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Abstract— The design of bespoke adaptive detection schemes
relying on the joint use of multistatic/polarimetric measurements
requires a preliminary statistical inference on the clutter interfer-
ence environment. This is of paramount importance to develop an
analytic model for the received signal samples, which is manda-
tory for the synthesis of radar detectors. In this respect, the aim
of this article is the development of suitable learning tools to study
some important statistical features of the sea-clutter environment
perceived at the nodes of a multistatic/polarimetric radar system.
Precisely, the stationarity of the data in the slow-time domain is
first assessed by resorting to generalized inner product (GIP)
based statistics. Then, the possible presence of structural sym-
metries in the clutter covariance matrices is investigated. Finally,
relationships between some statistical parameters characterizing
the sea-clutter returns on the bistatic polarimetric channels are
explored via specific sequential hypothesis testing. This research
activity is complemented by the use of radar returns measured
via the netted RADar (NetRAD), which collects simultaneously
monostatic and bistatic polarimetric measurements. The results
indicate that the analyzed data can be modeled as drawn
from a stationary Gaussian process within the coherence time.
In addition, the bistatic returns on the different polarimetric
channels can be assumed statistically independent with speckle
components possibly exhibiting proportional/equal covariance
matrices depending on the transmit/receive polarization and
bistatic geometry.

Index Terms— Covariance matrix structure, data homogeneity,
generalized inner product (GIP), model order selection (MOS),
multistatic/polarimetric radar, proportionality/equality of covari-
ance matrices, sea-clutter, spherically invariant random process
(SIRP).
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I. INTRODUCTION

HE design of adaptive detection schemes calls for a
preliminary statistical inference on the clutter interference
environment. This is essential for developing a well-suited
analytic model for the received signal, necessary to synthesize
taylored coherent radar detectors. Indeed, incorrect modeling
of the clutter environment can lead to false and/or missed
detections, compromising the overall accuracy and effective-
ness of a radar system [1], [2], [3], [4], [5], [6], [7], [8], [9].
For multistatic/polarimetric systems, the analytical model
adopted at the detector design stage has to account for the
joint use of all the signals collected from the environment [10],
[11], [12] requiring the joint characterization of the signals
perceived at the different sensors. Due to the so-called clutter
diversity, the inference task becomes challenging since the
statistical properties of the disturbance can change among
the different nodes and polarizations [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25]. In this
respect, in [25] a statistical analysis of multistatic/polarimetric
sea-clutter returns collected via the netted RADar (NetRAD)
system highlighted that, over an appropriate time interval
(referred to as the coherence time), the sea-clutter returns
collected from both monostatic and bistatic sensors can be
modeled according to a spherically invariant random process
(SIRP) [26], [27], [28], [29], [30], [31], [32], [33]. This is
tantamount to describing the clutter backscattering over the
coherence time as the product of a nonnegative random vari-
able and a zero-mean circularly symmetric Gaussian process
with unknown spectral characteristics, referred to as texture
and speckle, respectively. However, the analyses performed
in [25] relied on the use of uncorrelated slow-time samples,
and thus no inference on the possible stationarity of the
speckle component was made. In this respect, this article
represents an important advancement of the study conducted
in [25] accounting for possible correlations of the slow-time
samples composing the observation vector. Besides, the pos-
sible presence of some structures in the clutter covariance
matrices (both inter and intra channels) as well as potential
relationships between the statistical parameters characterizing
the bistatic returns are investigated. This information can be
capitalized to design coherent detectors that jointly use all the
signals collected from the environment. Precisely, the main
innovations of this article are as follows.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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1) The design of a test relying on a generalized inner
product (GIP) based statistic to assess the stationarity
of the data in the slow-time domain.

The exploitation of an ad hoc classification technique
to explore possible structures within the covariance
matrix associated with the speckle component for both
monostatic and bistatic measurements.

The design of a sequential hypothesis testing proce-
dure to investigate relationships among the covariance
matrices of the bistatic data collected over differ-
ent polarimetric channels and assess their statistical
independence.

Although this article focuses on NetRAD data (which, to the
best of our knowledge, represents the standard and most
extensively studied datasets available in the open literature
(101, [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
(211, [22], [23], [24], [25], [34], [35], [36], [37], [38], [39],
[40], [41], [42]), it is important to highlight that the developed
tests and methodologies are general. They can be applied to
make inferences on the interference environment perceived
by any coherent multisensor radar system such as multistatic
(not necessarily polarimetric) and possibly spatially distributed
multiple input-multiple output (MIMO) radars [43], [44] as
well as in synthetic aperture radar (SAR) [45], [46], [47], [48].
This represents an important contribution from the theoretical
point of view of this study.

The results on the considered real measurements show
that the analyzed data can be modeled as drawn from a
stationary Gaussian process within the coherence time (as
predicted by the SIRP model). Furthermore, the covari-
ance matrix associated with the speckle for the monostatic
(bistatic) measurements generally exhibits a centrohermitian
(centrosymmetric) structure which is a necessary condition
for the observations to be deemed as drawn from a wide
sense stationary (WSS) process. This suggests the need for
a preclassification procedure to select the most appropriate
model for the spectral characteristics of the clutter returns,
which is essential to capitalize on the situational aware-
ness at the detector design stage in order to boost target
detectability [49], [50], [51]. The study also shows that the
bistatic returns on the different polarimetric channels can
be modeled as jointly Gaussian and statistically independent
within the coherence time, regardless of the sensing system
setup. Finally, depending on the transmit/receive polarization
and bistatic geometry the speckle components can exhibit
proportional/equal covariance matrices, namely they can share
the same spectral features. This information can be exploited
to force further structure on the analytical model for the
received signals. In this respect, by leveraging the considered
sequential hypothesis testing it is possible to select the most
appropriate signal model depending on the spectral properties
of the bistatic measurements.

The remainder of this article is organized as follows.
Section II is devoted to a short description of both the NetRAD
system and the radar measurements used in this study.
In Sections III and IV, the statistical tools designed to assess
the stationarity of the data and to identify possible structures
of the covariance matrix are discussed for both monostatic

2)
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and bistatic measurements, respectively. In Section V, the
statistical independence of bistatic measurements collected
on the different polarimetric channels is studied. Finally,
in Section VI, the conclusions are drawn and possible future
research avenues are pointed out.

A. Notation

Boldface is used for vectors a (lower case), and matrices A
(upper case). The transpose and the conjugate transpose oper-
ators are denoted by the symbols (-)7, and (-)', respectively.
CN*K is the set of complex-valued vectors with dimension
N x K. The curled inequality symbol > (and its strict
form >) is used to denote generalized matrix inequality:
for any Hermitian matrix A, A > 0 means that A is a
positive semi-definite matrix (A > 0 for positive definiteness).
The symbol %{A} denotes the real part of A e CN*V,
Finally, x CN(a, M) indicates that x is a complex
circular normal vector with mean vector @ and covariance
matrix M > 0.

~

II. NETRAD SYSTEM AND DATASET DESCRIPTION

NetRAD is an S-band ground-based multistatic/polarimetric
system allowing the simultaneous collection of both mono-
static and bistatic radar returns. It was initially developed
by the University College London (UCL) and successively
modified via a joint collaboration between UCL and the
University of Cape Town (UCT), obtaining separate active and
passive nodes with baselines in the order of a kilometer. This
was achieved by synchronizing the entire system using GPS
disciplined oscillators (GPSDOs) at each node, thus avoiding
cabled connections (as in the original version of the NetRAD)
and granting more degrees of freedom in terms of baselines
among nodes [15].

Data exploited in this article were collected on June 9th,
2011 in South Africa at Misty Cliffs using three nodes:
one active (with transmit and receive capabilities) and two
passive (see [20], [25] for more details). The active node
was a pulsed radar operating over a carrier frequency of
2.4 GHz, transmitting linear up-chirp waveforms with a swept
bandwidth of 45 MHz (i.e., a range resolution of 3.3 m),
and a pulse repetition frequency (PRF) equal to 1 kHz.
In addition, the pulse length was ruled so that the cell under
test was not eclipsed and the chirp rate was regulated to
achieve the aforementioned resolution. The passive receiver
nodes were co-located 1830 m away from the active node and
used to measure the bistatic sea-clutter returns from both the
horizontal and the vertical polarization. As to the geometric
configuration, different bistatic angles (8) were considered by
pointing the antennas at the active and passive nodes to a
common clutter patch so that the intersection point between
the boresight of the transmitting/receiving antennas and the
position of the nodes occupy the vertices of an isosceles
triangle (with axis of symmetry perpendicular to the baseline)
[25]. The common clutter patch corresponds to the area
where the transmitting and receiving antenna main beams
intersect [25]. Fig. 1 shows a pictorial representation of the
system geometry for 8 = 60°, where N3 (Node 3) is the
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Fig. 1. System geometry for § = 60°. N3 is the monostatic node, whereas
N1-N2 are the two co-located bistatic sensors.

TABLE I
POLARIZATION CONFIGURATIONS FOR THE CONSIDERED
MEASUREMENTS

Dataset  Pol. Node 3  Pol. Node 1  Pol. Node 2 B
number (Tx-Rx) (Rx) (Rx) [deg]

1 HH H \% 60

4 HH H \Y 90

5 HH H v 95

8 VH H \Y 60

11 VH H \Y 90

12 VH H v 95

monostatic node, whereas N1-N2 (Node 1-Node 2) are the
two co-located bistatic sensors.'

Table I summarizes the polarization configurations and
bistatic angles associated with the datasets considered in this
study. Therein, the letters H and V denote horizontal and
vertical polarization, respectively.

As to the environmental conditions (wind speed/direction
and wave height/direction), they remained almost constant
during the experiments, with wind speed in the order of
20-28 km/h and wave height in the order of 1.5-2.5 m
(corresponding to a sea state 4). For all the acquisition scenar-
ios, measurements refer to a time span of 130 s which, with a
PRF of 1 kHz, corresponds to Ny = 130000 complex-valued
slow-time samples for each range cell. In the following, before
proceeding with data analysis, the available slow-time mea-
surements are suitably preprocessed so as to remove possible
dc offset and imbalance between the quadrature channels [52].

III. STATIONARITY ASSESSMENT

In this section, suitable statistical tools are employed
to establish whether the available sea-clutter returns can
be modeled as drawn from a stationary Gaussian process.
To this end, let us observe that a necessary condition for
stationarity is the homogeneity of the sea-clutter measure-
ments over the slow-time dimension (i.e., the data share the
same spectral properties). This can be assessed via the GIP,
which is a quadratic form commonly used in radar signal
processing to assess whether a set of statistically indepen-
dent zero-mean complex-valued Gaussian random vectors is

Given the co-location and synchronization of the passive nodes using
GPSDOs, they can be considered (for the receive chain) as a single node
equipped with two coherent polarimetric channels.
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homogeneous [53], [54], [S5]. Precisely, given K independent
and identically distributed N-dimensional data vectors x; ~
CN@O,X) e CN*1 k=1,...,K > N, the homogeneity prop-
erty can be established exploiting the following considerations.
1) X can be estimated according to the maximum likeli-
hood (ML) criterion via the sample covariance matrix
(SCM), defined as

I
Y = E;xkx,’( . (D
2) The GIP statistics, defined by the following quadratic

forms

[

Skzzxkf_lxk, k=1,....K, (2)

follow a complex central Beta-distribution with shape
parameters N and M = K — N, ie, & ~ CBy.u,
k=1,...,K.

Leveraging (2), the following proposition follows.

Proposition 1: Let us consider K statistically independent
data vectors. A necessary condition for the measurements x; €
CM<! k=1,...,K, K > N, to be modeled as homogeneous
zero-mean circularly symmetric complex Gaussian random
vectors is that the quadratic forms &, k = 1,..., K, are
distributed according to a CBy g_y model.

Applying this framework to the multistatic/polarimetric data
collected from the NetRAD system it is possible to study
their homogeneity properties. As a preliminary remark, let
us observe that in [25] it has been shown that within the
coherence time, both the monostatic and bistatic NetRAD
measurements comply with the SIRP model, i.e., within the
coherence time they can be deemed as locally Gaussian.
Precisely, denoting by z(¢) the continuous-time version of the
signal collected at the ith sensor, it can be expressed as

z(t) = sg), tel, 3)

where s represents the texture component modeled as a
nonnegative random variable over the coherence time, g(t)
denotes the speckle component described as a zero-mean
circularly symmetric Gaussian process, and T, is the coherence
time. However, the analyses performed in [25] required the
use of uncorrelated slow-time samples (practically obtained
subsampling the observations) and thus no inference was made
on the possible stationarity of the speckle component (due to
Gaussianity it is just necessary to study the covariance matrix
stationarity as it implies the strict stationarity of the process).

In the following, the study conducted in [25] is completed
accounting for possible correlations of the slow-time samples
composing the observation vector. To this end, let us denote by

lza)r,, i=123

a set of K data vectors containing N consecutive slow-time
samples collected from a given range cell at the ith node.
To ensure uncorrelation and statistical independence of the
data vectors z;x, k =1,..., K, i = 1,2, 3, they are spaced in
the slow-time domain according to the average decorrelation
time of 0.05 s [25] which, at PRF of 1 kHz, corresponds
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fast-time

Zi11 —'_ ]
L A
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Zig1 —-—
L A B
Zi12 —-:

Fig. 2. Pictorial representation of the data selection procedure.

to a minimum temporal lag between two observation vectors
of A = 50 samples. Precisely, denoting by z; € CV:-*! the
available measurements in the slow-time dimension acquired
at the ith sensor, the set of K data vectors can be selected as
follows:

Ziks = [zi(Aes+ 1), oz (A + N)]T e CN!

k=1,....K,1=1,2,...,

1) the index [ allows the selection of L different groups of
K data vectors from the available Ny slow-time samples,
that is,

“)

L, where:

N,—N + A
L= |+ Aa
Ry

2) for a given (k, [)-pair, Ay ; = [({— 1)K +k—1]A, allows
the selection of the kth N-dimensional data vector for
the /th data selection; and

3) (KA/PRF) < T, i.e., each group of K data vectors are
picked up within the coherence time.

Fig. 2 shows a pictorial representation of the data selection
procedure with reference to the first set of K data vectors,
i.e., considering [ = 1.

Using this data selection procedure, for a given range cell
the GIP statistics can be computed according to Algorithm 1.
Thus, relying on Proposition 1 the homogeneity of the data can
be studied by comparing the cumulative distribution function
(CDF) of a CBy p random variable with the empirical CDF
(ECDF) of the GIP statistics. This analysis can be conducted
via a visual comparison between the theoretical and the actual
CDFs, and/or by testing the simple hypotheses

(' ©. &« has the CDF Fy

®)
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k=1,...,K,i=1,2,3, with Fx denoting the CDF of the
random variable X ~ CBpy_y. In Sections III-A and III-B,
both studies are performed considering the datasets 1, 4, 5, 8,
11, and 12, and assuming N = 8 and K = 2N.

Algorithm 1 Procedure to Compute the GIP Statistics for a
Given Range Cell
Imput: z;,,,i=1,23,k=1,...,K,l=1,...,L;
Output: GIP statistics for a given range cell;
set [ =0;
repeat

setl =1+1;

compute the SCM

BN

A 1
+ .
2= ?I;zf,k,lz,,k,,, i=1,23

5:  compute the quadratic forms

i=1,2,3,
k=1,...,K

1
Z, )i zi,k,17

Ezkl K :kl

6 until < L

A. Analysis Based on CV Distance

The aim of this analysis is to visually compare the theo-
retical and the empirical CDF of the GIP statistics. To this
end, for a given sensor/range cell pair, the ECDF is computed
starting from the samples

£V = (&), .. €] i=1,23

(6)

where

CZV = [Si,l,],...,si,K,l]’ (7)

Fig. 3 displays the ECDFs corresponding to each range cell of
the clutter patch and sensor together with the theoretical CDF.
By visual inspection of the curves it is possible to establish
that:

1) regardless of the considered dataset/range cell, the
ECDF associated with the bistatic measurements
achieves a good agreement with the theoretical model;
the ECDF corresponding to the horizontally co-polarized
bistatic measurements are closer than the mono-
static counterparts to the theoretical model [see
Fig. 3(a), (c), and (d)].

The latter consideration can be further corroborated by
the means of the Cramer Von Mises (CV) distance. This is
an integral-based distributional distance between two CDFs
and given a set of L identically distributed observations
[X1,..., X] of the random variable X, its formal definition
is given by

I=1,...,L, i=1,2,3.

2)

20 —1/?
(X)) — YA (8)

dey = 12L+Z
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TABLE III

PERCENTAGE OF GIP STATISTICS FOR WHICH THE BETA
DISTRIBUTION CANNOT BE REJECTED FOR A 0.01
SIGNIFICANCE LEVEL

Dataset | Node 1 | Node 2 | Node 3
1 99.1 98.9 98.3
8 99.0 99.0 98.8
4 98.8 98.9 97.5
11 98.9 99.0 98.5
5 98.9 99.0 97.8
12 99.0 98.9 98.7

hypotheses in (5). The study is conducted by using the
Kolmogorov—Smirnov (KS) test, a nonparametric statistical
method designed to assess the goodness-of-fit between an
empirical and a theoretical distribution function [56]. It is
based on the maximum absolute difference between the empir-
ical and the hypothesized CDFs of the data, known as the KS

(© (d)
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Fig. 3. ECDFs evaluated using the GIP statistics for the three nodes:
(a) dataset 1, (b) dataset 8, (c) dataset 4, (d) dataset 11, (e) dataset 5, and
(f) dataset 12.

TABLE 11
AVERAGE CV DISTANCE
Dataset | Node 1 Node 2 | Node 3
1 0.14 0.09 1.28
8 0.08 0.09 0.29
4 0.19 0.24 2.81
11 0.11 0.11 0.67
5 0.24 0.11 3.97
12 0.11 0.24 0.87

where Fy(-) is the CDF of the assumed distribution and X is
the /th order statistic from the set of random variables. Using
this metric, with reference to each dataset, Table II reports the
mean CV distance obtained by averaging the values of dcy
computed for each range cell of the clutter patch. The values
confirm that for the horizontally co-polarized case (datasets
1, 4, and 5), the mean CV distance for the monostatic mea-
surements is higher than the bistatic counterpart. Interestingly,
for this configuration, it is also possible to observe that the
CV index increases as the distance between the monostatic
node and the clutter patch reduces. Specifically, since for the
NetRAD system the position of the nodes is fixed, the distance
between the sensors and the clutter patch reduces as the bistatic
angle increases.

B. Analysis via Hypothesis Testing

The aim of this analysis is to verify whether the GIP
statistics follow a CBy y model by testing the simple

statistic. Notably, the limiting (asymptotic) distribution of the
KS statistic under the null hypothesis is known and parameter-
free. Consequently, for a given significance level, the threshold
used to evaluate the conformity of the data to the hypothesized
statistical model can be assumed independent of the tested
distribution.

For a given range cell the KS statistic in (5) is computed
using the samples

S,Kf = [&x1s - Einr]s

Applying the KS test to the considered problem, Table III
shows the average percentage of GIP statistics for which the
CBy.m distribution cannot be rejected for a 0.01 significance
level. Precisely, for each sensor and a given range cell,
the samples EIK,f i = 1,2,3, k = 1,...,K, are used to
perform K different KS test. Then, the results are averaged
with respect to both the number of data vectors and range
cells. Results pinpoint that within the coherence time, the
considered measurements can be deemed as homogeneous
(i.e., compatible with stationarity) and locally Gaussian (as
predicted by the SIRP model). In other words, within the
coherence time for both the monostatic and bistatic sensors
the received data can be modeled as a zero-mean circularly
symmetric complex Gaussian random vector with a specific
covariance matrix, which can be possibly different from one
sensor to another as well as along the range domain or in
different coherence time intervals.

i=1,23, k=1,...,K. (9)

IV. COVARIANCE MATRIX SYMMETRY IDENTIFICATION

The analysis in Section III highlighted that the available
multistatic/polarimetric measurements can be considered as
drawn from a stationary Gaussian process within the coher-
ence time. However, no inferences can be made over a time
scale greater than the coherence time or about the spectral
features of the sea-clutter perceived at different sensors or
polarizations. In this respect, some insights can be gained
by studying the symmetries of the covariance matrix of the
speckle component over successive coherence time intervals.
Indeed, for a given sensor/range cell a necessary condition
for the data observed over different coherence time intervals
to share similar spectral characteristics (up to a scale factor



5103415

representing the texture component) is that the covariance
matrix of the corresponding speckle components exhibit the
same structure. Moreover, specific models such as Hermitian
unstructured, symmetric unstructured, centrohermitian, and
centrosymmetric, can provide information about the spectral
behavior of the clutter perceived at different sensors. As a
matter of fact, centrosymmetry or centrohermitianity are nec-
essary conditions for the observations to be drawn from a WSS
process. Furthermore, for a symmetric or a centrosymmetric
structure the spectrum of the clutter has to exhibit a symmetric
behavior with respect to the zero-Doppler frequency. For
instance, by describing the sea-clutter spectrum with the well-
established Gaussian-shaped model, the generic (r, ¢) entry
of the covariance matrix of the speckle component over a
coherence time interval can be expressed as

M(r,c) = ap"= 2= oy e(1,...,N}* (10)

where N is the number of pulses in the coherent processing
interval, « is a real-valued positive parameter accounting
for the actual texture power, p is the one-lag correla-
tion coefficient, and f; represents the normalized Doppler
frequency of the sea-clutter. Thus, a real-valued covari-
ance matrix (symmetric unstructured/centrosymmetric) can be
associated to observations with a zero-Doppler frequency.
Conversely, complex-valued covariance matrices (Hermi-
tian/centrohermitian) are representative of clutter returns with
a nonzero-Doppler frequency.

Based on the previous considerations, the aim of this
section is to infer on the structure of the covariance matrix
of the speckle component for both the monostatic and the
bistatic sea-clutter measurements. To this end, relying on the
framework proposed in [57], for a given sensor/range cell
and exploiting observations from a specific coherence time
interval, covariance symmetries can be studied considering the
following hypotheses test:

H: M e CY*N s Hermitian unstructured

H,: M e RN s symmetric unstructured (1
Hy: M e CV*N_  is centrohermitian

Hy: M e RY*N s centrosymmetric

where the number of unknown parameters under each
hypothesis is given by

my = Nz, under H,
my;=N(N+1)/2, under H,
ms=N(N+1)/2, under Hj

N /N . .

—|(—=—+4+1), if N iseven

2\ 2
my = Nl 2 under Hy.

() , if N is odd

2
(12)

To screen among the different hypotheses, suitable strategies
can be exploited which involve the log-likelihood function of
the observations, an estimate of the covariance matrix under
each hypothesis, and a model order selection (MOS) rule [57].
In this respect, since the analyses are performed within the
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coherence time the observations can be modeled according to
a zero-mean circularly symmetric complex Gaussian model.
Besides, assuming the availability of K > N independent data
vectors Z = [z1,...,zx] € C¥*X under the ith hypothesis
the ML estimate of the covariance matrix of the speckle
component is given by

. 1.

M, = EZZ’, (Under H;)
. 1

M, = Em{zzf}, (Under H>)

(13)

1 \
M = R[ZZT +J(zz") J], (Under Hs)

M, %m{zzT +J(2Z")"J}, (Under Hy)
where J € RV*V is a permutation matrix such that J(r, ¢c) =
lifand only if r +c =N+ 1, (r,c) € {1, ...,N}z. Finally,
as to the classification rule, the Bayesian information criterion
(BIC) is used [57]. This is tantamount to considering the
decision rule

H; = arg Erén}rcl{—2s (M,, H,) + m; log(K)} (14)
where H = {l, 2, 3, 4}, whereas S(M;, H;) and Mi are the
log-likelihood function and the ML estimate of M; under the
ith hypothesis, respectively.

The analysis is conducted using the data selection procedure
specified in (4) for the measurements from datasets 1, 4, 5, 8,
11, 12, assuming N = 8 and K = 2N. Specifically, for a given
sensor, different classification instances are made along the
slow-time dimension for each range cell of the clutter patch.

Figs. 4, 6, and 8 display the classified structures for the
datasets 1-8, 4-11, and 5-12, respectively. For each range
bin of the clutter patch (reported over the horizontal axis
of the map), the data selection procedure is applied over
the slow-time dimension, providing different classification
instances (reported over the vertical axis of the map). For the
interpretation of the results, Figs. 5, 7, and 9 show the modulus
of the available sea-clutter fast-time/slow-time data for each
node and sensing system configuration. The maps highlight
that:

1) for both monostatic and bistatic data the top-rated
structures are centrohermitian and centrosymmetric (i.e.,
hypothesis H3 and Hy, respectively);

the monostatic (bistatic) returns generally exhibit a cen-
trohermitian (centrosymmetric) covariance matrix;

the number of data classified under H; and Hy (for both
monostatic and bistatic measurements) depends upon
polarimetric/geometric configuration; and
centrosymmetry and centrohermitianity can be linked to
the sea-wave profile (which depends on the sea-state).

2)

3)

4)

The latter finding can be identified by comparing Figs. 4 and 5
for datasets 1-8, Figs. 6 and 7 for datasets 4-11, and Figs. 8
and 9 for datasets 5-12.

The aforementioned trends are also corroborated by the
percentage of data classified under the hypothesis H;, i =
1,2, 3, 4 (averaged over the range bins belonging to the clutter
patch) presented in Table IV.
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8. (a), (c), and (e) Related to dataset 1 nodes 1-3, respectively. (b), (d), and
(f) Related to dataset 8 nodes 1-3, respectively.

With reference to the bistatic measurements, the obtained
values also suggest that when the transmitter is horizontally
polarized (datasets 1, 4, and 5), as the bistatic angle increases
the percentage of data classified as centrohermitian increases
while that identified as centrosymmetric reduces. For the
vertically polarized counterpart, this behavior is limited to
datasets 8 and 11 (i.e., up to bistatic angles less than or equal
to 90°). In addition, for a specific geometric configuration (i.e.,
datasets 1-8, 4-11, and 5-12), the percentage of data classified
under the centrohermitian (centrosymmetric) hypothesis for
co-polarized monostatic measurements is higher (smaller) than
the value obtained for the cross-polarized counterparts.

Finally, Fig. 10 shows the box and whisker plots of
the spectral centroids computed using the data classified
under the centrohermitian and centrosymmetric hypothesis.
For each range bin, the covariance matrices estimated using the
instances classified under H; and H, are averaged and used
to estimate the power spectrum via Capons’ method under
both hypotheses. Then, the spectral centroids of the resulting
power spectra (computed separately for each hypothesis and
range bin of the clutter patch) are used to construct the box
and whisker plots of Fig. 10. Precisely, for each dataset/node
and range cell, the spectral centroid is defined as

P P
Zprp ZPP
p=1 p=1

5)

Fig. 5. Modulus (in dB) of the available measurements from datasets 1 and
8. (a), (c), and (e) Related to dataset 1 nodes 1-3, respectively. (b), (d), and
(f) Related to dataset 8 nodes 1-3, respectively.

TABLE IV

PERCENTAGE OF DATA CLASSIFIED UNDER
EACH HYPOTHESIS

Dataset | Node H, Ho Hs Hy
1 0.01 0.12 6.58 93.29
1 2 0.00 0.12 3.91 95.98
3 0.13  0.02 7582 24.03
1 0.00 0.12 3.07 96.81
8 2 0.04 0.13 1685 82.98
3 0.11 0.06 57.06 4278
1 0.02 0.09 1591 8398
4 2 0.10 0.14 1795 81.82
3 0.84 0.01 9557 3.58
1 0.02 0.14 10.86 88.97
11 2 0.07 0.08 3553 6432
3 0.27 0.01 91.25 8.47
1 0.04 0.14 21.56 7825
2 0.08 0.08 2545 7440
5 3 0.81 0.07 96.60 2.52
1 0.03 0.10 10.14 89.74
12 2 0.06 0.04 3341 66.49
3 0.14  0.00 94.21 5.65

where P is the total number of considered Doppler bins,
whereas f, and P, are the values of the frequency and
the power spectrum corresponding to the pth Doppler bin,

respectively.

Regardless of the measurement setup, the plots show that:

1) the spectral centroids associated with the monostatic
data are higher than those of the bistatic counterpart;
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Fig. 6. Structures of the covariance matrix classified using datasets 4 and
11. (a), (c), and (e) Related to dataset 4 nodes 1-3, respectively. (b), (d), and
(f) Related to dataset 11 nodes 1-3, respectively.

TABLE V

MEDIAN VALUE OF THE SPECTRAL CENTROIDS (IN Hz)
OBTAINED FOR EACH SENSOR UNDER THE
HYPOTHESES H3 AND Hy

Node 1 Node 2 Node 3
Dataset Hs Hy Hs Hy Hs Hy
1 17 3 15 4 38 11
4 15 5 13 6 47 17
5 17 5 14 7 49 17
8 15 2 14 6 34 10
11 15 5 13 7 40 14
12 14 5 11 6 41 15

2) the spectral centroids obtained under H, are smaller than
those under Hs; and
3) for a specific hypothesis, the spectral centroids of the
cross-polarized bistatic measurements are almost the
same.
The aforementioned trends can be also corroborated by the
median values of the spectral centroids reported in Table V.
Summarizing, the main findings of this analysis confirm
that over a time scale greater than the coherence time, the
sea-clutter returns collected at the active and passive sensors
cannot be modeled as drawn from a stationary process. Indeed,
for each range cell, both the structure of the covariance matrix
and the spectral features of the data can change along the
slow-time dimension. However, within the coherence time,
the data generally exhibit a centrohermitian/centrosymmetric
covariance matrix, further corroborating the presence of an
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Fig. 7. Modulus (in dB) of the available measurements from datasets 4 and
11. (a), (c), and (e) Related to dataset 4 nodes 1-3, respectively. (b), (d), and
(f) Related to dataset 11 nodes 1-3, respectively.

underlying WSS process. Moreover, the results highlight that
the structure/symmetries of the covariance matrix depend
upon the polarimetric/geometric configuration of the sens-
ing system and the sea-wave profile as well. Therefore, the
analysis suggests the use of a preclassification procedure of
the data at both monostatic and bistatic sides to select the
most appropriate model for the covariance functional form
which can be capitalized by radar signal processing schemes.
Finally, the analysis of the spectral centroids suggests that
for a specific hypothesis, the cross-polarized bistatic measure-
ments exhibit similar values of this feature. This information
is of paramount importance to develop detection schemes
leveraging cross-polarized bistatic measurements and is further
investigated in Section V.

V. STATISTICAL INDEPENDENCE OF THE BISTATIC
MEASUREMENTS

In this section, a sequential hypothesis testing procedure
is developed to assess whether the cross-polarized bistatic
measurements can be deemed statistically independent and
whether they share the same spectral properties.

In this respect, based on the analysis performed in
Section III, within the coherence time the cross-polarized
bistatic measurements can be modeled as zero-mean circularly
symmetric complex Gaussian vectors. Thus, for a specific
range cell, denoting by z; € CN*! a vector containing N
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Fig. 8. Structures of the covariance matrix classified using datasets 5 and
12. (a), (c), and (e) Related to dataset 5 nodes 1-3, respectively. (b), (d), and
(f) Related to dataset 12 nodes 1-3, respectively.

consecutive slow-time samples collected within the coherence
time using the ith bistatic node, this vector can be modeled
as z; ~ CN(0, M;), i = 1,2. With this preliminary remark,
the focus of this section is to assess whether the following
conditions hold:
1) z; and z, are statistically independent;
2) z; and z, are statistically independent with proportional
covariance matrix, i.e., M, = yM;, y € RT; and
3) z; and z, are statistically independent and share the
same covariance matrix, i.e., M =M, =M.
To this end, let us assume that the data vector z =
[z] zf17 € C*M*! formed by stacking the cross-polarized
bistatic measurements is a zero-mean circularly symmetric
complex Gaussian vector, with covariance matrix

2=5l]= [y ]

o (16)

where M, = E[z 1z;]. Hence, conditions 1-3, can be assessed
by analyzing the characteristics of X. Indeed:

1) under condition 1, ¥ = Diag (M, M»);

2) under condition 2, ¥ = Diag (M, yM); and

3) under condition 3, ¥ = Diag (M, M).
Formally, letting

® = {Z e ¥V : ¥ » 0}
O ={Z e H*™*N : ¥ » 0, T = Diag (M, M>)}
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Fig. 9. Modulus (in dB) of the available measurements from datasets 5 and
12. (a), (c), and (e) Related to dataset 5 nodes 1-3, respectively. (b), (d), and
(f) Related to dataset 12 nodes 1-3, respectively.

@ ={X eH**N:X >0, X =Diag(M,yM)}

;= {X e N : ¥ ~ 0, £ =Diag(M, M)} (17

the problem at hand can be stated in terms of the following
hypothesis test:

Ho:EE@O
H, : X € 0
H2ZZ€®2
H3ZZ€@3.

(18)

Since ®3 € 0, € O; C O, the hypotheses in (18)
are nested. Hence, to discriminate among them, the tailored
sequential hypothesis testing procedure of (19), as shown at
the bottom of page 11 is considered. Specifically, the test 7} is
first used to verify whether condition 1 holds. Then, condition
2 is tested via T, only for the data that satisfies Hy;, and finally,
condition 3 is tested via 73 for the data complying with both
H01 and H()z.

The hypothesis tests 77, T, and T3, can be handled via
the generalized likelihood ratio (GLR) criterion, which is
tantamount to replacing in the likelihood ratio test (LRT)
the unknown parameters under each hypothesis with their
respective ML estimates. Leveraging this framework, it is
possible to show that the GLR test (GLRT) for Ty, T,, and
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Fig. 10. Box and whisker plots of the spectral centroids under hypothesis

H; and Hy for the three nodes: (a) dataset 1, (b) dataset 8, (c) dataset 4,
(d) dataset 11, (e) dataset 5, and (f) dataset 12.

T3, can be written as [58], [59], [60]

det[Diag (S, S,)] &1
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Algorithm 2 Procedure to Compute y;
Input: S;, S,, N, K, O,
QOutput: an estimate of y,
l.setg=1 B, =1
2: repeat
g=q+1 .
a = tr (Squ—l)
KN

[95]

172K
until q <0
set Y1 = ay

W
—_
)
K=
+
»
S}
N—"

A

Algorithm 3 Procedure to Compute y, and R,
Input: S, SZ: N, K, O»
Output: 7,, R,

I:setg=1 B, =1
2: repeat
3 g=q+1 |
tl"(Sz q_l)
4: oy =
5: B, =
172K )
6: until ¢ < 0>
7. set Yo =, and R, =B,

Remarkably, invoking the convergence properties of alter-
nating optimization, any limit point resulting from Algorithm 2
(3) is a stationary point to the ML estimation problem under
the assumption X € ®; [61]. Nevertheless, leveraging the
geodically convexity of the negative-log-likelihood function
with respect to M and y [62], it is not difficult to show that
the sequence generated by Algorithm 3 converges to the ML
estimate. In addition, the considered detectors ensure the con-
stant false alarm rate property with respect to the unknowns.
In fact, the statistical characterization of the decision
statistic:

1) in (20) does not depend on the nuisance parameter under
Hyy, i.e., X, owing on the properties of the det-function;
in (21) does not depend on the nuisance parameters
under Hp, i.e., ¥ and y, due to the properties of the

2)

3)

det-function as well as the scale invariance of the y
estimate provided by Algorithm 2; and
in (22) does not depend on the nuisance parameters

~ m (for test Ty) (20)
det(S) Hy
S
detz( + sz)
~ Y1
I ———— for test T- 21
" det(S1) det(S5) [ Z ?72 (for test T3) 2D
S +S
i (P57
>
2.3 N < n3 (for test T3) (22)
det”(R)y5 Ho
where:
1) n1, n2, and n3, are the decision thresholds for a given

2)

3)
4)

5)

false alarm probability (Py,);

S = ZZ', with Z = [Z] Z}]T € CV¥2K, N > 2K,
in which Z; € CV*K is a data matrix of K statistically
independent homogeneous data vectors whose entries
are N consecutive slow-time samples collected at the
ith sensor for a specific range cell, i =1, 2;
Si=2,Z,i=12;

parameter p; in (21) is computed via the iterative
procedure specified in Algorithm 2; and

parameters 7, and iil in (22) are obtained via the
iterative procedure described in Algorithm 3.

under Hy, i.e., X and y, due to the properties of the
det-function as well as the joint scale invariance of the
y factor and X estimates.

In order to apply the developed statistical tools, the fore-
going analysis is conducted using the same data selection
procedure and system parameters as in Section IV, i.e., N = 8§,
and K = 2N. The number of iterations for Algorithms 2 and 3
is set to 20 (Q; = Q, = 20), and the detection thresholds
are set to ensure Py, = 1072 assuming zero-mean complex
circular white Gaussian data.

Figs. 11-13 show the detection maps obtained using datasets
1-8, 4-11, and 5-12, respectively. As mentioned before, the
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T3, respectively. (d)—(f) Related to dataset 8 (vertically polarized transmission) and tests 77, T, and T3, respectively.

test 77 is applied to the whole data, whereas tests 7, and
T; are only applied to the observations complying with Hy;
and with both Hy, and Hy,, respectively. The data excluded
from the testing procedures 7, and 73 are marked within
the corresponding detection maps with Hy; and H;; U Hyy,
respectively. With this premise and looking over the figures it
is possible to infer that:

1) regardless of the transmit polarization and bistatic angle,
most of the cross-polarized bistatic measurements can be
assumed statistically independent (hypothesis Hy));
the highest number of observations satisfying the
hypothesis of statistically independent cross-polarized
bistatic measurements sharing the same covariance
matrix (hypothesis Hyz) is obtained for 8 = 60° and
horizontally polarized transmission (i.e., dataset 1); and
regardless of the bistatic angle, using horizontally
polarized transmission, the number of instances clas-
sified under the hypothesis of statistically independent
cross-polarized bistatic data with proportional covari-
ance matrices (i.e., hypothesis Hy) is higher than that
using the vertically polarized counterpart.

The last finding is in line with the results shown in (b) and (d)
of Figs. 4, 6, and 8 (for datasets 8, 11, and 12, respectively)

2)

3)

and those reported in Table IV. More specifically, a necessary
condition for the covariance matrices to be proportional/equal
is that they share the same structure. However, the analyses
performed in Section IV highlight that the percentages of
data classified under the centrohermitian (centrosymmetric)
hypothesis on the two bistatic nodes are closer for the case
of horizontal transmission than for the vertical transmitted
polarization.

The aforementioned trends are confirmed by the values
in Table VI, which represent the average percentage of data
classified under the null hypothesis for tests 7}, 7>, and T5.
These values also reveal the following trends:

1) regardless of the bistatic angle, using the vertically
polarized transmission (datasets 8, 11, and 12) there
are no tested data compliant with the hypothesis of
statistically independent bistatic measurements sharing
the same covariance matrix (Hy3) and
using the horizontally polarized transmission (datasets
1, 4, and 5), the percentage of data classified under the
hypotheses Hy, and Hy; decreases as the bistatic angle
increases.

Summarizing, for all the sensing system setups, the con-
ducted investigation highlights that within the coherence time,

2)

H()ziz
T - Hy : X0, —>T1T:
b H12:)3

HHZZE@O

H03ZZE®3

€O, > T5:
H13ZE€®2

19
co, 19)
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Fig. 13. Detection maps obtained using datasets 5 and 12 (8 = 95°). (a)—(c) Related to dataset 5 (horizontally polarized transmission) and tests 7, 7>, and
T3, respectively. (d)—(f) Related to dataset 12 (vertically polarized transmission) and tests 77, 72, and 73, respectively.

the cross-polarized bistatic measurements can be modeled information can be capitalized on to develop an analytical
as jointly Gaussian and statistically independent. Moreover, model for the received signal so as to design a coherent
depending on the transmit polarization and bistatic geome- detector that jointly uses all the signals collected from the
try they can also share the same spectral properties. This environment.
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TABLE VI

PERCENTAGE OF DATA CLASSIFIED UNDER THE
NULL HYPOTHESIS FOR T7, T>, AND T3

B | Dataset | Ho1 Hoz Hos
| 5 |9 & o
w8 g
| h | 5 o

VI. CONCLUSION

This article has addressed the stationarity and statistical
independence of multistatic/polarimetric sea-clutter data con-
sidering different polarimetric/geometric scenarios. Precisely,
starting from the analysis conducted in [25], the study has been
first focused on establishing whether the data can be modeled
as drawn from a stationary process within the coherence time.
To this end, relying on suitable GIP-based statistics some
necessary conditions for the slow-time data to be homogeneous
have been tested by the means of the KS test and CV distance
of the constructed statistics. Then, the possible presence of
symmetries in the clutter covariance matrix for both the
monostatic and bistatic measurements has been investigated
through ad hoc statistical learning tools and the centroid of
the clutter spectrum. Finally, the statistical independence of
the sea-clutter bistatic returns on the different polarimetric
channels along with the possible proportionality/equality of the
covariance matrices have been investigated via a custom-made
sequential hypothesis testing procedure.

The results from radar returns measured with the NetRAD
system have shown that, independently of the sensing system
configuration:

1) both monostatic and bistatic measurements can be
considered stationary and locally Gaussian within the
coherence time, as predicted by the SIRP model;

2) the bistatic returns on the two different polarimetric
channels can be assumed jointly Gaussian and statis-
tically independent within the coherence time;

3) the speckle generally has a covariance matrix exhibiting
a centrohermitian/centrosymmetric structure; and

4) the spectral characteristics of the bistatic measurements
are very similar.

In addition, depending on the transmit/receive polarization and
bistatic geometry, this study has highlighted that:

1) the structure of the clutter covariance matrix can change
along the slow-time dimension and among the different
sensors; and

2) the speckle component for the bistatic measurements
can exhibit proportional/equal covariance matrices on
the two polarimetric channels.

The findings of this research activity pave the way for the
development of an analytical model for designing a coherent
detector that jointly exploits measurements collected simulta-
neously by monostatic and bistatic sensors with polarization
diversity. Such model can also embed specific structures for
the received signals so as to exploit, for instance, the centroher-
mitianity/centrosymmetry and/or the proportionality/equality

5103415

of the covariance matrices associated with the speckle of
the bistatic measurements. These studies are undoubtedly of
interest and represent the object of current investigation.

As a final remark, it is worth emphasizing that, while
some of the observed trends may be linked to the ana-
lyzed sea-clutter data, the proposed tests and methodologies
are general and applicable regardless of both the system
configuration (monostatic/bistatic/MIMO) and environmental
conditions. They can be applied to analyze diverse experi-
mental data (gathered from an arbitrary sensing network) and
the information inferred on the clutter can be still capitalized
to design coherent detectors that jointly use all the signals
collected from the environment.
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