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1 Introduction

Interacting particle systems are classical models to study problems in non-
equilibrium statistical physics. For instance, interacting particle systems can
be used successfully to derive Fourier’s law, on heat conduction. Furthermore,
interacting particle systems have been used to prove new theorems in non-
equilibrium statistical physics, such as the fluctuation theorem [4].A typical
example of these interacting particle systems is the symmetric exclusion process
(SEP)[8]. While these interacting particle systems will always fall short captur-
ing the full complexity of physical reality, they still enable us derive essential
characteristics of it, through a rigorous mathematical approach. The SEP is a
stochastic process that describes particles hopping randomly on a grid of sites.
The most simple case of the SEP follows two key rules. First that no two par-
ticles can occupy the same site. This explains the ”exclusion” part in its name.
The second rule being that the jumps to the neighbouring sites on the left and
right occur with equal probability. This explains the ”symmetric” part in the
name. There are various types of SEPs, with different modelling restriction,
including some that are exceptions to the two key rules mentioned above. In
this thesis four different types of SEPs have been considered.

Starting from these four SEPs, the goal of this thesis is to show that the math-
ematical approach of duality can be used to prove the time evolution of the
collective behaviour of the particles under consideration. Duality is a mathe-
matical technique to relate the properties of one type of model to the properties
of another one [2]. The duality approach allows us to reduce a system with pos-
sibly infinitely many particles to a system with a finite number of particles, up
to even only one particle. This enables substantial computational simplification.
Moreover, duality makes it possible to replace a boundary site, where particles
can enter and leave the system, by an absorbing site where particles can only
leave the system[1]. This also adds to further simplification of the model.The
time evolution of the collective behaviour of the particles is characterized by
the hydrodynamic limit. The hydrodynamic limit describes the mathematical
method to move from a microscopic to a macroscopic perspective. The aim is to
show that this result can be achieved through the use of duality. Using duality
will make the proof much more intuitive than the elaborate approach used in
[3] and [6]. Furthermore, it will allow us to create proofs for systems that so far
have been proven by such another and more elaborate approach.

On this basis, the approach that is taken during the project is as follows. First
we consider the SEP on the homogeneous environment 𭟋. This model does not
allow particles to enter or leave the system and only allows for one particle per
site. Using duality the problem is reduced to a single-particle problem and after
diffusive scaling leads to the expected result: the solution to the heat equation.
Diffusive scaling is accomplished by introducing the scaling factor N and scaling
space by 1

N and time by N2.
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In the next model we allow for more particles to occupy the same site, thus
relaxing one of the key rules for SEPs mentioned above. In this model we still
make use of diffusive scaling. Using duality, we once again reduce the problem
to a single-particle problem. Furthermore, we apply an important result derived
from the study of the random conductance model (RCM), to obtain the desired
result: the solution to the heat equation, with a diffusion coefficient that de-
pends on the maximum occupancy of the sites.

In the third model we assume an open system and allow particles to enter
and leave the system at the left and right boundary sites. The rates at which
particles can enter and leave the system are set by certain parameters. How-
ever, in this model the maximum occupancy of the sites is again 1, as it was
in the first model. Now we use duality to relate the model to a single-particle
model where the boundary sites (where particles can both enter and leave) are
replaced by absorbing sites (where particles can only leave). After applying
diffusive scaling once again, we obtain the expected result: the solution of the
heat equation with Dirichlet boundary values, depending on the parameters de-
scribing exchange rates at the boundary sites.

In the fourth, and final model, the properties of the second and third model
were combined. Thus, an open system is studied, where more than one particle
can occupy the same site. In order to prove the expected outcome, the results
from the second and third model are combined. The resulting outcome is the
heat equation with Dirichlet boundary values depending on the behaviour at the
boundaries and a diffusion coefficient depending on the random environment.

Lastly, a physical application is discussed to illustrate how the theoretical results
obtained from the analysis of SEPs can be used to better understand real-world
phenomena. In particular, we consider the migration of Li+ ions through the
electrolyte of a lithium battery. the migration of these ions can be modelled by
the SEPL,R and SEPL,R(α), depending on the disorder the anion sublattice.
The derived hydrodynamic limits provide insight into how microscopic disorder
in the electrolyte influences ionic conductivity, and hence the performance of
the battery. This example not only demonstrates not only demonstrates the
practical relevance of interacting particle systems, but also shows how mathe-
matics and physics can complement each other.

In conclusion, this project demonstrates the feasibility of using duality to de-
rive the hydrodynamic limit of given SEPs. In particular it shows how duality
can be used to derive the hydrodynamic limit of a open systems with a ran-
dom maximum occupancy. For this model a proof had not been available yet.
Furthermore, by applying these results to a physical system, namely the mi-
gration of Li+ ions in lithium batteries, this thesis illustrates how interacting
particle systems can be used to understand and improve real-world technological
processes.
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2 Mathematical background

In this chapter, we will first provide the mathematical background needed to
understand this thesis.

2.1 Markov theory

2.1.1 The Markov property

A Markov process on the state space Ω is a stochastic process Xt, t ≥ 0, such
that future states only depend on the current state and not on any past states.
Mathematically, this is expressed as follows.

Definition 2.1 (the Markov property). For all t > 0, n ∈ N, 0 < t1 < t2 <
...tn < t and for all f : Ω → R bounded and measurable, we have that

E(f(Xt)|Xt1 , Xt2 , ..., Xtn) = E(f(Xt)|f(Xtn) (1)

Or in a more measure theoretic notation, which is also more useful for the
continuous time case

Definition 2.2 (the Markov property measure theoretic notation). Let Ft =
σ(Xr : r ≤ t) be the σ-algebra generated by the random variables Xr, r ≤ t,
then for all 0 < s ≤ t it holds that

E((f(Xt)|Fs) = E(f(Xt)|Xs)

2.1.2 Semigroups and generators

Definition 2.3 (Semigroup). Let {Xt, t ≥ 0} be a Markov process on the state
space Ω, then we define the semigroup St for a bounded function f : Ω → R as

Stf(x) = E(f(Xt)|X0 = x) = Ex(f(Xt)) (2)

where Ex denotes the expectation of the process starting from x ∈ Ω.

We prefer to think of St as an operator working on functions f ∈ B(Ω). The
most import properties of St are summarized in Proposition 2.1.

Proposition 2.1 (Properties of the Semigroup St).

1. Identity at time zero: S0 = I, i.e., S0f = f for all f .

2. Right continuity: The map t 7→ Stf is right-continuous.

3. Semigroup property: For all t, s ≥ 0,

St+sf = St(Ssf) = Ss(Stf).

4. Positivity: If f ≥ 0, then Stf ≥ 0.
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5. Normalization: St1 = 1.

6. Contraction:
sup
x

|(Stf)(x)| ≤ sup
x

|f(x)|.

There is a one-to-one correspondence between a Markov generator L and a
Markov semigroup {St, t ≥ 0} [8]

Definition 2.4. For all f ∈ D(L), the generator L of the Markov process
{Xt, t ≥ 0} is defined as

Lf = lim
t→0

Stf − f

t
(3)

where the domain D(L) is given by

D(L) = {f : lim
t→0

Stf − f

t
exists} (4)

Notice that L is only defined for a much more restrictive class of functions,
compared to the set of functions on which the semigroup can be defined.

2.2 Duality

Duality describes how two Markov processes {Xt, t ≥ 0} (the process under
study) on a state space Ω and a process {Yt, t ≥ 0} (the dual process) on a state
space Ω̂ can be related to each other using a duality function D : Ω̂ × Ω 7→ R.
The relation between the Markov processes is expressed through expectations,
i.e. for all t ≥ 0 and for all y ∈ Ω̂, x ∈ Ω

Êy(D(Y (t), x) = Ex(D(y,X(t)). (5)

We write the connection symbolically as

{Xt, t ≥ 0} D→ {Yt, t ≥ 0} (6)

The main reason for looking for duality, (i.e. a dual process and a dual func-
tion) is simplification. In the context of interacting particles, one of the most
important simplifications induced by duality is that it allows us to reduce sys-
tems with possibly infinitely many particles to systems with a finite number
of particles. If we study interacting particle systems, which at the boundaries
allow input and output of particles, duality allows us to connect the system to
a much simpler system where the boundaries are replaced by absorbing sites.

2.2.1 Generator and semigroup duality

The relation introduced in 5 can be replaced by a similar relation between
the Markov generators of the two processes. Since the Markov generator fully
encodes the Markov process, in most cases, a duality relation for expectations
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is derived from a duality relation between the generators.
We denote the semigroup of the process {Xt, t ≥ 0} by

(SX(t)f)(x) = Ex[f(X(t))], (7)

and similarly (SY (t)f)(x) = Ey[f(Y (t))]. We define the notion of semigroup
duality in the following way.

Definition 2.5. Let D : Ω̂×Ω 7→ R denote a measurable function. We say that
D is a duality function for semigroup duality between the process {Xt : t ≥ 0}
and the dual process {Yt : t ≥ 0} if for all x ∈ Ω, y ∈ Ω̂ and t ≥ 0 we have

Êy(D(Y (t), x) = Ex(D(y,X(t))), (8)

The notion of semigroup duality in 8 is equivalent to the notion of ”duality”
given in eq. ??. As a concise notation for semigroup duality we will write

{Xt, t ≥ 0} D→ {Yt, t ≥ 0} (9)

Let LX and LY denote the Markov generators of {Xt : t ≥ 0} and {Yt : t ≥ 0}
respectively. Then we say that the dual function D(y, ·) is in the domain of the
generator if

LXD(y, x) = lim
t→0

Ex[D(y,X(t)]−D(y, x)

t
exists for all x ∈ Ω (10)

The same holds for LY .
In case the duality functions are in the domain of the generator, we have the
notation of ”generator duality”, which is defined as follows.

Definition 2.6. Let D : Ω̂ × Ω 7→ R be a function such that D(y, ·) is in the
domain of LX and D(·, x) is in the domain of LY . We then say that D is a
duality function for generator duality between the process {Xt, t ≥ 0} and the
dual process {Yt, t ≥ 0} if for all x ∈ Ω, y ∈ Ω̂ we have

(LYD(·, x))(y) = (LXD(y, ·))(x) (11)

In case the state spaces Ω and Ω̂ are finite, the Markov generators are matrices.
Because the semigroups are simply the matrix exponentials

SX(t) =

∞∑
n=0

tnLn
X

n!
(12)

and similarly SY (t) =
∑∞

n=0
tnLn

Y

n! we obtain semigroup duality from generator
duality. However subtleties start to arise when the state spaces are no longer
finite and the Markov generators become unbounded operators. The following
theorem tells us when generator duality implies semigroup duality.
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Theorem 2.7 (Relation between semigroup duality and generator duality [2]).
Let LX denote the generator of the Markov process {Xt, t ≥ 0} and LY the
generator of the Markov process {Yt, t ≥ 0}. Let D : Ω̂ × Ω 7→ R be a function
such that D(y, ·) is in the domain of LX and D(·, x) is in the domain of LY .
If (SY (t) ⊗ I)D ∈ DX and (I ⊗ SX(t))D ∈ DY for all t ≥ 0, then generator
duality implies semigroup duality.

Proof. For the proof we refer to [2]

2.3 Brownian motion and the connection to the heat equa-
tion

First we state the definition of Brownian motion.

Definition 2.8 (Brownian motion). A real valued process {Wt, t ≥ 0} is called
a Brownian motion process if

1. Starting at 0: W (0) = 0.

2. Normally distributed increments: For all 0 ≤ s ≤ t, W (t) − W (s)
d
=

N (0, t− s).

3. Independent increments: For all 0 ≤ t0 < t1 < t2 < .... < tn, the random
variables Yi :=W (ti)−W (ti−1), i = 1, ...n are independent.

4. Continuous trajectories: The map t 7→W (t) is continuous.

Brownian motion is a Markov process. The Markov property can be verified
using the independent increments of Brownian motion. For the exact proof we
refer to [9]. We define the Markov semigroup of the Brownian motion process
W (t) as

Stf(x) = Ex[f(W (t))] = E[f(x+W (t))] (13)

The Markov generator of Brownian motion is formalized in Lemma 2.9

Lemma 2.9 (Markov generator of Brownian motion). For all f ∈ C2
0(R), the

Markov generator L of the Brownian motion process{W (t), t ≥ 0} is given by

Lf(x) = 1

2
f ′′(x) (14)

Proof. By Definition 2.4 we know that

Lf(x) = lim
t→0

Stf(x)− f(x)

t
= lim

t→0

E[f(x+W (t))]− f(x)

t
(15)

If we then use property 2 of Definition 2.8 we find:

Lf(x) = lim
t→0

∫
R f(z)

1√
2πt

e−
(z−x)2

2t dz − f(x)

t
(16)
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next we expand f(z) in a Taylor expansion around x

f(z) = f(x) + f ′(x)(z − x) +
f ′′(x)(z − x)2

2!
+R3(z) (17)

plugging this back into the integral expression leads to

Lf(x) = lim
t→0

f(x) + 1
2f

′′(x)t+ o(t)− f(x)

t
= 1

2f
′′(x) (18)

The heat equation is a partial differential equation that models the diffusion of
particles in a given space over time:

∂ρ

∂t
= D

∂2ρ

∂x2
(19)

where ρ(x, t) is the density of particles at time t and position x and D is the
diffusion coefficient.
The solution to the heat equation can be interpreted as the probability den-
sity function of the position of a particle following Brownian motion. This is
formalized in the following theorem.

Theorem 2.10 (Brownian motion and the heat equation [9]). Let f be a
bounded function. Then the unique solution of

∂ρ

∂t
= D

∂2ρ

∂x2

given by
ρ(x, t) = E(f(B(2Dt) + x)

Proof. For the proof recall that the function

G(t, x, y) =
e−

(y−x)2

2t

√
2πt

is the fundamental solution to the heat equation. That is

ρ(t, x) =

∫
G(t, x, y)ρ(0, y)dy

is the solution to the heat equation with initial condition ρ(0, ·)

2.4 Brownian motion with absorption sites

Next we consider a Brownian motion process with absorption sites {W abs
t , t ≥ 0}

on the interval [0, 1]. The process starts at some point in the interval [0, 1] and
evolves like standard Brownian motion until it reaches one of the absorption
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sites 0 and 1. At that moment the process stops and sets to 0. If we let
τ = inf{t > 0|W abs

t /∈ (0, 1)} then

W abs
t =

W (t) t ≤ τ

0 (absorbed) t ≥ τ
(20)

The behaviour of the absorbed Brownian motion on the interval (0, 1) is the
same as the regular Brownian motion process and doesn’t change after be-
ing absorbed. So, the generator of the absorbed Brownian motion process
{W abs

t , t ≥ 0} is given by

Lf(x) =

f
′′(x) x ∈ (0, 1)

0 x = 0, 1
(21)

For all f ∈ C2([0, 1]) the absorbed Brownian motion process is the solution to
the heat equation with Dirichlet boundary conditions. This is formalized in
Theorem 2.11

Theorem 2.11 (Absorbing Brownian motion and the heat equation). Let f ∈
C2([0, 1]) with f(0) = ρL and f(1) = ρR. Then the unique solution of

∂ρ

∂t
= D

∂2ρ

∂x2
x ∈ (0, 1)

ρ(0, t) = ρL

ρ(1, t) = ρR

(22)

given by
ρ(x, t) = E(f(W abs(2Dt) + x) (23)
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3 Symmetric exclusion process on a homoge-
neous environment

3.1 Model

Let us introduce the one-dimensional symmetric exclusion process in the ho-
mogeneous environment Z, abbreviated by SEP, consisting of a collection of
occupation variables indexed by the sites of Z. These variables indicate the
number of particles at each site, i.e.,

ηx := the number of particles at site x (24)

Since each site can hold at most one particle, ηx ∈ {0, 1} for all x ∈ Z, we define
the configuration space χ as

χ :=
∏
x∈Z

{0, 1} (25)

The SEP is the Markov process on χ whose generator acts on bounded functions
f : χ→ R, as follows

Lf(η) =
∑
x∈Z

[
ηx(1−ηx+1)

(
f(ηx,x+1)− f(η)

)
+ηx+1(1−ηx)

(
f(ηx+1,x)− f(η)

) ]
(26)

In the above formula ηx,x+1 denotes the configuration obtained from η by re-
moving the particle (if any) form the site x and adding the particle to the site
x+ 1, i.e.

ηx,x+1 =

{
η − δx + δx+1 if ηx = 1 and ηx+1 = 0

η otherwise
(27)

So the rate to jump from site x to site x+1 is determined by the available sites
at x+ 1 (i.e., (1− ηx+1)) and the number of particles at site x (i.e., ηx).

3.2 Self-duality of the SEP

The SEP is a self-dual Markov process. This means that there exists a function
D : χf × χ → R (with χf being a subset of configurations in χ), called the
self-duality function, such that

LD(·, η)(ξ) = LD(ξ, ·)(η) (28)

for all ξ ∈ χf and η ∈ χ. In particular, the l.h.s. corresponds to applying the
generator L to the function D(·, η) and evaluating the resulting function at ξ,
while the r.h.s corresponds to applying the generator to the function D(ξ, ·) and
evaluating the result at η. This self-duality property is formalized in Lemma
3.1.
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Lemma 3.1 (Duality relation of the SEP). The symmetric exclusion process on
the homogenous environment Z, is a self-dual Markov process with self-duality
function D : χf × χ→ R, given by

D(ξ, η) :=
∏
x∈Z

(
ηx

ξx

)(
1
ξx

) (29)

Since η, ξ ∈ {0, 1}Z this reduces to

D(ξ, η) =
∏
x∈Z

1{ξx≤ηx} (30)

Proof. See the Appendix

We are interested in a particular instance of this self-duality property, namely
when the dual configuration consists of a single particle, i.e. ξ = δx for some
x ∈ Z. If there is only one particle in the system, no interaction takes place
and we are left with a single random walk, abbreviated by RW. In this case the
duality function reduces to

D(δx, η) = ηx (31)

In this case we can conclude the following semigroup duality relation

ESEP
η (ηx(t)) = ERW

x

(
ηx(t)(0)

)
(32)

3.3 Hydrodynamic limit of the SEP

In order to describe the macroscopic behaviour of the interacting particle system
we want to make a transition from a micro to a macro perspective. In order
to do so, we introduce a ”scaling parameter” N, which has to be thought of
as the ratio between the macroscopic and microscopic length scale. To the
macropoint x ∈ R corresponds the micropoint [Nx]. We view a configuration
of the exclusion process on a grid with spacing 1

N . When N becomes large,
rather than seeing all microscopic details of which sites are occupied and which
are not, we see the ”density profile”. Furthermore, by examining the limiting
behaviour, we also find that for large N , no significant deviation arises in our
system. If no limit exists, then there is also no clear macroscopic description of
the system.To make this more rigorous, we first have to define what it means to
have a given density profile. As an observable of the macroscopic behaviour of
the interacting particle system, we consider the empirical density field, indicated
for all N by µN and defined as follows.

µN =
1

N

∑
x∈Z

ηxδ x
N

(33)

Definition 3.2. Let ϕ ∈ S(R). A sequence of configurations ηN is said to
correspond to the density profile ρ if

lim
N→∞

< µN , ϕ >=

∫
R
ϕ(x)ρ(x)dx (34)
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We say that a sequence of probability distributions νN corresponds to the den-
sity profile ρ if

PνN

(
| < µN , ϕ > −

∫
ϕ(x)ρ(x)dx| ≥ ϵ

)
→ 0 as N → ∞ (35)

Remark 3.3. The Schwartz space, denoted by S(R), is the space of all rapidly
decreasing smooth functions on R. A function f : R → R belongs to S(R) if:

1. f ∈ C∞ (infinitely differentiable)

2. For all α, β ∈ R, the function

x→ xαDβf(x) (36)

is bounded on R, i.e.

supx∈R|xαDβf(x)| <∞ (37)

This means that both the function and all its derivatives decay faster than
any polynomial grows.

Remark 3.4. Definition 3.2 holds for example for νN = ⊗xBer(ρ(
x
N )) since

E

(
1

N

∑
x

ηx ϕ(
x
N )

)
=

1

N

∑
x

ρ(
x

N
)ϕ(

x

N
)

→ 0 as N → ∞ (38)

where we used the linearity of the expectation value and the expectation value
of the Bernoulli distribution, and

Var

(
1

N

∑
x

ηx ϕ(
x
N )

)
=

1

N2

∑
x

ρ( x
N )(1− ρ( x

N )ϕ2( x
N )

=
1

N

∫
ϕ2(x)ρ(x)(1− ρ(x))dx+ o(1/N)

→ 0 as N → ∞ (39)

here we used that the variation of a Bernoulli distribution with parameter ρ( x
N )

is equal to ρ( x
N )(1 − ρ x

N ). However, νN can be any product distribution, i.e.
νN = ⊗xν

N
x , as long as νNx (ηx) = ρ( x

N ) and Var(ηx) is finite.

Theorem 3.5 (Expectation value of the hydrodynamic limit of the SEP in a
homogeneous environment). Let µN (t) be the empirical density profile and let

η
d−→ νN = ⊗xBer(ρ(

x
N )) at time t = 0 and let ϕ ∈ S(R) be a function, then

lim
N→∞

E⟨µN (t), ϕ⟩ →
∫
ρt(x)ϕ(x)dx. (40)

where ρt(x) is the solution to the following partial differential equation:

∂ρ

∂t
=
∂2ρ

∂x2
(41)
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Proof. The proof of the theorem will be split into two steps. The first step is
about the reduction to a single-particle problem, using the duality relation. In
the second step, we prove the convergence of the scaled random walk to Brow-
nian motion through the convergence of the generator.

Step 1: Reduction to a single-particle problem

E⟨µN (t), ϕ⟩ = E

[
1

N

∑
x

ηx(tN
2)ϕ

( x
N

)]

=
1

N

∑
x

∫
Eη

(
ηx(tN

2)
)
ϕ
( x
N

)
dνN (η) (42)

where in the last equality we used Fubini’s integral theorem and linearity of the
expectation value. Next we integrate over the measure νN and use the duality
relation we derived earlier to obtain the following equality

1

N

∑
x

∫
Eη

(
ηx(tN

2)
)
ϕ
( x
N

)
dµN (η) =

1

N

∑
x

ERW
x

(
ρ

(
X(tN2)

N

))
ϕ
( x
N

)
(43)

Since our system is translation invariant we can shift the random walk:

1

N

∑
x

ERW
x

(
ρ

(
X(tN2)

N

))
ϕ
( x
N

)
=

1

N

∑
x

ERW
0

(
ρ

(
X(tN2)

N
+
x

N

))
ϕ
( x
N

)
(44)

Step 2: Convergence of scaled random walk to Brownian motion
We want to show that

1

N

∑
x

ERW
0

(
ρ

(
X(tN2)

N
+
x

N

))
ϕ
( x
N

)
→ (45)∫

EBM
0 (ρ(B(2t) + x))ϕ(x) asN → ∞ (46)

In order to prove this last convergence step we show that the Markov generator of
the scaled random walk converges to the Markov generator of the corresponding
Brownian motion. If we can show this generator convergence for a sufficient
class of functions f , we can conclude the theorem. The Markov generator of the
scaled random walk is given by

LRW
N f(x) = N2

(
f(x+ 1

N )− 2f(x) + f(x− 1
N )
)

(47)
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Now if we consider a sequence of points xN ∈ Z/N = { x
N , x ∈ Z} such that

xN → y ∈ R, then we have that

LRW
N f(xN ) → ∂2f(y)

∂x2
(48)

which is the generator of the Brownian motion process B(2t). The convergence
of equation 48 can be proven using a Taylor expansion. Using Theorem 2.10,
we conclude that ρt(x) = EBM

0 ρ(B(2t) + x) is indeed the solution of 41.

Remark 3.6.
{µN (t), 0 ≤ t ≤ T} → {ρt(x), 0 ≤ t ≤ T} (49)

converges in path space in the sense of weak convergence. The thing to be
added is the tightness of the trajectories which follow from studying the quadric
variation of the martingale

Mt =< µN (t), ϕ > − < µN (0)− ϕ > −
∫ t

0

< µN (s),∆Nϕ > ds (50)

which can be shown to be of order 1
N .
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4 Symmetric exclusion process on a random en-
vironment

4.1 Model

We can extend the one-dimensional SEP in the homogeneous environment Z to a
symmetric exclusion process in a random environment, abbreviated by SEP(α),
by assigning a maximal occupancy αx ∈ N to each site x ∈ Z. In what follows,
we refer to the random environment as the collection α = {αx, x ∈ Z}. We
assume that all instances of the random environment are iid and satisfy the
following upper and lower bounds.

1 ≤ αx ≤ M, x ∈ Z (51)

In this case, we define the configuration space χα as

χα :=
∏
x∈Z

{0, ..., αx} (52)

Here the superscript emphasizes the dependence of the configuration space on
the realization of the environment. We highlight that for the choice of αx = 1
for any x ∈ Z, we recover the SEP on a homogeneous environment from chapter
3. Given an instance α of the random environment, the Markov generator of
the SEP(α) is as follows:

Lf(η) =
∑
x∈Z

[
ηx(αx+1 − ηx+1)

(
f(ηx,x+1)− f(η)

)
+ηx+1(αx − ηx)

(
f(ηx+1,x)− f(η)

) ] (53)

The transition rates between neighbouring sites are now modulated by the ran-
dom environment. This extension is of great physical importance since it allows
us to model disorder and impurities in a system. For example, structures such
as semiconductors and metals are often affected by microscopic irregularities
(e.g., atomic defects, impurities, or structural faults). These irregularities lead
to spatially varying diffusion. Using the SEP(α) we can effectively model such
irregularities.

4.2 Self-duality of the SEP(α)

The SEP(α) is still a self-dual Markov process, which is stated in Lemma 4.1.

Lemma 4.1 (Duality relation of the SEP (α)). The SEP (α) is a self-dual
Markov process with self-duality function D : χf × χ→ R given by

Dα(ξ, η) :=
∏
x∈Z

(
ηx

ξx

)(
αx

ξx

) · 1{ξx≤ηx} (54)
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Proof. For the proof we refer to [5].

Again, we are interested in the case where the dual system consists of only one
particle (i.e. ξ = δx). If there is only one particle in the system no interaction
takes place and we are left with a single random walk on the random environment
α, abbreviated by RW(α). RW(α) is the Markov process {Xα

t , t ≥ 0} on Z
with the generator given by

LRW (α)f(x) =
∑
x∈Z

αx+1 (f(x+ 1)− f(x)) + αx−1(f(x− 1)− f(x)) (55)

where f : Z → R is again a bounded function. We can conclude the following
semigroup duality relation:

ESEP (α)
η (ηx(t)) = ERW (α)

x

(
ηx(t)(0)

)
(56)

4.3 Results from the Random Conductance Model

In order to prove the hydrodynamic limit of the SEP, we used generator con-
vergence to conclude the convergence to Brownian motion. However, this does
not work in a random environment. So, to prove the hydrodynamic limit of
SEP(α), we use an important result derived from studying the random conduc-
tance model (RCM).

The RCM is obtained by assigning a random conductance ωx,x+1 to each edge
of Z. We then say that the jump rate of a particle from x ∈ Z to a nearest
neighbouring site y is given by ωx,y. Furthermore, we assume that all the con-
ductances are iid, stationary and ergodic. The Markov generator of a random
walk in the RCM is given by

Lf(x) = ωx,x+1(f(x+ 1)− f(x)) + ωx,x−1(f(x− 1)− f(x)) (57)

The following lemma states that a properly scaled version of this random walk
converges to Brownian motion.

Lemma 4.2 (Convergence of random walk in RCM). Let {X(t), t ≥ 0} be the
Markov process generated by the generator defined in 57. Then the rescaled

random walk{X(tN2)
N , t ≥ 0} converges to the Brownian motion process B(Dt),

where D is the diffusion coefficient.

To proof lemma 4.2 we use a result from [10], which is stated here as Proposition
4.1.

Proposition 4.1. Let {Mt, t ≥ 0} be a martingale with stationary and ergodic

increments. Then
MtN2

N → B(Dt), where D is the diffusion coefficient given by

D = lim
t→∞

E(M2
t )

t
(58)
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Proof of lemma 4.2. We consider the martingale

ψ(ω, x) =



x∑
i=1

1

ωi,i+1
if x ≥ 1

0 if x = 0

−1∑
i=x

1

ωi,i+1
if x ≤ −1

(59)

Then for large N it holds that

<
1

ω0,1
>
X(tN2)

N
≈ 1

N
ψ(ω,X(tN2)) (60)

and using proposition 4.1 this converges to Brownian motion with diffusion
coefficient D.

4.4 Hydrodynamic limit of the SEP(α)

We are now in a position to prove the hydrodynamic limit of the SEP(α).

Theorem 4.3 (Hydrodynamic limit of the SEP(α) on a random environment).

Let µN (t) be the empirical density field and let η
d−→ νN = ⊗xBer(ρ(

x
N )) at time

t = 0 and let ϕ be a function, then

lim
N→∞

E⟨µN (t), ϕ⟩ →
∫
ρt(x)ϕ(x)dx (61)

where ρt(x) is the solution to the following partial differential equation:

∂ρ

∂t
=
D

2

∂2ρ

∂x2
(62)

with D the diffusion constant.

Proof. The first steps of the proof are analogous to the first steps of the proof
of theorem 3.5.

E

[
1

N

∑
x

ηx(tN
2)ϕ

( x
N

)]
=

1

N

∑
x

E
(
ηx(tN

2)
)
ϕ
( x
N

)
=

1

N

∑
x

∫
Eη

(
ηx(tN

2)
)
ϕ
( x
N

)
dνN (η)

=
1

N

∑
x

ERW (α)
x

(
ρ

(
X(tN2)

N

))
ϕ
( x
N

)
(63)

In order to conclude the convergence to Brownian motion, we point out that the
generator of the RW on a random environment (eq. 55) is just a scalar multiple
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of the generator of the RW in the RCM (eq. 57). Thus, using lemma 4.2, we
can conclude the convergence to Brownian motion with diffusion coefficient D.
Thus,

1

N

∑
x

ERW (α)
x

(
ρ

(
X(tN2)

N

))
ϕ
( x
N

)
=

1

N

∑
x

[
EBM
0

(
ρ(B(Dt) + x

N )
)
ϕ( x

N )
]
+ o(1)

→
∫

EBM
0 (ρ(B(Dt) + x))ϕ(x)dx (64)

Using Theorem 2.10, we see that ρt(x) = EBM
0 ρ(B(Dt)+x) is indeed the solution

to 62.

Remark 4.4. Notice that the diffusion coefficient is effectively averaged out
through the homogenization process. We obtain a diffusion constant that de-
pends on the the distribution of α. In the hydrodymamic limit, this diffusion co-
efficient becomes constant because α is i.i.d..Functions that depend only weakly
on a single random variable tend to become constant in the limit .
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5 Symmetric exclusion process with reservoirs

5.1 The Model

Having examined the dynamics of the SEP process on both a homogeneous
and a random environment, we now turn to the influence of reservoirs at the
boundary of our system, where particles can enter and leave the system. Let
N ∈ N. We consider a linear chain by IN = {1, 2, ...N −1} put in contact, at its
left and right boundaries, with two particle reservoirs, say reservoir L coupled
to site 1 and reservoir R couples to site N − 1. Particles can thus leave or enter
the system only through the boundary sites 1 and N − 1. We will call the set
IN the ’bulk’ of our system and consider the symmetric exclusion process on
this bulk, abbreviated by SEPL,R. Note that the maximum occupancy in the
bulk is still 1. We define the configuration space as follows

χL,R :=
∏

x∈IN

{0, 1} (65)

We split the Markov generator of SEPL,R into three parts.

L = LL + LR + Lbulk (66)

Where Lbulk describes the symmetric exclusion process in IN , while LL and LR

describe the actions of the reservoirs L and R on the boundaries, where particles
can leave and enter the system.

Lbulkf(η) =

N−2∑
x=1

[
ηx(1− ηx+1)(f(η

x,x+1)− f(η))

+ηx+1(1− ηx)(f(η
x+1,x)− f(η))

(67)

LLf(η) = γ1(1− η1)(f(η + δ1)− f(η)) + δ1η1(f(η − δ1)− f(η)) (68)

LRf(η) = γR(1−ηN−1)(f(η+δN−1)−f(η))+δRηN−1(f(η−δN−1)−f(η)) (69)

The positive numbers γL, δL, γR and δR describe the rate at which particles can
enter and leave the system. The reservoir generators act in such a ways as to
”impose” to the boundary sites two fixed particle densities, ρL at the left and
ρR at the right, with

ρL =
γL

γL + δL
ρR =

γR
γR + δR

(70)

This modified model captures the dynamics of open systems,i.e. systems that
exchange particles with their environment. By setting different particle densi-
ties at the left and right boundary, a non-equilibrium stationary state (NESS)
emerges. This leads to a effective current through the systems. In this way,
we can model physical systems where gradients (e.g., of chemical potential or
temperature) drive transport, such as in electrical conductors.
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5.2 Duality relation of the SEPL,R

Since particles can leave and enter the system, the SEPL,R is no longer a self-
dual process. But, the dual process is a process in which the reservoirs are
replaced with absorbing sites. This duality relation is formalized in Lemma 5.1.

Lemma 5.1 (Duality relation of the SEPL,R). SEPL,R has a dual process with
generator:

Ldualf(ξ) =

N−2∑
x=1

(ξx(1− ξx+1)(f(ξ
x,x+1)− f(ξ))

+ξx+1(1− ξx)(f(ξ
x,x+1)− f(ξ)))

+(γL + δL)(f(ξ − δ1)− f(ξ)) + (γR + δR)(f(ξ − δN−1)− f(ξ))

(71)

and duality function

D(ξ, η) = ρξ0L ρ
ξN
R

N−1∏
x=1

(
ηx

ξx

)(
1
ξx

)1ξx≤ηx (72)

since ηx, ξx ∈ {0, 1} for all x ∈ IN this reduces to

D(ξ, η) = D(ξ, η) = ρξ0L ρ
ξN
R

N−1∏
x=1

ηx (73)

Proof. See Appendix

When the dual configuration consists of a single particle, i.e ξ = δx for some
x ∈ IN , the generator of the dual process reduces to the generator of a random
walk with absorbing sites at 0 and N , abbreviated by RW (0, N), and given by

LRW (0,N)
dual f(x) =


f(x+ 1)− f(x) + f(x− 1)− f(x) if x ∈ {1, 2, . . . , N − 1}

0 if x = 0

0 if x = N

(74)
In this case we can conclude the following semigroup duality relation

Eη (ηx(t)) = ERW(0,N)
x

(
ηx(t)(0)

)
(75)

5.3 Hydrodynamic Limit of SEPL,R

In the case of SEPL,R we are interested in the macroscopic behaviour of the
bulk. Thus we define the empirical density field µN (t) as

µN (t) =
1

N

N−1∑
x=1

ηx(tN
2)δx/N (76)
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Theorem 5.2 (Hydrodynamic limit of SEPL,R). Let µN (t) be the empirical

measure defined in 76 and let η
d−→ µN = ⊗x∈INBer(ρ(

x
N )) at time t = 0. and

let ϕ be a function, then

lim
N→∞

E⟨µN (t), ϕ⟩ →
∫
ρt(x)ϕ(x)dx (77)

where ρt(x) is the solution to the following partial differential equation with
Dirichlet boundary conditions:

∂ρ

∂t
=
∂2ρ

∂x2

ρt(0) = ρL

ρt(1) = ρR

(78)

Proof. The proof will be split into two main steps. The first step is about the
reduction to a single particle problem using the duality relation. In the sec-
ond part, we prove the convergence of the scaled random walk to the absorbed
Brownian motion process.

Step 1: Reduction to a single-particle problem
In order to reduce to problem to a single particle problem we take similar steps
as in Theorem 3.5

E⟨µN (t), ϕ⟩ = E

[
1

N

N−1∑
x=1

ηx(tN
2)ϕ

( x
N

)]

=
1

N

N−1∑
x=1

∫
Eη

(
ηx(tN

2)
)
ϕ
( x
N

)
dνN (η)

=
1

N

∑
x

ERW (0,N)
x

(
ρ

(
X(tN2)

N

))
ϕ
( x
N

)
(79)

Step 2: Convergence of the scaled random walk to Brownian motion
In order to prove the convergence to Brownian motion, we show that the gener-
ator of the properly scaled RW(O,N), converges to the corresponding generator
of the absorbed Brownian motion process. If we can show this generator conver-
gence for a sufficient class of functions we can conclude process convergence, and
thus prove the theorem. The Markov generator of the properly scaled RW(0,N)
is given by

LRW (0,1)
N f(x) =


N2
[
f
(
x+ 1

N

)
− f(x) + f

(
x− 1

N

)
− f(x)

]
if x ∈

{
1
N , . . . ,

N−1
N

}
0 if x = 0

0 if x = 1

(80)
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If we let xN be a sequence in {0, 1
N ,

2
N , ...

N−1
N , 1} such that xN → y ∈ [0, 1] and

let f ∈ C2 such that f ′′(0) = f ′′(1) = 0, then

LNf(xN ) → Lf(x) =


f ′′(x) if x ∈ (0, 1)

0 if x = 0

0 if x = 1

(81)

Which is the generator of the Brownian motion process B(2t) with absorbing
sites at 0 and 1. Again, the convergence of 81 can be proven using a Taylor
expansion. Using Theorem 2.11 and the fact that the reservoirs ensure a particle

density of ρL and ρR, we conclude that ρt(x) = EBM(0,1)
x ρ(B(2t) + x) is indeed

the solution of 92.
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6 Symmetric exclusion process on a random en-
vironment with reservoirs

6.1 The model

We can extend the SEPL,R by a assigning a maximum occupancy αx ∈ N to
each site x ∈ IN = {1, 2, ....N − 1}, abbreviated by SEPL,R(α), and thus
combining the models of chapters 4 and 5. In what follows, we refer to the
random environment as the collection α = {αx, x ∈ IN} for which we assume
ergodicity and uniform ellipticity. We define the configuration space as follows.

χL,R(α) :=
∏

x∈IN

{0, 1, ...αx} (82)

We split the generator of SEPL,R(α) into three different parts.

Lα = Lα
L + Lα

R + Lα
bulk (83)

Where Lα
bulk describes the symmetric exclusion process in random environment

in IN , while Lα
L and Lα

R describe the actions of the reservoirs.

Lα
bulkf(η) =

N−2∑
x=1

[
ηx(αx+1 − ηx+1)

(
f(ηx,x+1)− f(η)

)
+ ηx+1(αx − ηx)

(
f(ηx+1,x)− f(η)

) ]
(84)

Lα
Lf(η) = γ1(α1 − η1)(f(η + δ1)− f(η)) + δ1η1(f(η − δ1)− f(η)) (85)

Lα
Rf(η) = γR(αN−1−ηN−1)(f(η+δN−1)−f(η))+δRηN−1(f(η−δN−1)−f(η))

(86)
The positive numbers γL, δL, γR and δR have the same meaning as in the
SEPL,R. The presence of the random environment and reservoirs at the bound-
aries leads to a net current that must traverse regions of varying conductance,
akin to charge or mass transport in inhomogeneous environments of irregular
conductors.

6.2 Duality relation of the SEPL,R(α)

SEPL,R(α) still has a dual Markov process where the reservoirs are replaced
with absorbing sites. This duality relation is formalized in Lemma 6.1
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Lemma 6.1 (Duality relation of SEPL,R(α)). SEPL,R(α) has a dual process
with generator:

Ldualf(ξ) =

N−2∑
i=1

(
ξi(αi+1 − ξi+1)

(
f(ξi,i+1)− f(ξ)

)
+ ξi+1(αi − ξi)

(
f(ξi,i+1)− f(ξ)

) )
+ (γL + δL)

(
f(ξ1,0)− f(ξ)

)
+ (γR + δR)

(
f(ξN−1,N )− f(ξ)

)
(87)

and duality function

D(ξ, η) = ρξ0L ρ
ξN
R

N−1∏
x=1

(
ηx

ξx

)(
αx

ξx

)1{ξx≤ηx} (88)

Proof. See Appendix

When the dual configuration consists of a single particle, i.e. ξ = δx for some
x ∈ IN , the generator of the dual process reduces to the generator of a random
walk on a random environment with absorbing sites at 0 and N , abbreviated by
RW(α)(0,N). The generator of the dual configuration is, in this case, given by

LRW (0,N)(α)
dual f(x) =


αx+1(f(x+ 1)− f(x)) + αx−1(f(x− 1)− f(x)) if x ∈ {1, 2, . . . , N − 1}

0 if x = 0

0 if x = N

(89)
In this case we can conclude the following semigroup duality relation

Eη (ηx(t)) = ERW (0,N)(α)
x

(
ηx(t)(0)

)
(90)

6.3 Hydrodynamic limit of the SEPL,R(α)

Since we are again interested in the macroscopic behaviour of the bulk IN , we
define the empirical density field µN (t) as in eq. 76.

Theorem 6.2 (Expectation value of the hydrodynamic limit of SEPL,R(α)).

Let µN (t) be the empirical measure density field and let η
d−→ νN = ⊗X∈INBer((ρ(

x
N ))

at time t = 0, and let ϕ be a function, then

lim
N→∞

E⟨µN (t), ϕ⟩ →
∫
ρt(x)ϕ(x)dx (91)
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where ρt(x) is the solution to the following partial differential equation with
Dirichlet boundary conditions:

∂ρ

∂t
=
D

2

∂2ρ

∂x2

ρt(0) = ρL

ρt(1) = ρR

(92)

where D is the diffusion coefficient.

Proof. The first steps of the proof are similar to those of the proof of Theorem
3.5

E⟨µN (t), ϕ⟩ = E

[
1

N

N−1∑
x=1

ηx(tN
2)ϕ

( x
N

)]
=

1

N

N−1∑
x=1

∫
Eη

(
ηx(tN

2)
)
ϕ
( x
N

)
dνN (η) =

1

N

∑
x

ERW (0,N)(α)
x

(
ρ

(
X(tN2)

N

))
ϕ
( x
N

)
(93)

In order to conclude the convergence to Brownian motion, i.e.

1

N

∑
x

ERW (0,N)(α)
x

(
ρ

(
X(tN2)

N

))
ϕ
( x
N

)
→∫

EBM(0,1)
x ρ(B(Dt) + x)ϕ(x)dx

(94)

we follow the following reasoning. As long as the random walk on a random
environment is not absorbed by the absorbing boundary sites, it will converge to
the Brownian motion process with diffusion coefficient D according to Theorem
4.3. When the random walk is absorbed by one of the boundary sites, it will also
converge to the Brownian motion process, since for both processes the particle
will stay at the absorbed site indefinitely.
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7 Physical application

In his chapter we look at an example of an area of practical application of
the results that were found in the previous chapters. This example concerns
the migration of Li+ ions through an electrolyte in a lithium battery. This
could be modelled using the SEPL,R and SEPL,R(α), for instance to assess the
effect of the level of disorder of the anion structure of the electrolyte on the ion
conductivity.

7.1 Basic principles of lithium batteries

A lithium battery consists of several individual cells that are connected to one
another. Each cell contains three main parts: a positive cathode, a negative
anode, and an electrolyte. A discharging lithium battery provides power through
the movement of lithium ions. During discharging lithium ions diffuse from
the anode to the cathode because their electrochemical potential is higher at
the anode, ρR, than at the cathode ρL [11]. This difference leads to the ion
diffusion through the electrolyte. Electrons flow, from the anode to the cathode
via an external circuit providing a current. Inside a lithium battery, reduction-
oxidation reactions take place. The reduction reaction occurs at the cathode.
There, cobalt oxide combines with lithium ions to form lithium-cobalt oxide.
The notation for the chemical reaction is:

CoO2 + Li+ + e− −−→ LiCoO2 (95)

The oxidation reaction takes place at the anode. There, the graphite intercala-
tion compound LiC6 forms graphite C6 and lithium ions. The notation for this
chemical reaction is as follows:

LiC6 −−→ C6 + Li+ + e− (96)

Since a battery can maintain the same electrochemical potential at the anode
and cathode for a long time, the typical diffusion of Li+ ions can be modelled
using the SEPL,R, assuming we have a fully homogeneous electrolyte.

7.2 Disorder in the electrolyte

However, the ionic conductivity of the electrolyte is a strong determinant of
the performance of the lithium battery, i.e. the strength of the current that is
generated. In particular, if we use Li9S3N as our electrolyte, it turns out we can
boost the ion conductivity by introducing disorder in the anion sublattices [7].
Then the assumption of a fully homogeneous electrolyte no longer applies. In
this case, we can still model the diffusion of the Li+ ions using the SEPL,R(α).
Thus, we can still assess the effect of the level of disorder on the performance of
the battery in this case. Moreover, we could predict the macroscopic behaviour,
see chapter 6, of the Li+ ions and consequently use this knowledge to improve
the design of the batteries and boost their performance. This type of knowledge
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does not only bear academic relevance, but could also contribute to a better
environment, considering the world’s growing dependence on batteries.

Let us study in a bit more detail the effect of disorder on the ion conductivity
in the electrolyte. We consider two polymorphs of Li9S3N: an anion-ordered
phase and a disordered phase. The disorder arises from the random occupation
of the anion sublattice by sulfur (S2– ) and nitrogen (N3– ) atoms. For all the
points that make up the anion face-centered cubic lattice, the probability ration
of being occupied by a S and N ion is 3:1, as can be seen in Figure 1. This is
consistent with the overall structure of Li9S3N.

(a) (b)

Figure 1: Comparison between (a) ordered and (b) disordered electrolyte struc-
tures. Source [7].

This anion disorder gives rise to a diverse array of local environments of the
diffusion Li+ ions, and makes it dependent on the the specific configuration of
the adjacent S and N atoms. This is because the lack of homogeneity in the
microscopic environment directly affects the size of the bottlenecks that need
to be passed by the Li+ ions. Since N3

– is significantly smaller (ionic radius ≈
1.46 Å) than S2

– (≈ 1.84 Å), the inclusion of nitrogen increases the size of the
bottlenecks and reduces repulsive interactions with other L+ ions, thereby low-
ering the activation barrier for ion hops. irrespective of the local anion ordering,
three general families of jumps are observed through the face-centered anion ar-
rangement in Li9S3N. (i) tetrahedron-to-octahedron (tet-oct), (ii) octahedron-
to-tetrahedron (oct-tet) and (iii) tetrahedron-to-tetrahedron (tet-tet) jumps.
Figure 2 shows the activation barrier of individual jumps segregated by local
environments. Because of its ordered S-N arrangement, ordered Li9S3N merely
features 6 discrete jumps which are shown as discrete points in in Figure 2.
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Figure 2: Comparison of the observable ion activation barriers for ion hops in
ordered and disordered Li9S3N. The white points indicate the ion activation
barrier of the six distinct jump types possible in ordered Li9S3N. In disordered
Li9S3N, different jumps are observable and shown here as density plots. The
horizontal scale represents the relative occurrence of jump types at that energy.
Adapted from [7].

As a result, the diffusion of lithium ions through an electrolyte does not follow
a uniform crystalline diffusion pattern. Instead, it resembles a random walk
in a random environment, modulated by the direction of the electrochemical
potential gradient, which determines the net flux direction. This matches the
properties of the SEPL,R(α) and thus, we can use the SEPL,R(α) to model
the migration of Li+ ions through the disordered electrolyte. In this model,
a higher random jump rate, due to the a higher maximum occupation, corre-
sponds to the lower local activation energy due to atomic scale disorder. The
parameters describing the reservoirs in the model, represent the electrochemical
potential gradient. This way we can provide a rigorous framework for under-
standing how structural disorder affects ionic mobility. On the other hand, we
can also use the model to predict which anion structure will lead to the best
conductivity. Thus, it could inspire intensive interaction between physicist and
mathematicians around a topic with potentially large societal relevance.
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8 Conclusion

The main conclusions of this thesis project are as follows. First, that even for
the fourth and most advanced model a proof of the hydrodynamic limit can
be obtained. Furthermore, this project shows that to obtain this proof the use
of duality is an effective approach. Finally, the results offer an opportunity
to bridge the mathematical models and physical reality to improve the perfor-
mance of lithium batteries.

At the same time, the results suggest opportunities for further research in sev-
eral directions. Concerning mathematics, two issues are of particular relevance.
First, the need to prove that the variance of the empirical density field goes to
zero. In the project itself only the expectation value of the hydrodynamic limit
has been determined. For a more complete result it is necessary to establish
that the variance of this empirical density field stays within certain bounds.
Secondly, all results could be generalized to more dimensions. In the project it-
self only one-dimensional models were used. In order to more accurately model
the migration of lithium ions through the electrolyte a three dimensional model
is necessary. This is also related to opportunities for extensions in the physics
domain. In particular, more detailed modelling of the ion migration in a lithium
battery taking into account, still using the mathematical models outlined in this
thesis but adding more details from physics about the behaviour of the ions.
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9 Appendix

9.1 Proof of Lemma 3.1

Proof. in order to proof the proposition we must show that: LηD(·, η)(ξ) =
LξD(ξ, ·)(η). Recall that

LηD(ξ, η) =
∑
x∈Z

[
ηx(1− ηx+1)

(
D(ξ, ηx,x+1)−D(ξ, η)

)
+ ηx+1(1− ηx)

(
D(ξ, ηx+1,x)−D(ξ, η)

) ]
(97)

. When a particle jumps form site x to site x+1, the value of ηx decreases by 1
and the value of ηx+1 will increase by 1. Thus we find the following expression
for D(ξ, ηx,x+1)

D(ξ, ηx,x+1) =
∏

y ̸=x,x+1

ηy!

(ηy − ξy)!
(1− ξy)!1{ξy≤ηy}

(ηx − 1)!

(ηx − 1− ξx)!
(1− ξx)!

(ηx+1 + 1)!

(ηx+1 + 1− ξx+1)!
(1− ξx+1)!

1{ξx+1≤ηx+1+1}1{ξx≤ηx−1} (98)

Thus,

D(ξ, ηx,x+1)−D(ξ, η) = D(ξ, η)

(
(ηx − ξx)(ηx+1 + 1)

ηx(ηx+1 + 1− ξx+1)

1{ξx≤ηx−1}1{ξx+1≤ηx+1+1}

1{ξx≤ηx}1{ξx+1≤ηx+1}
− 1

)
(99)

where we use that in the fraction D(ξ,ηx,x+1

D(ξ,η) all terms cancel, expect for the sites

x and x+1.We can calculateD(ξx,x+1, η), in the same way. Since ξx, ηx ∈ {0, 1},
the only non zero contributions occur when ξx = 1, ξx+1 = 0. In this case

D(ξ, ηx,x+1) =

{
D(ξx,x+1, η) if ηx = 1, ηx+1 = 0

0 otherwise
(100)

Thus for each allowed jump in η and corresponding allowed jump in ξ the
increments in D match. And thus we find therefore,

LηD(·, η)(ξ) = LξD(ξ, ·)(η) (101)

which proves the self-duality relation.

9.2 Proof of Lemma 5.1 and Lemma 6.1

We will proof the duality relation of Lemma 6.1, The duality relation of Lemma
5.1 follows by taking αx = 1 for all x
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Proof of Lemma 6.1. From 4.1 we know that the SEP (α) is self dual with du-
ality function

Dα(ξ, η) :=
∏
x∈Z

ηx!

(ηx − ξx)!

(αx − ξx)!

αx!
· 1{ξx≤ηx} (102)

Thus, in order to prove the duality relation of SEPL,R(α), it remains to verify
that the actions of the operators Lα

L and Lα
R on the duality function D(ξ, η) are

the same as the actions of the dual operators at the boundaries. We will show
this for the left boundary, the proof of the right boundary being analogous.

Lα
LD(ξ, η) = γL(α1 − η1) [D(η + δ1, ξ)−D(η, ξ)]

+ δLη1 [D(η − δ1, ξ)−D(η, ξ)]

= γL(α1 − η1)

[
N−1∏
i=2

ηi!

(ηi − ξi)!
(αi − ξi)!

(η1 + 1)!

(η1 + 1− ξ1)!
(α1 − ξ1)!−D(η, ξ)

]

+ δLη1

[
N−1∏
i=2

ηi!

(ηi − ξi)!
(αi − ξi)!

(η1 − 1)!

(η1 − 1− ξ1)!
(α1 − ξ1)!−D(η, ξ)

]

= γL(α1 − η1)D(ξ, η)

[
(η1 + 1)!(η1 − ξ1)!

(η1 + 1− ξ1)!η1!
− 1

]
+ δLη1D(ξ, η)

[
(η1 − 1)!(η1 − ξ1)!

(η1 − 1− ξ1)!η1!
− 1

]
= γL(α1 − η1)D(ξ, η)

[
(η1 + 1)− (η1 + 1− ξ1)

(η1 + 1− ξ1)

]
+ δLη1D(ξ, η)

[
(η1 − ξ1)− η1

η1

]
= γL(α1 − η1)D(ξ, η)

[
ξ1

(η1 + 1− ξ1)

]
− δLD(ξ, η)ξ1

= D(ξ, η)

[
γL(α1 − η1)ξ1
(η1 + 1− ξ1)

− δLξ1

]
= D(ξ, η)

ξ1
(η1 + 1− ξ1)

[γL(α1 − η1)− δL(η1 + 1− ξ1)]

= D(ξ, η)
ξ1

(η1 + 1− ξ1)
[γL(α1 + 1− ξ1)− (η1 + 1− ξ1)]

= ξ1

[
γL

(1+1− xi1)

(η1 + 1− ξ1)
D(ξ, η)−D(ξ, η)

]
= Lα,dual

L D(ξ, η) (103)

which concludes the proof.
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