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Abstract

From three coherent SAR images it is possible to estimate three interferograms. Combined in a circular
way, the sum of the three interferometric phases is called the closure phase which necessarily adds
up to zero on a single pixel level. However, if the interferograms are spatially averaged, phase con-
sistency is not guaranteed. In most of the interferometric studies, those mismatches were assumed to
be caused by decorrelation noise alone, and were either not considered or deemed negligible, eluding
further investigations of its origin. However, recent publications have confirmed that inconsistent phase
closures are systematic and not the exception, pointing to an underlying geophysical cause. Compar-
isons of the spatial signatures of phase closures with land cover maps suggest a spatial and temporal
correlation that is related to the characteristics of different land cover types. Since interferometric mea-
surements are sensitive to variations of the dielectric constant, those similarities have been attributed
to dynamics in vegetation and soil moisture. A closure phase significance test developed at the Geo-
science and Remote Sensing department at TU Delft aimed to increase the signal-to-noise ratio of this
geophysical signal component by providing a significance ratio for phase closures. However, the sen-
sitivity of (significant) phase closures to dynamics in vegetation and soil over different land cover types
has not been assessed yet. Here we show that with enough averaging of the interferometric phase,
the spatial and temporal characteristics of closure phase can be used to distinguish between different
land cover types. We found that the degree of spatial averaging has a significant impact on both the
phase closure values and its spatial and temporal consistency. The magnitudes of significant phase
closures generally increased over low-vegetated land covers, suggesting that closure phases are most
sensitive to soil moisture dynamics, whereas vegetation cover was associated with decreasing phase
closure magnitudes and spatial inconsistency. Besides spatial averaging, significant differences were
observed between closure phases from different polarizations. Furthermore, we found that amplitude
backscatter and closure phase are spatially and temporally correlated, pointing to similar influencing
mechanisms. Our results demonstrate the importance of applying a closure phase significance test and
describe the effect of spatial averaging on the characteristics of phase closures with respect to different
land cover types. We anticipate this study to provide useful steps towards using the closure phase for
soil and vegetation monitoring in the future. For example, the findings could be used to further exploit
potential synergies with amplitude backscatter for soil moisture retrieval from closure phase or develop
more sophisticated methods for land cover mapping using InSAR. If not used for applications linked to
land cover, vegetation or soil, being able to better predict the effect of those parameters on the inter-
ferometric phase and coherence, eventually enables to separate their contribution from other signals,
such as deformation estimates. Additional research is needed to relate significant phase closures to
moisture changes in vegetation.
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1
Introduction

1.1. Vegetation and Soil Monitoring from Space
Under changing climate conditions and population growth, we are facing all kinds of challenges, many
of which involve a more intelligent use of water resources and accurate predictions of environmental
changes. Global warming, and the resulting increase in the recurrence of natural hazards associated
with aridity, demand constant monitoring of landscape values such as soil moisture (SM) and vegetation
water content (VWC). This is essential to counter water and food scarcity in the future, and to mitigate
potential wildfire hazards (Karimi et al., 2013; Yebra et al., 2013). Earth observation satellites provide
the tools for large-scale measurements of soil and vegetation properties which are important references
for landscapemonitoring, agricultural applications and drought forecasting (Nikaein et al., 2021; Steele-
Dunne et al., 2019; Vreugdenhil et al., 2018).

Nowadays, there are several different satellite-based data sources relevant for assessing the mois-
ture content in soil and vegetation including observations from radar remote sensing (Bousbih et al.,
2017; Entekhabi et al., 2010; Wagner et al., 2013). The ability of radar to penetrate vegetation canopy
up to a certain depth, its sensitivity to vegetation structure and soil moisture changes (in the top few
centimeters) have made it a widely used technique for vegetation and soil monitoring. Unlike optical
remote sensing, radar can operate independent from solar illumination of the Earth surface and pene-
trates through clouds and haze. On average, ∼ 55% of the Earth’s land surface is covered by clouds
(King et al., 2013) which makes optical instruments not a good candidate for monitoring dynamic tar-
gets such as vegetation and soil. For decision making in applications such as agricultural monitoring,
image acquisitions of a region every few days are necessary, e.g. to monitor water stress in crops
(Steele-Dunne et al., 2017). Advising on irrigation over an agricultural field with the right amount of
water at the right time can therefore not rely on constant cloud-free conditions.

Most of the studies in the past have demonstrated vegetation and soil monitoring from radar sys-
tems including JAXAs Advanced Microwave Scanning Radiometer 2 (AMSR2), EUMETSATs Metop
Advanced SCATterometers (ASCAT), ESAs Soil Moisture Ocean Salinity (SMOS) and NASAs Soil
Moisture Active Passive (SMAP) (Bartalis et al., 2007; Cho et al., 2015; Entekhabi et al., 2010; Kerr
et al., 2001). Although the revisit time of those microwave sensors is as high as 1-2 days, the spatial
resolution is relatively low, often on the order of several kilometers. Within the scope of the Copernicus

1



1.2. Differential Interferometric SAR (DInSAR) Closure Phase 2

program, the Sentinel-1A and B satellites provide radar data from C-Band Synthetic Aperture Radar
(SAR) at a temporal resolution of 1.5-4 days over Europe and an unprecedented spatial resolution of
20 m. Launched in 2014 and 2016 respectively, Sentinel-1 has since been used to measure dynamics
in vegetation and soil moisture (El Hajj et al., 2017; Khabbazan et al., 2019; Torbick et al., 2017).

Yet, most approaches related to vegetation and soil monitoring have focused on using only the
amplitude information in SAR imagery. Radar backscatter is influenced by several target parameters,
including surface roughness, vegetation cover and topography as well as soil moisture changes (Attema
& Ulaby, 1978; Ulaby et al., 1978). The sensitivity of microwaves to dynamics in vegetation and soil
moisture is attributed to differences of the dielectric constant which is orders of magnitude smaller for
drymatter than for water. However, products fromSAR backscatter fail to fully exploit the high resolution
of SAR imagery and require compensation for impeding influences from vegetation growth and surface
roughness (Brocca et al., 2011) which are associated with the necessity for extensive spatial averaging
(Thoma et al., 2008).

There is clear evidence that vegetation and soil moisture dynamics also affect the SAR interfero-
metric phase and have a significant influence on accurate estimations of ground displacements using
InSAR (Zwieback et al., 2017). Yet, temporal changes of soil or vegetation moisture and the effects
on the SAR interferometric phase have only recently been investigated and largely represent an unex-
plored field of research.

1.2. Differential Interferometric SAR (DInSAR) Closure Phase
DInSAR is a remote sensing technique used to measure and monitor deformations of the Earth’s sur-
face (Zwieback et al., 2017). The deformations are derived from the phase differences of radar images
acquired at different times. If three or more images are available, one is able to compute the dis-
placement between the first and third acquisition and derive an equal estimate from the sum of the
two intermediate phases (De Zan et al., 2013). For those piston deformations it is expected that the
wrapped sum of the three interferometric phases - the closure phase - is equal to zero in the absence
of noise and influences due to elevation and atmospheric effects (Ferretti et al., 2011). However, this
is not the case in acquired data. Phase excesses or deficits are common and also referred to as in-
consistency or lack of triangularity (De Zan et al., 2015). Considering the single pixel level, closure
phases from the triple product of three interferograms always add up to zero which one can easily
verify mathematically:

Single pixel level ∶ Φ𝑖,𝑗,𝑘 = 𝜙𝑖,𝑗 + 𝜙𝑗,𝑘 − 𝜙𝑖,𝑘 = 0, (1.1)

Spatially averaged ∶ Φ̄𝑖,𝑗,𝑘 = �̄�𝑖,𝑗 + �̄�𝑗,𝑘 − �̄�𝑖,𝑘 ≠ 0, (1.2)

where Φ𝑖,𝑗,𝑘 denotes the closure phase and 𝜙𝑖,𝑗, 𝜙𝑗,𝑘, 𝜙𝑖,𝑘 the phases of three interferograms. The bar
over the respective variable denotes the spatial average. It has to be stressed that spatial averaging
is imperative to obtain non-zero phase closures (De Zan et al., 2015). In SAR terminology, spatial
averaging of adjacent pixels is achieved through multilooking, which trades geometric resolution for
phase noise reduction (Goldstein & Werner, 1998; Lee et al., 1998). In this study, multilooking is
based on a per field basis, i.e. the interferograms are averaged over an homogenous land cover field
which takes advantage of the spatial context of the respective area. The fact that an averaged phase
closure Φ̄𝑖,𝑗,𝑘 is not necessarily equal to zero can be due to decorrelation noise alone (Zwieback et al.,
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2016) or linked to multiple scattering effects, i.e. volume scattering and variations in the propagative
properties of the semi-transparent medium which mainly depend on the moisture level (De Zan et
al., 2015). As shown in recent publications, inconsistent phase closures are systematic and not the
exception, pointing to an underlying geophysical cause, such as vegetation and soil moisture dynamics.
A comparison of the spatial signatures of phase closure with land cover maps suggests a spatial and
temporal correlation that is related to the characteristics of different land cover types. According to
Zwieback et al. (2017), interferometric closure phase contains valuable information for vegetation and
soil monitoring, especially at lower frequencies and short temporal baselines.

1.3. A Closure Phase Significance Test
In order to relate inconsistent closure phases to geophysical causes, it is necessary find a quantifica-
tion of the phase noise component in closure phases. A numerical model developed in-house at the
Geoscience and Remote Sensing department (GRS) at TU Delft (P. López-Dekker, personal commu-
nication) aims to reduce the decorrelation induced phase noise by predicting the expected standard
deviation of an estimated phase closure, denoted as �̂�Φ̂, from three coherence magnitudes and the
effective number of looks (ENL). The model is based on the null hypothesis that closure phases are
caused by random phase noise as a result of the finite interferometric coherence. In order to derive
estimates for �̂�Φ̂, the model performs several Monte Carlo simulations of an expected phase closure.
From the resulting estimates of �̂�Φ̂, a closure phase significance ratio can be computed as the fraction
of the observed phase closure and the respective estimate of �̂�Φ̂:

Significance Ratio =
Φ̄noise
𝑖,𝑗,𝑘 + Φ̄geophysical

𝑖,𝑗,𝑘
�̂�Φ̂

. (1.3)

The noise component of the observed phase closure Φ̄𝑖,𝑗,𝑘 is assumed to be normally distributed
whereas the “geophysical” phase closure is not. A sufficient level of spatial averaging plays a cru-
cial role in reducing the phase noise and isolating the geophysical component of the phase closure
which leads to higher significance ratios.

The significance test is implemented in the Python application TPT ([T]riplet [P]rocessing [T]oolbox)
(M. Manne, personal communication), which enables to process phase closures, estimate �̂�Φ̂, and
export the closure phase significance ratio. The estimation of �̂�Φ̂ is based on the respective degree
of multilooking as an input parameter, and three coherence values, which refer to the given closure
phase. The three interferometric phases in the phase triplet each have a respective coherence value.
For a given multilook factor, �̂�Φ̂ is estimated for all possible coherence value combinations and stored
as a look-up table for a nearest neighbour search of the expected closure phase referring to three
given coherence values. A refined setup of this coherence interpolator, and determining an appropriate
number of model simulations, has not been implemented in TPT yet, in particular with regard to phase
closures that are averaged over fields with similar land cover and different numbers of looks.

1.4. Research Objectives
The motivation behind this project was very curiosity driven in the beginning. The general goal was to
further understand the factors that are influencing the closure phase over different land cover types.
The initial approach was based on an exploratory characterisation of closure phase from Sentinel-1,
standardized through a newly developed significance test. The potential of using closure phase for soil
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and vegetation monitoring has been recognized since 2013 (De Zan et al., 2013) - the latest studies
have focused on retrieving soil moisture over different land cover types (De Zan & Gomba, 2018;
Gomba et al., 2021). This study aimed to provide essential steps towards using the closure
phase for vegetation and soil monitoring in the future. The main objectives of this study were:

I. Present necessary steps to derive a closure phase that is spatially averaged with respect to land
cover.

II. Provide guidelines to determine the parameter-settings to the closure phase significance test
based on statistical properties.

III. Explore the impact of spatial averaging (multilooking) on the values and consistency of the signif-
icance ratio.

IV. Describe the spatial and temporal characteristics of the significance ratio for different land cover
types.

In addition, differences between closure phases derived from VV or VH polarization and potential syn-
ergies and similarities with other observables are highlighted. The research objectives are addressed
through the following research questions:

1. What processing steps are necessary and what parameter-based decisions are essential before
performing a closure phase significance test?

2. What is the effect of spatial averaging on the significance ratio of closure phase and how does the
consistency between individual time series of significance ratio change as a function of spatial
averaging?

3. How consistent is the significance ratio spatially and temporally as a function of different land
cover types?

4. Is the significance ratio consistent with spatial characteristics observed for SAR amplitude?

1.5. Research Approach
This study presents a characterisation of closure phase over different land cover types and was carried
out for the region Occitanie in southern France, where fine resolution land cover maps for the Sentinel-1
era were available. SAR imagery for coherence magnitudes, amplitude backscatter and interferometric
phases were downloaded and pre-processed to 20 m by 20 m pixels using a conventional boxcar filter
for spatial multilooking. Only consecutive acquisitions were used to derive the complex interferograms
assuming they are less affected by temporal decorrelation. Groups of pixels were further aggregated
based on homogeneous land cover polygons given by the land cover maps. This enabled to aver-
age as many looks as possible by exploiting the spatial context of the scene. Phase closures were
computed from the phases of the averaged complex interferograms. The subsequent closure phase
significance test required adaptations in TPT for the field averaging approach, the setup of the coher-
ence interpolator and a measure to determine a minimum number of model simulations. Determining
these parameters was based on the statistical relationship between the degree of multilooking per field
and the standard deviation in coherence magnitude estimation as outlined by Touzi et al. (1999).

The model is run for the respective number of looks per field. The resulting estimates for the ex-
pected closure phase standard deviation, �̂�Φ̂, are used to standardize the observed phase closures,
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i.e. computing the significance ratio for closure phases. A sensitivity assessment is performed to
determine the effect of multilooking on the magnitudes of significance ratio over different land cover
types. The effect of spatial averaging on the similarity between individual closure phase time series
was assessed using Pearson’s R correlation coefficient. The spatial consistency of significance ratio
was analysed using Pearson’s R for time series at different spatial distances to one another. Lastly,
temporal characteristics and spatial signatures were visualized and discussed in regard to different
land cover types. In addition, differences between closure phases derived from VV or VH polarization
and potential synergies and similarities with other observables are discussed.

1.6. Thesis Outline
This thesis commences with a review of recent studies about closure phase and its potential for soil
and vegetation monitoring in chapter 2. This chapter also introduces the use of radar remote sensing
for vegetation and soil monitoring more generally, and highlights the characteristics of Sentinel-1 C-
Band and different polarizations (VV-pol, VH-pol). This chapter is continued with a detailed description
of the closure phase significance model with its assumptions and parameter-inputs. The used data
and the methodology applied to derive phase closures, the necessary model-adaptations, and the
comprehensive sensitivity assessment is discussed in chapter 3. Chapter 4 presents the results in
different sections, each primarily addressing one of the research objectives. A discussion of the results,
limitations of this work and recommendations are provided in chapter 5. A conclusion of this thesis and
an outlook for future work are summarized in chapter 6.



2
Background and Model

This chapter commences with a brief introduction to Sentinel-1 C-Band SAR and a characterisation of
co- and cross-polarisation (VV-pol and VH-pol) for soil and vegetation monitoring. The chapter further
introduces the term coherence and provides background on closure phase. At last, the numerical
closure phase significance test is described in detail.

2.1. Dual Polarimetric Sentinel-1 C-Band SAR
The ability of a microwave radar to reach the ground’s surface, primarily depends on its wavelength,
polarization and the density of the above ground biomass (Ulaby et al., 1978). For shorter wavelength,
such as Sentinel-1 C-Band, the radar’s ability to penetrate layers of vegetation is lower than com-
pared to longer wavelength (Ulaby et al., 1978). A comparison for the penetration capability of different
bands is illustrated in Fig. 2.1, showing that the capability of the microwave to reach the ground sur-
face increases as the wavelength increases. Over bare soils, an analysis carried out by Sekertekin
et al. (2020) could show a good sensitivity of Sentinel-1 C-Band to soil moisture. On the contrary, for
vegetation covered areas, the sensitivity of Sentinel-1 backscatter to soil moisture was lower than the
backscatter obtained over bare soils. El Hajj et al. (2019) investigated the potential of radar at C-Band
and L-Band to penetrate the canopy cover. They found that penetration is limited for developed vegeta-
tion cover (NDVI > 0.7) which suggests that backscatter values from Sentinel-1 are more representative
for the characteristics of the vegetation canopy (Oon et al., 2019). The penetration depth is reduced by
the moisture of the target as an inverse function of water content (Lillesand et al., 2015). Those findings
indicate that Sentinel-1 C-Band can provide a great utility for applications that are aimed at monitoring
of the above ground biomass while soil moisture assessments seem to be limited to surfaces with low
vegetation cover.

Besides wavelength, the choice of polarization plays a crucial role when it comes to assessing
either soil or vegetation properties. Sentinel-1 SAR in Interferometric Wide Swath (IW) mode supports
operation in VV and VH polarization over land which initiated studies that aimed at testing the sensitivity
of both polarizations and ratios thereof to dynamics in natural vegetation, crops and soil. Several studies
could demonstrate that C-Band SAR in VV polarization has a better potential for soil moisture estimation
than VH (Holah et al., 2005; Y.-y. Li et al., 2014; Zhang et al., 2008), thus co-polarized backscatter (VV)
is often used to measure soil moisture variabilities (Autret et al., 1989; Ulaby et al., 1986). Dostálová

6
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et al. (2018) assessed the annual seasonality in Sentinel-1 backscatter over forested areas and could
demonstrate that VH polarization is sensitive to seasonal changes of tree foliage, suggesting that the
leaves scatter the signal forward rather than scattering it back (Ahern et al., 1993). Many studies
indicate that cross-polarized backscatter VH is sensitive to vegetated areas, as a consequence of its
high sensitivity to volume scattering. As volume scattering mainly depends on the characteristics of
the vegetation structure and its dielectric properties, cross-polarized backscatter can provide useful
information about biomass dynamics, in particular vegetation water content (VWC) and phenology.
(Bousbih et al., 2018; Bousbih et al., 2017; El Hajj et al., 2019; Gao et al., 2017; J. Li & Wang, 2018;
McNairn & Brisco, 2004; Sekertekin et al., 2020; Vreugdenhil et al., 2018).

A consensus between the majority of studies exists on the significance of C-band backscatter for
environmental monitoring, highlighting the sensitivity of co- and cross-polarization to soil and vegetation
properties: While VV is more sensitive to soil conditions, VH could demonstrate a sensitivity to the
influence of vegetation and could be used to discriminate between the effects of vegetation. Thus, in
order to improve soil and vegetation monitoring, the complementary use of both cross- and co-polarized
backscatter can provide more information in a SAR dataset. Yet, a broad sensitivity assessment for
C-Band SAR interferometric phase derived from different polarizations has not been carried out.

Figure 2.1: Sensitivity of SAR microwaves to forest structure and penetration into the canopy at different wavelengths used for
airborne or spaceborne remote sensing observations of the land surface. The graphic shows the limited capability of C-Band
SAR to penetrate vegetation canopy (Flores-Anderson et al., 2019).

2.2. Background on Closure Phase
A first relation between SAR interferometric phase and soil moisture was discovered in 1989 from cen-
timeter scale movements that were associated with watering of the target area (Gabriel et al., 1989).
Following this study, interferometric signals linked to changes in soil moisture have been reported also
for other SAR data with the majority of explanations indicating motions that are linked to soil shrinking
and swelling. Morrison et al. (2011) and Hensley et al. (2011) questioned this explanation by indicating
that the motion of the soil surface is smaller than the corresponding C-band phase shift and that the
phase change is too large to be solely attributed to surface deformation respectively. In 2013, De Zan
et al. (2013) presented a model based on plane waves and Born scattering that is able to relate varia-
tions in soil moisture to L-band InSAR observables. This study could show a good correlation between
phase triplet mismatches and soil moisture variations over bare soils. In 2015, De Zan et al. (2015)
outlined explanations for phase inconsistencies based on models which challenge trivial interpretations
for non-zero closure phases such as the presence of statistical noise as the only contribution. The main
contributors to decorrelation (and hence phase triplet mismatches) are volumetric scattering (Zebker
& Villasenor, 1992), in the presence of normal baselines, and variations in the properties of the semi-
transparent media, mainly attributed to moisture variations (De Zan et al., 2015). Phase effects such
as delays in atmospheric propagation and target motion are irrelevant for phase consistency, mean-
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ing that the closure phase is expected to be zero (Zwieback et al., 2017). However, changes in the
relative phase combined with changes in the relative intensity of two or more scatterers can increase
phase inconsistency causing effects. This refers back to the model presented in De Zan et al. (2013)
where variations in the dielectric permittivity, associated with moisture levels, would lead to variations
in both amplitudes and phases for scatterers at different depths into the soil. These findings are de-
rived from L-band aircraft imagery over agricultural fields, C-band imagery (ERS-1) SAR for the wider
region of Rome and TerraSAR-X images at X-band for the “Afar triangle” in East Africa. Other observa-
tions from TropiScat experiments at P-band first indicate that the phase inconsistencies are related to
water content variations in the sapwood of trees, thus changing their dielectric permittivity at different
heights. De Zan et al. (2015) point out that the phase inconsistencies are, most likely, not actual range
displacements but rather could be explained by water accumulation at mm-scale in the sapwood.

One major challenge that is associated with retrieving soil moisture from closure phase is the issue
of ambiguity, i.e. that multiple soil moisture time series can correspond to the same closure phase.
Zwieback et al. (2017) investigated the feasibility of separating soil moisture estimates, derived from
closure phases and coherence magnitude, from surface displacements. In conclusion, Zwieback et al.
(2017) have identified two main problems:

1) Neither the phase triplets nor the coherence magnitude contain enough information to estimate
soil moisture due to ambiguity in the moisture order.

2) Soil moisture estimation is impaired by noise-sensitivity, model calibration errors and additional
influences like changes in the surface roughness.

In 2018, De Zan and Gomba (2018) presented a model to solve for the occurring ambiguity problem
associated with the moisture order and to deal with the spatio-temporal variability of soil moisture in
a selection of experiments. The closure phase signs allow sorting acquisitions for increasing or de-
creasing moisture (De Zan & Gomba, 2018), however the signs alone can not solve for the correct
moisture order, and rather provide constraints bounded by cyclic permutations of different moisture
levels (Zwieback et al., 2017). The presented model was tested for ALOS-2/PALSAR-2 data over the
area of Kumamoto in Japan. According to De Zan and Gomba (2018), an unexpected finding was
that the moisture inversion yields a very clean closure phase signal over forested areas and a stable
retrieval. Initially, the model was developed for bare soils, however the vegetation water content itself
seems to contribute to the closure phases at L-band. The stronger signals over forested areas could
be an indication of differences in moisture dynamics between soils and vegetation with lower variances
for moisture in soils. Considering the similar dielectric behaviour of soils and vegetation, the two media
can share the same interferometric modeling approach according to De Zan and Gomba (2018). From
the fact that the retrieval showed promising results over forested areas, De Zan and Gomba (2018)
assume that closure phases are sensitive to tree moisture variations.

2.3. DInSAR Coherence
The term coherence is defined as the normalized cross-correlation between two coregistered SAR
images and indicates how much a scene has changed between two SAR acquisitions (Marino et al.,
2012). Differences in phase (and amplitude) between scatterers for two acquisition times determine the
coherence magnitude (Touzi et al., 1999). Among several factors that are contributing to decorrelation,
interferometric coherence is affected by dielectric volume scattering (Zwieback et al., 2015) and can
therefore be used as an indicator for vegetation dynamics and soil moisture changes (Palmisano et al.,
2019). Since increasing or decreasing moisture changes cause the same coherence loss, coherence
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magnitudes alone can not be used to retrieve soil or vegetation moisture unambiguously (De Zan et al.,
2013).

Many studies have analysed coherence with respect to land cover classification, e.g. Jacob et al.,
2020; Khalil et al., 2018; Nikaein et al., 2021; Santoro et al., 2007; Wegmüller et al., 2015, by ex-
ploiting the fact that 1) vegetated areas, i.e. temporally inconstant volumes, are affected by volume
and temporal decorrelation and 2) for different cover types, vegetation emerges at different seasonal
times. Temporal decorrelation is related to wind induced motion of the vegetation, precipitation events
between two acquisitions or temperature changes, perhaps associated with freezing (Santoro et al.,
2007). Those influences play a fundamental role even for short time intervals. Loss of coherence due
to volume decorrelation was observed for increasing vegetation growth which suggests the possibil-
ity to use coherence for forest/non-forest mapping, to distinguish between different phenology stages
(Ouaadi et al., 2020), harvest detection (Khabbazan et al., 2019) or to identify the beginning of a crop
growth cycle (Nikolaeva et al., 2015; Santoro et al., 2007; Wegmüller et al., 2015). Volume decorre-
lation was observed even for small canopy thickness with the effect being different depending on the
transmissivity of the vegetated layer, whereas bare soils generally show higher coherence magnitudes
in comparison (Santoro et al., 2007).

Coherence magnitude could demonstrate a sensitivity to vegetation and soil moisture dynamics
and can be exploited as a measure for phase closures that are not caused by decorrelation noise
alone (Zwieback et al., 2016). Loss of coherence is generally a good indicator of whether some event
has taken place that changes the dielectric properties or geometry of a scene (Zwieback et al., 2015).
In the context of this thesis, coherence will be a useful observable to detect rapid vegetation growth
or harvest events and can provide information about changing soil moisture, precipitation and freezing
over low vegetated regions. The coherence magnitudes associated with the triplet interferograms will
provide the essential input to the closure phase significance test.

2.4. Numerical Significance Test for Phase Closures
2.4.1. Aim of the Model
Phase triplets derived from three spatially averaged interferograms yield phase inconsistencies that are
either solely induced by noise or originate from geophysical causes such as soil moisture variabilities.
In general, the more two moisture values deviate from one another, the smaller the coherence (De
Zan et al., 2015) and the larger the level of phase noise. The numerical model presented here is
based on the null hypothesis that phase inconsistencies are solely caused by decorrelation, where
the noise component is zero-mean Gaussian distributed. The model attempts to separate a possible
geophysical phase closure from phase noise by estimating the standard deviation of expected phase
closures, denoted as �̂�Φ̂, from simulated coherence values and the effective number of looks (ENL).
The estimation of �̂�Φ̂ as a description of the phase noise component will be explained in detail in the
model description in the following section. From the resulting estimates, a closure phase significance
ratio is computed as the ratio between the observed phase closures Φ̄𝑖𝑗𝑘 and �̂�Φ̂:

Ψ𝑖𝑗𝑘 =
Φ̄𝑖𝑗𝑘
�̂�Φ̂

(2.1)

The greek letter Ψ for the significance ratio is used for a clearer separation from other observables and
to facilitate the readability of this report. The significance test allows to make a comparison between
fields with different coherences and different numbers of looks. The degree of multilooking of the
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interferometric phase will be important in order to exploit the geophysical origins of phase closures
(De Zan et al., 2015).

2.4.2. Description of the Model
The presented numerical model is based on the assumption that closure phases are solely produced
by random noise associated with the finite interferometric coherence. The results are estimates for
standard deviation of the expected phase closure �̂�Φ̂ associated with three coherence magnitudes.

In a first step, a complex random vector is defined as 𝑦 ∼ 𝒞𝒩(0, 𝐶3) representing the pixel in
three SLC acquisition, and is characterised by a circular Gaussian distribution with zero-mean. The
second-order statistics of the simulated vector are defined through the covariance matrix

𝐶3 = 𝐸{𝑦𝑦𝐻} = ΔΓΔ𝑇 , (2.2)

where 𝐻 is the Hermitian transposition, Δ the diagonal matrix with the square roots of the intensities,
and 𝑇 denotes the conjugate transpose. The coherence matrix Γ is a Hermitian matrix, i.e. a complex
square matrix that is equal to its own conjugate transpose (Samiei-Esfahany & Hanssen, 2017), and is
defined as

Γ3 = [
1 𝛾∗12 𝛾∗13
𝛾12 1 𝛾∗23
𝛾13 𝛾23 1

] . (2.3)

Its elements can also be expressed in polar form given by

𝛾𝑖𝑗 = |𝛾𝑖𝑗|𝑒𝑗𝜙𝑖𝑗 , (2.4)

𝜙𝑖𝑗 = tan−1 {
Im[𝛾𝑖𝑗]
Re[𝛾𝑖𝑗]

}, (2.5)

where 𝐼𝑚 and 𝑅𝑒 denote the imaginary and real part of the interferometric phase 𝜙𝑖𝑗, respectively.

A Cholesky decomposition is applied in the next step, which is the decomposition of a Hermitian,
positive-definite matrix into the lower triangular matrix and its transpose:

𝐶3 = 𝐿𝐿𝑇 , (2.6)

where 𝐿 is the lower triangular matrix. The lower triangular matrices 𝐿 are used to introduce the corre-
lation coefficients 𝛾 in the white SLC pixel vector 𝑧 ∼ 𝒞𝒩(0, 𝐼), where 𝐼 is a 3 × 3 identity matrix. The
simulated vector is then computed by multiplying the lower triangular matrix 𝐿 with the pixel vector 𝑧:

𝑦 = 𝐿 ⋅ 𝑧. (2.7)

An estimate of the covariance matrix in Eq. 2.2 can be derived from

�̂�3 = {𝛾𝑖𝑗} =
1
𝑁𝑙

𝑁𝑙
∑
𝑖=1
𝑦𝑖𝑦𝐻𝑖 , (2.8)

where 𝑁𝑙 denotes the number of looks that is used to average (multilook) the quantity in Eq. 2.8. In
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order to derive estimates of the expected phase closures, the quantity

Φ̂𝑖𝑗𝑘 = ∠(�̂�𝑖𝑗 ⋅ �̂�𝑗𝑘 ⋅ �̂�∗𝑖𝑘), (2.9)

is computed for 𝑁𝑠 realizations of the simulated matrix ̂𝐶3. The standard deviation �̂�Φ̂ over all simula-
tions of Φ̂𝑖𝑗𝑘 is calculated for a given multilook factor (𝑁𝑙) and stored in a look-up table. The look-up
tables are used to derive a nearest neighbour interpolation of the expected closure phase from three
observed coherence values. The model is assessed over a range of coherence value combinations
and different numbers of looks. In order to illustrate �̂�Φ̂ as a function of coherence magnitude, a simpli-
fied case is considered for only a single coherence value instead of three, described by the coherence
matrix

Γ1 = [
1 𝛾∗ (𝛾∗)2
𝛾 1 𝛾∗
𝛾2 𝛾 1

] . (2.10)

Fig. 2.2 illustrates the relation for different multilooks.

Figure 2.2: Expected Standard Deviation �̂�Φ̂ as a function of coherence magnitude for different looks. As one can see, the
expected standard deviation is modelled higher for a smaller degree of multilooking and for lower coherence magnitudes. As
the coherence or the number of looks increases, the expected standard deviation becomes smaller. (selfmade - modified from
M. Manne)



3
Methodology and Data

Most recent studies have focused on soil moisture retrieval from closure phase (De Zan & Gomba,
2018; Gomba et al., 2021), however, a general characterisation of closure phase with respect to differ-
ent land cover types has not been carried out yet. A better understanding of the spatial and temporal
characteristics of closure phase, however, is important in order to use it for vegetation and soil moni-
toring in the future. Therefore, the approach of this study aimed to provide essential steps to derive a
closure phase that is spatially aggregated based on land cover and standardized through a numerical
significance test. The flow charts in Fig. 3.3 and Fig. 3.4 present the main steps that were required to
derive a significance ratio. The tasks, in short, were the following:

1. Choosing a large enough region that featured many different land cover classes and high reso-
lution land cover maps.

2. Acquiring and pre-processing SAR data for coherence magnitudes, amplitudes and interferomet-
ric phases.

3. Preparing and adapting the land cover maps.

4. Restoring the complex interferogram from coherence and amplitudes, averaging it (through spa-
tial multilooking) over an homogeneous land cover area, and then recomputing the coherence
and phase. Afterwards, computing the closure phase from the complex interferogram.

5. Determining the parameter-inputs for the closure phase significance test based on statistical prop-
erties of coherence and number of looks.

6. Performing the closure phase significance test over the complete research area.

The subsequent sensitivity assessment of the observed closure phase and significance ratio to spatial
averaging aimed to demonstrate the effect of multilooking on the values and consistency of closure
phase and to provide essential conclusions for a subsequent spatial and temporal characterisation. The
influence that local changes of the target have on the linear similarity between time series of significance
ratio is assessed by comparing Pearson’s R between fields at different spatial distances. Lastly, the
spatial characteristics of the significance ratio from different land covers are evaluated and compared
with spatial signatures from amplitude backscatter. The following sections explain the methodological
tasks in detail and highlight important decisions made in this study.

12
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Table 3.1: Settings used in RIPPL in order to derive pre-multilooked amplitudes, coherences and interferograms.

RIPPL settings

Setting

Product Type SLC

Sensor Mode Interferometric Wide Swath

polarization VH, VV

Digital Elevation Model SRTM-1

Coordinate System UTM

Pre-Multilook 20x20 m

Temporal Baseline 12 days

3.1. Study Region
The study was carried out for the region Occitanie in southern France with an area of ∼75,000 km2

and Toulouse in the center. The climate in the region is mild, and generally warm and temperate with
a significant amount of rainfall even for the driest months. The air temperature over the study period
(January 2017 to December 2019) was measured between 3∘C and 29∘C, with an average temperature
at 14∘C and an annual average precipitation at 823 mm water equivalent. The area is climatically
classified as Cfb (oceanic climate) by Köppen and Geiger.

This region was selected for two main reasons: Firstly, it has a very broad spectrum of different
land cover classes with agricultural areas and adjacent natural ecosystems. This enables the anal-
ysis and comparison of fine-scale heterogeneous areas (mostly agricultural sites) and homogeneous
areas (primarily natural vegetation). Secondly, the availability of satellite data, land cover maps and
supplementary data is abundant for the region of Southern France.

3.2. Pre-processing of SAR data in RIPPL
The simultaneous operation of the Sentinel-1 satellites A and B enables radar image acquisitions
every 6 days. SAR Level-1 SLC (Single Look Complex) with a spatial resolution of 5 m by 20 m
(range x azimuth) are downloaded and pre-processed using RIPPL ([R]adar [I]nterferometric [P]arallel
[P]rocessing [L]ab), developed by G. Mulder (personal communication). The Python package enables
the processing of SAR SLC data to create stacks of processed SAR data and is TU Delft’s in-house
Sentinel-1 InSAR processing tool. The SAR data used within the framework of this master’s thesis are
topographically corrected using the digital elevation model SRTM-1, then pre-processed to a 20x20 m
grid resolution, using a conventional boxcar filter for spatial multilooking, and exported as ortho-images
in UTM/WGS84 projection. The temporal baseline is set at 12 days to facilitate the composition of 6-
day and 12-day interferometric products which is necessary to compute consecutive phase triplets and
coherences as model inputs. An overview of the settings that were applied within RIPPL are presented
in Table 3.1. Satellite track 110 (descending) has the greatest ground coverage and data availability
for Occitanie, and will be the primary source of satellite-data for this thesis. Intermediate steps applied
in RIPPL to derive the SAR observables are presented in the flow chart in Fig. 3.2.
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Figure 3.1: Land Cover Map (2018) for France showing the 23 different Theia land cover classes, the research area (red frame)
that is covered by Sentinel-1 observations and the precipitation stations for that region.

3.3. Spatial Aggregation Based on Land Cover
3.3.1. Theia Land Cover Maps
The Theia Land Data Centre (theia.cnes.fr/) produces yearly updated land cover maps for France and
other regions worldwide using Sentinel-2A and Sentinel-2B data at a resolution of 20 m (for vector
formatted data). For this study, land cover maps for 2017 and 2018 were downloaded for several
departments in southern France in order to aggregate the SAR pixels based on the land cover fields.

theia.cnes.fr/
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Figure 3.2: Flow chart for InSAR processing steps. Left: Processing steps applied in order to derive calibrated amplitudes.
Right: Processing steps applied to derive coherence magnitudes and interferograms.

The nomenclature for 2017 features 17 land cover classes - since 2018, a 23-class nomenclature was
applied. According to Theia, the nomenclature used since 2018 is fully compatible with the 17 classes
employed for the 2017 land cover map. The land cover nomenclature for 2017 and 2018/2019 in
comparison is presented in Table B.1 in the Appendix. For an overview of the research area with the
land cover classification refer to Fig. 3.1.

The size of individual (multi-) polygons from the vector data ranges from a few meters up to several
kilometers, in particular over homogeneous land cover areas. This was problematic for two reasons:
Firstly, when exploring the interferogram images from RIPPL’s output, atmospheric artifacts on the
order of several kilometers were clearly visible (see Fig. 3.3, step 3). Assuming that no significant de-
formation of the area has occurred over short temporal baselines between 2017 and 2019, the majority
of the interferometric fringes are attributable to atmospheric effects (Parizzi et al., 2006). In order to
mitigate the conservation of atmospheric effects during the subsequent spatial averaging of the com-
plex interferogram, it was necessary to ensure spatial averaging only over small regions. Secondly,
averaging over larger areas could lead to the assumption that potential variabilities of an observable,
when viewed spatially, are induced by a geophysical cause that is observed for the whole area of one
land cover polygon while the effect could just be very local within this area and lesser in other parts of
the polygon. The spatial resolution simply suffers from individual large multi-polygons.

In order to mitigate the above-mentioned effects for potential misinterpretations of the data, it has
to be assured that each polygon only has a certain maximal diameter. For this research it is deter-
mined that each polygon should not be larger than 1 km in diameter, i.e. the spatial aggregation of
pixels should not exceed this distance. This decision was based on a visual inspection of the interfer-
ograms from RIPPL to ensure that areas which exceed one phase cycle (due to atmospheric effects)
are not aggregated spatially. The majority of the polygons within the land cover map fulfill this criteria
of < 1x1 km due to the many agricultural sites, however areas with homogeneous land cover such as
forests and grasslands contain many multi-polygons that can reach 10+ km in diameter. A mesh-grid
with a size of 1x1 km is applied to the whole land cover map in order to split those large multi-polygons
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to the extend of each grid cell. The described problematic is illustrated in Figure 3.3 in step 3, where the
two map zoom-ins show an example of two large multi-polygons (outlined in red) and the grid overlay
that split these into smaller fields. As the pre-multilook of the SAR images is ∼4 effective looks (ENL),
the maximum number averaged pixels per polygon is 2,500, referring to ∼10,000 looks.

Figure 3.3: Processing routine for the data processing in RIPPL and the preparation of land cover maps.

3.3.2. Spatial Averaging of SAR Observables
SAR imagery fromRIPPL for coherences, interferometric phases and calibrated amplitudes are stacked
per year for all available dates between 2017 and 2019. The land cover maps that have been pre-
pared previously are used to aggregate the pixel values based on each land cover field. As each
year has its individual land cover map, the stacks are treated separately. The last date at the end
of year 2017 and 2018 and the first date in 2018 and 2019 is copied respectively for the previous or
following year to ensure continuous time series for the phase triplets where the last date of each year
marks the “middle” date interferogram. No acquisitions were collected by Sentinel-1 for 05.02.2017,
29.08.2018, 01.02.2019, 07.02.2019 and 07.06.2019. Each pixel value from the SAR stacks is as-
signed to a polygon-ID from the land cover maps for further processing.

The spatial averaging approach over the perimeter of land cover fields that is applied here has
two primary advantages. Firstly, the quality of the interferometric coherence estimate improves as the
number of averaged pixels increases and the quality of the estimation corresponds to the extent of
fields with similar land cover (Nikaein et al., 2021). Secondly, aggregating pixels over homogeneous
fields, i.e. pixels that are assigned to the same land cover type, takes into account the spatio-temporal
differences between land covers. This is in particular relevant for distributed scatterers, which usually
refer to pixels with many small scatterers of similar size (Even & Schulz, 2018). For resolutions of
some 10 meters, this is the case for most natural scatterers, such as forests, croplands, or bare soils
(Even & Schulz, 2018), however there are differences depending on the land cover type and spatial
resolution. Differences in the spatial properties of the target area are disregarded when multilooking
is based on averaging windows (Hussain et al., 2013), as it is common practice in InSAR processing.
Therefore it only made sense to aggregate groups of adjacent pixels, that share the same scattering
mechanism, which was required to efficiently mitigate noise. Averaging of pixel-groups bounded to
the extent of homogeneous fields eventually increased the quality of the significance test and allowed
to draw conclusions about the behaviour and characteristics of closure phase over different land cov-
ers. The detailed averaging procedure for each SAR observable is explained in the following sections
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(López-Martı́nez & Pottier, 2007; Touzi & Lopes, 1996):

Backscatter [dB]
1. Backscatter in decibel (𝑑𝐵 = 10 log10(

𝐼
𝐼0
)) is converted to intensities 𝐼.

2. The intensities are averaged based on all pixel values per polygon and converted back to backscatter
[dB] for further analysis. The amplitudes 𝐴 (𝐴 = √𝐼) are preserved for the averaging of the complex
interferogram.

Coherence
1. Coherence magnitudes are treated separately for 6-day and 12-day pairs during the spatial averag-
ing. The same applies to the phases from the interferograms.
2. The coherence is defined as

𝛾 = 𝐸[𝑢1𝑢∗2]
√𝐸[|𝑢1|2]√𝐸[|𝑢2|2]

; |𝛾| < 1; ∠𝛾 = 𝜙0, (3.1)

where 𝐸 is the expected value of the random variable 𝑥 and |𝑢1|, |𝑢2| are the amplitudes of the two
initial images. The argument of 𝛾, 𝜙0, equals the expected value of the interferometric phase. The
coherence magnitudes are deconstructed to complex valued coherences using the phase angles from
the interferograms and the preserved intensities:

𝛾𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = |𝛾| × 𝑒𝑗𝜙𝑖 , (3.2)

where |𝛾| is the coherence magnitude and 𝜙𝑖 is the phase of the interferogram.
3. The complex coherence is then multiplied with the amplitudes whereby the respective amplitudes
are assigned to a master and a slave image that coincides with the 6-day and 12-day coherence dates:

𝛾𝑟𝑒𝑛𝑜𝑟𝑚 = 𝛾𝑐𝑜𝑚𝑝𝑙𝑒𝑥 × 𝐴𝑚𝑎𝑠𝑡𝑒𝑟 × 𝐴𝑠𝑙𝑎𝑣𝑒 . (3.3)

4. The master and slave intensities are derived by squaring the amplitudes. The intensities and 𝛾𝑟𝑒𝑛𝑜𝑟𝑚
are averaged.
5. The normalized averaged coherence is calculated by joining each averaged value referring to
Eq. 3.1:

�̄� = �̄�𝑟𝑒𝑛𝑜𝑟𝑚
√ ̄𝐼𝑚𝑎𝑠𝑡𝑒𝑟 × ̄𝐼𝑠𝑙𝑎𝑣𝑒

, (3.4)

where �̄� and ̄𝐼 denotes the averaged value of the respective instance. Eventually, the coherence mag-
nitude is calculated by taking the absolute value of �̄�, |�̄�|.

Closure Phase
The closure phase is obtained from the triple product of three spatially averaged (consecutive) inter-
ferograms. The triple product is first calculated from the stored normalized complex and averaged
coherence product �̄� where the asterisk denotes the complex conjugate:

Γ𝑖𝑗𝑘 = �̄�𝑖𝑗 ⋅ �̄�𝑗𝑘 ⋅ ̄𝛾∗𝑖𝑘 . (3.5)



3.3. Spatial Aggregation Based on Land Cover 18

Since the interferometric phase is an argument of the coherence, the closure phase is equal to the
phase angle of the averaged normalized complex coherence triplet product:

Φ𝑖𝑗𝑘 = ∠Γ𝑖𝑗𝑘 . (3.6)

3.3.3. Supplementary Data
Theia VHSR Soil Moisture
The soil moisture product VHSR (Very High Spatial Resolution) from Theia is used as an additional
measure in order to assess research objective IV. Theia in collaboration with CESBIO provides soil
moisture maps at parcel scale on several sites in France. The applied approach from Theia is based
on the synergic use of Sentinel-1 (radar sensor) and Sentinel-2 (optical sensor) data. For a descrip-
tion of vegetation, the NDVI (Normalized Differential Vegetation Index) was computed from Sentinel-2
imagery. The workflow applied to derive soil moisture estimates is described as follows (El Hajj et al.,
2017):

In a first step, the agricultural areas were extracted based on Theia’s land cover maps and the
French RGP (Registered Geographical Parcels). NDVI mosaics derived from Sentinel-2 were used
to partition the agricultural sites into homogeneous segments by applying a segmentation algorithm
called Mean-Shift (Cheng, 1995). For each homogeneous segment, the mean incidence angle, mean
backscattering coefficient in VV-pol, and the mean NDVI were computed. Neural networks were devel-
oped for different soil conditions (dry to slightly wet and very wet soil conditions). Lastly, the adequate
neural network technique, selected based on in-situ rainfall data, was used to invert the radar signal
and estimate the soil moisture.

Within a Pearson correlation analysis in this study, the correlation for the soil moisture time series
from fields at different spatial distances to one another is computed. The results are compared to
significance ratio and amplitude backscatter. A more detailed description of this analysis in provided
later in section 3.6. A visual comparison between soil moisture maps and maps of SAR observables
in this project is hampered due to the fact that the Sentinel-1 data used to estimate the soil moisture
is derived from track 132 which collects images a couple of days later then Sentinel-1 over track 110
(SAR data used in this study).

Leaf Area Index (Copernicus Global Land Service)
The Leaf Area Index (LAI) is a dimensionless measure and is defined as half the total area of green
elements of the canopy per unit horizontal ground area. It quantifies the amount of leaf material of all the
canopy layers, including the understory which particularly contributes for forest vegetation (Copernicus
Global Land Service, 2021). LAI is defined as

𝐿𝐴𝐼 = 𝐿𝑒𝑎𝑓 𝐴𝑟𝑒𝑎 [𝑚2]
𝐺𝑟𝑜𝑢𝑛𝑑 𝐴𝑟𝑒𝑎 [𝑚2] . (3.7)

LAI-maps are provided by Copernicus Global Land Service (https://land.copernicus.eu/global/products/
lai) with a spatial resolution of 300 x 300 m. The product is based on Sentinel-3/OLCI data and has
been validated following the guidelines proposed in Morisette et al. (2006). The LAI data consists in
an inter-comparison with other existing global products and a direct comparison with ground-based
reference maps.

In order to obtain consistency with the other observables, LAI maps are resampled to a 50 x 50 m
resolution using a bilinear interpolation algorithm, and aggregated based on Theia’s land cover maps.

https://land.copernicus.eu/global/products/lai
https://land.copernicus.eu/global/products/lai
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In the context of this research, the LAI will be used as an indicator for periods of enhanced vegetation
coverage and growth and to characterize and discriminate different vegetation types. The LAI can be
viewed as the counterpart to soil moisture, as the sensitivity of SAR observables to soil moisture is
significantly influenced by vegetation.

Precipitation Data
Precipitation data is provided by the European Climate Assessment & Dataset (ECA&D, https://www.
ecad.eu/) for in total eight stations distributed over southern France. The data will be used for indicating
rain events in certain regions at certain times in order to better understand potential spatial variabilities
in the SAR observables.

3.4. The Triplet Processing Toolbox (TPT)
The Triplet Processing Toolbox (TPT) was developed in-house at the GRS department of TU Delft (M.
Manne, personal communication). The toolbox provides a practical application to compute closure
phases from the complex interferogram and enables to perform the numerical closure phase signifi-
cance test. The outputs from TPT are estimates of the Expected Phase Closure Standard Deviation
�̂�Φ̂ and the Significance Ratio Ψ𝑖𝑗𝑘 which is derived from the ratio of the observed closure phases Φ̄𝑖𝑗𝑘
divided by �̂�Φ̂.

3.4.1. Model Parameter and Toolbox Adaptations
The toolbox was initially built as an add-on for RIPPL where the outputs of RIPPL being the inputs to
TPT. The issue at hand is that when SAR observables are multilooked to a grid using a conventional
boxcar filter - which is the case with Geotiff outputs fromRIPPL - it ignores the spatial context of the area
over which the observables are spatially averaged. As the advanced method applied for this research
was multilooking based on land cover polygons, TPT had to be adapted to meet the requirements of the
new data format. With the adaptions, the significance test can be applied to phase closures averaged
on a per field basis over different land cover types.

The model is run for different number of looks referring to different field sizes and different combi-
nations of three coherence values that simulate the coherences referring to the phases in the phase
triplet. The toolbox therefore required appropriate measures for three input parameters before applying
the significance test.

In order to run the model for different combinations of three coherence values, a measure had to be
established to determine the number of evenly spaced coherence values between 0 and 1 for which
the model estimates �̂�Φ̂. This input parameter is referred to as the Coherence Interpolator Steps. The
Number of Looks as the second input was derived from the number of pre-multilooked pixels per land
cover field and is statistically linked to the Coherence Interpolator Steps. Lastly, an appropriateNumber
of Model Realizations of the expected phase closure for the computation of �̂�Φ̂ was determined with
respect to the different number of looks per land cover field.

Given these three parameters, the toolbox estimates �̂�Φ̂ over different combinations of three co-
herence magnitudes and the number of looks per land cover field. The resulting estimates of �̂�Φ̂ are
saved to look-up tables for a nearest neighbour search of the expected closure phase given three mea-
sured coherence magnitudes corresponding to the phase triplet observed over different land covers.
The initial set-up of TPT performed the significance test based on only a single input value for each
parameter which was applied to the whole closure phase SAR image. Since the adapted toolbox has
to deal with phase closures averaged over land cover polygons, and hence different numbers of looks

https://www.ecad.eu/
https://www.ecad.eu/
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per field over the whole research area, the modified significance test was performed with individual
parameter settings for each land cover polygon.

The applied methods to determine the three described input parameters are discussed in detail in
the following sections.

Figure 3.4: Processing routine for deriving a significance ratio and additional SAR observables. The figure shows the deconstruc-
tion of SAR observables in order to derive multilooked phase closures and the steps involved in adapting TPT and performing a
significance test.

Number of Looks
The number of looks as an input to the significance model is given by the number of pixels averaged for
the respective land cover polygon multiplied by the multilook of a single pixel. The pixels are counted
per field during the averaging procedure. With a ground resolution of 5 x 20 m (range x azimuth) for the
SLC, each individual pixel is pre-processed and multilooked to a 20 x 20 m grid resolution. Hence, the
looks for a single pixel are∼4, the maximum number of looks is 10,000 due to the bounded polygon size
of 1x1 km as defined by the grid overlay. The effect of an increasing number of looks on �̂�Φ̂ diminishes
with a growing multilook as illustrated in Fig. 2.2. Statistically, there is no need to estimate �̂�Φ̂ for every
single look above a certain level of multilooking. This is also relevant considering model runtimes and
computational resources. Therefore, all fields with looks between 4 and 1000 (in increments of 4) are
processed within the significance test; 1,000 to 5,000 looks are rounded to the tens digit, and 5,000 to
10,000 to the hundreds digit. Those “binned” looks provide the basis for a statistical derivation of the
coherence interpolator steps and the number of model realizations.

Coherence Interpolator Steps
The coherence steps refer to the increments in coherence for the different combinations that are used
to estimate �̂�Φ̂. For example, an input parameter of 10 refers to 10 evenly spaced coherences values
between 0 and 1 (𝑥 ∈ ℝ, 0 < 𝑥 < 1). In this study it is determined that the interpolator coherence steps
should not be smaller than the standard deviation in coherencemagnitudewhich depends on the degree
of multilooking. Touzi et al. (1999) investigated the accuracy and precision of coherence estimation as
a function of the coherence map resolution. Coherence estimates are shown to be significantly biased
towards larger coherence estimates, in particular under low coherence conditions whereby the bias
reduces with an increasing number of looks. The coherence bias is calculated in Eq. 3.9 and visualized
for different number of looks in Fig. 3.5.

In order to determine appropriate coherence steps, Touzi et al. (1999) formulated a set of equations
from which the standard deviation of coherence estimates can be calculated as a function of looks:

𝐸(|�̂�|2) = Γ(𝐿)Γ(2)
Γ(𝐿 + 1) ×3 𝐹2(2, 𝐿, 𝐿; 𝐿 + 1, 1; |𝛾|

2) × (1 − |𝛾|2)𝐿 , (3.8)
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𝐸(|�̂�|) = Γ(𝐿)Γ(1 + 1/2)
Γ(𝐿 + 1/2) ×3 𝐹2(3/2, 𝐿, 𝐿; 𝐿 + 1/2, 1; |𝛾|2) × (1 − |𝛾|2)𝐿 , (3.9)

where 𝑝𝐹𝑞 is the generalized hypergeometric function, |�̂�| the estimated sample coherence magnitude,
𝐿 the number of looks, |𝛾| the actual coherence magnitude, and the moment of order given by 𝑘. The
standard deviation of |�̂�| can be calculated by

𝑠𝑡𝑑(|�̂�|) = √𝐸(|�̂�|2) − 𝐸(|�̂�|)2, (3.10)

where 𝐸(|�̂�|2) is given by 3.8 and 𝐸(|�̂�|) by 3.9. Eventually, the standard deviation is calculated for the

Figure 3.5: Coherence bias (left) and coherence standard deviation (right) as a function of coherence magnitude for different
looks. The figure indicates that the standard deviation in coherence decreases 1) as the number of looks increases or 2) as the
coherence magnitudes increase.

given set of coherences by considering the number of looks (𝐿) with respect to each land cover polygon.
Since the standard deviation varies for different coherence magnitudes, the highest standard deviation
computed is considered as a measure for appropriate interpolator steps. For the example plot given in
Fig. 3.5, the red line refers to a field with a multilook of 100. The maximum standard deviation is 0.065
(|�̂�| ∼0.20) which is further considered an appropriate interpolator step size. With 1/0.065 = 15.38,
the parameter-input is rounded down to the next integer (= 15). For this study it was determined that
the maximum number of coherence steps is 100 as the number of possible combinations, and more
importantly the runtime, grows exponentially. Fig. 3.6 visualizes the coherence steps as a function
of possible combinations where step sizes of 0.01, i.e. 100 steps between 0 and 1, equal ∼160,000
possible combinations.

Number of Model Realizations
From a given set of coherence combinations and the number of looks, the model performs several
Monte Carlo simulations of the multilooked expected phase closures. Thereafter, the standard de-
viation �̂�Φ̂ over all model realizations of the expected phase closures is computed; the result is an
estimate of �̂�Φ̂ for each given coherence combination. The coherence combinations ranged between
“low” combinations, e.g. 0.1, 0.1, 0.1, and “high” combinations, e.g. 0.9, 0.9, 0.9. In order to understand
the effect of consecutive model realizations on the final estimate of �̂�Φ̂, 20,000 model realizations of the
expected phase closure were computed with different multilooks. A running standard deviation then
estimated the standard deviation along with the mean in a single pass of all model realizations. The
results for a high and a low coherence combination and different looks is illustrated in Fig. 3.7. What
can be deduced from the figure is the point when the running standard deviation converges, meaning
that additional model realizations did not change the final estimate of the expected �̂�Φ̂ significantly.
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Figure 3.6: Number of possible coherence combinations as a function of coherence frequency. The number of combinations
grows exponentially as the coherence interpolator steps decrease, i.e. the coherence frequency increases.

This point depends on both the number of looks and the coherence combination considered for the
estimation. The number of looks is important here since it already decreases the standard deviation of
the estimated phase closures considerably. Since the simulation grows exponentially with the number
of coherence combinations, the degree of multilooking and the number of simulations, finding a reason-
able number of model realizations was therefore crucial to avoid unnecessary and prolonged simulation
runtimes. Generally, the running standard deviation converges faster for higher numbers of looks and
higher coherence magnitude combinations (e.g. 0.9, 0.9, 0.9). Based on the statistics presented in
Fig. 3.7, it was determined that the point when the running standard deviation for the lowest coherence
combination reaches 0.01 radians (∼0.57 degrees) is sufficient. The respective number of realizations
is assessed over all “binned” looks that have been defined above. It was further determined that the
minimum number of simulations should not be less than 500.

Figure 3.7: Running Standard Deviation as a function of Monte Carlo simulations for different multilooks. With an increasing
degree of multilooking, the decrease in standard deviation in the estimates converges faster. Left: Running standard deviation
for a low coherence combination (0.1, 0.1, 0.1). Right: Running standard deviation for a high coherence combination (0.9, 0.9,
0.9). Note that the y-axis for the high and the low coherence combination are scaled differently.

3.4.2. Significance Test within TPT
A fixed relationship between the model-parameters as an input to TPT can be established based on
the definitions of the parameters in the previous sections. Fig. 3.8 presents the number of coherence
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steps as a function of multilooks and the number of simulations as a function of multilooks. The number
of realizations decreases as the number of looks increases, while the standard deviation in coherence
improves with increasing multilooks, leading to smaller coherence steps. Given this fixed parameter
relationship, 750 look-up tables have been computed and stored in total.

In a first step the number of looks for each input polygon field was either used directly or was as-
signed to a look-bin according to the definitions in the previous section. The number of coherence
steps and number of model realizations was assigned to each individual polygon-field following the
statistical relationship that was described above. Interpolator files for each look with all possible coher-
ence combinations are computed from the look-up tables. Each polygon-field had 61 coherence-triplets
(per year), i.e. coherence magnitudes were acquired every 6 days. The interpolator applies a nearest
neighbour search for the closest coherence combination to the observed coherence-triplet for each
time-step and returns the corresponding estimate of �̂�Φ̂. The significance ratios were calculated from
the observed phase closures and �̂�Φ̂ for each time-step. A brief overview of the essential steps applied
to derive the significance ratio is presented in Fig. 3.4.

Figure 3.8: Left: Coherence steps as a function of multilook. The minimum number of steps is at 4, the maximum is limited
to 100 which is reached at about 5000 looks. Right: Number of model realization as a function of multilook. The number of
necessary model realizations is estimated as high as 200,000 realization for single pixel, but rapidly decreases as the number
of looks increases. The minimum number of model simulations is kept at 500.

3.5. Choice of Land Cover Classes
In this study, the spatial and temporal characteristics of the closure phase and its significance ratio have
been investigated mainly for three land cover classes Broad-leaved forest, Natural Grassland, and
Agricultural Crops. Agricultural sites are further divided in summer, winter, and perennial (Intensive
Grassland) crops. Those land covers are chosen with respect to characteristic properties, including
annual phenology, vegetation density, type and location, in order to explore the effects of different
vegetation properties on the closure phase. The different land covers are characterized as follows
(Corine Land Cover Nomenclature, 2018):

• Broad-leaved Forest composes in principal deciduous trees, but also shrub and bush understory,
where broad-leaved vegetation predominates. The crown cover density is at least 30% or a
minimum of 500 subjects/ha in density. The cover type includes primarily deciduous tree species
but also evergreens, palm trees and herbaceous vegetation (grasses and herbs), if < 25 ha.

• Natural Grasslands include low vegetated areas and pastures and are in comparison with inten-
sive grassland and agricultural areas not used for perennial or annual crop growth.
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• Annual Crops include rainfed agriculturally used land parcels that are harvested and are usually
under a crop rotation system. Theia further divides annual crops in summer and winter crops for
the 2017 nomenclature and splits summer and winter crops in individual crop types for 2018 and
2019. A detailed overview is provided in the Appendix.

• Intensive Grasslands are characterized by perennial agricultural use. The majority of patterns
classified as intensive grassland are located in between agricultural sites of annual crops and
regions that are used as vineyards.

3.6. Statistical Analysis
3.6.1. Pearson Correlation Coefficient (r) Analysis
The Pearson correlation coefficient is a measure of the strength of a linear similarity between two
variables and is denoted by R:

𝑅 =
∑𝑛𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

√∑𝑛𝑖=1(𝑥𝑖 − �̄�)2√∑
𝑛
𝑖=1(𝑦𝑖 − �̄�)2

, (3.11)

where x and y are two vectors of length i and �̄�, �̄� corresponds to the means of x and y, respectively.
The guidelines in Table 3.2 indicate the strength of the similarity with respect to R value ranges.

Table 3.2: Pearson’s R guidelines evaluating the performance of the correlation analysis.

Pearson’s R

Strength of similarity Range

very weak 0 - 0.2

weak 0.2 - 0.4

moderate 0.4 - 0.6

strong 0.6 - 0.8

very strong 0.8 - 1.0

In this thesis, Pearson’s R is used as a measure of the linear relationship between significance ratio
time series. The similarity is assessed as a function of 1) spatial aggregation, and 2) spatial distance
between the time series.

Spatial Aggregation Assessment
In order to assess the effect of spatial averaging on the similarity between the significance ratio time
series, time series which are derived from different multilooks are binned with bin sizes of 100 looks for
≤ 1,000 looks, and 1000 looks for ≤ 10,000. Pearson’s R is calculated for all pairs within each bin.

Distance Assessment
In order to counter any effects due to different degrees of spatial aggregation between the time series,
the data is filtered to only include the ones that are > 8000 looks, since the phase noise expectably
decreases with further averaging.
The center location of each of those polygons is calculated. After, the euclidean distance between each
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center is estimated and grouped for increasing intervals of 20 km. Pearson’s R is estimated for each
distance pair.

3.6.2. Root Mean Squares (RMS)
The Root Mean Square (RMS) is defined as:

𝑅𝑀𝑆 = √ 1𝑁

𝑁

∑
𝑖=1
𝑥2𝑖 (3.12)

The RMS was used to analyse the effect of spatial averaging on the magnitudes of closure phase. Its
values were computed over time series of closure phase with respect to different degrees of multilooking
and over different land cover types. To ensure a large enough sampling for each multilook, the land
cover fields were binned with respect to their degree of spatial aggregation in increments of 100 looks.

The reason why the RMS was chosen over the mean or other statistical measures for this assess-
ment requires a brief discussion:

The phase closures are negatives and positives such as sinusoids. The mean of the phase clo-
sures would just reveal the influence on its central tendency. Phase closures that are solely produced
by phase noise, as predicted by the significance model, would necessarily have zero mean and a sig-
nificance ratio of |1|. With zero mean, the values for RMS and standard deviation are equal. However,
if the mean of a phase closure would be consistently at a value e.g. above zero, which indicates a
geophysical signal component, the standard deviation would be small and dismiss the fact that there is
a consistent closure phase signal. Therefore it was more meaningful to look at the powers. Due to the
squaring of the individual phase closures, peak values receive more weight which is a favorable feature
as closure errors with a large signal-to-noise ratio are particularly interesting. The RMS is therefore
rather specific and mainly tied to electrical engineering and signal sciences.

3.7. Work Environment, Runtimes and Processing Bottlenecks
In terms of work environment, a project space with 25 TB was provided by TU Delft as well as a HPC
account for the operation and storage of programs and scripts. The pre-processing part of the thesis
research alone took 3 months in total for SAR data from a satellite track with 75,000 km2 ground
coverage and three years of image acquisitions. A successful processing in RIPPL firstly depends
on the availability of orbit files and DEM data, accessibility to the Alaska Satellite Facility (ASF) for
the Sentinel-1 SLC products, and the right choice and batch-script settings for computing nodes at
the HPC cluster from TU Delft. As the time or space dimensions of the required data increase, the
chance that those essential files are either temporally not accessible, fail to download or fail to process
correctly is very high. For successful processing of the data it is advised to monitor the use of resources
on the HPC cluster closely, and inform the cluster manager before attempting to process with RIPPL.
Patience, nerves of steel and a good oversight are necessary in order to successfully process those
observables.



4
Results

This chapter presents the results obtained from the closure phase significance test and illustrates spatial
and temporal characteristics of significance ratio and closure phase over different land cover types.

Section 4.1 first shows the results from the significance test in relation to the observed phase clo-
sures and coherence magnitudes. The impact that the standardization had on the observed phase
closures is important to better understand its characteristics over different land covers. This section
also aimed to provide a first link between land cover and the observable characteristics. Section 4.2
demonstrates the effect that different degrees of spatial averaging had on phase closure and signifi-
cance ratio values, and the correlation between its time series. In Section 4.3, the conclusions from
the previous section were considered to show the characteristics of significance ratio time series in
comparison with LAI and coherence magnitudes over different land covers. The section continues with
an assessment of the correlation between time series of significance ratio as a function of spatial dis-
tance, in comparison with results for amplitude backscatter and Theia’s soil moisture product. Based on
the results obtained from the time series comparison, the section concludes by comparing the spatial
characteristics between significance ratio and amplitude by considering their sensitivity to soil moisture
over low vegetated soils.

4.1. Comparison of Closure Phase and Significance Ratio
The observed phase closures Φ̄𝑖,𝑗,𝑘 consist of a noise-induced signal component and a possible geo-
physical component which could contain information about vegetation and soil properties over the ob-
served area. The closure phase significance test was applied to each measured Φ̄𝑖,𝑗,𝑘 with the intention
to standardize it with an estimate of the expected phase closure standard deviation �̂�Φ̂. From Φ̄𝑖,𝑗,𝑘
and �̂�Φ̂, the significance ratio Ψ𝑖,𝑗,𝑘 was computed as the ratio of both values with the aim to provide a
measure of the signal-to-noise ratio of the observed phase closures.

The goal of this section was to compare the spatial signatures of closure phase before and after
standardization and to visualize the relation between �̂�Φ̂ and the coherencemagnitude (|𝛾|) with respect
to different land cover types. Understanding the relation between the different observables is essential
for results presented in the following sections.

A land cover map over a sub-region of the research area in southern France is illustrated in Fig. 4.1.

26
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The maps of the observables in this section refer to the same region. Fig. 4.2 shows the observed
closure phases Φ̄𝑖,𝑗,𝑘 computed from three interferograms between 26.11.2017 and 08.12.2017 and
the significance ratio Ψ𝑖,𝑗,𝑘. Choosing a phase triplet from interferograms in November and December
implies that the vegetation cover is generally lower, in particular over agricultural areas where crops
have been harvested. The �̂�Φ̂ and the three coherence magnitudes |𝛾| referring to the phase triplet are
presented in Fig. 4.3. The Φ̄𝑖,𝑗,𝑘- map indicates different phase levels across the scene with consistently
higher or lower phase closures in certain regions. Since the model predicts �̂�Φ̂ based on the respective
coherence magnitudes 𝛾𝑖,𝑗, 𝛾𝑗,𝑘 and 𝛾𝑖,𝑘, regions that suffer more from decorrelation are associated with
higher estimates for �̂�Φ̂ as those regions are expected to be have higher levels of phase noise (see
Fig. 2.2). To account for the spatial variability of coherence across different areas, Ψ𝑖,𝑗,𝑘 provides an
indication of patterns of phase closures that are large with respect to �̂�Φ̂. Significance ratios that are low
in absolute terms, i.e. ∼ +/- 1, indicate that the observed closure phase can be justified by decorrelation
phase noise. Comparing Φ̄𝑖,𝑗,𝑘 andΨ𝑖,𝑗,𝑘 in Fig. 4.2 clearly shows the effect that the standardization from
the significance test has on the spatial characteristics, in the attempt to reveal “true” phase closures.
A few observations can be made when comparing the closure phase to the significance ratio:

Figure 4.1: Theia land cover map for 2017 provided for a region in southern France.

1. In Fig. 4.2 (a), areas that show higher magnitudes of Φ̄𝑖,𝑗,𝑘 (indicated by ‘1’) obtain lower signifi-
cance ratios (closer to +/- 1) as shown in (b) while areas with lower Φ̄𝑖,𝑗,𝑘 obtain noticeably larger
significance ratios (> |1|) (‘2’ respectively in the maps). The region in the upper right corner of
the Φ̄𝑖,𝑗,𝑘- map seems to have exceptionally large phase levels compared to the upper and lower
left part. Areas of large Φ̄𝑖,𝑗,𝑘 are associated with low coherence magnitudes which receive high
estimates for �̂�Φ̂ from the significance test as illustrated in Fig. 4.3 (a). Because of that the signif-
icance ratio is comparably low and it can be assumed that the large Φ̄𝑖,𝑗,𝑘 mostly originate from
phase noise. Areas with a relatively high significance ratios are consistent with regions where
the coherence is higher.

2. Relatively large phase closures in the Φ̄𝑖,𝑗,𝑘- map in Fig. 4.2 (a), indicated with ‘1’, appear purple
rather than distinctively blue or red as the colorbar indicates negative and positive phase closures.
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Figure 4.2: Spatial signatures of (a) the observed phase closure Φ̄𝑖,𝑗,𝑘 and (b) the significance ratioΨ𝑖,𝑗,𝑘 for a region in southern
France.

Zooming in and investigating the individual pixels and their neighborhood shows that the phase
closures alter between positives and negatives (red and blue) which causes the salt and pepper
like purple appearance and the associated low spatial consistency. High magnitudes and varying
signs of the closure phase associated with low significance ratios indicate that it is unlikely to be
due to a geophysical cause. Those regions are also consistent with low coherence magnitudes
as shown in Fig. 4.3 (b).

3. The distinctive patterns of high Ψ𝑖,𝑗,𝑘 magnitudes (‘2’ in Fig. 4.2 (b)) appear to be spatially more
consistent with visually separate areas of negative and positive signs in contrast to the higher
variability of neighboring pixels in the Φ̄𝑖,𝑗,𝑘 image. This effect in particular is noticeable for regions
with larger Φ̄𝑖,𝑗,𝑘.

4. Comparing the land cover map in Fig. 4.1 with the observables, one can notice that the general
patterns match with the land cover boundaries. The forested regions (‘1’ in map) are associated
with larger phase closures Φ̄𝑖,𝑗,𝑘 and low significance ratios while the southeastern part, primarily
covered with grassland (‘3’ in map), shows lower, here negative closure phases and significance
ratios. The western part of the image, mostly covered by annual and perennial crops (indicated
by ‘2’), also shows low phase closures that appear relatively consistent in space. In compari-
son, this region obtains the highest significance ratios. The natural grassland areas show larger
significance ratios as well while the forested areas indicate less significant phase closures in
comparison.

The comparison between Φ̄𝑖,𝑗,𝑘 and Ψ𝑖,𝑗,𝑘 has demonstrated the importance of applying a closure
phase significance test to separate the phase noise component associated with low coherences from
phase closures that obtain a high significance ratio. Those phase closures are particularly interesting
as they indicate that a large fraction of the closure phase can not be explained by decorrelation noise
which suggests evidence for an underlying geophysical origin. The effect of different vegetation covers
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Figure 4.3: Top: Expected Closure Phase Standard Deviation (�̂�Φ̂) for a region in Southern France. Bottom: Coherence magni-
tude maps that where required as an input to the significance test in order to estimate �̂�Φ̂. Areas of low coherence are associated
with higher estimates for �̂�Φ̂ and vice versa.

on the coherence and associated phase noise is reflected in Φ̄𝑖,𝑗,𝑘: For the forested regions it is argued
that a large portion of Φ̄𝑖,𝑗,𝑘 is attributable to phase noise induced by volume scattering within the
vegetation canopy which applies to those regions with extensive small-scale variability of large positive
and negative closures. This is captured in low coherences and large �̂�Φ̂ estimates. The consistently
low significance ratios suggest weak evidence of a (large) geophysical component that contributed to
this phase triplet mismatch. Crop areas showed lower Φ̄𝑖,𝑗,𝑘 which one could prematurely conclude
that a geophysical component is small, however, the significance ratio revealed that the phase closure
is rather large with respect to �̂�Φ̂. Due to the absence of crops in November and December, the radar
primarily senses the ground surface, hence the phase closures most likely indicate local soil moisture
changes.

Obviously those maps only present a single triple product of the respective observable, however,
the visual similarity with land cover can not be denied and suggests first evidence of a geophysical
origin of phase closures that has not yet been explored with respect to different land cover types. The
number of looks (per field) as an essential parameter for the significance test, indicates the degree of
spatial averaging for fields of closure phase and will be subject of the following section.
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4.2. Effects of Spatial Aggregation
The existence of phase closure errors only results from spatially averaged interferograms. Estimates
of the expected phase closure standard deviation (�̂�Φ̂) are correlated with the number of looks per
field, i.e. an increasing degree of multilooking (spatial averaging) is associated with lower �̂�Φ̂ and
vice versa (see Fig. 2.2). In this sub-chapter, the sensitivity of significance ratio to different degrees
of spatial averaging is analysed. Further, the effect on the linear similarity between individual time
series of significance ratio is assessed by comparing Pearson’s R as a function of multilooking. The
assessment was carried out for significance ratios and the observed closure phases in comparison,
for different land cover types and both VV and VH polarized data. This sub-chapter aims to address
research objective III.

Fig. 4.4 presents three maps of significance ratio (b) for the research area (a), filtered to only show
a certain range of multilooking. As the pixels are aggregated based on land cover fields with different
sizes, the number of looks across the maps varies spatially. The map to the left is filtered for looks
between 4 and 250, the middle map shows 250-1,000 looks and the map to the right shows 1,000-
10,000 looks. The grid overlay of 1x1 km that is applied to the land cover maps before aggregating the
pixel values per land cover field, bounded the range for the number of looks (per field) to a minimum of
4 (20 x 20 m, single pixel) and a maximum of 10,000 (1 x 1 km). That means that the outline of the grid
cells is visible when zoomed-in on an area with relatively homogenous land cover as shown in Fig. 4.4
(c). From the map comparison in Fig. 4.4 one can derive at least three important takeaways:

1. The magnitudes of the significance ratio are the lowest for the map on the left with the smallest
degree of multilooking. The magnitudes increase noticeably for the medium range multilooking
and are the greatest for the map on the right with looks up to 10,000. This clearly indicates the
positive influence that further spatial aggregation has on increasing the signal-to-noise ratio of
the geophysical closure phase.

2. The consistency of the spatial signatures suffers for low degrees of spatial averaging which is
partly due to the lower values of the significance ratio. Distinct patterns are better visible as mul-
tilooking increased to 250-1,000 looks, while the map with the highest looks shows very distinct
spatial patterns.

3. The zoom-in on the significance ratio (c) shows different field sizes and highlights the effect and
importance of splitting larger polygons into separate fields. The crop area in the left part of the
zoom-in indicates consistently positive significance ratios (red pattern) even though the fields are
all separated and rather small. This is a good indication of a geophysical origin which caused
a similar phase closure over the whole area. The forested area in the center and to the right of
(c), however, consists of only a few (multi-)polygons (as shown in the land cover map) but are
bounded to 1x1 km fields before averaging spatially. If the pixel values were aggregated over the
whole area, this would have given the impression that the area has a consistent phase closure
signal. Looking at the inconsistency of the significance ratios over the forested area implies that
this is clearly not the case.

The map comparison could show that increased spatial averaging has a positive effect on both
increasing the significance ratio of phase closures and further highlighting its spatial signatures. This
could be valuable for distinguishing between different land cover types using the values of the signifi-
cance ratio. To further investigate its the spatial characteristics, it is beneficial to apply a filter to those
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Figure 4.4: (a) Land cover map of the research area. (b) Three maps of significance ratio over the same area filtered for different
ranges of multilooks. The map on the left shows all land cover polygons with 4-250 looks, the middle is filtered for 250-1,000
looks, and the map to the right shows all fields with 1,000-10,000 looks. (c) Zoom-in on an area with homogenous land cover.

maps and mask areas with significance ratios below a certain threshold or determine a minimum de-
gree of multilooking before applying the significance test. The following sections will further elaborate
on that.

4.2.1. Root Mean Square as a Function of Spatial Averaging
The results from the previous section indicated a positive relation between spatial averaging and the
values of the significance ratio. The effect of spatial averaging on both the observed closure phase
Φ̄𝑖,𝑗,𝑘 and the significance ratio Ψ𝑖,𝑗,𝑘 values with respect to different land covers and polarizations is
assessed by comparing the evolution of root mean squares (RMS) as a function of multilooks (Fig. 4.5
and 4.6). The goal of this comparison was to indicate which land covers are associated with the largest
significance ratios, how that relates to the observed phase closures and if the impact depends on differ-
ent polarizations. The effect that spatial averaging has on the observed phase closures is introduced
first, also to better understand the signal-to-noise ratio over different land covers. In order to ensure a
minimum number of fields per multilook, the fields are binned for bin sizes of 100 looks. The RMS is
computed over the time series within each look-interval and averaged per interval afterwards.
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Observed Phase Closures
The RMS of the observed phase closure in Fig. 4.5 shows the greatest closure phases for looks< 2,000
and a relatively steady evolution thereafter as the number of looks increases per bin. For crops (sum-
mer/winter crops, intensive grassland), the quadratic means are smaller and the convergence to a
steady trajectory is slower (at ∼2,000 looks) than compared to natural vegetation including grassland
and forests (at ∼1,000 looks). In general, the RMS are greater for VH-pol closure phases for all land
covers than compared to VV-pol. The greatest RMS obtain the forest types with an average of about
50 to 60 degrees for VV and VH respectively. Generally higher phase levels over forests were also
observed in Fig. 4.2, and were presumably attributed to vegetation induced phase noise. The lowest
RMS receive the crop types with around 20 degrees. Natural grassland has an average RMS of about
30 to 40 (VV/VH) that converges comparably fast with multilooking as well. Above ∼2,000 looks, there
is seemingly no effect from further multilooking on the phase values across all land covers.

Figure 4.5: Root Mean Square (RMS) computed from time series of closure phase for different land cover types as a function of
multilooks. The average RMS from all time series is illustrated per multilook with respect to different land cover types.

Significance Ratio
The trajectories of the RMS of the significance ratios in Fig. 4.6 show different characteristics with
respect to polarization and land cover. If the phase closures were fully justified by decorrelation phase
noise, the RMS would be 1, i.e. �̂�Φ̂ and the observed closure phase were equal, which is indicated by
the dotted black line. RMS > 1 point to a geophysical phase closure.

For the significance ratios, multilooking has a very significant effect on increasing the RMS for all
land cover types. The minimum RMS averaged over time series up to 100 looks is at ∼1.2/1.4 for
VH and VV-pol respectively, showing that even a small multilook can increase the SNR of geophysical
phase closures. The steepest increase is noticeable up to 1,000 looks, thereafter the individual curves
increase relatively steady with the degree of spatial aggregation. The highest RMS are obtained for
crops and natural grassland; intensive grassland and forest vegetation show the lowest sensitivity to
spatial averaging.

While the two forest types and natural grasslands would have fairly similar land cover (and therefore
coherence magnitudes) throughout the year respectively, the crops (winter and summer) and intensive
grassland (to a lesser extent) are characterised by seasonal vegetation cover, i.e. they are bare in
winter and vegetated in spring, summer and fall respectively. The different RMS trajectories can be
partly explained by this seasonality, i.e. the high RMS of significance ratio over the crop types are due
to the periods, where the soils are bare. Natural grasslands, in comparison, do not have a distinct
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period of bare soils from harvest but are characterised by the lowest vegetation throughout the year in
accordance with Theia’s land cover classification, meaning that the radar primarily senses the ground
as well. The sensitivity to soil moisture variabilities is higher over sparsely vegetated or bare soils,
therefore, the RMS of significance ratio over winter and summer crops, and natural grassland are all
comparably high. Vegetation cover, on the other hand, introduces volume scattering associated with an
increase in phase noise and hence lower significance ratios. The forest types and intensive grassland
are characterised by higher vegetation cover and hence generally lower significance ratios.

Comparing VV-pol versus VH-pol, the trend and increase of the RMS for forest types and intensive
grassland is similar while there is a noticeable gap for VV-pol phase closures over crops and natural
grassland which is not as pronounced for VH-pol. The higher sensitivity of VV-pol to averaging over
those areas, i.e. natural grassland and crops, shows that the geophysical signal in the VV-pol signifi-
cance ratio is greater (and the phase noise likely smaller). Due to the propagation advantage of VV-pol
to reach the ground surface (Flores-Anderson et al., 2019), the gap between the VV and VH trajectories
for crops and natural grassland are attributable to greater significance ratios over low vegetated land
cover types. During those times, when soils are sparsely vegetated,the radar is more sensitive to soil
moisture variabilities which primarily contributed to the geophysical phase closures. For VV-pol, the
RMS over natural grasslands and winter crops increased by about 4.5 times at 8000 looks, while the
forests types and intensive grasslands increased by about 3 times. The sensitivity to spatial averaging
was lower for VH-pol, yet the RMS over winter crops and natural grasslands increased by about 3
times, and by about 1.6-2.3 times over forests and intensive grasslands. The fact that forests in par-
ticular obtain relatively low RMS significance ratios first indicates that phase closures are potentially
more sensitive to soil moisture dynamics rather than moisture changes in the leaves and trunks of trees
as speculated by De Zan and Gomba (2018). When comparing the observed closure phase and the
significance ratio, the generally higher phase closures Φ̄𝑖,𝑗,𝑘 over forests obtained the lowest signifi-
cance ratios while the lowest phase closures Φ̄𝑖,𝑗,𝑘 from crops received the highest significance ratios.
The level of phase noise seems to be significantly higher over densely-vegetated land covers, then it
is over crops and natural grasslands. Volume decorrelation which is linked to forests and vegetation
of a few meters height leads to enhanced phase noise (Martone et al., 2016) which explains the large
RMS for Φ̄𝑖,𝑗,𝑘 and rather low RMS for the significance ratios over broad-leaved/coniferous forests and
intensive grasslands. The comparison further showed that besides the vegetation type and its den-
sity, the polarization has a significant influence on the sensitivity to spatial averaging. Considering that
the significance ratios seem to further increase when multilooking is > 8000 could be a motivation to
explore the sensitivity to further spatial aggregation.
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Figure 4.6: Root Mean Square (RMS) computed from time series of significance ratio for different land cover types as a function
of multilooks. The average RMS from all time series is illustrated per multilook with respect to different land cover types.

Spatial Comparison of Root Mean Squares
The map comparison for 2017, 2018 and 2019 in Fig. 4.7 shows the RMS of the significance ratio
computed over the time series of each polygon-field. The presented scene covers the full research,
the same area as already illustrated in Fig. 4.4. Areas with < 1000 looks are masked to accentuate
spatial signatures. The boxplots show the RMS values per land cover type to facilitate a comparison
with the underlying land cover in Fig. 4.4.

The maps of RMS of the significance ratio capitalize on the distinct differences in RMS for VV-pol
significance ratios over different land cover types. The comparison shows that the spatial signatures of
RMS are spatially consistent between the years, and consistent with respect to land cover, suggesting
that the annual magnitudes of significance ratio can be exploited for land cover mapping or to identify
annual changes in land cover. The highest RMS (purple) are obtained by natural grasslands and crops
(purple/blue), green patches mostly indicate intensive grassland and yellow-orange is associated with
forest vegetation which is consistent with the land cover map. Note that the crop area in the center of the
map (purple) appears similar for 2018 and 2019, but different for 2017 which is owed to the updated land
cover nomenclature. The effect of spatial averaging is very distinct here, as the land cover polygons
for 2017 (summer and winter crops) are generally larger than the further divided nomenclature (2018
and 2019) for individual crop types. Therefore, the aggregated crop-fields for summer and winter crops
generally obtained greater RMS values due to the sensitivity of significance ratio to multilooking.
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Figure 4.7: Root Mean Square (RMS) of significance ratio over the whole research area for 2017, 2018 and 2019 time series.
Land cover fields smaller than 1000 looks are masked to accentuate the spatial signatures. The distinct patterns show that the
RMS of significance ratio area consistent with land cover. The boxplot facilitates a comparison with the underlying land cover.

4.2.2. Pearson’s R as a Function of Spatial Averaging
It was shown that the degree of spatial aggregation has a significant effect on the magnitudes of Ψ𝑖,𝑗,𝑘
but that does not demonstrate that it has any effect on the correlation between individual time series.
An assessment of the similarity between spatially aggregated fields was performed by calculating Pear-
son’s R for time series of significance ratio with a maximum distance of 25 km to each other in order
to mitigate possible effects caused by spatial distance. The looks were binned logarithmically in in-
crements of 100 looks up to 1,000, and in increments of 1,000 till 10,000 looks. The reason was to
achieve a better illustration of the effect for smaller multilooking, which was possible because smaller
fields outnumbered the larger ones. Histograms of the sampling of time series per look-bin are pro-
vided in the Appendix (Fig. A.1, A.2, A.3) for each land cover type. The boxplots of Pearson’s R in
Fig. 4.8 to 4.10 illustrate different land cover types with cross-polarized (VH) significance ratio on the
right and co-polarized (VV) significance ratio on the left respectively. An increasing, positive effect of
the R boxplot trajectories for significance ratio would generally imply that the impact of a geophysical
cause, e.g. soil moisture variabilities, is consistent on phase closures.

Broad-leaved and Coniferous Forests
Fig. 4.8 show Pearson’s R boxplots for broad-leaved and coniferous forest respectively. The trajectory
of the boxplots indicate that an increase in spatial aggregation seems to have very limited effects on the
correlation between time series for both forest types, broad-leaved forest in particular. The median of
Pearson’s R only slightly increases for low looks to 10,000 looks from 0 to about 0.12 for broad-leaved
forest and 0.20 for coniferous forest. There is no noticeable difference between VV and VH significance
ratio for both forest types.
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Figure 4.8: Boxplots of Pearson’s R for broad-leaved and coniferous forest Ψ𝑖,𝑗,𝑘 time series as a function of multilooking. The
line shows the median value. The bottom and top of the box the 25th and 75th percentiles, respectively. The upper tail is the
75th percentile plus 1.5 times the difference between the median and 75th percentile. The lower tail is the 25th percentile minus
1.5 times the difference between the median and 25th percentile. Outliers are plotted as diamonds.

Natural Grasslands
Fig. 4.9 shows box plots for natural grassland. Since it is often situated in rough areas with uneven
terrain and steep slopes, the correlation between time series could be affected depending on where
the data is derived from. Masking regions in the Pyrenees and Massif Central from the data, three
regions that are relatively homogeneously covered with natural grassland are chosen for this analysis
(Fig. 4.9).

An increase in multilooking has a significant effect on the correlation between grassland time series.
R increases from 0 at < 100 looks up to 0.72 at 10,000 looks for both VV and VH polarized significance
ratio with no noticeable difference between the boxplot trajectories. A higher count of outliers can
be found for lower look-bins which can be explained from the higher number of time series with lower
multilooks as presented in Fig. A.2 in the Appendix. The increase in correlation between the time series
is greater over the first 1,000 multilooks compared to multilooking between 1,000 and 10,000, which
seems to relate to the steeper increase in significance ratio magnitudes over the first 1,000 looks as
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observed in the previous section.

Figure 4.9: Boxplots of Pearson’s R for natural grassland Ψ𝑖,𝑗,𝑘 time series as a function of multilooking. The boxplot evolution
indicates a significant sensitivity of multilooking on the similarity between individual time series. The line shows the median value.
The bottom and top of the box the 25th and 75th percentiles, respectively. The upper tail is the 75th percentile plus 1.5 times the
difference between the median and 75th percentile. The lower tail is the 25th percentile minus 1.5 times the difference between
the median and 25th percentile. Outliers are plotted as diamonds.

Agricultural Crops
Fig. 4.10 differentiates time series for fields of summer, winter and perennial crops (intensive grassland).
The significance ratios from fields of summer crops show an increase in correlation, while the median
R reaches 0.46 for VV and 0.52 for VH polarization at 8,000 looks. The trend is similar for winter crops
with an increase to 0.51 for both polarizations. Considerable differences between VV- and VH-pol are
not noticeable for both winter and summer crops. The vegetation characteristics of the two cover types
are different, as winter crops primarily comprise of straw cereals and summer crops are primarily corn
crops over southern France. However, the impact of increasing multilooking is very similar for both
cover types.

For intensive grassland, R increases from 0 for < 100 looks to 0.68 (VV) and 0.43 (VH) at 10,000
looks. The boxplot trajectories for VH and VV in comparison show a noticeable difference. While
the sensitivity of VV-pol significance ratio leads to a relatively steady increase in R, VH-pol for the
same fields seems to be relatively insensitive to spatial averaging up to 1,000 looks. Drawing definite
conclusions from this observation is non-trivial, as intensive grassland as a land cover class comprises
different types of vegetation. Therefore, the lower sensitivity of VH to spatial aggregation is most likely
owed to the fact that those areas are covered with different types of vegetation all year which leads to
non-similar time series of significance ratio. Both, the sensitivity of VV- and VH-pol closure phase to
soil moisture are attenuated by variabilities in the vegetation cover, but presumably less pronounced
for VV-pol due to its better capability to monitor soil.
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Figure 4.10: Boxplots of Pearson’s R for winter crops (left), summer crops (right) and intensive grassland (bottom) Ψ𝑖,𝑗,𝑘 time
series as a function of multilooking. The boxplot evolutions indicate a good sensitivity to spatial aggregation as the degree
of multilooking increases. The line shows the median value. The bottom and top of the box the 25th and 75th percentiles,
respectively. The upper tail is the 75th percentile plus 1.5 times the difference between the median and 75th percentile. The
lower tail is the 25th percentile minus 1.5 times the difference between the median and 25th percentile. Outliers are plotted as
diamonds.
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Differences between the Land Covers
The comparison of Pearson’s R as a function of multilooking revealed that significance ratios over
different land cover types are differently sensitive to multilooking. A good sensitivity was found for
the grassland land cover types, intensive and natural, and agricultural crops. On the other hand, a
minor effect of spatial aggregation was observed over forest vegetation. The most obvious difference
between forests and the other land covers is the above ground biomass. If the radar primarily senses
the ground surface in the absence of vegetation, the influence of soil moisture dynamics on the signal
would dominate. Since soil moisture is spatially variable, one would expect somewhat similar ground
properties for adjacent fields. For low vegetated land cover types such as the annual crops (outside crop
cycles) and natural grassland, it can be assumed that a large fraction of the phase closure is caused
by soil moisture changes. This would explain the relatively large correlation coefficients, in particular
as the degree of multilooking increased. Over forests, however, the radar primarily senses the forest
canopy and overstory layer rather than the ground surface, in particular at C-Band. The associated
volume scattering affects the coherence, and adds to the noise component in phase closures which
impacts the consistency of a geophysical signal. Variations of the dielectric constant linked to tree
moisture as De Zan and Gomba (2018) suggested might be somewhat consistent for close fields, but
the correlation between time series over forests was found to be very low even for spatial averaging
over > 9,000 looks.

Interestingly, the trend of the boxplot trajectories, similarly to the RMS comparison, indicate that
even further spatial averaging would have a positive effect on the correlation between individual time
series, and could therefore further emphasize the temporal characteristics of significance ratio, in par-
ticular over low vegetated land covers.

4.3. Closure Phase Characteristics in Time and Space
The previous section has shown that the SNR of the geophysical closure phase increases with the
degree of spatial averaging. The objective of this section was to highlight the temporal characteristics
of significance ratio with respect to different land cover types. An overview of eight maps in Fig. 4.11
intends to illustrate differences of the spatial signatures of significance ratio obtained during different
times of the year. Presented are both significance ratios from VV-pol and VH-pol data. This sub-chapter
aims to address research objective IV.

Firstly, it is noticeable that the magnitudes of significance ratio for VV-pol data are greater than
VH-pol while the spatial signatures are similar across all maps. The examples of significance ratio
during the spring and summer months show that the ratios are generally lower than compared to winter
and fall. Looking at the map for summer in particular, one can see that the significance ratios are
lower in magnitude and a spatial consistency with land cover is difficult to see. The scene looks noisy
except for areas of natural grasslands in the east of the map with greater magnitudes of significance
ratio. The winter and fall maps, however, are characterized by great significance ratios and distinct
spatial patterns. The spring-map already indicates a fading of spatial signatures, in particular over
agricultural areas in the center of the map. The lower magnitudes of significance ratio in the summer
and spring months indicate that increased vegetation cover due to crop growth and leaf-out in forest
vegetation increases the noise component in phase closures significantly, leading to lower significance
ratio. Another noticeable feature are the two separate patterns over natural grasslands in the center-
north of the fall-map, indicated by a red circle, which likely point to rain cells associated with wetting
of the area (blue in between). This is important to notice as rain events are the primary driver of soil
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Figure 4.11: Comparison of eight maps showing the annual differences in significance ratio derived from VV-pol and VH-pol.

moisture changes, hence the closure phase will be influenced by such events, which likely shows in
time series of significance ratio.

4.3.1. Time Series Comparison
The significance ratio time series in Fig. 4.13 to 4.16 present 100 time series for 2017, 2018 and
2019, illustrated as scatterers, in comparison with coherence, and LAI, as a function of different land
covers. The LAI as a measure of vegetation density shows the annual changes in vegetation while
the coherence is used to indicate the quality of the interferometric phase during periods of increased
vegetation cover. The LAI and coherence magnitudes for VV- and VH-pol are plotted to the right of
each figure for the same 100 fields. The error bars in the coherence time series indicate the standard
deviation of the values per date. Areas with difficult terrain (Pyrenees in the south and a small area
over the Central Massif) are masked from the data. Since the results in the previous section suggested
that the degree of spatial averaging has a great effect on the significance ratio, the 100 polygons with
the largest multilook (9,500 to 10,000 looks) are selected from different regions. This also allows to
adequately compare between land cover types, without having to consider different levels of spatial
aggregation. Empty columns indicate dates where no acquisition was collected by Sentinel-1. The
reasons to illustrate the time series altogether are the following:

Firstly, to visualize the significance ratios together might dismiss the individuality of each time se-
ries, but the central idea here was to potentially show consistency of significance peaks for certain
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dates that might reveal a sensitivity to vegetation dynamics despite the spatial distance between the
polygons. Secondly, to assess a potential similarity between 2017, 2018 and 2019 time series that is
consistent with dynamics in coherence and LAI, and thirdly to compare the general temporal character-
istics between different land cover types and polarizations, also with respect to quantity and frequency
of peaks of significance ratio.

This section is subdivided for the three main land cover classes natural grassland, agricultural crops
including intensive grassland, and broad-leaved forest. Those land cover types are chosen with respect
to characteristic properties, including annual phenology, vegetation type and density.

Natural Grasslands
Fig. 4.12 presents the significance ratios for 2017, 2018 and 2019 time series over areas of natural
grasslands. The peaks of the significance ratios suggest a relatively equal distribution throughout the
respective year, while VV-pol significance ratios are consistently greater. Most notable are a few larger
numbers of very high significance ratios up to 20, which appear a few times for all years. Considering
vegetation cover, the majority of grassland time series has a leaf area index between 0.5-2 throughout
the year with a peak in June for all years (LAI≈2). This month is associated with decorrelation, whereas
coherence magnitudes are at an average of 0.3-0.35 for VH and 0.46-0.51 for VV. Due to the relative
low vegetation throughout the year, the significance peaks largely represent the dielectric variabilities
from soil moisture changes rather than phase contributions from volume scattering within the vegetation
canopy. The majority of grassland areas, where those time series are derived from, are in the northern
part of the research area as well as a few hundred kilometers in the eastern part along the coast. With
a great sensitivity to soil moisture, single large peaks most likely represent rain events in those regions.
The 2017 and 2018 rain data in Fig. C.2 and Fig. C.3 for the stations Perpignan andMillau (see Fig. C.1)
in the Appendix indicate a few heavy rain events that coincide with dates of the most significance peaks,
e.g. noticeable between January and March, the rain event in mid-October for 2017 and the large rain
events between mid-October and December in 2018. Of course one can not relate each individual rain
peak to a single cluster of significance ratios, however, the distribution of the peaks generally indicate
a pattern similar to rain events throughout the year, as a number of high significance ratios is followed
by periods with lower significance ratios. The consistently low vegetation cover makes areas of natural
grassland a good candidate to explore the sensitivity of closure phase to soil moisture, comparable
with croplands after harvest.
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Figure 4.12: Natural grassland time series plots of Ψ𝑖,𝑗,𝑘 for 100 polygons with looks between 9,500 and 10,000 for 2017, 2018
and 2019. The plots on the left show the significance ratios for VV-pol, the center plots for VH-pol. The plots on the right indicate
the temporal variability of LAI (top) and coherence magnitude (bottom) for 2017, 2018 and 2019 respectively.

Agricultural Crops
Fig. 4.13 presents the land cover type winter crops (2017) which is compared to straw cereal (2018 and
2019) since the land cover maps from 2018 and onward divide winter and summer crops in individual
representatives. Straw cereal has by far the largest share in the group of winter crops, and is therefore
picked for the comparison.

The time series from all years show a large number of significance ratios (up to 30) between July
and December while the ratios are mostly < |5| between March and July. Compared to the LAI and
coherence time series, this period is associated with an increase in LAI and low coherence magnitudes
which is indicative for the phenological cycle of winter crops. Leaf emergence of winter crops starts in
early March and reaches its maximum mid-April to early May (LAI-peak) while the harvest takes place
between June and July. Following the crop growth period, the number of peaks abruptly increases
and remains large for the rest of both years from July onward, however the significance ratios are not
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consistently greater than during the crop cycle period, only sometimes. Comparing both polarisations,
VV-pol phase closures show a larger number and generally greater significance than VH-pol. Notice-
able is the fact that the majority of large ratios are positive. This observation holds true for 2017, 2018
and 2019 significance ratios.

Figure 4.13: Same setting as in Fig. 4.12 but for winter crops (2017) and straw cereal (2018 and 2019).

In Fig. 4.14 summer crops are compared with Corn, the most dominant representative for summer
crops from the 2018 and 2019 land cover classification. Over summer crops, the greatest significance
ratio are between January-June and October-December for time series of all years while most signif-
icance ratios not exceed |5| between June and October. In contrast to winter crops, summer crops
have their vegetative stages between late-May and June, indicated by increasing LAI and decreasing
coherence magnitudes, and are harvested between September and October (decreasing LAI, increas-
ing coherence). Similarly to winter crops, the period following the harvest event is associated with large
ratios for all years. All 2017, 2018 and 2019 time series show the highest count and largest peaks for
the period between January and May before the crop emergence begins.
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Figure 4.14: Same setting as in Fig. 4.12 but for summer crops (2017) and corn (2018 and 2019).

Intensive Grassland in Fig. 4.15 shows different temporal characteristics between 2017, 2018 and
2019 respectively. Comparing the evolution of LAI between the years, one can notice that 2017 indi-
cates two distinctive growth periods while this is not as pronounced for 2018 and 2019. Consequently,
major crop growth periods coincide with low coherence magnitudes between March and November.
Related to the temporal characteristics of coherence and LAI is the occurrence of significance ratios:
High peaks in January to April for 2017, 2018 and 2019 are observed when the LAI is < 1 and the co-
herence is between 0.3 and 0.5 for VH and VV respectively. The LAI remains > 1 over 2017, for 2018
the LAI decreases to about 1 at the end of September, and for 2019 remains > 1 which is in keeping
with only a few significance peaks for 2017 and a noticeably larger number for 2018 and 2019 between
September and December. Differences in the LAI trajectory for 2017, 2018/2019 time series over in-
tensive grassland can be explained by different crop types with different growth periods that perennial
crops feature. It seems that 2017 involves at least two crop types with distinctive growth cycles while
one crop type dominates for 2018. Because of that the second half of 2017 has significantly larger LAI,
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associated with low coherences, which led to a lower number of significance ratios when compared to
2018 and 2019. The fact that the LAI is consistently > 1 (excluding February and March) compared
to summer and winter crops is because perennial crops do not need to be replanted each year, they
automatically grow back after harvest. Hence a delimited period of “high peaks” and “low peaks” of
significance ratio is absent. One can also notice that the difference between VV-pol and VH-pol co-
herence is mostly < 0.1 for those periods while the different polarisations have a strong effect on the
closure phase significance. There are only a very few dates that caused high significance peaks for
VH-pol, about 1% with > |10| magnitude, compared to VV-pol.

Figure 4.15: Same setting as in Fig. 4.12 but for intensive grassland.

The crop cycles for winter, summer and perennial crops (intensive grassland) are associated with
sudden increases and decreases in vegetation density. Vegetation coverage leads to volume decorre-
lation during the spring and summer months due to the presence of multiple scatterers within a single
resolution cell which increases the phase uncertainty (Martone et al., 2016). For periods of vegetation
cover, indicated by higher LAI values (and therefore lower coherence magnitudes), the significance
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ratio tends to be low (> −5 and < 5) and consistently low, i.e. the observed closure phase values are
most likely to be noise rather than of geophysical origins.

Outside those periods, soils of winter and summer crops are barely vegetated, if at all, as the LAI
indicates < 0.5 values for both summer and winter crops, and the coherence magnitudes are generally
higher. Thus, the sensitivity of closure phase to dielectric changes from soil moisture is higher during
those periods. Even though the significance ratio is much higher than during periods of vegetation
cover (high LAI), it also varies a lot over time. At certain dates, the magnitudes of significance ratio are
as low as during the high LAI period, which means that the closure phase can only be treated as an
indicator of a geophysical origin for dates where the significance ratio is higher. In the summer/spring
period, the highest possible significance ratio seems to be confined to about |5| for summer and winter
crops, and <|10| for intensive grassland. Projecting that on the ability of closure phase to distinguish
between areas that are covered with vegetation or not, or to monitor vegetation growth from time series,
those values can be considered as adequate thresholds. If the significance ratios consistently exceed
those thresholds it can be assumed that the vegetation cover of the soils has decreased and vice versa.

Looking at winter crops in Fig. 4.13, one can also notice a negative trend from primarily positive
significance ratios (up to 10) at the beginning of the crop cycle in early March until the maximum LAI at
end of April. Such a trend is not noticeable over summer crops which are characterized by a period of
crop growth and a bare soil as well. A possible explanation for this trend could be found in differences
of the crop type structure and its associated LAI trajectories. The LAI trajectory of winter crops shows
a steady and elongated increase in contrast to the LAI evolution of summer crops which is rather steep
in comparison. Hence, high significance ratios (over bare soils) abruptly decrease due to the sudden
increase of the corn-LAI and the sudden decrease of the coherence magnitude, i.e. the closure phase
values are noise rather than of geophysical origins. Over winter crops (straw cereal), however, the
steady increase in LAI and decrease of the coherence magnitude along with a steady decrease of the
significance ratio indicates that the closure phase is still sensitive to ground surface properties, and the
effect of volume decorrelation as the vegetation density increases is delayed rather than sudden. The
fact that the significance ratios are primarily positive (before its magnitudes decrease with increasing
LAI for winter crops), generally seems to hold for periods when the soils are sparsely vegetated or bare,
i.e. before the leaf development of crops and after harvest.

Worth noticing are also the large (negative) cluster of peaks in January of 2017 over winter and sum-
mer crops. As Mironov et al. (2017) and Zwieback et al. (2011) indicate the similar dielectric response of
drying and freezing soils, those large significance ratios are likely linked to frozen soils in early January.
This is not an objective of this study but potentially interesting to explore in future research.

Broad-Leaved Forests
The significance ratios over broad-leaved forests in Fig. 4.16 show that the recurrence and magnitude
of its values is generally lower when compared to the other cover types. The coherence magnitudes
are consistently low as well, mostly ∼0.1. The LAI indicates that leaf development (leaf-out) starts in the
beginning of April and reaches its peak mid-May. The LAI remains at its peak of about 6 and decreases
in October, when the leaf-fall has set in. Outside this period, the LAI is mostly< 1 and not zero due to the
presence of grass or other low vegetation on the forest floor. The significance ratios are generally the
lowest for the period of maximum canopy development, except a few single peaks. Worth mentioning
is the accumulation of higher ratios, in December 2018 where both polarizations indicate peak-cluster.
This could be caused by soil wetting since the sensitivity to soil moisture increases when the trees
are leafless. Moreover, scattering contributions from double-bounce with bare tree trunks enhance
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the closure phase signal. De Zan and Gomba (2018) describe that each bounce causes a phase
delay which adds to the final phase triplet. Two bounces with an equal effect on the interferometric
phase would lead to a doubled phase effect in the interferogram and hence the closure phase would
also double. This could be a possible explanation for high ratios in periods where the LAI is < 1. In
comparison to the other land cover types, the time series lack the distinctive seasonality observed for
winter and summer crops, i.e. a distinct period where the soils are bare.

Figure 4.16: Same setting as in Fig. 4.12 but for broad-leaved forest.

4.4. Spatial Consistency of Significance Ratio
In this section, the correlation between significance ratio time series from 2017 and 2018 is assessed
as a function of spatial distance between the polygon-fields. The objective of this assessment was to
find out how dependent the consistency of the significance ratio is on locality, i.e. if phase closures are
primarily sensitive to local target changes, such as soil moisture variabilities and how this changes with
spatial distance. The assessment was performed through Pearson’s R correlation analysis in compari-
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son for different land cover classes. The assessment was also carried out for amplitude backscatter to
find out, if both significance ratio and amplitude have a similar sensitivity to distance. Including Theia’s
soil moisture product in this comparison served the purpose to investigate if the sensitivity to distance
between the soil moisture product, significance ratio and amplitude is similar. The sensitivity analysis
of significance ratio to spatial averaging proved that time series from different fields (maximum distance
25 km) had a moderate to strong R over crops and grassland. As the level of spatial aggregation was
a limiting factor for the similarity between significance ratio time series, only fields with a size of > 8000
looks were considered for this analysis. Pearson’s R was then estimated over pairs of fields that are
grouped in bins with a distance of < 20 km to one another. It has to be mentioned that due to the het-
erogeneous land cover distribution over the research area, the maximum distance between individual
land cover polygons is at 250 km for grasslands and forests and kept at 210 km for crops to guarantee
a sufficient number of polygons per distance bin.

4.4.1. Agricultural Crops
Fig. 4.17 compares the boxplots trajectories of Pearson’s R over agricultural crops for 2017 and 2018,
to analyse if a sensitivity to distance largely depends on the “exact” land cover type, or rather on the
general spatio-temporal characteristics and similarities in vegetation structure. E.g., corn and sunflower
(2018, 2019) are different types of crops, but are characterised by a similar crop cycle (see Fig. 4.14),
and therefore both classified as summer crop for the 2017 nomenclature. Due to the shortage of
fields for sunflower, summer crops are compared to corn fields. The upper panel shows winter and
summer crops for 2017, the lower panel presents straw cereal (winter crop) and corn (summer crop)
for 2018. The boxplot trajectories for both years indicate that the distance between the time series
has a significant effect on the correlation between significance ratios. Straw cereal has a moderate
Pearson’s R of 0.51 at short distances < 20 km for both polarisations, which decreases to 0.18 (VV)
and 0.13 (VH) at 210 km. Winter crop (2017) has a similar evolution, however, slightly lower R at 0.39
(VV, VH) and a relatively steady decrease to about 0.10 (VV) and 0.12 (VH). Summer crop (2017)
shows a similar trajectory to winter crop with moderate R at 0.40 (VV) and 0.42 (VH), decreasing
to significant correlation at 210 km (about 0). The boxplot evolution of corn (2018) shows a more
pronounced sensitivity to distance as the median R decreases from 0.51 to 0.12 over 70 km, and
remains constant with increasing distance. No significant differences between VV- and VH-pol are
noticeable for each crop type.

The similarity analysis for amplitude backscatter in comparison shows a similar sensitivity to dis-
tance when comparing the boxplot trajectories to significance ratio, however, the correlation between
the time series is generally higher across the crop types, independent of the polarisation. The correla-
tion at small distances is between 0.9 and 0.8 for summer crops, winter crops and straw cereal, and at
0.66 for Corn. With increasing distance between the polygons, the correlation decreases similarly as
observed for significance ratio. The boxplots of Theia’s soil moisture product show a steady decrease
in correlation with increasing distance as well. The general trends of the trajectory are similar to the
ones observed for significance ratio and amplitude. Over straw cereal, the correlation is at R=0.96 for
distances < 20 km and decreases to R=0.52 at 210 km. Over summer crops, R decreases from 0.95
to 0.35 at 210 km.



4.4. Spatial Consistency of Significance Ratio 49

Figure 4.17: Boxplots of Pearson’s R for 2017 and 2018 time series of significance ratio over crops in comparison with amplitude
and Theia’s soil moisture product as a function of distance between the time series. The line shows the median value. The
bottom and top of the box the 25th and 75th percentiles, respectively. The upper tail is the 75th percentile plus 1.5 times the
difference between the median and 75th percentile. The lower tail is the 25th percentile minus 1.5 times the difference between
the median and 25th percentile. Outliers are plotted as diamonds.

4.4.2. Grasslands and Broad-Leaved Forest
Fig. 4.18 compares Pearson’s R for significance ratio for the land cover types natural and intensive
grassland, and broad-leaved forest with backscatter amplitude. The boxplot trajectory of broad-leaved
forest can not effectively indicate the effect of distance on the similarity as the initial similarity for ad-
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jacent time series is low to very low (VH: 0.25, VV: 0.21). The trajectories for both polarisations show
a further decrease in correlation to ∼0 for VV and 0.10 for VH. Natural grassland however suggests
a similar sensitivity to distance as observed over crops. Pearson’s R is moderately high at 0.52 (VV)
and 0.45 (VH) and decreases to 0.15 for both VV- and VH-pol over 70 km distance. Afterwards, the
similarity between the time series does not seem to be affected significantly by further distancing. The
correlation for intensive grassland decreases from a moderately high R at 0.42 (VV) and 0.37 (VH) to
0.11 (VV, VH) at 110 km distance. Interestingly, the similarity seems to increase again between the 110
km and 170 km distance lag, before it decreases thereafter. One has to consider the characteristics of
this land cover type here. As intensive grassland features different perennial crops, it is argued that the
initial decrease in correlation is caused by the effect of distance over different vegetation types while
the crop types at a distance of 110-170 km to one another are largely the same.

Comparing to the boxplots of backscatter amplitude, the trajectory show noticeable differences.
For natural grassland, the spread in R is significantly larger when compared to significance ratio. The
suspicious buckling in the evolution of intensive grassland boxplots is also noticeable for backscat-
ter, particularly for VV-pol. In contrast to the significance ratio, boxplot trajectories of backscatter
over broad-leaved forest indicate a high initial correlation at 0.76 (VV) and 0.93 (VH) which decreases
steadily to low correlations of 0.36 (VV) and 0.51 (VH) respectively. This highlights the ability of ampli-
tude backscatter to monitor vegetation, leading to similar time series even if the distance between the
fields is large. The generally higher correlations between VH-pol time series over broad-leaved forest
compared to VV-pol is an indication for the better ability of VH-pol to monitor vegetation.
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Figure 4.18: Boxplots of Pearson’s R for time series of significance ratio over forest and grassland Ψ𝑖,𝑗,𝑘 in comparison with
amplitude as a function of distance between the time series. The line shows the median value. The bottom and top of the box
the 25th and 75th percentiles, respectively. The upper tail is the 75th percentile plus 1.5 times the difference between the median
and 75th percentile. The lower tail is the 25th percentile minus 1.5 times the difference between the median and 25th percentile.
Outliers are plotted as diamonds.

4.4.3. Effect of Spatial Distance
The correlation analysis revealed that land cover types with lower vegetation in particular, including
winter/summer crops and natural grassland, show very similar results as Pearson’s R decreased with
increasing distance between the land cover polygons. This suggested that geophysical phase closures
were primarily initiated by local events associated with e.g. precipitation which impacts soil moisture
dynamics. Backscatter amplitude which is a well established observable to measure soil moisture
changes, largely coincided with the boxplot trajectories from significance ratio, indicating the same
underlying contribution linked to moisture changes. However, R was consistently larger than for sig-
nificance ratio across all distances. Boxplot trajectories for Theia’s soil moisture product showed a
similar decline in correlation with distance. The striking observation of the buckling in the trajectory
of intensive grassland boxplots needs some further thoughts: Intensive grassland is primarily located
between summer and winter crops in an area surrounding Toulouse. As indicated by Fig. 4.15, the
vegetation cover is significantly higher throughout the year compared to natural grassland and annual
crops, and the evolution of LAI for 2017 indicates two distinctive peaks of crop growth. The alternation
of large significance ratios and periods of crop growth (associated with lower significance ratios) at two
periods in Fig. 4.15 originates from different crops at presumably different regions. Because of that it
was argued that the buckling is owed to largely the same vegetation cover at this distance, therefore,



4.4. Spatial Consistency of Significance Ratio 52

R was sensitive to the changing magnitudes of significance ratios related to different crop cycles which
happened to be consistent at 110-170 km distance. The comparably high correlation between time
series for this land cover type also suggests that the closure phase sensitivity to soil moisture changes
is robust to moderate vegetation cover of about 3-4 LAI. Another reason why this observation is quite
valuable is the fact that the buckling is also reflected in the amplitude trajectory which further confirms
that amplitude and phase closure are sensitive to similar target properties.

4.4.4. Spatial Comparison between Significance Ratio and Amplitude
The Pearson correlation analysis between amplitude backscatter and significance ratio showed that
both observables were similarly sensitive to increasing spatial distance. The decrease in correlation
between the individual time series (also in comparison with Theia’s soil moisture), suggested that both
observables are largely influenced by local target changes. Since amplitude backscatter is sensitive
to soil moisture and significance ratio showed the largest magnitudes over periods of low vegetation
cover (LAI <1), this section aims to compare both observables spatially for a period where the soils are
sparsely vegetated or bare. The goal was to investigate if a sensitivity to soil moisture is reflected in
the spatial signatures of both amplitude and significance ratio, and what the differences between the
two were. Therefore, the land cover type winter crops was chosen for the comparison between three
phase triplets and the five corresponding amplitude images between 10.08.2021 and 03.09.2021. The
maps in Fig. 4.19 are filtered for fields of winter crops and additionally for significance ratios > |2| to
highlight spatial signatures (as shown in Fig. 4.4). The background shows exaggerated hillshading to
indicate topography. The chosen period is after the harvest has taken place over the whole area and
the bare soils are only exposed to rainfall rather than additional irrigation.

The significance ratio varies noticeably between the three maps, showing distinct non-random con-
tiguous patterns. There is visual evidence that the red area in the left part of the first triplet changes
from red, positive significance ratio, to blue which likely indicates a relative change in the target proper-
ties related to soil moisture changes. A few precipitation events between mid-August and September
(see Fig. C.2) most likely caused the different significance ratio patterns in the maps. The significance
ratio remains negative for the aforementioned area which means that the soil moisture change, pre-
sumably soil wetting due to the precipitation events, extended until the last date, otherwise the phase
would have been consistent and mostly filtered out due to the predefined < |2| ratios. The amplitude
time series as supplementary products attempt to help understanding the relative soil moisture variabil-
ities. The single acquisition dates help to isolate relative changes of the ground properties by simply
comparing the spatial signatures of the patterns with the ones observed in the triplets. In general, the
spatial patterns show a good similarity with the ones in the triplets. Obviously those analysis fall victim
to subjectivity, but visual observations can be summarized nevertheless:

In the 16.08.2017 amplitude image for example, one can see that the blue area in the map cen-
ter extends about 150 km to the east. The same pattern can also be found in the first and second
significance ratio map. However, the corresponding significance ratio indicates another distinctive red
pattern that extends in northeast direction which is not as pronounced in the 16.08.2017 amplitude
image. Since linear changes in moisture have a cubic effect on closure phases (De Zan & Gomba,
2018) is likely the reason for the enhanced significance ratio signal in this area. In general, changes of
amplitudes towards larger values are linked to soil wetting (Entekhabi & Moghaddam, 2007). Assuming
that holds true for what is illustrated in the map, the positive significance ratio would have been caused
by soil wetting. Moving forward, the amplitude acquisition on 28.08.2017 again shows blue and green
patterns that match with those illustrated in the second and third significance ratio image. However,
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here a relative change towards larger amplitudes is reflected in negative significance ratio signs while
lower backscatter is indicated by positive significance ratios.

Figure 4.19: Three consecutive Ψ𝑖,𝑗,𝑘 maps with exaggerated hillshading between 10.08.2017 and 03.09.2017 and five consec-
utive amplitude maps for the same dates as given by the significance ratios. The maps are filtered to only represent the land
cover winter crops. The dates are picked because of the bare soils after harvest which increases the sensitivity of the radar to
soil moisture.



5
Discussion

The initial motivation for this study was very curiosity driven in the beginning because a characterisation
of closure phase over different land covers has not been carried out in previous research. The aim
of this project was to provide guidelines on the derivation of closure phase, standardized through a
significance test, and essential conclusions from a spatial and temporal characterisation over different
land cover types. Those are important steps towards using the closure phase for soil and vegetation
monitoring in the future.

To this end, the objectives of this study were to derive closure phases over different land covers (1),
to adapt the closure phase significance test and define measures for its parameter-inputs (2), and to
demonstrate the effect of spatial averaging on the closure phase value and consistency (3). Important
decisions and conclusions proved to be essential for the subsequent characterisation and analysis of
phase closures over different land covers and in comparison with other observables (4). Based on
these objectives, this chapter reflects on the main findings of this study, discusses its conclusions and
limitations, and suggests recommendations for future research.

5.1. Parameter Assumptions in the Significance Test
A big part of this study ended up addressing a lot of methodological questions that were not anticipated
before but were essential and valuable to derive a significance ratio and to characterize it spatially
and temporally. Multilooking in this study was based on the spatial aggregation of pixel-values over
homogeneous fields with similar land cover. This approach was advantageous for two reasons in
particular: Firstly, the quality of the interferometric coherence estimate improves as the number of
averaged samples increases and secondly the aggregation of pixels over land cover fields takes the
spatial and temporal differences between land covers into account (Nikaein et al., 2021). However, for
simplification we assumed that the number of averaged samples in a field is equal to the number of
independent looks nwhich is wrong. Put simply, adjacent pixels in a raw SAR image become dependent
once a SAR matched filter has been applied (Gierull & Sikaneta, 2002). The effect is that givenm SAR
image pixels that form onemultilooked pixel, only n<mare statistically independent. In practical terms,
this means that fields which obtained the same number of samples due to similar spatial sizes, have
different number of looks.

54
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Besides that, the coherence estimate is biased towards higher coherences magnitudes, in partic-
ular if the a number of looks is low. The coherence bias and its estimation was explained in detail in
Chapter 3 and visualized in Fig. 3.5 as a function of different looks. The definition of parameters for the
coherence interpolator in the significance test was based on the statistical relation between the number
of looks and standard deviation in coherence estimation. In view of the above mentioned assumptions
regarding the number of looks and the uncertainties in the coherence estimate, this choice requires a
critical comment. In the attempt to find a measure for appropriate step sizes in the coherence inter-
polator in relation to the averaged samples per field, estimates of the standard deviation in coherence
magnitudes were exploited. The decrease in standard deviation as the number of looks increases, as
illustrated in Fig. 3.5, was used to define the size of coherence interpolator steps. Even though dif-
ferences in the quality of the coherence estimate with respect to the number of looks is principally an
appropriate measure to determine the interpolator setup, the attempted accuracy in defining a “correct”
step size is prone to uncertainties itself, in particular for low coherences where a lot of averaging is
required to reduce the coherence bias. The uncertainty and bias involving the estimation of coherence
magnitudes undermines the fine tuning of the coherence interpolator. This was at least acknowledged
in choosing to confine the minimum coherence step to 0.01 referring to 100 coherence values between
0 and 1.

5.2. Spatial Averaging over Different Land Cover Types
The degree of spatial averaging proved to have a significant impact on significance ratio values and
the temporal correlation between significance ratio time series. A visual comparison of three maps with
different multilooking ranges indicated that the degree of spatial averaging is important to accentuate
spatial signatures and increase the magnitudes of significance ratio.

In order to compare the effect on the significance values, it was decided to calculate the RMS for
fields of different multilooks and compare its average across different land covers. The purpose of
this comparison was to demonstrate the effect of averaging on the magnitudes of significance ratio
rather than to indicate the influence on its central tendency. Large significance ratios that are not
“expected” given the coherence magnitudes and degree of multilooking were particularly interesting
for the understanding of phase closures over different land covers. The comparison showed that an
increase in multilooking increases the magnitudes of significance ratio across all land cover types,
however, the RMS over croplands and natural grasslands were consistently larger than compared to
forests and intensive grasslands.

The two primary differences between the land covers that influence the effect of multilooking on
the significance ratio are the vegetation density and the consistency of vegetation cover throughout
the year. Over low vegetated areas such as natural grasslands and croplands (before bud and leaf
development, after harvest), the radar primarily senses the ground surface while over cover types with
relatively large vegetation (greater LAI), including forests and intensive grasslands, it primarily senses
the vegetation canopy. Volume scattering from vegetation is one of the main sources that corrupts the
interferometric phase and leads to decorrelation (Flores-Anderson et al., 2019). For C-Band more so
than for longer wavelength, the sensitivity to volume scattering is high (Flores-Anderson et al., 2019)
which led to a larger volume scattering component in phase closures over forests (in particular) and
intensive grasslands. The differences in sensitivity can further be explained by considering both the
significance ratio and the observed closure phase in comparison. The influence of phase noise was
the highest over forests and almost independent of the multilook which showed in the greatest magni-
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tudes of the observed closure phase. The RMS of the significance ratios indicated that a higher level
of averaging was required to improve its SNR and increase its magnitudes. Worth mentioning are the
characteristics of intensive grasslands. Similar to the crop types, the observed phase closures over
intensive grassland showed lower phase levels while the sensitivity of the significance ratios to multi-
looking was comparably low, similarly as low as over forests. This emphasizes the importance of the
significance test, as different magnitudes of the signal and noise component respectively can lead to
similar magnitudes of the significance ratios.

Here it is argued that over land cover with low vegetation (natural grasslands and agricultural crops),
changes in the dielectric properties from changing soil moisture (in the top few cm) and consistently
greater coherences (see Fig. 4.13, 4.14 and 4.12) are linked to the greatest significance ratios, hence
yield the greatest RMS. Those large changes of the dielectrics are not sampled by the radar over dense
vegetation since the ground is shielded by vegetation. Periods of vegetation cover that are associated
with volume decorrelation, influenced the degree of spatial averaging that was required to increase the
SNR of the geophysical closure phase over intensive grasslands and forests, leading to lower RMS of
the significance ratio as multilooking increased.

Increased multilooking also had a positive effect on the linear relation between signficance ratio time
series, in particular over croplands and the grassland cover types as suggested by Fig. 4.8 to 4.17. In
contrast, the effect was very low over broad-leaved and coniferous forests. The aim of this comparison
was to understand, if spatial averaging not only increases the magnitudes of significance ratio across
different land covers but has also a significant effect on accentuating an underlying geophysical origin:
If the degree of spatial averaging enhances the signal-to-noise ratio enough to isolate a geophysical
signal component, then significance ratios within short distances to one another were expected to have
a similar temporal signature. The results from Pearson’s correlation analysis suggests that cover types
that are comparably low in vegetation yield the most consistent significance ratios. This suggests that
temporal changes of the dielectrics on the ground surface provoke similar phase inconsistencies while
vegetation cover attenuates a consistent signal component, even if the degree of spatial averaging
is large. The results over intensive grasslands were particularly interesting as the effect of spatial
averaging on the magnitudes of the significance ratio was rather low, whereas the correlation between
the time series increased significantly with multilooking. This indicates that even cover types with
consistent vegetation cover and relatively low significance ratios can yield consistent signals.

Considering the role of different polarizations, generally speaking, cross-polarized (VH) data are
more sensitive to volume scattering of canopies whereas co-polarized (VV) data are typically more
sensitive to surface scattering components (Flores-Anderson et al., 2019). The impact of using different
polarizations is most pronounced in the RMS analysis of significance ratio over natural grasslands and
crops for VV-pol, where a gap is noticeable to forest and intensive grassland. An advanced sensitivity
of VH-pol to volume scattering can also be derived from the RMS analysis for the observed phase
closures, which obtained consistently greater RMS then compared to VV-pol. The greater sensitivity
of VV-pol to the surface component is reflected by a steeper increase of the RMS for significance ratio
which is not as pronounced for VH-pol. Interestingly, the differences in Pearson correlation between the
polarizations were marginal and not consistently lower or higher for either one of the polarizations. This
indicates that even though the closure phase is more sensitive to volume scattering and its significance
ratios are more influenced by decorrelation, the effect on increasing the temporal signature of the
geophysical phase closure is similar.

In this study the maximummultilook was limited to 10,000 looks, i.e. fields of 1x1 km. However, both
the trajectories of the respective land cover type for the RMS comparison and Pearson’s correlation
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analysis indicate that even further spatial averaging could increase the significance ratios as well as
the correlation between individual time series, which would further highlight its temporal signatures.
On the other hand, more averaging diminishes the spatial resolution which is not advantageous to
potentially monitor soil moisture changes over areas that are very heterogeneous in land cover such
as croplands. This tradeoff has to be considered, as the monitoring of soil moisture is particularly
interesting over agricultural crops. If closure phase were used for soil moisture retrieval or utilised as
a supplementary observable, the spatial resolution is an important deciding factor.

5.3. Closure Phase Sensitivity to Dynamics in Vegetation
The vegetation cover over soils seems to be the most relevant determining factor whether phase clo-
sures contain a great geophysical component or not. In a time series comparison of significance ratio,
coherence and LAI over 100 fields, all land covers showed a distinctive signature for significance ratio
that was consistent with characteristics observed for LAI and the coherence magnitudes. Periods of
vegetation growth with peak LAI between 4 and 7 (depending on the land cover) were associated with
coherence magnitudes < 0.2 and the lowest significance ratios. With reference to the time series, a
significance ratio of |5| seemed to be a good threshold value to distinguish between vegetation-covered
areas or to monitor vegetation growth over time using the magnitudes of significance ratio. During peri-
ods of low vegetation cover or over bare soils, the coherence was higher and the LAI were significantly
lower, < 1 over all land covers. Those periods were linked to the greatest significance ratios, which
suggests that most “true” phase closures primarily derive from changes in soil moisture in the top few
centimeter of the ground surface. The occurrence of significance ratios that were >> 5 was only ob-
served during those periods of low LAI. However, the significance ratios were not consistently above
the considered threshold value of |5|. Sometimes they were as low as during periods of vegetation
cover (high LAI), which means that the closure phase cannot be simply used as an indicator of a geo-
physical origin during those periods. Only for some dates. This suggests that a significant (or sudden)
change of the soil properties, e.g. induced by rainfall, is necessary to obtain significance ratios that are
much greater than |5|.

Drawing the simple and incomplete conclusion that phase closures obtained over densely vegetated
areas such as forests obtain no valuable information is too hasty. Previous research by De Zan and
Gomba (2018) pointed to different behaviours of the closure phase over different land cover types and
suggested the investigation of those findings in future studies. They observed a strong closure phase
signal and consistent retrievals of soil moisture over forests and suggested that the water status of the
trees and plants could contribute to the closure phase signal. Variations of the dielectric constant of
trees have been demonstrated by McDonald et al. (2002). This thesis also showed that forested areas
obtain the greatest (measured) phase closures, yet among all land cover types the significance ratios
were the lowest and the distinctive seasonality observed in the other cover types was not present.

5.4. Similarities between Amplitude and Closure Phase
In order to better understand the influences contributing to inconsistencies in phase closures, amplitude
backscatter was chosen for a comparison with significance ratio since its sensitivity to vegetation and
soil moisture is confirmed by many studies (e.g. Steele-Dunne et al. (2017) and Wagner et al. (2003)).
Hence, similarities in spatio-temporal characteristics allow to draw conclusions about the mechanisms
behind phase closure inconsistencies. The results from a comparison of the spatial consistency be-
tween time series of significance ratio and amplitude backscatter showed similar boxplot trajectories
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as the distance between the individual fields, that were compared, increased. This led to the initial
assumption that both observables are primarily influenced by local changes of the target properties
linked to soil moisture.

To confirm the similarities between significance ratio and amplitude backscatter spatially, three
maps of significance ratio were compared to the spatial signatures of the corresponding five ampli-
tude images over winter crops (Fig. 4.19). The dates 10.08.2017-03.09.2017 were picked intentionally
after harvest, where a significant increase in significance ratio was observed in Fig. 4.13 and soils were
barely vegetated. The comparison showed that variabilities in soil moisture cause similar spatial vari-
abilities in amplitude backscatter and significance ratio. Brightening effects from amplitude, i.e. greater
backscattering coefficients, stem from wet soils and vegetation and are indicated by the blue patterns
on the map. Green to yellow areas between the blue patches, i.e. lower amplitude backscatter, likely
indicate active raining, where the convection system likely caused signal attenuation (Flores-Anderson
et al., 2019). Presumably active raining was also found in Fig. 4.11 over an area in fall of 2018. Sim-
ilar patterns have been observed for the significance ratio, where the blue areas indicate the same
pattern as the blue areas in amplitude backscatter, suggesting that negative significance ratios have
been caused by soil wetting. However, in an earlier triplet, the positive significance ratios are linked to
greater amplitude backscatter, which was attributed to soil wetting as well. This ambiguity is owed to
the inherent moisture ordering problem in closure phases. The correct underlying moisture evolution
cannot be retrieved solely from the phase closure signs, as the correct ordering is subject to cyclical
permutations, meaning that the same closure phase sign can be caused by different moisture evo-
lutions. Also worth noting is the distinct red pattern in northeast direction in the 10.08-16.08.-22.08.
phase triplet, which is not as pronounced in the amplitude image. Since linear changes in moisture
have a cubic effect on closure phases (De Zan & Gomba, 2018) is likely the reason for the enhanced
closure phase signal in this area and further suggests the advanced capabilities of closure phase to
monitor soil moisture dynamics. The fact that using amplitude information for soil moisture retrieval
is less complicated and constrained than using phase triplets could be exploited for solving the cyclic
permutations and finding the correct moisture order.

There are also distinct differences that derive from the comparison between significance ratio and
amplitude backscatter. Considering the Pearson correlation analysis, the scaling of R is generally
higher for amplitude backscatter with medium-low correlation even at large distances, whereas the
correlation of significance ratio time series approach R=0 at > 200 km distances. Vegetation growth
is generally associated with an increase in amplitude backscatter (Vreugdenhil et al., 2018) which
translates into a consistent signal component. For significance ratios, however, periods of vegetation
cover were associated with the lowest magnitudes and a decrease in spatial consistency, as a result of
volume scattering mechanisms and the associated decorrelation. Hence, the similarity between indi-
vidual significance ratios decreased significantly during those periods. Since vegetation growth cycles
are relatively consistent (as illustrated by the LAI time series), an increasing amplitude backscatter over
vegetation covered areas adds a relatively consistent term to the time series which contributes to the
similarity between them. For closure phases, vegetation primarily increases the phase noise compo-
nent which subtracts from the correlation between the time series and decreases the significance ratio.
The “steady” decrease in correlation for both amplitude backscatter and significance ratio therefore is
primarily caused by local soil moisture changes during periods of low vegetation cover.

Considering the time series correlation over broad-leaved forests e.g., the dense vegetation cover
seems to largely suppress a potential consistent signal component due to low coherences over forests
and associated phase noise (as already discussed above), whereas the correlation for amplitude
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backscatter is significantly higher. However, this does not rule out the possibility that there is a con-
sistent phase closure mechanism for certain periods, e.g. linked to seasonal vegetation growth or
water uptake. The consistency of those single peaks in significance ratio across different time series,
however, would not lead to high scores of Pearson’s R. Therefore, more sophisticated measures of cor-
relation or change detection for time series over vegetated areas might be better to assess a consistent
signal. The influence of vegetation decorrelation remains a challenging factor in the understanding of
closure errors.

5.5. Limitations and Recommendations
It is acknowledged that the results and interpretations presented in this thesis are subject to limitations:

• Bounded multilook: Pearson’s R statistical analysis showed that the similarity between time
series strongly depends on the degree of spatial averaging, with the exception of forests. The
spatial aggregation of pixels for this research was kept at a maximum field size of 1x1 km, re-
ferring to 10,000 pixels. However, the results suggested that further aggregation over fields of
the same land cover type could presumably further increase the SNR of the geophysical closure
phase. One has to keep in mind the impeding effects due to atmospheric artefacts, wherefore the
averaging of the complex interferogram should be bounded to smaller field sizes (here 1x1 km).
Further averaging of phase triplets would require to 1) derive phase triplets similar to the ap-
proach applied in this project and 2) average the phases of the respective phase triplet thereafter
to increase multilooking.

• Pearson’s R as similarity measure: The Pearson correlation measures the linear similarity be-
tween all points in a time series and is therefore not a good measure to detect a few consistent
peaks in a time series. Time series of significance ratio were characterized by significantly larger
magnitudes for certain periods while vegetation cover introduced phase noise. Therefore, in the
case of forest vegetation and other densely vegetated land covers (which are generally associ-
ated with decorrelation and low significance ratios), alternative measures based on e.g. change
detection could provide more suitable ingredients to analyse consistent features in time series of
significance ratio. A relatively new approach for time series analysis refers to “shapelets” which
are described as discriminative sub-sequences of time series that best predict the target variable
(Grabocka et al., 2014). Those methods could help to identify certain land covers from a few
consistent peaks in time series of significance ratio.

• Synergies with amplitude backscatter: The comparison between single acquisitions of ampli-
tude backscatter and significance ratio showed noticeable spatial similarities, hinting that ampli-
tude could be a valuable observable to assist with solving the moisture order ambiguity problem in
phase closures. Amplitude can provide supplementary information in two ways: Firstly, from the
identification of similar patterns, one can derive between which two acquisitions the most signifi-
cant moisture change occurred. Secondly, the trend of change towards increasing or decreasing
amplitude values can provide valuable information about the correct moisture trajectory related
to the sign of the phase triplets. As negative or positive phase closures constrain the number of
possible moisture orders, intermediate amplitude data could be exploited to further constrain or
even solve the ambiguity problem.

• Clustering with respect to land cover: Unsupervised clustering of significance ratios based on
its temporal signatures was one of the initial research goals discussed for this project. However,
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due to the unknown requirements of spatial averaging and the lack of knowledge on how spa-
tial distance affects the correlation of significance ratio time series with respect to different land
covers, those questions had to be answered first. The results suggested that the geophysical
closure phase is primarily influenced by target changes that are very local, e.g. associated with
rain events. One would have to apply several constraints on the time series of significance ratio
(max. spatial distance, min. degree of multilooking) before attempting to cluster for different land
covers.



6
Conclusion

The research objectives of this study were to derive a significance ratio for closure phases from a
numerical significance test and to further characterize them spatially and temporally over different land
cover types. The results are important steps towards using the closure phase for soil and vegetation
monitoring in the future. A solution to aggregate phase closures based on land cover polygons was
presented first. Necessary modulations of the closure phase significance test were discussed and the
determination of its input-parameters were based on the statistical relationship between coherence
magnitudes and the number of looks on a per field basis. In the context of a comprehensive sensitivity
assessment, the effects of different degrees of spatial averaging on the significance ratio consistency
and values were analysed. Essential conclusions were used to characterize significance ratio spatially
and temporally, and in comparison with other satellite observables.

The research questions that were introduced in Chapter 1 are answered based on the results de-
rived in this thesis.

Question 1 - What processing steps are necessary and what parameter-based decisions are essen-
tial before performing a closure phase significance test?

For this study, a spatial averaging approach over entire land cover fields was chosen which ensured the
quality of the significance test and enabled to relate significant phase closures exclusively to the charac-
teristics of the respective land cover. An important additional step was necessary in preparing the land
cover maps: A visual inspection of the interferograms showed fringes that were related to atmospheric
effects on a km-scale. In order to mitigate the conservation of those artefacts during the subsequent
multilooking procedure, it was necessary to ensure spatial aggregation over bounded distances which
was given by applying a 1x1 km mesh-grid to the land cover maps. For the field-averaging, the com-
plex interferogram was restored from the coherences and amplitudes, each instance was multilooked
based on the land cover fields, and the coherences and phase angles were recomputed. A phase clo-
sure value for each land cover field was derived from the complex averaged coherence triple product.
The result were phase closures, strictly aggregated over one land cover type and different resolutions
ranging between 4 (minimum number of looks) and ∼10,000 looks.

The modified significance test required three parameter inputs: Number of Looks, Coherence In-
terpolator Steps, and Number of Model Simulations. The definition of those parameters was primarily
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based on the statistical relationship between the number of looks and the standard deviation in coher-
ence estimation, derived from Touzi et al. (1999). The number of looks was given by the number of
averaged pixels multiplied by four (pre-multilook of a single pixel). The coherence standard deviation
depends on the number of averaged samples, i.e. the greater the multilook, the smaller the estimates
for the coherence standard deviation (see Fig. 3.5). The greatest estimate for the coherence standard
deviation was determined as an appropriate step size for the definition of coherence interpolator steps.
Lastly, determining a minimum number of simulations was necessary in particular for fields with a mul-
tilook > 1000, because the size of the simulated array grew exponentially with the number of looks
and coherence combinations (see Fig. 3.6). For a low coherence combination (i.e. 0.1, 0.1, 0.1), the
running standard deviation estimated the standard deviation along with the mean in a single pass of all
model realizations. The results over different looks showed that the running standard deviation con-
verged faster as either the number of looks increased, or the coherence combination increased. From
a visual inspection of the curves presented in Fig. 3.7, a threshold for the running standard deviation
of 0.01 radians (∼0.57 degrees) was determined, while the minimum number of simulations regardless
should not be lower then 500. This was essential to obtain reasonable runtimes and prevented month
on end for minor improvement of �̂�Φ̂. A statistical relationship between the input-parameter was estab-
lished which is presented in Fig. 3.8.

Question 2 - What is the effect of spatial averaging on the significance ratio of closure phase and how
does the consistency between individual time series of significance ratio change as a function of
spatial averaging?

Spatial averaging proved to be very essential for increasing the SNR of the geophysical signal compo-
nent in phase closures, while the impact was more significant over fields with lower vegetation cover.
Increasing the number of looks, in principal, decreases the phase noise component in phase closures
while any geophysical component of the phase closure does not change. Increasing the SNR in phase
closures is the general reason behind the significance test, where the estimates of the expected phase
closure standard deviation depend on the degree of multilooking and the coherence magnitudes. Due
to those dependencies, the significance ratios allowed to make a comparison between fields of differ-
ent coherences and different looks. A visual comparison of three maps over the same area, filtered for
different look-ranges showed that increased multilooking was capable to increase the significance ratio
values and highlight consistent patterns of significance ratio. A comparison of the average RMS of sig-
nificance ratio time series for different multilooking degrees showed that the effect of spatial averaging
was different with respect to land cover type and choice of polarization. All land cover types indicated
an increase in the RMS as the number of looks per field grew while the most significant impact was
observed for crops and natural grassland. The fact that those land covers on average obtained the
greatest significance ratios and were most sensitive to spatial averaging was explained by the differ-
ences in vegetation cover. Volume scattering within vegetation increased the phase uncertainty and
resulted in lower significance ratios over forests and intensive grasslands, as indicated by lower RMS
and the differences presented in a time series comparison. Moreover, using different polarisation influ-
enced the magnitudes of significance ratios immensely. The sensitivity of VV-pol significance ratio to
multilooking was significantly higher then for VH-pol and the differences between the RMS trajectories
were much greater. The differences were explained by the greater sensitivity of VH-pol to vegetation
structure, i.e. volume scattering had a greater impact on VH significance ratio, whereas VV-pol was
more sensitive to surface scattering. This led to the distinct gap of RMS between cover types with lower
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vegetation and intensive grassland and forests.
In a second assessment, a Pearson correlation analysis was performed between time series of sig-

nificance ratio as a function of multilooking. All land cover types showed a steady increase in R as the
number of looks per field increased. Natural grasslands obtained the greatest R with 0.72 (VV, VH) at
10,000 looks. Summer crops R increased to 0.46/0.52 (VV/VH) and winter crops to 0.51 (VV, VH); over
intensive grassland R increased to 0.68/0.43 (VV, VH). Low to very low correlations were observed for
coniferous and broad-leaved forests with 0.20 and 0.12 respectively at 10,000 looks. The high correla-
tions, in particular over natural grassland and crops, suggest that the similarity between the time series
was primarily driven by soil moisture dynamics in the top few centimeters. The increasing trajectories
of all boxplots indicated that further averaging could further increase the SNR of the geophysical signal
in closure phase and lead to an even greater R between the time series.

Question 3 - How consistent is the significance ratio spatially and temporally as a function of different
land cover types?

The results in this study showed that there are distinct differences between the significance ratio over
different land cover types. An assessment of the impact of spatial averaging on the significance ratio
demonstrated the importance of multilooking to increase its values and the spatio-temporal consistency.
Therefore, the subsequent characterisation over different land cover types, spatially and temporally,
was carried out over fields with a multilook of > 8,000. A time series comparison clearly indicated
the influence of vegetation on the values of significance ratio. Over agricultural crops, the significance
ratios were the greatest before and after their respective crop cycle. Those characteristics were con-
sistent between all years and with respect to different crop cycles. During the period of maximum crop
development with LAI between 4 and 6, the significance ratio mostly decreased to < |5|, while periods
outside the crop growth obtained phase closures with magnitudes >|10|. However, the significance
ratios at times of low LAI where not always greater than during periods of vegetation cover (high LAI),
which indicates that a significant (or sudden) change of the soil properties, e.g. induced by rainfall,
is necessary to obtain significance ratios that are much greater than |5|. Over natural grasslands, in
contrast, the significance ratios were consistently large throughout the year, without a distinct period
of exceptionally low or high significance ratios. This coincides with comparably low LAI (mostly < 2)
and coherence magnitudes that did not have a distinct pattern throughout the year, such as the sud-
den decrease during crop growth. Over broad-leaved forests, the significance ratios where generally
lower, mostly <|5|. The characteristical seasonality and distinct periods of greater significance peaks
generally allow to distinguish between time series from different land cover types, despite the fact that
the time series were derived from different locations over the whole research area.

Results from the Pearson correlation analysis to assess the spatial consistency of significance ratio
time series showed that the correlation between the time series decreased with increasing distance.
Natural grasslands and the crop types indicated a similar sensitivity to increasing distance, with the
steepest decrease in correlation observed over the first 90-100 km. The high dependence on the spa-
tial proximity highlighted the sensitivity of closure phase to local target changes, primarily influenced
by soil moisture changes. Theia’s soil moisture product showed a similar boxplot trajectory with the
steepest decrease in R over the first 90-100 km as well. The correlation of significance ratios over
forest areas was generally very low (R < 0.2).
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Question 4 - Is the significance ratio consistent with spatial characteristics observed for SAR ampli-
tude?

An assessment of Pearson’sR for time series of significance ratio and amplitude backscatter at different
distances showed that the boxplot trajectories in Fig. 4.17 and Fig. 4.18 have a similar decreasing
trend for natural and intensive grasslands, and croplands. The boxplot trajectories were compared
to boxplots of Theia’s soil moisture product which indicated a similar sensitivity to spatial distance.
This implied that both observables are similarly influenced by local changes of the ground properties
associated with soil moisture changes. Over forested areas, the significance ratio generally indicated a
very small correlation between the time series, whereas amplitude time series were strongly correlated
at small distances and still moderately correlated at> 200 km distance. The higher correlation between
amplitude time series was attributed to the high sensitivity of amplitude to vegetation which resulted in a
consistent signal. For significance ratio, however, periods of vegetation cover were associated with low
significance scores and decorrelation. Amplitude and significance ratio were further assessed spatially
over winter crops which confirmed that spatial signatures of amplitude backscatter are consistent with
those of significance ratio. The period for the spatial comparison between amplitude and significance
ratio was intentionally picked in late summer (after harvest) to ensure that the soils are bare and the
radar senses the ground surface. The similar sensitivity of both observables to soil moisture changes
suggests that amplitude backscatter could be useful to resolve the ambiguity associated with phase
closures and provides an essential tool for soil moisture monitoring using the closure phase in the near
future.

6.1. Added Value and Future Work
The results in this thesis provide further directions towards using the closure phase for soil and vegeta-
tion monitoring in future applications. This necessarily requires that its spatial and temporal character-
istics are understood well. In the attempt to characterise the significance ratio of closure phases over
different land cover types, a spatial averaging approach was applied to SAR pixels over areas with sim-
ilar land cover. A closure phase significance test allowed to compare phase closures over fields with
different coherences and different number of looks. Provided that the degree of spatial averaging was
large enough, it was possible to relate differences in the magnitudes, and spatio-temporal signatures
of the significance ratio to different land cover types. The results further pointed to a complementarity
of the significance ratio with amplitude backscatter.

Those gained insights are essential to better understand the influence of soil moisture and vegeta-
tion dynamics on “true” phase closures, in particular with respect to different land covers. Future efforts
should make use of the spatial and temporal features and different behaviours of phase closures over
different land cover types. Eventually, the closure phase can be exploited for application including soil
moisture retrieval, vegetation monitoring, or to separate their contribution from other signals, such as
InSAR deformation estimates.
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A
Sampling Histograms

Figure A.1: Histogram for polygons per looks-bin for the land cover types broadleaved-forest (left) and coniferous forest (right)

Figure A.2: Histogram for polygons per looks-bin for the land cover types natural grassland (left) and intensive grassland (right)
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Figure A.3: Histogram for polygons per looks-bin for the land cover types winter crops (left) and summer crops (right)



B
Land Cover Nomenclature Translation

This table presents a comparison between 2017, 2018 and 2019 nomenclature used by Theia for their
2017, 2018 and 2019 land cover maps. The summer and winter crops are further divided in separate
crops. The remaining land cover classes are consistent between the years.
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Table B.1: Comparison between Theia’s land cover nomenclature for 2017 versus 2018/2019

Theia Land Cover Nomenclature

2017 2018 and 2019

Continuous Urban Fabric Continuous Urban Fabric

Discontinuous Urban Fabric Discontinuous Urban Fabric

Industrial and Commercial Units Industrial and Commercial Units

Road Surfaces Road Surfaces

Annual Winter Crops Rapeseed

Annual Winter Crops Straw Cereals

Annual Winter Crops Protein Crops

Annual Summer Crops Soy

Annual Summer Crops Sunflower

Annual Summer Crops Corn

Annual Summer Crops Rice

Annual Summer Crops Tubers/Roots

Intensive Grasslands Intensive Grasslands

Orchards Orchards

Vineyards Vineyards

Broad-leaved Forest Broad-leaved Forest

Coniferous Forests Coniferous Forests

Natural Grasslands Natural Grasslands

Woody Moorlands Woody Moorlands

Mineral Surfaces Mineral Surfaces

Beaches and Dunes Beaches and Dunes

Glaciers or Snow Glaciers or Snow

Water Water



C
Precipitation Stations and Data

Figure C.1: Theia land cover map showing the location of all precipitation stations.
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Figure C.2: 2017 daily precipitation recorded by rain gauges in Occitanie.

Figure C.3: 2018 daily precipitation recorded by rain gauges in Occitanie.
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Figure C.4: 2019 daily precipitation recorded by rain gauges in Occitanie.
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