zero for negative
arguments and one for positive arguments, as in (Weisstein, 2008)

H (t − tk−1) = {
0, t < tk

1, t ≥ tk .
(3.9)

Since H (t−tk−1) can only be either 0 or 1, the Heaviside step function are more or less
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Figure 3.3: Exponential function graph demonstrating the influence of the parameters κ andβ in the canoni-
cal exponential function, cf. Eq. (3.8), for κ= [−4, −2, +2, +4], β= [−3, −2, +2, +3] and t is an arbitrary time
unit ranging between −5 and 5. As a rule-of-thumb, when κ and β have the same sign, the function is in-
creasing, otherwise decreasing. When both are negative, there is acceleration, while when both are positive,
there is deceleration.

considered as scales, the offset needs to be defined for a deformation model, then the
Heaviside step model for InSAR is built as

µk (∆k , tk ) =∆kH (tk −τk ), (3.10)

where Heaviside step function H (tk − τk ) is centered at step knot τk , The offset ∆k

could occur between [tk−1, tk ), while τk is initialized to be zero. In Fig. 3.4, we show
an example for the step function when the offset ∆k = −2 mm occurs at tk−1. When
there are more jumps, at several epochs, the deformation is modeled as a summation
of Heaviside step functions, shown as∑

k∈I∆

∆k (x)H (t −τk (x)) =∆1(x)H (t −τ1(x))+ . . .+∆m(x)H (t −τm(x)), (3.11)

where I∆ denotes a set of indices of step knots, m is the number of acquisitions. Note
that it is impossible to have a step function at every epoch, as this would yield an under-
determined model of observation equations.
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Figure 3.4: Step function for
an offset ∆k = −2 mm at time
tk−1

3.1.5. Outlier model
When a single anomalous change/jump is observed in the time series, the Kronecker
delta function (Kaplan, 1952) can be used in the mathematical model, shown as

µk (Dk ) = Dk ·δkl, (3.12)

where the Kronecker delta δkl =
{

1, k = l ∈ [1, m]
0, k 6= l

. Dk represents the offset at the

kth acquisition and l represents the time of the offset happens. Note that apart from
real ‘instantaneous’ offsets due to actual physical events, the outlier model will also
detect ambiguity errors of an integer amount of phase cycles.

3.1.6. Library of canonical deformation models
Until now, a set of physically realistic models for the non-linear part in Eq. (3.2) has
been presented as well as the linear model in Eq. (3.1). In InSAR data processing, the
deformation (kinematic) model for every point at position x = x(x, y) can be regarded
as unique and uncorrelated to other points, even though there are also many defor-
mation phenomena that are strongly correlated in space. We consider these models as
canonical functions that fill a library, which can be queried for every point at position
x = x(x, y)

M1(v(x)) = t · v(x), O(m/2)
M2(η(x)) =∆T ·η(x), O(1)
M3(s(x),c(x)) = sin(2πt )s(x)+ (cos(2πt )−1)c(x), O(1)
M4(κ(x),β(x)) = (1−exp(− t

β(x) )) ·κ(x), O(1)

M5(Di (x)) = Di (x)δi j , i , j ∈ [1, m], O(m)
M6(∆i (x)) =∆i (x)H (t −τi (x)), i ∈ [1, m −1], O(m),

(3.13)

where m is the number of observations (the number of SAR images minus one), and
O(.) denotes the order of magnitude. Here the library holds six canonical functions,
but this number can be easily extended when other information on the processes is
available, or when a specific kinematic signature is searched for. The piece-wise lin-
ear model is considered to be a special case for the linear model (M1). Regarding the
temperature-dependent component, one could either use the seasonal-related M3 (see
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Figure 3.5: Schematic view for evaluating step functions at different epochs. The numbers 1 – 6 indicate
the deformation at each epoch. The step knot searching starts from the second acquisition time to the final
acquisition time sequentially, marked in different line styles. Every possible step knot location is considered
in the testing.

appendix B for its definition) or temperature-related M2. The library is independent of
a specific data set. The most probable deformation model can then be constructed
using a combination of the canonical functions. Then the total amount of possible
combinations can be easily in the order of hundreds. To determine the most probable
model, multiple hypotheses testing will be used. We first set a null hypothesis H0 and
define all possible alternative hypotheses H j ’s as

H0 : M1

H1 : M1 +M2
...

...
Hm+3 : M2 +M4 +M5 +M6 + . . .+Mm+3
...

... .

(3.14)

Note that for the Kronecker delta function M5 and Heaviside step function M6, there
could be more than one occurrence in the time series. Theoretically, there could be
many. However, with only m observations, it is not possible to test for more than m
unknown parameters, practically, there should still be redundancy. For this reason, we
only test for one or maximally two Kronecker delta or Heaviside step functions in every
time series. To solve the offset Dk and ∆i , we use an epoch-by-epoch progressive
search method. Fig. 3.5 illustrates the search method for one step knot. The step knot
is sequentially tested for each epoch except the first acquired time in order to settle the
offset’s location. This search method works for Kronecker delta model as well.
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3.2. Multiple hypotheses testing
Without loss of generality, the mathematical expressions for H0 and all H j ’s, ∀ j are
expressed as linear systems of observation equations

H0 : E {y}
m×1

= A
m×n

x
n×1

; D{y} = Qyy
m×m

=σ2Ryy

H j : E {y}
m×1

= A
m×n

x
n×1

+ C j
m×q

∇ j
q×1

, ∇ j
q×1

6= 0; D{y} = Qyy
m×m

=σ2Ryy,
(3.15)

where A is the design matrix, m is the number of observations y , and x is the un-
known vector of parameters. A certain alternative hypothesis is defined by a specifi-
cation matrix C j and an additional new vector of unknown parameters ∇ j of length
q . The observation equations for H0 and H j can be expressed as H0 : y = Ax + e0,
and H j : y = Ax +C j∇ j + e j , respectively. Here e0 and e j represent the residuals be-
tween the default/alternative model and the observations. The variance of unit weight
and the cofactor matrix of the (co)variance matrix Qyy are referred to as σ2 and Ryy,
respectively. As j > 1 (there may be several, or hundreds, of alternative hypotheses), it
is not a binary decision problem (one alternative Ha against one null hypothesis H0),
see appendix A.1, where the rejection of H0 would directly lead to sustaining Ha at a
requested level of significance. As each point may behave in many different ways, re-
quiring a huge amount of alternative hypotheses, the criteria to decide whether to sus-
tain a particular alternative hypothesis will vary for different problems. Consequently,
the most probable model can only be found if the appropriate alternative hypothesis is
proposed and tested. In other words, if the most probable alternative hypothesis is not
part of the test procedure, it cannot be found. Although this statement may sound triv-
ial, it stresses the fact that one should ensure that the functions describing the behavior
are included in the canonical library, see section 3.1.6.

In multiple hypotheses testing, the test for every alternative hypothesis follows a
test statistic T q with a Chi-squared distribution χ2(q,λ). Here q is the degree of free-
dom or dimension, which is determined by the number of additional parameters, and
λ indicates the level of noncentrality. There may be more than one test statistic that
lead to the rejection of H0 but the most probable model eventually needs to be deter-
mined in line with a uniform test criterion.

The test statistics of alternative hypotheses are defined by their dimensions q . Two
cases can be distinguished in terms of q : the case of uniform dimension, and the case
of nonuniform dimension.

3.2.1. Case 1: Uniform dimension
When all alternative hypotheses have the same dimension, qi = q j , i , j ∈ [1, m −n], all

their test statistics T j
q j

’s have a χ2-distribution with identical q but different noncen-
trality parameters λ as in

H0 : T 0 ∼χ2(q,0); H j : T j
q ∼χ2(q,λ j ),∀ j , (3.16)
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where λ j = ∇T
j C T

j Q−1
yy Qê0 ê0Q−1

yy C j∇ j and Qê0 ê0 = Qyy − A(AT Q−1
yy A)−1 AT . Here T j

q can

be generally expressed as (Teunissen et al., 2005)

T j
q = êT

0 Q−1
yy ê0 − êT

j Q−1
yy ê j

= êT
0 Q−1

yy C j (C T
j Q−1

yy Qê0 ê0Q−1
yy C j )−1C T

j Q−1
yy︸ ︷︷ ︸

L j

ê0, (3.17)

where ê0 is the residual between the functional model and the observations un-
der the null hypothesis, which is equal to (Im − A(AT Q−1

yy A)−1 AT Q−1
yy )y = P⊥

A0
y .

Note that Im is the m × m identity matrix and the matrices P⊥
A0

= Im − P A0 and

P A0 = A(AT Q−1
yy A)−1 AT Q−1

yy , are both orthogonal projectors. We indicate the term

Q−1
yy C j (C T

j Q−1
yy Qê0 ê0Q−1

yy C j )−1C T
j Q−1

yy by the m ×m symmetric matrix L j . This matrix

is special, since it needs to be computed only once for every alternative hypothesis,
but then can be used from memory when evaluating every single point. The value for

the test statistic T j
q is always non-negative, since êT

0 Q−1
yy ê0 is larger than (or equal to)

êT
j Q−1

yy ê j . (When more additional parameters are added in Eq. (3.15), the model will al-
ways fit better to the data, and hence the sum of the squared residues will be smaller).

If T j
q is greater than the predefined critical value χ2

α(q,0) (given the level of significance
α), H0 will be rejected. A special case of Eq. (3.17) occurs when q = m −n. In that case,
ê j = 0, since there is no redundancy in the system, and the right hand side of Eq. (3.17)
reduces to

T j
q=m-n = êT

0 Q−1
yy ê0, (3.18)

which is a general test for the correctness of the null hypothesis, termed the Over-
all Model Test (also mentioned in appendix A.2). In literature, the test statistic

T j
q=m-n/(m −n) is sometimes used instead of T j

q=m-n and denoted as the σ̂2-test statis-
tic as in

σ̂2 = T j
q=m-n

m −n
=

êT
0 R−1

yy ê0

m −n
, (3.19)

where σ̂2 is an unbiased estimation of the variance of unit weightσ2 as E {σ̂2} =σ2. The
distribution of σ̂2 under H0 and H j is defined as

H0 : σ̂2 ∼ F (m −n,∞,0); H j : σ̂2 ∼ F (m −n,∞,λ), (3.20)

where F (m −n,∞,0) is the central F-distribution. Here E {e0} = E {e j } = 0 causes the
infinity for the second parameter of the F-distribution.

Another special case is the w-test when all tests are one dimensional (q = 1). Con-
ventionally, this is widely used in geodesy to test for the presence of one or more blun-
ders in the observations or the model misspecifications for H0. In InSAR, however,
there are no manual observations, and therefore ‘blunders’ are not possible. Neverthe-
less, it is possible that e.g. a phase unwrapping error occurs in one observation. In this

case, the w-test can be used. The corresponding test statistic T j
q=1 is given by

T j
q=1 =

(cT
j Q−1

yy ê0)2

cT
j Q−1

yy Qê0 ê0Q−1
yy c j

, (3.21)
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here the m×q matrix C j is reduced to the m×1 vector c j . When the (co)variance matrix
Qyy is diagonal and c j is formed by a canonical unit vector, Eq. (3.21) simplifies to

T j
q=1 =

ê i

σêi

, (3.22)

which equals the residual of the i th observation divided by its standard deviation. If
this test is subsequently evaluated for every observation, we refer to this testing se-
quence as data snooping.

Finally, to determine the best hypothesis from the library when the dimensions
are all q = qB for instance, the best alternative hypothesis HB is chosen based on the
following inequality,

T B
qB

> T j
qB

, ∀ j . (3.23)

When T B
qB

is the largest one among all the others, HB is the best alternative model.

3.2.2. Case 2: Nonuniform dimension
A situation in which all possible alternative hypotheses have the same dimension
would be rare in reality. The most common situation is that alternative hypotheses
have different dimensions, i.e. qi 6= q j , i , j ∈ [1,m −n]. In this case, the criterion of
Eq. (3.23) fails to determine the optimal alternative hypothesis, since the test statistics
χ2 have different distributions (cf. Fig. 3.6a). A way to normalize the test statistic is to
divide it by its critical value χ2

α j
(q j ), with a specific level of significanceα j and a known

Qyy, expressed as a ratio (de Heus et al., 1994)

T j
q j

= T j
q j

/χ2
α j

(q j ). (3.24)

Whenever the ratio T j
q j

> 1, T j
q j

exceeds the critical value and subsequently the null

hypothesis H0 will be rejected. When the ratio T j
q j

≤ 1, alternative hypothesis H j is not
more probable than the null hypothesis H0 and thus discarded.

The probability density function of the test ratio with different degrees of freedom
(q = 1,2,3,4), given α = 1% and α = 10%, is shown in Figs. 3.6b and 3.6c, respectively.
These curves stem from the fact that the χ2-distribution is a special case of the Gamma
distribution (Γ-distribution), i.e., the distribution T q ∼ χ2(q,0) is equal to the distri-

bution T q ∼ Γ(q/2,1/2). This implies that the multiplication of T ∼ χ2(q,0) with a

factor C = 1/χ2
α(q) > 0, yields the Gamma function Tq = C T ∼ Γ(q/2,2C ) (Davis, 1970;

Abramowitz and Stegun, 1970). Note that, cf. Figs. 3.6b and 3.6c, for increasing α, the
intersection of different PDFs shifts to the right, possibly beyond the value one.

3.3. The B-method of testing
The critical value χ2

α j
(q j ) in Eq. (3.24) depends on the choice of the level of signifi-

cance α j and the dimension q j . The level of significance refers to the Type-I error: the
rejection of H0 when in fact H0 is true (Teunissen, 2003). However, when the aim is to
compare different alternative hypotheses, we want to make sure that the probability
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Figure 3.6: Central χ2-distribution (a), and the probability density function of the test ratio T q /χ2
α(q) (b) and

(c), with the different dimensions (or the degrees of freedom): q = 1, 2, 3, 4.

of accepting a particular alternative hypothesis, knowing that it is true, is identical for
any alternative hypothesis. This probability is commonly referred to as the power, γ, of
the test. The essence of the B-method of testing (Baarda, 1968) is to fix the (reference)
power of the test γ0, and calculate the (reference) noncentrality parameter λ0, given
the level of significance α j and the dimension q j , as in

λ0 =λ(γ0,α j , q j ),∀ j . (3.25)

Thus, the constant values for the noncentrality parameter λ0 and the power γ0 for all
tests assure that any particular alternative hypothesis H j can be selected with the same
probability, irrespective its dimension q j .

Furthermore, we can determine the minimal absolute value |∇ j | (details in sec-
tion 3.5) to make the additional parameter vector ∇ j detectable, with a discriminatory
power γ. This value is found via the concept of internal reliability for a given level of
significance α, power γ and the dimension q by

∇T C T Q−1
yy Qê0 ê0Q−1

yy C∇= λ
1×1

(γ,α, q). (3.26)

If the new parameter vector ∇ is known, the discriminatory power (power of test) γ can
be computed straightforwardly via the noncentrality parameter λ. Since the power γ is
the likelihood of correctly rejecting H0 in favor of H j , a large value for ∇ yields a large
power, making it easy to detect, while a small value for ∇ yields a low discriminatory
power.

For InSAR deformation modeling, the objective is to compare various alternative
hypotheses H j , with the same discriminatory power γ. Once γ= γ0 and α0 is fixed, the
corresponding noncentrality parameter λ0 = λ(α0, q,γ0) can be obtained for a certain
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dimension q . Such test statistic ratio can be performed for all hypotheses, and the most
probable (or optimal) alternative hypothesis is assumed to reject H0 most strongly and
has the largest ratio value. In other words, HB is the most probable alternative hypoth-
esis if and only if

TB
qB

= max
j

{T j
q j

}. (3.27)

3.4. Detection-Identification-Adaptation (DIA) procedure
To enable multiple hypotheses testing, the Detection-Identification-Adaptation (DIA)
procedure (Teunissen, 1990) is applied. The formulation of the DIA procedure consists
of:

1. Detection: Determine whether the default ‘steady state’ deformation model H0

can be sustained or not.

As the first phase of the DIA procedure, the Overall Model Test (OMT) Eq. (3.18)
is applied on the null hypothesis H0 of ‘steady-state mode’ (constant velocity).
The specification matrix C j is not taken into account since the model misspeci-
fications or observation outliers are still unknown. The OMT is to detect possible
disturbances, errors, and anomalies in the observed data for the null hypothesis,
and consequently decide to either sustain or reject the null hypothesis. However,
in case of rejection, the OMT cannot determine its cause.

2. Identification for the optimal model

Rejection can be the result of large observation errors, an inappropriate func-
tional model, or poor specification of the observations’ noise signature in the
stochastic model Qyy. A physically realistic alternative parameterization of the
kinematic behavior can be designed. A-priori information on the problem at
hand, or a flexible and expandable library of model functions can be used to
build many alternative functional models, to later decide on the most probable
alternative model by searching the maximum test ratio as in Eq. (3.24).

As Eq. (3.24) includes the (co)variance matrix Qyy, one needs to know the
stochastic model of the observations. In practice, however, incomplete knowl-
edge of the stochastic model D{y} =Qyy of the observation occurs in most cases.
Therefore, if no other information is available, we start to build the covariance
matrix Qyy with a simple model consisting of a variance of unit weight σ2 and
cofactor matrix Ryy=I. Fig. 3.7a shows the relationship between temporal coher-
ence γ and the standard deviation σ based on Eq. (2.33) (multi-look L = 1), for
pointwise coherent points. Since the temporal coherence can be computed by

|γ̂| = |∑m
i=1 Y (i ) · Ŷ

(i )∗|√∑m
i=1 |Y (i )|2 ∑m

i=1 |Ŷ
(i )∗|2

, (3.28)

where Y (i ) = exp(− j y (i )), y (i ) is the i th observation in radians, i.e. the deforma-

tion in the i epoch. The adjusted observation ŷ (i ) is the i th estimation based on
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Figure 3.7: (a) The relationship between temporal coherence γ and the standard deviation σ based on
Eq. (2.33). (b) The histogram of the estimated temporal coherence distribution for 1076 PS points derived
from 127 TerraSAR-X data acquisitions.

the ‘steady-state mode’ model. Fig. 3.7b shows, as an example, the histogram of
the estimated temporal coherence distribution for 1076 PS points derived from
127 TerraSAR-X acquisitions (acquired between April 2009 and June 2013). It
shows that the temporal coherence of most of these PS points is larger than 0.55.
Therefore, σ can be fixed as 2.5 mm or even a smaller value.

More precisely, when other information is available, the (co)variance matrix Qyy

can be decomposed as (Teunissen, 1988; Kenselaar, 1997; Amiri-Simkooei et al.,
2007; Teunissen and Amiri-Simkooei, 2008)

Qyy =
p∑

k=1
σ2

kQk , (3.29)

where Qk are the cofactor matrices for the decomposition of Ryy. To derive a
realistic (co)variance matrix Qyy, the variance components σ̂k are estimated by
the variance component estimation (VCE), as in

σ̂k = N−1l , (3.30)

where
Nkl = tr(Q−1

yy P⊥
A Qk P⊥

A Ql );
lk = êT Q−1

yy QkQ−1
yy ê,

(3.31)

here k and l represent the index for the kth row and l th column variance factor.
Again the orthogonal projector P⊥

A = I − A(AT Q−1
yy A)−1 AT Q−1

yy , and ê = P⊥
A y . Ac-

cording to the propagation law of variances and covariances, the precision of the
VCE reads,

Qσ̂ = N−1. (3.32)

Once the posterior variance is obtained, one could compare it with the a-priori
variance to check whether the scalar of stochastic model is improved or not.

3. Adaptation: estimation and evaluation
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If the test statistics of several alternative hypotheses are larger than their criti-
cal values, they are considered as potential optimal hypothesis candidates. To
determine which alternative is the most probable one, Eq. (3.23) or Eq. (3.27) is
used. In this phase, one needs to compute the critical value χ2

α j
(q j ) in Eq. (3.27)

for a chosen α j and a given q j . According to the B-method of testing (Baarda,
1968), the necessary condition for this method is to fix the reference power of
test γ0, and then to calculate the reference noncentrality parameter λ0 which is
dependent on the reference power of test γ0, the level of significance α and the
dimension q , see Eq. (3.25). The choice of constant values for the noncentrality
parameter λ0 and power of test γ0 in all the tests shows that a certain alterna-
tive model can be found with the same probability when q = m −n, q = 1, or all
values in between.

The most probable model results, e.g. x̂ and ∇̂, can be estimated by best linear
unbiased estimation (BLUE), and the corresponding model errors, or model mis-
specifications ∇y =C ∇̂ with the quadratic form in Eq. (3.26) can be computed as
well. In the following we will discuss the quality in terms of its precision and
reliability.

3.5. Quality control
We have presented the theory and the processing procedure for statistical hypothesis
testing to decide on the best mathematical model and parameterization. Theoretically,
a functional model with more unknown parameters will fit the observations better. For
instance, a piecewise polynomial with a high degree would coincide very well with the
observations in most cases. However, the measurements cannot be purely signal with-
out any noise. If the default model with a relatively small number of unknowns can still
describe the observations well enough, with an acceptable level of noise, we could still
hold this null hypothesis, cf. appendix A.3. To validate the results, the quality of results
is discussed in this section.

3.5.1. Precision
Once the unknown parameters are estimated, the quality in terms of precision and re-
liability is taken into consideration. Per model, the precision of the estimated parame-
ters is given by

Q x̂ x̂ = N−1 = (AT Q−1
yy A)−1. (3.33)

This precision indicator Q x̂ x̂ relies on the chosen basis (or the reference point) in terms
of the S-basis (Baarda, 1981), which can be compared with a predefined criterion pre-
cision Hxx (symmetric and positive definite matrix). This criterion matrix Hxx is filled
with the values derived from a suitable (co)variance function, usually in a simple struc-
ture, e.g. a diagonal matrix, or even a scaled identity matrix.

The estimated precision of the parameters Q x̂ x̂ , satisfies the criterion precision if
and only if

Q x̂ x̂
n×n

≤Hxx
n×n

. (3.34)
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Both matrices should be defined w.r.t. the same S-basis. To check whether both matri-
ces have the same S-basis, Eq. (3.34) can be cast in a generalized eigenvalue problem,

|Q x̂ x̂ −ζHxx| = 0, (3.35)

where |.| denotes the determinant and the eigenvalue ζ scales Hxx. When the two ma-
trices, Q x̂ x̂ and Hxx, are identical, the eigenvalue is equal to one. If the eigenvalue is
smaller than one, the precision is better than required. If the eigenvalue is larger than
one, the precision is worse than required. Hence, the minimal eigenvalue ζmin rep-
resents the best precision and the maximum eigenvalue ζmax corresponds to the es-
timated parameters with the worst precision. The latter is considered as a metric for
the global precision. In this case, ζmax is independent of the chosen S-basis, which is a
useful property.

Once Q x̂ x̂ is obtained, the precision of the adjusted observables then reads

Q ŷ ŷ = AQ x̂ x̂ AT , (3.36)

and the precision of the least-squares (LSQ) corrections is

Qê ê =Qyy −Q ŷ ŷ , (3.37)

where the residual ê = y − ŷ and ŷ = Ax̂.

3.5.2. Reliability
The concept of reliability is always related to statistical testing theory. It is used as a
metric to describe a model misspecification (for example an additional parameter ∇
that should be included in the functional model), that can be detected with a prob-
ability γ. Thus, a description of reliability is always related to a specific alternative
hypothesis.

The mathematical model for alternative hypothesis H j is expressed as

H j : E {y}
m×1

= A
m×n

x
n×1

+ C
m×q

∇
q×1

, ∇
q×1

6= 0; D{y} = Qyy
m×m

, (3.38)

where ∇ is the vector of additional (deformation) parameters. For example, if
the steady-state model under the null hypothesis would need to be extended by a
temperature-dependent parameter η, cf. Eq. (3.3), then ∇= η is a 1×1 vector expressing
this ‘additional’ parameter.

In this context, an important value to consider is the minimal (absolute) value that
this additional parameter should have, to be detectable with a probability γ. This γ is
the discriminatory power, see section 3.3. We refer to this value as the Minimal De-
tectable Value (MDV) for parameter ∇. In our example, the MDV1 of the temperature-
dependent parameter η is |∇MDV|. If the true (but unknown) value of the temperature-
dependent parameter η is equal to |∇MDV|, we can state that it will be detectable with

1It should be noted that the MDV is known in conventional geodetic literature as the Minimal Detectable Bias
(MDB), or the threshold at which errors in the observations can be detected. In our discussion, we do not
regard the alternative hypothesis as identifying errors in the observations, but as a model misspecification:
there needs to be an extension of the model under the null hypothesis with additional parameters added.
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discriminatory power γ, when this is assessed in a test with significance level α and di-
mension q . In this case, since we have only one additional parameter, q = 1. Note that
if the true value of η is greater than |∇MDV|, we will detect it with a greater discrimina-
tory power. Likewise, if the true value of η is smaller than |∇MDV|, we may still detect it,
but at a smaller discriminatory power.

Viewed from another perspective, if we set the discriminatory power γ to a high
value, we will only detect a temperature-dependent component in our data if its value
is high.

The MDV is found via the concept of internal reliability for a given significance level
α, power γ and the dimension q by

∇T C T Q−1
yy Qê0 ê0

Q−1
yy C∇= λ

1×1
(γ,α, q), (3.39)

where ∇ is a new unknown vector of parameters similar to x. It is also deterministic
(non-stochastic) and therefore it has a particular value. If this new parameter vector
∇ is known, the power γ (via the noncentrality parameter λ) with which it would be
found in a statistical test could be computed straightforwardly. This will be discussed
in sections 3.5.3 and 3.5.4.

3.5.3. 1-dimensional alternative hypothesis
The 1-dimensional alternative hypothesis q = 1 can be formulated as

H j : E {y}
m×1

= A
m×n

x
n×1

+ c
m×1

∇
1×1

, ∇
1×1

6= 0; D{y} = Qyy
m×m

, (3.40)

where the specification matrix C as in Eq. (3.15) reduces to a column vector c as ∇ is a
scalar. Assuming that the value of ∇ is known, the noncentrality parameter is

∇T cT Q−1
yy Qê0 ê0

Q−1
yy c∇= λ

1×1
(γ0,α0, q = 1), (3.41)

and consequently the MDV for ∇ is

|∇MDV|
1×1

=
√

λ0

cT Q−1
yy Qê0 ê0

Q−1
yy c

. (3.42)

The influence of the MDV on the observations is computed by ∇y = c∇. After com-
puting the effect of the MDV on the observations ∇y , the corresponding effect on the
initially estimated parameter x̂ can be computed as well,

∇x̂ = (AT Q−1
yy A)−1 AT Q−1

yy ∇y , (3.43)

which is called the external reliability, which defines the influence of an additional pa-
rameter on the estimation x̂. Thus ∇x̂ can be interpreted as a bias on the parameter
estimation x̂0, ∇x̂ = E

{
x̂0|H j

}− E
{

x̂0|H0
}
. For instance, if the alternative hypothe-

sis H j is a model superimposed on the linear model M1, a temperature-dependent
model M2, then ∇x̂ shows how much the velocity estimate would change due to extra
temperature-dependent components.
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With the precision estimation Q x̂ x̂ and the external reliability estimate ∇x̂ , one can
relate to a scalar metric that is the bias to noise ratio,√

λx̂ =
√
∇T

x̂ Q−1
x̂ x̂∇x̂ . (3.44)

This equation indicates that the impact of ∇y on the parameter estimation x̂0 under H0

is significant when
√
λx̂ is large, and vice versa.

3.5.4. q-dimensional alternative hypothesis
When more than one additional unknown (q > 1) are introduced, ∇ becomes a vector
instead of a scalar as for the q = 1 case. It implies that a scalar MDV equation (see
Eq. (3.42)) cannot be used any more. This problem can be solved by reparametrization
of ∇ as in (Teunissen, 2000)

∇
q×1

= ‖∇‖
1×1

· d
q×1

, (3.45)

where ‖∇‖ is the length of vector ∇ and d is a unit vector which varies in all directions,
e.g. when q = 2, the end point of the vector d could move along a unit circle. Then the
equivalence of Eq. (3.42) reads

H j : E {y}
m×1

= A
m×n

x
n×1

+ C
m×q

‖∇‖
1×1

· d
q×1

, D{y} = Qyy
m×m

. (3.46)

Now the noncentrality relation to the MDV is

∇T C T Q−1
yy Qê0 ê0

Q−1
yy C∇= ‖∇‖ ·d T C T Q−1

yy Qê0 ê0
Q−1

yy C d · ‖∇‖= λ
1×1

(γ0,α0, q), (3.47)

or

‖∇MDV‖
1×1

=
√

λ0

d T C T Q−1
yy Qê0 ê0

Q−1
yy C d

. (3.48)

Let d move through an unit (hyper)sphere, such as a circle when q = 2, a sphere
when q = 3, or a hypersphere when q > 3, the vector ∇ will move through a (hy-
per)ellipsoid as described by λ0. Note that all the aforementioned computations, i.e.
Q x̂ x̂ , Hxx, ζmax, the MDV for a given α0 and γ0, and the external reliability ∇x̂ or the
bias ∇x̂ , can be performed without actual observations, both for the precision as well
as for the reliability computations. In other words, all computations can be performed
as long as the functional and stochastic model are predefined.

3.6. Choice for the parametersα and γ
In testing theory, a null hypothesis H0 will be rejected in favor of a specific alternative

hypothesis H j , if the calculated test statistic T j
q is greater than a predefined critical

value χ2
α(q,0). This critical value follows from the probability distribution of that test

statistic and an appropriate choice for the level of significance α. However, for defor-
mation analysis of SAR data, the conventional choice for α is not always the most ap-
propriate. Therefore this section presents the method to define the proper values for
the level of significance α and the discriminatory power γ to obtain the most probable
model.
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Figure 3.8: The relation between γ and λ when α and q are fixed.

3.6.1. Definition of the parametersα and γ
If one has defined the level of significanceα based on a given critical value χ2

α(q,0), the
size α of the test can be derived directly from

α=
∫
χ2
α(q,0)

fy (y |H0)dy , (3.49)

where fy (y |H0) denotes the PDF of measurements y under the null hypothesis H0.

With a fixed α, the probability, β, of falsely rejecting different alternative hypotheses
H j ’s is varying in terms of the dimensions q j ’s, and their noncentrality parameters λ j .
To compute the probability of a correct decision of the test, the discriminatory power
γ= 1−β is used, which is defined as

γ=
∫
χ2
α(q,0)

fy (y |H j )dy . (3.50)

With α and q known or fixed, the power γ is only a function of the noncentrality pa-
rameter λ, as in

γ= γ(α, q,λ) = γα,q (λ). (3.51)

This relation between λ and γ is shown in Fig. 3.8. It shows that given fixed α, when
the degree of freedom q increases, λ increases, and therefore γ increases.

3.6.2. Choice of the test parameters for InSAR time series
In standard geodetic observations, α is empirically considered to be small, e.g. α =
0.1% (Baarda et al., 1967). This stems from the fact that a smaller α would have the
lower probability of wrongly rejecting the null hypothesis H0, if it is in fact true. If H0

is rejected, the standard action is to re-measure that part of the network. Since re-
measuring is laborious and expensive, one prefers to have α small, α = 0.1% means
that only one in a thousand measurements needs to be resurveyed.
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Figure 3.9: The values of the level of significance α0 when α0 = 1/(2m), m represents the number of obser-
vations.

In deformation monitoring using InSAR data, H0 is the ‘steady-state mode’ model
and the erroneous rejection of H0 is not costly, it is only computationally time consum-
ing. However, the concern is that the introduction of extensive and difficult alternative
models is not needed, if they are not physically realistic. Besides, following Ockham’s
razor2, as long as a signal description via the null hypothesis is reasonable enough,
more difficult parameters should be not introduced. For this reason, α is set to a small
value as well.

The B-method of testing requires input values for the level of significance, α, and
the power of the test, γ0, see section 3.3. To be able to select from different models with
the same discriminatory power, particularly when these models have different degrees
of freedom, α will need to be tuned. For initializating α, we use the M5(Dk (x)) model
with one outlier as a ‘reference’ alternative hypothesis. As a heuristic rule, we choose
α0 = 1/(2m), related to the number of observations m, following de Heus et al. (1994).
For InSAR time series, this rule of thumb typically yields 0.2% < α0 < 2%, see Fig. 3.9.
Fig. 3.10 shows that the coupling ofα0 (q = 1), for the conventional alternative hypoth-
esis, with αG for the Global (Overall Model, q = m − n) test, using Eq. (3.25), yields
values for αG around 30%, for 25 < m < 200 . This rather large level of significance of
30% can be interpreted as the amount of times in which we engage in testing alterna-
tive hypotheses, even though H0 is actually valid. We do not consider this to be a big
problem, since in the testing, alternative models will not necessarily yield a better fit.
A greater value for αG does result in a higher computational burden though.

Choosing a large discriminatory power, e.g. γ0 = 80%, implies that an additional pa-
rameter |∇ j |, for example temperature-dependent parameter η, would need to be large

2Ockham’s razor (Jefferys and Berger, 1992) states that among competing hypotheses, the hypothesis with
the fewest parameters that still explains the observations equally well, should be preferred.



3.7. Procedure for kinematic analysis of InSAR time series

3

51

20 22 24 26 28 30 32 34 36 38 40
0

2

4

6

8

10

12

14

16

18

20

α
G

 [%]

α
0
 [

%
]

10 20 30 40 50

10

20

30

40

α
G

 [%]

α
0
 [

%
]

 

 

m=20

m=50

m=100

m=200

Figure 3.10: The relationship between the levels of significance αG (q = m −n) and α0 (q = 1). The number
of observations is denoted by m. By choosing a relatively high value of αG , e.g., around 30%, we require the
α0 values to be between 0.2 and 2%.

in order to be detected. A smaller value would then be detected with a smaller likeli-
hood, see Fig. 3.11. In principle, when comparing different alternative hypotheses, the
value for γ0 is not that important. Here we choose γ0 = 50%, which can be interpreted
as the size of an additional parameter that would just lead to either the rejection or the
acceptance of H0.

Given α0 = 1/(2m), γ0 = 50% and q = 1, we then use Eq. (3.25) to compute λ0, and
invert this again with q = m−n to find the correspondingαG for the overall model test.
When m −n is a large number, αG will be a large value as well.

3.7. Procedure for kinematic analysis of InSAR time series
With fixed test parameters, the MHT approach can be performed on any kinematic
time series. Per point at position x = x(x, y), the null hypothesis (steady-state) and all
alternative hypotheses consisting of various model combinations can be expressed in
a binary table, see Tab. 3.1. Seven alternative hypotheses are listed, while the total
amount of alternatives, J , is much more than seven since the offset ∆i (x) may happen
at any epoch and is evaluated for all epochs. Different combinations for the canonical
functions form different alternative hypotheses, for instance, the functional model of
H1 is the sum of model M1(v(x)) and M2(η(x)), with one degree of freedom.

In the following, we describe the generic procedure for applying statistical testing
for the kinematic analysis of InSAR time series, see also Fig. 3.12,
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Table 3.1: Hypothesis table, listing the combination of canonical functions Mi for each hypothesis H j , with
q degrees of freedom. When an exponential function (M4) is tested, it replaces the linear model M1. The
Heaviside step function (M6) is evaluated at many or all positions in the time series.

H0 H1 H2 H3 H4 H5 H6 H7

M1(v(x)) 1 1 0 1 0 0 1 0
M2(η(x)) 0 1 0 0 1 0 1 1

M4(κ(x),β(x)) 0 0 1 0 1 1 0 1
M6(∆i (x)) 0 0 0 1 0 1 1 1

q 1 2 1 3 3 2 4

1. One first needs to decide whether to reject or sustain the null hypothesis by using
the Overall Model Test in Eq. (3.18). Under the condition that the level of signifi-
canceα0 is defined as 1/(2m), the critical value K for the centralχ2 distribution is
calculated. Then the decision to compete the null hypothesis can be made when
T 0 > K . If T 0 < K , there is no need to perform subsequent MHT. In this case, the
only remaining step is to reevaluate H0 in terms of the posterior variance σ̂2, the
precision of the parameters Q x̂ x̂ , and the eigenvalue ζ, see Eq. (4.6). If T 0 > K , we
start the MHT method.

2. In the case that T 0 > K , one would perform the MHT method for many alter-
native models. The initial noncentrality λ0 for a given q = 1, α0 = 1/(2m) and
γ0 = 50% is computed and fixed. A loop runs over all H j ’s, with j ∈ [1, J ]. New

α j ’s are used to replace α0. Then the test ratios T j
q j

(∀ j ) are calculated based

on Eq. (3.24). If T j
q j

< 1, the conclusion is that H j is not more likely than H0. If

T j
q j

> 1, the corresponding alternative hypothesis H j is considered to be a better
model candidate and stored for further use.
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Figure 3.11: The discriminatory power γ0 for an alternative hypothesis H j against null hypothesis H0. The
estimation difference between H0 and H j is equal to ∇y =C ·∇. If the value of ∇y is smaller, this means that
an additional parameter ∇ will be detected with a smaller probability γ0.
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Figure 3.12: Testing flowchart for deformation modeling

3. There may be several model candidates with test ratio values larger than 1, we

then select TB
qB

= max
j

{T j
q j

} to be the most probable model for that time series,

but store a number of alternatives for further evaluation. The parameters for the
most probable model combination HB are then estimated, as well as the pos-
terior variance σ̂2, the precision of the parameters Q x̂ x̂ , the updated temporal
coherence estimator γ̂, and the eigenvalue ζ.

3.8. Numerical implementation
To efficiently apply the methodology to a large number of points, we discuss its numer-
ical implementation in this section.

3.8.1. Covariance matrix Qy y and design matrix A under H0
The observation vector in our InSAR time series consists of pre-processed deformation
estimates, per point and per epoch (image acquisition), relative to a reference point
and a reference epoch (Hanssen, 2004). The pluriformity of scatterers, in space and
time, makes it impossible to obtain an independent quality metric. Assuming tempo-
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ral ergodicity, preselecting only values that behave ‘smooth’ in time, we use a fixed vari-
ance and assume uncorrelated observations in the time series. Hence, the m×m co-
variance matrix Qy y is initialized by the multiplication of a specified variance factor σ2

and an identity matrix Im . This way, the posterior covariance matrix can be estimated
by variance component estimation (Teunissen, 1988; Kenselaar, 1997; Amiri-Simkooei
et al., 2007; Teunissen and Amiri-Simkooei, 2008). When the stochastic structure of
the observations is better known beforehand, the covariance matrix can be more pre-
cisely specified. The design matrix A under H0, as in Tab. 3.1, is a column of temporal
baselines with respect to the master acquisition.

3.8.2. Preprocessing: reference point noise estimation
In InSAR processing, the kinematic time series of all points are all relative to a com-
mon reference point, which implicitly has a postulated zero-displacement time series.
However, in reality the reference point is a scatterer as well, with SAR system thermal,
quantization, and scattering noise (Zebker et al., 1994b) per epoch. Via the differenc-
ing operation that is implicit in the InSAR processing, the reference point noise (RPN)
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Figure 3.13: PS velocity map before removing the reference point noise (a). The error of the reference point
per epoch (b). The kinematic time series of two PS points (PS1 and PS2) before (in black) and after (in blue)
removing the reference point noise, shown in subfigures (c) and (d). The location of these two PS points are
indicated by the black crosses in subfigure (a).
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will manifest itself in every point. In other words, per epoch, the kinematic time series
for all points are contaminated by the noise from the reference point. This error can be
mitigated.

To estimate and mitigate the error of the reference point, we first reduce the de-
formation time series of every single point by subtracting a linear trend, an operation
known as temporal deramping. Then, we compute the average value of all points per
epoch which is considered to reflect the error of the reference point at that epoch. At
the kth epoch, the error of the reference point ek (xrp) is estimated by

êk (xrp) = 1

N

N∑
i=1

ek
i , ∀k, (3.52)

where N denotes the number of points and ek
i represents the residual for the i th point

after temporal deramping, at the kth epoch. This error is subsequently subtracted from
the kinematic time series for all points, i.e.,

y ′
i
= y

i
− ê(xrp), ∀i , (3.53)

which yields an RPN-reduced time series y ′, to be used in the subsequent hypothesis
testing approach. Informally, we refer to this RPN-reduction method as the Shenzhen-
algorithm due to the location where this idea sprouted.
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Figure 3.14: Deformation time series of PS points before (a) and after (c) removing the reference point noise.
The residuals of the PS points are shown in subfigure (b). The x-axis represents the data acquisition dates,
and the y-axis represents the PS serial number.



3

56 3. Kinematic Time Series Modeling

Fig. 3.13a shows the PS velocity map before removing the reference point noise.
There are 16793 PS points in the map which were derived from 143 TerraSAR-X acqui-
sitions between 08 April 2009 and 30 December 2013. The deformation time series
(before removing the reference point noise) of these PS are shown in Fig. 3.14a. After
performing the temporal deramping, the residuals of all PS points per epoch can be
generated, see Fig. 3.14b, and used for computing the error of the reference point per
epoch in terms of Eq. (3.52). The error of the reference point per epoch is then ob-
tained and shown in Fig. 3.14c. The corrected kinematic time series of all PS points is
computed by Eq. (3.53), shown in Fig. 3.14c. As an example, the kinematic time series
of two PS points (PS1 and PS2) before (in black) and after (in blue) removing the ref-
erence point noise, are shown in Figs. 3.13c and 3.13d. It indicates that the corrected
time series are less affected by the reference noise, showing smoother temporal behav-
ior.

3.8.3. Preprocessing: detecting unwrapping errors
Following time series InSAR processing, there are still points which exhibit remaining
unwrapping errors, either as an individual 2π-outlier, or as a ‘cycle-slip’, where two
parts of the time series show a 2π-offset. To detect such residual phase unwrapping
errors, the likelihood of remaining 2π-ambiguities in the kinematic time series is tested
using the same MHT procedure, see Eq. (3.13), by fixing the outlier Di (x) and offset
∆i (x) to be ±λ/2, where λ represents the SAR wavelength. When hypothesis testing
yields a |Di (x)| or |∆i (x)| larger than |λ/4|, the observation vector for that point will be
corrected by ±λ/2 to clean it from unwrapping errors, before subsequent hypothesis
testing for other model errors.

3.8.4. Efficient test statistic computation
A testing procedure with hundreds of alternative hypotheses, for millions of ground
targets, would be numerically very inefficient. As stated in section 3.2, the compu-
tational burden is significantly reduced by expressing the test statistic for alternative
hypothesis j as

T j
q = êT

0
1×m

L j
m×m

ê0
m×1

= tr

(
L j

m×m
ê0

m×1
êT

0
1×m

)
, (3.54)

where we have introduced the L j matrix. The L j matrix needs to be computed only
once for every hypothesis class, but it is equal for each point, so it can be retrieved in
internal memory. The m×m matrix ê0êT

0 is computed only once per point, in evaluat-
ing only the null hypothesis.

For instance, when only the thermal expansion is considered as an additional com-
ponent in the functional model, cf. M2 in Eq. (3.13), the corresponding L matrix is tem-
perature dependent. Fig. 3.15a shows the temperature differences between the acqui-
sition dates of the TerraSAR-X master image (08-April-2009) and the slave images, using
127 satellite images. The corresponding 126×126 matrix L is shown in Fig. 3.15b. The
seasonal variation of the temperature changes is clearly shown in Fig. 3.15b as the color
changes from red to blue. This L matrix will be further used in the real case study for
the Rotterdam test site, see section 3.9.2.
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Figure 3.15: (a) Temperature differences between the acquisition dates of the TerraSAR-X master image and
corresponding slave images and (b) L matrix for thermal expansion with arbitrary units, cf. Eq. (3.17).

3.9. Application on simulated data and real data
In this section we will test and evaluate the proposed MHT method, first on a simulated
data set, and then on a real data set related to infrastructure (rail) monitoring.

Table 3.2: Kinematic time series modeling results for the simulated point, see Fig. 3.16.

Model Nr. v̂ η̂ κ̂ β̂ ∆̂ @ acq.date var.factor σ̂

[mm·y−1] [10−3 m·K−1] [mm] [mm]
H0 −14.3 23.1 24.0
H1 −13.6 +2.3 3.7 9.6
H2 +20.1 −1.8 23.8 24.4
H3 −8.4 −30.7 (18-Jun-2006) 4.4 10.5
H4 +2.3 +130.5 −20.2 3.8 9.7
H5 +840.5 −60.7 −30.0 (18-Jun-2006) 0.6 2.3
H6 −10.5 +1.4 −17.1 (18-Jun-2006) 0.8 4.5
H7 +1.4 +1100.9 −100.1 −17.1 (18-Jun-2006) 0.8 4.5
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Table 3.3: Kinematic time series modeling results for eight PS points (PS1–PS8), see Fig. 3.17.

Point ID Model Nr. v̂ η̂ κ̂ β̂ ∆̂ @ acq.date var.factor σ̂

[mm·y−1] [10−3 m·K−1] [mm] [mm]
PS1 H0 −7.2 0.2 1.3
PS2 H1 −2.6 −0.24 0.6 2.3
PS3 H2 −78.3 +6.0 0.4 1.9
PS4 H3 −5.4 +5.4 (28-Feb-2012) 1.1 3.1
PS5 H4 +0.18 −21.2 +12.6 0.4 1.9
PS6 H5 −30.0 +2.2 +7.2 (30-Jan-2010) 0.6 2.3
PS7 H6 −3.4 −0.21 +4.8 (04-Jan-2012) 0.5 2.1
PS8 H7 −0.19 −10.6 +3.1 −5.3 (16-Sep-2011) 0.6 2.3

3.9.1. Application on simulated data
To demonstrate the feasibility of kinematic model selection and parameter estima-
tion using a probabilistic approach, we evaluate a synthetic example. We simulate 70
Envisat SAR images acquired between December 2003 and October 2010, for a single
point, relative to an arbitrary reference point. We use the real temperature records for
the actual Envisat acquisition dates. The time series of this point is modeled as a super-
imposition of linear motion (v =−10 mm/y), thermal expansion η=+1.3 ·10−3 m·K−1,
and an instantaneous Heaviside offset at or before the 26th acquisition (18 June 2006)
with a level of ∆26 = −18 mm. Gaussian distributed random noise with 5 mm stan-
dard deviation is added. Hence this fits with the sixth alternative hypothesis model
H6 shown in Tab. 3.1, see Fig. 3.16a. Following the processing procedure outlined in
section 3.7, the OMT is first applied for the null hypothesis H0 under the level of signif-
icance αG = 23%, which follows via the B-method of testing from α0 = 1/(2m) for the
one-dimensional test, see section 3.6.2. The test statistic corresponding to each model
is listed above each subfigure of Fig. 3.16, and repeated for convenience in Tab. 3.2.
For H0, the value is much larger than the critical value K (see Fig. 3.16a), causing its
rejection. Then the procedure starts to find the most probable model among the al-
ternatives. After evaluating every test statistic ratio, corresponding with the subfigures
of Fig. 3.16, the most probable model, with the greatest test statistic ratio, is the alter-
native hypothesis H6. For model H6, we then estimate the corresponding parameters
v̂ , η̂,∆̂ to be −10.5 mm/y, +1.4·10−3 m·K−1 and −17.1 mm at the 26th acquisition, which
is convincingly close to the simulated values. After selecting model combination H6 as
the most probable one, the posterior variance for H6 is estimated to be 4.52 mm2.

3.9.2. Application on real data
To test the approach using real data, an experiment is performed for a test site in the
Rotterdam area, the Netherlands, during the period from April 2009 to June 2013. We
use a stack of 127 TerraSAR-X stripmap images and apply the Delft implementation of
Persistent Scatterer Interferometry (DePSI) (van Leijen, 2014) to produce the kinematic
time series of persistent scatterers (PS), using a default steady-state model to facilitate
temporal unwrapping. We regard these PS results as the input data for kinematic time
series modeling. We remove the reference point noise from the data using the Shen-
zhen algorithm, see section 3.8.2. We use the daily average temperature data for every
acquired date, see Fig. 3.15a. The variance of unit weight σ2 as in Eq. (3.15) is conser-
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Figure 3.16: Synthetic example for multiple hypotheses testing. Black dots show the simulated kinematic
data with noise modeled as the sixth alternative hypothesis model H6. (a) null hypothesis model: steady-
state (linear) motion, which is the default model for InSAR processing. Subfigures (b)–(h) show the esti-
mated parameters for the alternative hypotheses H1–H7, respectively. Based on the test statistic ratios Tk

qk
,

depicted in the title of each graph, the most probable model is determined, being alternative hypothesis H6
which has the greatest test statistic ratio.

vatively predefined as 32 mm2 and the cofactor matrix Ryy is designed as an identity
matrix. According to Eqs. (3.42) and (3.48), the MDV for every additional parameter
can be computed, for example the MDV of the temperature-related parameter which is
0.12 [mm·K −1] when λ0 = λ(α0 = 1/(2×127), q = 1,γ0 = 50%) = 8.23. This implies that
for a specific target, if the temperature dependent parameter is 0.12 [mm·K −1], it will
be found with a likelihood of 50%. (A greater value of this parameter will be detected
with a higher likelihood).

The results from the kinematic time series modeling show that 84% of the points
sustains the steady-state null hypothesis H0, while the others reject H0 and follow the
alternative models. Fig. 3.17 illustrates the MHT results for eight typical PS points, and
their parameter estimates are listed in Tab. 3.3. The locations of the points are shown
in Fig. 3.19. These results show that (i) each function from the library of canonical
kinematic models seems physically realistic and can be used to produce an optimal
kinematic model for these real data; (ii) the optimal models are different per point,
as well as the quality of estimates; (iii) the optimal models for the eight PS points fit
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Figure 3.17: Real data examples for multiple hypotheses testing. Each subfigure shows the most probable
deformation model found for a randomly selected PS point (see Figs. 3.19a and 3.19b for the location).

the kinematic time series (black dots) better than the linear deformation model (blue
lines), in a probabilistic sense. All but one of the posterior variances σ̂2 of the eight
points shown in Tab. 3.3 are smaller than the conservative a priori variances, which
improves the reported quality of the estimates and the time series. In addition, the
kinematic time series results allow us to detect anomalous offsets ∆ for PS4, PS6, PS7
and PS8.

Fig. 3.18 demonstrates that the MHT method is able to fix unnoticed unwrapping
errors. It shows the MHT results for PS points 6, 9 and 10, cf. Fig. 3.19. H5, H3 and H6

(black lines) are found to be the most probable models for them. For PS6, a Kronecker
delta outlier is found at the 114th epoch, greater than the half wavelength, 15.5 mm,
see the arrow indicator in Fig. 3.18a. Thus, the algorithm identifies it as the single un-
wrapping error at 23-Jan-2013 and corrects it (indicated by the green dot). For PS9 and
PS10, the values of the estimated Heaviside offsets are larger than 15.5 mm as well.
Therefore, they are identified as residual unwrapping errors, and corrected by adding
the offsets back (shown in green).

To demonstrate the applicability of our approach on large volumes of data and
analyze 4.5×13 km area near Rotterdam, the Netherlands, with 748806 PS points.
Figs. 3.19a and 3.19b show the ground features of a subset (0.5×2 km) of this crop area,
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Figure 3.18: Examples for residual unwrapping error detection and correction by the MHT approach. The
black up-arrow in the top plot indicates the observation on 23-Jan-2013, which is corrected for the unwrap-
ping error from the black dot to the green dot. The lower plots indicate detected offsets (cycle-slips) in the
observations.

dominantly a railway (Betuweroute, denoted by ‘B’) and motorway (A15) with some ad-
jacent buildings. This subset shows 5857 detected PS, of which ten points are further
elaborated in time, see Figs. 3.17 and 3.18, indicated by the red crosses.

Fig. 3.19c shows the line-of-sight velocity map of all PS points selected by default
PSI processing. It indicates that the PS points reflected from the buildings (in yellow in
Fig. 3.19b) are stable, while the PS points reflected from the railway lines and the mo-
torway are deforming but with different rates. Along the railway lines, the PS velocities
are heterogeneous, for instance, discrete discontinuities of the velocities are detected
in the transition zones between free embankments and fixed substructures, such as
the bridge (cf. C in Fig. 3.19b). Fig. 3.19d shows the line-of-sight velocity map of the
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Figure 3.19: Kinematic time series analysis for the 0.5×2 km test area. (a) Aerial image (Bing maps). (b) Car-
tographic representation (Top10vector, 2011). (c) Default line-of-sight velocity map resulting from standard
PSI processing. (d) Points that sustain the null hypothesis of steady-state deformation only. (e) Thermal ex-
pansion parameter η of those points whose optimal model combination includes M2(η(x)). (f) Line-of-sight
velocity map corresponding to the points shown in (e). (g) Estimated velocity differences between H0, cf. (c),
and the post-determined best models for the points shown in (e).

84% PS points which sustain the null hypothesis H0. That is, the motion of most PS
on buildings, bridges and railway is best described by the default steady-state model.
Yet, Fig. 3.19e shows the thermal expansion parameter η of those PS whose optimal
model includes M2(η(x)), cf. Eq. (3.13). It suggests that the motions of ground targets
made of concrete or steel, such as buildings, railway lines and lamp poles, are subject
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to temperature variations in the form of expansion when temperature rises and con-
traction when temperature falls. Consequently, the thermal expansion parameter for
these targets is negative (η< 0), shown in orange/red in the figure. For instance, build-
ing A, bridge C, and the railway parts and segments made of concrete/steel, (e.g. PS2,
PS7 and PS8) all have a negative thermal expansion parameter. The data also show
motion of targets with a positive thermal expansion parameter (in blue). These behave
conversely, such as the motion of some segments of the railway tracks and a graveyard
area denoted by D and PS5. These are most likely influenced by compaction due to sea-
sonal changes in the groundwater table. Thus, according to the value (and sign) of the
thermal expansion parameter, we can classify the PS points in terms of different ma-
terials and characteristics. Areas where a sign change occurs, cf. the rectangular black
box in Fig. 3.19e, may indicate signal locations and materials susceptibility to fatigue.
Fig. 3.19f shows the line-of-sight velocity map derived from the post-determined best
models for the PS points shown in Fig. 3.19e. It shows that buildings and bridges (e.g.
building A and bridge C) experience minimal motion apart from those that are temper-
ature related, while the railway tracks show heterogeneous motion at different rail seg-
ments, probably due to different local situations such as consolidated/unconsolidated
soils. Fig. 3.19g shows the estimated velocity differences between H0 and the post-
determined best models for the PS points shown in Fig. 3.19e. It implies that if we
harshly stick to the null hypothesis H0 for every single point, we may overestimate or
underestimate the linear deformation, leading to an erroneous interpretation of the
time series. For example, the deformation rate of PS7 under H6 (including thermal
variability) is vH6 = −3.4 mm/y (green line in Fig. 3.17) which is significantly larger
than the rate under H0, vH0 =−2.4 mm/y, see also Tab. 3.3. The fact that the likelihood
of H6 is greater than that of H0 now improves the reliability of the estimates.

In terms of computational efficiency, since our method does not require the explicit
estimation and adjustment of all the parameters for each evaluated model, the compu-
tational load is reduced with a factor of five. The computation time for the test is 31 ms
per point, testing about 508 alternative hypotheses on an average desktop computer.

3.10. Discussion and conclusions
A probabilistic approach using multiple hypotheses testing (MHT) and the B-method
of testing is proposed for kinematic time series modeling and parameter estimation. It
is generally applicable to select the optimal (most probable) models for single points
in InSAR kinematic time series, and to detect and correct phase unwrapping errors in
a probabilistic sense.

This way, apart from precision now also the geodetic concept of reliability is added
to InSAR estimates, defined as the ability to detect observational errors or model im-
perfections from the data. These model imperfections can relate to both the functional
as well as the stochastic model, with the latter giving an improved quality description
of the results.

Even though there may be several competing models with a high likelihood of being
true, the methodology will allow users to critically evaluate results, avoid overinterpre-
tation, and thereby consolidate InSAR as a geodetic technique.

The methodology described in this chapter is applied as ‘post-processing’ on the
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PSI results. Yet, using an efficient numerical implementation it is recommended to
include it at an earlier stage, i.e., the parameter estimation per arc in the PSI processing.



4
Railway Monitoring

This chapter demonstrates the feasibility of monitoring railway infrastructure using
multi-epoch satellite radar observations. We discuss two distinct case studies. The first
study site is situated in the Himalaya region and demonstrates the potential for moni-
toring remote and rather inaccessible areas, given the availability of a limited amount
of satellite data. We apply an ‘all-pixel’ approach based on the statistical similarity of
pixels to maximize the point density, and show linear settlement behavior as well as
seasonal effects that suggest a dynamic influence of thawing permafrost in the region.
The second study site is a rail track area situated in the Netherlands. This case study
aims at the detailed analysis and interpretation of high resolution SAR data acquired
from different viewing geometries, in order to estimate the deformation vector compo-
nents in a rail-fixed reference system. Both studies are published in the International
Journal of Remote Sensing (Chang and Hanssen, 2015), and the International Journal
of Railway Technology (Chang et al., 2014), respectively.

4.1. Qinghai-Tibet railway
Climate change and human involvement are changing the dynamics of permafrost en-
vironments, with potential impact on the safety and stability of infrastructure. The
Qinghai-Tibet Railway (QTR) has been designed to withstand the dynamic permafrost
conditions. Yet, in-situ measurements of the track stability at elevations of about 5 km
are scarce. In this case study, we attempt to detect indications of permafrost-related
instabilities over an 80 km segment at the highest part of the QTR, by using medium-
resolution Envisat SAR images. Section 4.1.1 gives a brief introduction to the Qinghai-
Tibet railway. Section 4.1.2 introduces the geological situation and the Envisat SAR data
used in the area of interest. Our approach for deformation time series estimation and
analysis is elaborated in section 4.1.3. We discuss the results and interpret the most
probable driving mechanisms for the deformation in section 4.1.4, followed by conclu-
sions in section 4.1.5.

4.1.1. Introduction
The Qinghai-Tibetan Plateau is well known as ‘the roof of the world’, see Fig. 4.1a.
Around fifty percent of the plateau is underlain by permafrost. Due to climate change
and human involvement, permafrost degradation and increasing ground temperatures
have been observed in recent decades (Wu and Liu, 2004; Cheng and Wu, 2007; Wang
et al., 2000). Such environmental changes may cause instability or damage to infras-
tructure (Yu et al., 2002; Wu et al., 2002; Jin et al., 2008). The Qinghai-Tibet Railway
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(QTR) is crossing the plateau, connecting Lhasa and Golmud by 1956 km of railway
track, including 550 km over permafrost, see Fig. 4.1b. To ensure a safe and sustainable
operation of the QTR, regular measurement campaigns are performed since regular
train connections started in 2006. Geodetic measurements include GPS surveys and
spirit leveling (Welk, 1997). However, such in situ surveys are notoriously difficult for
the QTR, due to the harsh environmental conditions at an elevation of 5 km and higher.
To investigate whether permafrost dynamics influence the infrastructure, Interfero-
metric Synthetic Aperture Radar (InSAR) techniques (Massonnet et al., 1993; Hanssen,
2001) may be used as an alternative. InSAR uses two or more satellite radar measure-
ments of the same area to extract ground deformation remotely and periodically, with
millimeter accuracy. InSAR techniques have been widely applied in monitoring ‘nat-
ural’ geophysical processes but lately they have also been successfully deployed for
structural health monitoring of infrastructure, especially in urban areas (Franceschetti
et al., 2002; Arikan and Hanssen, 2008; Chen et al., 2012; Chang and Hanssen, 2014).

Interferometric processing techniques require temporally coherent observations.
However, in a dynamic environment (snow, ice), coherence over longer time intervals is
rare, which implies that only few pixels can be used. Conventional techniques attempt
to identify coherent pixels before the deformation parameters are estimated (Bamler
and Hanssen, 1997; Ferretti et al., 1999b; Ciuc et al., 2002). Here we apply an alternative
processing methodology, in which we first estimate the displacement time series for
all pixels on the track irrespective of coherence. This is followed by an a-posteriori
assessment of their quality based on a specific set of criteria, as described below. In this
approach, we need to reduce the phase noise due to geometric decorrelation, obtain
sufficient observations along the track, detect relevant anomalies along the track, and
preferably find the most probable driving mechanisms. To satisfy these conditions,
we use a maximum perpendicular baseline threshold to select the interferograms to
reduce geometrical decorrelation (Berardino et al., 2002; Mora et al., 2002; Lanari, 2003)
and guarantee sufficient coherence while not losing resolution due to range filtering
(Gatelli et al., 1994). We then estimate the deformation time series for all scatterers on
the track, that is, irrespective of whether they are persistent scatterers (PS), distributed
scatterers (DS), or noise. We introduce a seasonal component into the deformation
model and estimate the unknown parameters based on the least-squares estimation.
Finally, we assess whether the estimated deformation parameters of the QTR can be
attributed to permafrost dynamics.

4.1.2. Geological situation and radar data
Permafrost is classified into cold, transitory, and warm classes (van Everdingen, 1998).
The cold (less than −1.5◦C) and transitory permafrost are relatively inactive as the
ground warms up, while the warm (more than −1◦C) permafrost is relatively active
and most vulnerable against thawing. In the permafrost environment, the active layer
thaws during summer and freezes in autumn (Brown and Kupsch, 1974). It extends
from the ground surface to the top of the permafrost layer. The permafrost layer in-
cludes frozen sediments, ground ice, bedrock and organic materials (Linell et al., 1981).
Distributed along the QTR, there is 416 km of warm permafrost (Cheng, 2003). Accord-
ing to observations during 2006 and 2010 at 27 sites, the active layer at the Tanggula
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Figure 4.1: (a) Location of the Qinghai-Tibet Railway (QTR) on the Qinghai-Tibetan Plateau. The QTR is
indicated by the black line on the elevation map. The full Envisat SAR image is marked by the blue square,
while we evaluated the area marked in green. (b) Elevation profile of the QTR track over a length of 1956 km,
including 550 km over permafrost. (c) Estimated linear deformation velocities in vertical direction.

Mts. site is one of the thickest, with depths down to 4 m (Wu et al., 2012). Therefore, we
chose this area as our study site, indicated by the green rectangle in Figs. 4.1a and 4.1c.
This area is located in the Qiangtang terrane (An et al., 2001; Royden et al., 2008), with
flat terrain in the southwest and the highlands in the southeast and north. Borehole
drillings show a geological structure consisting mainly of prairie soil, followed by a
frozen sandy gravel stratum (two meters below), and ice with clay. The frozen sandy
gravel stratum includes various unconsolidated sediments such as gravel, sand, silt and
clay.

We used a stack of 15 Envisat SAR images (Envisat, ASAR, 2004) acquired between
February 2007 and June 2009 (Track/Orbit: t405/T26010, see Tab. 4.1), to investigate
the QTR ground deformations during its operational use. The radar aboard the En-
visat satellite operates in C-band (5.6 cm), VV polarization mode. All used scenes are
acquired from the descending orbit.

4.1.3. Methodology
In order to obtain a stack of high coherence interferograms without limiting ourselves
to point-like scatterers, we define a threshold of 800 m for the perpendicular baseline
to select the interferograms. This leads to 15 radar images to generate the interfero-
grams. Every interferogram is the complex multiplication between two radar images: a
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Table 4.1: Envisat SAR datasets used in this study (Track/Orbit: t405/T26010). The temporal baselines Bt
and perpendicular baselines B⊥ are relative to the master image.

Nr. Acquisition dates Bt [days] B⊥[m]
1 20070220 -385 240.1
2 20070501 -315 66.1
3 20070605 -280 160.4
4 20070710 -245 -9.2
5 20070814 -210 30.5
6 20071127 -105 240.9
7 20080101 -70 -218.0
8 20080311 (master) 0 0.0
9 20080520 70 111.9

10 20081216 280 -43.2
11 20090120 315 237.4
12 20090224 350 227.9
13 20090331 375 706.5
14 20090505 420 58.0
15 20090609 455 392.2

‘master’ and a ‘slave’ image. To align all interferograms to the same master (radar) coor-
dinate system, a master image acquired on 11 March 2008 is selected and all the other
images are aligned on the master grid. Tab. 4.1 lists the acquisition dates and the tem-
poral and perpendicular baselines w.r.t. the master image for the Envisat SAR data. We
spatially crop all the images to an area of 80×50 km (marked by the green rectangle in
Fig. 4.1). We oversample all SAR images by a factor of two to avoid aliasing during inter-
ferogram formation, thereby reducing the pixel size of the SAR images in ground-range
from 20 to 10 m. We remove the main part of the topographic contribution via a 90 m
resolution DEM (SRTM, (Farr et al., 1999)) after the interferogram generation since
the terrain variability is considerable. Regarding the atmospheric inhomogeneities be-
tween master and slave images, we apply a temporal filter to remove the atmospheric
influences, in this case a temporal low pass filter since atmospheric states are assumed
to be uncorrelated in time. Then we produce the atmospheric phase screen (APS) by
an Ordinary Kriging method, see e.g. Wackernagel (1995), for each interferogram and
remove the noise. The Ordinary Kriging method is able to smoothly interpolate the at-
mospheric phase for all scatterers and decrease the noise by variogram estimation. Yet,
water vapor variability is minimal at these high altitudes.

We apply a two-step processing procedure to obtain the deformation time series
along the QTR track. First, for the wider area, within the selected image crop, we apply
standard PSI processing, see Ferretti et al. (2000a); Kampes (2005), to select tempo-
rally coherent, point-like scatterers and estimate the atmospheric phase screen. The
result of this step is a sparse set of PS points, but sufficient to estimate several nuisance
parameters. Second, for a two-sided 500 m wide buffer area along the geodetic coordi-
nates of the QTR, we apply the estimation algorithm on all pixels, irrespective of phase
stability. This approach allows us to (i) identify a maximum amount of measurement
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points, (including metal, concrete and stone of the railway construction), as well as rel-
evant points next to the tracks, while (ii) using the wide-scale PSI approach to reduce
the computational efforts.

Point selection
When all pixels within the buffer area are evaluated, the QTR track will contain many
incoherent pixels. We identify the coherent pixels using a series of adaptive directional
windows centered at a given pixel, minimizing the local gradient of amplitude, to cal-
culate the coherence value per pixel. The coherence value γ̂ is estimated by (Touzi
et al., 1999; Hanssen, 2001)

|γ̂| =

∣∣∣∣∣∣∣
1
N

∑N
i=1 Mi S∗

i√
1
N

∑N
i=1 Mi M∗

i
1
N

∑N
i=1 Si S∗

i

∣∣∣∣∣∣∣ , (4.1)

where Mi and Si are the complex values at a given pixel in two coregistered SAR im-
ages, the superscript

{∗}
is the sign for the complex conjugate, and N is the number of

pixels in the adaptive window. We find statistically homogeneous pixels (SHP) within
the adaptive window as suggested by Ferretti et al. (2011). Whether two selected pixels
can be considered as SHP is computed by hypothesis testing based on the amplitude
statistics of pixel pairs. In this testing, a neighboring area per pixel is established by a
comparison of the similarity of the empirical distribution functions of the two temporal
samples. Compared with the traditional boxcar window method, the adaptive window
method preserves edge structures and avoids pixel heterogeneity (Ferretti et al., 2011).
We use the Kolmogorov-Smirnov (KS) test for hypothesis testing. This is a nonparamet-
ric test which allows us to determine whether two or more pixels differ significantly. An
intermediate product in the KS test is the brotherhood number image. The brother-
hood number for every pixel is an indicator for the spatial similarity between this pixel
and its surroundings. For instance, a pixel without ‘brothers’ is either a single coher-
ent point (PS), or it is decorrelated, as it has no similarity with its surroundings. When
the brotherhood number for a certain point is 40, it means this point has 40 similar
neighboring pixels.

Parameter estimation
Due to freezing and thawing of the active layer, we expect seasonal displacements, and
thus the linear deformation model needs to be extended to account for these periodic
changes. In first order approximation, we add a sinusoidal function (cf. Eq. (3.4) and
appendix B) to the deformation model, defined at a given position x = x(x, y), and ex-
pressed as (Kampes, 2005; van Leijen and Hanssen, 2008)

y(x) = t · v(x)+ sin(2πt ) · s(x)+ (cos(2πt )−1) · c(x)+e, (4.2)

where y(x) is the unwrapped phase observation in the line-of-sight (LOS) direction,
and t is the temporal baseline (in years). The underlining of a vector indicates a
stochastic entity. The parameter v(x) represents the linear deformation rate in LOS,
while the coefficients s(x) and c(x) represent the seasonal periodic deformation in LOS,



4

70 4. Railway Monitoring

Figure 4.2: Selected part of the QTR track in optical and radar imagery. (a) location of the part of the QTR
(in red) in an optical (Landsat) image. (b) incoherently averaged radar amplitude image, showing a clearly
detectable QTR.

with amplitude A(x) =
√

s2(x)+ c2(x), and time offset (w.r.t. the master image time)
t0(x) =−sgn(c(x)) ·arccos(s(x)/A(x))/2π. The period of the sinusoidal function is as-
sumed to be one year. Unmodeled noise is denoted as e, which is the residual between
the observations and the estimations of the functional model using the best estimates
of the parameters. The linear and seasonal contributions of the deformations are es-
timated by means of the least-squares estimation. Note that due to the limited num-
ber of available Envisat SAR acquisitions after the QTR started its regular service, the
data span only 28 months. This implies that the seasonal component can be detected
from our data processing while the monitoring of longer term periodical deformations
would require more radar data.

The deformation in the line-of-sight direction can be projected onto the vertical di-
rection under the assumption that the deformation is predominantly in the vertical de-
formation and the horizontal deformation is marginal. Then, the vertical deformation
yv (x) follows from yv (x) = y(x)/cosθinc, where θinc represents the satellite incidence
angle.

4.1.4. Results and discussion
Fig. 4.2 shows the selected part (that is the rail segment between TG2 and TG3, see
Fig. 4.1) of the QTR in optical (Landsat) and radar imagery. In Fig. 4.2b the incoherent
amplitude average of 15 Envisat SAR images is draped over the optical image. The QTR
is a strong signal in the radar image because the scattering conditions of the railway
construction are uniform, while the amplitude is largely dependent on the orientation
of the track. A cardinal effect is visible for the parts of the track parallel to the azimuth
direction of the SAR. The Envisat satellite flew southbound (descending track) with its
radar antenna pointing westward. Since high mountains are located directly to the
west of the QTR, while the east side is less undulated, the QTR is well visible in the
SAR images. Yet, to monitor the entire QTR, layover and shadowing, e.g. in the steep
canyons, need to be taken into account while planning the optimal SAR acquisition
geometry (Hanssen, 2001).
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Figs. 4.3a and 4.3b show the incoherently averaged amplitude image and the broth-
erhood number image, respectively, over a 7.2×1.2 km area indicated by the yellow
rectangle in Fig. 4.2b. The brotherhood number is used to separate the QTR track and
its embankment from the surrounding area. We construct the adaptive window for
coherence computation per pixel based on the threshold setting for the brotherhood
number per pixel. Two linear objects, the G109 high speed way (located to the west of
the QTR) and the QTR track, are visible because of their high average amplitude values
shown in Fig. 4.3a.

We infer that the pixels with less than 60 brothers are typically reflected from the
QTR track itself including the embankment. Along the track, we recognize 1 to 4 grid
elements per azimuth line who have less than 60 ‘brothers’ (see Fig. 4.3b). Pixels with
more than 60 brothers are considered to be representing the surrounding meadow
area, and are discarded from further analysis.

All observed deformations are relative to a specific reference point. If this point is
unstable, then deformation interpretations for all the other points will be affected. To
find an optimal reference point, we select an area with minimal variability in spatial
deformation, in this case a 500×500 m bare rock area (indicated by the purple circle
in Fig. 4.1c), 2.4 km away from the QTR. All the deformations along the track are now
relative to this local reference area. The cumulative vertical displacements, yv (x), along
the track are shown in Fig. 4.4a, showing significant lateral variability.

Figs. 4.4b and 4.4c show the estimated linear component t · v̂(x) and the seasonal
components sin(2πt ) · ŝ(x)+ (cos(2πt )− 1) · ĉ(x) from Eq. (4.2). The comparison with
the elevation profile, Fig. 4.4e, suggests that the subsidence is faster along flatter areas
of the terrain, possibly due to the accumulation of sedimentary layers, sensitive to per-
mafrost variation. Between 20 and 75 km along the track the elevation difference is less
than 10 m. It is evident that there is a significant seasonal signal, with downward mo-
tion (red colors) in summertime and relative upward motion (blue) during winter. This
corresponds with the expected dynamics of the active layer. The seasonal motion cov-
ers a range of up to 20 mm. Fig. 4.4d is the residual ê from Eq. (4.2), which is in the order

Figure 4.3: (a) Incoherently averaged amplitude image. (b) Brotherhood number image in radar coordinates
(range and azimuth direction). This 7.2×1.2 km area is indicated by the yellow rectangle in Fig. 4.2.
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Figure 4.4: (a) Cumulative temporal evolution of observed vertical displacements along the track during the
evaluated time period. Tick marks along the vertical axis indicate the SAR acquisition dates. The dashed
horizontal lines refer to a period of seismicity between 08-June and 10-August 2008. (b) Estimated linear dis-
placement per location. (c) Estimated seasonal part. (d) Residual signal. (e) Elevation profile corresponding
with the track area. The x-axis is the 3D lateral distance (northbound) along the railway.

of a few mm. Both the total as well as the seasonal signal seems to be correlated with
the vertical gradients of the track: higher gradients decrease the velocity as well as the
seasonal amplitude of the signal. The horizontal dashed lines refer to the period of seis-
micity between 08-June and 10-August 2008 (USGS, http://earthquake.usgs.gov).
From this we conclude that potential displacements due to seismic activity along the
track cannot be detected from these data.

Empirical data on the dynamics of the active layer were collected by Wu et al.
(2012). Between 2006 and 2010, the active layer thickness of two Tanggula Mts. sites
named TG2 (91.88◦E, 33.31◦N) and TG3 (91.80◦E, 33.09◦N), see Fig. 4.1c, was found to
be 4.99 m and 4.59 m, respectively. Moreover, the corresponding rates of thickness-
change were 19.9 cm/y and 15.4 cm/y, indicating a deepening (thawing) active layer,
and a significant inter-annual variation was observed during 2006 and 2010. We find
the seasonal periodic deformation observed over the QTR to be one order of magni-
tude smaller than the thickness change of the active layer reported by Wu et al (2012).
This could be the result of the dampening of the deformation signal due to the sturdy
concrete foundation of the railway and its stone-pitching embankment, see Fig. 4.4c.

Among the potential driving mechanisms for the detected deformations (including
seismic activity, glacier dynamics, and train loading) permafrost dynamics seems to be
the most likely one. Continuing thaw settlement associated with an increase in soil
temperature affects the formation of ice and brings about unstable conditions during
initial thaw (Benn and Lehmkuhl, 2000). When soil thaws, water accumulated as ice

http://earthquake.usgs.gov
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is released, leading to an increase in soil moisture content that will reduce the shear
strength of the soil. As a result, the bearing capacity of man-made infrastructure (the
QTR in our case) will be substantially reduced. The increasing thickness of the active
layer found by Wu et al. (2012), could explain the linear velocity component, where
lateral variability is related to the inhomogeneity related to slopes. Considering the
combination of both linear as well as seasonal deformation, we believe that the active
layer variability (both seasonal as inter-annual) is the most likely candidate hypothesis.

4.1.5. Conclusions
In this case study, we investigated the stability of the Qinghai-Tibet railway (QTR) in re-
lation to permafrost dynamics. The results show that the analyzed segment of the QTR
cannot be considered stable. We find inhomogeneous deformation along the track,
with vertical rates of up to 10 mm/y. We also find seasonal displacements over a range
of over 15 mm. Thus, using the SAR data time series, we are able to detect variability
with characteristics similar as expected from permafrost dynamics, even though there
is not enough ground truth to attribute the signal unambiguously to permafrost. Yet,
it is evident that continuous satellite observations are of high value for the operational
safety of the QTR, particularly in the permafrost region.

In the following section, a more in depth case study using high resolution SAR data
from different viewing geometries will be presented. This aims at improving the appli-
cability of satellite monitoring for rail asset management, by analyzing deformations
in a track-fixed reference system.

4.2. Betuwe railway
In this case study that by using SAR measurements, we are able to detect mm-level
changes in the track geometry with a bi-weekly measurement update and a high spa-
tial resolution. When deformation of the infrastructure is mainly limited to the verti-
cal and horizontal transversal direction, it is possible to derive the deformation vec-
tor. Section 4.2.1 gives a brief introduction to the theory of using InSAR for the mon-
itoring of railway infrastructure. In section 4.2.2, a methodology for fine-tuning this
InSAR technology to railway infrastructure for routine and near-real-time monitor-
ing of spatio-temporal changes in geometry is presented. Also, the precision of the
obtained deformation vector components is analyzed and described in terms of the
variance-covariance structure. The method is demonstrated in section 4.2.3 on a seg-
ment of the Betuweroute, a freight railway heading from the Rotterdam harbor in the
Netherlands towards Germany, eastwards, by using 248 TerraSAR-X SAR images ac-
quired between 2009 and 2013, in a bi-weekly interval.

4.2.1. Introduction
On soft soils, the stability of railway tracks is a key safety and operational requirement
(Esveld, 2001; Coelho et al., 2011; Varandas et al., 2014). Increasing traffic combined
with higher speeds and axle loads requires special efforts in the maintenance of the
geometry and position of ballasted railway tracks. One important issue in this respect
is the early detection, identification and analysis of potential deformations along long
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segments of the infrastructure. Especially for railway tracks that are in near-continuous
use, it can be difficult to find time slots for laborious geodetic measurements (Roberts
et al., 2004; Ma et al., 2011; Stiros and Psimoulis, 2012). In order to achieve wide-
area and semi-continuous monitoring efficiently, Interferometric Synthetic Aperture
Radar (InSAR) techniques (Curlander and McDonough, 1991; Massonnet et al., 1993;
Hanssen, 2001; Hooper et al., 2007; Chang and Hanssen, 2012) can be applied. Using
satellite-based InSAR measurements, we are able to detect are able to detect changes
in the geometry of the tracks (Liu et al., 2011; Chen et al., 2012), up to millimeter preci-
sion (Ferretti et al., 2007), with a bi-weekly measurement update (Buckreuss et al., 2009;
Covello et al., 2008), and a high spatial resolution (Bamler et al., 2009). When deforma-
tion of the infrastructure is mainly limited to the vertical and horizontal transversal
direction, it is possible to derive these two components of the deformation vector by
multi-track radar data (Wright et al., 2004; Ketelaar et al., 2007), albeit with a sensitivity
that is dependent on the direction of the track. Here we analyze this precision and de-
velop algorithms to tune this technology, termed satellite radar interferometry, to the
case of railways. Compared to contemporary geodetic methods (e.g. tachymetry, level-
ing, or survey trains, our method allows for routine, systematic, and near-continuous
monitoring on the potential risk of the railway tracks, in particular for spatio-temporal
changes in geometry. Here we focus on the long term dynamic behavior of the tracks,
and the transition zones between railways on free embankments and fixed substruc-
tures such as bridges and culverts, subject to localized differential settlement, by using
a historical archive of SAR data.

Figure 4.5: 3D deformation vector projection for railway tracks and embankments, from the radar line of
sight (LOS) vector to a local Cartesian reference system. The main parameters involved are the azimuth
direction of the track βa , the slope γs , and the cant γt .
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4.2.2. Method
Deformation monitoring with InSAR, see chapter 2, requires phase observations from
coherent scatterers, which can be double-differenced to phase differences between
two locations and two epochs. From this, differential displacements can be derived
by multiplication of the phase differences with the radar wavelength (typically in the
order of cm’s) and correcting for the two-way travel of the radar pulse (Hanssen, 2001).
The coherent scatterers (Ferretti et al., 2000b, 2001) are primarily reflected from targets
which have stable phase values over time, such as buildings, bare rocks and rails. With
a number of differential displacements at the sequential epochs for a given ground tar-
get, the temporal behavior presented as the deformation time series, is explored (Kam-
pes, 2005; Ferretti et al., 2001; Chang and Hanssen, 2014).

Radar measurements are only sensitive to the projection of the (3D) deformation
vector dgeo onto the radar line of sight (LOS), dLOS (Hanssen, 2001; Kampes, 2005), see
Fig. 4.5. In practice, a local geodetic coordinate system is used for the projection, de-
fined as dgeo = [de ,dn ,du]T , containing the deformation components in East, North
and Up direction, respectively, and centered at the target. The projection can be ap-
plied via dLOS = pT dgeo, where p is the projection vector

p = [−sinθinc cosαh , sinθinc sinαh , cosθinc
]T

, (4.3)

where the local incidence angle is denoted by θinc, andαh is the instantaneous heading
(azimuth with respect to the North) of the satellite track.

Fig. 4.5 depicts the 3D deformation vector projection from the radar LOS vector to a
local Cartesian reference system. For a given location on the railway tracks (see Fig. 4.5)
we convert the North-East-Up directions into a local, track-fixed, Cartesian reference
system with dgeo = R1 R2 R3 dtrack via rotation matrices

R1 =
 cosβa sinβa 0
−sinβa cosβa 0

0 0 1

 ,R2 =
1 0 0

0 cosγs −sinγs

0 sinγs cosγs

 , (4.4)

R3 =
 cosγt 0 sinγt

0 1 0
−sinγt 0 cosγt

 ,

where dtrack = [dT,dL,dN]T spans a local, track-fixed, Cartesian right-handed coor-
dinate system in the Transversal, Longitudinal, and the complementing Normal di-
rection, respectively. Longitudinal and Transversal directions indicate the along and
cross-track direction of the rails, respectively, and Normal indicates the orthogonal
direction to Longitudinal-Transversal plane. We define the orientation of these axes
using three angles, i.e., βa , which is the azimuth of the track relative to the North, con-
fined to βa ∈ [−90◦,+90◦) to avoid the directional ambiguity of the track direction; γs ,
which is the longitudinal slope of the track, defined positive for an uphill slope, and γt

which can refer either to the cant of the track—which compensates for the centrifugal
forces—defined positive for a track curving to the right, or to the slope of the side of an
embankment, see Fig. 4.5. Note that in practice, train tracks have a maximum slope,
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|γs | ≤ 4◦, and a maximum cant, i.e. |γt | ≤ 6◦ (Esveld, 2001). This implies that the normal
deformation component dN is almost identical to the Up deformation component du ,
and that R2 and R3 are close to the identity matrix—yet if high precisions are required
they should be included.

With one satellite and a single viewing geometry, the estimation of the 3D defor-
mation components based on the line-of-sight measurements is ill-posed, with three
unknowns against one measurement. Therefore, it is impossible to determine the 3D
deformation from a single satellite imaging geometry unless additional constraints can
be introduced. However, a target on the ground may be observable from an ascending
(north-heading) and a descending (south-heading) orbit, with two different heading
orientations, αh,a and αh,d , respectively, yielding two projection vectors pa and pd .
This yields [

dLOS,a

dLOS,d

]
=

[
pT

a
pT

d

]
R1 R2 R3 dtrack = Pdtrack, (4.5)

where P is a 2×3 projection matrix. The radar measurements in line-of-sight direction
from ascending and descending direction are denoted as dLOS,a and dLOS,d , respec-
tively. As this system is still singular, and we may not have a third satellite viewing direc-
tion, we need to introduce constraints to resolve the system. Here we assume that the
deformation is dominantly orthogonal to the longitudinal direction, that is, the longi-
tudinal deformation component dL = 0. Rewriting Eq. (4.5) to a linear system of obser-
vation equations, where we introduce dL = 0 as an uncorrelated pseudo-observation
with low variance, say σ2

d ,L = 0.01 mm2, we write for the expectation operator E and
dispersion D , respectively

E {

dLOS,a

dLOS,d

dL


︸ ︷︷ ︸

d ′

} =
p11 p12 p13

p21 p22 p23

0 1 0


︸ ︷︷ ︸

A

dT

dL

dN


︸ ︷︷ ︸

dtrack

; D{

dLOS,a

dLOS,d

dL


︸ ︷︷ ︸

d ′

} =

σ
2
d ,LOS 0 0

0 σ2
d ,LOS 0

0 0 σ2
d ,L


︸ ︷︷ ︸

Qd ′

,

(4.6)

where pi j are the elements of P , and the variance of the line-of-sight deformation mea-
surement, σ2

d ,LOS, is ideally estimated to be 1 mm2 for the TerraSAR-X mission. This
system of observation equations can be easily extended should other viewing geome-
tries become available. In other words, the observable dL in Eq. (4.6) can be substituted
by the line-of-sight deformations from other viewing geometries and their correspond-
ing variances can be assumed asσ2

d ,LOS as well. It is noted that the more number of ob-

servations d ′ that we have, the more accurate estimation for the unknowns dtrack can
be obtained.

To assess the achievable precision of deformation component estimates in the local
track-fixed system, we produce the (co)variance matrix of d̂track using standard error
propagation (Teunissen et al., 2005)

Qd̂track
= (AT Q−1

d ′ A)−1. (4.7)

Fig. 4.6 illustrates the sensitivity of the rail track parameters βa , γs and γt . The setting
of these parameters refer to the characteristics shown in Tab. 4.2, and a LOS variance
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Figure 4.6: Sensitivity of rail track parameters (βa , γs , γt ), expressed using the variances of the normal (near-
vertical) component, σ2

dN
, the transversal component, σ2

dT
, and the covariance σdN ,dT

.

σ2
d ,LOS and the pseudo-observation varianceσ2

d ,L are assumed as 1 mm2 and 0.01 mm2,
respectively. With a varying βa and fixed γs = γt = 0, Fig. 4.6a shows the corresponding
variance for σ2

dN
, σ2

dT
and covariance σdT dN . It shows that σ2

dN
can always be bet-

ter estimated than σ2
dT

, and an east-west heading track, that is −95◦ < βa < −90◦ and
85◦ < βa < 90◦, results in a poorly estimable normal (near-vertical) component, i.e.
σ2

dN
> 9 mm2. For the lateral component the dead-bands lie in −120◦ < βa < −66◦

and 60◦ < βa < 115◦. Note that the covariance indicates a strong correlation between
both components. Best estimates are obtained for north-south heading tracks, see also
Figs. 4.6b and 4.6c, showing a variance of less than 1 and 2 mm2 for the normal and
transversal component, respectively. These figures also show that the effect of varying
slopes, γs , and cants, γt , is only marginal.

To jointly analyze the ascending and descending phase measurements, both in
their own relative datum, they need to be referenced to a common datum, the so-called
datum connection. A common reference area with sufficient coherent scatterers is re-
quired. We apply a spatially moving window with a given window size to find an area
where the temporal behavior of all coherent scatterers is homogeneous. The average
deformation for every epoch of all these points is considered as the common refer-
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Figure 4.7: The 12×12 km cropped image areas on the top of the Landsat-8 imagery, for the ascending and
descending orbits. A part of the Betuweroute is marked in green.

ence for all the other points, considering the conversion for different ascending and
descending viewing geometries. In general, different sensors capture different physical
targets (Ketelaar et al., 2007), which hampers interpretation. Therefore, two scatterers
imaged from different orbits, with a distance less than e.g. 3 m are assumed to stem
from the same physical object. Such targets can then be used to estimate deformation
in the track coordinate system from their LOS observations, following Eq. (4.5).

4.2.3. Results
A part of the Betuweroute close to Rotterdam, the Netherlands is used as test site, see
Fig. 4.7. The Betuweroute is a double track freight railway heading from Rotterdam
towards Germany which was finished in the middle of 2007. It serves a daily average
of 150 freight trains with a 6000-ton loading capability. Due to the very soft peat and
clay soils, and the increase of traffic frequency, it is extremely important to monitor
the stability or deformation of the rails and detect anomalies such as differential dis-
placements and the buckling of the rails, at an early stage to ensure the safety of the
operations. We use 116 ascending and 132 descending stripmap-mode images from
TerraSAR-X acquired between April 2009 and July 2013, see Tab. 4.2. The cropped im-
age areas for both ascending and descending orbits cover 12×12 km, as in Fig. 4.7 with
the rectangles. A part of the Betuweroute, denoted as line AB, lies in the overlap region
of these two cropped image areas.

By using the persistent scatterer interferometry (PSI) technique (Ferretti et al., 2001;
Kampes, 2005; van Leijen, 2014), we compute line-of-sight deformation time series,
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Figure 4.8: Deformation velocity map (LOS) superimposed on a temporally averaged reflectivity map from
ascending (a) and descending (b) orbits in radar coordinates.
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particularly for the persistently coherent scatterers (PS), from the ascending and de-
scending orbits. Figs. 4.8a and 4.8b depict the line-of-sight deformation velocity map
superimposed on a temporally averaged reflectivity map from the ascending and de-
scending orbits in radar coordinates. In each figure, the deformation velocities along
a part of the Betuweroute are filtered out whilst the subfigure on the top-left provides
the entire deformation velocity map. Even though the colorbar covers a rather wide
range from -20 mm/y to +20 mm/y, it is clear that both datasets detect significant de-
formation, e.g. due to subsidence or consolidation of the track south of the harbor area
(i.e., Waalhaven and Eemhaven, which are indicated by the purple W and E, respec-
tively). The reference area for each dataset is selected individually in the PSI process-
ing, marked by the purple star.

Table 4.2: TerraSAR-X satellite datasets used in analysis

Stack Track/Frame Heading Incidence Angle Start/End Date Acquisitions
Asc t025_T172643 350◦ 39.2 2009–2013 116
Desc t048_T060823 192◦ 23.5 2009–2013 132

To connect the ascending and descending results, we bring them into a common
datum by defining a reference area of 500×500 m. The common reference area that
is squared in purple in Fig. 4.8, has a near-zero average deformation rate and mini-
mal deviation. We focus on the main railway tracks within the overlap area, that is the
line AB. Considering the most relevant deformation components to be in the normal
(near-vertical) and lateral direction—the longitudinal component has less impact on
the safety of the rail—the deformation decomposition using both ascending and de-
scending datasets and Eq. (4.6) is applied to estimate the normal, dN , and transversal,
dT , components, see Fig. 4.9. Note that we downsample the grid in geodetic coordi-
nates and assume that ascending and descending observations within a grid cell stem
from the same target. Here in our case, the downsampled grid size in north and east
direction is 5 m. The parameters βa , γs and γt in the rotation matrices of Eq. (4.5) are
specified for every segment of the railway.

We produce the cumulative normal dN and transversal dT spatial deformation map
over time using TerraSAR-X InSAR data time series acquired from ascending and de-
scending orbits for the line AB, see Figs. 4.9a and 4.9b, and also produce the deforma-
tion velocities profile in the normal and transversal directions, as in Figs. 4.9c and 4.9d.
For all figures, the horizontal axes express the distance [m] along the track w.r.t. point A.
The vertical axes for Figs. 4.9a and 4.9b show the cumulative deformation relative to the
first image-acquisition date, 6 April 2009. The profile in Fig. 4.9a shows that a signifi-
cant normal deformation area, with more than 5 cm of cumulative displacement in the
analyzed time period, is detected in the 5 to 7 km distance segment (in Vondelingenweg
segment). Transversal displacements, see Fig. 4.9b, appear to be small, but clear dis-
continuities can be observed that can be indicative for high-strain areas, in particular
when correlated with the normal components. Note that the discrete discontinuities
in both normal as well as transversal directions may relate to the transition zones be-
tween free embankments and fixed substructures such as bridges and culverts (Coelho
et al., 2011; Varandas et al., 2014). Figs. 4.9c and 4.9d show the estimated velocities
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Figure 4.9: Spatial profile for the deformation accumulation and the deformation velocity for the normal dN
and transversal dT components, over the line AB.

per line segment, demonstrating that the strongest normal deformation velocities are
detected in the Vondelingenweg segment, south of the harbor, while the behavior in
the transversal direction is less pronounced. Note that the gray mask indicates the seg-
ments lacking PS observations.

To express the quality of the deformation component estimates in the local railway
track-fixed coordinates, error ellipses are computed based on the (co)variance derived
from Eq. (4.7). In our case, diag(Qd ′ ) = (9, 9, 0.01)T [mm2] considering the viewing ge-
ometry of the TerraSAR-X data. We randomly show a limited number of PS estimates
along the track, relative to point A, to illustrate the corresponding 95% confidence in-
terval error ellipses. These are shown in Fig. 4.10, superimposed on the Landsat-8
imagery. In Fig. 4.10A, the final total deformation vector [mm] per estimate is indi-
cated with a white vector by its normal (N, along the vertical axis) and transversal (T,
along the horizontal axis) components. The top subfigure gives the corresponding PS
(marked by the red dots) location distribution along the track in terms of the distance
w.r.t. point A. Since the normal components are dominant, most deformation vectors
are close to the vertical direction. The error ellipse in magenta per estimate shows the
confidence interval [mm], the precision of the two components and their correlation,
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via the ellipse size and orientation. Thus, signal-to-noise ratios and significance can
be assessed by comparing the length of the vector and the size of the ellipse, from this
figure. The separate normal and transversal components with their errors are shown in
Figs. 4.10B and 4.10C, respectively. These indicate that the track segments south of the
Waalhaven and Eemshaven harbors (see the green square area in Fig. 4.10B) have sig-
nificant normal deformation probably due to the heavy loading of the train track, and
in the transition zones significant normal deformation is detected as well. Transver-
sal deformations are marginal but relevant. Moreover, according to the results of the
error ellipses, the uncertainty in the normal direction is generally less than the one in
the transversal direction, which implies that the estimates in the normal direction are
more reliable than the ones in the transversal direction. In order to validate our results,
we compared our results with in situ survey train measurements, see Fig. 4.10D. Only
a 1 km segment was made available for the comparison. The required vertical uplift
for the railway track per 10 m in this segment (w.r.t. the measured track height in 2004)
was computed by the survey train measurements and performed in January 2013. Ev-
ery uplift estimate is marked by a blue cross. The normal linear deformation rates for
the PS points within this segment are shown in black. Around the 5.25 km indicator,
the comparison shows that the locally faster subsiding areas require a bigger uplift, and
vice versa. Between the 5.25 to 5.4 km distance segment, the uplift values approach to
zero, while the behavior of the PS points in this area is spatially homogeneous, repre-
senting the small variation of their deformation rates. Particularly, the uplift values in
the 5.45 to 5.7 km distance segment are more than 50 cm. The deformation rates of the
PS points in this area are strongly varying and considerably increasing. After the 5.7 km
distance, the uplift values are still proportional to the deforming rates of the PS points.
The comparison demonstrates that the uplift values of the railway track are highly cor-
related with the normal deformation rates observed by the satellite. This suggests that
spatially anomalous deformation detection and the maintenance of the railway tracks
can be assisted by satellite-based InSAR monitoring.

4.2.4. Conclusions
The satellite InSAR measurements of railway tracks presented here prove to be ad-
equate to significantly estimate displacement time series in the lateral and normal
(near-vertical) direction, with millimeter precision, assuming the absence of longitudi-
nal deformation. We derived the decomposition equations to convert satellite line-of-
sight displacement measurements to a local Cartesian track-fixed coordinate system,
showing how observational errors propagate into the estimates. The sensitivity of the
techniques using the TerraSAR-X imaging geometry of ascending and descending or-
bits, was shown to have dead-bands where the sensitivity for displacement estimates
is low. The method is tested on a segment of the Betuweroute, in the Netherlands, us-
ing 248 TerraSAR-X satellite images acquired between 2009 and 2013, with a bi-weekly
interval. The results show that track segments south of the Waalhaven and Eemhaven
harbors are subject to significant vertical displacements, up to 5 cm, most likely due to
settlement or compaction. Moreover, sudden abrupt changes in displacements along
the track suggest transition zones between free embankments and fixed substructures
such as bridges and culverts, subject to localized differential settlement. Transversal



4.2. Betuwe railway

4

83

Figure 4.10: Quality of the deformation estimates for (A) the total deformation vector, (B) the normal and
(C) transversal deformation components. (D) The comparison between the survey train measurements and
InSAR results for the 1 km segment.
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displacements are dominantly in the northward direction. Furthermore, according to
the comparison between survey train measurements and our results in a 1 km segment,
the large railway track uplift area corresponds with a considerable normal subsidence.
In the case of using TerrSAR-X SAR data, the methodology demonstrated here can be
used to improve the efficiency of managing rail infrastructure, enabling a systematic
monitoring, which could be deployed to provide semi-continuous (bi-weekly) status
updates.

4.3. Summary
In this chapter, we applied time series InSAR techniques to two different study sites:
the Qinghai-Tibet Railway (QTR) and a segment of the Betuweroute, in the Nether-
lands. We demonstrated the feasibility of monitoring railway infrastructure using the
satellite techniques in both rural and urban environments. We developed methodol-
ogy to improve the capability for operational railway infrastructure monitoring.

In a rural environment, particular in a dynamic environment (snow, ice), such as
in the QTR case, we applied a point-selection method using an adaptive directional
window filter, to optimize the amount of InSAR measurement points over the railway.
The kinematic time series of those InSAR measurement points (derived from PSI pro-
cessing) were used to explore the temporal behavior of the railway. We also applied
a sinusoidal function to account for seasonal variations, and found strong indications
for permafrost-related railway dynamics.

In an urban environment, such as the Betuweroute case, we derived the decompo-
sition equations to convert radar line-of-sight displacement measurements to a local
Cartesian track-fixed coordinate system, using multi-track SAR data. We described the
quality of the deformation component estimates in the local Cartesian track-fixed co-
ordinate system based on the variance-covariance structure. We also demonstrated
that our InSAR results fit well with in situ survey train measurements.
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This chapter will focus on structural health monitoring of a single building. We show a
forensic research using InSAR techniques on the near-collapsed building ’t Loon due to
a developing sinkhole, related to previous underground mining activities. We present
the PSI application on monitoring the structural health of building ’t Loon, showing
how multi-track SAR data (ERS-1, ERS-2 and Envisat and Radarsat-2) can be converted
into the identical system, how to obtain the precise PS geolocation aided by lidar-based
DSM data, and how to hypothesize the driving mechanism of the ground anomalous
deformation.

5.1. Introduction
Upward migrating cavities of both natural or anthropogenic origins are an important
hazard in many parts of the world, able to cause sudden cover-collapse leading to
sinkholes (Coker et al., 1969; Newton et al., 1973; Lamoreaux and Newton, 1986; Cara-
manna et al., 2008; Galve et al., 2009; Tolmachev and Leonenko, 2011). Moreover, ris-
ing population densities in sinkhole-prone areas, in combination with media attention
using public video surveillance and private cell phone video, have increased public
awareness (Meng, 2013; CNN, 2014; Schwartz, 2013; Wines, 2013). Apart from sudden
collapse sinkholes, the consequences of migrating cavities include the lack of support
of building foundations, drainage of water bodies, and the deformation or destruction
of water defense systems or critical infrastructure (Gutiérrez et al., 2009).

The chief problem in the assessment of sinkhole risk is the lack of a priori knowl-
edge on the location of the cavity (Baer et al., 2002; Wust-Bloch and Joswig, 2006). Al-
though in situ measurements, such as gravimetry (Colley, 1963), seismic (Cook, 1965)
or electromagnetic surveying or ground-penetrating radar (Beres et al., 2001; Mochales
et al., 2008), are in principle able to detect an underground void, it is not econom-
ically possible to use these techniques over vast areas. Moreover, the risk of fatali-
ties is highest for urbanized areas (Bezuidenhout and Enslin, 1970; Frumkin and Raz,
2001), in which the built-up environment prevents getting close enough to perform
these measurements. The second problem is that there is usually no data available
preceding a collapse, so it cannot be assessed whether there was precursory motion,
and how far ahead in time critical levels can be detected. Here we investigate the use
of satellite radar interferometry to detect minute signs of impending sinkholes (Abel-
son et al., 2003; Nof et al., 2013). In particular, we hypothesize that precursory defor-
mation may be occurring before sinkhole formation, potentially detectable as relative
displacements using radar satellites. As this hypothesis can only be tested empirically
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Figure 5.1: Location of the study area (Heerlen, the Netherlands) and the shopping mall from airborne im-
agery. A 3D model of the building at the lower right was constructed using airborne lidar-based data and
photographic information, see Fig. 5.3 and the ground-view photo on the lower left. The area indicated by
the red square was subject to the localized subsidence. Aerodata 50◦53′10′′N and 5◦58′13′′E.

using case studies we choose a near-collapse event of a shopping mall in Heerlen, the
Netherlands, to investigate the efficacy of the method. Even though a successful case
study does not prove generic applicability of the approach, it is crucial to expand the
scarce empirical material available.

5.2. Study area and near-collapse event
From the late 19th century to the mid 1970s, coal mining took place in the Heerlen
area, in the southeastern Netherlands, see Fig. 5.1 (Messing, 1988; Westen, 1971). The
extraction of coal caused up to several meters subsidence of the surface, leading to
damage to the build-up environment (Caro Cuenca and Hanssen, 2008; Caro Cuenca,
2012). After the discovery of large reserves of natural gas in the north of the country,
mining ceased abruptly, and shafts and galleries were backfilled and abandoned, but
possibly leaving cavities. When the overburden of the mine galleries would collapse,
such cavities could migrate upwards over time and eventually reach the surface.

Shopping mall and apartment building ’t Loon in Heerlen, see Fig. 5.1, was built in
1965, as it later appeared some 90 m above an abandoned mining gallery. In June 2011,
movements were occurring in the structure of the mall, and periodic surveys were per-
formed to monitor their behavior (Engelbertink et al., 2012). Late August 2011, cracks
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were observed in the columns supporting the car park below the mall, leading to the
installation of support constructions and further investigations. November 29th, a sig-
nificant crack was observed in the head of column D18, see Fig. 5.2, and parts of the
floor and facade had deformed. A part of the mall was evacuated. December 3rd, an
8 m wide and 1.5 m deep sinkhole occurred beneath column D18, marked in red in
Fig. 5.2 (Hordijk, 2012). The entire complex (mall and apartments) was evacuated. The
municipality decided to demolish the part of the mall that was constructively affected.

In the analysis of the event, several hypotheses were formulated on the driving
mechanisms for the sinkhole, such as (i) coal mining activities between 1950 and 1956,
(Parise, 2012) (ii) rising mine water, (iii) surface water run-off, (Sinclair, 1982) (iv) karst
dissolution, (Parise and Lollino, 2011) and (v) tree roots and the flushing of a broken
sewer system, where it was recognized that it could also be a combination of mecha-
nisms (Roest, 2012).

In this study, we use the Heerlen events to investigate the value of satellite radar
data archives to detect potential sinkhole-prone locations over build-up areas, to as-
similate various data sources, and to analyze the spatio-temporal information retrieved
from the data. In section 5.3 we discuss the applied methodology for multi-sensor data
processing and precise geolocation, followed by the results and interpretation in sec-
tion 5.4. Section 5.5 is dedicated to the Conclusions.

5.3. Methods
In order to investigate the hypothesis of precursory deformation preceding sinkhole
occurrence, we jointly use the SAR data archives of four radar satellites (ERS-1, ERS-2,
Envisat, and Radarsat-2) over a period of close to 20 years. We then apply radar in-
terferometry via time series analysis using a persistent scatterer interferometry (PSI)
method (Ferretti et al., 2001; Kampes, 2005). This yields estimates of the relative one-
dimensional motion of time-coherent scatterers, here termed PS, in the radar line of
sight (LOS) (Ferretti et al., 2000b; Hanssen, 2001; Ketelaar, 2004). The periodically ac-
quired SAR images are then used to retrieve the deformation time history. In our case,
we applied a joint multi-sensor approach for the four SAR satellites and optimized the
geolocation of PS points using external lidar-based digital surface model (DSM) data.

5.3.1. Joint multi-sensor processing
In this study, we use 69 ERS-1/2, 71 Envisat and 20 Radarsat-2 stripmap SAR im-
ages acquired all from descending orbit geometries between April 1992 and October
2011. By using the Delft implementation of Persistent Scatterer Interferometry (DePSI)
(Kampes, 2005), the PS deformation time series for these four satellites are produced.
We use precise orbit data with precisions better than 15 cm, (for Radarsat-2 after re-
adjustment, see Bahr and Hanssen (2012)), and remove acquisitions with perpendic-
ular baselines greater than 850 m. Unwrapping is performed using integer bootstrap-
ping, see Kampes and Hanssen (2004b). In first instance, the deformation time series
of PS in every dataset are relative to an arbitrary selected PS reference point. Moreover,
the incidence angles vary for each satellite system, i.e. 23◦, 21.6◦, and 33.3◦ for ERS-1/2,
Envisat and Radarsat-2, respectively, which causes different projections of the defor-
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Figure 5.2: Schematic drawing of ground subsidence (purple) and sinkhole (red), and coal mining map under
’t Loon. The rectangles in the top figure represent the concrete foundation elements. The light green area
outlines the end of a mine gallery of the Oranje Nassau mine. The blue numbers show the height of the ceiling
of the gallery, while the red numbers represent the height of the top of the carboniferous layer, both relative
to the Dutch national vertical datum (known as ‘NAP’). The difference between these numbers indicates that
the carboniferous layer was very thin (less than 8 m) above the gallery, thus increasing the collapse risk. The
black numbers and vectors show the dipping angle of the gallery. The bottom figure is a cross section over
the center of the subsidence area. (Figure adapted from (Hordijk, 2012))
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mation to the vertical direction. Thus, as the PS results from different satellites are in
different local datums, a datum transformation is applied to align them into a uniform
datum. For each satellite InSAR data stack, we introduce a standard interferometric
functional model w.r.t. an individual reference PS point,

φk
0P =φk

P −φk
0 =φk,topo

0P +φk,defo
0P +φk,atmo

0P +φk,n
0P , (5.1)

where φk
0P is the interferometric phase for point P w.r.t. reference point 0 in interfer-

ogram number k, and φ
k,topo
0P represents the height phase residual after removing the

main part of the topographic contribution via a coarse (90 m) resolution DEM (SRTM,
(van Zyl, 2001)). The term φk,defo

0P represents the relative deformation between point P

and point 0. The differential atmospheric delay component is φk,atmo
0P , and the noise is

φk,n
0P .

To correct the difference in reference point 0 per dataset, we manually select a per-
sistent scatterer R (i) that could be uniquely identified in each time series, (ii) that ex-
ists over the entire data acquisition time period as a joint PS reference point in all the
SAR datasets, (iii) which is far enough outside the area of interest, and (iv) which is far
enough outside the wider uplift area due to the rising water tables after termination of
the mining activities, located farther north, see Caro Cuenca et al. (2013). Moreover,
within the vicinity of R, PS points show homogeneously constant velocities, suggesting
that the reference area is sufficiently stable. Subsequently we convert all the PS points
into a same coordinate system using

φk
RP =φk

0P −φk
0R , (5.2)

whilst the deformation parts are converted as well byφk,defo
RP =φk,defo

0P −φk,defo
0R . The rel-

ative height residuals w.r.t. point R as well as the atmospheric delays are estimated with
sufficient precision due to the number of available SAR images (Chang and Hanssen,
2012). However, for a more precise absolute geolocation of the PS points of interest—in
order to link the points to a specific part of the structure—we need a shared absolute
reference level.

5.3.2. Precise geolocation of PS points aided by lidar DSM
A precise geolocation of PS points w.r.t. buildings and infrastructure is needed to avoid
an erroneous interpretation of the driving mechanisms (Perissin, 2006). It requires the
sub-pixel positioning of the peak of the impulse response function, here applied using
oversampling. With a ground resolution of 20 m in range and 4 m in azimuth (for ERS
and Envisat), the positioning precision is in the order of about 1 m. The interferometric
uncertainty of the relative vertical positioning in PS techniques is around 1 m as well
(Perissin, 2006). However, inaccuracies in the master satellite orbit and clock, abso-
lute atmospheric delays and various geophysical parameters (such as solid Earth tides,
plate tectonics and loading) cause a systematic error that biases the geolocation up to
a few meters (Eineder et al., 2011). This hampers the attribution of the observed PS to
a specific part of a building or structure.

To iteratively improve the geolocation for DePSI-derived PS results, we use ground
control points (GCPs) for the horizontal positions and correlate them with external li-
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dar measurements for the vertical. As GCPs lamp posts are used, which show a clear
and unique reflection in the radar image. Subsequently, for the vertical positions, a
highly accurate lidar-based DSM, containing both terrain as well as building heights, is
used to compute the offset between PS and DSM height distribution histograms over a
wider region of 10×10 km. As the absolute height offset is identical for all PS, and the
horizontal position of the PS is already corrected for using GCPs, this procedure has the
advantage that the radar line-of-sight geometry is not relevant anymore. This process
of horizontal and vertical offset estimation is repeated until convergence is reached.

The DSM, referred to as the Actual Height model of the Netherlands (AHN), is lidar-
based. It was acquired between 1997 and 2007 and processed to a product with a post-
ing of 5 m and a vertical precision (absolute and relative) of 15 cm (van der Zon, 2013).

Figure 5.3: Line-of-sight PS deformation maps for ERS-1/2 (A), Envisat (B), and Radarsat-2 (C). Area size is
10×10 km. The reference point is different for each dataset, indicated by the solid red triangle. The joint
reference point is marked by the open white triangle, the zoom around this point is shown in the inset fig-
ures. Shopping mall ’t Loon is within the white rectangle. (D) Lidar-based 3D point cloud of the mall and its
surrounding. The inset shows the 3D building model.
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5.4. Results and discussion
Line-of-sight PS deformation maps are produced via individual PSI processing for ERS-
1/2, Envisat and Radarsat-2, see Fig. 5.3A, 5.3B and 5.3C, respectively. The reference
point is different for each dataset, indicated by the solid red triangle. To merge the PS
time series, we select a joint reference point with constant amplitude behavior in all
SAR datasets, see the open white triangle and the zoom around this point in the in-
set figures. Shopping mall ’t Loon is within the white rectangle. Based on DSM data, we
then show the interpolated 3D point cloud of the mall and its surroundings in Fig. 5.3D.
Note the effects of smoothed building edges due to the interpolation of gridded point
data. The inset shows a 3D building model derived assuming parallel facades and
orthogonal angles, in combination with photographic information (ProEngineer soft-
ware).
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Figure 5.4: Histograms of lidar-based DSM data and PS heights before offset correction, and the offset be-
tween lidar and PS heights for Envisat (10×10 km). A.) Distribution of DSM height close to PS points. B.)
Original distribution of PS height. C.) Height offset distribution between DSM data and PS height, and the
mean offset value hoffset =−4.824 m.

The lidar-based DSM height correction, cf. section 5.3.2, is applied to correct for the
height offset of all PS points. Fig. 5.4A shows the histograms of lidar-based DSM points
selected close to PS points (< 5 m, horizontal), and B shows the histogram of these
corresponding PS heights. Fig. 5.4C shows the height offset distribution, indicating an
estimated mean offset of hoffset =−4.824 m. This yields the adapted heights of the PS.
It should be noted that the applied method for offset estimation is not perfect, as the
corresponding radar and lidar points may stem from different objects. However, by
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applying this method over thousands of points we obtain a reasonable offset, of a few
meters. After offset estimation, we can classify points as stemming from the roof or
from the ground. In Fig. 5.5 we interpolate both classes separately, since intra-building
displacements may be independent of land surface displacements. The locations of
the observation positions are indicated in the figure (squares for roof and circles for
ground positions) to visually assess the impact of interpolation uncertainty. We applied
Ordinary Kriging, which allows for producing prediction error maps as well.

After projecting all LOS displacements onto the vertical direction, the deforma-
tion velocities of PS points are time variable, indicated by different color bar ranges
in Figs. 5.5A, 5.5B, and 5.5C. The figure shows unambiguously that the observations
stemming from the roof behave independently from observations from the surround-
ing ground area. Note that we have assumed that all displacements are mainly vertical,
as we do not have complementary ascending orbits to decompose the displacement
vectors. Nevertheless, a common decomposition direction is required in any case to
allow for the comparison of data with different incidence angles.

In the last couple of years shown in Fig. 5.5C, the vertical deformation in the near-
collapse area increases by a factor of three, up to a velocity of 15.6 mm/y. For two
representative points, indicated with PS1 (maximum deformation) and PS2 (stable),
Fig. 5.6 shows the deformation time series. For PS1, the average deformation rate is
3.3 mm/y during the first 18 years. Two accelerations are observed: between October
2005 and June 2006, and in the summer of 2010. During the latter, a strong acceler-
ation occurred, with an additional 2.1 cm displacement preceding the final failure of
the garage structure. In total, 8 cm of vertical deformation is observed over the en-
tire period of 20 years. Considering interpolation uncertainty, the differential displace-
ments appear over a horizontal distance of less than 20–40 m, which implies that a
shear strain of more than 2–4 millistrain was built up, or a shear strain rate of more
than 100–200 microstrain per year.

From Fig. 5.6 we observe that the noise levels are higher for the ERS-1/2 time series
than for the Envisat/Radarsat-2 data. Nevertheless, all estimates are still far below the
ambiguity levels of 3.07, 3.02, and 3.32 cm (vertical projection) for the satellites ERS-
1/2, Envisat and Radarsat-2, respectively. This implies that the two observed acceler-
ations of PS1 cannot be due to phase unwrapping errors. Moreover, the fact that PS2
does not show the acceleration in the summer of 2010, in conjunction with the start
of the Radarsat-2 series, proves that the observed acceleration is not due to instable
reference points or noise in the data.

These data suggest a gradual motion, possibly the upward migration of a cavity,
observable at least two decades before the 2011 collapse-sinkhole events. In the fol-
lowing, we will discuss the driving mechanism hypotheses and time-line based on the
local geological condition.

The subsurface of Heerlen is sampled by core drillings performed on-site after the
collapse (Heitfeld et al., 2012). From the top down, this consists mainly of sandy ma-
terial, (Rupel and Tongeren formation) see Fig. 5.7, followed by limestones (Maastricht
formation) and the carboniferous layer where the mined coal seams are located. Two
important observations followed from the core drilling. First, between Rupel and Ton-
geren there is a shallow impermeable clay layer, known as the Goudsberg member,
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Figure 5.5: Interpolated PS velocity maps, projected onto the vertical direction, from ERS-1/ERS-2 (1992/04–
2000/11), Envisat (2003/12–2010/10), and Radarsat-2 (2010/06–2011/10). Interpolation using Ordinary Krig-
ing is applied independently for the roof areas and the ground areas, as these are not necessarily correlated.
The original PS points are plotted to visually assess the influence of interpolation uncertainties. Ground
points are marked with circles and roof points with squares. Note the wider color bar range in C for the
Radarsat-2 data.
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Figure 5.6: Temporal distribution of radar acquisitions and deformation time series of two PS (locations indi-
cated in Fig. 5.5). PS1 is within the collapse-sinkhole area, with relatively large velocities, while neighboring
PS2 is stable. During the first 18 years, the average vertical deformation rate of PS1 is 3.3 mm/y, relative to
the stable parts of the building, while the deformation rate of PS2 remains 0.6 mm/y during the whole pe-
riod. For PS1, a first acceleration is observed between October 2005 and June 2006. Then, in the summer of
2010, a strong acceleration occurred, up to a velocity of 15.6 mm/y and an additional 2.1 cm displacement
preceding the final failure of the structure. These accelerations may be due to the breaking of clay layers and
consequent transport of water and material, cf. phase C-E in Fig. 5.8. The black lines represent the average
linear deformation per sensor.

which seems to be curved downward at the sinkhole location. Second, in the carbonif-
erous layer, above the mine galleries, sandy layers were observed, which seem severely
fragmented and weakened.

Based on the core drillings and the observed deformation rates from InSAR, we
hypothesize that the cavity finds its origin in the partial collapse of the mine gallery,
which created the fractured and fragmented area above it, see Figs. 5.8A and 5.8B. Over
time, and possibly in relation to ground water dynamics, the cavity collapsed sequen-
tially, causing it to move gradually upward. It appears plausible that the impermeable
Goudsberg clay layer acted as a hydrological boundary, which curved downward with
the rising cavity below, see Fig. 5.8C. Then, when the curvature became too strong, the
layer fractured, causing a hydrological connection between the strata above and below
and consequently transport of water and sand between these strata. We hypothesize
that this may explain the sudden acceleration between 2005 and 2006. As soon as the
cavity passes the clay layer, it cannot be arrested by the soft sandy strata. As a result, the
cavity widens while continuing to propagate upwards, cf. Fig. 5.8D. This explains the
sudden acceleration of the deformation from the InSAR data, starting summer 2010,
more than one year before the collapse. Finally, Fig. 5.8E shows the occurrence of the
sinkhole at the mall. In this last stage, the combination of ground water and soil trans-
port facilitated the collapse.
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5.5. Summary and conclusions
In this chapter, we set out to demonstrate the feasibility of structural health assessment
of building infrastructure using radar satellite. We also demonstrated the feasibility
of early detection of dynamic processes in the underground, long before they unveil
themselves as surface sinkholes, with risks for life and property. Four consecutive In-
SAR time series from the satellites ERS-1, ERS-2, Envisat and Radarsat-2 between 1992
and 2011 detected deformation of PS over the Heerlen area, with an emphasis on shop-
ping mall ’t Loon. We detect localized strain within the concrete structure of the mall,
exactly at the location where the construction later failed in early December 2011. The
data suggest that the driving mechanism of the collapse-sinkhole must have a long lead
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Figure 5.7: Geological profile under ’t Loon (adapted from (Heitfeld et al., 2012)). The formation includes
four main strata: from top to bottom the Rupel, Tongeren, and Maastricht formation and the carboniferous
layer. The mining activities took place in the fragmented and weakened carboniferous zone below the sand-
stone layer. The ground height is 103.3 m w.r.t. NAP. The red arrows show possible soil movement due to the
permanent seepage flow of ground water down to the mining gallery. The open black triangles indicate a
mining induced fracture zone at 81 m depth.
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Figure 5.8: Hypothesized cavity migration sequence, suggesting a long (decadal) and gradual process after
termination of the mining activities, starting with the collapse of the direct overburden (A and B) due to
fractures and water movement. Elastic deformation of the layers above may occur, and hydrological units, as
confined by the Goudsberg clay layer (in purple) may still be intact, (C). At shallow depths, elastic structural
deformation of the building will be possible as observed by InSAR. In (D) we suggest the collapse of these
hydrological confinements, corresponding with the observed accelerations, finally leading to the sinkhole at
the surface (E).

time, significantly observable from the early 1990s. Two periods of accelerated defor-
mation suggest the detectability of sudden subsurface events, such as the breaking of
hydrologically confining clay layers, as in situ core drillings suggest. Therefore, given
dense time-series of radar data, subsurface cavity migration may be detectable at an
early stage, even when occurring beneath buildings. We suggest the implementation of
automatic detection algorithms as in chapter 3, to scan radar databases over sinkhole-
prone areas, typically looking for localized spatial anomalies in the deformation rates,
as well as for variations in the time series.



6
Conclusions and Recommendations

The main objective of this study is to develop and demonstrate methodology to im-
prove the capability for operational infrastructure and structural health monitoring us-
ing satellite radar interferometry. Hereby, it is assumed that the relative deformation of
InSAR measurement points on a structure is a key input parameter in the assessment
of its health. The study is centered around the main research question:

How to optimally assess and monitor structural health of civil infrastructure using
satellite radar interferometry?

It is evident that the assessment and monitoring of all civil infrastructure on Earth will
never be ‘optimal’ in the sense that one satellite method can yield all-encompassing
and conclusive results. It is even very likely that the majority of civil infrastructure
in the world will not be measurable at all, due to the lack of satellite acquisitions, an
unfavorable object size and geometry, the lack of representative radar reflections, or
limitations in radar resolution and revisit frequency. Yet it cannot be denied that the
rapid expansion of satellite missions, improvements in resolution, revisit frequency,
measurement precision, data availability and cost holds an unprecedented potential
to gather information on our built environment. ‘Optimality’ should therefore not be
assessed from the perspective of one specific object, but from a bird’s eye viewpoint.

The assessment of ‘structural health’ of civil objects and infrastructure requires a
close collaboration of different disciplines. Yet, similar to the health assessment of a
human body, one cannot come to a diagnosis without observations. Furthermore, early
warning (preventive) observations are preferred over observations after a critical health
defect has already manifested itself. Similarly, also for structural health monitoring us-
ing observations from satellites we can distinguish forensic analysis, investigating the
behavior of a structure after a failure manifested itself, and preventive monitoring, to
identify anomalies in behavior that may be indicative for impending structural failure.
The first application is valuable to study and recognize patterns in structural health
failure, while the second aims to prevent failure by detecting structural weakness be-
fore it leads to failure.

The main research question is subdivided into four specific research questions
which we will discuss subsequently.

1. How to design the optimal functional and stochastic model?

We use satellite radar phase measurements to estimate kinematic parameters
of points on a structure. A representative mathematical model is a prerequisite
for estimating these parameters in a precise and reliable way. For infrastructure
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monitoring, this mathematical model, consisting of a functional and stochas-
tic part, should focus on the temporal behavior of points, and allow for point
pairs at close distance to differ significantly. This is different from conventional
InSAR/PSI processing of spatially correlated signals such as subsidence bowls,
earthquakes or even volcano deformation. For infrastructure, the overall motion
of the entire structure may not lead to damage, as local strain is minimal, but a
local difference results in a high strain and a higher failure likelihood.

In current radar interferometric processing methods, a functional model with a
minimal number of parameters is preferred (the standard steady-state model).
The (implicit) stochastic model is a simple assumption of constant variance of
the observations. The degree-of-fit of the data points with the functional model
is then a metric to decide whether a point should be rejected as being a coher-
ent (persistent) scatterer, or kept. Even though several authors have reported
alternative models, e.g. seasonal dependent parameterizations, there was no
clear framework to decide which model would be preferable, and usually all data
points were analyzed with the same model. Thus, these approaches are sub-
optimal in their definition of the functional and stochastic model.

In chapter 3 we show how this problem can be solved. We find the optimal
(most probable) functional and stochastic model (among the predefined set of
hypotheses) via a systematic procedure based on multiple hypothesis testing.
Starting with the null-hypothesis comprised of a steady-state functional model
(which has maximum redundancy) and a scaled diagonal covariance matrix as
stochastic model, we evaluate whether this null hypothesis should be rejected
or not. This is applied per arc between points and the observations are dou-
ble differenced in time and space. In this first implementation, it is applied as a
post-processing step to the unwrapped kinematic phase data, although the ap-
proach would be applicable for wrapped (reduced) phase observations too. If
the null hypothesis is not rejected, we can adjust the stochastic model to a less
pessimistic and more representative quality description via the Variance Com-
ponent Estimation. If the null hypothesis is rejected, we evaluate a large number
of alternative hypotheses, to find the optimal functional model. The risk of over-
fitting the data to an unrealistically complex model is avoided via the stochastic
model, which would not allow the rejection of the null hypothesis. This way we
find the optimal functional model in a probabilistic way, and retrieve a charac-
terization of the evolution of a measurement point that can be further analyzed.

As hypothesis testing methods require the a priori definition of acceptable
Type-I errors (erroneous rejection of the null hypothesis) and Type-I I errors (er-
roneous rejection of an alternative hypothesis), the proposed methodology also
enables us to decide when a particular alternative hypothesis is significantly dif-
ferent from the null-hypothesis. This mechanism can be used by end-users
of structural health assessment studies to determine at which risk level warn-
ing flags should be raised, and which level of ‘false positives’ is still acceptable.
We conclude that a numerically efficient way for performing multiple hypothe-
sis testing over hundreds of alternative models is able to find a most probable
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functional and stochastic model for each observation point.

2. How to detect spatio-temporal anomalies efficiently and precisely?

For structural health assessment, the detection of anomalies in the spatial or
temporal behavior of points is probably the best indication of an (impending)
problem. This, however, is not possible without defining what an anomaly is,
or better, when we regard a signal as being free of anomalies. In the multiple
hypothesis testing methodology presented in chapter 3, we use the steady-state
null-hypothesis as the ‘anomaly free’ model. Hence, if the null hypothesis is not
rejected, there is no (significant) anomaly in the data.

In the library of potential kinematic models, we designed several scenarios that
would be representative of an anomaly, such as the step offset (Heaviside) func-
tion in section 3.1.4 and the single outlier (Kronecker delta) model in section
3.1.5. By testing these models, subsequently for different epochs of occurrence,
we can detect where and when such spatio-temporal anomalies occur. By adjust-
ing the stochastic model under the null hypothesis, or adjusting the detection
likelihood (power) of the test, we can influence the results of anomaly detection
to prevent too many false positives or false negatives.

Although not elaborated in this study, it can be stated that this approach is easily
extendable from ‘batch processing’ for anomaly detection in hindsight, to ‘recur-
sive processing’ for preventive monitoring. In the latter approach, for every new
satellite data acquisition it can be evaluated whether the new observation still
fits the kinematic model of the past. If it does not, warning flags can be raised,
again with predefined detection likelihoods.

This way detected spatio-temporal anomalies are a key indicator for asset man-
agement, leading to dedicated actions to avoid damage, for example by deploy-
ing more dedicated in-situ instrumentations, take appropriate maintenance or
repair actions, or even evacuate hazardous locations to prevent loss of property
or life in the worst case.

We conclude that the approach presented in this study is appropriate for detect-
ing spatio-temporal anomalies, with a priori defined precision levels (dependent
on the requirements of the end user) and in a computationally efficient way.

3. How to optimize InSAR data processing to monitor civil infrastructure?

As there is no single, all-encompassing method to monitor all civil infrastructure
in the world, there is a need for a systematic approach to optimize the InSAR
data processing method for each particular case. Experience from the various
case studies performed in this study on roads, railways, bridges and buildings,
shows that before starting InSAR data processing, it is important to evaluate all
available prior knowledge available for the problem at hand. When more a pri-
ori knowledge is available, the first order functional (including the parameter-
ization) and stochastic model can be defined better. This includes knowledge
about the location of the study area, and the spatial and temporal extent and
smoothness of the expected signal. For example, the permafrost hypothesis in
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section 4.1 has an expected distinct signal that can be recognized from the data.
Moreover, environmental information on land cover and atmospheric character-
istics can be used to optimize the processing. In the end, all this information can
be used to ‘reduce’ the phase, i.e., remove as much as possible of the expected
phase variability, in order to facilitate parameter estimation. After this stage, the
availability of satellite data should be evaluated, as this varies for different geo-
graphic locations. High-resolution, frequently acquired SAR images in X-band
are preferred, from different viewing geometries. Section 4.2 on railway mon-
itoring shows the benefits of multiple (ascending and descending) viewing ge-
ometries for estimating the various components of motion in a local, track-fixed,
Cartesian right-handed coordinate system from the initial radar line-of-sight ob-
servations. Chapter 5 on building monitoring demonstrates the benefits of com-
bining SAR data from different satellite missions to obtain a long-term data time
series of structural deformation.

When the data options are known, one should choose the optimal InSAR time-
series processing procedure. Typically, the persistent scatterer approaches, the
small subsets of baselines (SBAS) approach, or the combination of data based
on the averaging of statistically homogeneous resolution cells are are commonly
used. In section 4.1 we show that for medium resolution SAR data acquired over a
railway, the measurement point density can be significantly improved by averag-
ing over statistically homogeneous points. We applied a point-selection method
using an adaptive directional window filter to obtain a sufficient number of In-
SAR measurement points along this railway track. A dense sampling of measure-
ment points is preferable for structural health assessment and monitoring.

By (post-)processing the results of these time series, it is important to include all
possible kinematic models in the estimation procedure. Regarding the thermal
component in the time series, it can be concluded that temperature-dependent
corrections are to be preferred over sinusoidal fits, since temperature variability
can be dominant over seasonal variability.

Several case study conclusions can be distilled from Chapters 4 and 5.

In the Qinghai-Tibet railway case (see section 4.1), we detected potential
permafrost-related instabilities of the track: inhomogeneous deformations of up
to 10 mm/y and seasonal displacements over a range of over 15 mm along the
track. In the Betuwe railway case (see section 4.2), we converted satellite one-
dimensional radar line-of-sight displacement measurements to a local, track-
fixed, Cartesian right-handed coordinate system and detected the deformations
in the Transversal, Longitudinal and Normal direction by using high-resolution
TerraSAR-X images obtained from both ascending and descending orbits. We
unveiled that track segments south of the Waalhaven and Eemhaven harbors are
subject to significant vertical (normal) displacements, up to 5 cm, most likely
due to settlement or compaction, during 2009 and 2013. Moreover, we also de-
tected sudden abrupt changes in displacements along the track which suggest
the existence of transition zones between free embankments and fixed substruc-
tures, such as bridges and culverts, that are subject to localized differential settle-
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ment. Furthermore, we found a very high correspondence between survey train
measurements and our satellite-based results, demonstrating the potential, pre-
cision, and reliability of the technology.

Applying structural health monitoring to shopping mall ’t Loon, using a joint
multi-sensor method based on the exploitation of archived medium resolution
SAR data acquired by four different SAR satellite missions between April 1992
and October 2011, we detected localized strain within the concrete structure of
’t Loon, exactly at the location where the construction later failed in early De-
cember 2011. We showed two periods of accelerated deformation which suggest
the detectability of sudden subsurface events, such as the breaking of hydrologi-
cally confining clay layers, as in situ core drillings suggest. We demonstrated the
feasibility of early detection of subsurface dynamic processes before they unveil
themselves as surface sinkholes. Also, we concluded that the driving mechanism
of the collapse-sinkhole in our case must have a long lead time, as it was signifi-
cantly observable from the early 1990s.

4. How to evaluate the quality of the obtained results?

The quality of the obtained results can be expressed in the precision (variance-
covariance, or VC-, matrix) of the estimated parameters and the internal and ex-
ternal reliability of the results. We showed that multiple hypotheses testing (see
section 3.2) allows us to first detect model misspecifications, such as unwrapping
errors, and finally adopt the most probable model per point. This testing facili-
tates a realistic quality description in terms of precision and reliability of the re-
sults. In the testing, the most probable functional model is built up based on a li-
brary of canonical deformation functions (see section 3.1.6), while the VC matri-
ces of both observations and parameters can be estimated a posteriori when the
parameter estimators for the most probable functional model are obtained. This
posterior VC matrix of observations can be compared with an a-priori VC matrix
which is predefined based on requirements, assumptions or experiments, in or-
der to check whether the posterior stochastic model is well-determined. The es-
timated VC matrix of the parameters is used to check the precision of the param-
eters via the comparison with the criterion matrix (see section 3.5.1). Regarding
the reliability of the obtained results, we introduce the Minimal Detectable Value
(MDV) for parameter ∇, which can be used to compute the size of the errors
or model misspecifications, see section 3.5.2. Since the reliability is always re-
lated to a specific alternative hypothesis, we compute the MDV, which is varying
in terms of different degrees of freedom for alternative hypotheses, see sections
3.5.3 and 3.5.4.

We conclude that our testing methodology yields sound metrics to evaluate the
quality of the observed results, expressed in precision and reliability. It can also
be concluded that this is an important step in finding the formal error propaga-
tion procedure for InSAR time series.
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6.1. Contributions
The main contributions of this study are summarized as follows,

• We introduce a stochastic model for the arc phase and describe all associated
errors.

• We design and implement a probabilistic methodology of kinematic time series
modeling based on multiple hypotheses testing and the B-method of testing to
determine the best-fit mathematical model and identify the anomaly in time and
space.

• We define a symmetric matrix L representative for every alternative hypothesis,
which can be efficiently stored and retrieved in/from the RAM (random access
memory) when evaluating every single point.

• We introduce the geodetic concept of reliability to InSAR estimates, defined as
the ability to detect observational errors or model imperfections from the data,
apart from precision.

• We introduce the Shenzhen-algorithm to estimate and mitigate the error of the
reference point cased by instrumental and scattering noise.

• We detect indications of permafrost-related instabilities over the Qinghai-Tibet
railway using medium-resolution SAR data.

• We find the three dimensional spatio-temporal deformation over the Betuwe
railway using multi-track high resolution SAR data.

• We define the 3D coordinate transformations from the radar LOS vectors to a lo-
cal, track-fixed, Cartesian right-handed coordinate system, which is dependent
on the azimuth of the railway track relative to the North, the longitudinal slope
of the track, and the cant of the track—which compensates for the centrifugal
forces.

• We detect localized strain within the concrete structure of a building (’t Loon),
many years before a sinkhole appeared under the building, and exactly at the
location where the construction later failed in early December 2011.

• We find localized precursory displacements preceding sinkhole occurrence over
the near-collapsed building ’t Loon, using SAR data acquired by four different
SAR satellite missions. We find that the long-term cavity upward migration in
the abandoned mining shaft which is underneath the building, led to its near-
collapse.

6.2. Recommendations
This study touched upon several issues which require to be further investigated.

High performance computing As kinematic time series contain an enormous
amount of InSAR measurement points in the order of several millions, there is a need
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to improve the computational efficiency and standardize the output for the end-users.
In this study, we have implemented multiple hypotheses testing via single-threaded
matlab codes, and demonstrated that the algorithm is efficient by using the B-method
of testing. Still, the speed of data processing can be accelerated by using graphics pro-
cessing unit (GPU) together with a central processing unit (CPU). GPU computing is
able to process large data in a parallel way. The testing output will be formatted as
a hierarchical data format, instead of a comma-separated-values format, to store and
organize large amounts of numerical data.

Alternative multiple hypotheses testing approaches The most probable mathe-
matical model of kinematic time series, for every InSAR measurement point, has been
determined by multiple hypotheses testing, in the framework of the B-method of test-
ing. However, the criterion for selecting the ‘best’ model, via the evaluation of test-
ratios (de Heus et al., 1994), still lacks a formal proof. Moreover, other testing methods,
such as the Akaike Information Criterion (Akaike, 1974, 1978), the Bayesian Informa-
tion Criterion cf. (Stoica and Selen, 2004), and the P-value criterion (Murtaugh, 2014),
can be used as well. These options would need to be studied in more detail.

Semi-recursive monitoring The idea of multi-epoch SAR interferometry intro-
duced in section 2.3 is to estimate the unknown parameters and validate the quality
of results when all observations have been used together in a batch processing sce-
nario. In the practical applications, such as the monitoring of ’t Loon in chapter 5, we
are not only concerned with the historical exploitation of archived SAR data, but also
interested in the possibility to predict the status during the upcoming epoch. There-
fore, a dynamic data processing system is required, which is able to semi-recursively
determine the solution of parameters from sequentially collected data, and recognize
the anomalies in the new epoch.

High-precision positioning for InSAR measurements A major constraint in the
use of satellite radar interferometry to monitoring civil infrastructure is the relatively
poor geolocalization precision of the measurement points (the scatterers). This makes
it difficult to attribute these measurements unambiguously to physical objects, or to
elements of these objects. Even though for sensors such as TerraSAR-X, a precision of
several centimeters has been reported, see Eineder et al. (2011), these results still re-
late to the azimuth and range position only, not to a terrestrial 3D position, and they
are limited to the highly exclusive spotlight imaging mode. For a wide-scale and op-
erational application of civil infrastructure monitoring with InSAR, medium resolution
sensors such as Sentinel-1 and Radarsat-2 need to be used as well. Using advanced
interferometric processing, the uncertainty of radar target positioning for those sen-
sors will still be in the meter-range, with a highly-inclined cigar-shaped error ellipsoid
with typical axis length ratios of 1/3/100 for azimuth, range, and cross-range direc-
tions (Dheenathayalan et al., 2015). Operational monitoring of, e.g., railway construc-
tions, requires a geolocalization precision in the decimeter range, in order to determine
whether the InSAR measurements stem from railway tracks, poles, embankments, or
sleepers. Further research should focus on precise geolocalization and on mapping the
corrected position of InSAR measurements to a 3D model of the environment.





Appendix A: Testing

During hypothesis testing, one has to define the Type-I and Type-I I errors, and test
the probability of correctness of the null-hypothesis against one or more alternative
hypotheses, and identify the misspecifications in the mathematical model. This ap-
pendix first gives a brief overview of the types of errors in section A.1, and then sep-
arately addresses the general approaches for the observation test and the parameter
significance test in section A.2 and A.3.

A.1. Error types
According to the Neyman-Pearson principle, the binary hypotheses testing problem
evaluates a null hypothesis H0 against an alternative hypothesis Ha for a one-sample
test (see Fig. A.1). For the testing of such binary hypotheses, only the expectation val-
ues between H0 and Ha are taken into account provided that the variances are known,
and the conclusion of the testing is either to reject H0 or Ha upon a certain level of
significance (α is used to notate the level of significance in most literatures). There are
however two possible decisions driven by the critical region K (Teunissen et al., 2005)
that lead to four possible combinations including two incorrect decisions as in:

Type I error: False rejection for the null hypothesis when H0 is true

Type I I error: False acceptance for the null hypothesis when Ha is true

The probabilities of Type I and Type I I errors are denoted as α and β respectively,
and the probability of correct rejection of H0 when Ha is true is known as the power of
the test γ equaling to 1−β. Thus,

α= P (φ ∈ K |H0) = ∫
K fφ(φ|H0)dφ

β= P (φ ∉ K |Ha) = 1−∫
K fφ(φ|Ha)dφ

γ= ∫
K fφ(φ|Ha)dφ,

(A.1)

where fφ(φ|H0) and fφ(φ|Ha) denote the PDF of random observable φ under the null

and alternative hypothesis, respectively. As a smallerα leads to a largerβ, the ideal case
when both are zero is impossible to achieve regardless of increasing the samples of data
to decrease both of them at the same time. When reducing the probability of a Type I
error, the consequence is an increased probability of a Type I I error. A good hypothesis
testing approach is to minimize bothα and β by searching an optimized critical region
K for test statistic T q . The test reads (Neyman and Pearson, 1933; Tiberius, 1998):

if Tq ∈ K then reject H0

else if Tq ∉ K then sustain H0,
(A.2)

where the subscript q denotes the redundancy.
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Figure A.1: The size of Type I error: α and the size of Type I I error: β, for testing simple hypotheses in the
case of H0 : x = x0 against Ha : x = xa , xa > x0

A.2. Observation testing
A blunder or outlier in a single observation can be detected by an observation test when
a nominal or default functional model is an appropriate description for the observ-
ables. In order to identify those observables that hold gross errors or require additional
unknown parameters (see section 3.2), p. 39, the following two binary hypotheses on
the expectation of φ are given as

H0 : E {φ} = Ax

Ha : E {φ} = Ax +Cφ∇, ∇ 6= 0,
(A.3)

with the m ×n design matrix A, the n-vector x for the unknown parameters, and the
q ×1 additional unknown parameters ∇ in the alternative hypothesis Ha related to the
expectation of φ by m × q specification matrix Cφ. Observation tests account for the
unmodeled effects in vector ∇ as disturbances or blunders in the observations, not the
potential relevant parameters.

Given the stochastic model of observations D{φ} =Qφφ, the test statistic is (Teunis-
sen et al., 2005)

T q = ∇̂T
C T
φQ−1

φφQê0 ê0Q−1
φφCφ∇̂, (A.4)

where Qê0 ê0 = Qφφ− A(AT Q−1
φφA)−1 AT (ê0 is the residual vector between the observa-

tions and model estimations under H0). This test statistic follows a χ2-distribution,
which is shown as

H0 : T q ∼χ2(q,0)

Ha : T q ∼χ2(q,λ), λ 6= 0,
(A.5)

where λ=∇T C T
φQ−1

φφQê0 ê0Q−1
φφCφ∇.

When the variance of unit weightσ2 is unknown but Rφφ is given, for the stochastic
model of observations D{φ} = Qφφ = σ2Rφφ, the test statistic reads (Teunissen et al.,
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2005)

T q = 1

qσ̂2
a

∇̂T
C T
φR−1

φφRê0 ê0 R−1
φφCφ∇̂, (A.6)

with σ̂2
a = êT

a R−1
φφ êa

m−n−q . This test statistic is distributed as

H0 : T q ∼ F (q,m −n −q,0)

Ha : T q ∼ F (q,m −n −q,λ), λ 6= 0,
(A.7)

where λ= 1
σ2 ∇T C T

φR−1
φφRê0 ê0 R−1

φφCφ∇.
When q = 1, there is only one additional unknown parameter in vector ∇, and ma-

trix Cφ reduces to a vector denoted as cφ. Thereby the test statistic is reduced to the
w−test statistic and shown as

w = 1

σ̂a

cT
φR−1

φφê0√
cT
φ

R−1
φφ

Rê0 ê0 R−1
φφ

cφ
, (A.8)

with the corresponding Student t distribution

H0 : w ∼ t (m −n −1,0)
Ha : w ∼ t (m −n −1,∇w),

(A.9)

where the parameter ∇w = 1
σ

√
cT
φ

R−1
φφ

Rê0 ê0 R−1
φφ

cφ∇ is related to the noncentrality pa-

rameter λ in Eq. (A.7), λ=∇w2.

A.3. Parameter significance test
Parameter estimation and testing of statistical hypotheses consider the case that
whether the functional model can appropriately describe the properties of observ-
ables. If yes, it implies that an alternative model is not needed to be applied by in-
troducing a new parameter into the default model. This testing is put forward

H0 : E {φ} = Ax with C T
x x = c0

Ha : E {φ} = Ax,
(A.10)

where Cx represents a n ×d constraint matrix and c0 is a d−vector indicating the in-
significant level of parameter. The rank of constraint matrix Cx equals d in which d ≤ n.
The alternative hypothesis Ha is the default model without any constraint on the pa-
rameters.

Given the stochastic model of observations D{φ} = Qφφ and Q x̂a x̂a = (AT Q−1
φφA)−1,

the test statistic is (Teunissen et al., 2005)

V d = (C T
x x̂a − c0)T (C T

x Q x̂a x̂a Cx )−1(C T
x x̂a − c0), (A.11)

which follows a χ2-distribution,

H0 : vd ∼χ2(d ,0)
Ha : vd ∼χ2(d ,λ),

(A.12)
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where λ= (ca −c0)T (C T
x Q x̂a x̂a Cx )−1(ca −c0), with C T

x x = ca 6= c0 under Ha . Particularly,
with a single constraint (d = 1), the test statistic becomes

v = cT
x x̂a − c0√

cT
x Q x̂a x̂a cx

, (A.13)

which is distributed as
H0 : vd ∼ N (0,1)
Ha : vd ∼ N (∇v,1),

(A.14)

with ∇v = (ca −c0)/
√

cT
x Q x̂a x̂a cx . It is related to the noncentrality parameter λ=∇v2 in

Eq. (A.12).
When the variance of unit weightσ2 is unknown but Rφφ is defined, the test statistic

reads (Teunissen et al., 2005)

V d = 1

dσ̂2
a

(C T
x x̂a − c0)T (C T

x Rx̂a x̂a Cx )−1(C T
x x̂a − c0), (A.15)

with Rx̂a x̂a = (AT Rφφ
−1 A)−1, and σ̂2

a = êT
a Rφφ−1 êa

m−n , êa is the residual vector between
the observations and model estimations under Ha . The denominator m − n is the
redundancy representing the difference between the number of observations m and
the number of unknown parameters n. When n = m, the empirical variance is non-
existent. This test statistic follows an F distribution,

H0 : V d ∼ F (d ,m −n,0)
Ha : V d ∼ F (d ,m −n,λ), λ 6= 0,

(A.16)

where λ = 1
σ2 (ca − c0)T (C T

x Rx̂a x̂a Cx )−1(ca − c0) with C T
x x = ca 6= c0 under Ha . H0 is re-

jected when V > Fα(d ,m−n). In a special case with a single constraint vector in which
d = 1, the test statistic becomes

v = cT
x x̂a − c0

σ̂a

√
cT

x Rx̂a x̂a cx

, (A.17)

with its Student t distribution

H0 : vd ∼ t (m −n,0)
Ha : vd ∼ t (m −n,∇v),

(A.18)

with ∇v = (ca − c0)/(σ
√

cT
x Rx̂a x̂a cx ) which is related to the noncentrality parameter λ

in Eq. (A.16), λ=∇v2.



Appendix B: Seasonal periodic signal
modeling

A sinusoidal function can be used for seasonal periodic signal modeling, which is gen-
erally formulated as

M(t ) = A sin[2π(t − t0)], (B.1)

where the observed signal M is a function of time t , for example in Julian years, t0 is the
time offset w.r.t. the master image time (t = 0) for InSAR case, and A is the amplitude.
Empirically, the period of the sinusoidal function is assumed to be one year (T = 1).
When M(t = 0) = −A sin[2πt0] 6= 0, it shows the difference of the start of the seasonal
cycle with the master image, see the black curve shown in Fig. B.1, which does not agree
with the assumption M(t = 0) = 0 for the InSAR data processing. Hence, a constant
term A sin(2πt0) is introduced to constrain M(t = 0) = 0, then Eq. (B.1) is shifted and
rebuilt as

M(t ) = A sin[2π(t − t0)]+ A sin(2πt0). (B.2)

The gray curve in Fig. B.1 indicates the rebuilt function for the InSAR case. Then to

A

t

M(t)

−Asin(2π t
0
)

0

T=1t
0

Figure B.1: Sinusoidal function

determine the two unknowns A and t0, we expand Eq. (B.2) as follows,

M(t ) = A sin[2π(t − t0)]+ A sin(2πt0)

= A cos(2πt0)sin(2πt )− A sin(2πt0)cos(2πt )+ A sin(2πt0)

= sin(2πt ) · (A cos(2πt0))+ (cos(2πt )−1) · (−A sin(2πt0))

= sin(2πt ) · s + (cos(2πt )−1) · c,

(B.3)

where the unknown coefficients s and c are linear, and s = A cos(2πt0) and
c =−A sin(2πt0), cf. Eq. (3.4).
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0 +1−1

0.25

0.5
arcos(s/A)/2π

s/A

b)

0

c=−Asin(2π t
0
)

t
0

a)

+0.5−0.5

Figure B.2: Graph for a) c =−A sin(2πt0) and b) arccos(s/A)/2π

We find that

s2 + c2 = (A cos(2πt0))2 + (−A sin(2πt0))2

= A2 · (cos2(2πt0)+ sin2(2πt0))

= A2,

(B.4)

which implies that the unknown A can be derived by

A =
√

s2 + c2. (B.5)

To compute the value of t0, we compute it from the inverse cosine function of
cos(2πt0) = s/A, that is

t0 =−sgn(c)arccos(s/A)/2π, (B.6)

where

sgn(c) =


−1, if c < 0
0, if c = 0.
+1, if c > 0

Since c = −A sin(2πt0), sgn(c) is dependent on t0, it

means that

sgn(c) =


−1, if t0 ∈ [0, +0.5]
0, if t0 = 0
+1, if t0 ∈ [−0.5, 0]

(see the graph for c =−A sin(2πt0) in Fig. B.2a).

It is noted that the values of arccos(s/A)/2π are limited between 0 and 0.5 (see
Fig. B.2b), which covers the half of one full cycle on the interval t0 ∈ [−0.5, 0.5], hence
we multiply arccos(s/A)/2π by sgn(c) in order to estimate the value of t0 when t0 falls
in [-0.5, 0].
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