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Abstract

Every year, thousands of women are diagnosed with breast cancer. To increase their survival chance
and improve the treatment plans available, it is important to accurately predict the patient’s response
to treatment. For HER2+ breast cancer patients, normally a set number of chemotherapy rounds
are administered. However, perhaps some patients would benefit from more chemotherapy or con­
versely, fewer rounds are sufficient. A reaction­diffusion model as well as a mechanically coupled
reaction­diffusion model are used to predict the tumour cellularity. Using two magnetic resonance
imaging (MRI) scans, a patient­specific model is calibrated to calculate the response for each indi­
vidual patient. A third MRI scan is used to validate the results. Several preprocessing techniques
are used to obtain the necessary information from the MRI scans such as tumour cellularity, seg­
mentation of tissues and breast region.

Themodel calculations are performed in 2­dimensions and the slice thickness chosen determines
how much effect the incorporation of surrounding tissue has. Using thicker slices means that the
surrounding tissue has a larger effect on the tumour growth. For patients that respond well to treat­
ment, the models are both able to calculate the downward trend in tumour cellularity. For thin slices
(1.6 mm), both models perform similarly. Using thicker slices (6.5 mm), the mechanically coupled
model shows better performance. The most important additions to the model are implementation in
3­dimensions so the slice thickness no longer has an effect. Most importantly, the chemotherapy
should be incorporated to better obtain a patient­specific prediction of the response to treatment.
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1
Introduction

Cancer is one of the leading causes of death worldwide and the leading type of cancer in women. In
2020 alone, almost 10million people succumbed to the disease and one in seven womenwill develop
breast cancer in their lifetime [48]. Whilst the 5­year survival rate is now 89% in the Netherlands,
compared to 52% in 1952, there are still about 3,000 deaths annually [5]. With more than 18 types of
breast cancer, breast cancer can occur in several different areas of the breast, most commonly in the
ducts or lobules [6, 37]. Ductal carcinomas are the most common kinds of breast cancer where the
cancer starts in the cells lining the milk ducts [7]. Approximately 75% of breast tumours are ductal
types, and only about 15% are lobular types. Figure 1.1 shows an illustration of the location of ducts
and lobules in the breast.

Figure 1.1: Location of ducts and lobules within a female breast [13].

Whenever a patient is diagnosed with breast cancer, it is classified by several grading systems,
i.e. histopathology, grade, stage and receptor status. These grading systems are used to determine
the best treatment plan [39].
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2 Chapter 1. Introduction

• Histopathologic: This is determined by the histologic appearance of the tumour and can be
broadly classified into two categories; carcinomas in situ and invasive carcinoma.

• Grade: This is based on how similar the cancer cells are to normal cells which is determined
in the laboratory. Grade 1 means the tumour cells look very similar to normal cells and thus
the tumour will spread slower. Grade 3 is the highest grade where the cells are very different
and will grow and spread faster.

• Stage: Stages in breast cancer indicates how much cancer is in the body. The stages are
between 0 and 4 where the higher the stage, the more widespread the cancer is.

• Receptor Status: Cells are tested to see if they have certain proteins that are either estrogen or
progesterone receptors. Receptor status is especially important as it determines the suitability
of the treatment options.

Evidently, there are several different combinations of grading systems. In this thesis, we will focus
on one subtype of receptor status, namely HER2 positive tumours. There are three main subtypes of
receptor status; Hormone receptor positive, HER2 positive and triple negative [7]. Firstly, hormone
receptor positive (HR+) entails breast cancer which expresses either estrogen receptors (ER+) or
progesterone receptors (PR+), or in some cases both. This type of breast cancer may depend on
either of these hormones to grow. Furthermore, while it can occur at any age, this subtype is most
common in women who have gone through menopause and about 2 out of 3 breast cancers are
classed as hormone receptor positive. When a patient is neither ER+ nor PR+, they are called
hormone receptor negative (HR­). Next, we have HER2 positive (HER2+), which is breast cancer
that tests positive for a protein called human epidermal growth factor receptor 2. This protein is found
on all breast cells and promotes growth, so breast cancer with a higher level of HER2 than normal
is called HER2­positive, or HER2+. These cancers are known to grow and spread faster since the
overexpression of the HER2 gene causes excessive cell division. About 20% of breast cancers are
HER2+. Fortunately, these tumours also tend to respond favourably to treatment. Lastly, there is the
subtype called triple negative. Breast cancer is classified as triple negative when it is neither HER2,
estrogen nor progesterone positive. This type is the least common, only occurring about 15% but
unfortunately has limited treatment plans and the worst prognosis.

1.1. Treatment
Once a patient has been diagnosed with breast cancer, a treatment plan has to be made. The goal
of the treatment plan is to minimize burden to the patient whilst maximizing their potential to fully
recover. Treatment can be in the form of chemotherapy, surgery, radiotherapy or a combination
of these. If the cancer is locally advanced but had not yet spread to other parts of the body, i.e.
metastasised, neoadjuvant chemotherapy can be administered. Neoadjuvant chemotherapy is the
administration of chemotherapy prior to surgery. This helps reduce the tumour size, such that a
mastectomy is no longer necessary but only a lumpectomy, i.e. the removal of the tumour, which is
less invasive [45].

The growth of a tumour remains a complex process and the response to treatment for the same
tumour type can vary per patient. With various different chemotherapy treatments available, and
even more treatments emerging, it is of high interest to reliably predict a patient’s specific response
to treatment which results in the best possible treatment plan. Each treatment has a range of side
effects, by accurately predicting the patient’s response to said treatment, it could prevent the side
effects of noneffective treatments. Additionally, patients who achieve a pathological complete re­
sponse, pCR, in the neoadjuvant setting have increased chances of recurrence­free survival [19].
Pathological complete response is defined as the absence of residual tumour in the breast or nodes
by histologic analysis [44]. Unfortunately, current neoadjuvant therapy is not optimized for each pa­
tient individually [20]. Based on the receptor status, tumour grade etc., the patients are given a set
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number of chemotherapy cycles prior to operation. The patients’ physiological characteristics such
as breast density are not taken into account. The advantages for reliably predicting the outcome of
neoadjuvant chemotherapy as early as possible is that it can help reduce unnecessary treatments
and its related side effects on patients, since chemotherapy not only attacks tumour tissue but healthy
tissue as well [44]. Furthermore, with numerous treatment plans available, unresponsive patients
could change treatment for better individual care.

1.2. Research Aim
In this thesis, we will consider HER2­positive breast cancer patients as it is known that for these
patients, neoadjuvant chemotherapy often leads to pCR [40]. In general, a set number of cycles
of chemotherapy is given before surgery. However, it is unclear how many cycles a specific pa­
tient would need to achieve pCR. Some patients could need fewer cycles than others. For these
patients, reducing the amount of unnecessary chemotherapy reduces the amount of treatment re­
lated toxicities. Conversely, for some patients, it could be beneficial to continue administering more
chemotherapy to increase their chance of achieving pCR. Therefore, it is important to accurately
predict how many cycles of chemotherapy a patient will need to achieve pCR.

The research in this thesis will focus on providing a model which can predict how the tumour will
change over time. To make a mathematical model for tumour growth, knowledge of parameters is
required [2]. There are many approaches to model tumour growth. Unfortunately, many of these
are models which are not directly applicable to individual patients as they are unable to easily in­
corporate clinical data [44]. Additionally, they require a multitude of parameters which either have
to be obtained from literature or empirically derived. This causes them to be impractical for predict­
ing individual patient’s outcome. In this thesis, we focus on creating a mathematical model which
can maximize the impact of quantitative noninvasive imaging in order to predict patient­specific re­
sponse. To find the parameters of the model, this research focuses on using noninvasive magnetic
resonance imaging, MRI. By using MRI scans for each individual patient, a patient­specific model
can be created to predict their outcome. For each patient, MRI scans at three different time points
will be used, one prior to, one during and one at the conclusion of chemotherapy. The idea of using
three MRI scans is to initialize the model parameters using the pre­treatment MRI scan, then the
parameters can be calibrated with the follow­up scan and be validated with the last scan. Using
these biomarkers, the predictive model can then be used to estimate the number of tumour cells
after each additional cycle of chemotherapy. Then, a threshold can be chosen to determine when
the patient has achieved pCR.

1.2.1. Research Questions
The main research question for this thesis is: Can a mathematical model of tumour growth predict
patient­specific response for HER2+ breast cancer patients?

The answer to this question will be answered by the following subquestions:

• What kind of preprocessing techniques need to be applied to the MRI scans?
• How can MRI scans be used to calibrate and validate the model for patient­specific response?
• What kind of MRI scans can be used best to calibrate and validate the model?
• What patient­specific parameters are necessary for the model?
• Does taking the surrounding tissue into account help make the model more accurate?

In this thesis, an answer to these questions shall be presented.
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1.3. Structure of Thesis
The structure of this thesis is as follows. First, Chapter 2 provides an overview of available literature
on the modelling of tumour growth. Then, Chapter 3 discusses the data provided by Erasmus Med­
ical Centre and the preprocessing of the data to extract the necessary information for each patient.
Chapter 4 will explain the model implementation as well as the calibration of the model parameters.
In Chapter 5, the preliminary results of model calculations are given as well as some in silico exper­
iments to illustrate the performance of the model. Chapter 6 will present the results of the model
which is tested on the data provided by EMC. The model is tested on each patient to see how it
performs. In Chapter 7, the potential for future improvements is provided to improve the predictive
capability of the model. Lastly, the conclusion provides and an answer to the main research ques­
tion as well as some discussion of what the most important improvements are, will be provided in
Chapter 8.

1.4. Review of Medical Ethics Committee Erasmus Medical Centre
This research has been carried out in collaboration with Erasmus Medical Centre, Rotterdam. Med­
ical research which involves human subjects is covered by the Medical Research Involving Human
Subjects Act (WMO). The Medical Ethics Committee from Erasmus Medical Centre of Rotterdam
has reviewed the research proposal of this study and concluded that it is not subject to the WMO.
Therefore, the provided data from ErasmusMedical Centre has been anonymised prior to conducting
this research.





2
Review of Literature

The aim of this chapter is to provide insight into current tumour modelling techniques, and to review
and determine which model is most promising for our objective. There are different ways to predict
the growth of a tumour located in the breast. The standard way is to monitor the change in tumour
size by physical examination or imaging. However, these methods often do not show if a tumour is
responding until several cycles of chemotherapy have been administered and may be invasive [45].
This can lead to letting an unresponsive tumour becoming unresectable. In general, there are three
main mathematical approaches to model tumour growth: discrete, continuum and hybrid modelling
[29]. We will briefly explain discrete and hybrid modelling and focus mainly on continuum modelling.

2.1. Discrete Modelling
Discrete modelling can be used to model interactions of individual cells with each other and their
environment. The cells are individually tracked and follow a set of biophysical rules [29]. Within
discrete models, there are two main types, on­lattice and off­lattice [34]. On lattice models, as the
name suggests, are constrained to a lattice which can be triangular, square, hexagonal, etc. This
lattice defines the positions of the individual cells and their interaction neighbours. These models
are generally easier to program than off­lattice models. However, the main disadvantage is that
these models limit the number of directions in which the cells can move. Conversely, in off­lattice
models, there is a more realistic representation of the cell locations. However, during cell division,
it is important to determine the correct placement for daughter cells in order not to overlap. Addi­
tionally, the freedom of movement in all directions of the cells could result in cell collisions. For
these types of lattices, the main disadvantage is that special algorithms need to be implemented to
handle cell­cell neighbourhoods which makes them more complex. The two main discrete models
are cellular automata and agent­based models [43]. Cellular automata in an on lattice model which
synchronously evolves through time and with identical rules applied to each cell. On the other hand,
agent­based models asynchronously evolves through time and have dynamic interactions between
the agents and their environments. In this approach, each individual cell is represented as an agent.
Because this approach is asynchronous, it is appealing to use for simulating tumours as they are het­
erogeneous and display behaviour that cannot be reduced to an averaged, simple mechanism. As
discrete models use a series of rules for each cell, they can incorporate biological processes into the
model based on data or assumptions. However, the computational cost for discrete models grows
rapidly as the number of cells increases. Currently, simulation of only 1 mm3 of tumour spheroid
is not feasible using only a discrete approach as this spheroid would already contain more than a
hundred thousand cells [29]. Additionally, obtaining measurements for model parameters can be
challenging and may need to be done invasively. As such, a discrete approach is not feasible for the
application in this thesis, but is a suitable approach for applications on a sub­millimeter scale [43].

5
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2.2. Continuum Modelling
Continuum modelling methods are based on reaction­diffusion equations to describe tumour cell
density, growth factors and inhibitors. This approach models tumours as a collection of tissue and
allows monitoring of the expansion of a larger cluster of cells [43]. Unlike discrete modelling, individ­
ual cells are not tracked. This means the model can lack sensitivity to small local fluctuations within
the tumour, such as tumour angiogenetic sprouting, i.e. the event where the tumour grows new blood
vessels from existing ones [43]. A major advantage of continuum models is that model parameters
are somewhat easy to obtain, analyse and control in comparison to discrete modelling [29]. More­
over, the computational cost is less than for discrete modelling. In general, continuum modelling is
an appropriate choice for applications where one is interested in gross tumour behaviour, but is un­
suitable for modelling the development of the tumour on an individual cellular level. This makes this
type of modelling suitable for our objective since we are interested in modelling the overall change
of the tumour rather than the individual tumour cells.

2.2.1. Reaction­Diffusion
Reaction­diffusionmodels are also known asmechanism­basedmathematical models and are based
on the assumption that the behaviour of a complex system can be modelled by mathematical descrip­
tions of the interactions of individual components [17]. This system is often used to model the change
in time and space of a concentration in chemistry or even the spread of biological populations. How­
ever, it can also be used in biology to model the number of tumour cells, where the diffusive term
describes the random movement of the tumour cells. In general, the equation looks as follows:

∂tq(x̄, t) = ∇ · (D∇q(x̄, t))︸ ︷︷ ︸
Diffusion

+R(q(x̄, t))︸ ︷︷ ︸
Reaction

. (2.1)

In this equation, q(x̄, t) is an unknown vector function and the equation is split into a diffusive and
reactive part. D is the diffusion in each location and R contains the reactions. Several authors have
already used and improved this model to describe tumour growth [17, 19, 20, 44, 45]. The models
these authors have built are capable of incorporating patient­specific noninvasive imaging, MRI’s, to
determine the parameters in the model. In this specific application, the reaction­diffusion equations
look as follows.

∂N(x̄, t)

∂t
= ∇ · (D∇N(x̄, t))︸ ︷︷ ︸

Diffusion

+ k(x̄)N(x̄, t)

(
1− N(x̄, t)

θ

)
︸ ︷︷ ︸

Proliferation

. (2.2)

This equation models the spatio­temporal change of tumour cell number. In this case, N(x̄, t) rep­
resents the number of tumour cells at position x̄ and time t, where x̄ is a two­ or three­dimensional
vector. k(x̄) denotes the proliferation rate per voxel and θ is the carrying capacity, i.e. the maximum
number of cells that fit into one voxel. A logistic growth function is used for the reaction. When re­
garding tumour growth, several different growth functions exist [32]. In the early stages, cell division
is quicker, resulting in exponential growth. However, for later stages of tumour growth, this growth
function is not realistic. Instead, a logistic growth function is found to be more realistic as it limits the
growth of the tumour as more cells are present. This means the growth rate decreases linearly as
the size of the tumour increases.

Additional expansions are made to make the model more realistic. Firstly, the apparent cell
diffusion, D, which describes the random movement of the tumour cells, can be mechanically linked
to surrounding breast tissue. This is done via the following equation:

D = D0e
−γσvm(x̄,t) , (2.3)
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where σvm(x̄,t) is the von Mises stress, γ is a coupling constant for the von Mises stress and D0 is
the diffusion of tumour cells in the absence of external stress. As can be seen from the equation,
there is an inverse relationship between the von Mises stress and the diffusion coefficient. As the
von Mises stress increases, the diffusion coefficient D decreases.

Additionally, a linear elastic, isotropic mechanical equilibrium is assumed between the tumour and
its surrounding environment. The forces exerted by the tumour are assumed to be linear with the
cellularity, shown in Equation 2.4. Here, λ is a coupling constant andG is shear modulus,G = E

2(1+ν)

with E Young’s modulus and ν Poisson’s ratio. The Young’s modulus relates to the stiffness of the
surrounding tissue. The breast tissue consists mostly of adipose, fibroglandular and tumour tissue,
with fibroglandular tissue being twice as stiff as adipose, fatty, tissue [45].

∇ ·G∇u⃗+∇ G

1− 2ν
(∇ · u⃗)− λ∇N(x̄, t) = 0. (2.4)

This equation shows the response of the displacement vector, u⃗, due to tumour cell growth. The
left hand side represents the linear­elastic description of tissue displacement while the right hand
side is the local body force which is generated by the tumour [15]. After solving this equation, the
von Mises stress is calculated using the displacement vector and then used to update the diffusion
coefficient. As the tumour grows, it imposes stress on the surrounding tissue, with stiffer tissues
leading to higher stress. This, in turn, restricts the tumour’s growth through stiffer tissues. Equations
2.2, 2.3 and 2.4 will be used in the model.

2.2.2. Overview Parameters
An overview of the parameters and variables which are present in the model can be seen in Table
2.1 and 2.2. For each parameter/variable, it is also shown whether they are taken from literature
values or need to be calculated/calibrated per patient and what their assigned values are.

Variable Description Value
N(x̄, t) Number of tumour cells in x̄ at time t Calculated from DWI­MRI [cells]
D(x̄, t) Diffusion of tumour cells Calculated [mm2/day]
σvm(x̄, t) Von Mises stress Calculated from u⃗(x̄, t) [kPa]
u⃗(x̄, t) Displacement of tumour cells Calculated [mm]
G Shear Modulus Calculated, G = E

2(1+ν) [kPa]

Table 2.1: Table with clarification on the variables and how their values are assigned.

2.2.3. Quantitative Imaging
In this thesis, noninvasive imaging is used to obtain the patient­specific parameters necessary for the
model. In this case, Magnetic Resonance Imaging is used, MRI. Specifically, two different types of
MRI scans are used, Diffusion Weighted Images (DWI­MRI) and Dynamic Contrast Enhanced (DCE­
MRI). Both serve different purposes, DWI­MRI measures the random movement of water within the
tissue, which can be linked to the number of tumour cells. DCE­MRI are MRI scans in which a
contrast agent is administered to the patient after which a series of scans is made. This type of
MRI scan is used by radiologists to determine the location and size of the tumour as it lights up due
to the contrast agent. Both of these types of MRI scans are necessary for at least three different
time points. One prior to starting chemotherapy, one during treatment and one at the conclusion of
treatment, prior to surgery.
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Parameter Description Value
D0 Diffusion of tumour cells in absence of stress Calibrated [mm2/day]
k(x̄) Proliferation rate of tumour cells Calibrated [1/day]
θ Carrying capacity of tumour cells in each voxel Calculated [cells]
γ Mechanical coupling coefficient for stress Lit. value, 2× 10−3 [1/kPa]
ν Poisson ratio Lit. value, 0.45

E
Young’s modulus for adipose, fibroglandular, and
tumour tissue

Lit. value, 2, 4 and 20 respectively
[kPa]

λ
Coupling constant for the displacement of tumour
cells Lit. value, 2.5× 10−3

Table 2.2: Table with clarification on model parameters and how their values are assigned.

2.2.4. Determine Tumour Region of Interest
In order to determine the tumour cellularity, first, the tumour region of interest (ROI) needs to be
established. For this, DCE­MRI data can be used to segment the tumour ROI. Several approaches
for this exist. For example, Jarrett et al. (2018) determined the ROI by first calculating the difference
between the average of the precontrast images and of three consecutive postcontrast images for
each voxel. Then, the standard deviation of signal intensity of healthy tissue is calculated by using
the average of the final six post contrast images of the normal­appearing tissue from the unaffected
breast. Lastly, for each voxel within a manually drawn ROI, if the difference between the pre­ and
postcontrast image is greater than two times the calculated standard deviation from the healthy
tissue, the voxel is considered to be part of the tumour.

On the other hand, Weis et al. (2013) determined the ROI of the tumour by comparing the differ­
ence between the average of pre­ and postcontrast images for each voxel as well. If a voxel within
a manually outlined ROI was exhibiting an 80% signal intensity increase between the pre­and post­
contrast images, they were considered to be part of the tumour. This 80% threshold was chosen
as this would provide the highest degree of correlation between the tumour volume at the time of
surgery and tumour volume calculated by DCE­MRI.

Lastly, Jarrett et al. (2020) chose to use a fuzzy c­means­based clustering algorithm to determine
the tumour ROI. In a fuzzy­based algorithm, the data points are divided into c different groups where
the data point membership is no longer binary but can range from 0 to 1 and thus characterizes the
degree of similarity between the data and the group. In this case, the algorithm divides the data
points, voxels, into two groups, lesion and non­lesion and has been shown to be both effective and
efficient [9].

Note that each of these three methods uses an already manually and conservatively outlined
ROI before the algorithm proceeds to refine this to the tumour ROI. Also, the first and last scan in
which the tumour is present should be known.

2.2.5. Tumour Cell Estimation
As discussed before, DWI­MRI provides a noninvasive measurement of the random movement,
Brownian motion, of water in tissues which can then be quantified using the apparent diffusion coef­
ficient (ADC). The free movement of water is hindered by cells and thus ADC is inversely correlated
to tumour cellularity [1, 31]. To calculate the ADC values, the following equation can be used:

ADC =

∑
i=x,y,z ln(S0/Si)/bi

3
, (2.5)
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where i is the diffusion weighting direction, bi is the amount of diffusion applied to the sample, Si is
the signal intensity in presence of diffusion and S0 is the signal intensity in the absence of diffusion.
In general, multiple DWI­MRI scans are made with different diffusion directions and b­values. For
instance, Philips uses the directions anterior­posterior (AP), feet­head (FH) and right­left (RL). For
each direction, a scan is made. The ADC values can be found by fitting the signal intensities of each
voxel from the images at the different b­values to Equation 2.5, using nonlinear least squares [47].

After this, the ADC values for voxels within the tumour ROI can be used to estimate the tumour
cell number N(x̄, t) using the following equation:

N(x̄, t) = θ

(
ADCw − ADC(x̄, t)

ADCw − ADCmin

)
, (2.6)

where ADCw is the apparent diffusion coefficient of free water at 37◦C (ADCw = 3 ·10−2 mm2/s) and
ADCmin is the minimum ADC value in a tumour voxel measured over time 1 and 2 [19, 44]. θ is the
carrying capacity, i.e. the maximum number of tumour cells that fit into a voxel. To obtain θ, current
models assume spherical tumour cells with a packing density of 0.7405 and a cell radius of 10 µm
and so they arrive at a tumour cell volume of 4189µm3. To find the carrying capacity, we divide the
voxel volume by the tumour cell volume [1, 20, 44, 45].

2.2.6. Parameter Calibration
To predict patient­specific outcomes to treatment, patient­specific parameters are necessary. In
the current model, the patient­specific parameters are the diffusion in absence of stress, D0 and
the proliferation rate per voxel, k(x̄) which can be either positive or negative depending on cell
proliferation or death respectively. As mentioned before, MRI scans from three different time points
are needed for the model. This is for the calibration, as well as validation of the model. The data from
the first two MRI scans, i.e. tumour cell distribution, is used to calibrate the model parameters using
Levenberg­Marquardt nonlinear least squares [19, 20, 44, 45]. Using this, the sum of squared errors
between the calculated cell number at time 2 and the observed cell number at time 2 is minimized.

2.3. Hybrid Models
Hybridmodels combine both discrete and continuum techniques to bridge the cellular­scale to tumour­
scale and may provide a more realistic coupling of biophysical processes [29, 43]. While discrete
models are able to model the behaviour for individual cells, they are unable to do so for a large num­
ber of cells due to computational complexity. Conversely, continuum models allow for monitoring of
larger clusters of cells yet fail to model cells on an individual scale. Though there are two types of
lattices to choose from for the discrete cells, the continuous equations accounting for the chemical or
physical fields are solved on a square, triangular or hexagonal grid [8]. Since both approaches have
their benefits and limitations, hybrid modelling aims to combine both methods and use their best
features, though more work is necessary to compete with the continuum results [29]. The goal is to
create a discrete high resolution model while reducing computational intensity whenever possible.

For classical hybrid models, there are two types of continuum­discrete models [29]. The first ap­
proach represents tumours as the sum total of discrete elements (cells) and substrates (e.g. growth
or therapy) are continuum variables. The second approach describes the tumour itself by both dis­
crete and continuum components. This second approach provides the possibility of upscaling from
cell­scale to tumour and even tissue scale which is not possible by using just discrete models.

In the last decade, hybrid models have started to combine two or more different mathematical
frameworks. Continuous or discrete models were combined with concepts from other fields such as
machine learning and fluid dynamics [8]. The different modelling frameworks can be found in Figure
2.1. In the classical hybrid model, physical laws determine the behaviour of the cells and it thus falls
into the physics­based category. Other models can, for example, combine data­driven models with
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Figure 2.1: Hybrid modelling frameworks from Chamseddine and Rejniak (2020).

physics­based models. Data­driven models use statistical correlations to identify and find patterns in
the underlying data and are often applied to medical imaging data [8]. One example of this is from Li
et al. (2014), where image analysis algorithms are combined with a continuum mathematical model
to determine whether changes in MRI scans after the first neoadjuvant chemotherapy could predict
patients’ response. In this study, an enhancement threshold was chosen to divide the MRI scans
between responders and nonresponders. They used three continuous pharmacokinetic models to
predict the tumour response and proceeded to use statistical analysis to calculate the prognostic
capabilities of the parameters found.

2.4. Conclusion
Table 2.3 provides an overview of the different modelling approaches and lists the benefits and draw­
backs of each method. Though discrete modelling is capable of investigating the tumour dynamics
on an individual cellular scale, it is only able to do so for a limited number of cells due to computa­
tional costs. As such, it is unsuitable for the goal of this research as we wish to model the tumour
response in its entirety. Hybrid modelling seems to be a relatively new approach with the goal to
combine both discrete and continuum models and use only their advantages. It is able to be applied
to both small­ and large scales and could provide more realistic results. However, current literature
is by far less extensively available than for continuum models. Additionally, sophisticated numerical
techniques will be required and more model parameters will be necessary to model the individual
cells which may have to be found invasively [29]. Continuum models are by far the most covered
in literature for modelling tumour growth. Additionally, already several articles show promising re­
sults to combine the model with noninvasive imaging for patient­specific predictions [17, 19, 20, 45].
Though continuum models are unable to model individual cells, the capability to model larger­scale
tumour dynamics is more desirable in the interest of this thesis. Therefore, the focus will lay on
continuum models, specifically the reaction­diffusion equations described in the previous section.
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Model Type Characteristics
Discrete • Autonomous cells, with a set of rules governing their behavior

• Capable to investigate tumour dynamics at a single cell level and below
• Limited to a comparably smaller scale due to prohibitive computational costs

Continuum • Describing tumour tissue as a continuum medium
• Capable to capture larger­scale volumetric tumour dynamics
• Computational cost efficiency
• Difficult to implement heterogeneous cell­cell and cell­environmental
interaction, or molecular level dynamics

Hybrid • Applicable to both small­ and large scale models
• Extensive numerical techniques required

Table 2.3: Benefits and drawbacks of different modelling types [43].







3
Data Preprocessing

In this chapter, the data preprocessing necessary for the implementation of the model will be dis­
cussed. Two different sets of data have been used. Prior to obtaining the data from ErasmusMedical
Centre, data was collected from Cancer Imaging Archive from the QIN­Breast study [38].

3.1. Data Collection
As mentioned in the previous chapter, the data used for this research are Diffusion Weighted MRI
scans (DWI­MRI) and Dynamic Contrast Enhanced MRI scans (DCE­MRI). Both types of scans are
three­dimensional scans made of either one or both breasts of the patient and shall be used to
initialize the model for each individual patient.

3.1.1. Data QIN­Breast
Since the Erasmus MC data was not available at the start of this research, first data from the QIN­
Breast study was used [38]. The data from this study is from between 1987 and 1996. There were
68 patients in total, though for some only CT and PET scans were performed. It is also important to
note that the specifications of the patients’ tumour are unknown, i.e. we do not know whether these
are HER2+ patients or not. Unfortunately, most patients only had MRI scans of two time points.
Additionally, no information on the location of the tumour(s) was given, only whether the patient
achieved pCR or not. In the end, patient 59 was taken, as this patient seemed to have one of the
more distinguishable tumours. The scans of this patient date from 1993 and only 2 time points were
available. It is also known that this patient did not achieve pCR. In this study, the DWI­MRI scans
have a resolution of 144 x 144 x 12 with a voxel size of 1.333 mm x 1.333 mm x 5 mm and were
made with b­values 0, 50 and 600 s/mm2. The DCE­MRI scans have an acquisition matrix of 192 x
192 x 20 with the same voxel size of 1.333 mm x 1.333 mm x 5 mm. In one MRI scan session, 25
DCE­MRI scans are made of the breast over the course of about 7 minutes. The first 3 scans are
classed as precontrast scans, and the latter 22 are postcontrast scans, where the contrast agent has
been administered to the patient. Both scans are made over the sagittal axis and only the breast
containing the tumour(s) is scanned.

Due to the third scan being unavailable, the data of this study will be used to establish the pre­
processing pipeline and test the implementation of the model. The data from Erasmus shall be used
to evaluate the performance of the model.

3.1.2. Data Erasmus MC
The data provided by Erasmus Medical Centre consists of 4 individual patients having one or mul­
tiple HER2+ tumours. For each of these patients, 3 time points with scans are given which ranged
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between April 2020 and February 2021. All data has been anonymised, so a.o. the age, name and
ethnicity of the patients are unknown. Since there are four patients provided by Erasmus MC, these
will be named Patient001 to Patient004, respectively. The first scans from Patient002 were taken
in a different hospital. As such, the dimensions of the acquisition matrix as well as the shape of the
breast are different than the ones taken at Erasmus MC. In Table 3.1, an outline is made of the dif­
ferent matrix dimensions as well as voxel sizes. Due to the differences in voxel sizes and resolution,
additional processing is needed compared to the data from QIN­Breast. All patients have a residual
tumour at time 3. In this data set, the DWI­MRI scans have been made with b­values 50 and 800
s/mm2 and all scans have been made over the axial plane where both breasts can be seen.

Additionally, Patient001 and Patient002 have multiple tumours. Patient002 has five separate
tumours at MRI scan 1, but only one tumour remains from scan 2 onward. The tumours of Patient003
and Patient004 both have a very uneven shape compared to Patient001 and Patient002. Since
Patient004’s tumour had a very uneven shape and every DCE­MRI scan had different dimensions,
it was decided to leave this patient out of this research. After registration and further preprocessing,
it would have been difficult to confidently determine the tumour’s size and shape which makes this
patient not very suitable to test the model with.

Time Type Patient001 Patient002 Patient003 Patient004

Time 1

DCE Dimensions 512 x 512 x 120 448 x 448 x 160 512 x 512 x 120 512 x 512 x 120

Voxel Spacing (mm) 0.66 x 0.66 x 1.6 0.8 x 0.8 x 0.9 0.66 x 0.66 x 1.6 0.7 x 0.7 x 1.6

DWI Dimensions 256 x 256 x 32 116 x 190 x 34 256 x 256 x 32 256 x 256 x 32

Voxel Spacing (mm) 1.4 x 1.4 x 6.5 1.89 x 1.89 x 4.8 1.4 x 1.4 x 6.5 1.4 x 1.4 x 6.5

Time 2

DCE Dimensions 512 x 512 x 120 512 x 512 x 86 512 x 512 x 120 512 x 512 x 86

Voxel Spacing (mm) 0.66 x 0.66 x 1.6 0.66 x 0.66 x 2.2 0.66 x 0.66 x 1.6 0.6 x 0.66 x 2.2

DWI Dimensions 256 x 256 x 32 256 x 256 x 32 256 x 256 x 32 256 x 256 x 32

Voxel Spacing (mm) 1.4 x 1.4 x 6.5 1.4 x 1.4 x 6.5 1.4 x 1.4 x 6.5 1.4 x 1.4 x 6.5

Time 3

DCE Dimensions 512 x 512 x 86 512 x 512 x 86 512 x 512 x 86 512 x 512 x 90

Voxel Spacing (mm) 0.66 x 0.66 x 2.2 0.66 x 0.66 x 2.2 0.66 x 0.66 x 2.2 0.7 x 0.7 x 2.2

DWI Dimensions 256 x 256 x 32 256 x 256 x 32 256 x 256 x 32 256 x 256 x 32

Voxel Spacing (mm) 1.4 x 1.4 x 6.5 1.4 x 1.4 x 6.5 1.4 x 1.4 x 6.5 1.4 x 1.4 x 6.5

Table 3.1: Dimensions and voxel sizes of the different types of MRI scans provided by Erasmus MC.

3.2. Image Registration
At different time points, an MRI scan has been made of the patient to assess the tumour. At every
time point, the patient may lie a little differently in the MRI scanner, causing the breast to not always
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be aligned correctly. In order to accurately assess the size and shape of the tumour, it is important
for the scans to be registered. Image registration is the process of transforming the data from one
set of MRI scans to the coordinate system of another set of MRI scans. Not only do we have sets of
MRI scans at different time points, but also the different sets of MRI scans, i.e. DWI­MRI and DCE­
MRI, also need to be registered. Due to the DCE­MRI scans having the greatest resolution and
area of the breast scanned, this scan will be used as our reference coordinate system. However, as
can be seen in Table 3.1, the dimensions and voxel sizes of the patient MRI scans may differ per
time point as well as between the different types of scans. Therefore, the data will first need to be
upscaled such that they have the same number of slices. For the data from QIN­breast, this step is
unnecessary as both types of scans have the same voxel spacing.

3.2.1. Upscaling
Upscaling will be used to make sure that all time points as well as different MRI scans have the
same number of slices in the z­direction. A zero­padded inverse Fast Fourier Transform, FFT, is
used to resample the data. First, the data along the axis is transformed into the frequency domain.
Then, the inverse FFT is taken where the sample size is taken as the upscaled number, i.e. time 3
for Patient001 will be upscaled to 120 slices. By doing this, all data is preserved when compared
to downscaling. Additionally, it is important to use the correct voxel spacing for the newly upscaled
image. From Table 3.1, it can be seen that the diffusion weighted images of the patients have (mostly)
32 slices, which all have a voxel spacing of 6.5 mm. When upscaled, the voxel sizes for the newly
made 120 slices will be 6.5

120/32 = 1.73mm instead of the voxel spacing of 1.6 mm of the DCE images.
Taking this into account will be important for the registration. The following observation is made,
Patient001 and Patient003 need the least amount of upscaling. Only the DCE­MRI images from
time 3 need to be upscaled along with the DWI­MRI images for every time point. Patient002 and
Patient004 prove to be somewhat of a challenge. Patient002’s first scan was made in a different
hospital. As such, it has very different dimensions and the diffusion weighted image is rectangular.
Again, we only upscale along the z­axis and let the registration algorithm perform the rest.

3.2.2. Registration
In total, two different types of registration will be carried out, intra­scan and inter­scan registration.
To do intra­scan registration, registration within one visit, the DWI­MRI will be registered to their re­
spective DCE­MRI. The DWI­MRI can be seen in Figure 3.1, where we see that the DWI image looks
slightly zoomed in to the DCE image. In this case, rigid registration is used as we only use translation
and rotation to register the moving image onto the fixed image. The registration software which has
been used is ITKElastix in Python [23, 36]. This powerful package already comes with ready to use
parameter maps for the registration. In our case, the default rigid registration is used. For inter­scan
registration, registration across visits, we use the default nonrigid registration. Nonrigid registration
accounts also for the change in the shape of the breast, which is necessary as the patient may lie a
little differently in the scanner on the next visit. The default bspline parameter map has been used
for the nonrigid registration.

For the data from QIN­breast, some additional steps were taken before the registration could be
carried out.

• The images are first sorted into their respective categories, e.g. timesteps or different b­values.
For instance, for the DCE scans, 500 images were available. These 500 images were actually
25 scans over different time steps with each scan having 20 slices of the breast. As such, 25
3D breast images could be using tools such as ItkSnap or Slicer3D.

• We made sure that for the 3D breasts, the same part of the breast are scanned DCE and DWI
images. In our case, the DWI images only had 12 slices of 5 mm instead of 20 of 5 mm. So,
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the DWI­MRI scans were missing some of the parts of the breast. So, for the DCE­MRI, we
removed the 8 slices which were not present in the DWI images.

Figure 3.1: Pipeline used to register the MRI scans. Step 1: the DWI­MRI scans are registered rigidly to their respective
DCE­MRI. Step 2: DCE­MRI scans are registered non­rigidly to a fixed reference time, scan 2 in this case. Step 3:

Register the image result from step 1 non­rigidly using the same parameter map as in step 2.

In Figure 3.1, the pipeline for registration is shown. In step 1, the DWI­MRI scans are registered
rigidly to their respective DCE­MRI scans and saved. Then, in step 2, the DCE­MRI scans are
registered non­rigidly to the reference DCE­MRI. In this case, DCE­MRI scan 2 is taken as the
reference MRI scan. The parameter maps for these registrations are saved which are then used
on the already rigidly registered DWI­MRI scans in step 3. By doing this, we make sure that the
DWI­MRI scans will have the same nonrigid registration as the DCE­MRI scans and thus have the
same domain and shape.

The results of the registrations of the QIN­breast data can be found in Figure 3.2 and of the Eras­
mus data (of Patient001) in Figure 3.3. Both of these figures show the nonrigid bspline registration
on top and the rigid registration on the bottom. The moving image is registered to the fixed image,
where the fixed image is the reference DCE­MRI scan. The result image shows the result after reg­
istration. In these figures, we can see how the nonrigid registration changes the shape of the breast
to make the moving image look more like the fixed image.
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Figure 3.2: Registration for QIN­Breast study data. Top images show non­rigid bspline registration, bottom three images
are registered rigidly. The moving image is registered to the fixed image. The resulting image shows the result after

registration. The breast in the fixed image and result image have the same shape.

Figure 3.3: Registration for Erasmus MC Patient001 data. Top images show non­rigid bspline registration, bottom three
images are registered rigidly. The moving image is registered to the fixed image. The resulting image shows the result

after registration. The breast in the fixed image and result image have the same shape.

To check whether the resulted registered image is indeed correct, the checkerboard tool can
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be used to see the differences between the images. If the registration is carried out successfully,
the registered images should overlap (almost) exactly with the original image, as can be seen in
Figure 3.4. In this figure, the left image shows the difference in the image before registration and
its reference image. As can be seen, the shape of the breast does not connect very well. The right
image shows the checkerboard performed on the registered image and the reference (fixed) image.
Now, the shape of the breast connects almost seamlessly and so registration has been carried out
correctly.

Figure 3.4: Checkerboard tool used between fixed and result image to ascertain whether the registration is carried out
correctly. The left image shows the difference before rigid registration is carried out, the right image is checkerboard

performed after registration.

Naturally, several more parametermaps exist which might be even better suited for this particular
application. Due to time constraints, we were unable to fully experiment and research the best way
to perform image registration for the nonrigid case as the tumour within the breast could be distorted
incorrectly.

3.3. Region Growing
From the MRI scans, a three­dimensional matrix is obtained which contains all the voxel intensities.
However, part of this three­dimensional matrix is not of importance for the model as this is merely
the background and not the breast. Therefore, it is necessary to make a distinction between which
voxels are within the breast and which voxels are in the background. The technique chosen to make
this distinction is region growing. Region growing is a simple image segmentation method where a
seed point is taken from which its surrounding neighbours are connected whenever the difference
in voxel intensity between the two points is less than a certain threshold [12]. Iteratively, the region
is grown until the neighbours no longer meet the threshold. The threshold has been chosen as the
highest value for which the breast is correctly outlined. The DCE­MRI scans are used for this as they
have the best distinction between breast and background, compared to the DWI­MRI. The second
step is to take the largest connected component as the chosen domain of the model as seen in Figure
3.5. This ensures that local outliers in the background are filtered. In the end, a three­dimensional
region of the breast remains.
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Figure 3.5: Finding the domain of the breast from DCE­MRI using region growing. On the left, the original image is
shown. The middle image shows the result after initial region growing. Some outliers are still present. The image on the

right shows the final domain after the largest connected component has been taken.

In Figure 3.5, the results can be found from Patient0059 from the QIN­breast study. Note that
some spots may look like they are not connected to the breast after we take the largest connected
component. While they may not be connected in the x­ and y­plane, they are connected in the z­
plane. In Figure 3.6, the three­dimensional outline of the breast is shown as well as a resulting slice
from Patient001.

Figure 3.6: 3­dimensional shape of the breast of Patient001 is shown on the left and middle image. The image on the
right shows one of the slices with the final breast domain obtained using region growing.

3.4. Segmentation of the Tumour
The next step is to find the actual tumour within the breast. Two different approaches have been
taken for this task, though several more exist as explained in section 2.2.4. For the data from the
QIN­Breast study, simple thresholding was used to segment the tumour since this was the easiest
method to implement. In this study, several dynamic contrast enhanced images are made over a
time period in which a contrast agent is given to the patient, in this case gadolinium. In this case, for
each slice, 25 images were made. From these 25 different slices, the first three were precontrast
images and the latter 22 images were postcontrast images. The tumour lights up due to the contrast
agent, so by taking a look at the difference in signal intensity between the two types of images the
tumour can be segmented. An average 3D image is made of the three precontrast images as well
as the 22 postcontrast images. Then, a region of interest is manually determined in which the signal
intensities are compared. Within this region of interest, the signal intensities between the averaged
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precontrast and postcontrast scans are compared. A threshold is chosen, in this case if a voxel has
increased 30% or more in signal intensity, it is classified as tumour tissue. In the end, the largest
connected component is chosen as the tumour region of interest. The result of this can be seen in
Figure 3.7, where the fifth slice within the breast of Patient0059 is shown.

Figure 3.7: Segmantation of the tumour of Patient0059. The precontrast (left) and postcontrast (middle) images are
made. Simple thresholding is used between the pixel intensities of the precontrast and postcontrast image. The resulting

segmented tumour is shown on the right.

The second approach which has been taken for the segmentation of the tumours of the Erasmus
MC data is segmentation done by a radiologist. Because there was only data available of 4 patients,
the breast cancer radiologist, dr. A.I.M. Obdeijn was kindly willing to help in this task. By using the
pathological rapport available of the patients as well as other contrasting MRI scans, the tumours of
the 4 patients have been segmented. For this, the tool ITK­Snap was used to manually draw around
the lesion. The results of this approach can be seen in Figure 3.8.

Figure 3.8: Segmentation of the tumours of Patient002 done by a radiologist. Using ITK­Snap, a line is drawn manually
around the tumour(s) to segment them on each slice.

Naturally, this approach is far more reliable in determining the actual location, size and shape of
the tumour, though it is important to note that some voxels may still be falsely in/excluded. Addition­
ally, only some slices were segmented by the radiologist, for the remaining slices, ITK­Snap’s tool
of interpolation between slices was used.

3.5. ADC Values and Number of Tumour Cells
Now that the segmented tumour has been determined, it is important to know how many tumour
cells are actually within the tumour. This is both used to initialize, as well as validate the model.
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In order to calculate the number of tumour cells, first the apparent diffusion coefficient needs to be
determined. The apparent diffusion coefficient is a measure of the magnitude of diffusion of water
molecules within tissue and can be related to the number of tumour cells within tissue, via Equation
(2.6). The ADC values can be calculated in each voxel using the diffusion weighted scans, DWI­MRI.
The previously obtained tumour segmentation is used to calculate the ADC values within the tumour.
Note that the registered DWI­MRI are used in this case to ensure that the ADC values are indeed
taken from within the tumour. To calculate the ADC values, the b­value needs to be known. The
higher the b­value, the stronger the diffusion effects are. For the data obtained from the QIN­Breast
study, the MRI scans are made with b­values 0, 50 and 600 for each patient. Using the following
equation, the apparent diffusion coefficients have been calculated:

Si = S0 exp(−ADC · bi),

where Si is the signal intensity in each voxel when there is diffusion imparted on the sample and
bi is either 50 or 600. S0 is the signal intensity in the absence of diffusion, i.e. when the b­value
is zero. This equation has been used instead of Equation (2.5) since this data contains a scan
with the averaged signal intensities of the three diffusion directions. Using nonlinear least squares
regression, the data is fit to obtain the ADC values. For the data from Erasmus MC, the ADC maps
have already been made by the MRI scanner and did not need to be calculated. In Figure 3.9, the
obtained ADC values of Patient001 at time 1 can be seen.

Figure 3.9: Apparent diffusion coefficients of Patient001.

Now that the ADC values are known, these can be related to the number of tumour cells in each
voxel, via Equation (2.6). The higher the ADC value is, the less tumour cells are present. First,
θ needs to be established, which is the carrying capacity of a voxel, i.e. the maximum number of
tumour cells within a voxel. For this, a spherical packing density of 0.7405 is assumed and a nominal
tumour cell radius of 10 µm, as was done in literature [19, 20, 44, 45]. For the QIN­Breast data, this
leads to the following carrying capacity:

θ =
voxel volume · packing density

tumour cell volume
=

(1.333 · 1.333 · 5) · 0.7405
4
3π(0.01)

3
≈ 1.571 · 106 cells.

Note that the voxel volume for the Erasmus MC data is different, resulting in θ ≈ 1.247 · 105 cells
for Patient001 and Patient003 and θ ≈ 1.715 · 105 cells for Patient002. Next, ADCmin will need to
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be calculated. This will be taken as the minimum ADC values of time 1 and time 2 for each patient.
The calculated tumour cells can be observed in Figure 3.10, where also a three­dimensional image
of the segmented tumour is shown.

Figure 3.10: Calculated number of tumour cells of Patient 2 (left) along with the three dimensional tumour (right).

3.6. Segmentation of Breast Tissue
Themajority of a female breast is made up of fibroglandular and fatty (adipose) tissue. Fibroglandular
tissue is a mixture of the connective tissue (fibrous) and the part that produces milk, lobes (glandular)
[33]. Each patient has her own individual composition of these two types of tissues. To include
the effects of the tissue surrounding the tumour, the adipose and fibroglandular tissue need to be
segmented.

The segmentation into adipose and fibroglandular tissue has only been done for the patients from
Erasmus MC. The DCE­MRI scans have been used as the adipose and fibroglandular tissue are
easily distinguishable here. Three different options have been investigated to approach this. Using
a simple threshold above all voxel intensities which are higher would be classified as fibroglandular
tissue and the lower voxel intensities were classified as adipose tissue. Another approach is to first
use (adaptive) histogram equalization on the data after which this threshold is chosen.

Figure 3.11: Original image (left) along with the result after applying two different kinds of histogram equalization. The
middle image is after applying Contrast Limited Adaptive Histogram Equalization (CLAHE), the right image is after global

histogram equalization.
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In Figure 3.11 the results can be seen how the image looks after Contrast Limited Adaptive
Histogram Equalization (CLAHE) and global histogram equalization. Comparing the results of the
found domain for both fibroglandular and adipose tissue after these image processing tools, global
histogram equalization provided the most satisfactory results. Additionally, the tumour region of
interest was inserted into the domain to provide also the stiffness for the tumour tissue.

Figure 3.12: Original image (left) along with the segmented tissue into adipose and fibroglandular tissue. The middle
image is made using simple thresholding on the original image, the right image is made using thresholding after global

histogram equalization. The yellow areas are classed as fibroglandular tissue and the blue is adipose tissue.

The original image along with the segmentation using a simple threshold and thresholding after
applying global histogram equalization can be observed in Figure 3.12. The two segmented images
show the fibroglandular tissue in yellow and the adipose tissue in blue. Comparing the results to the
original image, the global equalization approach shows a more refined segmentation of the tissues.
The incorporation of the stiffness of the tissue will inhibit the growth of the tumour more realistically,
i.e. the tumour can spread more easily through less stiff material such as adipose tissue. It is known
that fibroglandular tissue is twice as stiff as adipose tissue [45].

3.7. Downsampling

One of the things that need to be taken into account is computational complexity. Most of the scans
of Erasmus MC are known to have a resolution of 512 x 512 x 120, resulting in more than 31 million
voxels within the whole domain. Fortunately, we can reduce this domain quite a bit. Firstly, some
parts of the scanmight not be ofmuch interest to themodel, such as the other (healthy) breast or parts
of the patient’s torso. To reduce computation time, some of these parts can be left out. An additional
technique to reduce computation time will be downsampling. This technique reduces the number of
voxels within the domain by combining two or more of its neighbours together. Using downsampling
instead of zooming in further on the scan will preserve the overall shape and boundaries of the
breast which will be important in the model calculations. By downsampling with a factor 3 along with
zooming in on the breast, we can reduce the number of voxels in the domain from one 2­dimensional
slice from approximately 260,000 to just 3,600 which can be seen in Figure 3.13.
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Figure 3.13: The original image (left) along with the zoomed domain of the breast which contains the tumour (middle).
Downsampling the zoomed image by a factor 3 results in the downsampled image (right) which has a dimension of 60 by

60 compared to the original image which had a dimension of 512 by 512.

By following this preprocessing pipeline, the necessary information can be extracted from the
MRI scans. Obtaining the domain, tumour cell number and tissue segmentations means that the
model can now be implemented.





4
Model Implementation

Now that the data has been preprocessed and all necessary information for the model has been
extracted, the model implementation is next. In this chapter, the model will be implemented in sev­
eral stages. Moreover, the parameter calibration will be discussed which will need to be done for
each individual patient. Although preprocessing was done in three dimensions, the model was im­
plemented in only two. This was mainly done to reduce computation time. The model explained in
Chapter 2 has a couple of different stages. First, the reaction­diffusion shall be implemented and
can be tested on its own. Then, the incorporation of the linear elasticity of the surrounding tissue
shall be tested to see whether this has a positive effect on the model’s predictive capabilities.

4.1. Reaction­Diffusion
The two­dimensional reaction­diffusion equation is as follows:

∂N(x, y, t)

∂t
= ∇(D∇N(x, y, t)) + k(x, y)N(x, y, t)

(
1− N(x, y, t)

θ

)
, (4.1)

where N(x, y, t) is the number of tumour cells in location (x, y) and time t. θ is calculated using
the approach discussed in section 3.5 [20]. The other unknown parameters are the patient­specific
parametersD0 and k(x, y)which need to be calibrated, more on that in section 4.3. For this equation,
homogeneous Neumann boundary conditions are imposed, i.e. the equation has no diffusive flux at
the boundary of the breast [19, 44, 45].
To approximate the continuous variables, discretizations of the spatial and temporal variables are
used. For the discretization of the spatial parameters, we can choose between Finite Difference
Method (FDM), Finite Element Method (FEM), or Finite Volume Method (FVM). In literature, mostly
FDM and FEM have been used and in this thesis, we have chosen for the FDM approach since we
already have a nicely shaped square grid in two dimensions [42].

For the time integration method, also several options are available. Most literature uses a fully
explicit time integration method, though implicit schemes such as Crank­Nicholson may also be used
[15, 19, 20, 45]. The main advantage of an explicit method is simplicity of implementation. However,
the method is not unconditionally stable, so the time step ∆t is bounded. This could lead to a small
time step, which means more computations are needed to propagate the model forward in time. For
now, we have chosen to use the fully explicit time integration method, Forward Euler because of its
simplicity.

For the discretization of Equation (4.1), we have thus chosen to use a Forward in Time, Central
in Space (FTCS) discretization. We use the conservative scheme instead of the non­conservative
scheme due to provable stability, as seen in the next section 4.1.1 [25]. The discretization is carried

25
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out as follows:
Nn+1

i,j −Nn
i,j

∆t
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1

2
(∂x(Di,j ∂̄xN

n
i,j) + ∂̄x(Di,j∂xN

n
i,j)) +

1

2
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i,j) + ∂̄y(Di,j∂yN
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i,j))
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n
i,j

(
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Nn
i,j

θ

)
.

(4.2)

Where we use the notation Di,j = D(xi, yj), ki,j = k(xi, yj) and Nn
i,j = N(xi, yj , tn). We have

i = 0, . . . , nx and j = 0, . . . , ny with nx and ny the dimensions of the matrix and n = 0, . . . , T with T
the total number of timesteps. Furthermore, we use that

∂xNi,j =
Ni+1,j −Ni,j

∆x
, ∂̄xNi,j =

Ni,j −Ni−1,j

∆x
.

Now, we can write the terms in Equation (4.2) as follows:
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So, to calculate the number of tumour cells in the next time step, we need to calculate

Nn+1
i,j = Nn
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∆t

2∆x2
Diff1 +

∆t

2∆y2
Diff2 +∆tki,jN

n
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)
. (4.3)

For the Neumann boundary condition, it is important to know which pixels belong to the boundary.
Here, we make a distinction between the boundary in the x­direction and y­direction for the breast.
The two boundaries can be found in Figure 4.1. Note that the orientation is switched. Naturally, the
points on the boundary of the matrix are also taken as boundary points. Since we have chosen an
explicit time integration step, a bound for ∆t has to be established to ensure the method remains
stable.
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Figure 4.1: Boundaries of the breast for the x­ and y­direction.

4.1.1. Stability Time Step
Since we will be using the fully explicit time integration method Forward Euler, the time step ∆t has
to be chosen such that the system is stable. Note that our equation is made up of a reactive and the
diffusive part, so ∆t has to be chosen such that both parts will be stable. Since the reactive part in
nonlinear, we first linearize the equation f(N) = kN

(
1− N

θ

)
around the numerical solution N0:

f(N) ≈ f(N0) + f ′(N0)(N −N0),

= kN0

(
1− N0

θ

)
+

(
k

(
1− N0

θ

)
+ kN0−1

θ

)
(N −N0),

= kN0

(
1− N0

θ

)
+

(
k − 2kN0

θ

)
(N −N0),

= kN0 − kN0

θ
+

(
k − 2kN0

θ

)
N − kN0 + 2k

(N0)2

θ
,

= k
(N0)2

θ
+

(
k

(
1− 2

N0

θ

))
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Where µ is constant. In this case, we note that the stability of a system y′ = λy is the same as
y′ = µ+ λy when µ is constant. Now, we can write the discretization for Equation (4.1):
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We can write the matrix produced by the discretization:

A = I +
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Where we have Nn+1 = ANn and:

Xi =
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For stability, we need to have that the spectral radius of the matrix A is less than 1, ρ(A) ≤ 1 [25,
41]. Note that A is symmetric, so all eigenvalues are real. Now, we can use Gershgorin’s theorem.
We see that the centers are

1− ∆t

2∆x2︸ ︷︷ ︸
µx

(Di−1,j + 2Di,j +Di+1,j)︸ ︷︷ ︸
Dx

− ∆t

2∆y2︸ ︷︷ ︸
µy

(Di,j−1 + 2Di,j +Di,j1)︸ ︷︷ ︸
Dy

+∆tki,j

(
1− 2

N0
i,j

θ

)
=

1− µxDx − µyDy +∆tki,j

(
1− 2

N0
i,j

θ

)
.

With radii given by the sum of the off­diagonal terms:

µx(Di−1,j +Di,j) + µx(Di,j +Di+1,j) + µy(Di,j−1 +Di,j) + µy(Di,j +Di,j+1) = µxDx + µyDy.
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Now, by Gershgorin, we know that the eigenvalues λi for i = 1, . . . , n are bounded by:∣∣∣∣∣λ−

(
1− µxDx − µyDy +∆tki,j

(
1− 2

N0
i,j

θ

))∣∣∣∣∣ ≤ µxDx + µyDy, (4.4)
λ−

(
1− µxDx − µyDy +∆tki,j

(
1− 2

N0
i,j

θ

))
≤ µxDx + µyDy,

−λ+

(
1− µxDx − µyDy +∆tki,j

(
1− 2

N0
i,j

θ

))
≤ µxDx + µyDy,

(4.5)


λ ≤ 1 + ∆tki,j

(
1− 2

N0
i,j

θ

)
,

1− 2µxDx − 2µyDy +∆tki,j

(
1− 2

N0
i,j

θ

)
≤ λ.

(4.6)

So, for stability we need to have ki,j

(
1− 2

N0
i,j

θ

)
< 0, ∀i, j. This means, that

{
k < 0 if (1− 2N0

θ ) > 0 ⇒ 0 < N0 < 1
2θ,

k > 0 if (1− 2N0

θ ) < 0 ⇒ 1
2θ < N0 < θ.

This means we can bound k
(
1− 2N0

θ

)
≥ −|k|max. Using this, from the first equation of Equation

(4.6) we obtain the bound ∆t ≥ 0 for stability. For the second equation, we observe the following:

1− 2µxDx − 2µyDy +∆tki,j

(
1− 2

N0
i,j

θ

)
≥ 1− 2(µx + µy) · 4Dmax −∆t|k|max. (4.7)

Where we use that Dx = Di−1,j + 2Di,j +Di+1,j ≤ 4Dmax and similarly Dy ≤ 4Dmax, with Dmax the
largest diffusion coefficient. This needs to be greater or equal to ­1 to satisfy the condition−1 ≤ λ ≤ 1.
Therefore, we need (

∆t

∆x2
+

∆t

∆y2

)
8Dmax +∆t|k|max ≤ 2. (4.8)

And thus the bound for the time step becomes:

0 ≤ ∆t ≤ 2

|k|max + 8Dmax

(
1

∆x2 + 1
∆y2

) . (4.9)

4.2. Linear Elasticity
The next equations in the model couple the surrounding tissue to the effects of the tumour growth.
This will be done by incorporating Equations (2.3) and (2.4) into the model. Equation (2.4) calculates
the displacement u⃗ in the x­ and y­ direction in each pixel. Using this, the von Mises stress can be
calculated which influences the diffusion of tumour cells via Equation (2.3).

Equation (2.4) resembles the linear elasticity in isotropic material where G is the shear modulus
representing the stiffness of the surrounding tissue. The breast is segmented into three types of tis­
sue: fibroglandular, adipose and tumour tissue. In order to discretize the equation of linear elasticity,
we make use of the Cauchy­Navier equations of linear elasticity [4]. The displacement vector shall

be denoted by u⃗ =

(
u
v

)
.


∂
∂x

(
ρ(x, y)∂u∂x

)
+ ∂

∂y

(
µ(x, y)∂u∂y

)
+ ∂

∂x

(
λ(x, y)∂v∂y

)
+ ∂

∂y

(
µ(x, y) ∂v∂x

)
= λf

∂
∂xN(x, y, t),

∂
∂y

(
ρ(x, y)∂v∂y

)
+ ∂

∂x

(
µ(x, y)∂u∂y

)
+ ∂

∂y

(
λ(x, y)∂u∂x

)
+ ∂

∂x

(
µ(x, y) ∂v∂x

)
= λf

∂
∂yN(x, y, t).

(4.10)
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Where, ρ(x, y) = 2µ(x, y) + λ(x, y) and λf = 2.5 · 10−3 as seen in Table 2.2. In our case, µ = G
and λ = 2ν

1−2νG. This means that λ and µ are both spatial parameters as G = E
2(1+ν) . The Young’s

modulus,E, takes values of 2, 4 and 20 kPa depending whether the voxel is in fibroglandular, adipose
or tumour tissue respectively [19, 20]. For the discretization, we again use a finite difference scheme.
The same conservative scheme is used since the conservation means that we have a reflexive
coefficient property which produces a symmetric matrix [25]. We rewrite Equation 4.10 for each
term. We write ρi,j = ρ(xi, yj) and we use that

∂xui,j =
ui+1,j − ui,j

∆x
, ∂̄xui,j =

ui,j − ui−1,j

∆x
.

Now, we can rewrite

∂

∂x

(
ρi,j

(
∂ui,j
∂x

))
=

1

2

[
∂x(ρi,j ∂̄xui,j) + ∂̄x(ρi,j∂xui,j)

]
(4.11)

=
1

2

[
∂x

(
ρi,j

ui,j − ui−1,j

∆x

)
+ ∂̄x

(
ρi,j

ui+1,j − ui,j
∆x

)]
(4.12)

=
1

2∆x2
[ρi+1,j(ui+1,j − ui,j)− ρi,j(ui,j − ui−1,j) + ρi,j(ui+1,j − ui,j)− ρi−1,j(ui,j − ui−1,j)]

(4.13)

=
1

2∆x2

[
(ρi−1,j + ρi,j)ui−1,j − (ρi−1,j + 2ρi,j + ρi+1,j)ui,j + (ρi+1,j + ρi,j)ui+1,j

]
(4.14)

Similarly, for all other terms in the x­direction, we obtain:

∂

∂y

(
µi,j

∂ui,j
∂y

)
=

1

2∆y2

[
(µi,j−1 + µi,j)ui,j−1 − (µi,j−1 + 2µi,j + µi,j+1)ui,j + (µi,j+1 + µi,j)ui,j+1

]
(4.15)

∂

∂x

(
λi,j

∂vi,j
∂y

)
=

1

2∆x∆y

[
λi+1,j(vi+1,j − vi+1,j−1)− λi,j(vi,j − vi,j−1) (4.16)

+ λi,j(vi,j+1 − vi,j)− λi−1,j(vi−1,j+1 − vi−1,j)

]
(4.17)

∂

∂y

(
µi,j

∂vi,j
∂x

)
=

1

2∆x∆y

[
µi,j+1(vi,j+1 − vi−1,j+1)− µi,j(vi,j − vi−1,j) (4.18)

+ µi,j(vi+1,j − vi,j)− µi,j−1(vi+1,j−1 − vi,j−1)

]
(4.19)
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And for the y­direction we obtain:

∂

∂y

(
ρi,j

∂vi,j
∂y

)
=

1

2∆y2

[
(ρi,j−1 + ρi,j)vi,j−1 − (ρi,j−1 + 2ρi,j + ρi,j+1)vi,j + (ρi,j+1 + ρi,j)vi,j+1

]
(4.20)

∂

∂x

(
µi,j

(
∂vi,j
∂x

))
=

1

2∆x2

[
(µi−1,j + µi,j)vi−1,j − (µi−1,j + 2µi,j + µi+1,j)vi,j + (µi+1,j + µi,j)vi+1,j

]
(4.21)

∂

∂x

(
µi,j

∂ui,j
∂y

)
=

1

2∆x∆y

[
µi+1,j(ui+1,j − ui+1,j−1)− µi,j(ui,j − ui,j−1) (4.22)

+ µi,j(ui,j+1 − ui,j)− µi−1,j(ui−1,j+1 − ui−1,j)

]
(4.23)

∂

∂y

(
λi,j

∂ui,j
∂x

)
=

1

2∆x∆y

[
λi,j+1(ui,j+1 − ui−1,j+1)− λi,j(ui,j − ui−1,j) (4.24)

+ λi,j(ui+1,j − ui,j)− λi,j−1(ui+1,j−1 − ui,j−1)

]
(4.25)

Having obtained these equations, we can rewrite Equation 2.4 into a matrix vector multiplication:

Mu⃗ = λf∇N

Where u⃗ =

(
u
v

)
. The previous equations are to design the matrix M , which has a size of 2n × 2n

where n is the number of pixels in one 2­dimensional slice of the MRI scan. Dirichlet boundary
conditions are imposed on the boundary of the breast so that the tissue displacements are zero on
the boundary [19, 20, 44, 45].

To solve this system of equations, it is important to note that as the size of thematrix increases, the
computation time will also increase drastically. With the full domain of the DCE­MRI scans being 512
x 512, this means the matrix M would be around 500,000 by 500,000. Each pixel on the boundary
would produce a zero row in the matrix. However, to produce a matrix of full rank, a one is put on
the main diagonal and the right hand side is taken as zero. This ensures that the matrix is invertible.
Additionally, we note that the matrix is symmetric and all its eigenvalues are real and positive. This
means that the matrix is symmetric and positive definite, SPD. For each time step, u⃗ needs to be
solved. However, the matrix M only needs to be constructed once and does not change over time.
Several approaches exist to solve the system of equations, direct solver, basic iterative methods
or Krylov subspace methods [41]. The drawback of a direct solver such as Gaussian elimination is
that they often take up too much time as the problem size gets larger. However, since the current
implementation in two­dimensions is still reasonably small, a direct solver has been used to find u⃗.
Note that for the three­dimensional model a Krylov subspace method such as Conjugate Gradient
can be used to increase computational efficiency.

4.2.1. Von Mises Stress
In mechanics, von Mises stress combines the three principal stresses which can be compared to the
yield stress to judge whether the material will yield or fracture. To calculate the von Mises stress, the
displacements obtained by solving Equation 2.4 are used. Since we are working in 2­dimensions,
the plane­strain equations are used as we cannot assume that the z­axis is infinitesimal. Note that
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Figure 4.2: Constructed discretization matrix for Equation (2.4) for the domain which has been downsampled by factor 3.
The resulting matrix is symmetric and positive definite with size 2n by 2n with n the number of voxels in the domain.

this means that σzz ̸= 0 [21]. By using Hooke’s 2D law for the stress­strain relationship:

σxx =
E

(1 + ν)(1− 2ν)
[(1− ν)εxx + νεyy]

σyy =
E

(1 + ν)(1− 2ν)
[νεxx + (1− ν)εyy]

σxy =
E

(1 + ν)
εxy

σzz = ν(σxx + σyy)

σxz = 0

σyz = 0

And in turn we can relate the strain to the obtained displacements.

εxx =
∂u

∂x

εyy =
∂v

∂y

εxy =
1

2

(
∂u

∂y
+

∂v

∂x

)
Lastly, we can calculate the von Mises stress in each voxel using

σvm(x, y) =
√

σ2
xx + σ2

yy + σ2
zz − σxxσyy − σxxσzz + σyyσzz + 3σ2

xy (4.26)

Using the obtained von Mises stress, the diffusion coefficient, D, is updated. There is an inverse
relationship between the von Mises stress and diffusion, as the stress increases, the diffusion will
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decrease. This means that areas where the tumour wants to grow with higher stiffness will result in
more stress, which in turn results in the diffusion becoming smaller. This means that the tumour can
less easily spread through fibroglandular tissue than adipose tissue.

4.3. Parameter Calibration
The goal of this thesis is to be able to accurately predict the response for each individual patient.
Therefore, the patient­specific parameters will need to be calibrated. There are two different param­
eters which will be calibrated, the global diffusion of tumour cells when there is no stress D0 and
the spatial parameter which denotes the proliferation rate in each voxel k(x, y). To calibrate these
parameters, the non­linear least squares optimization algorithm Levenberg­Marquardt will be used.
This algorithm is widely used for data fitting applications [15, 16, 19, 20, 28, 44, 45]. The algorithm
combines twominimization algorithms: the gradient­descent method and the Gauss­Newtonmethod.
Levenberg­Marquardt acts more like a gradient­descent method whenever the parameters are far
from the optimal value and more like Gauss­Newton when they are closer.

Levenberg­Marquardt tries to minimize the sum of the squares of the deviations, S(β̄).

argminβ̄S(β̄) = argminβ̄||f(β̄)− ȳ||22

Where β̄ are the to be determined parameters (D0, k1, . . . , kn) with n number of voxels, and ȳ are
the observations. In this particular case, the MRI scan at time 1, t1, and time 2, t2 shall be used
to calibrate the parameters. The model is initialized with the number of tumour cells from time 1,
N(x, y, t1), then it is propagated forward in time to calculate the number of tumour cells at time 2,
N(x, y, t2). The error between this estimate, f(β̄) and the actual number of tumour cells from scan
2, the observations ȳ, is to be minimized. For n number of voxels within an MRI scan, we have
n observations, ȳ ∈ Rn. However, there are n + 1 parameters, β̄ = D0, k1, . . . , kn ∈ Rn+1. This
means that the current optimization problem is underdetermined. Thus, there are more unknowns
than equations, which means there are either 0 or ∞ number of solutions. Since the equations
describe reality and have been widely used in previous literature, we can assume that there is at
least 1 solution, thus there are infinitely many solutions.

Therefore, a Tikhonov regularization term is added to the optimization to ensure the problem is
no longer ill­posed. This means that the minimization now goes as follows:

argminβ̄(S(β̄) + ||Γβ0||22) = argminβ̄(||f(β̄)− ȳ||22 + ||Γβ0||22). (4.27)

The Tikhonov regularization term is denoted by Γ. From this, we can observe that whenever Γ is
large, β0 should be close to zero to minimize the error. When Γ is small, β0 has more freedom. For
our application, we have chosen to put the Tikhonov regularization only on the diffusion coefficient
D0 since this is the global parameter and literature suggests that its value should be close to zero
[19, 46].

We do note the following observation. If all voxels which contain tumour cells at time 2, already
contained tumour cells at time 1 and all voxels with tumour cells at t1 have more than 0 but less
than θ tumour cells, there is one unique solution for D0. Namely, the diffusion D0 is zero and the
proliferation rate for each voxel can be chosen such that Equation 4.27 is zero. However, this is
naturally not the case since the number of tumour cells at t1 is θ for at least one voxel and because
of registration the shape of the tumour might shift a bit over time. Conversely, some voxels might
not have any tumour cells at t1 but do have tumour cells at t2.

To further illustrate the step­by­step procedure for the parameter calibration, two diagrams have
been made. The diagram in Figure 4.3 shows the parameter calibration for the simple model, i.e.
the implementation of only the reaction­diffusion equation. We initialize with the tumour cell number
from MRI scan at t1. Then, the tumour cells in the next time step are iteratively calculated until we
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reach t2. Next, it is determined whether the convergence criterion is met which tries to minimize the
error between obtained tumour cells and the tumour cells from the MRI scan at t2. If the convergence
criterion is not met, the parameters are changed slightly and the model calculations are performed
again until model parameters have been found which satisfy the convergence criterion.

The second diagram can be found in Figure 4.4. In this diagram, the parameter calibration is
shown for the complete model. The concept is the same, though a few more steps are done. Again,
we initialize with the number of tumour cells determined fromMRI scan 1. Then, the spatial derivative
of the tumour cells, N(x, y, t) is calculated in each voxel. Using this, Equation 2.4 is solved for the
displacement u⃗. The displacements are then used to determine the strain, stress and finally the
von Mises stress in each voxel. Using the von Mises stress, the diffusion coefficients are updated.
Finally, the number of tumour cells in the next time step can be found using Equation 2.2. This
process is repeated for every time step until we reach t2. The remainder of the procedure remains
the same. The calculated number of tumour cells is compared to the actual observed number of
cells. If the convergence criterion is not met, the parameters are changed and this is all repeated
until convergence is met. Using these calibrated parameters k(x, y) and D0, the model can then be
propagated forward in time to predict the number of tumour cells at a later stage. The third MRI scan
can then be used to validate the model’s predictive capability.
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Figure 4.3: Diagram for the parameter calibration of the simple model. Initialization with the tumour cells from scan 1
and an initial guess for k(x, y) and D0. Then, the number of tumour cells is updated until we arrive at the time of MRI

scan 2. Check whether the convergence criterion is met, if not, change the parameters. Repeat this until the
convergence criterion is met, then the parameters have been optimized.
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Figure 4.4: Diagram for the parameter calibration of the complete model. Initialization with the tumour cells from scan 1
and an initial guess for k(x, y) and D0. Then, the gradient of the number of tumour cells is calculated to solve equation
(2.4). This provides u⃗ which is used to calculate the strain, stress and use them to update the von Mises stress. Using
the von Mises stress, the diffusion is updated and the number of tumour cells can be calculated for the next time step.

This is repeated until we arrive at the time of MRI scan 2. Check whether the convergence criterion is met, if not, change
the parameters. Repeat this until the convergence criterion is met, then the parameters have been optimized.





5
Analysis

This chapter will focus to elaborate and illustrate the model’s performance. First, the influence of the
patient­specific parameters will be illustrated. Then, some initial experiments with the QIN­Breast
data are done. Additionally, some in silico experiments are performed to study the model’s predictive
capabilities as well as the influence of the incorporation of the surrounding tissue.

5.1. Influence of Patient­Specific Parameters
The key components to this model, the patient­specific parameters, are the diffusion of tumour cells,
D0, and proliferation rate, k(x, y). D0 is a global parameter and determines how much the tumour
cells ‘spread’, while k(x, y) is a spatial parameter with a value in each pixel. Note that in the current
model, k(x, y)may take either positive or negative values depending on whether there is tumour cell
growth or decay in this particular voxel. To illustrate the effects of different values of k and D0, we
will experiment with different values for both to see the outcome. The first experiment will be done
for just the diffusive part of the equation, to validate that the model has been correctly implemented.
Due to the Neumann boundary conditions, if the proliferation rate is 0, the number of tumour cells
within the breast should reach a steady state equilibrium which is the average of all tumour cells.
We will start with a very simple square domain. Within this domain, each pixel will be provided with
a random number of tumour cells between 0 and 100. The four middle points in the domain will
have the most tumour cells of 200. For this test, we take D0 = 0.5 and calculate the tumour cell
distribution over a span of 35 days. The results can be observed in Figure 5.1. We indeed see that
the number of tumour cells in each pixel approaches the equilibrium. The next step is of course to
carry out multiple experiments for the actual domain. For now, the data of the QIN­Breast study is
used to perform the experiments.

The simple model, i.e. only the reaction­diffusion as seen in Equation 4.1, is implemented for
different choices of k(x, y) andD0 to see what the influence is of both parameters. Here, even though
the proliferation rate is a spatial parameter, k(x, y) is chosen the same for each pixel. The results of
the performed experiments can be found in Figure 5.2. In this figure, the initial tumour cell number
can be seen (top left), followed by 8 experiments that show the modelled tumour cell number after
10 days with various choices for k(x, y) and D0. We see that both the proliferation rate and diffusion
of tumour cells affect the spread of the tumour differently.

37
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Figure 5.1: Tumour growth simulation using a diffusion equation with Neumann boundary conditions over a timespan of
35 days. Every pixel is initialized with a random number of tumour cells between 0 and 100. The four pixels in the centre
have 200 tumour cells Since no proliferation is present, the solution should reach a steady state which is the average of

the tumour cells. This is the case, as seen in the image on the right.

Figure 5.2: Simulations over 10 days of the reaction­diffusion equation using different values for k(x, y) and D0. The top
left image shows the initial tumour cell number. All other images are the resulting tumour after 10 days with their

respective choices of k(x, y) and D0. Note, k(x, y) is chosen as a global value, the same for each pixel.
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The diffusion determines how much the current tumour cells spread. The proliferation rate de­
termines how fast the tumour cells within a pixel will grow/decay. We see that combining a high
proliferation rate with high diffusion causes the tumour to spread most rapidly. If we only have the
proliferation rate in each pixel, the tumour will not spread, i.e. surrounding pixels will not become
tumour cells, but the number of tumour cells within each pixel will only grow/decay (bounded by zero
and the carrying capacity). If there is only diffusion, the total number of tumour cells will not change
but the surrounding cells will become tumour cells. Different combinations of both are possible and
are shown in Figure 5.2 to illustrate the effects of both parameters.

5.2. Simple Parameter Calibration
In the previous section, we experimented with different values for k(x, y) and D0. In reality, these
patient­specific parameters have to be determined from data. Two MRI scans are used, one prior
to the patient receiving chemotherapy and one during the treatment. Using these two MRI scans,
an estimation can be made for the diffusion and proliferation rate of the patient’s tumour. These
parameters will then be taken as their given value and finally, the model can be projected forward in
time to see whether the model is capable of accurately predicting the tumour’s size at the conclusion
of therapy. To make an estimation of k(x, y) andD0, we will use a nonlinear least squares regression,
Levenberg Marquardt as explained in the previous chapter [19, 20, 45].

This experiment is carried out using the data from the QIN­Breast study, Patient0059. Since this
parameter calibration is carried out only using the simple model, i.e. Equation 2.2, no downsampling
was necessary. Since for this patient, data from only two time points are available, this experiment
is merely to see how well the model can calibrate using real data.

In Equation (2.2), changing the value of k(x, y) in the pixels where no tumour cells are found, will
have no influence on the model since N(x, y) is zero. Therefore, to reduce computation time, we
have decided to make a mask in which the values of k(x, y) need to be determined as this drastically
reduces the number of variables. In Figure 5.3, the number of tumour cells extracted from the MRI
scans at time 0 and time 1, i.e. before and during chemotherapy, along with the made mask for
k(x, y) are shown. Now, we need to determine the variables k(x, y) and D0. To do this, we again
refer to the diagram in Figure 4.3. We wish to obtain an estimate for k(x, y) and D0 which minimizes
the error between the modelled tumour growth at time 1 and the obtained tumour from MRI scans at
time 1. Then, these estimates can be used to further propagate the model in time and see how the
tumour will grow.

Figure 5.3: Tumour cells derived from the MRI scan 1 (day 0) and 2 (day 6), seen on the left and middle image. The
right image shows the mask made for the parameter calibration for k(x, y). All pixels within the yellow part will be used in
calibration. Since k(x, y) can only be determined in pixels where tumour cells are present, the mask is made to reduce

computation time.
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The convergence criterion which has been used is to stop whenever the changes in k(x, y) and
D0 become smaller than 10−4 and we let the Levenberg­Marquardt algorithm calculate until this
criterion is met. Estimating the proliferation rate and diffusion, took about 3.5 minutes. The resulting
proliferation rate can be found in Figure 5.4. In this figure, we also see the model prediction with
the obtained k(x, y) and D0 at time 1, which is after 6 days in this case. Additionally, the absolute
error is shown between the actual number of tumour cells from MRI scans and the obtained tumour
prediction. The estimate for the diffusion, D0, is 1.47 · 10−2 mm2/day. The values obtained lie within
the expected range obtained from literature values [19].

Figure 5.4: Results after parameter calibration. Left shows the obtained proliferation rate map. Middle image shows the
modelled tumour cellls on day 6 using the calibrated parameters. Right image shows the absolute error made between

the tumour cells from the MRI scan and the calculated number of tumour cells.

As we can see, the error is quite small with a maximum of about 80,000 on a scale of 1.6 million.
To decrease the error, we could change the convergence criterion to a more strict one. The prolifer­
ation rate shows a decay on the left side of the tumour and an increase on the right hand side. This
is likely due to the tumour not overlapping completely after registration and not necessarily because
the tumour grew in this direction.

Lastly, we can also take a look at themodel prediction further in timewith the obtained proliferation
rate and diffusion. The resulting image can be seen in Figure 5.5. It is interesting to see how the
tumour would change after such time, though we are unable to validate these results as no further
MRI scan is available. In the next chapter, we will take a much closer look at these predictions and
validate them using the data from Erasmus MC.

5.3. In Silico Experiments
In this section, several in silico experiments shall be carried out to observe the model performance
in a controlled setting. First, the parameter calibration shall be carried out for both the simple and
complete model to see how well the correct values are found. Then, an experiment is done to
observe the effects of incorporating the surrounding tissue on tumour cell growth.

5.3.1. Parameter Calibration
The first experiment will be a controlled experiment where themodel is initialized with the tumour cells
from time 1 from Patient001. Then, the model is propagated forward in time using chosen values of
D0 and k(x, y) to produce a ‘grown’ tumour after 10 days using time steps of 0.25 days. Using this
obtained tumour cell number, the parameter calibration is carried out to observe the performance of
Levenberg­Marquardt in obtaining the parameters. Again, a mask for k(x, y) was used to reduce the
computation time. This experiment is performed for both the simple model, i.e. only Equation 2.2,
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Figure 5.5: Estimation for number of tumour cells after 100 days using the calibrated parameters.

and the complete model, i.e. all three Equations 2.2, 2.3 and 2.4. The initial guess, true values along
with the obtained estimation can be observed in Table 5.1. Additionally, the maximum absolute error
is shown between the predicted tumour cell number using the obtained parameters and the tumour
cell number found using the chosen parameters. The estimation shown for k(x, y) is the average
value within the tumour.

Parameter Initial Guess True Value Estimation Max. absolute Error

Simple Model
D0 1.00× 10−3 1.00× 10−4 6.022× 10−5

8.903× 10−3

k −0.08 −0.1 −0.1011

Complete Model
D0 1.00× 10−3 1.00× 10−4 6.022× 10−5

6.507× 10−3

k −0.08 −0.1 −0.1010

Table 5.1: Results of in silico parameter estimation for both simple and complete model. Estimation for k refers to the
average proliferation rate within the tumour since this is a spatial parameter. The maximum absolute error refers to the
maximum error between the calculated tumour cell number at time 2 and obtained tumour cell number from the MRI

scan at time 2.

Additionally, the proliferation rate maps can be observed in Figure 5.6. As can be seen, the
difference in predictions for the simple and completemodel is minimal. One of the things we observed
was that using an initial guess quite close to the true value increased the accuracy of the estimation.
Also, the calibration of the proliferation is very good within the tumour, but we can see in Figure 5.6
that on the border of the tumour the proliferation rate is predicted to be positive.

5.3.2. Effects of Surrounding Tissue
To illustrate the effects of the incorporation of the surrounding tissue in the breast into the model,
the following experiment shall be carried out. A slice is taken from one of the breasts of Patient001,
which contains no tumour. Then, a seed tumour is modelled inside the breast that is surrounded by
the adipose, fatty, tissue. This seed tumour will be one pixel with value θ tumour cells. Then, the
model is propagated forward in time. This experiment is done to observe how the stiffness of the
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Figure 5.6: Spatial map of the proliferation rates obtained in the in silico experiment. Left image is after calibration using
only the simple model, right image is for the complete model. Both are very similar.

surrounding tissue will inhibit the growth of the tumour compared to the simple model. The adipose
tissue is the softest tissue where the Young’s modulus, E, is 2 kPa. Since this is an experiment, the
values ofD0 and k(x, y) were chosen and not calculated. The chosen values are 0.5 [mm2/day] and
1 [day−1] respectively. Note that k(x, y) is taken the same for every voxel. Using these choices, the
tumour will actively grow and thus the effects can be seen more clearly. No downsampling is used
in this experiment, only the zoomed in breast which has a matrix resolution of 180× 180. Using the
obtained carrying capacity from the dimensions of the slice, θ ≈ 1.247 · 105, produces the results
found in Figure 5.9.

In this figure, the location of the seed tumour and the stiffness of surrounding tissue can be
observed in subfigure (b). In subfigure (c), the tumour cells after 20 days are shown for the simple
model and in subfigure (d) for the complete model. In this current experiment, the difference in
tumour cells is not noticeable between the two different model calculations. In figure 5.8, the spatial
distribution of the tumour cells is shown along the biggest axes. It can be seen that the spatial
distribution of the tumour cells using the simple model, i.e. no mechanics, is slightly larger than the
complete model. This is in line with what we would expect since the incorporation of the surrounding
tissue produces stress which in turn decreases the diffusion and thus the spread of the tumour. Whilst
there is a very slight difference in number of tumour cells between the simple and complete model,
this is much less pronounced than we initially expected from the literature [45]. In this paper, they
use an initial value of θ ≈ 5 ·106. Therefore, we will repeat the experiment where the seed tumour will
be initialized with 5 million tumour cells. As we can see in Figure 5.9, the effects of the incorporation
of surrounding tissue are much more pronounced. The cell distribution in the case of no mechanical
coupling shows uniform radial decay, whereas the mechanically coupled version does not. In the
mechanically coupled version, the complete model, it can also be observed that the areas where the
tumour grows in fibroglandular tissue is more restricted than areas where the tumour continues to
grow in adipose tissue. The spatial distributions of the tumour cells for this experiment can be found
in Figure 5.10. Here, it can be seen how the incorporation of the surrounding tissue has a drastic
effect on the spatial distribution of the tumour cells.

The areas where the tumour growth is most inhibited, the fibroglandular tissue, are the areas
where the highest amount of stress is exhibited. Since the diffusion is inversely related to the amount
of stress, this reduces the diffusion in these areas. This can be observed in Figure 5.11. This figure
shows the Von Mises stress as well as the diffusion coefficients at 20 days. As can be seen, the
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Figure 5.7: Results for tumour growth using seed tumour for simple and complete model. Figure (a) shows the original
breast slice used without which has no tumour. Figure (b) shows the segmentation of the fibroglandular (white) and
adipose tissue (grey) and the red arrow shows the location of the seed tumour, initialized with value θ ≈ 1.247 · 105.

Figures (c) & (d) show the calculated tumour cell number after 20 days for the simple and complete model, respectively.
For both experiments, D0 = 0.5 mm2/day and k(x, y) = 1 day−1.

areas with the higher tissue stiffness produce more stress and thus lower diffusion. This experiment
was done using a positive proliferation rate. Note that using the same negative proliferation rate
also means that the model with mechanics is slower to reduce in tumour cellularity than the simple
model.

From this experiment, the following observation can bemade. For themodel, only one 2­dimensional
slice is taken from within the breast. The dimensions of the voxels in this 2­dimensional slice are
used to calculate the carrying capacity, θ. After this, the model predictions are only carried out in
2­dimensions. This means that although the size of the voxel in the third dimension is not used in
the model calculations, it does have a significant role in determining the carrying capacity for the
model. This, in turn, has effects on how much the surrounding tissue has influence on the growth of
the tumour cell number, as illustrated here. This shall be further discussed in the next chapter.
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Figure 5.8: Spatial distribution of tumour cells taken through the centre of the tumour. Red shows the tumour distribution
for the simple model after 20 days, blue for the complete model.

Figure 5.9: Results for tumour growth using seed tumour for simple and complete model. Figure (a) shows the original
breast slice used without which has no tumour. Figure (b) shows the segmentation of the fibroglandular (white) and

adipose tissue (grey) and the red arrow shows the location of the seed tumour, initialized with value θ ≈ 5 · 106. Figures
(c) & (d) show the calculated tumour cell number after 20 days for the simple and complete model, respectively. For both

experiments, D0 = 0.5 mm2/day and k(x, y) = 1 day−1.
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Figure 5.10: Spatial distribution of tumour cells taken through the centre of the tumour. Red shows the tumour
distribution for the simple model after 20 days, blue for the complete model.

Figure 5.11: Left shows the von Mises stress after 20 days, right image shows the diffusion. In areas with higher tissue
stiffness, the von Mises stress becomes larger, this has an inverse effect on the diffusion. This shows that the tumour

cells can spread more easily through less stiff tissues.







6
Results

In the previous chapters, the model implementation has been discussed in detail and some pre­
liminary results and in silico experiments of the model performance have been shown. As these
experiments were done using the QIN­Breast study data, no model validation was possible. In this
chapter, the performance of the model will be looked at in several different stages. The model using
only the reaction­diffusion equation as well as the complete model implementation shall be tested
for the different patients provided by Erasmus MC. In the end, the results will be compared to the
third MRI scan to validate the model’s predictive capabilities.

6.1. Model Predictions
For each patient, all scans were registered to a common image space using the preprocessing
described in Chapter 3. To reduce computation time, the domain of interest is zoomed in to that of
just the breast. This results in a resolution of 180 x 180 for Patient001 and Patient003 and 210 x 210
for Patient002. Then, they are downsampled by a factor three, as this still preserves the shape of the
tissues and tumour while reducing the computation time drastically. Since the model implementation
was done in 2­dimensions, a slice within the breast needed to be chosen at each time point. For the
experiments, the central tumour slice was chosen for each different time point. Ideally, this would be
the same slice for each time point since registration has been carried out. Unfortunately, this is not
necessarily the case, especially for Patient002 who was challenging for the registration. Therefore,
the central tumour slice for each individual time point is taken. In Figure 6.1, the tumour cell number
is shown of the three MRI scans of Patient001. Additionally, the segmented tissues are shown,
where the breast was segmented into adipose, fibroglandular and tumour tissue. Lastly, the breast
region of interest is shown which was found using region growing. This is also done for the other
patients, which can be found in the Appendix.

6.1.1. Patient001
What we wish to investigate is the predictive ability of the simple model, i.e. only using the reaction­
diffusion equation. Additionally, we wish to compare this to the predictive ability of the complete
model, i.e. with the incorporation of the surrounding tissues. To create a model prediction, the
patient­specific parameters need to be calibrated, the spatial proliferation rate k(x, y) and global
diffusion of tumour cells D0.

The Levenberg­Marquardt nonlinear least squares regression algorithm has been used to deter­
mine these parameters. Using this algorithm, the first two MRI scans time point are used for the
optimization, as explained in previous chapters. Several factors can be chosen which will affect
the resulting proliferation rate map and diffusion. These consist of the convergence criterion, the
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Figure 6.1: Tumour cells of Patient001 obtained from the DWI­MRI scans at the three time points. Bottom left shows the
segmentations of the fibroglandular (light blue), adipose (blue) and tumour tissue (yellow). Bottom right image shows the

breast region of interest.

initial guess as well as the Tikhonov regularization term. The convergence criterion which is used
is determined by the changes in k(x, y) or D0. Furthermore, performing several runs indicates that
using an initial guess higher than 0.01 will not be beneficial as this drastically increases computation
time, since ∆t is bound by the diffusion and needs to be very small for the time integration method
to remain stable.

From literature, it is known that D0 should take values close to zero, while k(x, y) can fluctuate
between ­20 to 20 days [19, 46]. Because of this, the Tikhonov regularization term shall be imposed
onD0 to force the algorithm to find values ofD0 to be small. The choice of the Tikhonov regularization
term has been somewhat trial and error to investigate which values will produce the best results.

Several experiments have been carried out to investigate the influence of the initial guess, Tikhonov
regularization term and to find which final tumour cellularity for time 3 can be taken as the found value.
Since the registration still proves to be somewhat of a challenge, the tumour across the time points
may not precisely overlap. Due to this, the model produces a large ‘error’ at time three since the
tumour seems to have shifted. Since this error is most likely caused by registration, we quantify the
error of the model by looking at the difference between the predicted total tumour cellularity at time
3 and the actual value found from the DWI­MRI scan at time 3.

In total, data of three patients from Erasmus MC has been used in the tests. All patients can be
classified as non­responders, as they all have residual tumour cells at time 3. So whilst we cannot
currently test the model’s performance for responding patients, we can investigate how well the
model predicts the number of tumour cells at time 3. We do note that Patient001 and Patient002
respond better to treatment than Patient003 as their tumours have reduced vastly in size between
t1 and t2. Additionally, we will compare the simple model’s predictive capabilities to the complete
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model’s predictive capabilities to see whether the incorporation of the surrounding tissue increases
the accuracy of the prediction.

D0 Mean Proliferation Max Proliferation Min Proliferation

Simple Model 4.59× 10−8 3.862× 10−2 2.440× 10−1 −2.310× 10−1

Complete Model 1.77× 10−8 −2.947× 10−2 3.493× 10−2 −2.749× 10−1

Table 6.1: Obtained diffusion D0 and proliferation rate k(x, y) after calibration for Patient001. Mean proliferation refers
to the average of the nonzero elements.

Figure 6.2: Results after parameter calibration for Patient001. Top row of images belong to the simple model, bottom
row to the complete model. The left images show the proliferation rate maps obtained after parameter calibration. The
middle images show the absolute error between the observed tumour cell number at time 2 and the calculated tumour

cell number using the calibrated parameters. The right images show the model tumour cell prediction at time 3.

Several runs have been performed for both the simple as well as the completemodel with different
initial guesses, convergence criteria and Tikhonov regularization terms. The initial guess was taken
as 0.01, 0.001, 0.0001 or 1·10−4, the Tikhonov regularization term was taken as 100, 1 or 1·10−5 and
we used the convergence criterion that the rate of change of the independent variables was smaller
than 1 ·10−3 or 1 ·10−4. In the end, the run which had the closest predicted tumour cell number to the
actual tumour cell number at time 3 was chosen as the result. What we observed from doing these
different runs was that taking a smaller initial guess was not only faster but tended to generally find
better results. The influence of the Tikhonov parameter was indeed that generally, we obtain smaller
results for D0 when the Tikhonov parameter was large and vice versa.

In Table 6.1 and Figure 6.2, the results found for Patient001 can be observed. The obtained
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parameters for both the simple model, as well as complete model are in line with the expected values
seen inWeis et al. 2017. We see that the parameters are both of the same order of magnitude though
the mean proliferation of the simple model is higher. In Figure 6.2, the maps of the proliferation rates
can be observed both for the simple model (top) and complete model (bottom). Here, we can see
where the change in mean proliferation rate comes from since for the areas outside of the tumour,
the simple model determines k(x, y) to be larger than zero. Since there are no tumour cells in these
areas, k(x, y) can actually be any value and will not have an effect on the tumour growth. The two
figures in the middle show the absolute error which is made when using the calibrated parameters
at time 2. We see here that the error for the complete model is generally about twice the error of
the simple model, but we note that both errors are very small compared to θ. Lastly, on the right the
estimated tumour cells at time 3 are shown modelled using the obtained values for D0 and k(x, y).
As we can see, no difference in these two images is visible. In fact, the difference between the
number of tumour cells predicted by the simple and complete model is only about 1,000. This is in
line with what we could expect after the results from the in silico experiments in the previous chapter.
There, we saw that the incorporation of the surrounding tissue in the model with the current carrying
capacity obtained from the MRI scans was negligible.

Figure 6.3: Change in the number of tumour cells over the course of the three MRI scans for Patient001. In blue the
complete model’s tumour cell evolution is shown, in red the simple model. The actual observations obtained from the

MRI scans are shown in green.

Nevertheless, in Table 6.4 the actual tumour cell number along with the predicted tumour cell
number from both models at time 3 are shown. Here, we see that currently, the model has an error
of about 600,000 tumour cells. To put this further into perspective, a plot is made to show the change
in tumour cells over the course of the three MRI scans. The result for Patient001 can be seen in
Figure 6.3, where also the observations from the MRI scans are shown. As we can see, the complete
and simple model follow the same trajectory when predicting the tumour cell number at time 3. Also,
whilst an error of 600,000 tumour cells at time 3 remains large, in this figure we can see that the
model shows a good downward trend in tumour cells. This particular patient was responding quite
well to treatment, with the number of tumour cells from time 1 reducing drastically from 89 million to
about 9 million at time 2.
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6.1.2. Patient002 and Patient003
For Patient002 and Patient003, the same type of runs have been performed as before. The results
of the best experiment for Patient002 can be found in Table 6.2 and for Patient003 in Table 6.3. For
Patient002, we see that the proliferation rate is again in the same order of magnitude for both the
simple as well as complete model. For the diffusion, the difference is larger. In the appendix, further
images are shown for both patients regarding their tumour sizes at time 1, 2 and 3 as well as the
proliferation rate maps and modelled tumour cells. In Figure 6.4, the change of tumour cells is shown
for both Patient002 (left) and Patient003 (right). Patient002 also responds to treatment quite well,
with the number of tumour cells reducing from 234 million at time 1 to 24 million at time 2. Again,
both model predictions are almost exactly the same for time 3, with both underestimating the number
of tumour cells, in this case. The exact values of the model predictions at time 3 can be observed
in Table 6.4. It is important to note that the registration for this patient was somewhat of a challenge
due to the first MRI scans being made at a different hospital. This caused not only the resolution to
be different, but the shape of the breast was also very different.

D0 Mean Proliferation Max Proliferation Min Proliferation

Simple Model 2.699× 10−6 −3.059× 10−2 2.744× 10−1 −3.515× 10−1

Complete Model 1.638× 10−11 −2.303× 10−2 2.295× 10−1 −1.833× 10−1

Table 6.2: Obtained diffusion D0 and proliferation rate k(x, y) after calibration for Patient002. Mean proliferation refers
to the average of the nonzero elements.

For Patient003, the model has much more difficulty with accurately predicting the number of
tumour cells at time 3. In fact, the predicted number of tumour cells actually increases after time 2.
One of the observations we make is that this patient did not respond to treatment quite as well as
Patient001 and Patient003. The number of tumour cells only reduce from 84 million cells at time 1
to 68 million tumour cells at time 2. Furthermore, this patient was the most challenging regarding
the registration of the tumour. Although the segmentation was performed by the radiologist, after
registration this could be somewhat distorted and was attempted to be reconstructed by me. This
could have led to voxels being wrongfully classified as tumurous. Patient001 and Patient002 had
quite distinct tumours which lit up, but this was not the case for Patient003. This made the shape of
the tumour change from time 1 to time 2 and time 3 quite a bit as can be observed in the appendix. We
do note that the calibrated parameters are again in line with what would be expected from literature
values.

D0 Mean Proliferation Max Proliferation Min Proliferation

Simple Model 5.086× 10−3 −1.644× 10−1 1.058× 10−1 −1.828

Complete Model 5.093× 10−3 −8.271× 10−2 1.063× 10−1 −8.079× 10−1

Table 6.3: Obtained diffusion D0 and proliferation rate k(x, y) after calibration for Patient003. Mean proliferation refers
to the average of the nonzero elements.

In the end, for Patient001 and Patient002, the model’s predictive capabilities show promise.
These patients both behaved quite similarly in the fact that they both had a drastic reduction in
tumour cell number from time 1 to time 2. For Patient003, the model could not accurately predict the
number of tumour cells and the tumour was even predicted to grow from time 2 onward.
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Figure 6.4: Change in the number of tumour cells over the course of the three MRI scans for Patient002 (left) and
Patient003 (right). In blue the complete model’s tumour cell evolution is shown, in red the simple model. The actual

observations obtained from the MRI scans are shown in green.

Observed Simple Model Complete Model

Patient001 4,422,723 5,087,818 5,088,914

Patient002 20,112,640 16,099,977 16,100,214

Patient003 50,020,596 68,668,713 68,607,973

Table 6.4: Number of tumour cells at time 3 found from DWI­MRI scans as well as both model predictions.

6.2. Reduced Number of Slices
As could be seen from Table 6.4, the difference between the simple model prediction and complete
model predictions are not big. This is in line with the expectation one would have from the previous
chapter, where the influence of the incorporation of the linear elasticity was explored. One of the
observations made, is that the literature makes use of a much higher carrying capacity for their 2D
model calculations [20, 44, 45]. As seen in the previous chapter, this would provide a much bigger
influence of the surrounding tissue. With this knowledge at hand, a closer look has been taken at the
available literature to investigate how they came to a higher carrying capacity. We note that whilst
we have made use of the original number of slices/resolution provided by the MRI scanner, the data
used in the literature is of a much coarser state. Instead of using 120 slices in the third dimension,
they only use about 20­30. This, in turn, will cause the carrying capacity to becomemuch higher, and
whilst we still do model calculations in two dimensions, the growth of the tumour will have a much
higher impact on the surrounding tissue. As such, another experiment is done. Since Patient001
was the most ideal patient in terms of tumour visibility as well as data structure, this patient will be
used for the experiment. In the experiment, the whole preprocessing pipeline is again performed,
however this time with only 32 slices instead of 120 slices in the third dimension. These slices were
now 6.5 mm thick. Using these slices and again by downsampling by a factor 3, we now have a
carrying capacity of 4.21 · 106 per voxel. In the other two dimensions we have the same resolution
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as in the previous section. This means that we would expect a more significant difference in the
predictions of the simple and complete model. Again, the central slice is taken of the tumour for the
experiment.

D0 Mean Proliferation Max Proliferation Min Proliferation

Simple Model 8.260× 10−3 −2.005× 10−1 2.067× 10−1 −2.240

Complete Model 2.049× 10−2 −2.733× 10−1 1.734× 10−1 −5.006

Table 6.5: Obtained diffusion D0 and proliferation rate k(x, y) after calibration for Patient001 with thicker silces. Mean
proliferation refers to the average of the nonzero elements.

Figure 6.5: Results after parameter calibration for Patient001 using thicker slices. Top row of images belong to the
simple model, bottom row to the complete model. The left images show the proliferation rate maps obtained after

parameter calibration. The middle images show the absolute error between the observed tumour cell number at time 2
and the calculated tumour cell number using the calibrated parameters. The right images show the model tumour cell

prediction at time 3.

The obtained parameters can be observed in Table 6.5. We can see that for the complete model,
the diffusion as well as proliferation rate is larger than for the simple model. This is what we would
expect as the incorporation of the surrounding tissues’ stiffness causes the tumour to grow and also
decay slower for the same proliferation rates in the simple model. Furthermore, in Figure 6.5, the
proliferation rate map along with the made calibration error and modelled tumour cells at time 3 can
be observe again. We see that for both the simple as well as for the complete model, the errors
are in the same order of magnitude. Additionally, there is a slight difference in the modelled tumour
cell number at time 3, though it is difficult to visually see this. Therefore, in Figure 6.6, the change
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of tumour cell number can be seen over the course of patient’s treatment. What we can observe
from this figure, is that indeed there is a difference in the complete models prediction compared to
the simple models prediction. In fact, the complete model performs slightly better than the simple
model. In Table 6.6, the exact number of actual tumour cells along with predicted tumour cells can
be observed. Note that the number of tumour cells is higher than before, since we have taken thicker
slices, which therefore contain more tumour cells.

Figure 6.6: Change in the number of tumour cells over the course of the three MRI scans for Patient001 with reduced
slices. In blue the complete model’s tumour cell evolution is shown, in red the simple model. The actual observations

obtained from the MRI scans are shown in green.

Observed Simple Model Complete Model

Patient001reduced 14,852,145 19,120,975 18,347,708

Table 6.6: Number of tumour cells at time 3 found from DWI­MRI scans as well as both model predictions.

What we observe from these experiments, is that the choice in slice thickness can have a great
influence on the model’s performance and especially on the influence of the surrounding tissue. This
is due to the model calculations being performed in 2 dimensions. In the end, the complete model
shows potential for predicting the tumour cell number for responding patients. The predictions for
Patient001 and Patient002 were much better than for Patient003, which had a less distinctly defined
tumour and responded to chemotherapy less well. However, the current model can be expanded
and refined further to, hopefully, increase the accuracy of its predictive abilities.
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Future Improvements

One of the most important things to note is that the current model which has been implemented
and investigated in this thesis, still has many more refinements and expansions to become more
accurate.

7.1. Incorporation of Chemotherapy
One of the most important factors which has not currently been incorporated into the model, is the
chemotherapy. The chemotherapy which has been administered to these patients has a different
influence depending on the vascularity of the tumour. Due to time constraints, this is one of the most
important things we have not yet taken into consideration. Whenever a tumour grows beyond about
2 mm2, tumour angiogenesis occurs [14]. This means that the tumour starts to grow its own blood
vessels to increase its nutrients and oxygen causing it to grow even further. The vascularity is also
what causes us to be able to identify the tumour as it lights up using a contrast agent and DCE­MRI
scans. This means that the DCE­MRI can be used further to identify the vascularity of the tumour.
Since the chemotherapy will move in a similar way through the tumour’s blood vessels, it can be
used to determine the amount of chemotherapy concentration in the tumour. The incorporation of
the chemotherapy will result in the following reaction­diffusion equation:

∂N(x̄, t)

∂t
= ∇ · (D∇N(x̄, t))︸ ︷︷ ︸

Diffusion

+ k(x̄)N(x̄, t)

(
1− N(x̄, t)

θ

)
︸ ︷︷ ︸

Proliferation

− αCdrug
tissue(x̄, t)N(x̄, t)︸ ︷︷ ︸
Chemotherapy

(7.1)

In this case, the proliferation rate k(x, y) would actually represent the tumour’s growth in case of no
chemotherapy and therefore be positive. Since we had no other factor representing tumour decay,
our proliferation rate could be negative to represent this. The parameter α is a global parameter that
describes the efficacy of the specific chemotherapy used. The chemotherapy concentration Cdrug

tissue

could be found by fitting the extended Kety­Tofts model to the DCE­MRI scans [17, 19, 20].

Ctissue(x̄, t) = Ktrans(x̄)

∫ t

0

(
Cplasma(u) · exp

(
−Ktrans(x̄)

ve(x̄)
(t− u)

))
du+ vp(x̄)Cplasma(t)

(7.2)
In this equation, Ctissue and Cplasma are the concentrations of the contrast agent in the tissue and
plasma respectively. Ktrans is the volume transfer constant from the plasma space to the tissue
space and ve is the volume fraction of the extravascular extracellular space. Lastly, vp is the volume
fraction of the plasma space. Using DCE­MRI scans, the parameters Ktrans, ve and vp can be esti­
mated for each individual patient [17]. Several papers exist such as Jarrett et al. 2018 and Jarrett
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et al. 2020 who discuss the effects of incorporating the chemotherapy and show that it increases
the accuracy of the model predictions. This would be the next step in modelling the patient­specific
tumour cell evolution.

7.2. Further Improvements and Refinements
Another expansion of the current model is to implement it in 3­dimensions. In this current research,
we made use of the central tumour slice to model the tumour growth. The results showed that with
this current approach, the thickness of the slice chosen has a great influence in the effects of the
surrounding tissue on the tumour growth. The thicker the slices are taken, the larger the carrying
capacity becomes and in turn themore the surrounding tissue inhibits the growth/decay of the tumour.
Therefore, the incorporation of tumour cell growth in the three­dimensions will likely provide more
accurate predictions [46]. The extension of the currently implemented 2­dimensional model to a 3­
dimensional model should be straightforward. However, computational speed enhancements should
be performed as the parameter calibration already takes more than an hour for the downsampled
2­dimensional model.

One of the first refinements that could be done is taking a closer look at the registration of the
images. In this research, the ITKElastix toolkit was used to register both inter­scan and intra­scan
[23]. For both the rigid and nonrigid registration, the default parametermap was used. However, it
became clear after registration that the tumour was not necessarily in the same slices for all three
time points. For patient 3 for example, the central tumour slice was slice 73 at time 1, slice 72 at
time 2 but slice 64 at time 3. For the model calibration and validation, it is very important that the
registration is carried out correctly as we are calculating the number of tumour cells on a voxel­by­
voxel basis. Several other parameter maps exist, which should be investigated to see whether these
might perform better. Additionally, the setting ‘FinalGridSpacing’ can be adjusted so that during the
registration, the image cannot be distorted too little or too much. Lastly, in the ITKElastix toolkit, one
could perhaps also use an additional mask for the tumour to make sure that not only the contour of
the breast is correctly aligned but also the tumour within the breast is registered correctly.

During this thesis, the availability of patient data was also one of the difficulties to overcome.
In the end, 3 usable patient’s data were provided by Erasmus MC. However, this subset remains
far too small to statistically give insight into how often the complete model might outperform the
simple model and vice versa, as was done in previous literature [45]. Testing the model validity
more elaborately could shed light on which kind of patients the model performs best. As was seen
in the previous chapter, the model came quite close to the actual tumour cell number for Patient001
and Patient002, but not for Patient003. This might be the case because Patient003 responded the
least to treatment compared to the other patients. Further investigation with different patients, e.g.
some of whom do not have any residual tumour at time 3, could give other insights into which kind
of responding patients the model can predict the outcome for best.

One of the difficulties in finding suitable patient data was the unavailability of a third MRI scan
before surgery. This MRI scan is vital for the validation of the model. However, providing more than
three MRI scans could also increase the model’s predictive accuracy. Currently, the parameter cali­
bration is ill­posed. In each voxel, there are 2 unknowns, i.e. the global parameterD0 and the spatial
parameter k(x, y), but there is only 1 measurement. This meant that there are an infinite number of
possible solutions. To solve this problem, we made use of a Tikhonov regularization term. However,
by providing more scans, more measurements are available, making it more accurate to calibrate
the model parameters. In addition to this, the currently used nonlinear least squares optimization al­
gorithm used was Levenberg­Marquardt. Recent literature uses a Polak­Robiere conjugate gradient
algorithm for the parameter calibration [46]. For the in silico experiments performed in this paper,
their approach shows good accuracy.
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Next, the assignment of other model parameters can be revised. Several of these, λ,E, etc. have
been taken as literature values as could be seen in Table 2.2. For the stiffness of the fibroglandular,
adipose and tumour tissues within the breast, literature values were taken. A more patient­specific
approach would be to use MRI­based elasticity imaging methods to increase the accuracy of the
estimates of spacial elasticity on an indiviual basis. Modality independent elastography (MIE) could
be used for this approach [45]. One other limiting assumption is that the proliferation rate and carrying
capacity are both constant in time. For the proliferation rate, this is a current simplification since it
is impractical to perform enough MRI scans at different time points to accurately create a temporal
proliferation rate. The same holds for the carrying capacity, where a more realistic approach would
be to let the carrying capacity change over time. Additionally, for the calculation of θ, the tumour
cells are assumed to be spherical and with the same radius. However, it is known that cancerous
cells have an irregular shape and are not all the same size [24]. To incorporate this would require
an additional model equation for θ such as coupling the carrying capacity to the vascularity of the
tumour [16]. Other parameters which could be improved upon are the γ which couples the stress on
the tissue to the diffusion of tumour cells. This parameter has been empirically derived in literature,
so further investigation of this parameter might be beneficial.

Lastly, further improvements on the model can include investigating the current level of ambiguity
for the cause of changes in ADC. Not only tumour cellularity causes fluctuations in the ADC values,
but also cell size or cell membrane permeability can be factors [16, 19]. In this research, the current
assumption was that whenever a voxel was classified as tumorous, the only type of tissue in this
voxel was tumour cells. As such, the number of tumour cells within a voxel was only depending on
the ADC values and the carrying capacity. However, recent literature suggests that the incorporation
of extravascular extracellular volume fractions can increase the accuracy of estimating the number
of tumour cells when compared to only using ADC values [1]. This means instead of using equation
(2.6) for the estimation of number of tumour cells, one can use:

N(x̄, t) = θ

(
ADCw −ADCmin(x̄, t)

ADCw −ADC(x̄, t)

)
vTC

Where vTC = 1− ve − vp which are derived via the Kety­Tofts equation.







8
Conclusion

In this chapter, the research and analysis shall be summarized and an answer will be provided to
the main question Can a mathematical model of tumour growth predict patient­specific response for
HER2+ breast cancer patients? Additionally, the most important extensions to the model for future
improvement will be discussed.

In this thesis, we presented a mechanically coupled reaction­diffusion model which could inte­
grate quantitative magnetic resonance imaging data to predict the tumor growth of an individual
patient. Prior to testing the model, a preprocessing pipeline was constructed to extract all necessary
information from the MRI data such as tumour cell number, segmentation of tissues. and domain
of the breast. We performed several experiments on data provided by Erasmus Medical Centre, to
investigate the mechanically coupled reaction­diffusion model versus the non­mechanically coupled
model. By performing these experiments, we saw that for patients who responded well to treatment,
the model was able to predict the downward trend in tumour cellularity. For the patient who did not
respond well to treatment, the model had much more difficulty in finding an accurate estimate for
time 3. Though it is important to note that this patient had a difficult tumour to segment and therefore
registration proved to be a challenge. This could have both contributed to the error from the model.
The current model should be tested on a more diverse patient cohort to investigate for which kinds
of patients the model performance is best.

However, we do note that there was barely any difference in the complete model’s prediction
versus the simple model’s prediction. This was caused by taking a high resolution in the third di­
mension. The model was implemented in 2­dimensions, but the number of tumour cells in a voxel
depends on the thickness of the slice taken. When experimenting with thicker slices, which meant
that there are more tumour cells in a voxel, a larger effect of the surrounding tissue could be ob­
served. This resulted in a better prediction for the complete mechanically coupled model versus the
simple reaction­diffusion model. Although, it is important to note this experiment was only performed
for one patient. Again, it is important to experiment with this on more patients to see whether the
mechanically coupled model is indeed statistically better at predicting the number of tumour cells
than the non­mechanically coupled model.

Several limitations of this study have been discussed. One of the major limitations at this cur­
rent stage is not incorporating the chemotherapy administered to the patient. In the current model,
the proliferation rate can be both positive or negative to denote the tumour cell growth or decay,
respectively. In reality, the tumour would try to grow, i.e. k(x, y) is positive, and the decay is strictly
because of the chemotherapy given to the patient. Another limitation is that the model was only im­
plemented in 2­dimensions with only the central tumour slice instead of in 3­dimensions. This meant
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that the slice thickness determined whether the surrounding tissue had more or less effect on the tu­
mour growth. Including both of these expansions will most likely result in better model performance.
Another important addition to the model would be an additional MRI scan. The current parameter
calibration is an underdetermined problem since there are 2 unknowns in each voxel but only one
measurement. Incorporating an additional MRI scan for the calibration, will result in better estimates
for the patient­specific parameters.

The ultimate goal of this project is to create a model which is able to accurately predict the number
of cycles of chemotherapy a HER2+ breast cancer patient will need to achieve complete pathological
response. In this thesis, we provided the first steps to achieving this goal. At this current stage, we
are unable to give an accurate prediction in the number of cycles since the chemotherapy is not
yet incorporated into the model. However, in this thesis, we have shown that the reaction­diffusion
model coupled to surrounding tissue shows potential to be able to predict the change in overall
tumour cellularity for a patient.





A
Appendix

The displacements obtained solving Equation (2.4) at time 20 can be seen in Figure A.1. These
displacements are used to calculate the von Mises stress as seen in Figure 5.11.

Figure A.1: Displacements calculated solving equation 2.4. U denotes the displacement in the x−direction and v the
displacements in the y−direction.
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Figure A.2: Tumour cells of Patient002 obtained from the DWI­MRI scans at the three time points.

Figure A.3: Tumour cells of Patient003 obtained from the DWI­MRI scans at the three time points.



63

Figure A.4: Tumour cells of Patient001 with reduced slices obtained from the DWI­MRI scans at the three time points.
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Figure A.5: Results after parameter calibration for Patient002. Top row of images belong to the simple model, bottom
row to the complete model. The left images show the proliferation rate maps obtained after parameter calibration. The
middle images show the absolute error between the observed tumour cell number at time 2 and the calculated tumour

cell number using the calibrated parameters. The right images show the model tumour cell prediction at time 3.
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Figure A.6: Results after parameter calibration for Patient003. Top row of images belong to the simple model, bottom
row to the complete model. The left images show the proliferation rate maps obtained after parameter calibration. The
middle images show the absolute error between the observed tumour cell number at time 2 and the calculated tumour

cell number using the calibrated parameters. The right images show the model tumour cell prediction at time 3.
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