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Data-driven internal multiple elimination and its consequences for imaging:
A comparison of strategies

Lele Zhang1, Jan Thorbecke1, Kees Wapenaar1, and Evert Slob1

ABSTRACT

We have compared three data-driven internal multiple re-
flection elimination schemes derived from the Marchenko
equations and inverse scattering series (ISS). The two
schemes derived from Marchenko equations are similar
but use different truncation operators. The first scheme cre-
ates a new data set without internal multiple reflections. The
second scheme does the same and compensates for transmis-
sion losses in the primary reflections. The scheme derived
from ISS is equal to the result after the first iteration of
the first Marchenko-based scheme. It can attenuate internal
multiple reflections with residuals. We evaluate the success
of these schemes with 2D numerical examples. It is shown
that Marchenko-based data-driven schemes are relatively
more robust for internal multiple reflection elimination at
a higher computational cost.

INTRODUCTION

Creating an image of the subsurface from seismic reflection data
is done by migration. Many migration schemes are based on the
single-scattering assumption. This means that all events in the data
are treated as single reflection events. Waves that have been re-
flected multiple times before being recorded are also migrated
and end up as ghost reflectors in the migration image. In marine
data, the free-surface-related multiple reflections can be very strong
compared to the measured reflection response from the subsurface.
These free-surface multiple reflections cause major ghost reflectors
in the migration image. Several schemes have been developed to
eliminate free-surface-related multiple reflections. The surface-
related multiple-elimination (SRME) scheme of Verschuur et al.
(1992) is a good example. SRME uses a minimum-energy criterion

to eliminate the free-surface-related multiple reflections from the
measured data. Besides free-surface multiples, there are internal
multiple reflections that also introduce ghost reflectors in the mi-
gration image. These internal multiple reflections can be strong
in land and marine seismic data, and most schemes fail to remove
them from the measured reflection response.
A method that relies on the discrimination of moveout between

primary and internal multiple reflections is proposed by Hampson
(1986). Unfortunately, it is difficult to distinguish the moveout
velocities of internal multiple reflections from those of primary re-
flections in most cases. Berkhout and Verschuur (1997) propose to
attenuate internal multiple reflections by a layer-stripping scheme,
in which a velocity model is needed to create redatumed data.
Jakubowicz (1998) proposes to combine three primary reflections
to predict and attenuate the first-order internal multiple reflections.
However, these primary reflections need to be identified and picked
from the measured reflection response. The inverse scattering series
(ISS)-based internal multiple reflection attenuation scheme, pro-
posed by Weglein et al. (1997), can be used to predict all orders of
internal multiple reflections with approximate amplitudes in one
step without model information (Ten Kroode, 2002; Löer et al., 2016).
A global or local matching filter is usually required to subtract the
predicted internal multiple reflections from the measured reflection re-
sponse (Matson et al., 1999; Luo et al., 2011; de Melo et al., 2014).
Recently, Marchenko imaging (Broggini and Snieder, 2012; Slob

et al., 2014; Wapenaar et al., 2014) has been proposed to image the
subsurface without artifacts due to internal multiple reflections.
This can be seen as a migration scheme that avoids migrating
internal multiple reflections. Singh et al. (2015, 2017) extend the
Marchenko imaging scheme to also account for free-surface-related
multiple reflections, such that the free-surface and internal multiple
reflections do not end up in the migration image. Ravasi (2017)
modifies the scheme of Singh et al. (2017) for marine seismic data
and shows the performance in numerical and field examples.
Meles et al. (2016) retrieve a data set containing approximately only
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primary reflections by combining the Marchenko scheme with con-
volutional interferometry. To solve the Marchenko equations, we
require the first arrival of the focusing wavefield estimated from
a macrovelocity model. Van der Neut and Wapenaar (2016) propose
a data-driven scheme for adaptive overburden elimination. This
scheme can be used to eliminate the internal multiple reflections
from the measured reflection response. It is derived from the
coupled Marchenko equations by projecting the focusing points
back to the acquisition surface. In their implementation velocity
model, information is needed to create time truncations. The
scheme has been modified and illustrated with 2D numerical exam-
ples (Zhang and Staring, 2018). Zhang et al. (2019) derive a new
scheme from the revised coupled Marchenko equations (Zhang
et al., 2018) to eliminate internal multiple reflections and compen-
sate for transmission losses contained in primary reflections. They
remove the need for model information by adapting the chosen
depth level to an unknown variable depth such that the truncation
time is constant for all offsets. The performance of this scheme has
been illustrated with 2D numerical examples and the extension to
account for free-surface multiple reflections has been achieved
(Zhang and Slob, 2019) as well. Because the truncation choices
made in Zhang et al. (2019) can be used in the scheme of van
der Neut and Wapenaar (2016), both schemes can eliminate internal
multiple reflections without any model information.
In this paper, we compare the data-driven schemes derived from

coupled Marchenko equations (van der Neut and Wapenaar, 2016;
Zhang et al., 2019) and from ISS (Ten Kroode, 2002; Löer et al.,
2016). For the ISS-based internal multiple attenuation scheme
derived by Weglein et al. (1997), it works in a space and in a
background medium, and there is no comparative relation with
Marchenko-based schemes. Thus, it is not included in this paper
for the comparison. The comparison covers the theory and the per-
formance in numerical examples. The paper is organized as follows.
In the “Theory” section, we analyze the relation and difference
among the three schemes. In the numerical section, we apply these
schemes to simple and complex 2D numerical examples, compare
their performance, and investigate the consequence on the migrated
image. The advantages and disadvantages of these schemes are dis-
cussed, and we end with our conclusions.

THEORY

To clarify our notation, we indicate time as t and spatial loca-
tion as x ¼ ðxH; zÞ, where xH denotes the horizontal coordinates
(x and y) and z denotes the depth. We assume the medium to be
lossless. The acoustic impulse reflection response is expressed as
Rðx 0

0; x0; tÞ, where x0 denotes the source position and x 0
0 denotes

the receiver position at the boundary ∂D0. The acoustically trans-
parent acquisition boundary ∂D0 is defined at z ¼ 0. In this
section, the equations for the three schemes are given and briefly
discussed.

Marchenko multiple elimination

As presented by van der Neut and Wapenaar (2016), the Marche-
nko multiple-elimination (MME) scheme is derived from the
coupled Marchenko equations by projecting the focusing functions
for all focusing points at a particular depth level back to a receiver
location at the acquisition surface. The details of the derivation can

be found in van der Neut and Wapenaar (2016). The scheme can be
formulized as

Rtðx 0
0; x

0 0
0 ; tÞ ¼ Rðx 0

0; x
0 0
0 ; tÞ þ

X∞
m¼1

Mmðx 0
0; x

0 0
0 ; tÞ (1)

with

Mmðx 0
0; x

0 0
0 ; tÞ ¼ ðRΘt−τ

τ R�Θt−τ
τ ÞMm−1ðx 0

0; x
0 0
0 ; tÞ; (2)

and

M0 ¼ R; (3)

where R indicates an integral operator of the measured reflection
data R convolved with any wavefield andR� is a correlation integral
operator. The term Θt−τ

τ is the truncation operator to exclude values
outside of the window ðτ; t − τÞ, Mm with m ¼ 1; : : : ;∞ give all
orders of predicted internal multiple reflections, Rt denotes the re-
trieved primary reflections, and τ indicates the half-wavelength of
the source wavelet to account for the finite bandwidth of the mea-
sured reflection response. Equation 3 is the start of this recurrent
scheme presented in equations 1 and 2. The integral form of Mm

can be written as

Mmðx 0
0; x

0 0
0 ; tÞ

¼
Z þ∞

0

dt 0
Z
∂D0

dx 0 0 0
0 Rðx 0

0; x
0 0 0
0 ; t 0ÞHðt − t 0 − τÞ

×
Z þ∞

0

dt 0 0
Z
∂D0

dx0Rðx 0 0 0
0 ; x0; t 0 0ÞHðt 0 − t 0 0 − τÞ

×Mm−1ðx0; x 0 0
0 ; t − t 0 þ t 0 0Þ; (4)

where H indicates the Heaviside function to impose the truncation.
As discussed by van der Neut and Wapenaar (2016), M1 ¼
RΘt−τ

τ R�Θt−τ
τ R can be used to predict all orders of internal multiple

reflections at once with the wrong amplitude. The following updates
ðM2; : : : ; M∞Þ from the second term in equation 1 converge to the
correct amplitude of internal multiple reflections predicted by M1.
The projected Marchenko equations from van der Neut and Wape-
naar (2016) remove the initial downgoing focusing function from
the scheme. We further remove the need for model information by
introducing the truncation time as an independent variable (Zhang
et al., 2019). Now, the scheme is model-free.
Only primary reflections end up in Rt in equation 1. The first term

in the right side of equation 1 is the original reflection data with
internal multiple reflections. Consequently, the second term in
the right side of equation 1 can be seen as an operator expression
for eliminating internal multiple reflections in the original reflection
data. It uses only the single-sided reflection response R and an offset
independent time truncation Θt−τ

τ . Therefore, it can be stated that
equation 1 presents a totally data-driven scheme that can be used
for eliminating the internal multiple reflections in the measured
reflection response without any model information.
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Transmission compensated Marchenko multiple
elimination

Zhang et al. (2019) present the transmission-compensated
Marchenko multiple-elimination (T-MME) scheme for eliminating
internal multiple reflections and applying transmission loss com-
pensation to the primary reflections. It is derived from the coupled
Marchenko equations with a revised truncation operator. The de-
tailed derivation can be found in Zhang et al. (2019). The scheme
can be formulized as

Rrðx 0
0; x

0 0
0 ; tÞ ¼ Rðx 0

0; x
0 0
0 ; tÞ þ

X∞
m¼1

M̄mðx 0
0; x

0 0
0 ; tÞ (5)

with

M̄mðx 0
0; x

0 0
0 ; tÞ ¼ ðΘtþτ

τ RΘtþτ
τ R�ÞM̄m−1ðx 0

0; x
0 0
0 ; tÞ; (6)

and

M̄0 ¼ R; (7)

where Rr denotes the transmission loss compensated primary re-
flections and Θtþτ

τ is a new truncation operator to exclude values
outside of the window ðτ; tþ τÞ. Equation 7 is the start of this re-
current scheme presented in equations 5 and 6. Note that M̄1 already
gives all orders of internal multiple reflections and transmission
losses in primary reflections with the wrong amplitude. The higher
order terms M̄m with m ¼ 2; : : : ;∞ serve to balance the amplitude
of events predicted by M̄1. The integral form of M̄m can be given as

M̄mðx 0
0; x

0 0
0 ; tÞ

¼
Z þ∞

0

dt 0
Z
∂D0

dx 0 0 0
0 Rðx 0

0; x
0 0 0
0 ; t 0ÞHðt − t 0 þ τÞ

×
Z þ∞

0

dt 0 0
Z
∂D0

dx0Rðx 0 0 0
0 ; x0; t 0 0ÞHðt 0 − t 0 0 þ τÞ

× M̄m−1ðx0; x 0 0
0 ; t − t 0 þ t 0 0Þ: (8)

Note that equation 8 is the same as equation 4 except for the
Heaviside function that imposes the truncation. Here, we also adapt
the chosen depth level to an unknown variable depth such that the
truncation time ðτ; tþ τÞ is constant for all offsets and the new trun-
cation operator is model-free.
The left side Rr in equation 5, that is using this different trunca-

tion in time, has transmission loss compensated primary reflections.
The first term in the right side of equation 5 is the original reflection
data with internal multiple reflections and transmission losses in
primary reflections. The second term in the right side of equation 5
works as an operator for eliminating internal multiple reflections
and compensating for transmission losses in the primary reflections.
It is also a totally data-driven scheme. Note that T-MME scheme
presented in equation 5 is similar to MME scheme presented in
equation 1 with different truncation operators. The truncation op-
erator Θt−τ

τ in MME gives the result in which internal multiple re-
flections are eliminated without touching primary reflections. The
revised truncation operator Θtþτ

τ in T-MME not only eliminates in-
ternal multiple reflections but also compensates for transmission

losses in the primary reflections. A detailed explanation can be
found in Zhang et al. (2019).

Ten Kroode and Löer internal multiple attenuation

The scheme derived from the third term of ISS by Ten Kroode
(2002) and Löer et al. (2016) can also predict internal multiple re-
flections. In this scheme, the reflection data are correlated twice
with particular truncations. It can be formulized as (Löer et al.,
2016)

MTKLðx 0
0; x

0 0
0 ; tÞ

¼
Z þ∞

0

dt 0
Z
∂D0

dx 0 0 0
0 Rðx 0

0; x
0 0 0
0 ; t 0ÞHðt − t 0 − τÞ

×
Z þ∞

0

dt 0 0
Z
∂D0

dx0Rðx 0 0 0
0 ; x0; t 0 0ÞHðt 0 − t 0 0 − τÞ

× Rðx0; x 0 0
0 ; t − t 0 þ t 0 0Þ; (9)

where MTKL indicates the prediction of all orders of internal multi-
ple reflections like M1 in equation 4. Please note that equation 9 is
slightly different from the equation in Löer et al. (2016) because we
use a different normalization and replace ε1 and ε2 by the half-
wavelength of the source wavelet τ here. The Ten Kroode and Löer
internal multiple-attenuation (TKL) scheme can be given as

R 0
t ðx 0

0; x
0 0
0 ; tÞ ¼ Rðx 0

0; x
0 0
0 ; tÞ þMTKLðx 0

0; x
0 0
0 ; tÞ; (10)

where R 0
t indicates the retrieved data.

Equation 9 is exactly the same as equation 4 with m ¼ 1. It
means that all orders of internal multiple reflections can be pre-
dicted at once with the wrong amplitude in equation 9. The retrieved
data R 0

t in equation 10 contain primary reflections and residuals of
internal multiple reflections. Thus, the TKL scheme can be seen as
an internal multiple reflection attenuation scheme.

EXAMPLES

In this section, two numerical examples are given to validate the
effectiveness and to clarify the difference between the three
schemes. In the two numerical examples, sources and receivers
are positioned at the top of a model, and a Ricker wavelet with
20 Hz center frequency is emitted by the sources. The spacing
of the sources and receivers is 5 m in the first numerical example
and 12.5 m in the second one. The reflection response is modeled
using a finite-difference scheme (Thorbecke and Draganov, 2011).
Absorbing boundary conditions are applied around the models,
and the direct wave has been removed from the modeled data.
The correct velocity model is used to migrate the original and re-
trieved data sets for a best-case scenario in the second example
subsection.

Horizontally layered example

In this subsection, we consider a model in which most reflectors
are “invisible” to test the performance of the three schemes. This
model is a horizontally layered model with constant velocity
(1000 m/s) and constant layer thickness (100 m); only the density
in the different layers varies as shown in Figure 1. The values of
density are given as 1000, 2000, 300, 702, 412, 594, 457, 553,
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481, 533, 494, 523, and 501 kg∕m3. The interesting point is that
because of the parameters of this model, the primary reflection
of the third reflector cancels the first internal multiple reflection be-
tween the first two reflectors. The third reflector causes a new multi-
ple, which is canceled by the primary reflection from the fourth
reflector, and so on. Hence, from the third reflector onward, the
model is invisible in the reflection response. The reflection re-
sponses are computed for 601 shot gathers with 601 traces per
gather. One of the computed shot gathers is shown in Figure 2a.
Note that, indeed, only the primary reflections from the first two
reflectors are visible. Figure 2b–2d shows the results obtained with
MME (equation 1), T-MME (equation 5), and TKL (equation 10),
respectively. It is important to note that in the data set retrieved by
MME and T-MME (shown in Figure 2b and 2c), primary reflections
due to deeper reflectors are perfectly recovered because of the elimi-
nation of the corresponding internal multiple reflections. However,
in the data set retrieved by TKL, only the primary reflection due to
the third reflector is recovered. This is caused by the fact that the
TKL scheme can only successfully predict the internal multiple re-
flection between the first two reflectors in this case. Figure 2e gives
the modeled primary reflections without transmission loss, which
will be used as a reference to illustrate the success of T-MME
for transmission loss compensation in primary reflections. We pick
the zero-offset traces from the original, modeled primary reflec-
tions, and retrieved data sets and show them in Figure 3. All traces
have been normalized by the same factor. Displayed in Figure 3a are

the zero-offset traces from the original shot gather (OR) and the
retrieved data set (IR) shown in Figure 2b. It can be seen that later
arriving primary reflections have been successfully recovered.
Figure 3b shows the zero-offset traces from modeled primary re-
flections (MD) shown in Figure 2e and the retrieved data set
(IT) shown in Figure 2c. Note that the retrieved data by T-MME
match well with the modeled primary reflections without transmis-
sion loss (quantitatively, approximately 4% error in the amplitude in
the retrieved primary reflections). The comparison of zero-offset
traces from original shot gather (OR) and retrieved data set

Time (s)

–2

0

2a)
OR
IR

Time (s)

–2

0

2b)
MD
IT

0 1 2

0 1 2

0 1 2
Time (s)

–2

0

2c)
OR
TKL

Figure 3. (a) A comparison of zero-offset traces from original and
retrieved data sets shown in Figure 2a and 2b, (b) a comparison of
zero-offset traces from modeled primary reflections and retrieved
data sets shown in Figure 2e and 2c, and (c) a comparison of
zero-offset traces from the original and retrieved data sets shown
in Figure 2a and 2d.
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Figure 2. (a) The modeled shot gather, (b) the data
set retrieved by MME scheme with m ¼ 1; : : : ;
50, (c) the data set retrieved by the T-MME
scheme with m ¼ 1; : : : ; 50, (d) the data set re-
trieved by the TKL scheme, and (e) the modeled
primary reflections without transmission losses.
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Figure 1. The density values of the invisible model.
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(TKL) shown in Figure 2d is given in Figure 3c. We can see that,
although the third primary reflection has been recovered, the am-
plitude is relatively low compared with the results shown in Fig-
ure 3a and 3b. A similar conclusion can be derived from Figure 4
in which the comparison of nonzero-offset traces is given.

Complex medium example

Here, we show results from data computed in a complex model
to test the performance of these schemes. Figure 5a and 5b shows
the velocity and density values of this model. The reflection re-
sponses are computed for 480 shot gathers with 480 traces per
gather. One of the computed shot gathers is shown in Figure 6a.
Internal multiple reflections are present at later arrival times, and
some of them are indicated by red arrows. The computed reflection
responses are used as inputs to solve equations 1, 5, and 10, respec-
tively. The resulting data sets are shown in Figure 6b–6d. The data
retrieved by MME and T-MME are nearly multiple-free, and resid-
uals of internal multiple reflections are present in the data retrieved
by TKL. Detailed comparisons of amplitudes using zero-offset
traces are given in Figure 7. All traces have been normalized by
the same normalization factor. It can be seen in Figure 7a that
the MME scheme can successfully eliminate internal multiple re-
flections without touching primary reflections. Figure 7b shows

that the T-MME scheme eliminates internal multiple reflections
and compensates for transmission losses in primary reflections.
Figure 7c shows that the TKL scheme can attenuate internal multi-
ple reflections with residuals present in the resulting data set and
without touching the primary reflections. A similar conclusion can
be derived from Figure 8 in which a comparison of nonzero-offset
traces is given.
We use the computed and retrieved data sets to image the

medium. The images obtained using a one-way wave-equation mi-
gration scheme are shown in Figure 9. We can see that in the images
retrieved from the computed reflection responses and resulting data
set of TKL, artifacts arising from internal multiple reflections are
present. The images retrieved from the resulting data sets of MME
and T-MME clearly show the primary reflectors without strong
artifacts due to internal multiple reflections.

DISCUSSION

The simple and complex numerical examples show that all orders
of internal multiple reflections can be eliminated by MME and
T-MME if a sufficient number of updates are evaluated. Moreover,
the T-MME scheme compensates for the transmission losses in the
primary reflections such that the retrieved primary reflections have a
higher amplitude as explained in Zhang et al. (2019). Unfortunately,
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Figure 4. (a) A comparison of non-zero-offset (800 m) traces from
the original and retrieved data sets shown in Figure 2a and 2b, (b) a
comparison of nonzero-offset (800 m) traces from the modeled pri-
mary reflections and retrieved data sets shown in Figure 2e and 2c,
and (c) a comparison of nonzero-offset (800 m) traces from the
original and retrieved data sets shown in Figure 2a and 2d.
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Figure 5. (a) The velocity and (b) density values of the complex
model.
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some limitations are still there. In the derivation of these two
schemes, we assume that the medium to be lossless and the source
wavelet to be known. These limitations will be the same for TKL
because TKL can be understood as a partial solution of MME as we
analyzed in the “Theory” section.
The TKL scheme estimates all orders of internal multiple re-

flections with wrong amplitude such that the data set retrieved in

equation 10 contains residuals of internal multiple reflections. In
the complex numerical example (as shown in Figure 9d), artifacts
arising from migrated residuals of internal multiple reflections are
strong enough to cause erroneous interpretation. To overcome this
drawback, a global or local matching filter is usually used to sub-
tract the predicted internal multiple reflections from the measured
reflection response (Matson et al., 1999; Luo et al., 2011; de Melo

et al., 2014). However, the subtracting filter can-
not distinguish internal multiple reflections from
primary reflections when they are overlapping
each other, such that both of them are removed
by the filter. The MME and T-MME would also
suffer from this problem in a field case, in which
imperfect deconvolution of the source wavelet
and appearance of noise would cause erroneous
amplitudes of predicted internal multiple reflec-
tions. Thus, for field data, a matching filter would
be required for the subtraction of predicted inter-
nal multiple reflections from the measured data.
Note that, to analyze the relation and clarify

the difference between schemes derived from
Marchenko equations and ISS, the MME and
T-MME schemes are presented as Neumann series
expansions. In these expressions, we can recog-
nize that the TKL scheme can be understood as
the first iteration result of MME. However, the
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Figure 6. (a) Modeled shot gather, (b) the data set retrieved by MME scheme with
m ¼ 1; : : : ; 20, (c) the data set retrieved by the T-MME scheme with m ¼ 1; : : : ;
20, and (d) the data set retrieved by the TKL scheme. The red arrows in (a) indicate
the internal multiple reflections, and the red arrows in (d) indicate the residuals of
the internal multiple reflections.
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Figure 7. (a) A comparison of zero-offset traces from the original
and retrieved data sets shown in Figure 6a and 6b, (b) a comparison
of zero-offset traces from original and retrieved data sets shown in
Figure 6a and 6c, and (c) a comparison of zero-offset traces from
original and retrieved data sets shown in Figure 6a and 6d.
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Figure 8. (a) A comparison of nonzero-offset (1000 m) traces from
the original and retrieved data sets shown in Figure 6a and 6b, (b) a
comparison of nonzero-offset (1000 m) traces from the original and
retrieved data sets shown in Figure 6a and 6c, and (c) a comparison
of nonzero-offset traces from the original and retrieved data sets
shown in Figure 6a and 6d.

S370 Zhang et al.

D
ow

nl
oa

de
d 

08
/1

0/
19

 to
 1

45
.9

4.
65

.1
41

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



strategies behind MME and TKL are different, and the details of
MME can be found in Zhang and Staring (2018).

CONCLUSION

We have compared three data-driven internal multiple reflection
elimination schemes from theory to performance in numerical ex-
amples. Two are derived from Marchenko equations and one from
ISS. The theoretical analysis shows that the Marchenko-based
schemes are similar to each other but use different truncation oper-
ators. This difference implies that the MME scheme only focuses on
internal multiple reflection elimination, and the T-MME scheme
eliminates internal multiple reflections and compensates for trans-
mission losses in primary reflections. The relation between schemes
derived from the coupled Marchenko equations and ISS is also an-
alyzed, showing that the TKL scheme can be understood as the first
iteration result of MME. The simple and complex numerical exam-
ples show that the Marchenko-based schemes work excellent to
eliminate internal multiple reflections, and that the TKL scheme
attenuates internal multiple reflections but leaves residuals. These
residuals can cause artifacts in the corresponding image.
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