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Abstract

In this project we study the stability of stationary solutions of interactive particle systems with short-
range repulsion and long-range attraction. Firstly we describe the model and discuss ring steady state
solutions. We give a comprehensive and detailed proof of Theorem 2.1 done in [2]. This theorem gives the
conditions for the (in)stability of stationary ring solutions. Omitting details of the computations, we present
Theorem 3.1 in [2] to find the conditions for (un)stable stationary solutions in the situation when the mode
is sufficiently large. Having these conditions altogether we find the region of the parameters in which the
stationary solutions are stable. Finally, we use a steepest descent method for the simulations of the model.
Figures of equilibrium states of the particles corresponding to various families of interaction forces will be
shown.
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1 Introduction and motivation of the problem
The collective behavior of a large number of animals in biology, the dynamic evolution of granular gases or the
self-assembly of nanoparticles in physics, or many others, might be seen as an interactive particle system and
can be modelled mathematically with help of partial differential equations [8, 9, 13]. An interactive particle
system is a process that describes the collective behavior of interacting components, such process can either
be stochastic [11] or deterministic [10], also the individuals can either be influenced by each other or not [1].
The interactive particles in this system form naturally intriguing patterns that inspire researchers in the field
of modern technologies such as autonomous vehicles, imaging techniques, biosensors, biomedical sciences etc
[10, 14].

With help of a mathematical model, predictions of the collective behavior of a large number of individuals
mentioned above can be made. For example, a two-zone model or a three-zone model, can be used to predict
such collective behavior. A two-zone model is a model with two interaction forces, repulsion and attraction. As
the name suggests, a two-zone model has two zones in which either repulsion force or attraction dominates the
other force. A three-zone model has one more zone of interaction called orientation where individuals mimic the
behavior of other nearby individuals. As a result, a group of particles could arrive at a consensus around some
coherent structures such as vortices or milling as shown in [6, 7, 12]. Analysing the models mentioned above leads
to a better understanding of the development of the interactive particle system. The interactive particle system
that we analyse is nonlinear, non-local, and has short-range repulsion and long-range attraction. We study
the linear (in)stability of ring solutions of such interactive particle systems arising in aggregation models with
some specific form such as rings, annuli and uniform circular patches [3, 4, 10]. So the following questions are
immediately raised: When are the solutions (un)stable? How do the solutions appear when they are (un)stable?

Specifically, in this project we will study the linear stability of the stationary ring solutions by reproducing
the computations leading to Theorem 2.1 in [2], for model (2) described below. We will simulate the model and
find the stationary states by using a numerical method.

1.1 Aggregation model and ring solutions
Consider an interaction particle system with N particles, where N is a large number. Let E(X1, . . . , XN ) be the
total energy associated with the system. Assume that the potential energy of any two particles only depends
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on the distance between them and let P : R→ R be such a function that returns the potential energy between
those two particles. Since E(X1, . . . , XN ) is the total amount of energy, we let it be the normalized sum of the
aggregated potential energy between any two particles pairwisely so that it has the form

E(X1, . . . , XN ) =
1

N2

N∑
j=1

N∑
k=1
k 6=j

P (‖Xj −Xk‖). (1)

We have

−∇XjE = − 1

N

N∑
k=1
k 6=j

∇XjP (‖Xj −Xk‖)

= − 1

N

N∑
k=1
k 6=j

P ′ (‖Xj −Xk‖)∇Xj (‖Xj −Xk‖)

= − 1

N

N∑
k=1
k 6=j

P ′ (‖Xj −Xk‖)
(
(Xj −Xk)

‖Xj −Xk‖

)
.

In the computation above we have use the fact that given a map g : Rd 7→ R defined by g(V ) = ‖V ‖, where
Rd is the d-dimensional real vector space, we have ∇g = V

‖V ‖ . Hence, ∇Xj (‖Xj −Xk‖) = (Xj−Xk)
‖Xj−Xk‖ by letting

Xj −Xk = V .

Now define f(r) = F (r)/r and let F (r) = −P ′(r) as the force associated to our potential P for simplicity.
With these notations we have that

−∇XjE =
1

N

N∑
k=1
k 6=j

F (‖Xj −Xk‖)
(
(Xj −Xk)

‖Xj −Xk‖

)

=
1

N

N∑
k=1
k 6=j

f (‖Xj −Xk‖) (Xj −Xk) ,

and we define the aggregation model given by the associated gradient flow to the interaction energy

dXj

dt
=

1

N

∑
k=1
k 6=j

f (‖Xj −Xk‖) (Xj −Xk) . (2)

In order to analyse the stationary solution when dXj
dt = 0, we consider, for simplicity, the situation when Xj

and Xk are two equally spaced particles that lie on a ring of radius R. With the computations performed below
we will be able to compute R.

We can simplify equation (2) as follows. We first rewrite Xj and Xk in polar of form Xj = Re2πij/N and
Xk = Re2πik/N . There are N possible distances between Xk and Xj if k = 1, . . . , N . To obtain the distances,
we can, without loss of generality, fix Xj = Re

2π
N 0 = R and let Xk equal Re

2πk
N i for k = 1, . . . , N . Therefore,

the distances are:
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‖Xj −Xk‖ =
∥∥∥R−Re 2πk

N i
∥∥∥

= R
∥∥∥1− e 2πk

N i
∥∥∥

= R

√(
1− e 2πk

N i
)(

1− e 2πk
N i
)

= R

√(
1− e 2πk

N i
)(

1− e−2πk
N i

)
= R

√
1− e−2πk

N i − e 2πk
N i + 1

= R

√
2

(
1− cos

(
2π

N
k

))

= R

√
2

(
2 sin2

(
2π

N
k

))
= 2R

∣∣∣sin( π
N
k
)∣∣∣ .

Note that sin
(
π
N k
)
stays positive if k ranges from 1 to N, which means

∣∣sin ( πN k)∣∣ = sin
(
π
N k
)
. Substituting

‖Xj −Xk‖ = 2R
(
sin
(
π
N k
))

and Xj −Xk = R(1− e 2πk
N i) into (2) gives us

dXj

dt
=

1

N

N∑
j=1

f
(
2R sin

( π
N
j
))(

1− ei2πj/N
)

=
1

N

N−1∑
j=1

f
(
2R sin

( π
N
j
))(

1− ei2πj/N
)
.

as 1−ei2πj/N = 0 when j = N . Stationary solutions can be found by considering the equilibrium when dXj
dt = 0.

This is
1

N

N−1∑
j=1

f
(
2R sin

( π
N
j
))(

1− ei2πj/N
)
= 0 in the case of ring solutions.

To find a more convenient formula to compute R, we may take N → ∞ and let θ = πj
N . We notice that

θ ranges from 0 to π − π
N such that

1− e
2πj
N i = 1− e2θi

= 1− cos (2θ)− i sin 2θ
= 2 sin2 (θ)− i sin (2θ) .

Consequently,

0 = lim
N→∞

1

N

N−1∑
j=1

f
(
2R sin

( π
N
j
))(

1− ei2πj/N
)

=
1

π

∫ π

0

f (2R sin (θ)) 2 sin2 (θ) dθ +
1

π

∫ π

0

f (2R sin (θ)) i sin (2θ) dθ

=

∫ π
2

0

f (2R sin (θ)) sin2 (θ) dθ +

∫ π/2

0

f (2R sin (θ)) i sin (2θ) dθ +

∫ π

π/2

f (2R sin (θ)) i sin (2θ) dθ

=

∫ π
2

0

f (2R sin (θ)) sin2 (θ) dθ +

∫ π/2

0

f (2R sin (θ)) i sin (2θ) dθ −
∫ π/2

0

f (2R sin (θ)) i sin (2θ) dθ

=

∫ π
2

0

f (2R sin (θ)) sin2 (θ) dθ. (3)

Equation (3) characterizes the stationary ring solutions since it provides a way to compute R.
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2 Analysis of the stability of ring solutions
Stability of ring solutions plays an important role when we are analysing the interactive particle systems, it tells
us whether the ring solutions actually appear like a ring or have some other disconnected form. The ring solu-
tions are stable if any perturbation of the particles does not lead to an incoherent state of the ring. Otherwise
it is unstable. In this section we determine the stability of the ring solutions by analysing the corresponding
perturbed system.

In the previous section we have seen that solutions of the form

Xj = Re2πij/N , j = 1, . . . , N, (4)

are stationary solutions for certain R given by (3). In this section, we want to analyse the local stability of such
solutions. To that end, we consider perturbations of the form

X̃j = Re2πij/N (1 + hj), j = 1, . . . , N, (5)

where hj is a function of t with ‖hj‖ � 1.

First, we evaluate dX̃j
dt by substituting X̃j − X̃k and ‖X̃j − X̃k‖ into equation (2). To do that, consider

X̃j = Re2πij/N (1 + hj),

X̃k = Re2πik/N (1 + hk),

and let φ = 2π(k − j)/N . The difference between X̃j and X̃k is

X̃j − X̃k = Re2πij/N (1 + hj)−Re2πik/N (1 + hk)

= Re2πij/N
(
1− eiφ + hj − eiφhk

)
.

Next, we compute the modulus of this difference by using the fact that for any complex number x, ‖x‖ =
√
xx.

So we have

‖X̃j − X̃k‖ =
√(

X̃j − X̃k

)(
X̃j − X̃k

)
=
√
R2 (1− eiφ + hj − eiφhk)

(
1− e−iφ + hj − e−iφhk

)
= R

√
1− e−iφ + hj − e−iφhk − eiφ + 1− eiφhj + hk + hj − e−iφhj

+hjhj − hje−iφhk − eiφhk + hk − e−iφhkhj + hkhk.

Removing all the terms with higher orders than 1 yields

‖X̃j − X̃k‖ ∼ R
√
2− e−iφ + hj − e−iφhk − eiφ − eiφ − eiφhj + hk + hj − e−iφhj − eiφhk + hk

= R

√
2− e−iφ − eiφ + hj (1− eiφ) + hk (1− e−iφ) + hj (1− e−iφ) + hk (1− eiφ)

= R
√
2− 2 cos (φ) +

[(
hk + hk

)
(1− e−iφ) +

(
hk + hj

)
(1− eiφ)

]
= R

√
4 sin2 (φ/2) +

[(
hk + hk

)
(1− e−iφ) +

(
hk + hj

)
(1− eiφ)

]
= 2R |sinφ/2|

√
1 +

(
hk + hk

)
(1− e−iφ) +

(
hk + hj

)
(1− eiφ)

4 sin2 (φ/2)
.

Using the fact that the Taylor polynomial of degree 1 of
√
1 + x around x = 0 equals 1 + 1

2x, we obtain the
following:
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2R |sinφ/2|

√
1 +

(
hk + hk

)
(1− e−iφ) +

(
hk + hj

)
(1− eiφ)

4 sin2 (φ/2)

=2R |sinφ/2|

(
1 +

1

2

(
hk + hk

) (
1− e−iφ

)
+
(
hk + hj

) (
1− eiφ

)
4 sin2 (φ/2)

)

=2R |sinφ/2|+ R

4 |sinφ/2|
[(
hk + hk

) (
1− e−iφ

)
+
(
hk + hj

) (
1− eiφ

)]
.

For simplicity, we let 2R |sinφ/2| = α and R
4|sinφ/2|

[(
hk + hk

) (
1− e−iφ

)
+
(
hk + hj

) (
1− eiφ

)]
= β. Sub-

stituting (5) into (2) leads to

dX̃j

dt
=

1

N

∑
k

f
(
‖X̃j − X̃k‖

)(
X̃j − X̃k

)
=

1

N
Re2πij/N

∑
k

f (α+ β)
(
1− eiφ + hj − eiφhk

)
.

On the other hand, dX̃jdt = Re2πij/N dhj
dt . Then

dhj
dt

=
1

Re2πij/N

(
1

N
Re2πij/N

∑
k

f (α+ β)
(
1− eiφ + hj − eiφhk

))

=
1

N

∑
k

f (α+ β)
(
1− eiφ + hj − eiφhk

)
∼ 1

N

∑
k

(f (α) + βf ′ (α))
(
1− eiφ + hj − eiφhk

)
,

by using the first-order Taylor series of f(α+ β) around α.

Hence, we have the following expression after expanding the brackets:

dhj
dt
∼ 1

N

(∑
k

(f (α) + βf ′ (α))
(
hj − eiφhk

)
+
∑
k

(f (α) + βf ′ (α))
(
1− eiφ

))

=
1

N

(∑
k

f (α)
(
hj − eiφhk

)
+
∑
k

βf ′ (α)
(
1− eiφ

)
+
∑
k

βf ′ (α)
(
hj − eiφhk

)
+
∑
k

f (α)
(
1− eiφ

))

=
1

N

(∑
k

f (α)
(
hj − eiφhk

)
+
∑
k

βf ′ (α)
(
1− eiφ

))

+
1

N

(∑
k

f ′ (α)
(
β
(
hj − eiφhk

))
+
∑
k

f (α)
(
1− eiφ

))
.

Note that β = O (hk) and
(
hj − eiφhk

)
= O (hk), but f ′ (α)

(
β
(
hj − eiφhk

))
= O

(
h2
k

)
. Since ‖hk‖ << 1, we

neglect this last term. In addition,
∑
k

f (α)
(
1− eiφ

)
= 0 as it satisfies the equilibrium condition.

Thus, we have

dhj
dt

=
1

N

(∑
k

f (α)
(
hj − eiφhk

)
+
∑
k

βf ′ (α)
(
1− eiφ

))
.

If we substitute back α = 2R |sin (φ/2)| and β = R
4|sin(φ/2)|

[(
hk + hk

) (
1− e−iφ

)
+
(
hk + hj

) (
1− eiφ

)]
into the
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equation and, we obtain

dhj
dt

=
1

N

∑
k

f ′ (2R |sin (φ/2))| R

4 |sin (φ/2)|

[(
1− eiφ

)2 (
hk + hj

)
+
(
1− eiφ

) (
1− e−iφ

) (
hk + hj

)]
+

1

N

∑
k

f (2R| sin (φ/2) |)
(
hj − eiφhk

)
=

1

N

∑
k

f ′ (2R| sin (φ/2) |) R

4 |sin (φ/2)|
[−4 sin2 (φ/2) eiφ

(
hk + hj

)
+ 4 sin2 (φ/2)

(
hk + hj

)
]

+
1

N

∑
k

f (2R| sin (φ/2) |)
(
hj − eiφhk

)
=

1

N

∑
k

f ′ (2R| sin (φ/2) |) R

4 |sin (φ/2)|
[
4 sin2 (φ/2)

(
hj − eiφhk

)
+ 4 sin2 (φ/2)

(
hk − eiφhj

)]
+

1

N

∑
k

f (2R| sin (φ/2) |)
(
hj − eiφhk

)
=

1

N
R
∑
k

f ′ (2R| sin (φ/2) |) |sin (φ/2)|
(
hj − eiφhk

)
+

1

N

∑
k

f (2R| sin (φ/2) |)
(
hj − eiφhk

)
+

1

N
R
∑
k

f ′ (2R| sin (φ/2) |) |sin (φ/2)|
(
hk − eiφhj

)
=

(
1

N
R
∑
k

f ′ (2R| sin (φ/2) |) |sin (φ/2)|+ 1

N

∑
k

f (2R| sin (φ/2) |)

)(
hj − eiφhk

)
+

1

N
R
∑
k

f ′ (2R| sin (φ/2) |) |sin (φ/2)|
(
hk − eiφhj

)
=
∑
k

G1 (φ/2)
(
hj − eiφhk

)
+G2 (φ/2)

(
hk − eiφhj

)
. (6)

with

G1(φ) =
1

N
R f ′ (2R| sin (φ) |) |sin (φ)|+ 1

N
f (2R| sin (φ) |) ;

G2(φ) =
1

N
Rf ′ (2R| sin (φ) |) |sin (φ)|

(
hk − eiφhj

)
.

In the computation above we may use the fact that
(
1− eiφ

)2
= −4 sin2

(
φ
2

)
eiφ and

(
1− eiφ

) (
1− e−iφ

)
=

4 sin2
(
φ
2

)
, these are derived in Appendix A.

Substituting the ansatz hj = ξ+(t)e
imθ + ξ−(t)e

−imθ, θ = 2πj/N,m ∈ N into the equation (6) leads to

ξ
′

+e
imθ + ξ

′

−e
−imθ

=
∑
k,k 6=j

G1 (θ/2)
(
ξ+e

imθ + ξ−e
−imθ − ξ+eimθei(m+1)φ − ξ−e−imθei(−m+1)φ

)
+
∑
k,k 6=j

G2 (θ/2)
(
ξ+e

imθeimφ + ξ−e
imθeimφ − ξ+e

imθeiφ − ξ−eimθeiφ
)

=ξ+
∑
k,k 6=j

G1 (φ/2)
(
eimθ − eimθei(m+1)φ

)
+ ξ−

∑
k,k 6=j

G2 (φ/2)
(
eimθeimφ − eimθeiφ

)
+ ξ−

∑
k,k 6=j

G1 (φ/2)
(
e−imθ − e−imθei(−m+1)φ

)
+ ξ+

∑
k,k 6=j

G2 (φ/2)
(
e−imθe−imφ − e−imθeiφ

)
.
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After separating the terms consisting of eimθ and e−imθ respectively, we obtain

ξ
′

+e
imθ = ξ+

∑
k,k 6=j

G1 (φ/2)
(
eimθ − eimθei(m+1)φ

)
+ ξ−

∑
k,k 6=j

G2 (φ/2)
(
eimθeimφ − eimθeiφ

)
ξ
′

−e
−imθ = ξ−

∑
k,k 6=j

G1 (φ/2)
(
e−imθ − e−imθei(−m+1)φ

)
+ ξ+

∑
k,k 6=j

G2 (φ/2)
(
e−imθe−imφ − e−imθeiφ

)
.

And this implies

ξ
′

+ = ξ+
∑
k,k 6=j

G1 (φ/2)
(
1− ei(m+1)φ

)
+ ξ−

∑
k,k 6=j

G2 (φ/2)
(
eimφ − eiφ

)
= ξ+I1 (m) + ξ−I2 (m) (7)

ξ
′

− = ξ−
∑
k,k 6=j

G1 (φ/2)
(
1− ei(−m+1)φ

)
+ ξ+

∑
k,k 6=j

G2 (φ/2)
(
e−imφ − eiφ

)
= ξ−I1 (−m) + ξ+I2 (−m) , (8)

where we have divided both of the left and the right hand side of (7) and (8) by eimθ and e−imθ respectively, and
we defined I1 (m) :=

∑
k,k 6=j

G1 (φ/2)
(
1− ei(m+1)φ

)
and I2 (m) :=

∑
k,k 6=j

G2 (φ/2)
(
eimφ − eiφ

)
for convenience.

We obtain that
ξ
′
− = ξ−I1 (−m) + ξ+I2 (−m) (9)

by applying the conjugate of (8) in both left and right hand sides. After that, we may write equations (7) and
(9) in matrix form. That is (

ξ′+
ξ
′
−

)
=M

(
ξ+
ξ−,

)
(10)

where M =

(
I1(m) I2(m)
I2(m) I1(−m)

)
.

If we let b± be any real constant and substitute ξ± = b±e
λt into equation (10), we see that λ is an eigen-

value of the matrix M =

(
I1(m) I2(m)
I2(m) I1(−m)

)
. If λ ≤ 0, then eλt → 0 as t → ∞, so that ξ± → 0 as t becomes

large. If this is the case, then the system is stable, it is unstable otherwise (when λ ≥ 0). Since m is an arbitrary
integer, λ must be non-positive for any given integer m to ensure the stability.

Moreover, we can rewrite I1(m) and I2(m) into simpler forms. Note that k − j varies from 1 to N . We
can set j = 0 and let k vary from 1 to N without loss of generality. As a result, the angle φ varies from 2π

N to
2π. Then the expression I1(m) can be rewritten as follows
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I1 (m) =
∑
k,k 6=j

G1 (φ/2)
(
1− ei(m+1)φ

)

=

N∑
k=1

G1

(
πk

N

)(
1− ei(m+1) 2πk

N

)
=

N∑
k=1

G1

(
πk

N

)(
1− cos

(
(m+ 1) 2πk

N

)
− i sin

(
(m+ 1) 2πk

N

))

=

N∑
k=1

G1

(
πk

N

)(
1− cos

(
(m+ 1) 2πk

N

))
−

N∑
k=1

G1

(
πk

N

)
i sin

(
(m+ 1) 2πk

N

)

= 2

N∑
k=1

G1

(
πk

N

)
sin2

(
(m+ 1)πk

N

)

−

N/2∑
k=1

G1

(
πk

N

)
i sin

(
(m+ 1) 2πk

N

)
+

N∑
k=N/2

G1

(
πk

N

)
i sin

(
(m+ 1) 2πk

N

)
= 2

N∑
k=1

G1

(
πk

N

)
sin2

(
(m+ 1)πk

N

)

−

N/2∑
k=1

G1

(
πk

N

)
i sin

(
(m+ 1) 2πk

N

)
+

N∑
k=N/2

G1

(
πk

N

)
i sin

(
(m+ 1) 2πk

N

)
= 2

N∑
k=1

G1

(
πk

N

)
sin2

(
(m+ 1)πk

N

)

= 4

N/2∑
k=1

G1

(
πk

N

)
sin2

(
(m+ 1)πk

N

)
, (11)

as the angle between 0 to π is just the inverse of the angle between π to 2π.

We use a similar computation for I2(m):

I2 (m) =
∑
k,k 6=j

G2 (φ/2)
(
eimφ − eiφ

)
=

N∑
k=1

G2 (φ/2) (cos (mφ) + i sin (mφ)− cos (φ)− i sin (φ))

=
∑
k,k 6=j

G2 (φ/2) (cos (mφ)− cos (φ)) +
∑
k,k 6=j

G2 (φ/2) (i sin (mφ)− i sin (φ)) .

Note that

G2(φ/2) = Rf ′
(
2R

∣∣∣∣sin(πkN
)∣∣∣∣) ∣∣∣∣sin(πkN

)∣∣∣∣ ,
= Rf ′

(
2R

∣∣∣∣sin(π(N − k)N

)∣∣∣∣) ∣∣∣∣sin(π(N − k)N

)∣∣∣∣ , (12)

and

i sin (mφ)− i sin (φ)

=i sin

(
m
2kπ

N

)
− i sin

(
2kπ

N

)
=−

(
i sin

(
m
2(N − k)π

N

)
− i sin

(
2(N − k)π

N

))
(13)
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for k ranges from 1 to N by using the symmetry of the sine function. As a result, equations (12) and (13)
together imply

N/2∑
k=1

G2 (φ/2) (i sin (mφ)− i sin (φ))

=−
N∑

k=N/2+1

G2 (φ/2) (i sin (mφ)− i sin (φ)) .

Adding up with all possible k, k 6= j makes this summation
∑
k,k 6=j

G2 (φ/2) (i sin (mφ)− i sin (φ)) equal 0. Now

we have

I2(m) =
∑
k,k 6=j

G2 (φ/2)
(
1− 2 sin2 (mφ/2)− 1 + 2 sin2 (φ/2)

)
= 2

∑
k,k 6=j

G2 (φ/2)
(
sin2 (φ/2)− sin2 (mφ/2)

)
= 2

N∑
k=1

G2

(
πk

N

)(
sin2

(
πk

N

)
− sin2

(
mπk

N

))

= 4

N/2∑
k=1

G2

(
πk

N

)(
sin2

(
πk

N

)
− sin2

(
mπk

N

))
. (14)

Consider I1(m) given by (11). Note that the summands in I1(m) becomes neglectfully small when k is close
to N . Therefore, for N large we can approximate I1(m) with its continuum limit by letting N →∞. If we let
θ = πk

N , we see that θ ranges from π
N to π

2 . Therefore,
π
N approaches 0 and I1(m) becomes

lim
N→∞

I1(m)

=4 lim
N→∞

1

N

N/2∑
k=1

(
Rf ′

(
2R

∣∣∣∣sin(πkN
)∣∣∣∣) ∣∣∣∣sin(πkN

)∣∣∣∣+ f

(
2R

∣∣∣∣sin(πkN
)∣∣∣∣)) sin2

(
(m+ 1)π

k

N

)

=
4

π

∫ π/2

0

(Rf ′ (2R |sin (θ)|) |sin (θ)|+ f (2R |sin (θ)|)) sin2 ((m+ 1)θ) dθ

=
4

π

∫ π/2

0

(Rf ′ (2R sin (θ)) sin (θ) + f (2R sin (θ))) sin2 ((m+ 1)θ) dθ,

as |sin(θ)| = sin(θ) for 0 < θ < π.

Similarly, consider I2(m) given by (14), if we let θ = πk
N , we observe that θ ranges from π

N to π
2 . There-

fore, if N →∞, π
N approaches 0 and I2(m) becomes

lim
N→∞

I2(m)

= lim
N→∞

4

N/2∑
k=1

G2

(
πk

N

)(
sin2

(
πk

N

)
− sin2

(
mπk

N

))

=
4

π

∫ π/2

0

Rf ′ (2R |sin (θ)|) |sin (θ)|
(
sin2 (θ)− sin2 (mθ)

)
dθ

=
4

π

∫ π/2

0

(Rf ′ (2R sin (θ)) sin (θ))
(
sin2 (θ)− sin2 (mθ)

)
dθ

as |sin(θ)| = sin(θ) for 0 < θ < π.

We summarize the results above into the following theorem.
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Theorem 1 ([2], Theorem 2.1). In the continuum limit N → ∞, consider the ring equilibrium of radius R
given by equation (3) for the flow (2). Suppose that f(r) is piece-wise C1 for r ≥ 0. Define

I1(m) :=
4

π

∫ π/2

0

(Rf ′ (2R sin (θ)) sin (θ) + f (2R sin (θ))) sin2 ((m+ 1) θ) dθ

I2(m) :=
4

π

∫ π/2

0

(Rf ′ (2R sin (θ)) sin (θ))
(
sin2 (θ)− sin2 (mθ)

)
dθ

M(m) :=

(
I1(m) I2(m)
I2(m) I1(−m)

)
.

If λ ≤ 0 for all eigenvalues λ of M(m) for all m ∈ N then the ring equilibrium is linearly stable. It is unstable
otherwise. For finite N, the ring is stable if λ ≤ 0 for all eigenvalues λ of M(m) for all m = 1, 2, . . . N , but
with I1, I2 as given by equation (11) and equation (14).

2.1 High wave-number stability
We have seen above that the ring equilibrium is linearly stable if λ ≤ 0 for all eigenvalues λ of M(m) for all
m ∈ N, which means it must hold for large m as well. In this subsection we examine the stability of the ring
equilibria when m is large. A ring is called short-wave stable if the eigenvalues of M(m) corresponding to
sufficiently large m have negative real parts and is called short-wave unstable otherwise (see [2]). Omitting the
computational details, the following theorem can be derived:

Theorem 2 ([2], Theorem 3.1). Suppose that f(r) admits a generalised power series expansion of the form

f(s) = a0s
p0 + a1s

p1 + . . . , p0 < p1 < . . . . (15)

Moreover, suppose that p0 > −3, a0 > 0, and all constants aj , j = 1, 2, . . . are non-zero. Let pl be the smallest
power which is not even. Then the following conditions are sufficient for the ring to be short-wave stable:

p0 > −1;∫ π/2

0

(Rf ′(2R sin θ) sin θ + f(2R sin θ))dθ < 0; (16)

either al > 0 and pl ∈ (−1, 0) ∪ (1, 2) ∪ (4, 6) . . .

or al < 0 and pl ∈ (0, 1) ∪ (2, 4) ∪ (6, 8) . . . .
(17)

The ring is short-wave unstable if either p0 ≤ −1 or the inequality in either (16) or (17) is reversed.

Remark. According to [2], the necessary condition for stability is that trace(M(m)) < 0 as m → ∞, which is
equivalent to (16). The sufficient condition is that det(M(m)) > 0 as m→∞.

Therefore, for f(r) that admits a generalised power series expansion of the form (15), the intersection of the
regions corresponding to all m ∈ N in which all of the powers p0, p1, . . . satisfy the conditions elaborated in
Theorem 1 and Theorem 2 is the region where the ring equilibria are stable. We present an example below.

2.1.1 Example with power-law potentials

Consider interaction forces of the form F (r) = rp − arq with 0 ≤ p < q. Fix R = 1/2 for convenience and
substitute f(r) = F (r)/r = rp−1 − arq−1 into equation (3). Under these conditions a = Γ(1+p/2)Γ(3/2+q/2)

Γ(3/2+p/2)Γ(1+q/2) (see
page 963 of [2]). Moreover, if we substitute f(r) = rp−1 − arq−1 into I1(m), I2(m), I1(−m), we are able to find
the stability boundaries for this kind of interaction forces, the stability boundaries for each mode m can be
plotted as curves. Using the help of Maple we show these curves in Figure 1.

3 Visualisation of Stationary Solutions
This section presents visualisation of stationary solutions related to the stability region of the ring solutions.
The numerical method that is used to obtain the ring solutions will be introduced. For the visualisation, we
simulate the motion of the particles with various parameters from an interaction potential, this gives us an easy
and direct way to see whether the stationary solutions are stable or not. Specifically we simulate the system
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(1, 3.2)
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Figure 1: Stability region of a ring solution for the force law F (r) = rp−arq. Each of the curves with a number
on it corresponds to instability boundaries with mode m = 2, 3, 4, 5, 6,, and ∞. The dotted line denotes the
boundary p = q, above which we have long-range attraction and short-range repulsion. The red dots denote the
positions of parameters p, q in F (r) = rp − arq that corresponds to four different force laws in Figure 3.

described in (2) with interaction force according to power-law force, and we are able to confirm the results
presented in the previous sections.

In order to find the stationary solution, it is natural to seek for the state where the total amount of en-
ergy (1) is minimized. We use here a steepest descent method. This method is a natural approach as it can
be easily applied thanks to the gradient flow structure of our system. An advantage of this method is that
although it converges only linearly to the solution, it usually converges even for poor initial conditions [5]. We
use this method throughout the simulation process as we randomly generate the initial conditions. This method
determines a local minimum for a multi-variable function of the form g : Rn → R. Since we assume that the
function P is one time continuously differentiable and since the energy we want to minimize is E : Rn → R, the
criteria of using this method is satisfied.

The method is as follows:

1. Evaluate the energy E0 at the initial position x(0) =
(
x

(0)
1 , ..., x

(0)
n

)
.

2. Evaluate -∇XjE, this is given in equation (2).

3. Move an appropriate amount in the direction of -∇XjE to obtain x(1) with E1 < E0.

4. Repeat steps 1 to 3.

The algorithm for finding the stationary solutions of the interactive particles is found in Algorithm 1.

11



Algorithm 1 Steepest descent method for the aggregation equation
Require: N > 0 number of particles
Require: Smax > 0 integer (total number of loops to run).
dx← 0.01 initial time step
TOL← 1e− 8 (tolerance for the change in energy between time steps)
steps← 0 (counter variable for loop steps)
pos0 ← X0

1 , X
0
2 , . . . X

0
N (the initial position of the particles)

E0 ← E(pos0) (energy of the initial state)
loop
steps← steps+ 1
for i← 1; i ≤ N ; i← i+ 1 do
X1
i ← X0

i + dx
∑N
j=1
j 6=i

f(‖X0
i −X0

j ‖)(X0
i −X0

j )

end for
pos1 ← X1

1 , X
1
2 , . . . , X

1
N

E1 ← E(pos1)
if E1 < E0 then

if |E1 − E0| < TOL then
break

else
E0 ← E1

pos0 ← pos1
dx← 2× dx

end if
else
dx← 1

2 × dx
end if
if steps > Smax then

print Maximum number of steps reached
break

end if
end loop

Using Algorithm 1 we are able to find the stationary solution of the particle system with interaction forces of
the form F (r) = tanh[(1− r)a]+ b with 0 < a;− tanh(a) < b < 1, and F (r) = rp− rq with 0 ≤ p < q. Those are
presented in Figure 2 and Figure 3 respectively. The ring solutions in Figure 3 correspond to the red dots in
Figure 1. We observe that for p = 1, q = 2 the ring solutions are stable but for other p and q the ring solutions
are unstable and they appear in different forms, this is in accordance with Figure 1 as the only point that lies
in the stable-region is (p, q) = (1, 2). In Figure 2 we see that most ring solutions with b ≤ −0.3 are stable. In
general, the higher b is, the more likely for the ring solutions to be unstable.
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Figure 2: Positions of 5000 particles with force law F (r) = tanh[(1− r)a]+ b with 0 < a and − tanh(a) < b < 1.

A Useful Identities and computations
The following identities are used in Section 2:(

1− eiφ
)2

= 1 + e2φi − 2eiφ

= 1 + cos (2φ) + i sin (2φ)− 2 cos (φ)− 2i sin (φ)

= 1 + 2 cos2 (φ)− 1 + 2i sin (φ) cos (φ)− 2 cos (φ)− 2i sin (φ)

= 2 cos (φ) (cos (φ)− 1) + 2i sin (φ) (cos (φ)− 1)

= 2 (cos (φ) + i sin (φ))

(
−2 sin2

(
φ

2

))
= −4 sin2

(
φ

2

)
eiφ

(
1− eiφ

) (
1− e−iφ

)
= 1− e−φi − eiφ + 1

= 2− e−iφ − eiφ

= 2− (cos (φ)− i sin (φ))− (cos (φ) + i sin (φ))

= 2− 2 cos (φ)

= 4 sin2

(
φ

2

)
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t = 0 t = 0 t = 1 t = 1

t = 6 t = 2 t = 10 t = 2

t = 20 t = 10 t = 100 t = 40

t = 1000 t = 40 t = 200 t = 100

t = 10000 t = 300 t = 900 t = 1000

Figure 3: Positions of particles with force law F (r) = rp − rq with 0 ≤ p < q. First column: F (r) = r − r2,
N = 80. Second column: F (r) = r0.5 − r6, N = 300. Third column: F (r) = r − r3.2, N = 100. Forth column:
F (r) = r0.5 − r1.5, N = 300. Reproduced from [10].
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