
 
 

Delft University of Technology

Towards a particle based approach for multiscale modeling of heterogeneous catalytic
reactors

Sengar, A.; Kuipers, J. A.M.; van Santen, R. A.; Padding, J. T.

DOI
10.1016/j.ces.2018.10.038
Publication date
2019
Document Version
Final published version
Published in
Chemical Engineering Science

Citation (APA)
Sengar, A., Kuipers, J. A. M., van Santen, R. A., & Padding, J. T. (2019). Towards a particle based
approach for multiscale modeling of heterogeneous catalytic reactors. Chemical Engineering Science, 198,
184-197. https://doi.org/10.1016/j.ces.2018.10.038

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ces.2018.10.038
https://doi.org/10.1016/j.ces.2018.10.038


Chemical Engineering Science 198 (2019) 184–197
Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier .com/ locate /ces
Towards a particle based approach for multiscale modeling of
heterogeneous catalytic reactors
https://doi.org/10.1016/j.ces.2018.10.038
0009-2509/� 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: a.sengar@tue.nl (A. Sengar), j.a.m.kuipers@tue.nl (J.A.M.

Kuipers), r.a.v.santen@tue.nl (R.A. van Santen), j.t.padding@tudelft.nl (J.T. Padding).
A. Sengar a,⇑, J.A.M. Kuipers a, R.A. van Santen b, J.T. Padding c

aDepartment of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. BOX 513, 5600 MB Eindhoven, the Netherlands
b Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
cProcess and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, the Netherlands
h i g h l i g h t s

� Simulation of convection-reaction-
diffusion for heterogenous catalytic
reactors.

� Numerical computation of bulk
mutual diffusivity using SRD.

� Incorporation of complex reaction
systems while maintaining the
interfacial physics.

� Dimensionless analysis to convey
physical information between
reactive systems.

� Different modeling examples show
from linear systems to nonlinear
reaction systems.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 1 July 2018
Received in revised form 12 October 2018
Accepted 23 October 2018
Available online 27 October 2018

Keywords:
Heterogenous catalysis
Multiscale modelling
Stochastic rotation dynamics
Multicomponent diffusion
Nonlinear reactions
Unsteady state modelling
a b s t r a c t

Particle based approaches are one of the recent modeling techniques to overcome the computational
limitation in multiscale modeling of complex processes, for example a heterogeneous catalytic reactor.
We propose an efficient model for a chemical reactor where hydrodynamics of the solvent is determined
by Stochastic Rotation Dynamics and a reaction occurs over a catalytic surface where the reaction kinetics
follows the mean-field assumption. We highlight the modeling techniques required to simulate such a
system and then validate the model for its separate and combined components of convection, diffusion
and reaction(s). A dimensionless analysis helps compare processes occurring at different scales. We deter-
mine the Reynolds number, Re, and the Damkohler numbers, Da and DaL in terms of key quantities. The
approach is then used to analyse a reaction (a) following the Langmuir-Hinshelwood kinetics, (b) generat-
ing product particles with different self-diffusivity values as compared to the reactant particles. Themodel
developed can further incorporate reactions occurring inside complex geometries (pore diffusion) and also
be used to study complex reaction systems for which the mean-field assumption is no longer valid.
� 2018 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction the field of fluid and solid mechanics (Chen and Doolen, 1998;
The ability to model physical systems occurring at multiple time
scales, with the current computational power at hand, has been
extensively used to resolve or discover new phenomena mainly in
Steinhauser, 2007), polymers (Sheng et al., 2004), proteins
(Kmiecik et al., 2016), and catalysis (Salciccioli et al., 2011).

Fluid dynamics and catalysis problems occur at comparably dif-
ferent time scales which makes it difficult to incorporate the com-
plete information about one process while modeling the other and
vice versa. In the field of Computational Fluid Dynamics, incorpo-
rating detailed reaction kinetics is helpful in improving the
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measurements of concentration distribution of reactants or prod-
ucts across the reactor system (Eigenberger, 2008; Kuroki et al.,
2009; Wehinger et al., 2015). However, solution convergence at
highly nonlinear conditions requires a very high grid resolution
which slows down the whole scheme. Sengar et al. (2017) have
previously shown that even a simple A ! B reaction can show non-
linear dependence on reactant concentration under certain possi-
ble conditions.

Recent mesoscale modeling techniques, involving a particle
based treatment of fluid, like Lattice Boltzmann method (LBM),
Stochastic Rotation Dynamics (SRD), and Dissipative Particle
Dynamics (DPD) offer an alternative approach in modeling these
multiphysics problem. Treatment of particles in ensembles at dif-
ferent spatiotemporal scales reduces the total number of degrees
of freedom inside the system, making it computationally more fea-
sible. These modeling techniques, therefore, allow a faster imple-
mentation of detailed reaction kinetics coupled with fluid
dynamics.

The field of particle based simulations has previously been used
to study multiscale coupling involving flow and adsorption in por-
ous media using a reactive Lattice Based scheme (Vanson et al.,
2015), adsorption and diffusion in MetalOrganic Frameworks
(Villemot et al., 2014), transport properties during convection-
diffusion-reaction using DPD (Li et al., 2015). For the present work,
we will employ SRD to simulate heterogeneous nonlinear
reactions.

Stochastic Rotation Dynamics (SRD) (Malevanets and Kapral,
1999), uses a discrete-time dynamics of coarse-grained particles
in a continuous space. The modeling scheme has previously been
used to study single phase and multiphase flow problems (Tüzel
et al., 2007; Padding and Louis, 2006), homogenous (Rohlf et al.,
2008) and heterogenous (Tucci and Kapral, 2004; Huang et al.,
2016) catalytic reaction systems with (Sengar et al., 2017) incorpo-
rating a Langmuir Hinshelwood reaction kinetics over the surface
of a catalytic strip.
Table E.5
List of symbols in order of appearance in the manuscript.

a0 SRD unit cell [m] Ns

kB Boltzmann constant [kg m2 s�2 K�1] h
mi Mass of single SRD particle of species i [kg] hi
Dtc Hydrodynamic time step [s] piads
a SRD rotational angle pides
ci Number of species i particles per unit SRD cell [m�3] pir
Di Self-diffusivity of species i [m2 s�1] Ncat

di Friction force per particle of species i [m�1] kiX Rate co

li Chemical potential of particle of species i [kg m2 s�2] Ki
eq

vi Number fraction of species i Da
T Temperature [K] DL

ui Average velocity of particles of species i [m s�1] s0
Fi External force on single particle of species i [kg m s�2] u
ai Acceleration because of external force on particle of species i

[m s�2]
tstart I

v i Velocity of individual particle of species i [m s�1] k
Ni Number of SRD particle of species i Acat

Dij Mutual diffusivity between species i and j [m2 s�1] DaL
Do

ij Pure mutual diffusivity between species i and j [m2 s�1] PeL
qi Mass density of species i [kg m�3] L0z
R Radius of sphere used in simulation setup [m] Sc
gi Viscosity of species i [kg m�1 s�1] ci;l
Re Reynolds number b
� Gas porosity A0

us Superficial velocity [m s�1] Ji
P Pressure [kg m�1 s�2] ct
Li Reactor length along i = x; y; z direction [m] ½B�
f Dimensionless pressure drop per unit length xi
Study of a heterogeneous chemical reaction in a fixed bed reac-
tor involves the resolution of three primary processes, convection,
reaction, and diffusion at unsteady state. To simulate the reaction
step, the complete reaction cycle is broken down into individual
reaction steps like adsorption, desorption and surface reaction
(Sengar et al., 2017). This makes it convenient to observe the
effects of any intermediary reaction process on the bulk fluid mix-
ture by making the other processes fast enough.

As the number of participating components in the system
increases, the classical definition of self diffusion coefficient,
according to Fickian Diffusion, is not enough (Krishna and
Wesselingh, 1997; Taylor and Krishna, 1993). Further, for reactions
involving gases, a difference in number of moles of products and
reactants will result in an internal pressure gradient which can still
be accounted for in the mutual diffusivity at unsteady state or a
pseudo steady state. We incorporate all these effects in the
Maxwell-Stefan diffusivity.

In Section 2.1, we briefly discuss the particle-particle interac-
tions in SRD followed by a description of the numerical techniques,
Section 2.2, to calculate the Maxwell-Stefan diffusivity for a binary
mixture of SRD particles with different mass leading to different
self-diffusivity. A set of dimensionless parameters are defined in
Section 3.1 to optimize the processes occurring at different time
and length scales, treated in subsequent Sections 3.2, 3.3, 3.4,
3.5. We first perform a cold flow analysis on flow around a sphere,
Section 3.2, and pressure drop across a packed bed, Section 3.3, to
validate the viscous and convective coupling in an SRD fluid in the
presence of spherical obstacles. This is followed by the introduc-
tion of a chemical reaction on the surface of the spheres and intro-
duction of three dimensionless numbers, which are the Damkohler
numbers Da and DaL, and the Peclet number PeL. The model is
validated for reaction-diffusion coupling over a catalytic sphere
placed in a pool of reactant in Section 3.4. In Section 3.5, we finally
combine the three processes convection, diffusion and reaction,
and analyse the net conversion as a function of the above
Number of spheres in simulation setup
Vacancy fraction over the sphere surface
Fraction of species i over sphere surface

Probability of adsorption of species i on sphere surface

Probability of desorption of species i from sphere surface

Probability of reaction of species i on sphere surface
Number of catalytic sites on a single sphere

nstant for surface process X occurring for particle i per area of catalyst surface.
Adsorption:

[m s�1], Desorption, Reaction: [m�2 s�1]
Adsorption-desorption Equilibrium constant for species i [m3]

Damkohler number
Longitudinal dispersion coefficient [m2 s�1]

Tortuosity of packed bed column
Average velocity of solvent in packed bed column [m s�1]

nitial run time of simulation setup to achieve mechanical equilibrium [s]

Volumetric reaction rate constant [m3 s�1]
Area of single catalytic sphere [m2]

Damkolher number along the longitudinal direction of simulation setup
Peclet number along the longitudinal direction of simulation setup

Buffer length in the simulation setup where reaction occurs [m]
Schmidt number

Local number density of species i over catalytic sphere [m�3]
Number of strips on a single reaction sphere

Area of a single strip [m2]
Diffusive flux of species i [m�2 s�1]

Total number density of all particles per unit cell [m�3]
Diffusion matrix [m�2 s]
Mass fraction of species i



Table 1
Simulation parameters used and their units.

Unit Expression

Length a0
Energy kBT
Mass of solvent m0

Time t0 ¼ a0
ffiffiffiffiffiffi
kBT
m0

q
[7pt] Diffusion coefficient D0 ¼ a20

t0
¼ a0

ffiffiffiffiffiffi
kBT
m0

q
Fluid Simulation parameters

c: average number of particles per grid cell
Dtc: SRD streaming time step
a: SRD rotation angle
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mentioned dimensionless numbers. In the next Section 4, we high-
light two reaction scenarios where we cannot assume a constant
value of above mentioned dimensionless number across the reac-
tor length. We end with a Conclusion section on the scalability of
the work while incorporating complex reaction mechanisms. All
symbols used within the text are mentioned, with theri dimen-
sions, in Table E.5.

2. Model development

The previous study (Sengar et al., 2017) highlights the use of
SRD with reaction kinetics to model simple heterogeneous chemi-
cal reactions in a micro reactor. Reactants and products were con-
sidered with equal mass and equal diffusivity. The further model
development in this work is divided into two parts. The first part
talks about the inclusion of characteristically distinct reaction spe-
cies and obtaining the mutual diffusivity for such a system while
the second part explores the geometry of fluid-solid interface as
compared to the planar geometry in Sengar et al. (2017).

2.1. Stochastic rotation dynamics

Each participating species of the initial reaction mixture is rep-
resented by a system of point-like particles. The system starts with
homogeneously distributed N particles with number fraction and
mass of particle of each species being vi and mi respectively. The
3D space is discretized into a cubic lattice of size a0 and time is dis-
cretized into time intervals of Dtc which governs the displacement
of particles before successive collisions.

Streaming of particles occurs according to the Euler scheme,
rtþ1
i ¼ rti þ vt

iDtc , where rti and v
t
i are the position and velocity vec-

tors of particle i at time t. The second step is the velocity update
which occurs according to the collision rule vtþ1

i ¼ �v þXðvt
i � �vÞ.

�v is the center-of-mass velocity of all particles sharing the same
cell and X is a stochastic rotation matrix that rotates the velocities
by a fixed angle a while conserving energy and momentum.

To ensure Galilean invariance (Ihle and Kroll, 2003), a random
grid-shift procedure (Ihle and Kroll, 2001) is employed. The origin
of the lattice is displaced by a stochastic 3D vector (which is same
for all lattices per time step) whose magnitude of each Cartesian
component is defined by a random number between 0 and a0. To
account for the under filling of cells near boundaries caused by
the grid-shift procedure, introduction of ghost particles for single
solvent species (Lamura et al., 2001) was suggested which was
expanded to preserve momentum when multiple components
might be present in such cells (Sengar et al., 2017). To maintain
the system at fixed temperature even in the presence of external
forces, a Galilean invariant thermostat (Padding and Louis, 2006),
that rescales particle velocities in the center-of-mass velocity
frame of their cell, is used.

Transport coefficients like viscosity and diffusion coefficient for
single species solvents have extensively been studied in Ihle and
Kroll (2003), Tüzel et al. (2003, 2006), Kikuchi et al. (2003),
Gompper et al. (2009), Noguchi and Gompper (2008), Pooley and
Yeomans (2005). For a single SRD particle species, the diffusion
coefficient is written in a parametric form as

D
D0

¼ kBTDtc
2m

3c
ðc� 1þ e�cÞð1� cos aÞ � 1
� �

ð1Þ

m; kBT and D0 are the units used to parameterize the physical
parameters in SRD, Table 1. When a ¼ 0�, the particles do not
change their trajectories upon collision as a result of which
D ! 1. When a ¼ 180�, particles face an inversion of velocity rep-
resenting a condition with minimum possible diffusivity, D. As the
number of particles in the grid cell (c) increases, a single particle
will face more collisions within a single time step, reducing the dif-
fusivity. However, as c increases, there is a saturation and for
c ! 1, the diffusivity expression becomes independent of c.

2.2. Diffusivity in multi-component mixtures

When a solution consists of more than one component, the
mutual interaction between particles is described by a mutual dif-
fusivity. For systems representing ideal gases with low interaction
between particles of different components, a Fickian definition of
mutual diffusivity is used. However, for real fluids when cross-
interaction terms dominate, a Maxwell-Stefan approach is neces-
sary. Maxwell-Stefan diffusivity for multicomponent mixtures
has been studied previously using Molecular Dynamics, see e.g.
van de Ven-Lucassen (1998). In this work, we will use a similar
approach to analyse binary mixtures.

The force acting on a single particle of species i in an SRD mix-
ture with n components, at a constant temperature T can be writ-
ten as the gradient of chemical potential, li (van de Ven-Lucassen,
1998; Taylor and Krishna, 1993)

di ¼ �rTli ¼
Xn
j¼1

vj
kT
Dij

ðuj � uiÞ ð2Þ

ui and vi are the average velocity and mole fraction of species i
respectively. The solution obeys the ideal gas law PV ¼ NkBT , where
N is the total number of particle of all species. In presence of an
external field Fi, the net force on a single particle is Fi �rTli. The
above interpretation of Dij can be obtained from a non-
equilibrium or an equilibrium approach.

2.2.1. NEMD approach
TheNon-EquilibriumMolecular Dynamics approach (Berendsen,

1991) works by applying equal and opposite external forces on dif-
ferent components in a solution mixture such that the net external
force is zero and therefore the net momentum across all particles
remains conserved at each discrete time step. For a binary mixture,
the approach can be simplified and force andmomentum conserva-
tion equation can respectively be written as

Nm1v1a1 þ Nm2v2a2 ¼ 0 ð3aÞ
Nm1v1u1 þ Nm2v2u2 ¼ 0 ð3bÞ
ai is the force acting on particles of species i. For small external
forces, the velocity response is

du1

dt
¼ a1 þ kBTv2

m1D12
ðu2 � u1Þ ð4aÞ

du2

dt
¼ a2 � kBTv1

m2D12
ðu2 � u1Þ ð4bÞ

The factor kBT=D12 represents the mutual mobility between spe-
cies 1 and 2 caused by internal friction. The coupled differential



Fig. 2. Variation of mutual diffusivity as a function of v1. Straight line is the pure
mutual diffusivity, Do

12 (Eq. (7)), and starred line is D12 (Eq. (6)).
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equations can be solved exactly to get the terminal velocity of par-
ticles under this external force. For t ! 1, the terminal velocity of
species 1 is

u1ð1Þ ¼ a1m1m2D12

kBTðm1v1 þm2v2Þ
ð5Þ

For sufficiently small external forces, we therefore expect a lin-
ear dependence of terminal velocity of a species on the force
applied, which can be used to calculate the value of the mutual dif-
fusion coefficient D12.

2.2.2. Green-Kubo relations
Another approach is by employing linear response theory in sta-

tistical mechanics. It has been shown (van de Ven-Lucassen, 1998)
that the velocity response of a solvent in presence of another spe-
cies can be used to estimate the Green-Kubo relation for the
Maxwell-Stefan diffusion coefficient as

D12 ¼ v2

3N1

Z 1

0
N2

XN1

i¼1

v i
1ð0Þ � N1

XN2

j¼1

v j
2ð0Þ

"* #

: N2

XN1

k¼1

vk
1ðtÞ � N1

XN2

l¼1

v l
2ðtÞ

" #+
dt

ð6Þ

If cross-species velocity terms are neglected, we get the pure
mutual diffusion coefficient Do

12.

Do
12 ¼ v2

3

Z 1

0
hv1ð0Þ:v1ðtÞidt þ v1

3

Z 1

0
hv2ð0Þ:v2ðtÞidt ð7Þ

vi refers to velocities averaged over the entire species.
Simulations were carried out to calculate the diffusion coeffi-

cient from the above two approaches which serves as a validation
for the SRD description of particles.

2.2.3. Measurement of mutual diffusion coefficient expressions
For the NEMD approach, the system was initialized with an

equimolar binary mixture of particles with mass m1 and m2. The
self-diffusivity coefficients of these particles are in ratio
D1=D2 ¼ m2=m1. In Fig. 1, the terminal velocity of particles of type
1 is calculated versus an applied force a1. m1 ¼ 1 and m2 takes val-
ues 0:2;0:5;1:0;2:0. When m2 ¼ 1:0, the D12 value obtained from
the slope is equal to the self-diffusivity coefficient of both particles
1 and 2.

To calculate the mutual diffusion coefficient using the Green-
Kubo relation Eq. (6), 2 species of mass m1 ¼ 0:5 and m2 ¼ 1:0
are chosen. The number fraction of species 1 is varied from 0 to
Fig. 1. Terminal velocity of particles of type 1 versus force applied in presence of
particles of type 2 with mass m2, Eq. (5). From the slope of the above, we can obtain
the mutual diffusion coefficient D12. v1 ¼ v2 ¼ 0:5;Dtc ¼ 0:1; kBT ¼ 1:0; a0 = 1.0.
1 and the velocity correlation functions for both particles are calcu-
lated to estimate the mutual diffusivity D12. This is shown in Fig. 2.

The linear curve Do
12 is the pure mutual diffusion coefficient

when no cross-correlation terms are included. The higher the dif-
ference between D12 and Do

12, the more the different species inter-
act and act like non-ideal mixtures. The difference is maximum
when v1 ¼ 0:5.

3. Convection, diffusion and reaction across spheres

For the next part of the work, we define a sphere, the surface of
which may be reactive or not. We will then study the flow proper-
ties of a fluid around this sphere as a function of its Reynolds num-
ber Re. This is followed by a methodology to incorporate reactions
over the surface and the conditions under which a linear approxi-
mation for reaction can be done. The linear treatment of reaction is
then used to verify (a) the change in flux of the reactant species
over the sphere with time, and (b) conversion in a packed-bed
reactor with dispersion.

3.1. Dimensionless analysis

In a reactor, the three main processes namely convection, reac-
tion and diffusion never occur at the same time scale. It is conve-
nient in such multiscale systems to measure the variables of a
process X occurring at a time scale with respect to the variables
of another process Y at a different time scale. We, thus, define char-
acteristic dimensions, at a characteristic time scale, to analyze any
variable of any process at any time scale.

The three dimensions chosen are the radius of a single sphere R,
self-diffusion coefficient of initial solvent species DA, and the
Table 2
Physical quantities with their dimensions

Physical Quantities Dimensions

Length R
Diffusion DA

Viscosity gA

Time R2

DA

Mass gAR
3

DA

Energy gARDA

Velocity DA
R

Number Density R�3

Pressure gADA

R2

Mass Density gA
DA
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viscosity of the solvent gA. Since we treat a single SRD particle as
part of an ideal fluid, the ideal-gas law is obeyed PV ¼ NkBT with
N being the number of SRD particles. Physical quantities and their
dimensions are shown in Table 2. For any physical quantity X, we
will represent the corresponding dimensionless quantity as Xo.

3.2. Flow across a sphere

Lamura et al. (2001), Allahyarov and Gompper (2002) have pre-
viously shown the use of SRD to model flow past a circular and
square 2D cylinder and 3D spheres. Here we will first verify our
implementation, by comparing the predicted flow field around a
3D sphere with their results.

The system consists of a sphere of radius R present in a box of
dimensions Lx; Ly; Lz with the sphere center at Lx=2; Ly=2; Lz=4. The
boundaries of the simulation box are periodic and the surface of
the sphere has no-slip boundary conditions. To ensure that the
periodic boundaries do not affect the hydrodynamics of the sys-
tem, we choose Lz > Lx; Ly P 10R (z being the direction of flow).
An SRD fluid A is present inside the box at t ¼ 0. For all t > 0, a con-
stant pressure difference between z ¼ 0 and z ¼ Lz is applied lead-
ing to a flow along the z direction. When mechanical equilibrium is
established, the velocity profile of the fluid along the z-direction
can be studied. For small values of Re ¼ qAvmaxð2RÞ=gA (in dimen-
sionless units Re ¼ 2qo

Avo
max), the velocity vectors are streamlined

over the surface of sphere. As Re increases, a recirculation region
is formed behind the sphere (Churchill, 1988) followed by vortex
shedding (Taneda, 1956) for Re > 200.

To avoid slip of the velocity field at the sphere surface caused by
low number density of particles in cells near the surface, a bulk fill
rule for such cells has been implemented. For details, we refer to
Appendix A.

The size of the wake region is defined as the length of the region
with a negative time-averaged velocity behind the sphere. In Fig. 3,
we compare the results obtained from our SRDmodel with those of
Allahyarov and Gompper (2002) and the experimental data
(Taneda, 1956). Between 20 < Re < 100, the graph shows a mono-
tonous increase in the wake length which is in good agreement
with established results.

3.3. Pressure drop in a packed column

The wake formation behind a sphere depicts a phenomenon
where coupled convection and viscosity effects cause disturbance
in the flow of fluid behind a sphere. The fluid faces resistance in
its path leading to pressure difference at difference faces of the
sphere along the direction of fluid flow. In a packed-bed arrange-
Fig. 3. The length of wake behind the sphere as a function of Re.
ment of spheres, this pressure difference adds up and for laminar
flows at relative low Re, the pressure drop per unit length of the
reactor can be correlated by the Kozeny-Carman relation

DP
Lz

¼ 150
gAus

ð2RÞ2
ð1� �Þ2

�3
ð8Þ

where us is the superficial velocity of fluid in the reactor and � is the
gas porosity. The above equation can be non-dimensionalized
according to Table 2 as follows:

f ¼ DP
Lz

R3

gADA
¼ 75

usR
2DA

ð1� �Þ2
�3

¼ 75Re
4qo

A

ð1� �Þ2
�3

ð9Þ

where qo
A is the dimensionless mass density and Re can also be writ-

ten as

Re ¼ 2qo
Au

o
s ð10Þ

To model this pressure drop, we consider an open-boundary 3D
box (Lx; Ly; Lz) with Ns spheres randomly placed inside. A periodic
boundary system ensures no wall-effects are included. Spheres
lying close to the boundaries are wrapped around to contribute
to the packed column, see Fig. 5. The SRD fluid is placed around
the spheres at t ¼ 0. The SRD particles are then given an accelera-
tion g along the +z-axis. The mean free path of SRD particles should
remain comparable or smaller than the smallest distance between
spheres inside the packed column. This will ensure that the contin-
uum approximation (Knudsen number � 1) will still be valid in
these simulations.

At mechanical equilibrium, the hydraulic pressure drop per unit
length will be equal to the net force density on all SRD particles
inside the packed column is DP=L ¼ qAg.

We can thus study the response of an independent acceleration
g on the dependent variable us, according to f ¼ qo

Ag
o, where f is

given by Eq. (9).
Fig. 4 plots the dimensionless pressure drop f as a function of Re

and compares the results from the simulations for different bed
porosities �. Dashed lines represent the dimensionless Kozeny-
Carman relation and the inverted triangles are the points obtained
from SRD results. The match is quite good which shows that the
fluid hydrodynamics at low porosities can be efficiently modeled
by our current approach.
Fig. 4. Dimensionless pressure drop as a function of particle Reynolds number, Re,
for � ¼ 0:4;0:5;0:6. For each curve, go is varied to obtain a uo

s which determines Re.
Simulation parameters in terms of SRD units, Table 1:
cA ¼ 20a0;Dtc ¼ 0:1t0;mA ¼ 1:0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m0

p
;Ns ¼ 150; Lz ¼ 300a0; Lx ¼ Ly ¼ 50a0.



Table 3
Independent, dependent and derived parameters in the model.

Input parameter Expression
Sticking probability piads

Desorption probability pides
Reaction probability pir

Number of catalyst sites Ncat

Output parameter Expression
Total number of adsorbed particles of species i Ncathi

Total number of vacant sites on catalyst Ncath

Derived Rate constants Expression
Adsorption rate kiads ¼

ffiffiffiffiffiffiffiffiffi
kbT
2pmi

q
piads

Desorption rate kides ¼
� lnð1�pidesÞ

AcatDtc

Reaction rate kir ¼ �lnð1�pir Þ
AcatDtc

Equilibrium constant Ki
eq ¼ kiads

kides

Fig. 5. 2D schematic of the 3D model reactor. (a) Reactor has periodic boundaries in
3 directions. Pressure different is applied across z ¼ 0 and z ¼ Lz to induce a flow in
þz direction. Periodic images of the spheres overlapping with the periodic
boundaries are indicated in color. (b) Schematic of reaction mechanism over the
catalytic sphere. Each sphere has Ncat catalytic strips along the direction of flow. kir
are the reaction rates of adsorbed species i. (c) Inside a volume element of length Dz,
the consumption rate of reactants is a sum of individual reactions occurring inside
the volume.
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3.4. Irreversible reaction on a sphere

The SRDmodel developed was validated (Sengar et al., 2017) for
a reaction-diffusion case with reaction over a thin catalytic strip.
We incorporated Langmuir-Hinshelwood kinetics for a A�B reac-
tion and estimated the product concentration profile based on
Damkohler numbers when any single participating process in the
reaction cycle(adsorption, desorption or site reaction) was rate
determining. It was established that a linear assumption of reac-
tion is only valid when adsorption of reactant species over the cat-
alytic surface will be the rate determining step.

The following validation cases demonstrate application of an
SRD based fluid in a system with convection, diffusion and reaction
occurring at different time scales.

We first consider an example of a sphere placed in an infinite
bath of reacting solvent A such that a linear reaction occurs at
the surface of a sphere, Lu et al. (2018). The competing processes
are the reaction of A at the surface which leads to a local concen-
tration gradient causing an incoming diffusion flux of A. Diffusion
and reaction compete in this unsteady state process.

To simulate this process, a sphere of radius R is placed in the
center of the simulation box. In this example, the surface of the
sphere is one single reactive strip since absence of convection
ensures the system is isotropic, Appendix A.

The surface of the sphere, with area As, consists of Ncat reactive
sites that are either vacant (with surface fraction h) or contain
adsorbed species iwith surface fraction hi. Fluid particles of species
i hitting the catalytic strip, within a time step Dtc can adsorb with a

probability pi
ads which relates to the adsorption rate constant kiads,
see Table 3. A successful adsorption reduces the fractional vacancy
h of the catalyst by 1=Ncat while increasing hi by 1=Ncat . Adsorbed
particles stay at their positions, representing a surface-diffusion
limited process. During the time step Dtc , particles of species i
may desorb from the surface or further react with probabilities
pi
des or pi

r that relate to the rate constants of desorption and reac-
tion, see Table 3. The global thermostat, Section 2.1, ensures the
reaction is treated isothermally.

For all t > 0;A is adsorbed on the surface of the sphere with a
probability pA

ads. As described above, adsorbed A, with a fractional
occupancy hA over the catalytic strip, can further desorb (with
probability pA

des) or react (with probability pA
r ) to form adsorbed

species B, with surface fraction hB. Adsorbed B can further desorb
(with probability pB

des) or react back to form adsorbed A (with prob-
ability pB

r ). Desorption resulting in bulk particles of B can re-adsorb
with a probability pB

ads. For a linear irreversible reaction assump-
tion, pA

des ¼ pB
ads ¼ pB

r ¼ 0 and pA
r ¼ pB

des ¼ 1:0, (Sengar et al., 2017).
Such a probability parameter set also ensures that the catalytic
surface itself will not have its own inherent time scale since it will
be equilibrated almost instantly. Refer to Appendix B for a detailed
description of coupling reactions with the bulk.

The reaction at the surface of the sphere gives rise to a concen-
tration gradient leading to a diffusive flux of the reactant towards
the catalyst, further fueling the reaction. The surface reactive
boundary condition (Collins and Kimball, 1949) is

DAB
@cAðr; tÞ

@r

����
r¼R

¼ kA
adscAðtÞ ð11Þ

DAB is the time varying mutual diffusivity of A and B near the cat-
alytic surface since the process is at an unsteady state. If the cat-
alytic strip achieves a steady state almost instantaneously, no
concentration depletion region is formed near the sphere and the
total number density of particles over the sphere always remains
a constant. In this simple example, since particles A and B are only
distinguishable by a tag, DAB ¼ DA.

Lu et al. (2018) have presented an analytical solution for the
number density cAðr; tÞ of reactant species A in the region sur-
rounding the sphere.

cAðro; toÞ
cAð1;0Þ

¼ 1� Da
ro 1þ Dað Þ erfc

x
2
ffiffiffi
s

p
� �

� esþxerfc
2sþ x
2
ffiffiffi
s

p
� �� �

ð12aÞ

s ¼ ð1þ DaÞ2to; x ¼ ð1þ DaÞ ro � 1ð Þ ð12bÞ

where cAð1;0Þ is the constant number density of A in the region out-
side the sphere, r > R, at t ¼ 0. The Damkohler number Da is equal

to dimensional-less rate constant kA;oads.



Fig. 8. Change in concentration of reactant A with distance ro at to ¼ 1. Theory Eq.
(13) versus SRD predictions.
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For x ¼ 0; ro ¼ 1, close to the surface of the sphere, Eq. (12)
becomes

cAð1; toÞ
cAð1;0Þ

¼ 1� Da
1þ Dað Þ 1� eserfcð ffiffiffi

s
p Þ� 	 ð13Þ

At steady state, lim s! 1,

cAð1; toÞ
cAð1;0Þ

¼ 1
1þ Da

ð14Þ

For a reaction limited case, Da � 1, the local concentration over
the surface of the sphere stays almost constant with time and for a
diffusion limited case, Da � 1, the diffusive flux of reactants is not
able to compensate for the fast reaction and the concentration
decreases quickly near the catalytic surface, see Fig. 6. For fast-
reactions, the dimensionless half-life of the reactant concentration
near the catalytic surface occurs approximately over the time scale

to ¼ 1=ð1þ DaÞ2 � 1=Da2 where to ¼ 1 represents time scale for
diffusion over a length scale of sphere radius. The logarithm of
the dimensionless half-life time is plotted against the logarithm
of Damkohler number, Fig. 7.

Fig. 8 shows the concentration of A as a function of distance ro

away from the sphere after a diffusive time scale, to ¼ 1 for differ-
ent Damkohler numbers.

It becomes a computational challenge to tackle a simple
reaction-diffusion case when Da � 1 or Da � 1. As has been
Fig. 6. Change in local concentration of reactant A at ro ¼ 1 with time to for 3
Damkohler numbers, Da ¼ 0:1;1:0;10. Da ¼ kA;oads for a linear assumption of reaction.
Theory Eq. (13) versus SRD predictions.

Fig. 7. Logarithm of half-life time of reactant concentration as a function of
logarithm of the Damkohler number.
observed in this example, SRD is quite efficient in resolving the
two processes even when they occur at complete different time
scales. Next step is to introduce a third time scale into our problem,
the convective time scale.

3.5. Dispersion with reaction in a packed bed

Up to this point, we have validated the model for at most two
competing processes (reaction - diffusion, convection - diffusion)
at the same time. Now, we introduce a linear reaction, as described
in Section 3.4, over the surfaces of all spheres in the packed bed, as
defined in Section 3.3, and study conversion across the reactor
length as a function of the interplay between convection, diffusion
and reaction.

The system, see Fig. 5, has periodic boundaries at
x ¼ 0; x ¼ Lx; y ¼ 0; y ¼ Ly; z ¼ 0; z ¼ Lz. The direction of flow is the
z-direction. To neglect transverse dispersion effects, we will always
ensure that Lz=Lx > 10; Lz=Ly > 10 (Klinkenberg et al., 1953;
Delgado, 2006). For gas-like fluids, the longitudinal dispersion DL

depends on the bulk diffusivity of the fluid components, the aver-
age fluid velocity and the sphere diameter (Gunn, 1987; Alves
et al., 2006; Delgado, 2006):

DL

DA
¼ 1
s0
þ 1
12

uð2RÞ
DA

ð15Þ

where s0 is the tortuosity of the packed bed column and u is the
average fluid velocity in the longitudinal direction. For a packed
bed of spheres, we can set s ¼

ffiffiffi
2

p
(Lanfrey et al., 2010). Non-

dimensionalizing Eq. (15) with the help of Table 3, we find

Do
L ¼

1
s0
þ uo

6
ð16Þ

We will consider a three-component system, containing a
majority inert solvent species S, a reactive species A which can
adsorb over the surface of the catalytic spheres and undergo a reac-
tion, to produce product species B. For a linear reaction, the reac-

tion rate constant will be kA
ads. A;B and S only differ by a tag

therefore we can make the simplifying assumption of constant dif-
fusivity/dispersion across the axial direction as long as Re is not too
high (< 200).

The reactor is full of solvent particles S at the start of system
t ¼ 0. We maintain a constant pressure difference for all t > 0
and let the system attain mechanical equilibrium, similar to Sec-
tion 3.3. This initial run time of the setup is time tstart .

For all t > tstart , the following two processes occur. Firstly, as
solvent S starts to move out of the system at z ¼ Lz, it is made to
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re-enter from the boundary at z ¼ 0 as species A. For more infor-
mation about mass and momentum conservation when carrying
out this step for different mass particles, see Appendix C. As species
A starts to fill the reactor, the reaction over the sphere starts with

rate kA
ads producing species B. As has been discussed in the previous

section, for a linear assumption of reaction, B once formed will not
desorb back on any catalytic sphere and eventually exit the system
from z ¼ Lz. For every particle B leaving the system, a particle A re-
enters the system from z ¼ 0. As the reaction progresses, the sys-
tem will develop a distribution of S;A;B along the reactor length.
Any species that diffuses back and leaves the system at z ¼ 0 will
be reintroduced from the boundary at z ¼ Lz as the same species.
However, such an implementation will also result in B formed at
the start of the reactor to re-enter the reactor from z ¼ Lz after dif-
fusing backwards, affecting the output concentration of reactants
or products.

To remove this effect, we define inert inlet and outlet regions of
length L near the boundaries in the z-direction whose dimension
should be at least the minimum of Ly; Lx (Deprez and de Buyl,
2017). Species A will only react between z ¼ L and z ¼ Lz � L. This
inlet region gives the product species B, formed just near the inlet
region, some space to diffuse back (without leaving the system)
and eventually be convected away by the flow in +z direction.

The simplifications involved in resolving the system into three
primary time scales are the following. Firstly, the catalyst should
equilibrate almost instantaneously, as compared to convective
and reactive time scales, to avoid depletion region formation near
the catalyst and also to ensure the reaction remains linear (Sengar
et al., 2017). Secondly, the time taken for particles to disperse
across one box-length in the transverse direction (x; y) should be
comparable or more than the time taken for particles to convect
across the reactor length in the flow direction.

The variation of the number density of reactant species A along
the z direction can now be written as

DL
d2cA
dz2

� u
dcA
dz

þ rA ¼ 0 ð17Þ

where u is the steady state velocity of solvent particles S at t ¼ tstart
(under our assumptions, the system distribution of velocities of par-
ticles across the reactor for t < tstart and t > tstart will be the same)
and rA is the rate of consumption of A per unit volume per unit time,

rA ¼ �kcA. Note that the previously mentioned kA
ads differs from the

current k. We can derive its value as follows.
Fig. 9. Variation of reactant concentration, WðzÞ ¼ cAðzÞ=cA;0, along the length of the r
triangles are the solution points from SRD simulations. Note that the DaL and PeL values
have to be tuned to generate output variables(DaL; PeL) that are related to each other by
Consider a cross-sectional volume element of length Dz along z
direction and Lx; Ly along x and y direction respectively. For suffi-
ciently high number of spheres in the model reactor, the total
number of catalytic spheres in this volume element will be equal
to NDz ¼ NsDz=Lz. If the adsorption flux of A on a single sphere

inside this volume element is kA
adscAðtÞAcat , the adsorption flux of

A in the volume element will be kA
adscAðtÞAcatNsDz=Lz. The volumet-

ric adsorption flux kcAðtÞ will be

k cAðtÞ ¼
kA
adsAcatNs

LxLyLz
cAðtÞ ð18Þ

LxLyLz is the volume of the model reactor, Acat ¼ 4pR2 and Ns, the
total number of catalytic spheres, can be related to the total reactor
volume as

4
3
NspR3 ¼ ð1� �ÞLxLyLz ð19Þ

Using Eqs. (18) and (19), we can write the volumetric reaction
rate constant as

k ¼ 3
4
kA
adsð1� �Þ

R
ð20Þ

and the dimensionless volumetric reaction rate constant is

ko ¼ 3
4
kA;oadsð1� �Þ ð21Þ

An analytical solution for Eq. (17) has been presented in
Levenspiel (1962). The reactant concentration WðzÞ ¼ cAðzÞ=cA;0
across the length of the reactor k ¼ z=Lz is

W ¼ ð1þ qÞ exp q
2 PeLð1� kÞ
 �� ð1� qÞ exp � q

2 PeLð1� kÞ
 �
ð1þ qÞ2 expðq2 PeLÞ � ð1� qÞ2 expð� q

2 PeLÞ
ð22Þ

where q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4DaL=PeL

p
. PeL ¼ uoLoz=D

o
L is the dimensionless Peclet

number relating the convection and dispersion time scales along
the longitudinal length in the reactor. DaL ¼ koLoz=u

o is the Damkoh-
ler number relating the reaction and convection time scales along
the longitudinal direction over a length L. Note the difference with
the Damkohler number defined in Section 3.4 which related the
reaction and diffusion time scales over a single sphere radius.

Fig. 9 plots the variation of reactant concentration along the
reactor length for DaL ¼ 1:0 and DaL ¼ 10:0, respectively. For the
present simulation framework, the reaction occurs between z ¼ L
eactor, k ¼ z=Lz . Dashed line is the analytical solution from Eq. (22), and inverted
obtained are approximately close to their actual values since the input parameters
a common variable uo .



Table 4
Variable parameter set used to predict the different dimensionless number sets. All
units have been non-dimensionalized according to Table 2

Dimensionless numbers Parameter set

DaL ¼ 1; PeL ¼ 0:1;Re ¼ 0:087 go ¼ 0:05; pA
ads ¼ 0:002; L0oz ¼ 10

DaL ¼ 1; PeL ¼ 1;Re ¼ 0:43 go ¼ 0:27;pA
ads ¼ 0:004; L0oz ¼ 20

DaL ¼ 1; PeL ¼ 10;Re ¼ 3:2 go ¼ 2:0; pA
ads ¼ 0:02; L0oz ¼ 30

DaL ¼ 10; PeL ¼ 1;Re ¼ 0:87 go ¼ 0:55; pA
ads ¼ 0:15; L0oz ¼ 10

DaL ¼ 10; PeL ¼ 10;Re ¼ 4:9 go ¼ 3:1; pA
ads ¼ 0:45; L0oz ¼ 20

DaL ¼ 10; PeL ¼ 100;Re ¼ 21 go ¼ 13:8;pA
ads ¼ 0:5; L0oz ¼ 75
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and z ¼ Lz � L, so the effective reactor length should be L0z ¼ Lz � 2L.
However, figures are provided by mapping the modified reactor
length, L0z over the real reactor length Lz make it convenient to
analyze.

All the simulations in Fig. 9 have the following fixed dimension-
less parameters (refer to Section 3.1 and Table 2):
coA ¼3000;Dtoc ¼ 0:07;mo

A ¼ 0:00045;Ns ¼1000;Lox ¼ Loy ¼10;Loz ¼100;
�¼ 0:5. The base units are R¼4:47a0; gA ¼15:27m0=ðt0a0Þ;DA ¼
2:07a20=t0.

For an SRD fluid, the corresponding Schmidt number, Sc under
the given coA;Dt

o
c ;m

o
A is 0.2 representing a gas-like fluid behavior

(H2;g). All simulations predict Reynolds number Re < 100. Table 4
highlights the variables parameters used to obtain the different
DaL and PeL.

For DaL < 1, the reaction time scales are longer than the convec-
tive time scales, which makes the situation uninteresting to pre-
sent here (but is generally observed in many real chemical
reactors). When DaL P 1, the boundary layer length around the
catalytic spheres will determine the concentration of A. When
PeL > DaL, diffusion is the slowest process. Convection resists reac-
tion at the start of the reactor but due to the small boundary layers
of reactant around the spheres, reaction is supported along the
length of the reactor. When PeL � 1, convection becomes slower
than diffusion and the reactor behaves like a CSTR.

4. Nonlinear reactor models

In Section 3, we have validated the SRD model for first order
reaction system when the mass diffusivity of the reactants equals
the mass diffusivity of the products. In this section, we consider
a model reactor as described in Section 3.5 and present two situa-
tions where (a) reaction order is nonlinear, and (b) product diffu-
sivity is different from reactant diffusivity.

4.1. Binary nonlinear reaction system

In our previous study (Sengar et al., 2017), we have described
the need for Langmuir-Hinshelwood type of kinetics to model a
simple reaction system like A ! B.

A�
kA
ads

kA
des

A 	!k
A
r B 	 �

kBdes

konB
B

The rate equations for this model are:

Ncat
dhA
dt

¼ kA
adscA;lh� kA

desNcathA � kA
r NcathA ð23aÞ

Ncat
dhB
dt

¼ kA
r NcathA � kBdesNcathB þ kBadscB;lh ð23bÞ

Under a pseudo-steady state assumption, a catalytic surface is
locally assumed to be equilibrated. The steady-state fractional
occupations of A and B, respectively, are:
hA;eq ¼
K A

eqcA;l

1þ K A
eqcA;l þ KB

eqcB;l þ kA
r

K A
eqcA;l
kBdes

þ KB
eqcB;l
k A
des

þ 1
kA
des

� � ð24Þ
hB;eq ¼
KB

eqcB;l þ kA
r

K A
eqcA;l
kBdes

þ KB
eqcB;l
kBdes

� �

1þ K A
eqcA;l þ KB

eqcB;l þ kA
r

K A
eqcA;l
kBdes

þ KB
eqcB;l
k A
des

þ 1
kA
des

� � ð25Þ

where Ki
eq ¼ kiads=Ncatk

i
des and ci;l represents the number density of

species i locally over the catalytic strip.
The rate of disappearance of A at this pseudo-steady state is

kA
adscA;lheq � kA

desNcathA;eq which is equal to the rate of generation of

B;�kBdesNcathB þ kBadscB;lheq which in turn is equal to the rate of sur-

face reaction kA
r NcathA;eq.

In Section 3.5, the kinetics equations were written under the
condition pA

des ¼ 0:0; pA
r ¼ 1:0; pB

des ¼ 1:0; pB
ads ¼ 0:0. The rate of dis-

appearance of A then becomes kA
adscA;l (for any pA

ads). This linearity
assumption generates a Damkohler number which is a constant
across the reactor system. This might not be the case when the
probability parameters mentioned above change. We will now
use the probability parameters defined to generate Fig. 9 as the
base case and compare the scenarios when pB

ads and pB
des changes.

The setup of the reactor is the same as described in Section 3.5.
Previously, the equilibration time of the catalyst was zero. This
enabled us to assume a steady state concentration of reactants
and products across the reactor already after a time tstart þ treactor
where treactor ¼ Lz=u, the typical residence time of particles inside
the reactor.

Now, we also have to account for the equilibration lifetime, teq,
of each catalytic surface present in our system. We can, approxi-

mately, determine this lifetime as follows. When kA
r ! 0, the equi-

libration lifetime is of the order of MaxfðkA
adscA;l=Ncat þ kA

desÞ
�1
;

ðkBadscB;l=Ncat þ kBdesÞ
�1g. Similarly, when kA

r ! 1, the equilibration

lifetime is of the order MinfðkA
adscA;l=Ncat þ kA

desÞ
�1
;

ðkBadscB;l=Ncat þ kBdesÞ
�1g. Using this analysis, we can always pre-

determine a suitable time after which every catalyst can be
assumed to be equilibrated.

Now, at time t ¼ tstart þ treactor þ teq, we analyse the steady state
concentration profiles of the reactants and the products.

Fig. 10 shows the deviation from the linear assumption for 2
cases, DaL = 1.0, PeL = 10.0 and DaL = 10.0, PeL = 10.0 (shown by
thick black lines in both figures) as probability parameters change.

In Fig. 10(a), pB
des is fixed at 0.01 and pB

ads is varied from 0 to 0.9.
pA
ads is kept constant (see Table 4). For pB

ads = 0.0, the adsorption of
reactant A is still the slowest process and the curve almost overlaps
with the base case. As pB

ads increases, the readsorption flux of pro-
duct B increases along the length of the reactor. This, in turn, shifts
the fractional coverage over the catalyst in favor of B. The effect is
visible in the concentration of A along the reactor length since
more unreacted A is now convected along the longitudinal
direction.

For Fig. 10(b), pB
ads is fixed at 0.5 and pB

des is varied from 0 to 0.9.
The higher desorption probability of B allows more reactant spe-
cies A to adsorb, and consecutively react to form product B.

4.2. Unequal species diffusivity

In the previous section, a nonlinear reaction was analyzed while
ensuring that the diffusivity of the mixture in the bulk of the



Fig. 10. Variation of reactant concentration, WðzÞ ¼ cAðzÞ=cA;0, along the length of the reactor, k ¼ z=L0z . Dashed line is the fit obtained for the starred points where
concentration in model reactor is calculated. The thick black line in both cases represent the base case for DaL ¼ 1:0; PeL ¼ 10:0 and DaL ¼ 10:0; PeL ¼ 10:0 respectively. (a)
Effect of altering probability of readsorption of B with Ncat ¼ 100; pB

des ¼ 0:01, (b) Effect of altering probability of surface reaction of A to B with Ncat ¼ 100; pB
ads ¼ 0:5. The rest

of simulation parameters are same as used in Fig. 9.
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reactor system always remains the same. Now, we will study the
system when the reactant and product species have different diffu-
sivity values.

With the same reactor model as defined in Section 3.5, we ini-
tiate a reaction A ! nB. Consequently, mA ¼ mB=n where n > 1 or
n < 1. For an SRD fluid, changing the mass of particles inversely
affects their diffusivity, Eq. (1). Since we are mainly interested to
measure the effects of bulk diffusivity in the mixture, a first-
order reaction is considered (pA

ads > 0; pA
des ¼ 0:0; pA

r ¼ 1:0;
pB
des ¼ 1:0; pB

ads ¼ 0:0).
We consider the case DaL = 1.0, PeL = 10.0 with the same simu-

lation parameters as used to generate the corresponding curve in
Fig. 9. The rules for conversion of A to B on the catalytic surface,
when mass of the two species is different, is mentioned in Appen-
dix C. Appendix C also mentions the conservation rules applied to
handle boundary conditions when particles A or B leave the peri-
odic boundaries (as defined in Section 3.5).

When mB < mA, the mutual diffusivity of the mixture is higher
than the self-diffusivity of reactant A. This translates to a lower
frictional force experienced by A while traversing the reactor,
thereby, reducing the residence time of species A between a vol-
Fig. 11. Variation of reactant concentration, WðzÞ ¼ cAðzÞ=cA;0, along the length of
the reactor, k ¼ z=L0z . Dashed line is the fit obtained for the starred points where
concentration in model reactor is calculated. Simulations are performed when
mB – mA and compared with the base case withmB ¼ mA ¼ 1:0 (red dashed line) for
DaL ¼ 1:0; PeL ¼ 10:0 of Fig. 9. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
ume element z and zþ dz. This effect is visible in Fig. 11 where
for mB < mA , more unreacted A is present along the reactor length
as compared to the situation with mB ¼ mA. For mB > mA, the effect
is reversed and the mobility of A decreases.

It should also be noted that the above reaction system does not
conserve the number of particles in the system which is a source of
an internal pressure difference generated along the longitudinal
direction. This pressure adds up to the external pressure difference
when mB < mA(n > 1). Conversely, when mB > mA(n < 1), this
internal pressure goes against the external pressure. This effect
itself can be incorporated into the Maxwell-Stefan diffusivity
between A and B. Further information is provided in Appendix D.
5. Discussion and conclusion

We have presented here a multiscale modeling technique that
is able to accurately resolve different processes occurring on time
scales that differ on orders of magnitude. We have highlighted
the basic modeling techniques involved in modeling a simple reac-
tor system (involving convection, diffusion and reaction) using
SRD. The analysis was first carried out for a linear reaction assump-
tion, followed by the incorporation of a reaction cycle following
Langmuir Hinshelwood kinetics. The ability of the SRD model to
also account for multicomponent diffusion opens up a whole
new domain of complex reaction system that can be modeled.

To model a real chemical reactor, the number of processes
occurring at different time scales might be much larger than 3.
Even if kinetics is given by the simple Langmuir Hinshelwood
model, intermediary processes like adsorption, desorption, surface
reaction become important. As the number of participating compo-
nents increase, the system complexity increases and resolution of
each and every process becomes challenging.

The generation of different product species in such a multicom-
ponent nonlinear scheme will directly affect the behavior of the
bulk fluid as well. Different species in the bulk will have different
self-diffusivity. The pairwise interaction between species can be
incorporated in a mutual diffusivity expression, which has been
presented in this work, using SRD, for a binary mixture but can
be extended for any n component solution. Unequal moles of reac-
tants and products might lead to an internal pressure force origi-
nating from or away from the reaction site, the contribution of
which has been incorporated in the Maxwell-Stefan diffusion coef-
ficients, see Appendix D.
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Another time scale of importance is the equilibration time of
the catalytic strip. For all cases with linear reaction assumption,
we assumed that the catalyst equilibrates or achieves a pseudo
steady state instantly. When this is not observed, regions of low
density (depletion regions) may form near the catalytic strip which
can be a source of another driving force(only for higher values of
Sc). When reactions occur inside complex geometries, a new time
scale will be present which relates to the time taken for the reac-
tant fluid to move through a pore towards the reaction site (pore
diffusion).

The combined effect of the above described processes is
reflected in the output concentration of any species from the reac-
tor system. A macroscale reactor might involve length scales much
larger than the length scales of individual processes which will
result in the incorporation of another time scale in the system.

With a large number of processes to resolve at the hydrody-
namic and reaction level, SRD has been shown to be quite effective
in resolving particle-particle interactions quickly for a large num-
ber of components. The computational efficiency of the algorithm
therefore makes it easy to couple this scheme with any reaction-
based scheme for complex geometries, as long as the reaction steps
conform to the mean-field assumption.

We would like to end the discussion for this work by guiding
the readers interested in further resolving the system of interest.
For reaction schemes where a mean-field assumption does not
hold true (island formation or phase transition at the catalytic
sites), a stochastic treatment to the individual reaction steps has
to be done which will add up to the simulation time. For such com-
plex reaction schemes, one may use Machine Learning to develop
an algorithm that observes a stochastic reaction cycle. The algo-
rithm is then able to predict the output fractional vacancies of dif-
ferent species based on input of (a) reaction rate constants at time
t, (b) fractional vacancy of surface sites at time t, and (c) the hydro-
dynamic time step Dtc . This will be the topic of our future work.
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Appendix A. Reactions on a sphere

To model reactions over a more complex geometry like a
sphere, the lattice cells in an SRD fluid near boundaries should
be updated and the catalytic surface needs to be modified.

To simulate a catalytic sphere with periodic boundaries, the
surface of the sphere will be no-slip and reactive. As mentioned
before, a grid-shift procedure helps achieve Galilean-invariance
in the system where lattices are shifted in space before collision
by a random number between 0 and a0 in each Cartesian direction.
Due to this, all lattice cells inside the sphere which are at a distanceffiffiffiffiffiffiffiffi
3a0

p
from the surface need to be checked for ghost-cell boundary

conditions. For all cells near boundaries, a modified ghost bound-
ary cell approach was used that conserves not the number density
of particles but the average centre of mass momentum of particles
in the bulk (Sengar et al., 2017).

In presence of convection, the pressure over the sphere will be
different at different positions. A single averaged catalytic surface
will then give wrong predictions. To tackle this, the surface of
the sphere can be divided into a surfaces. Assuming a flow in z
direction, there is azimuthal symmetry in the system along the z
axis. Hence, the sphere surface can best be divided into a strips
with equal areas such that aA ¼ 4pR2 where A is the area of a sin-
gle divided strip and R is the radius of the sphere. It is known that
dividing a sphere into a equal parts along any Cartesian axis will
result in an equal surface area of each portion.
Appendix B. Coupling reactions with hydrodynamics

In our previous work, Sengar et al. (2017), we outlined the need
to rewrite the rate equations to simultaneously simulate adsorp-
tion, desorption and reaction steps. Let’s assume adsorption of A
on a catalytic strip, the rate equations when coupled with the fluid
in the bulk can be written as

DhA
Dtc

¼ k1h� k2hA � k3hA þ k4hB ðB:1aÞ
DhB
Dtc

¼ k6hþ k3hA � k4hB � k5hB ðB:1bÞ

where Dtc is the hydrodynamic time step of the fluid and
h ¼ 1� hA � hB by the conservation of surface sites. The hydrody-
namic time step is set such that the adsorption rates k1 and k6 (of
A and B respectively) can be assumed constant over this time per-
iod. If this is not the case, Dtc needs to be reduced further. Sequen-
tial treatment of the reaction steps might lead to overestimation or
underestimation of a surface species concentration. This occurs if
the change produced by any intermediary step in the reaction cycle
within one time step is much higher as compared to the other steps
(which generally occurs when reaction occurs much faster than dif-
fusion). For an accurate simultaneous representation of the reaction
system, one solution is to reduce the time step Dtc . This however
increase the computational time. In this work, we use a technique
that modifies the instantaneous rates at every time step to avoid
any error.

B.1. Adaptive rate method

We define the fastest intermediary step between time interval t
and t þ Dtc as wðtÞ ¼ MaxðkihjÞ. The method involves rewriting the
rate equations with respect to the process ki acting on hj. The mod-
ified rate equations then become

DhA
Dtc

¼ wðtÞ k01h� k02hA � k03hA þ k04hB

 � ðB:2aÞ

DhB
Dtc

¼ wðtÞ k06hþ k03hA � k04hB � k05hB

 � ðB:2bÞ

where k0i ¼ ki=wðtÞ. For every time step t, the rate constants of the all
intermediary steps are modified by wðtÞ. The reaction cycle is initi-
ated by the first occurrence of wðtÞ following which a sequential
treatment of the other processes with modified rate occurs. This
is repeated until all the occurrences of wðtÞ are exhausted.

As discussed in Sengar et al. (2017), the adsorption probabilities
derived from the adsorption rates remain independent of the

steaming step of the fluid, pi
ads ¼ ckiads where c is a constant that

depends on simulation parameters and fluid properties (Table 3).
The modified adsorption probability for the scheme discussed
becomes p0

ads ¼ ck0adsCs. The probability of desorption and reaction/-
conversion to other surface species is linked to the rate constants
as pdes ¼ � logð1� kdesDtcÞ. The modified probability then becomes
p0
des ¼ � logð1� k0desDtcÞ.
A reaction cycle involving nonlinear reaction pathways, for

example khAhB, can be easily modified using the above approach.
The modified rate can be written as k0 ¼ khA=wðtÞ, and a probability
parameter can be obtained for the modified rate constant. Since
k0 6 k, the linearization approach used to model with scheme Eq.
(B.2) will always be numerically more accurate that sequential
treatment in Eq. (B.1).
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B.2. Matrix formulation

The second method involves writing the rate of change in sur-
face species involved in matrix formulation and solving it numer-
ically over the streaming time step of the fluid.

Dh=Dtc
DhA=Dtc
DhB=Dtc

2
64

3
75 ¼

�k1 � k6 k2 k5
k1 �k2 � k3 k4
k6 k3 �k4 � k5

2
64

3
75:

h

hA
hB

2
64

3
75

The above matrix calculates the surface species concentration at
the end of time step Dtc . With this information, we can numerically
predict the total number of adsorptions, desorptions and reactions
to occur over the catalytic strip between time t and t þ Dtc . If Dhi;j
represents the number of occurrences of reaction step ki acting
over hj between time t and t þ Dtc , the modified probability for
any process becomes Dhi;j=hjðtÞ. If Dh1;A is the numerically calcu-
lated number of adsorptions of species A between t and t þ Dtc ,
the modified probability of adsorption for time t is Dh1;A=hAðtÞ.

For a nonlinear rates like khAhB with number of occurrences
between t and t þ Dtc equal to DhA;B, the modified probability will
be DhA;B=hAðtÞ or(and) DhA;B=hBðtÞ depending on which surface spe-
cies is (are) affected.

Appendix C. Mass and momentum conservation

The modeled system involving a reaction has two primary
regions where SRD particles change to a different species while
conserving mass and/or momentum. At the catalytic sites where
the reaction occurs, a change in number of product particles with
mass conservation occurs. Secondly, at open boundaries if particles
change nature(from products to reactants or vice versa), mass and
momentum conservation rules need to be applied.

C.1. Adding particles

We explore the mass and momentum conservation rules for the
case where addition of n > 1 particles of different mass and veloc-
ity leads to the formation of a single new particle.

By mass conservation,

m0 ¼
Xn
i¼1

mi ðC:1Þ

where mi is the mass of initial particles and m0 is the mass of the
new particle.

Let the velocity of individual particles be v i þ dv i where v i and
dv i are the first and second moment of velocity respectively.

To generate v 0 þ dv 0 as the velocity of new particle, we perform
momentum conservation, m0v 0 ¼Pn

i¼1miv i which gives the first
moment of velocity of the new particle as

v 0 ¼
Pn

i¼1miv iPn
i¼1mi

ðC:2Þ

Since the temperature of the ensemble of SRD particles is stored
in the velocity fluctuations of each particle, we need to generate
the second moment of velocity of new particle such that the total
energy of the system is preserved. The total energy of all initial par-
ticles is:

Einitial ¼
Xn
i¼1

midv2
i ðC:3aÞ

Einitial ¼
Xn
i¼1

mi
kBT
mi

¼ nkBT ðC:3bÞ

By conservation of energy, Einitial ¼ Efinal.
Efinal ¼ m0dv 02 ðC:4aÞ
m0dv 02 ¼ nkBT ðC:4bÞ

dv 0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
kBT
m0=n

s
ðC:4cÞ

The above equation implies that the new particle formed should
be given a random velocity fluctuation from a normal distribution

with standard deviation
ffiffiffiffiffiffiffi
kBT
m0=n

q
to conserve total energy of the sys-

tem. Note that m=0n is just the average masses of the initial
particles.
C.2. Splitting particles

Splitting a single particle, with mass m0, velocity v 0 and velocity
fluctuation dv 0, requires the same approach as above: conservation
of mass, momentum and velocity fluctuations (leading to energy
conservation). If n > 1 new particles are created with mass mi, by
mass conservation,

m0 ¼
Xn
i¼1

mi ðC:5Þ

If the velocity of ith particle is v i þ dv i, where v i is the mean
velocity and dv i is the velocity fluctuation, by momentum
conservation,

m0v 0 ¼
Xn
i¼1

miv i ðC:6Þ

The energy of the initial particle Einitial is kBT. The energy of final
particles Efinal (which is equal to Einitial is

Efinal

Xn
i¼1

midv2
i ¼ kBT ðC:7Þ

A solution to the above equation is dv2
i ¼ kBT=m0. Therefore, we

can generate a velocity fluctuation for all the new particles from a

normal distribution of standard deviation
ffiffiffiffiffiffiffiffi
kBT

p
m0. The implication

of this is that new particles formed are at a lower temperature than
the initial particle by a fraction

ffiffiffiffiffiffiffiffiffiffiffiffi
mi=m

p
. Within a few collisional

steps, these new particles will equilibrate according to their Max-
wellian distribution with a second moment of velocity kBT=mi (if
the environment around this particle consists majorly of particles
of mass mi).
C.3. Updating particle positions

In case of adding particles, only particles in the vicinity of half a
cubic cell length a0=2 are combined together since a velocity gradi-
ent present along any direction might lead to particles adding from
regions of very different velocities. Following this, the coordinates
of the new particle should be the coordinates of the center of mass
of all the other particles.

m0r0 ¼
Xn
i¼1

miri ðC:8Þ

When splitting particles, since the velocity of new particles is
the same as the initial particle, new particles can be positioned
at the same location as the initial particle. This creates a region
with high number density and low individual temperature of the
formed particles momentarily until they distribute their mass in
the bulk and attain the same temperature as the bulk.
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Appendix D. Maxwell-Stefan diffusion: unequal consumption
and generation over catalyst

Chemical reactions might involve change in pressure at the
reaction site as compared to the bulk if total moles of gaseous pro-
duct species is different than total moles of reactant product spe-
cies. A pressure difference towards or away from the catalyst will
affect the diffusivity of whole region. To demonstrate this aspect,
we use the simulation method used in Sengar et al. (2017).

To summarize, a reaction A ! nB occurs at a catalytic strip,
placed along the z axis of a 3D box (Lx 
 Ly 
 Lz) with walls along
y direction and open boundaries along the x and z direction. The
reaction leads to change in number of particles and mass of parti-
cles, leading to change in diffusivity of product particles, Eq. (1).
The catalytic strip with dimensions Lx 
 Lcat is placed at the center
of the box along the y ¼ 0 wall such that length of strip in z direc-
tion is small as compared to the length of the box, Lz. At z ¼ 0 and
z ¼ Lz product particles B are removed following the conservation
principles defined in Appendix C. At x ¼ 0 and x ¼ Lx, particles
are re-entered into the system from the other end without any
change in their physical property. There is no convection, only dif-
fusion leading to transient velocity gradients that disappear at
steady state. The net force on a particle of reactant or product spe-
cies i can be written as Taylor and Krishna (1993)

RTdi ¼ rTli � Fi ðD:1Þ
where rTli is the gradient in chemical potential at constant tem-
perature and Fi is the external force on the system. For the present
case, the external force is a transient force that originates because of
change in number of moles during a reaction. This leads to a pres-
sure gradient in the system. At steady state the, external force
becomes zero but the reaction is now supported by the pressure
gradient in the system. It has been shown that under forces leading
to pressure gradients in the system, the force equation can be
rewritten as Taylor and Krishna (1993)

di ¼ rvi þ ðvi �xiÞrP
P

� 1
P

ciFi �xi

Xn
j¼1

cjFj

 !
ðD:2Þ

where vi;xi; ci are the number fraction, mass fraction and number
density of species i and rP is the gradient in total pressure in the
system. At steady state, the force per particle di, in a system with
n different species, can be equated to the diffusive flux according
to the relation:

ctd ¼ �½B�J ðD:3Þ
where ct is the total number density of particles of all species. d is
the column matrix containing di; J is the column matrix containing
diffusive flux Ji, and B is the matrix with coefficients given by

Bii ¼ vi

D1n
þ
Xn
k ¼ 1
i–k

vk

Dik
ðD:4aÞ

Bij ¼ �vi
1
Dij

� 1
Din

� �
ðD:4bÞ

where Dij is the Maxwell-Stefan diffusion coefficient for species i
and j or the inverse drag-coefficient experienced by species i under
influence of species j. For a binary mixture, Eq. (D.3) can be written
as

J1 ¼ �ctD12d1 ðD:5Þ
For the model reaction system involving two components, at

steady state, Fi ¼ 0, Eq. (D.2) can be used in Eq. (D.5) to get
J1 ¼ �ctD12 rv1 þ ðv1 �x1ÞrP
P

� �
ðD:6Þ

The diffusive flux (J) of reactant and product species can also be
calculated at steady state of the simulation by looking at the rate of
disappearance of reactant species or rate of generation of product
species per square meter of the catalytic strip per unit time step
which is a constant determined by the reaction rate parameters
and model initialization.

When the difference in moles of product and reactant species
due to reaction is small, a pressure gradient is not present and
Eq. (D.6) can be written as

J1 ¼ �ctD12rv1 ðD:7Þ
Appendix E. Computational setup

An in-house code has been developed using which all the above
simulations have been performed. The present method develop-
ment is a continuation of our previous work (Sengar et al., 2017)
where a reaction-diffusion system was built. The present code
has been developed using C and all libraries and functions have
been developed within the group. The simulations run on a single
core of a CPU and there is scope for both optimization and paral-
lelization. The processor is an Intel�Xeon�E5-1650 v2 with 3.5
Ghz clock speed and 12 MB cache.

A typical simulation contains Ns spheres in a 3D box with length
ðLx; Ly; LzÞ. Any particle undergoes the following operations:
Streaming, intra-cell collision, reflection, reaction (adsorption, des-
orption and surface reactions).

Streaming and collision times of particles are of the same order
of magnitude aad scale as OðcLxLyLzÞ where c is the typical number
density of particles in the system.

To make reflections efficient, we have developed the following
methodology. For each sphere in the reaction system, the lattice
cells that lie inside the sphere i are tagged (0,i) and the ones that
partially lie inside the spheres are tagged (1,i). This ensures an effi-
cient calculation to predict which sphere will particles interact
with based on their initial and final position (unreflected) positions
(a fraction of particles that will not reflect will also get a tag (1,i)).
Having done that, the higher the value of �, the closer spheres will
be and higher will the chance of an SRD particle to collide with the
sphere will be. For increasing �, we ensure that particles do not end
up suffering multiple collisions between 2 spheres and we limit the
number of such reflections to 3. Reflections scale up approximately

as OðcLxLyLz=ð1� �Þ2Þ.
Reactions occur per single hydrodynamic time step of bulk fluid.

We have defined two methodologies to perform reaction in Appen-
dix B. In the adaptive rate methodology, we propose to perform all
surface reaction operations for every instance of the fastest pro-
cess. For reaction system, OðcavgAcatNcatÞ operations occur for each
hydrodynamic time step where cavg is the average number density
of SRD particles interacting with catalytic strip. Using the matrix
formulation, the order per time step Dtc will be OðcavgAcatnDtc=hÞ
where h is the time-step of the runge-kutta solver used and n is
the number of different surface species.

The complete runtime of a simulation is t ¼ tstart þ treactor þ teq.
tstart is the time taken to achieve mechanical equilibrium where
the mean velocity across the reactor becomes fixed. Until
t ¼ tstart , only streaming, collision and reflection occur. For
treactor � Lz=u, streaming, collision, reflection and reaction occur.
For teq, the equilibration time of the catalyst, again all the processes
occur.
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For a linear process, teq ¼ 0 and the simulation time generally
scales because of reflections. We can also assume tstart � treactor .
The simulation time will scale linearly on Lz=u. For
Da ¼ 1; PeL ¼ 0:1;Re ¼ 0:087, the simulation time was approxi-
mately 100,000 s (about a day). For DaL ¼ 10; PeL ¼ 100;Re ¼ 21,
the simulation time was approximately 4000 s.

For nonlinear processes, the processes confined within L0z dom-
inate the system. It took approximately 100,000 s to obtain each
curve of Fig. 10 (using matrix formulation). (For the same scenario
in linear reactions, it took about 20,000 s per simulation) (See
Table E.5).
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