<]
TUDelft

Delft University of Technology

A scalable infrastructure for teaching concepts of programming languages in Scala with
WebLab

An experience report

Van Der Lippe, Tim; Smith, Thomas; Pelsmaeker, Daniél; Visser, Eelco

DOI
10.1145/2998392.2998402

Publication date
2016

Document Version
Accepted author manuscript

Published in
SCALA 2016 - Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala

Citation (APA)

Van Der Lippe, T., Smith, T., Pelsmaeker, D., & Visser, E. (2016). A scalable infrastructure for teaching
concepts of programming languages in Scala with WebLab: An experience report. In SCALA 2016 -
Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala (pp. 65-74). ACM.
https://doi.org/10.1145/2998392.2998402

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/2998392.2998402
https://doi.org/10.1145/2998392.2998402

A Scalable Infrastructure for Teaching Concepts
of Programming Languages in Scala with WebLab

An Experience Report

Tim van der Lippe

Thomas Smith Daniél Pelsmaeker

Eelco Visser

Delft University of Technology

T.J.vanderLippe@student.tudelft.nl, T.N.Smith@student.tudelft.nl, D.A.A.Pelsmaeker@student.tudelft.nl,
E.Visser@tudelft.nl

Abstract

In this paper, we report on our experience in teaching a
course on concepts of programming languages at TU Delft
based on Krishnamurthi’s PAPL book with the definitional
interpreter approach using Scala as meta-language and us-
ing the WebLab learning management system. In particular,
we discuss our experience with encoding of definitional in-
terpreters in Scala using case classes, pattern matching, and
recursive functions; offering this material in the web-based
learning management system WebLab; automated grading
and feedback of interpreter submissions using unit tests; test-
ing tests to force students to formulate tests, instead of just
implementing interpreters; generation of tests based on a ref-
erence implementation to reduce the effort of producing unit
tests; and the construction of a product line of interpreters in
order to maximize reuse and consistency between reference
implementations.

Categories and Subject Descriptors K.3.2 [Computers
and Education]: Computer science education; D.3.4 [Pro-

gramming Languages]: Processors—Interpreters; D.2.5 [Soft-

ware Engineering]: Testing and Debugging—Test genera-
tion

Keywords Teaching, Concepts of Programming Languages,
Definitional Interpreters, Testing, Scala, WebLab

1. Introduction

There are essentially three approaches to the study of con-
cepts of programming languages. A popular approach is to
study several real world programming languages as repre-
sentative examples of (collections of) concepts [13, 17]. The
study activity consists of reading typical example programs

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SCALA’16, October 30-31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...
http://dx.doi.org/10.1145/2998392.2998402

65

and perhaps writing some programs in each language to con-
duct comparative experiments. This approach requires no
other tools than existing programming languages and has the
useful side effect of teaching these languages. However, the
approach lacks depth and precision; students only get an un-
derstanding of concepts through their observable behavior in
experiments.

An approach that addresses this concern is to study the
formal semantics of programming languages. For example,
Nielson and Nielson [7] present the formal specification of
languages using denotational, operational, and axiomatic se-
mantics. This provides a precise description of the meaning
of a language and supports formal reasoning about applica-
tions such as program analysis. The recent work of Pierce et
al. [10] transforms this approach from paper formalization to
mechanized formalization with proof assistants. The down-
side of this approach is that it requires the introduction of a
fair amount of heavyweight theoretical machinery.

The third approach provides a middle ground between
these approaches by using definitional interpreters as its
main vehicle. A definitional interpreter, as introduced by
Reynolds [11, 12], is a program that interprets an abstract
syntax tree representation of a program and computes its
value. This makes explicit the mechanisms behind language
constructs, or at least abstractions of such mechanisms. It al-
lows to directly study the operational behavior of language
constructs and to study the effect of alternative semantics by
means of experiments. This approach combines the experi-
mental style of the first approach with the precision of the
second without introducing more machinery than that of a
basic functional language. The approach was introduced as
a tool for teaching programming languages by Kamin in his
book “Programming languages — an interpreter-based ap-
proach” [2]. Krishnamurthi has adopted the approach, first
using Scheme as meta-language and object language [4],
more recently using the Pyret teaching language as meta-
language and a Scheme-like language as object language [5].

In this paper, we report on our experience applying the
definitional interpreter approach in a course on concepts of
programming languages at TU Delft using Scala as meta-

language and using the WebLab learning management sys-
tem [3, 15]. The course is based on Krishnamurthi’s PAPL
book [5]. In our course we chose to adopt Scala instead of
Pyret as the implementation language. Scala provides simi-
lar features for algebraic data type definition, pattern match-
ing, and immutable data types that simplify programming
language parsing and interpretation. Using Scala introduces
our students to functional programming on a platform they
are familiar with. And it also helps that there are more Scala
resources for the students to consult. (The existing support
for Scala in WebLab also contributed to the choice of lan-
guage.)

The main study activity in the course is writing inter-
preters. However, just submitting the code of interpreters
makes grading a significant effort (especially considering the
increasing enrolment into the curriculum) and does not en-
courage students to put additional effort in developing ex-
amples and test cases for the languages they implement. To
address these concerns we have developed infrastructure for
automatically assessing student submissions and providing
feedback at scale and such that the effort of developing as-
signments and their automated grading is manageable. In
particular, we discuss our experience with

¢ encoding of definitional interpreters in Scala using case
classes, pattern matching, and recursive functions (Sec-

tion 2);

e offering this material in the web-based learning manage-

ment system WebLab (Section 3);

e automated grading and feedback of interpreter submis-
sions using unit tests (Section 4);

e generation of tests based on a reference implementation
to reduce the effort of producing unit tests (Section 5);

e testing tests to encourage students to formulate tests,
instead of just implementing interpreters (Section 6); and

e the construction of a product line of interpreters in order
to maximize reuse and consistency between reference
implementations (Section 7).

We expect that this report will be helpful for instructors
considering to apply the approach in their courses.

2. Definitional Interpreters in Scala

The course revolves around developing interpreters for a
range of small languages with representative language con-
structs. In this section we illustrate the approach by means of
an interpreter for a small language with arithmetic and func-
tions as first-class citizens, which we will use as the running
example in the rest of the paper.

Abstract Syntax Rather than putting much emphasis on
syntax and parsing, PAPL! makes the abstract syntax the
central representation in terms of which semantics is studied.

!'We will attribute the approach to the book [5] using its acronym PAPL
rather than to its author(s) and omit further citation.

66

sealed abstract class Ext

// Numbers

case class NumExt(num: Int) extends Ext

// Binary and unary operators. E.g.: (+ 1 3)

case class BinOpExt(s: String, 1: Ext, r: Ext)
extends Ext

case class UnOpExt(s: String, e: Ext) extends Ext

// Application of a function with one argument

case class AppExt(f: Ext, a: Ext) extends Ext

// Definition of a function with one argument

case class FdExt(arg: String, body: Ext) extends Ext

// Variables

case class IdExt(c: String) extends Ext

Figure 1. Abstract syntax of extended (sugared) language.

sealed abstract class Core

case class NumC(num: Int) extends Core

// Numerical addition and multiplication

case class PlusC(l: Core, r: Core) extends Core

case class MultC(l: Core, r: Core) extends Core

// Function application, definition and variables
case class AppC(f: Core, a: Core) extends Core

case class FdC(arg: String, body: Core) extends Core
case class IdC(c: String) extends Core

Figure 2. Abstract syntax of core language.

sealed abstract class Value

case class NumV(n: Int) extends Value

// Closures to support first-class functions

case class ClosV(f: FdC, e: List[Bind]) extends Value

// For binding a value to a variable
case class Bind(name: String, value: Value)

Figure 3. Representation of values and bindings.

Abstract syntax trees are represented using algebraic data
types, which are conveniently defined using case classes in
Scala.

PAPL explicitly introduces the distinction between a fea-
ture rich (sugared) source language and a minimal core lan-
guage that includes the essential constructs to achieve a cer-
tain level of expressiveness. The extended version of our ex-
ample language is defined in Figure 1. It features number
literals, generic binary and unary operators, unary function
literals (lambdas), function application, and variables.

Rather than taking the core language to be a subset of
the extended source language, PAPL defines it as a separate
data type. The core for our example language is defined in
Figure 2. It is mostly the same as the extended language,
but instead of a generic representation for operators, it has
explicit representations for an addition and multiplication
operator only.

Parsing Since writing object programs as abstract syntax
trees is tedious, a little concrete syntax is useful. To avoid the
overhead of implementing full blown parsers, PAPL uses S-
expressions as a concrete syntax substrate. For example, here
is an expression in our example language:

object Parser {
def parse(sexpr: SExpr): Ext = sexpr match {
case SNum(n) => NumExt(n)
case SList(List(SSym("lambda"),
SList(List(SSym(arg))), body)) =>
FdExt (arg, parse(body))
case SList(List(SSym(sym), 1, r))
if Set("+", "-", "x").contains(sym) =>
BinOpExt (sym, parse(l), parse(r))
case SList(List(SSym(sym), e))
if Set("-").contains(sym) =>
UnOpExt (sym, parse(e))
case SList(head :: arg :: Nil) =>
AppExt (parse(head), parse(arg))
case SSym(s) => IdExt(s)
}
def parse(str: String): Ext = parse(Reader.read(str))
}

Figure 4. Parser

object Desugar {
def desugar(e: Ext): Core = e match {
case NumExt(n) => NumC(n)
case BinOpExt(op, 1, r) => op match {
case "+" => PlusC(desugar(l), desugar(r))
case "x" => MultC(desugar(l), desugar(r))

case "-" => PlusC(desugar(l), MultC(NumC(-1),
desugar(r)))
}
case UnOpExt(op, e) => op match {
case "-" => MultC(NumC(-1), desugar(e))
}

case AppExt(f, a) => AppC(desugar(f), desugar(a))
case IdExt(c) => IdC(c)
case FdExt(arg, body) => FdC(arg, desugar(body))

Figure 5. Desugarer

((lambda (x) (x 2 (+ x (- 2 1)))) 8)

This divides the task of parsing into application of a generic
read function that parses a string representation of a con-
crete syntax S-expressions into an object of the SExpr data
type, and a language-specific parse function that translates
an sExpr object into an AST object. We provide the read
function and sExpr data type to our students who only have to
write the parse function. (And in later assignments we even
give them the parse function.)

With this approach parsing is reduced to matching S-
expression patterns corresponding to constructs of the lan-
guage as illustrated in Figure 4. For example, the pattern

SList (List (SSym("lambda"),
SList (List(SSym(arg))),
body))

matches the S-expression

(lambda (<arg>) <body>)

object Interp {
def interp(e: Core, env: List[Bind]): Value =
e match {
case NumC(n) => NumV(n)
case PlusC(1, r) =>
val (NumV(vL), NumV(vR)) =
(interp(1l, env), interp(r, env))
NumV (vL + vR)
case MultC(l, r) =>
val (NumV(vL), NumV(vR)) =
(interp(l, env), interp(r, env))
NumV (vL * vR)
case AppC(f, a) =>
val ClosV(FdC(arg, body), env_clos) =
interp(f, env)
val argVal = interp(a, env)
interp(body, Bind(arg, argVal) :: env_clos)
case IdC(s) => lookup(s, env)
case fdc@FdC(arg, body) => ClosV(fdc, env)
}
def lookup(x: String, nv: Environment): Value =
nv match {
case List() => throw InterpException()
case Bind(y, v) :: nv2 =>
if (x == y) v else lookup(x, nv2)

Figure 6. Interpreter

where <arg> is the name of the function argument and <body>
should be an expression.

Desugaring A core language expresses the key computa-
tional ideas. However, programming languages often pro-
vide constructs that make programming more convenient,
but can be expressed in terms of the core language. Rather
than just ignoring such syntactic sugar, PAPL introduces an
explicit desugaring step in the semantic pipeline.

The desugar function mostly copies constructs in the ex-
tended language to their counterparts in the core language,
and in the process translates sugar patterns to combinations
of the constructs in the core language. Figure 5 illustrates
this for our example language, transforming Ext objects into
Core objects. The function translates generic binary operators
to the specific operators of the core language. The addition
and multiplication operators are translated directly, but the
binary and unary minus operators are desugared in terms of
the former.

Interpreter The key component of the semantic pipeline
is the interpreter. The interp function computes the value
of an expression in the core language, i.e. it is a function
from objects of type Core to objects of type value. Just like
abstract syntax trees, we use case classes for the represen-
tation of value objects. Figure 3 defines as values for our
example language numbers (Numv), the values of arithmetic
operations, and closures (Closv), the values of function ex-
pressions. To interpret our example language, the interpreter
also requires an environment to keep track of the binding
of values to variables. The Bind class in Figure 3 represents

E.VISSER / TI2608

Description Assignment Info

@ visible from: Wed, Jun 29, 2016 18:00

Define interpretation of anonymous
functions (lambdas).

20152016 / CPL / LECTURES / CHAPTER 18

Functions Anywhere (Environments)

O Assignment A @ Answer Wl Statistics/Dates [E submissions / Edit Assignment W Discussions

WebLab Cousses About Admin E.Visser Sign out

oos IERRRRARN] + » - X

Solution Test 0
16 [case class BoolV(b: Boolean) extends Value

17 |case class ClosV(arg: String, body: ExprC, nv: List[Binding]) extends Value

18

19 sealed abstract class Binding

20 |case closs BindCname: String, value: Value) extends Binding

21

22 - |object Interp {

23

24~ def interp(e: ExprC, nv: Environment): Value = e match {

25 case TrueC() => BoolV(true)
26 case FalseC() => BoolV(false)

27 case NumC(n) => NumvV(n)

28 case PlusC(l, r) => NumV(intVal(interp(l, nv)) + intValCinterpCr, nv)))
29 case MultC(l, r) => throw InterpException()

30 case IfC(c: ExprC, t: ExprC, e: ExprC) => throw InterpException()

31 case AppC(el, e2) =»

32~ interp(el, nv) match {

Console

¥ saved P Your Test Submit

Status: Done

not an integer: BoolV(true)

Test Type error failed: InterpException was thrown.
Test score: 3/4

Discussion Revision History

[]

Figure 7. Overview of languages.

such bindings, and an environment consists of a list of such
bindings. A function value should keep track of the bindings
at the point of its definition. Therefore, a closure has an en-
vironment as argument in addition to the abstract syntax tree
of the function.

A syntax-directed interpreter is defined by induction on
the structure of the abstract syntax tree, defining a match
case for each language constructor, recursively invoking the
interpreter on sub-trees. Figure 6 defines the interpreter for
our example language. The interesting case for this language
is the evaluation of function expressions, function applica-
tion, and variables. A variable is evaluated by looking up its
binding in the current environment. A function expression
returns a closure with the definition-time environment. A
function application evaluates the body of a function value in
an environment, extended with a binding of the value of the
actual parameter to the formal parameter. The crucial point
of this definition is the treatment of environments in func-
tion application. In order to realize static scoping semantics,
the actual parameter should be evaluated in the call-time
environment, but the function body should be evaluated in
the definition-time environment from the closure. Having an
executable definition of this semantics allows direct experi-
mentation with alternatives. Typical mistakes made by stu-
dents are evaluating the body in the call-time environment,
giving dynamic scoping, or evaluating the actual parame-
ter in the closure environment. More intricate errors emerge
when extending the language to functions with multiple pa-
rameters.

68

Figure 8. WebLab user interface.

2.1 Course Organization

In the course we extend and modify this language to study

more concepts of programming languages. Over the span of

the course, students write a parser, desugarer, and interpreter

for a new language each week. The lab covers the following

weekly topics:

1. Scala introduction: basic functional programming and
test driven development in Scala

2. Arithmetic and Booleans: architecture of the parse-
desugar-interpret approach

3. First-class functions: names, environments, function val-
ues, closures, function application

4. Records: extensible, immutable records

5. Type checking: type checking for a language with lists,
type soundness

6. Mutation: boxes, mutable variables, stores
7. Mini Java: small object-oriented programming language

8. Type inference: type expressions, unification

Figure 7 shows the dependency graph that illustrates which
interpreters were used in which week of the 2015-2016
edition of the course. For example, in week 5 (ws), students
extend the basic language (created as assignment in week 3
(ws)) with type-checking and lists.

3. WebLab

The enrollment into the curriculum has been steadily in-
creasing. In the 2015-2016 edition, 180 students enrolled

into the second year course, and this number is expected to
further increase in the coming years. While not near MOOC
scale, these numbers already create a significant grading and
administration effort. Furthermore, the 10 week quarter in
Delft requires weekly deadlines for assignments and a very
short turnaround time for grading and feedback.

To scale our education without involving large numbers
of teaching assistants we have been developing WebLab?, a
web-based learning management system especially geared
to programming education [3, 15], including support for
Scala. The system integrates the development of assign-
ments by instructors, writing submissions by students, and
the administration of results for an entire course.

Interface Figure 8 shows the user interface for developing
a submission to a programming assignment, with the fol-
lowing components: An editor (under the ‘Solution’ tab) for
developing the solution to the assignment. An additional ed-
itor (under the ‘Test’ tab) for developing unit tests to test the
solution. The ‘Your Test’ button for invoking the tests writ-
ten in the “Test’ tab. The ‘Spec Test’ button for invoking the
secret specification tests. A console for displaying feedback
from test invocation. A revision history for keeping track of
all edits to the program and tests. A discussion tab for asking
questions to the teaching assistants.

The execution of a solution against a test set is done on
the server and may include compilation for compiled lan-
guages. We strive to give immediate feedback on execution,
which requires execution within seconds of invocation. To
that purpose, the LabBack back-end provides a pool of run-
ning JVMs to execute test jobs [15]. LabBack currently sup-
ports Scala, Java, Python (via JPython), JavaScript, and C
(via clang produced JavaScript). A benefit of this set-up is
that we do not need to worry about deployment of program-
ming environments on student machines.

Automated Grading The key benefit of WebLab is that it
integrates course administration with submission, persistent
storage, and grading of student solutions. WebLab organizes
all assignments of a course in a tree structure with config-
urable grading schemes at each node of the tree. Grades
for individual assignments are aggregated into grades for
composite assignments according to a configurable weighted
grading scheme.

Programming assignment submissions can be graded us-
ing two mechanisms. First, a submission is tested against
a set of secret specification tests. Students do not see these
tests, nor their output on failure. However, students do see
the ratio of successful versus all scores of each specifica-
tion test run (e.g. 22/30). Automated grading is useful for
instructors as it considerably lowers to effort of grading pro-
gramming submissions. It is an advantage to students as
well, since the testing ratio feedback, even if minimal, pro-
vides very early feedback on progress. Second, a submis-

2https://weblab.tudelft.nl

69

sion can be scored against a rubric that states Boolean cri-
teria that it should satisfy. Where needed, rubric grading
can address grading issues that cannot be covered by unit
testing. While this requires teaching assistant intervention,
the WebLab workflow reduces the grading effort since basic
testing (does it compile? is it functionally correct?) is taken
care of by the specification test. The weight of each grading
mechanisms can be configured for each assignment.

Related Work With the rise of MOOC:s the issue of scal-
able courses has been addressed by others as well. For ex-
ample, Miller et al. [6] describe the set-up for a course on
functional programming principles in Scala, using cloud-
based computing to grade the style and implementation of
student submissions. However, they require that students in-
stall Scala, the Scala build tool sbt, and an IDE to get started.
WebLab instead provides an online code editor, which not
only eases the requirements on the students and their sys-
tems, but also ensures that all students work in the same en-
vironment with the same software.

Course Development Effort WebLab reduces grading ef-
fort and speeds up feedback to students. This frees up teach-
ing assistants to help students during assisted labs, rather
than spending time on grading. However, this requires a
careful upfront design and development of the assignments,
including high quality test sets. In the remainder of this pa-
per we elaborate on the Scala infrastructure we developed
for also reducing this upfront design and development cost.

4. Testing Interpreters

The default interface of WebLab for automated grading is
based on unit testing, taking the ratio of successful tests
to the size of the test suite as measure for a grade. For
Scala, WebLab provides a binding to the ScalaTest unit test-
ing framework [14]. Thus, to check correctness of student
submissions of parsers, desugarers, and interpreters we de-
veloped specification test suites using ScalaTest. Figure 9
shows an example test suite with integration tests that ex-
ercise the whole chain of parsing, desugaring, and interpre-
tation. The result is either a value in the case of a positive
test or an exception in the case of a negative test. However,
this basic approach is too simplistic, and needs to be refined,
in order to test that all components of the chain are imple-
mented correctly. This also provides us with better diagnos-
tics to determine the errors made by a student. Thus, for a
single input program, we write separate assertions for each
component.

Figure 10 shows how the first, positive, test of Figure 9 is
rendered. The first assertion tests that the parser produces the
expected AST in the extended language. The third assertion
tests the interpretation of the corresponding core language
AST. The second assertion tests desugaring. Since there are
many possible equivalent desugarings for each sugared ex-
pression, testing the AST produced by desugaring requires

https://weblab.tudelft.nl

students to guess the desugaring our tests checks for. There-
fore, we check the result of interpreting the result of desug-
aring. Figure 11 shows the rendering of the second, negative,
test of Figure 9. In order to check that an exception is thrown
at the correct stage, we verify that the preceding stages exe-
cute successfully.

Clustering Tests The specification tests are used to pro-
vide feedback to students about the quality of their solution
and is used to calculate a grade. A student can continuously
run the specification tests on their solution to get the num-
ber of successful tests versus the total number of tests. This
serves as a useful indicator of the completeness of their so-
Iution. WebLab uses the ratio of success versus failed spec-
ification tests to determine the student’s grade. A disadvan-
tage of this approach is that all tests contribute equally to the
grade, while not all tests are equally important. For exam-
ple, we include tests that check that the solution for aspects
corresponding to the previous assignment still works, but we
do not want these tests to count very much towards the final
grade. A related issue is that tests may be dependent. For
example, negative tests for the corner cases of the addition
operator should not succeed when the positive test for the
addition operator does not succeed.

To have more control over the test dependencies and
the contribution of tests to the grade, we group tests into
clusters. A cluster of tests is counted as a single test in
Scala, and all tests in a cluster must succeed for the cluster to
succeed. By varying the number of clusters, we can influence
the test success ratio, and therefore the grade.

A cluster of only negative tests will succeed even when
the feature in question has not been implemented. To prevent
this, each cluster must have at least one positive test for that
feature.

To get even better control of the grade, clusters have
percentual weights. The example in Figure 12 shows two
clusters with tests for the Week 2 assignment as used in the
specification tests of Week 3. The total weight the previous
week is 30%. This week has 2 clusters, one has weight 1,
the other weight 2. As a result, the first cluster increases the
test score by 1 - 30/3 = 10, the second by 2 - 30/3 = 20.
At the start of a test, the totalScore is increased with the
corresponding total attribution value. The achievedScore is
increased with the same attribution value if and only if all
asserts in the tests have succeeded. The student does not
receive any credit if only a portion of the tests succeed.

5. Test Generation

Writing test suites following the approach of Section 4 is ex-
tremely tedious. To avoid this tedium we have developed an
internal test definition DSL. The DSL reduces the specifica-
tion of a test case to the input program to be evaluated. For
example, Figure 13 defines a small test suite consisting of
two groups, each consisting of clusters of positive and nega-
tive tests. A test is represented as an instance of a case class

70

class TestSpec extends FunSuite {
test("POS: (+ 4 5)") {
assertResult (NumV(9)){
Interp.interp(
Desugar .desugar (
Parser.parse("""(+ 4 5)""")
)
)
}
}
test ("NEG: ((lambda () 13) (+ 4 5))") {
intercept [InterpException] {
Interp.interp(
Desugar .desugar (
Parser.parse("""((lambda () 13) (+ 4 5))""")

Figure 9. Example test suite.

test("POS: (+ 4 5)") {
assertResult (BinOpExt ("+", NumExt(4), NumExt(5))){
Parser.parse("""(+ 4 5)""")
}
assertResult (NumV(9)){
Interp.interp(
Desugar .desugar (
BinOpExt ("+", NumExt(4), NumExt(5))
)
)
}
assertResult (NumV(9)){
Interp.interp(PlusC(NumC(4), NumC(5)))
}
}

Figure 10. An expanded positive test.

test("NEG: ((lambda () 13) (+ 4 5))") {
assertResult (AppExt (FdExt (List (), NumExt(13)),
List (BinOpExt ("+", NumExt(4), NumExt(5))))){
Parser.parse("""((lambda () 13) (+ 4 5))""")
}
Desugar .desugar (AppExt (FdExt (List (), NumExt(13)),
List (BinOpExt ("+", NumExt(4), NumExt(5)))))
// Verify an ezception is thrown in the interpreter
intercept [InterpException] {
Interp.interp(AppC(FdC(List (), NumC(13)),
List (PlusC(NumC(4), NumC(5)))))

Figure 11. An expanded negative test.

that records the test program’s string representation, whether
it is a positive or negative test, and optionally other relevant
data such as the binding environment. The test generator,
defined in Figure 14, uses this representation in a two-stage
process to generate the ScalaTest code that can be used in
WebLab. The first stage calls the reference implementation

Double = 0
Double = 0

var totalScore :
var achievedScore :

// Normalize to actual score, printed out to student
def getWeightedScore: Double = achievedScore/totalScore

JEFFRFFRAFFAAFRAFFARFA
* leek 2 *
* Total Score: 30.0 *
KKFRAFFAAFRAFRAFFAAN R
test("Week 2: Binary operators argument arity") {
// Cluster score weight: 1.0
totalScore += 10
// NEG: (+ 4 5 6)
intercept [ParseException] {
Parser.parse("""(+ 4 5 6)""")
}
// If the cluster passes all assertions,
// this last line will be reached
achievedScore += 10
}
test("Week 2: arithmetic good") {
// Cluster score weight: 2.0
totalScore += 20
// POS: 2445
assertResult (NumExt (2445)){
Parser.parse("""2445""")
}
assertResult (NumV(2445)){
Interp.interp(Desugar.desugar (NumExt (2445)))
}
assertResult (NumV(2445)){
Interp.interp(NumC(2445))
}
// If the cluster passes all assertions,
// this last line will be reached
achievedScore += 20

Figure 12. Example clusters with weighted scores.

to produce the expected parsed AST, desugared AST, and
value produced by interpretation. The second stage gener-
ates a sequence of statements that will perform this same
process on student implementations and asserts that it gives
the same result as our reference implementation.

The core class for test generation is the TestSpecBase
class, which is an abstract class that has all the boilerplate
code for generating ScalaTest tests (Figure 14). Derived
from this is the abstract TestSpec class, which defines sets
of tests that are shared between test specifications for each
chapter. Finally, for each assignment a class is derived from
the TestSpec with only those tests that apply to the solution
of that assignment. This keeps the tests clearly separated.
Thanks to the test generator we can easily write even more
complex tests. For example, the test in Figure 15 checks that
application arguments are not evaluated in the environment
of the closure being applied. Figure 16 shows the corre-
sponding generated code.

The actual code generation is done through the vir-
tual TestSpecBase.generateTestCase() method. It produces a
Scala source file with the generated test case code substituted

71

object Week3 extends TestSpecBase {
def getTests = List(
Group("Week 2", scoreTotal = 30,

CoreLanguageTests.parserTests

++ CorelanguageTests.clusters),
Group("Arithmetic", scoreTotal = 70, List(

Cluster("Binary operators arity", List(
Neg("(+ 4 5 6)"),

Neg("(+ 4)"),
Pos("(+ 4 5)")

),

Cluster("Arithmetic tests",
Pos("(+ 248 80)"),
Pos("(+ (+ 12 55) 89)"),

)

)
)
}

List(

Figure 13. Example test suite in our internal test DSL.

into it. The positive and negative test cases for the generator
are represented as case classes. By default the TestSpec class
defines and handles two case classes Pos and Neg for posi-
tive and negative respectively that test the parser, desugarer
and interpreter. If a particular chapter requires more case
classes than the default, we can add them in the subclass and
override the generateTestCase () method to handle those case
classes too. The test case classes usually specify only the
syntax and any environment in which the test must be run.
The test case’s syntax is then fed through our own parser,
desugarer and interpreter to find what kind of AST or re-
sult it produces. Then Scala tests are generated that check
that the student solution produces the same results. For a
negative test it is asserted that the test fails with a particular
exception.

6. Testing Tests

Writing a correct interpreter for a language is only half of
the job of studying semantics. It is important to understand
how an interpreter can go wrong. That is, to understand what
is not correct behavior. This requires developing test cases
for corner cases by thinking through feature interactions. For
example, when all test cases in a test suite use distinct vari-
ables, it will not discover interpreters with variable capture
(dynamic scoping) errors.

In a previous edition of the course, students were not
always inclined to write tests. The instantaneous feedback of
the automatic specification tests did not help in this respect.
This effect has also been observed by earlier research [1]. In
the 2015-2016 edition we introduced separate assignments
to write tests for a language. To support this, automatically
testing and grading for these tests was required.

Meta-Test Procedure We developed the meta-test suite
outlined in Figure 17. It runs a student test suite against a
collection of faulty interpreters, applying the good test cri-
terion: A good test is a test that fails if and only if a flaw

abstract class TestSpecBase extends FunSuite {
def getTests: List[Group]
def generate(): String = {
val groups = this.getTests.map(groupToString) .mkString

s"""|class $testName extends FunSuite
| with BeforeAndAfterAll {
| $groups
1}
|""", stripMargin

}

def groupToString(group: Group): String =
group match { case Group(_, _, clusters) =>
clusters.map(clusterToString(group,
sumOfClusterWeights, _)).mkString
}

def clusterToString(group: Group,
sum0fClusterWeights: Double,
cluster: Cluster): String = {
ensureNotAllNegative (group, cluster)

cluster.tests.map(test => generateTestCase(group,
cluster, test)).mkString("\n")
}

def generateTestCase(group: Group, cluster: Cluster,
test: Test): String = test match {
case Pos(input, env) =>

val either: Either[Throwable, List[Product]] = for {
p <- tryParse(input).right
d <- tryDesugar(p).right
i <- tryInterp(d).right

} yield List(p, d, 1)

either match {
case Left(ex) =>
throw new PosTestFailedException()
case Right(pp :: dp :: ip :: Nil) =>
this.emitParseAssert (input, pp)
+ this.emitDesugar (pp)
+ this.emitInterpAssert(dp, ip)
}

case Neg(input, env) => /* ...

*/

o

Figure 14. Test generator.

is introduced in the system under test. That is, testing a test
boils down to supplying the test an implementation with a
flaw and verifying that the test fails. Conversely, the test
should not fail when the provided implementation does not
contain any flaws. Students write one full test suite which
means that the full test suite must be evaluated to verify that
even a single error in the implementation is caught.

The injectInterp(i: Interp): FunSuite method finds the
student test suite on the class path and then replaces its
default interpreter field for the (faulty) interpreter provided.
The modified student suite is then returned so the tests can
be run with our custom runner.

72

// this will succeed if the z in the outer application
// ts evaluated in the environmment of the closure
Neg("((let ((x 1)) (lambda () x)) x)"),

Figure 15. Specification of complex test case in embedded
test DSL.

// NEG: ((let ((z 1)) (lambda () z)) z)
assertResult (AppExt (LetExt (List (LetBindExt ("x",
NumExt (1))), FdExt(List(), IdExt("x"))),
List (IdExt ("x")))){
Parser.parse("""((let ((x 1)) (lambda () x)) xz)""")
}
Desugar .desugar (AppExt (LetExt (List (LetBindExt ("x",
NumExt (1))), FdExt(List(), IdExt("x"))),
List (IdExt("x"))))
intercept [InterpException] {
Interp.interp(AppC(AppC(FAC(List("x"), FdC(List(),
I4C("x"))), List(NumC(1))), List(I4dC("x"))))

Figure 16. Code generated from test case in Figure 15.

Defining Faulty Interpreters Following the definition of a
good test, we need a set of faulty interpreters that each intro-
duce exactly one fault. To avoid a maintenance nightmare,
the introduction of a fault should not require duplicating all
code of an interpreter. To achieve this goal, we use inheri-
tance with method overriding to efficiently inject faults in a
reference solution.

For example, a correct reference solution for an inter-
preter contains a lookup method. This method takes the cur-
rent variable scope, and finds the value for a bound variable.
The method should return an UnboundIdException When the
variable is not in scope as defined in Figure 18. To introduce
a flaw in this interpreter, we override the lookup method and
return NumV (-1) whenever an identifier is not in scope as de-
fined in Figure 19. We then inject the extended BasicInterp
into the student test suite.

In order to allow this style of fault injection, we refactored
the reference implementations of interpreters in order to
expose bodies of cases in the interpretation function with
calls to separate semantic functions.

Preventing Test Tampering The algorithm has several
ways to detect test suites that are created to cheat the system.
First of all a test suite with just one test which always fails
would score all points. Therefore before the actual MetaTest
is run, in the veforeall function of the MetaTest suite it is
verified that the student test suite passes on a correct imple-
mentation. While this does solve the issue for always-failing
tests, a simple test suite that only succeeds once and then
always fails would still be awarded the full score. The last
cheat prevention mechanism employs running the test suite
arandom number of times to prevent students from hardcod-
ing test based on the number of test invocations.

trait AbsMetaTest extends FunSuite
with BeforeAndAfterAll {

/* Prevent students from checking certain
counts and succeed/fail based on the count */

var max = Math.abs(new Random() .nextInt() \% 10)
for (a <- 1 to max) {
testInterp(createInterp(), expectFail = false)
}
override def beforeAll() = {
testInterp(createInterp(), expectFail = false)

}

def testInterp(i: Interp, expectFail: Boolean=true) =
testSuite(injectInterp(i), expectFail)

/* Implement per week */
protected def injectInterp(i: Interp): FunSuite

protected def testSuite(suite: FunSuite,
expectFail: Boolean) = {
var failed = false
// Reporter used to verify at least one test failed
val reporter: Reporter = new Reporter {
override def apply(event: Event) = {
event match {
case _: TestFailed => failed = true
case e: TestSucceeded => reportSuccess(e)
case _ => // Do nothing
}
}
}
suite.run(None, reporter, new Stopper,
new Filter(None, Set()), Map[String, Any]l (),
None, new Tracker)

// Assert that the suite correctly failed or passed
// on the given implementation.
assert(failed == expectFail)

Figure 17. Meta-test procedure for testing test suites.

7. Product Line

During the course, students are tasked with building an in-
terpreter each week for a language with specific features.
For each week in the course one reference interpreter is
used to automatically generate output for specification tests.
In the first version of the course these interpreters were all
completely stand-alone Scala classes. Each interpreter was
isolated from the others by a package structure. The inter-
preters had a high amount of overlap in functionality, be-
cause many language features were reused in multiple weeks
of the course. This approach quickly proved to be hard to
maintain as any change in the basic functionality had to be
applied to each interpreter. Therefore we developed a solu-
tion to re-use code shared between interpreters.

Towards reuse The assignments for each week build on
solutions of previous weeks. Sometimes, an assignment re-
quires partial solutions of multiple previous assignments.
The goal was to ease the burden of maintaining separate

73

class BasicInterp {
// ... other implementation details omitted

def lookup(name: String, nv: List[Bind]): Value =
nv.find(x => x.name name)
.getOrElse (throw UnboundIdException(name)).value

Figure 18. Part of basic interpreter.

test ("Lookup does not throw exception") {
testInterp(new BasicInterp {
override def lookup(name: String, env: List[Bind]) =
env.find(x => x.name == name)
.getOrElse (NumV(-1)) .value
b
}

Figure 19. Fault introduction in basic interpreter.

interpreters while allowing instructors to easily reconfigure
assignments. An instructor determining the course schedule
must be able to combine language features into assignments
according to the desired schedule. More technically speak-
ing, the goal was to have one stand-alone interpreter for each
desired language feature as opposed to one interpreter for
each week in the course. Ideally, the reference solution for
each week should be a simple composition of the required
language features.

Traits and multiple inheritance After several iterations,
multiple inheritance using traits proved to be the best so-
lution. The solution makes composing interpreters as simple
as creating a trait mixin:

class ParserWeekb extends BaseParser with TypedParser
with ListParser with ParserWeek3

The above statement defines the reference parser used in
week 5. This same construct is used for composing desugar-
and interpreter-traits.

Each trait defines a method that parses an s-expression
into a high-level AST (that includes sugar) of the target
language: parse(expr: SExpr): ExprExt. Standard pattern
matching in Scala is used to unmarshall the SExpr case class
into an AST. When a trait fails to match a pattern, the fall-
through case will delegate parsing to its parent in the inher-
itance linearization: case _
ing the call to super, the next trait in the inheritance lineariza-
tion will be called [8]. When no trait can match the given
expression, the fall through case will call BaseParser which
throws an exception. Moreover, when a pattern matches and
a recursive step is required, this.parse(...) is called. This
call will be dispatched to the first trait in the linearization.

=> super.parse(sexpr). By mak-

Conclusion This approach provides easy composition of
language features. It allows instructors to structure a weekly
assignment with a high amount of freedom. Since inter-
preters are separated by features rather than by course sched-

ule, the maintainability of multiple interpreters is greatly im-
proved. One disadvantage of this approach is the verbosity of
the trait mix-in classes for each week. However, the impact
of this verbosity on the overall maintainability is very low.
Another disadvantage is that language features can only be
composed if the types of their ASTs, parsers and interpreters
are compatible. For example, due to the introduction of mu-
tation, the method signature of the interpreter changes. This
mismatch in method signatures makes it impossible to create
a trait mixin with other interpreters.

The overall problem of extensibility is also known as the
expression problem [9, 16]. Solutions to this problem in-
volve trait extensions of a base class which processes one
expression at a time. Our solution differs in the sense that
one processor can handle multiple expressions. There is no
guarantee that a certain expression is processed by a com-
position of traits of sub-processors. This type safety is not
a problem for us since we have a known set of expressions
to be processed. We make use of super calls to delegate pro-
cessors while we manually make sure every expression is
processed by at least one mixed in trait.

8. Conclusion

In this paper we have discussed how, through leveraging the
Scala programming language and the WebLab online learn-
ing management system to automatically run specification
tests on the students submissions, we have developed a scal-
able solution for running a course on concepts of program-
ming languages using definitional interpreters.

Scala has proven to be a convenient language for this pur-
pose. It supports a functional style of programming with al-
gebraic data types and pattern matching, which is suitable
for implementation of big-step interpreters. At the same time
it provides a well developed programming language and
ecosystem allowing us to develop the course as a collection
of reusable components. This includes a malleable unit test-
ing framework that could be used to test student tests suites,
express an internal DSL for test generation, and develop a
product line of interpreters.

As part of future work, we are planning to investigate
techniques to provide feedback to students on other aspects
than functional correctness. This feedback will involve static
analysis of the code written by a student. For example check
that the solution of the student has methods no longer than a
number of lines.

References

[1] S. H. Edwards. Improving student performance by evaluating
how well students test their own programs. ACM Journal of
Educational Resources in Computing, 3(3):1-24, 2003.

74

[2] S. N. Kamin. Programming languages - an interpreter-based
approach. Addison-Wesley, 1990.

[3] L. C. L. Kats, R. Vogelij, K. T. Kalleberg, and E. Visser.
Software development environments on the web: a research
agenda. In G. T. Leavens and J. Edwards, editors, ACM
Symposium on New Ideas in Programming and Reflections on
Software, Onward! 2012, part of SPLASH ’12, Tucson, AZ,
USA, October 21-26, 2012, pages 99-116. ACM, 2012.

[4] S. Krishnamurthi. Programming Languages: Application and
Interpretation. Brown University, 2007.

[5] S. Krishnamurthi and J. G. Politz. Programming and Pro-
gramming Languages. Brown University, 2015.

[6] H. Miller, P. Haller, L. Rytz, and M. Odersky. Functional pro-
gramming for all! scaling a mooc for students and profession-
als alike. In P. Jalote, L. C. Briand, and A. van der Hoek, edi-
tors, 36th International Conference on Software Engineering,
ICSE ’14, Companion Proceedings, Hyderabad, India, May
31 - June 07, 2014, pages 256-263. ACM, 2014.

[7] H. R. Nielson and F. Nielson. Semantics with applications -
a formal introduction. Wiley professional computing. Wiley,
1992.

[8] M. Odersky, L. Spoon, and B. Venners. Programming in
Scala. A comprehensive step-by-step guide. Artima, Novem-
ber 2008.

[9] M. Odersky and M. Zenger. Independently extensible solu-
tions to the expression problem. In Proceedings of the Twelth
InternationalWorkshop on Foundations of Object-Oriented
Languages (FOOL 12), 2005.

[10] B. C. Pierce, A. A. de Amorim, C. Casinghino, M. Gaboardi,
M. Greenberg, C. Hritcu, V. Sjoberg, B. Yorgey, B. C. Pierce,
A. A. de Amorim, C. Casinghino, M. Gaboardi, M. Green-
berg, C. Hritcu, V. Sjoberg, and B. Yorgey. Software Founda-
tions. 2015.

[11] J. C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. Higher-Order and Symbolic Computa-
tion, 11(4):363-397, 1998.

[12] J. C. Reynolds. Definitional interpreters revisited. Higher-
Order and Symbolic Computation, 11(4):355-361, 1998.

[13] R. Sethi. Programming languages - concepts and constructs.
Addison-Wesley, 1988.

[14] B. Venners. Scalatest, 2009.

[15] V. Vergu. LabBack: An extendible platform for secure and ro-
bust in-the-cloud automatic assessment of student programs.
Master’s thesis, Delft University of Technology, November
2012.

[16] P. Wadler. The expression problem. Java-genericity mailing
list, 1998.

[17] D. A. Watt and W. Findlay. Programming language design
concepts. Wiley, 2004.

	Introduction
	Definitional Interpreters in Scala
	Course Organization

	WebLab
	Testing Interpreters
	Test Generation
	Testing Tests
	Product Line
	Conclusion

