
AI Trading Engine
TI 3806 - Bachelor End Project

R.v. Gurp
Y.J. Hu
H.V. Kooijman
A. Somai
Exploring the capabilities of AI in
digital asset trading





AI Trading
Engine

TI 3806 - Bachelor End Project
by

R.v. Gurp
Y.J. Hu

H.V. Kooijman
A. Somai

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended publicly on Friday February 1, 2019 at 14:00.

Student number: 4271742, (rvangurp)
4356241, (yjhu)
4126890, (hvkooijman)
4366220, (asomai)

Project duration: November 12, 2018 – February 1, 2019
Thesis committee: Prof. Dr. H. Wang, TU Delft, Bachelor Project Coordinator

Prof. Dr. E. J. Rellermeyer, TU Delft, Bachelor Project Coach
M.L. C. Jacobs, Blockrise
J. Lazet, Blockrise

This thesis is confidential and cannot be made public until January 31, 2022.

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface
This project is the final course for the Bachelor’s degree programme of Computer
Science at the TU Delft University of Technology. The goal of this project was the
development of a digital asset trading engine backed by artificial intelligence.
It was developed for the company Blockrise which deals in digital asset invest-
ment and trading. The project started on November 2nd, 2018 and finished on
February 1st, 2019. This document describes the product and its development
process during this time, including the requirements, design choices, implemen-
tation details, the product results and future discussions.

We would especially like to thank Prof. Dr. Jan S. Rellermeyer for taking the
role of mentor for this project and for his guidance and support during the de-
velopment process. We would furthermore also like to thank Joshuan Lazet and
Cornelis Jacobs of Blockrise for having provided us a great learning opportunity
and a chance to explore the limitations of technology. Lastly, we would like to
thank the Bachelor End Project coordinator, Prof. Dr. H. Wang.

R.v. Gurp
Y.J. Hu

H.V. Kooijman
A. Somai

Rotterdam, January 2019

iii





Summary
Scientific advances in the field of artificial intelligence, and the ever increasing
processing power of computers, have opened up opportunities to use artificial in-
telligence for new industries and applications. Blockrise foresaw opportunities
in using artificial intelligence for digital asset management. Blockrise’s founders
and the development team formalised the problem and drew up a project pro-
posal, which was accepted by the TU Delft Bachelor End Project coordinators
and overseen by Prof. Dr. Jan Rellermeyer in the role of TU Coach.

The development team first reserved roughly two weeks to spend on research-
ing the problem and possible solutions. A research proposal was formalised, in
which details of the problem were explained and abstract solutions were given.
During the next six weeks, the team started the concrete implementation of the
solution. The team created a neural network to use as core functionality in the
product. Supporting functionality was simultaneously developed to allow re-
trieval and processing of necessary data. With enough useful data on hand, the
neural network could be trained to make predictions based on an asset’s closing
price, opening price, the highest price and the lowest price for each next minute,
hour and day.

Extensions to the product were made in the form live-data processing, and
validation and visualisation of predictions. Trading strategies were included to
allow fully automated decision on placing market orders. The final stage of the
development period was spent tweaking the neural network parameters in order
to minimise prediction error.

v





Contents

1 Introduction 1

2 Problem Analysis 3
2.1 Defining the Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Stakeholder Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 The Company. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 The University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 The Developers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Problem Description 7
3.1 Definition of Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Must Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.2 Should Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Could Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Solution design 11
4.1 Design specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Trading strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3 Trading assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Design limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Design justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Implementation 15
5.1 Implementation plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Data-visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.3 Libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.4 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Issues encountered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Results 27
6.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 Time Series k-fold Cross-Validation . . . . . . . . . . . . . . . . . . 28
6.2 Network Parameter Optimisation . . . . . . . . . . . . . . . . . . . . . . . 28

6.2.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.2 Optimisation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.3 Look-back - Rho . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.4 Hidden Layer Complexity . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Trading Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.1 Default Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.2 Random Walk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3.3 Rate of Change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.4 Relative Strength Indicator . . . . . . . . . . . . . . . . . . . . . . . 34
6.3.5 Double Exponential Moving Averages. . . . . . . . . . . . . . . . . 35
6.3.6 Moving Average Convergence / Divergence . . . . . . . . . . . . . 36

vii



viii Contents

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 SIG feedback 39
7.1 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Code quality tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 Internal code conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5 Version control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Discussion & Recommendations 41
8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.2.1 Add volume data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.2 Add order book data . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.3 Add other samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.4 Add other exchanges. . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.5 Use other intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2.6 Combine multiple strategies . . . . . . . . . . . . . . . . . . . . . . 44
8.2.7 Optimise network parameters . . . . . . . . . . . . . . . . . . . . . 44
8.2.8 Change the interface to emphasise UX . . . . . . . . . . . . . . . . 45

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Conclusion 47

A Infosheet 49

B System Decomposition 51

C Data-visualizer 55

D Research Proposal 57

Bibliography 71



1
Introduction

Ever since the first stock exchanges arose, stock traders have been attempting
to predict market trends to turn a profit. By analysing stock price charts and
identifying trends, they hoped to predict asset rise or fall. Consistent alpha
generation, a term to describe edge over the market or ability to make profit, has
remained a hot topic with the potential to earn billions.
Then came along the digital age. With the rapid improvement of computing power
and the availability of vast amounts of stock market data gathered from all over
the world, stock traders saw new opportunities. More accurate ways for pre-
dicting the stock market were devised. The reliability of these predictions often
remains questionable. Moreover, it still takes many years of experience and ex-
tensive knowledge of the stock market to make even reasonable predictions. This
difficulty in predicting the stock prices is all the more true for the recent digital
asset (e.g. Bitcoin) markets, which have proven extraordinarily volatile.

The challenges stakeholders face when attempting to make predictions involve
human emotions (optimism fosters investment whereas depression begets re-
straint) and a vast amount of influencing events, including unexpected ones
such as, for example, the Volkswagen scandal regarding the manipulation of ex-
haust gas emission. The general rule is that the more information is available,
the more accurate the predictions. However, humans can gather and process
only limited amounts of data to make a trading decision. There is some aid to be
found from internet trading bots that automatically give advice based on market
data calculations, such as the Gekko bot [18]. Their primary benefit, however,
is trading speed, as computers can react near instantaneously to changes. They
do not predict the specific value of a digital asset in the future, if at all.

However, the recent rise of machine learning and artificial intelligence (also known
as AI) has brought new ideas and opportunities. With enough processing power,
an AI can analyse enormous amounts of data and ”learn” decades of experience
in a matter of minutes or hours. It has the potential to outperform humans and
autonomously turn massive profits. It is, therefore, no surprise that substantial
investment and asset management companies, the primary benefactors of such
an AI, have begun investing billions into developing AI-based trading and invest-
ment applications.

These developments have also sparked the interests of Blockrise, a newly-formed
company dealing in asset management. The benefits that AI offers would aid
them both in general digital asset management and price prediction, potentially
increasing their profits. AI-based trading engines are a relatively new concept
that, to our knowledge, are not widely deployed as of yet. As such, the novelty

1



2 1. Introduction

of this technology presents an opportunity to be among the first companies in-
vestigating AI-based trading of digital assets. The project, as conducted by the
development team, serves as an exploration of the possibilities of this technology
in combination with Blockrise’s core business.
Chapter two describes a detailed analysis of the problem, whereas chapter three
provides the problem description. In chapter four the proposed general solution
to the problem is described. Chapter five goes into detail about the concrete
implementation of the said solution. In chapter six one can find the results
of testing the product’s performance. Chapter seven outlines the feedback re-
ceived from the Software Improvement Group (SIG). Chapter eight discusses the
obtained results and provides recommendations for future work. Finally, con-
clusions about the project are drawn in chapter nine.



2
Problem Analysis

Developing an AI Training Engine requires a clear understanding among the
stakeholders about the requirements. Every stakeholder may have their ideas
about what the engine should be or should not be capable of, and some of these
ideas might clash with those of other stakeholders. After each of the stakehold-
ers’ requirements has been clarified, a consensus can be reached on the intended
capabilities of the trading engine.
This chapter aims to further define the views of the stakeholders on the problem
at hand. By defining the desires of each stakeholder, a clear definition of the
problem each stakeholder agrees with can be formulated.

2.1. Defining the Stakeholders
The Business Dictionary describes a stakeholder as: “A person, group or organ-
isation that has interest or concern in an organisation ”[11]. In this case, the
interest or concern is in a project. This project has multiple stakeholders, all of
whom have an interest or concern in the product that is to be developed, which
are the following:

• The Company: Blockrise

– The product owner. This project is executed on their behalf.

• The University: TU Delft

– This project is part of the bachelor programme.

• The Developers

– The students take the role of developers and are responsible for the
product development.

2.2. Stakeholder Analysis
As mentioned before, each stakeholder has separate ideas about what should
and should not be done. This section further investigates the stakeholders and
defines their requirements.

2.2.1. The Company
Blockrise is the product owner for this project. It requires a solution and there-
fore initiated the project. As the product owner, they have a clear vision of what
the result should be.
Blockrise desires a digital asset individual portfolio management system, which
provides the following functionalities:

3



4 2. Problem Analysis

• The ability to set up a diverse and individual portfolio of multiple digital
assets.

• The portfolio setup should be secure and cost-efficient, multiple asset ex-
changes should be monitored, and orders should be placed with the ’best
execution rule’.

• Portfolios should be kept in ’cold storage’. The number of assets should be
monitored.

• Building an AI Trading engine which manages the digital assets portfolio
and takes care of rebalancing the assets.

• The execution of orders on exchanges should be handled optimally, such
that it prevents unnecessary transfer fees and arranges internal transfers.

• Everything should be available as an API. There should be an interface for
both managers and users where current assets and portfolio can be viewed
and where changes can be made.

2.2.2. The University
The TU Delft is also a stakeholder because the project is done as part of the
bachelor programme provided by the TU Delft. They have set the requirements
for the project as a whole:

• The topics covered and skills learned in the bachelor programme should be
bundled and used to do this project.

• The students should be able to work in a real-life development team, decide
on development processes in consultation with the client and keep track of
all the processes.

• The students should be able to assess the quality of the project and make
decisions based on that assessment.

• The results of the project must be explained and presented in a good way.

2.2.3. The Developers
The students are the ones doing this project, which automatically makes them
stakeholders. Their goal is to do this project according to the requirements set up
by the other stakeholders. The students have important interests in this project
as it is the closing course of their bachelor programme. Furthermore, they also
have requirements for this project:

• The project should be challenging, and the goal is to apply all the knowledge
gained in the previous years.

• There should be a certain degree of freedom regarding design and imple-
mentation choices.

• The project should carry some educational value. This project is as close
as it gets to a real-world project, so it is important to learn how to cope with
everything that comes along.

2.3. Conclusion
The company is the largest stakeholder in this project, as they are the target
stakeholder and the product owner. Regardless, the university as stakeholder
owns this project as part of their bachelor’s programme, so their requirements
should be met regardless of those set by other stakeholders. For example, the



2.3. Conclusion 5

company desires a complete software application, whereas the university em-
phasises research. This causes the focus of the project to shift towards building,
analysing and testing the AI trading engine rather than building a customer-
ready software package. Additionally, the execution time of the project is
limited to ten weeks, which includes researching the topic at hand and writing
a report. Effectively, this leaves the development team with only six weeks for
product implementation. Therefore the scope of the project is narrowed specif-
ically to the trading engine. The students should bear in mind that the system
they are building should operate as part of a larger application, and should,
therefore, be designed in such a way that it is open for extension.





3
Problem Description

The goal of this project is to build an AI-powered trading engine capable of man-
aging a digital assets portfolio in the most cost-efficient way. The AI trading
engine has to deal with many factors that come into play in order to make effi-
cient and profitable choices. This chapter further breaks the problem down into
parts and discusses each.

3.1. Definition of Done
A project can be considered done when the set criteria for the project are met.
These criteria are agreed upon by the stakeholders and the developers before-
hand to weed out any futuremisunderstandings on what the final product should
entail. Such misunderstandings could lead to unnecessary conflicts that dam-
ages both parties.
The criteria list was drawn up according to the MoSCoW method[5]. The project
criteria are considered met when all the items listed under ’must haves’ have
been implemented.

3.2. Requirements
The development team and the stakeholders, which as mentioned are the com-
pany and the university, together determine the scope of the project and draw
up the requirements the trading engine should comply to. Applying the MoSCoW
method, the functional requirements are placed into separate categories based
on their degree of importance. ’Must haves’ is a list of critical features that
the product must possess before the project can even be considered a success.
’Should haves’ contains features that are expected to be part of the product. Fea-
tures listed under ’Could haves’ might be considered for implementation, but are
not necessary. Finally, ’Won’t haves’ are features that will not be implemented
during this project.

3.2.1. Must Have
1. The trading engine must work in a LINUX environment. LINUX offers a

range of benefits for developers and companies, such as stability, security,
portability, access and support. This gives it an edge over other platforms.

2. The codebase must be written mainly in C++. C++ is a very powerful, effi-
cient and highly portable language with a rich assortment of libraries.

3. The implementation must be modular and scalable for future development.
Even though the scope of the project was narrowed down to just the trading

7



8 3. Problem Description

engine, it still remains the company’s intention to assemble a complete
software application according to their initial requirements.

4. The trading engine must be able to trade between at least one pair of cur-
rencies (e.g. BTC and USDT)

3.2.2. Should Have
1. The trading engine should be able to test its performance with historical

datasets. This is known as backtesting and it is a crucial part in market
risk management[12].

2. The trading engine should be able to make decisions based on at least three
financial market indicators.

3. The trading engine should make one decision every hour to buy, hold or
sell.

4. There should exist a backup function, in the case that an order is not trig-
gered because of an unexpected drop or rise of the price, to recreate the
order with new circumstances.

5. The performance should be visualised in some way.

6. The code itself should be well tested.

7. The engine should be able to trade multiple pairs of currencies.

8. The engine should use multiple strategies to make decisions to buy, hold
or sell.

3.2.3. Could Have
1. There could be paper trading possibilities in a live trading environment.

With paper trading, the user can trade with pretend money in the real-time
market. This familiarises the user with the system and can be used to gain
the confidence of the user in the engine.

2. The project could be considered successful if the trading engine can main-
tain the starting monetary value with a lower limit of -10%.

3. The engine could place orders on real markets.

4. The engine could trade multiple pairs of currencies in parallel.

3.3. Research Question
Based on the requirements named above, a research question can be formulated
which complies to the needs of the stakeholders. Research questions help the
developers focus on the research itself so that a clear goal is in mind and prevent
deviation. The research question formulated for this project is:

Can anAI trading engine utilising trading indicatorsmaintain a stablemon-
etary value of a digital asset in a live market environment?

During this project, the goal is to try to answer the research question. Answering
the question may be difficult, but is easier to do when it is broken down into sub-
questions. Which gives the following:

1. What kind of AI technology is suitable for this problem?

2. What should be the input and output data?

3. How should trading decisions be made?

4. How should performance be measured?



3.4. Conclusion 9

3.4. Conclusion
Different stakeholders have different interests. By discussing with all the stake-
holders what the requirements should be, the different interests can be combined
and turned into a list of criteria, which the product should satisfy. By defining
this list beforehand, a clear understanding exists between all the stakeholders
of what can be expected from the final product, and potential dissatisfaction is
eliminated.
The criteria list consists of several items, however not every item on it has the
same priority or need to be included. By dividing it into several categories, the
stakeholders know what they definitely can expect in the final product, and what
possibly can be expected.





4
Solution design

As described in the problem analysis, Blockrise wants to have a trading engine
implemented, while the university strives for a research project. To be able to
reach a concession to their conflicting perspectives, the solution will be a trading
engine, which also has the functionality to function in a live market. Subse-
quently, the research will mainly focus on the predictions of the trading engine,
and deciding what the optimal strategy is. Hence, this chapter will give a more
elaborate view on our solution for the problem mentioned in the previous chap-
ter. Also, it will justify why the designed solution forms an answer to the research
question, and this chapter will also contain the limitations of the design.

4.1. Design specifications
The general structure is to create a system, which uses artificial intelligence.
This system trains on historical data, to predict the next candlestick. Following
the prediction of the next candle, a strategy utilising a technical analysis trading
indicator will be applied and based on that decision, the system will output a
”Buy”, ”Hold”, or ”Sell” signal. Consequently, the system will buy, hold, or sell
assets based on the latest signal. In the case, a new candle is formed in the mar-
ket, the system is trading in, it will update the network with the new value, and
repeat the process. Using a visualiser for the results, it is possible to visualise
the results in a more comprehensible manner.
In other words, there are five steps, which form an infinite loop and provide a
solution to the problem. These steps are illustrated in Figure 4.1.

The different components will be explained independently, and in detail in
the following sections.

Figure 4.1: Flow diagram of the solution

11



12 4. Solution design

4.1.1. Neural network
The neural network is used to predict the data in the future. It is trained on
historical data, which consists of candlesticks in an hourly time frame. In other
words, the data is a sequence of hourly candlesticks from the beginning until
now. Subsequently, the data is a time series, where every point in the future
is dependent on points in the history. This type of neural network is especially
used on data, which is related to data in the past. It feeds the information back
to its hidden layer, and since it can use the previous state to help to make a
decision for the next state, it is a proper solution for the type of neural network,
that is used in the system.

However, the recurrent neural network could introduce problems during train-
ing, such as the exploding and the vanishing gradients problem, as mentioned
in the paper by Bengio et al. [9]. Pascanu et al. [23] showed multiple different ap-
proaches to solve this problem, which led the choice for the recurrent layer in the
neural network to be the Long Short Term Memory (LSTM), which is introduced
by Hochreiter and Schmidhuber [19] in their paper. An LSTM unit consists of
the input, forget, and output gates, where the forget gate handles the degree of
forgetting its memory. Because of this, the gradient does not vanish away and,
since the forget gate activation function never becomes greater than zero, the
gradient will also not explode.

Moreover, in our system, the input data does not only exist of historical hourly
candlesticks data but also a variety of technical indicators. The system starts
with the most used indicators by traders in the financial market. These indica-
tors are added to the input data of the neural network, to make more data for
the neural network available, so that it could give a better prediction. The core
of this idea comes from experienced and professional traders’ setup; they do not
only use the candlestick data to predict the future price of the asset but also
amongst others technical indicators.

4.1.2. Trading strategies
After a prediction, technical indicators are used to determine a trading strat-
egy. Consequently, the trading strategy is used to determine a buy, hold, or sell
signal. These signals are used to determine whether you should, or should not
trade the asset.

The system will have multiple trading strategies, where each trading strategy
is based on technical analysis. The optimal values for the trading strategies dif-
fer per trading setup. Thus, the system implements standard initial parameters,
and have to be optimised afterwards. The implemented indicators are chosen
from the most widely-used indicators in the technical market. Afterwards, by
combining those indicators and using multiple standard initial values of those
indicators, the trading strategies are implemented.

Subsequently, ’backtesting’ allows us to test the trading strategy and its param-
eters on historical data. By using the last part of the data as ’futuristic’ data,
it enables the system to simulate the strategy in a real environment. To illus-
trate this, the system could use the data up to last week as training purposes,
whereas it would behave as it went back a week in time, and use the last week
of data to simulate the strategy and get a result. In a live trading environment,
this is called ’paper trading’, where you simulate trades, to test any strategies.

4.1.3. Trading assets
In the case the system receives a signal, it should execute a trade on an exchange
accordingly. These trades should be done according to the value and contents of



4.2. Design limitations 13

your portfolio. Limits should be set to manage the portfolio to prevent the system
from spending all of the liquidity to buy the assets. Likewise, it also should not
sell all of the assets in case the system receives a sell signal. These limits should
be adjustable to the risk profile of the person using the system, or in short, the
investor.

Like the trading strategies, setting the limits could also be tested using back-
testing in a simulated environment to optimise the values for the user’s strategy
and portfolio. In the same manner, paper trading could be used in a live trading
environment to validate the limits.

4.2. Design limitations
The project’s duration is ten weeks, of which approximately seven are reserved
for coding the project. Therefore, the limitations are primarily the result of a de-
ficiency of time. Also, the solution primarily lays its focus on the functionality,
whereas optimising the hyperparameters and parameters of the trading strate-
gies, is seen as a secondary objective. That does not mean, that the intention is
not to optimise any parameters. However, in the case all the parameters have to
be optimised, the search space grows exponentially for every parameter, that has
to be optimised. That is why, instead of finding the optimal values for each pa-
rameter, the goal for optimising these parameters, is finding at least sub-optimal
values. Subsequently, a value is defined at least sub-optimal, when it outper-
forms other neighbouring values.

Also, optimising some parameters is more important other parameters [17]. To
illustrate this, in the system, optimising the parameters for the neural network,
is more important than optimising the value for trading strategies, or assets.
The reason for this is, that in case the parameters for the neural network are not
optimised correctly, then it will give bad predictions. Consequently, it would not
matter if the values for the trading strategy or assets would be optimised since
it would take wrong decisions, based on the bad predictions of the next price.
Therefore, if there is time for optimising parameters, the emphasis will first lay
on optimising the parameters of the neural network.

4.3. Design justification
As already mentioned in the previous section, several limitations of the way the
solution was designed, have to be taken into account. The following aspects will
show whether the solution succeeds in - at least partly - providing an answer to
our research question.

As aforementioned, the designed solution consists of three components: the
neural network, trading strategies, and trading assets. Assuming that every
component has sub-optimal parameters, and thus give proper results, it would
mean that it could predict the price for the next hour without a too high error
percentage. This prediction would be converted to a decision signal, which will be
converted into a trade. These trades will occur one hour before the next candle is
formed, and thus our system will have an advantage over normal traders. Using
the trading strategies and portfolio management, it should be able to increase
the total value of the portfolio. Even if the price of the asset, which the system
is trading against, is suddenly decreasing significantly, the system should still
be able to do trades, that at least minimise the losses of the unforeseen price
decrease.



14 4. Solution design

4.4. Conclusion
In summary, in this chapter, the different components of the system have been
discussed, which are the neural network, the trading strategies, and trading
the assets. Subsequently, the limitations of each component and the system,
in general, have identified as mainly optimising the parameters, and also which
parameters are more important than other parameters. Lastly, the designed
solution offers an answer to the research question, because it should be able to
do trades, which at least minimise the losses, by getting proper predictions of
the neural network.



5
Implementation

This chapter will give a more elaborate view on the implementation of the de-
signed solution, mentioned in the previous chapter. The system is also shown
in Appendix B.

5.1. Implementation plan
The implementation assesses whether the AI trading engine can keep a stable
monetary value when trading with digital assets. Also, the implementation shows
a method of how the parameters are converged to near-optimal ones. The code
is located in a repository on Bitbucket, a platform that facilitates source code
repository management. There it is maintained and updated using Git version
control. During the process, different code evolution techniques are applied,
such as the agile and scrum methods, along with the SMART criteria and the
method of rapid prototyping. The development team held standard daily meet-
ings for software development and general cooperation, along with longer weekly
meetings to discuss the state of the product and find solutions to complex prob-
lems. These methods prevented the development team from being stuck on a
single problem for too long and helped them stay up-to-date with each others’
code in a timely manner, ultimately leading to the results discussed in the fol-
lowing subsections.

5.1.1. Environment
As mentioned in the ’must have’ requirements 3.2.1, the trading engine must
work in a LINUX environment and it must be written in C++. Hence the develop-
ment team chose C++ as the main programming language and a programming
environment which is well suited for this language, namely CLion. This choice
of language meant that libraries would have to be found for extended C++ func-
tionality as well. As the system is developed to run in a LINUX environment,
there are no guarantees that it operates in other environments such as Win-
dows. One possible reason for this drawback is that certain libraries either do
not work properly on various operating systems or are simply not available for
other operating systems.

5.1.2. Data-visualizer
The data-visualizer is a separate web interface that is written in HTML, CSS and
Javascript. It is used to visualise the data that is consistently fetched online by
the data fetching tool. The data-visualizer continuously receives market data at
time 𝑡, the prediction for that data at time 𝑡 + 1 and the simulated trade made
based on that prediction. This information is then represented in graphs of the
actual data, the predicted data and the difference between them. Hovering over

15



16 5. Implementation

the graph with the cursor reveals the value of the portfolio and the change in
value compared to the previous timestep. Figure C.1 shows some examples of
the data-visualizer’s output.

5.1.3. Libraries
As mentioned before, the only libraries that could be used in the trading en-
gine are C++ libraries. When there was a need for a certain functionality, the
development team had to either implement that functionality using a library or
to re-invent the wheel. These decisions have lead to the implementation of the
following libraries:

Armadillo
Armadillo is a fast and open source library for linear algebra computations, writ-
ten by Sanderson [24]. It provides a high-level application interface, similar
to MATLAB. Miscellaneous matrix factorisations are implemented through other
Basic Linear Algebra Subprograms (BLAS) libraries. These libraries do the actual
computation, and various BLAS libraries can be chosen to work with Armadillo.
This way, it also enables the trading engine to use the Graphics Processing Unit
(GPU) to do the linear algebra calculations, to enhance the performance to an
even further extent. An example of this GPU acceleration is when the program
uses the NVBlas [21] library as the BLAS library of the Armadillo library. The
reason for using this library, is that it was required by the used machine learning
library, also it provided a fast and simple solution to do linear algebra computa-
tions.

MLPack
MLPack is a fast and flexible machine learning library, written by Curtin et al.
[13]. This library allowed the development team to use the neural network im-
plementation and the LSTM layer. Also, the library allowed for different configu-
rations, such as the use of a Fast LSTM layer, which is described in detail in the
next subsection. The implementations of the linear algebra calculations in this
library are done using Armadillo. As Armadillo is heavily optimised, especially
for matrix calculations, the MLPack code is capable of rapid calculations as well.
MLPack was chosen as the framework for the AI implementation, because it pro-
vides an efficient open-source solution for machine learning functionality that is
completely written in C++.

TA-Lib
TA-Lib is a library which provides the methods for calculating the corresponding
values of various technical indicators [15]. The library is written in C and does
not use any other underlying libraries. It allows for easy implementation and
testing of a wide range of indicators and spared the development team the burden
of having to implement all the indicators from scratch. Furthermore, it provides
functionality for testing various different indicators simultaneously.

Binacpp
Binacpp is the application programming interface (API) wrapper for the Binance
exchange, written in C/C++ [10]. Using this API wrapper, it allows the system to
fetch the data of a candlestick every hour and act accordingly, by predicting the
price and trading with the generated decision signal. Furthermore, this API offers
the ability to connect with the exchange directly, so it is also possible to connect
it with the trading engine in a later stage so that it can fetch the live portfolio data,
and do trades on the exchange. The Binance exchange is the only exchange, that
provides a stable API, that functions without problems. Additionally it has been
documented fairly well in comparison to other similar libraries, which provide
either very few or outdated documentation (or both) or simply none whatsoever.



5.1. Implementation plan 17

JsonCPP
JsonCPP is a library that allows parsing from a JavaScript Object Notation (JSON)
string to a C++ object [22]. It also can be used to convert a C++ object to a JSON
string. Since the live data of the Binacpp API comes in JSON string format, it
has to be converted to a C++ object before it can be used in the trading engine.
Other than converting the live-fetched hourly candlestick data to a C++ object,
it is also used to convert a C++ object to a JSON string, which is sent by the
web socket server to the data visualiser. Using this library provides a solution
to connect the web layers to C++ code and the other way around.

Websocketpp
Websocketpp is a C++ web socket client and server library. It enables the system
to open a web socket server to send a message with the predicted data to the data
visualiser, so that it can visualise the data, that it receives. It differs from the
web socket library, used by Binacpp, in the programming language it uses, and
also in the number of options, the libraries provide. Whereas the web socket
library of Binacpp is written in C, has limited options and community support,
Websocketpp is written in C++, has more options, and also has more support of
the community. Websocketpp is used in the code, because it offers the option to
implement a simple web socket server, and is documented well.

5.1.4. Packages
All the source code besides the main function has been split up into several
packages. The main function which resides in the root folder makes calls to
those packages. The splitting of source code into packages satisfies the third
condition of the ’must have’ requirements mentioned in 3.2.1. Elaborate package
names and generally keeping package size small increases maintainability and
scalability, as grouping related content allows for files to be located more easily.

Data
The data package contains the code to construct the input dataset of the neural
network (illustrated in Figure B.6). In other words, it contains all the functions
that allow for transforming data from the parsed input file to the standardised
neural network input dataset, as well as the other way around. The parsed data
from the input file is inserted into an Armadillo matrix object. Then the techni-
cal indicators are inserted, the data is transformed to a stationary dataset and
finally the data is normalised. Hereafter, each step will be elaborated upon in a
more detailed fashion.

Several technical indicators implemented, these are the following:

• SMA - Simple Moving Average
The average price computed over a specific number of periods.
𝑆𝑀𝐴(𝑥, 𝑁) for closing price 𝑥። and timeperiod 𝑁:

𝑆𝑀𝐴(𝑥። , 𝑁) = {
∑፣዆ፍዅኻ፣዆ኺ 𝑥።ዅ፣

𝑁 , if 𝑖 − 𝑗 > 0
0, otherwise

• EMA - Exponential Moving Average
The average price computed over a specific number of periods, with more
weight applied to recent prices.
𝐸𝑀𝐴(𝑥, 𝑁) for closing price 𝑥። and timeperiod 𝑁:

𝐸𝑀𝐴(𝑥። , 𝑁) = (𝑥። − 𝐸𝑀𝐴(𝑥።ዅኻ)) ∗ 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 + 𝐸𝑀𝐴(𝑥።ዅኻ)
𝐸𝑀𝐴(𝑥ኺ, 𝑁) = 𝑆𝑀𝐴(𝑥ኺ, 𝑁)



18 5. Implementation

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 2
𝑁 + 1

• MACD - Moving Average Convergence / Divergence
First the difference between two EMA’s, a lower EMA called the slow mov-
ing average and a higher EMA called the fast moving average, is calculated,
then an EMA of the difference itself is calculated, called the signal. The
difference and the signal line are then compared.
𝑀𝐴𝐶𝐷(𝑥, 𝑠𝑙𝑜𝑤, 𝑓𝑎𝑠𝑡, 𝑠𝑖𝑔𝑛𝑎𝑙) for closing price 𝑥። and timeperiods 𝑠𝑙𝑜𝑤, 𝑓𝑎𝑠𝑡 and
𝑠𝑖𝑔𝑛𝑎𝑙:

𝑀𝐴𝐶𝐷(𝑥, 𝑠𝑙𝑜𝑤, 𝑓𝑎𝑠𝑡, 𝑠𝑖𝑔𝑛𝑎𝑙) = (𝐸𝑀𝐴(𝑥። , 𝑠𝑙𝑜𝑤) − 𝐸𝑀𝐴(𝑥። , 𝑓𝑎𝑠𝑡))
−𝐸𝑀𝐴(𝐸𝑀𝐴(𝑥። , 𝑠𝑙𝑜𝑤) − 𝐸𝑀𝐴(𝑥። , 𝑓𝑎𝑠𝑡), 𝑠𝑖𝑔𝑛𝑎𝑙)

• RSI - Relative Strength Index
A momentum indicator that checks the impact of recent price changes.
𝑅𝑆𝐼(𝑥, 𝑁) for closing price 𝑥። and timeperiod 𝑁:

𝑅𝑆𝐼(𝑥። , 𝑁) = 100 −
100

1 + 𝑅𝑆(𝑥። , 𝑁)
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐺𝑎𝑖𝑛(𝑥ኺ, 𝑁) = Sum of Gains past N periods

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑜𝑠𝑠(𝑥ኺ, 𝑁) = Sum of Losses past N periods

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐺𝑎𝑖𝑛(𝑥። , 𝑁) =
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐺𝑎𝑖𝑛(𝑥።ዅኻ ∗ 𝑁 − 1) + 𝐺𝑎𝑖𝑛(𝑥።)

𝑁

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑜𝑠𝑠(𝑥። , 𝑁) =
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑜𝑠𝑠(𝑥።ዅኻ ∗ 𝑁 − 1) + 𝐿𝑜𝑠𝑠(𝑥።)

𝑁

𝑅𝑆(𝑥። , 𝑁) =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐺𝑎𝑖𝑛(𝑥። , 𝑁)
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑜𝑠𝑠(𝑥። , 𝑁)

• StochRSI - Stochastic Relative Strength Index
An oscillator that measures RSI values over a given time period and checks
whether the RSI value is overbought or oversold.
𝑆𝑡𝑜𝑐ℎ𝑅𝑆𝐼(𝑥, 𝑁) for closing price 𝑥። and timeperiod 𝑁:

𝑆𝑡𝑜𝑐ℎ𝑅𝑆𝐼(𝑥። , 𝑁) = (𝑅𝑆𝐼(𝑥። , 𝑁) −
𝑀𝐼𝑁(𝑅𝑆𝐼(𝑋, 𝑁))

𝑀𝐴𝑋(𝑅𝑆𝐼(𝑋, 𝑁)) − 𝑀𝐼𝑁(𝑅𝑆𝐼(𝑋, 𝑁))
where 𝑋 contains all the closing prices up to 𝑥።

• ROC - Rate of Change
An indicator that measures the change in price between the current price
and the price a specific number of periods ago.
𝑅𝑂𝐶(𝑥, 𝑁) for closing price 𝑥። and timeperiod 𝑁:

𝑅𝑂𝐶(𝑥። , 𝑁) =
𝑥። − 𝑥።ዅፍ
𝑥።ዅፍ

∗ 100

• CCI - Commodity Channel Index
Measures the current price level relative to an average price level over a
specific period of time.
𝐶𝐶𝐼(𝑥, 𝑁, 𝑐) for average price 𝑥።, timeperiod 𝑁 and a constant 𝑐:

𝐶𝐶𝐼(𝑥, 𝑁, 𝑋) = 𝑥። − 𝑆𝑀𝐴(𝑥። , 𝑁)
(𝑐 ∗ 𝑀𝑒𝑎𝑛𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒(𝑖) = ℎ𝑖𝑔ℎ(𝑖) + 𝑙𝑜𝑤(𝑖) + 𝑐𝑙𝑜𝑠𝑒(𝑖)
3



5.1. Implementation plan 19

Furthermore, the dataset is converted to a stationary dataset, by taking the dif-
ference with the next data point. The mathematical construction of the new
stationary matrix, is given as follows: ”Given a matrix 𝑥, with dimensions 𝑚×𝑛,
for the new matrix 𝑦 holds:

𝑦።,፣ = 𝑥።,፣ − 𝑥።,፣ዄኻ, 1 ≤ 𝑖 ≤ 𝑚,&1 ≤ 𝑗 ≤ 𝑛 − 1”. (5.1)

Thus, the dimensions of the new matrix 𝑦, expressed in the dimensions of the
old matrix 𝑥, are 𝑚 × 𝑛 − 1.

Moreover, row-based normalisation is applied to the stationary dataset, to con-
vert the values to values between −1 and 1. The new row-normalised matrix is
mathematically defined as follows: ”Given a matrix 𝑥, with dimensions 𝑚×𝑛, for
the new matrix 𝑦 holds:

𝑚𝑎𝑥። ∈ 𝑦። → 𝑚𝑎𝑥። ≥ 𝑦።,፣ , 1 ≤ 𝑖 ≤ 𝑚,&1 ≤ 𝑗 ≤ 𝑛,
𝑚𝑖𝑛። ∈ 𝑦። → 𝑚𝑖𝑛። ≤ 𝑦።,፣ , 1 ≤ 𝑖 ≤ 𝑚,&1 ≤ 𝑗 ≤ 𝑛,

𝑦።,፣ = 2 ∗ (
𝑥።,፣ −𝑚𝑖𝑛።
𝑚𝑎𝑥። −𝑚𝑖𝑛።

) − 1, 1 ≤ 𝑖 ≤ 𝑚,&1 ≤ 𝑗 ≤ 𝑛”.
(5.2)

The dimensions of the new matrix have not changed, and therefore, are the same
as the dimensions of the old matrix.

Lastly, since MLPack requires the input dataset to be a rank three tensor object
of the Armadillo library, the matrix is transformed from a𝑚×𝑛matrix, where𝑚 is
the total amount of rows, and 𝑛 is the total amount of columns, to a𝑚×1×𝑧, 𝑧 = 𝑛
cube, where 𝑧 is the number of slices. An extra column could be added, to add
another sample to the data, such as the data of a similar digital asset.

Network
Whereas the previous package contains the code to construct the input dataset
for the neural network, this package contains the code related to the neural net-
work and is illustrated in Figure B.3. It contains the wrapper around the library
of MLPack, the integration with the data package, the Time Series Cross Vali-
dation (TSCV), and the Time Series K-fold Cross Validation (TSKCV). Hereafter,
these different components will be described independently.

The wrapper around the library of MLPack, contains the implementation of the
actual neural network. The layers of the neural network are arranged as:

1. Identity layer
The identity layer is a dummy layer, required by MLPack. It maps the input
to itself, so nothing changes to the dataset.

2. Linear layer
The linear layer connects the amount of nodes of the input layer to the
amount of nodes of the hidden layer. It is a fully connected layer, of which
every edge has an individual weight.

3. Fast LSTM layer
The FastLSTM layer is a special faster version of the LSTM layer, which
combines the calculation of the input, forget, output gates and hidden state
in a single step. Figure 5.1 illustrates a single LSTM memory cell. The
composite functions of the standard LSTM used, are based on the paper



20 5. Implementation

Figure 5.1: Figure of LSTM cell, from [16]

from Graves et al. [16], and are defined as follows:

𝑖፭ = 𝜎(𝑊፱።𝑥፭ +𝑊፡።ℎ፭ዅኻ +𝑊፜።𝑐፭ዅኻ + 𝑏።)
𝑓፭ = 𝜎(𝑊፱፟𝑥፭ +𝑊፡፟ℎ፭ዅኻ +𝑊፜፟𝑐፭ዅኻ + 𝑏፟)

𝑐፭ = 𝑓፭𝑐፭ዅኻ + 𝑖፭tanh(𝑊፱፜𝑥፭ +𝑊፡፜ℎ፭ዅኻ + 𝑏፜)
𝑜፭ = 𝜎(𝑊፱፨𝑥፭ +𝑊፡፨ℎ፭ዅኻ +𝑊፜፨𝑐፭ዅኻ + 𝑏፨)

ℎ፭ = 𝑜፭tanh(𝑐፭).

(5.3)

However, since the network does not contain a conventional LSTM layer,
but a FastLSTM layer implementation, the composite functions change to
[14]:

𝑖፭ = 𝜎(𝑊፱።𝑥፭ +𝑊፡።ℎ፭ዅኻ + 𝑏።)
𝑓፭ = 𝜎(𝑊፱፟𝑥፭ +𝑊፡፟ℎ፭ዅኻ + 𝑏፟)

𝑐፭ = 𝑓፭𝑐፭ዅኻ + tanh(𝑊፱፜𝑥፭ +𝑊፡፜ℎ፭ዅኻ + 𝑏፜)
𝑜፭ = 𝜎(𝑊፱፨𝑥፭ +𝑊፡፨ℎ፭ዅኻ + 𝑏፨)

ℎ፭ = tanh(𝑐፭).

(5.4)

4. Output layer with Mean Squared Error (MSE) performance function
The output layer evaluates the neural network, in case it is used for training
purposes. If the neural network is used to predict a values, the value that
is returned reflects the output of the specified output layer. In this case,
the MSE function is used to evaluate the network. It does that as follows:

𝑀𝑆𝐸 = 1
𝑚 ∗ 𝑛

፦

∑
።዆ኻ

፧

∑
፣዆ኻ
(𝑥።፣ − ̂𝑥።፣)ኼ (5.5)

where 𝑥።፣ is the actual value, ̂𝑥።፣ is the predicted value in row 𝑖 and column
𝑗, 𝑚 is the total amount of rows, and 𝑛 is the total amount of columns.

The network also uses the Adam optimiser, introduced in the paper of Kingma
and Ba [20], to speed up the training process. The Adam optimiser is compu-
tationally efficient, requires little memory, is invariant to diagonal rescaling of



5.1. Implementation plan 21

the gradients, and is well suitable for large quantities of data, or problems with
many parameters. The resulting formula for updating parameters is:

�̂�፭ =
𝑚፭

1 − 𝛽፭ኻ
,

̂𝑣፭ =
𝑣፭

1 − 𝛽፭ኼ
,

𝑎፭ =
𝑎 ∗ √1 − 𝛽፭ኼ
1 − 𝛽፭ኻ

,

𝜃፭ዄኻ = 𝜃፭ −
𝑎፭ ∗ 𝑚፭
√ ̂𝑣፭ + 𝜖

�̂�፭ ,

(5.6)

where 𝛼 is the stepsize, 𝑚፭ is the mean at time 𝑡, and 𝑣፭ is the uncentered vari-
ance of the gradients at time 𝑡.

The second component is the integration with the data package. This compo-
nent combines the neural network by preparing the data and post-processing
the prediction to get the real value again. As aforementioned, when the data is
prepared, it is also transformed to a stationary dataset and normalised, to fit into
the range of −1 and 1. To undo this transformation, the data is transformed by
taking the inverse from the functions mentioned above and applied to the data.

Figure 5.2: An illustration of time series cross-validation.

The third component is the Time Series Cross-Validation (TSCV), and this is also
illustrated in Figure 5.2. This component allows the system to run a test, where
it takes an 𝑥 per cent of the dataset to train and takes the rest of the dataset
to validate the results. The 𝑥 is adjustable The difference with normal cross-
validation is that when the network is trained until a time 𝑡, and the prediction
is given for 𝑡+1, you cannot give the prediction for 𝑡+2 afterwards. The network
first has to be retrained until 𝑡 + 1, before it can give a prediction for 𝑡 + 2. The
error is given using two different measurements. The first measurement is the
error percentage, where it is the percentage difference between the predicted data
points and the actual data points. The second measurement is the Root Mean
Squared Error (RMSE), this is calculated as follow:

𝑅𝑀𝑆𝐸 =
√

፦
∑
።዆ኻ

፧
∑
፣዆ኻ
(𝑥።፣ − ̂𝑥።፣)ኼ

𝑚 ∗ 𝑛 (5.7)



22 5. Implementation

where 𝑥።፣ is the actual value, ̂𝑥።፣ is the predicted value in row 𝑖 and column 𝑗, 𝑚
is the total amount of rows, and 𝑛 is the total amount of columns.

The last component is the Time Series K-fold Cross-Validation (TSKCV). In con-
trary to the TSCV, the TSKCV is based on k-fold cross-validation and made suit-
able for time series data, or dependent data. The data set is divided into 𝑘 folds.
Afterwards, like in the TSCV, the data is split up into a predefined ratio for train-
ing and validation purposes. Consequently, every point is predicted again and
validated against the actual value. The error is calculated using the RMSE. By
dividing the dataset into 𝑘 folds, it strives to decrease the possibility of a bias
influencing the result of the validation because it prevents the possibility of a
bias existing in a specific part of the dataset, which is then used for validation.

Trading
The trading package contains all the code that concern trading and is illustrated
in Figure B.4. In other words, it handles the process from the prediction to the
decision signal. To go into more detail, it contains the portfolio model, the trad-
ing strategies, the engine to combine them both into a trading engine, and the
backtesting functionality to test the trading strategy.

The portfolio model contains the value of the portfolio in BTC and USD value,
which represents the portfolio that is used on the exchange.

Furthermore, as aforementioned, the trading strategies are based on TA indica-
tors.

• Weighted Rate of Change
The Rate of Change strategy considers the change of the predicted value
relative to the last actual value. To the four outputs, close, low, open and
high, weights are assigned which add up to one. For each of the output,
the percentage based difference with the previous value is calculated. Then
every difference is weighted and added up. When this sum is below, in be-
tween, or above a lower and upper threshold, a decision is made whether
to sell, buy, or hold.
The weights and thresholds are modifiable, so the user can check them-
selves which parameter suits them best. Besides, the Rate of Change checks
the difference with the previous value, but the possibility exists to compare
it to 𝑛 days before.
The weights for open and close values are assigned to 0.3, and 0.2 for low
and high. The thresholds are set to -0.01 and 0.01, so an average rise or
decline of 1% triggers a signal.

• Relative Strength Index The RSI strategy makes use of the RSI indicator
described in 5.1.4. It checks for upward and downward trends. When an
upward or downward trend is persistent for a long period of time, an asset
will be marked as overbought or oversold. When the RSI indicates that an
asset is overbought, a decision signal is sent to sell, and when an asset
is oversold, a decision signal is sent to buy, otherwise, a hold signal will
be emitted. The RSI will output a number between 0 and 100, and the
thresholds are set to 30 and 70, which indicates when to mark an asset as
oversold or overbought.

• Double Exponential Moving Averages The DEMA strategy utilises two ex-
ponential moving averages, described in 5.1.4, to determine which decision
signal should be sent. It uses a slow EMA, set to 12, which moves closer to
the real market, but includes noise, and a fast EMA, set to 26, which lags



5.1. Implementation plan 23

behind the market, but is more resistant to noise. When the slow EMA falls
below the fast EMA, a decision to sell is sent, and a decision to buy is sent
for the other way around. Otherwise, a hold signal is sent.

• Moving Average Convergence/Divergence The MACD strategy is based
on the MACD indicator described in 5.1.4. The MACD line, calculated by
taking the difference between twomoving averages, EMA-12 and EMA-26, of
different lengths, as compared to the moving average, EMA-9, of the MACD
line itself, and is called the signal line. Just like the DEMA, a decision is
made whenever these two lines cross each other.

Also, the package contains the trading engine, which implements the trading
strategies, and decides how much should be traded. It takes two predefined val-
ues into account to decide if and how much should be traded. The first value
represents the minimum amount that should be traded, and the second value
represents the maximum percentage of the total portfolio value the system can
trade per trade. According to these values, the trades are calculated, executed,
and the portfolio values are updated accordingly.

Lastly, the backtesting component is used to test the trading strategies. A prede-
fined value is used to split up the dataset into a training data set and validation
dataset. Each value in the validation dataset is used to predict the next value,
execute a trading strategy, and using the decision signal to output the trade.
Doing this until the end of the validation dataset is reached, results in the fi-
nal value for the portfolio. The final value represents how the backtesting went,
for example, if the portfolio value is higher using a specific strategy, than other
strategies, that means that that strategy is performing the best. Also, if the port-
folio value is higher than the initial value of the portfolio, then it made a profit.
Likewise, if the portfolio value ends up being lower than the initial value, then
you made a loss.

Utility
The utility package contains the utility functions, which are the general utility
functions and is illustrated in Figure B.5. It contains components, such as the
utility functions for the data, the logger, and the parser. The utility functions for
the data, contains, amongst others, to convert JSON objects to Armadillo vec-
tors, and the other way around. In other words, it provides functions to connect
the web service with the neural network, and the other way around as well.

Subsequently, the logger is used to write results to data, so that it does not solely
exist in the intermediate memory. This class is not directly implemented in the
code, but it is mainly used to write the results of a testing process to a file so
that the results are persisted. It could be used to test different strategies or to
optimise parameters, by running the code several times and writing the results
of each run to a separate file to compare it. This logger is also used to obtain the
results in the next chapter.

Web - service
The web-service package contains the code to receive and send data to other
clients and is illustrated in Figure B.2. Currently, the data is solely fetched
from the API of Binance, but it can be extended to support data fetching from
(multiple) other exchanges their API. The reason that solely the API of Binance
is implemented is that the API of Binance is the only API, that is documented
decently. Other APIs do not exist, do not function without unexpected errors, or
have outdated or no documentation. This API also allows to send a trade to their
platform and fetch the latest portfolio of the user.



24 5. Implementation

Furthermore, the web-service package also contains the implementation to host
a web socket server, to which it sends the actual values of time 𝑡 − 1, predicted
values of time 𝑡, and the result of a simulated trade, based on the prediction of
time 𝑡. This data can be visualised using the data-visualizer. The data-visualizer
shows the graph of the actual and predicted values, it also shows the difference
of the two values, and the values of the portfolio on that time, if it was sent
together with it.

5.2. Issues encountered
As Murphy’s law dictates: ”Anything that can go wrong will go wrong”, during
the project, there were also a significant amount of issues. The origin of these
issues differed considerably.

The first encountered category of issues were the issues of installing and us-
ing the dependencies. These dependencies were sometimes created for specific
versions of operating systems and were not directly supported for other operat-
ing systems. Also, dependencies were sometimes pre-built for specific operating
systems, and the pre-built libraries were used in the code. This issue resulted
in changing the source code of the library, to make it work for other operating
systems.

Furthermore, the DAS-5 cluster node, that was provided for testing purposes
was not able to install some dependencies, because of the way some dependen-
cies were written. Some of the dependencies did not support the C++ version and
compiler of the supercomputer, which were older, than the supported versions of
the libraries. This problem resulted in not being able to use the supercomputer,
without installing another compiler, to solely install those specific dependencies.

Also, some libraries were not (well) documented or were not widely used, so that
there could not be found much about them. It resulted in finding out what spe-
cific functions in the libraries did, by inspecting the source code of the library, or
by trial and error. An example of this was that due to this vagueness, the imple-
mentation of the RNNwas incorrect, and this resulted in weird results and errors.

Finally, the different operating systems and different C++ versions resulted in
errors in some operating systems, but not on other. For example, the shared
pointers, introduced in the C++ 11 version, worked on the macOS operating sys-
tem, but on the LINUX operating system, it worked occasionally. A reason for
this, could be that the macOS operating system uses the LLVM compiler by de-
fault, while the LINUX operating system utilises the GCC compiler by default.
Other times, it returned a segmentation fault. Consequently, it resulted in the
removal of much new C++ functionality.

5.3. Conclusion
In summary, this chapter described the implementation of the system. In de-
tail, the system is built for the LINUX environment and mainly written in C++.
Furthermore, it consists of a recurrent neural network with a FastLSTM layer.
Also, it adds several indicators to the input data, to be able to predict more accu-
rately. With the predictions of the neural network, it decides to buy, sell, or hold
the digital asset. Based on that decision, it gives a corresponding decision signal.

Consequently, the decision signal is used together with predefined limits for a
trade, to decide if and how much should be traded. When the data of a new



5.3. Conclusion 25

hourly candle is fetched, it retrains the network and makes a new prediction.
The data of the simulation can be sent using a web socket server to the data-
visualizer, which visualises the results.





6
Results

This chapter outlines the results obtained by the research. The performance
of the network is measured using cross-validation and the Root Mean Squared
Error function. Several configurations of network parameters are tested to de-
termine where optimal values may be found. Subsequently, the implemented
trading strategies, utilising the RNN to predict future asset value, are validated
on the historical dataset.

6.1. Cross-Validation
Cross-validation is a method to assess the quality and performance of the model
used to predict the values. In this particular case, because each value relies on
the previous value(s), there is a need for a time-series cross-validation, which
uses the results prior to the latest value. The model is trained on a part of the
dataset, and validated on the remaining part, as illustrated in Figure 5.2. On
each iteration the model is trained with a new element from the validation set,
and the next value is predicted. The error is calculated and stored, and the
model is retrained with the next value. When all the errors are calculated, an
error function can be used to measure the performance.

Figure 6.1: Performance of the network, measured using k-fold cross-validation.

27



28 6. Results

6.1.1. Time Series k-fold Cross-Validation

Performance of the network is measured using k-fold cross-validation and the
Root Mean Squared error function. With an increasing number of folds the net-
work is consistently trained on smaller portions of the dataset before making
predictions, but may generalise better as not only a recent partition of time se-
ries is used for validation. Presented in Figure 6.1 are the averaged RMSEs
across all folds in a given run.

6.2. Network Parameter Optimisation

Performance is highly dependent on several parameters that fine-tune different
aspects of the network. These parameters relate to the topology of the network
itself, as well as mathematical functions used to increase the speed of learning
and overcome local optima. The results presented in this section are obtained
by modifying a single parameter across multiple executions of the program, to
examine its impact in isolation. It is likely that, given a different set of default
parameters, different results are obtained.

6.2.1. Initialisation

The initial values assigned to the network’s weights may significantly impact the
speed at which it converges and affects the accuracy of obtained predictions [25].

Figure 6.2: Root Mean Squared Error at different initialisation intervals.

Uniform initialisation leads to bad results at either end of the spectrum. Al-
though much faster than random initialisation, convergence happens seemingly
instantly and leads to wrong predictions.



6.2. Network Parameter Optimisation 29

Figure 6.3: Root Mean Squared Error at different initialisation intervals.

The optimal values for random initialisation appear to be near an interval min-
imum of -0.25 and an interval maximum of 0.25, where prediction accuracy is
highest, and the network also converges quickest at 48 seconds compared to 86
seconds at the (-0.5, 0.5) interval.

6.2.2. Optimisation Algorithm
In addition to the initialisation method, the optimisation algorithm used to ad-
just the weights on each iteration impacts both the speed of convergence, as well
as the accuracy of the prediction [25]. Stochastic Gradient Descent (SGD) meth-
ods are perhaps the most commonly used optimisation algorithms. The Adam
optimiser is used by default in the product. The accuracy of the predictions
at different step sizes is benchmarked against the ’default’ Stochastic Gradient
Descent optimiser used by MLPack.

Figure 6.4: Root Mean Squared Error benchmark of different optimiser functions.



30 6. Results

Each bar represents the root mean squared error, or RMSE, of one of the pre-
diction outputs for a given optimiser function. The total height of the bar repre-
sents the summed error of all outputs. The time costs in seconds for predicting
50 values using single-fold cross-validation are as follows, from SGD(0.01) to
Adam(0.0001): 153.59, 80.48, 215.82, 876.13.

6.2.3. Look-back - Rho

The rho value sets the length of the backpropagation through time (BPTT) used
to train the network. Effectively; it determines how many recent values are used
to predict the output at the next step in the time series.

Figure 6.5: Root Mean Squared Error benchmark at different rho values.

Similar to the optimiser functions, the different values for rho are found by pre-
dicting 50 values using single-fold cross-validation. Each line represents the
root mean squared error of one of the four outputs, followed by the sum of these
RMSEs at a given value for rho.

6.2.4. Hidden Layer Complexity

The complexity of the hidden layer refers to the number of hidden nodes used
in the FastLSTM layer. Increasing the number of nodes brings the potential to
learn more complex rules, but requires more data to train and runs the risk of
losing the ability to generalise (and thus may result in inaccurate results if the
dataset is not sufficient). As in the previous two figures, the RMSE of each output
channel is visualised alongside the sum of all channels, at different hidden layer
sizes.



6.3. Trading Strategies 31

Figure 6.6: Root Mean Squared Error benchmark at different hidden layer complexities.

The sum of RMSEs is minimised when approximately 8 hidden neurons are used,
with a close second at approximately 24 hidden neurons. Predictions of the
closing price, in particular, appear to lose much accuracy when using 30 or
more hidden neurons.

6.3. Trading Strategies
This section discusses the results obtained by validating the trading engine on
historical data; a technique popularly known as backtesting. The set of histor-
ical data points acts as a simulation of live input and updates the portfolio by
executing ’dummy’ trades. The performance of each trading strategy in minimis-
ing losses to the portfolio is dependent on the quality of the prediction used to
determine a course of action, as well as the quality of the strategy itself. Several
strategies are validated below. Two figures are presented for each strategy; the
first displays the results of over the entire length of the historical data, while the
second considers a rerun over a recent section of the dataset.

To aid in interpreting the results correctly the following is noted: the figures
presented consider one asset (e.g. the Bitcoin) to be the reference currency. At
each point in time the total value of the portfolio is converted into its equivalent
reference currency value as follows:

𝑣𝑎𝑙𝑢𝑒፩፨፫፭፟፨፥።፨ = 𝑣𝑜𝑙𝑢𝑚𝑒፫፞፟፞፫፞፧፜፞፜፮፫፫፞፧፜፲ +
𝑣𝑜𝑙𝑢𝑚𝑒፩ፚ።፫፞፝፜፮፫፫፞፧፜፲
𝑣𝑎𝑙𝑢𝑒፫፞፟፞፫፞፧፜፞፜፮፫፫፞፧፜፲

A successful trader should, therefore, end up with more (or approximately equal
volume) of the reference currency or asset that is being considered. A decrease
in reference currency volume indicates a loss of value, even if the monetary value
of the asset rises.

6.3.1. Default Parameters
The experiments presented in the following sections make use of the default
configuration of the network as delivered with the project. Additional restrictions
are imposed: a maximum portfolio value of 25% can be bought or sold during
a single transaction, together with a minimum volume of 0.01 of the reference
currency, and a transaction fee of 0.1%. Each experiment concerns trading the
BTC/USDT pair with initial portfolio volumes of 0 BTC and 10,000 USDT.



32 6. Results

6.3.2. Random Walk
A controversial yet widely regarded investment theory known as the efficient mar-
ket hypothesis[8] states that all available information is immediately reflected in
the value of an asset, and therefore no consistently profitable trading strategies
should exist. Consequently, if we consider this hypothesis valid, a series of ran-
dom actions should be able to approximate the results of a series of calculated
trades. As a secondary baseline to loss minimisation, the averaged results of
several such random walks are presented.

Figure 6.7: Random Walk - Average of 10 runs over the entire dataset.

A random pattern of actions results in a sharp decline of asset volumes after some
initial profits. Virtually nothing remains of the initial volume after approximately
30,000 time steps.

Figure 6.8: Random Walk - Average of 50 runs over the most recent 30% of the dataset.

A similar trend can be observed when backtesting a randomised strategy on only



6.3. Trading Strategies 33

a recent section of the dataset. A sharp decline with intermittent periods of stable
asset volume is observed. Approximately 10% of the initial volume remains after
6,000 time steps.

6.3.3. Rate of Change

The Rate of Change strategy considers the change of the predicted value relative
to the last actual value. When the change is below, in between, or above a lower
and upper threshold, a decision is made whether to sell, buy or hold.

Figure 6.9: Performance of the ROC strategy over the entire the dataset.

The ROC Strategy suffers some initial decline in portfolio value, yet recovers from
this loss and even manages almost to double the initial volume at some point.
It manages to maintain a reasonably steady value throughout the majority of
the subsequent time steps. However, a sharp decline in value can be observed
around the 39,000th time step until the 41,000th time step. After this decline,
the strategy appears once again capable of maintaining the value and starts
making a minor recovery near the end of the period.



34 6. Results

Figure 6.10: Performance of the ROC strategy over the most recent 10% of the dataset.

Across the most recent 10% of the dataset, the portfolio value under the ROC
strategy remains relatively stagnant. Any trades that do occur do not result in
significant profits or losses, until the end of the period where one can see an
increase in portfolio value.

6.3.4. Relative Strength Indicator
The Relative Strength Indicator strategy tracks upward and downward trends in
asset value. A sufficiently long series of positive value changes result in an asset
being marked as overbought (indicating the holder should sell) and vice versa.

Figure 6.11: Performance of the RSI strategy over the entire dataset.

Immediately noticeable is the high variance during the first 4000 time steps of
the backtesting process. Major profit is made and subsequently lost during this
period. Afterwards, total value of the portfolio steadily rises to approximately
75% of the initial value, but is then lost over the last 25,000 time steps until a



6.3. Trading Strategies 35

small recovery can be observed at the tail of the period.

Figure 6.12: Performance of the RSI strategy over the most recent 10% of the dataset.

Rerunning the process across only the most recent 10% of data displays a rea-
sonable ability to maintain and even slightly grow overall portfolio value.

6.3.5. Double Exponential Moving Averages
The Double Exponential Moving Averages strategy, or DEMA, utilises two moving
averages to determine whether to buy, hold or sell an asset. Crossovers of the
twomoving averages indicate buy and sell moments as momentum between long-
term and short-term value of the asset changes.

Figure 6.13: Performance of the DEMA strategy over the entire dataset.

The DEMA strategy incurs occasional heavy losses but seems to recover from
them throughout a large number of steps. However, after approximately 20,000
time steps a persistent drop in volume is observed until a near-zero point is



36 6. Results

reached after 40,000 time steps.

Figure 6.14: Performance of the DEMA strategy over the most recent 10% of the dataset.

When performing a backtest over the most recent 10% of the dataset, the DEMA
strategy is subject to several minor periods of profit and loss. It manages to
achieve a portfolio value slightly above the initial value and makes considerable
gains during the final period of the test, nearly doubling the initial value.

6.3.6. Moving Average Convergence / Divergence
The Moving Average Convergence / Divergence strategy is based on the difference
between two moving averages, with different lengths, called slow and fast moving
average. This is then compared to the moving average of the difference itself,
called the signal line. A decision to buy, hold or sell, is then made whenever the
difference crossed the signal line.

Figure 6.15: Performance of the MACD strategy over the entire dataset.



6.4. Conclusion 37

Similar to the DEMA strategy, the MACD strategy suffers initial losses, followed
by a period of recovering (part of) the lost assets. Subsequently, the value of the
portfolio declines over an extended period until reaching near-zero after 40,000
time steps.

Figure 6.16: Performance of the MACD strategy over the most recent 10% of the dataset.

Performing a backtest over only a recent section of the dataset yields significantly
better results. The MACD strategy is capable of maintaining an approximately
equal portfolio value over several thousand time steps and ultimately manages
to make significant profit.

6.4. Conclusion
In this chapter the most important findings of the research have been demon-
strated. The quality of obtained predictions is presented, alongside impact of
several network parameters on these predictions. The quality of the built-in trad-
ing strategies are evaluated in combination with predicted asset prices through
a method known as backtesting, with varying outcomes.





7
SIG feedback

This chapter is dedicated to stating and reflecting upon the feedback provided by
the Software Improvement Group on two consecutive versions of the product’s
code base. The first version was delivered as part of the deadline on December 21,
2018. The second version was delivered as part of a second deadline on January
18, 2019. Feedback on the first version was received on January 25, 2019,
the afternoon of the final project deadline. It has therefore not been possible to
incorporate this feedback into the final product. Nevertheless, some reflection
on SIG’s assessments is provided below.

7.1. Feedback
Your code scors 4 stars in our quality model for maintainability, meaning that
your project scores above market average. You have not received a higher score
due to a lower score for Unit Size.

For Unit Size we consider the length of a method. Methods that are smaller are
generally easier to maintain, because they have a clearly defined responsibility
and scope. Larger methods tend to contain multiple responsibilities, which can
be problematic during maintenance as this tends to lead to large methods getting
even larger over time.

In your project, addDataSlowly() in dummeHelpers.js would be an example of
a method that contains multiple responsibilities. This method is of course not
that large, but it’s still noticeable that it both defines some test data as well as
handling the promises for processing the data. This code appears to be part
of some test/dummy/mock code, so maybe it is only used for tests. However,
it is currently not marked as such, so we include it as part of the production
code. You can address this by either rewriting the method, or by specifically in-
cluding this file as part of the test code to make sure it is not used in production.

Another example is convertDataFormat() in graphHelpers.js. This method does
have a clearly defined scope, but the repeating code makes the method larger
than needed. Rather than repeating the same JSON block twice, create a new
method that creates the block and then call that twice with different parameters
to create the desired JSON data structure.

As you can see these are relatively small examples. Your maintainability rating
is already quite high, which is why there are no glaring issues that need to be
addressed.

39



40 7. SIG feedback

Finally, it’s good to see that you’ve also written unit tests. The amount of tests
is acceptable, but ideally you would have a slightly higher ratio as the relative
amount of test code in a project tends to drop over time (as at some point people
focus more on adding new functionality).

7.2. Reflection
The software development team generally agrees with the feedback provided by
SIG. Some methods are too large, which construct options or input data of the
implemented libraries, or they are dummy functions to test data or functionality.
The ’addDataSlowly’ function has to be marked specifically as a dummy method,
although the file, in which it is written, already is called ’dummyHelpers.js. Also,
the group agrees with the feedback on the ’convertDataFormat’ function in the
’graphHelpers.js’ file.

The last point that they stated was increasing the number of unit tests in the
code. There are quite some files in the code, which form a wrapper for the library,
that was used. So in other words, it does not add any functionality, and that is
also the reason, why there are no or little unit tests for it. However, the group
has increased the number of unit tests in the next version of the code to provide
a solution to this problem.

7.3. Code quality tools
The trading engine follows the code style of the Google [7] to apply one code style
through the whole project. Furthermore, the code utilises Clang to analyse the
code. It applies static analysing to identify possible bugs. Also, the code is fully
documented and tested. Subsequently, the documentation could be generated
using Doxygen.

7.4. Internal code conventions
Other than applying code quality tools, some internal conventions have been
applied to the code base. The SOLID principles have been applied; an example is
that the code has been split up in several packages, whereas one package has one
responsibility. The same holds for classes, where a class has one responsibility.
The goal of these conventions is improving the maintainability and readability.

7.5. Version control
Finally, the code has been updated using Git, using the branching model of
Gitflow [6]. Gitflow introduces a branching model with prefixes so that it is clear
what kind of changes are introduced in the branch. In case a branch has been
finished, a pull request is made, and the code is reviewed extensively before the
code is merged into the develop branch. The master branch will only contain
production-ready releases, which will be fetched of the develop branch when the
releases have been finished. In this case, it was the end of the mid-term period
and the end of the project.

7.6. Conclusion
In summary, because SIG sent the feedback of the quality of the code in the
afternoon of the day, that the report has to be handed in, the group did not
process the feedback directly. However, after the first version of the code has
been sent to SIG, the group already processed some of the feedback in the new
version of the code. Therefore, this chapter also includes the introduction of the
different implemented code quality tools, the internal code conventions, and our
version control model, to state what has been done to improve the code quality.



8
Discussion & Recommendations

This chapter examines the findings of the research and reviews the obtained
results. An effort is made to answer the research question, explain the impact
of the findings, and limitations of the research. Recommendations are made for
future work on the subject.

8.1. Discussion
As evidenced by the results chapter, the network parameters play a considerable
role in both accuracy of the obtained results, as well as convergence speed when
training the network. The optimal rho value appears to be approximately 120,
or 5 days of recent hourly intervals. An increase in the amount of data used for
a prediction adds context, thereby increasing the accuracy. However, at some
point, the context is no longer relevant and instead becomes noise. Similarly,
an increase in the number of nodes gives the network the ability to learn more
complex associations but too many nodes may yield incorrect results.

Results obtained from the TSKCV suggest that the network is capable of pre-
dicting new asset values with approximately 0.4% error across the four output
channels. However, the strategies have varying rates of success in maintaining
a steady portfolio value throughout the historical dataset. Although every single
one appears to perform better than the random walks presented at the start of
the previous chapter, none appear to predict large and sudden drops in asset
value correctly. The ROC strategy seems somewhat capable of maintaining port-
folio value throughout the backtesting period, while all other strategies lose the
vast majority of the portfolio before the end of the test. The drop in value around
the 39,000th step coincides with a significant price increase of the Bitcoin (Fig-
ure 8.1). This indicates that the network fails to predict and utilise the upward
trend; a tendency that is observable across all strategies. As the network has
been trained on the entirety of the dataset before predicting the first value (in the
interest of execution time) it is conceivable that it fails to classify sequences from
earlier points in the series correctly. Retraining the network after each predic-
tion, as is done in cross-validation, could yield considerably better results when
backtesting across the full size of the dataset.

41



42 8. Discussion & Recommendations

Figure 8.1: USD price of the Bitcoin throughout the backtesting dataset.

When comparing the results obtained by backtesting across the recent partition
alone, the network does however seem capable of predicting decline in asset value
to some extent. Major increases in portfolio value can be observed at the end of
the period, which coincides with a price decline of the Bitcoin. When comparing
these results to those obtained by an ’optimal’ variant of the product (that is; one
that is capable of predicting future asset prices with 100% accuracy), significant
discrepancy is still noticeable (figures 6.16, 8.2).

Figure 8.2: Results of backtesting the MACD strategy over the most recent 10% of the dataset when
optimal predictions are provided.

8.2. Recommendations
Due to time limitations, it was not possible to fully develop the whole application,
as Blockrise envisioned. In other words, the system could be improved, by not
only focusing on the trading engine but also on the application around the trad-
ing engine. Additionally, the trading engine could be extended and improved, to
give better predictions. Following the predictions, the decision-making process
of deciding what kind of decision signals should be given, could also be improved.
The details of how the systems could be improved, are elaborated in the following
sections.



8.2. Recommendations 43

8.2.1. Add volume data
Volume measures in monetary value what quantities an asset has been traded
in a specific given period of time. It is used as a technical indicator, to indicate
the relative strength of a market movement [4]. In the current system, the vol-
ume data was excluded, due to not knowing from which exchanges the volume
data originated. Therefore, if the system would pull the data of a new hourly
candle, the volume that it would receive differs significantly from the input data,
the neural network would train on. If the system would have implemented it this
way, it could lead to wrong predictions.

Therefore, a recommendation is to add the volume data to the input again. How-
ever, to do this, it is necessary to research which exchanges the volume data
of the input data originated. As aforementioned, the reason for this is that the
problem is that the candles of the live market environment, cannot be mapped
back to the same standard as the training data. However, if it is known, which
exchanges are used to pull the volume data from, then it also can be reproduced
in the live market environment, to fetch the live volume data.

8.2.2. Add order book data
Order book data shows the list of all orders placed by buyers and sellers for a
given specific asset. The orders are grouped by price, and follow the principle:
”first in, first out”. In other words, if a person 𝑥 places an order for the same
price as a person 𝑦, then person 𝑥 will have his order fulfilled first. When there
is an imbalance in orders, it shows the spread, and will most likely give about
the course the price will take [2].

Although the recommendation is not to add the order book data to the input data
list, a recommendation is to use it to decide a trade. Since the price of an asset,
is the price of the last trade, that occurred, it does not mean, it reflects the price
on which you can buy or sell the asset. For a trade, that the system suggests, it
has to be validated by looking if an order exists in the order book so that it can
be satisfied. In the worst case, it would result in the scenario, that the system
would place an order, that would be satisfied. Therefore, adding order book data
as a deciding factor for a trade is an improvement to the system.

8.2.3. Add other samples
Other sample data, such as the data of the futures market of the Bitcoin could
be added as well. The future market of the Bitcoin adds another perspective to
the market, by offering futures. These financial contracts are contracts which
obligate the user to either buy or sell an asset. A future, which obligates the user
to buy an asset, is called a long, and a future, which obligates the user to sell
the asset, is called a short [1]. Since the contracts represent the Bitcoin market
as well, an imbalance could also give hints of the price.

Therefore, a recommendation is to add other sample data, such as the long and
short data. Other sample data could also be used, such as other similar assets,
so that the trading engine can find relations in those two samples. The current
implementation contains one perspective of data, which is the hourly candlestick
data. However, if the system has more data, it is possible that it could find
relations between the different samples as well. Consequently, this could lead
to better predictions.

8.2.4. Add other exchanges
Adding multiple exchanges comes with multiple benefits. By solely depending
on one exchange, much crucial information about the asset can be missed. This
varies from different prices to different volumes and availability of assets. When



44 8. Discussion & Recommendations

multiple exchanges are added, the engine can look for better, more efficient
trades on other markets, and be more profitable.

Hence, the recommendation is to add other exchanges as this has multiple ben-
efits. In the current solution, the use of exchanges is limited to one, Binance
to be specific. Binance is the most reliable exchange for this purpose; the API
was fitting and matched best with the implementation. Adding other exchanges
might be a bit harder to do, due to compatibility issues, but the benefits it comes
with is only affecting the engine for the better.

8.2.5. Use other intervals
Where using smaller intervals results in more but less trustworthy signals, using
longer intervals, results in less, but more trustworthy signals. However, com-
bining multiple time intervals could introduce an increase of intelligence for the
trading engine. An option would be to use a longer time interval to predict the
general trend and use the data of a smaller interval to indicate a possible rever-
sal of the trend. The other way around could also be possible, where the system
would use the smaller time interval to find possible reversals, and use the larger
time interval to confirm the reversal [3].

Thus, a recommendation is to use other intervals as well, the current system
solely uses the hourly candlestick data, but this could be extended to use other
intervals as well. It could be done by adding it as another sample but it can also
be done by introducing other neural networks for each interval. These neural
networks could be combined to complement each other. Besides, multiple neural
networks could also be used to predict different data, such as specific neural
networks that predict reversals in trends.

8.2.6. Combine multiple strategies
Different strategies lead to different outcomes. Some strategies might perform
better with certain assets and at different time intervals. Combining strategies
could also lead to better performance, and could be a good addition to the cur-
rent system. There are two possibilities when implementing this. You could let
the AI determine the best(yields the best results) combination of strategies, or let
the user make the selection and decide for themselves which combination suits
them best.

The recommendation is thus to provide either that the AI determines which com-
bination of strategies should be used, or that the user can figure out for them-
selves what combination to use. This all comes down to what the user would
like to see in the final product, and this is further explored in 8.2.8.

8.2.7. Optimise network parameters
The trading engine contains a lot of parameters, which have been optimised indi-
vidually, they have not been optimised in combination with each other. However,
if all the network parameters would have been optimised in combination with
each other, it would mean that the total amount of combinations is exponential.
In other words, testing all possible combinations of the network parameters is
almost impossible.
Therefore, a recommendation is to write a program, that optimises the parame-
ters of the network. This program could also utilise AI to determine the optimal
parameters. Consequently, optimal parameters should have resulted in better
predictions, and better strategies as well.



8.3. Conclusion 45

8.2.8. Change the interface to emphasise UX
With the final application in mind, interviewing with end-users could be benefi-
cial. Users might prefer several features over others and might give input about
the functionalities, which the developers could have missed. The user also could
help the developers out with design choices, for example, what feature could be
included, and what feature is best left out.

Thus it is essential that an end-user interview is done, which provides better
insights on how well target users perceive the application. Next to that, it could
help with design choices, that are inevitable, and it could identify possible faults
or errors.

8.3. Conclusion
The results as presented in the previous chapter were reviewed; the differences
between the results obtained when predicting new values, and those obtained
when backtesting were examined. Recommendations are given for modification
and extension of the product, aimed at improving the accuracy of predictions,
and usability related to customisation of the product and enhancing the user
experience.





9
Conclusion

This project was centred around building an AI-based Trading Engine for the
company Blockrise. The engine should be able to manage a portfolio of digital
assets, in the most cost-efficient way with a base goal of loss minimalisation.
Product requirements were set based on the business requirements formulated
by Blockrise, and a research question was formulated:

Can anAI trading engine utilising trading indicatorsmaintain a stablemon-
etary value of a digital asset in a live market environment?

Following a period of research and implementation, the product has been built
and tested and could be considered for inclusion in a consumer-ready applica-
tion as envisioned by Blockrise. The requirements, as set beforehand with the
stakeholders, were divided into categories based on priority. The most important
requirements, stated in 3.2.1, have all been implemented successfully. From the
requirements stated in 3.2.2, all have been implemented, with the exception of
the backup functionality. The last category of features, as stated in 3.2.3, have
not been explicitly implemented due time constraints. Nevertheless, extension
of the product to include these features should be trivial.

Throughout the project an effort was made to answer the main research ques-
tion and sub-questions as posed in section 3.3. The final product utilises an
FastLSTM-based recurrent neural network to predict future stock prices. Net-
work inputs are a combination of direct data (four values representing asset
value) and seven values derived from this data (technical indicators), while the
four outputs represent these same four asset values for the point in time that is
being predicted. The decisions to place orders, or to withhold from doing so, are
clarified in section 5.1.4 and based on popular trading strategies. Performance
is measured using the Root Mean Squared Error function, which emphasises the
gravity of large prediction errors.

The results show that the product is capable of accurately predicting new val-
ues at the current point in time, and thereby maintaining or growing portfolio
value. These results are however only empirically proven for the specific setup
used in the project, and therefore may not hold in all cases. It is not unlikely
that the product fails to predict one-off events which could nevertheless signifi-
cantly impact the user’s portfolio value. Further research is required to properly
investigate the boundaries of the product and the validity of these hypotheses.
Improvement of the product’s capabilities could provide further aid in this inves-
tigation. As an overall conclusion the results appear promising given the limited
time span of the project and team’s knowledge of the field. Therefore, further
pursuit of the notion of AI-powered asset trading is encouraged.

47





A
Infosheet

Title of the project: AI Trading Engine for Digital Assets
Name of the client organisation: Blockrise
Date of the final presentation: February 01, 2019
Description: Stock markets for asset trading have been part of both local
economies and the global economy for centuries. Extensive research has been
carried out to discover the rationale and patterns behind their functioning. The
recent rise of machine learning has provided new ways of uncovering such pat-
terns, increasingly sparking the interests of researchers and stakeholders world-
wide. This project aimed to apply such methods in an attempt to make accurate
prognoses about the stock market. The resulting product is a digital asset trad-
ing engine capable of making market predictions, providing trading advice based
on these predictions and managing digital assets.

Team members:

Name R. van Gurp
Interests Artificial Intelligence, (Product) Management
Main contributions Architecture, auxiliary functionality, unit testing
Name Y. J. Hu
Interests Finance, Complex Algorithms, Web Development
Main contributions Architecture, Articial Intelligence, complex algorithms, data visualisations
Name H. V. Kooijman (Woyak)
Interests Complex Algorithms, Web Development
Main contributions AI, data processing,
Name A. Somai
Interests Big Data, Entrepreneurship, Stock Market
Main contributions Auxiliary functionality, unit testing, performance testing

All members contributed to writing the research report, the final report and
preparing the final presentation.

Client: M. L. C. Jacobs and J. Lazet, Founders of Blockrise

TU Coach: Prof. Dr. J. S. Rellermeyer

Contact Person: Y. J. Hu, y.j.hu@student.tudelft.nl

An electronic version of this thesis is available at http://repository.tudelft.
nl/.

49

http://repository.tudelft.nl/
http://repository.tudelft.nl/




B
System Decomposition

Figure B.1: Illustration of the system decomposition of the trading engine.

51



52 B. System Decomposition

Figure B.2: Illustration of the system decomposition of the web-service package.

Figure B.3: Illustration of the system decomposition of the network package.



53

Figure B.4: Illustration of the system decomposition of the trading package.

Figure B.5: Illustration of the system decomposition of the utility package.

Figure B.6: Illustration of the system decomposition of the data package.





C
Data-visualizer

Figure C.1: Screenshot of the data-visualizer tool

55





D
Research Proposal

57



Exploring the capabilities of AI in
digital asset trading

Ashay Somai, Ralph van Gurp, Jasper Hu and
Hugo Kooijman

Bachelor Thesis Project - Delft University of Technology

1. INTRODUCTION

Financial markets have historically been a
place of interest for those looking to expand
their wealth. As a result, these markets
have been extensively studied in an effort to
discover the rationale and patterns behind
their functioning. Lately, machine learning
based prediction methods have been winning
researchers’ interest [28, 18, 43] as machine
learning, in general, has become increasingly
popular. While some early research was done
in the context of (relatively simple) artificial
neural networks with good results [34, 29,
45], the increasing availability of computing
power has recently lead to the development of
even more powerful and promising deep neural
networks.

Simultaneously, the inception of cryptocur-
rencies and digital assets has introduced the
notion of crypto exchanges and reinvented the
financial markets. However, prediction of digi-
tal assets trends is relatively understudied, es-
pecially in the context of deep neural networks.

1.1. Research question

Can an RNN-based trading engine utilising
trading indicators maintain a stable monetary
value of a digital asset in a live market
environment?

1.2. Design goals

Two general requirements carry significant
weight in the design and choice of components.
Primarily, the predictions made by the systems
must be sufficiently accurate. That is; they

must approximate the desired values within
a reasonable margin, and do so consistently.
Secondarily, the time required to make a
prediction must be minimised where possible,
considering the rapid dynamic of financial
markets; milliseconds could cost millions.

In addition to delivering accurate results
quickly, the system should be reliable. The
system will have to be extensively tested and
validated to ensure safety and robustness.

Lastly, the system shall be developed with a
large degree of modularity. It should be easy to
extend the application to cover different setups,
such as introducing new sets of digital assets
and exchanges or configuring the network to
include or exclude specific outputs.

The next section describes an underlying im-
plementation of the intended software product
with a focus on the predictive aspects of the
system and proposes extended functionality.

1.3. Requirements

Both the product owners and our team
determined a set of functional requirements
that the trading engine should possess. The
Must Haves are features that at the very least
have to be fulfilled before any other others.
Should Haves are features that we expect the
bot to have at the end of the project period.
Moreover, Could Haves are features that might
be added should there still be time left.

1.3.1. Must Haves
The trading engine

• must work in a LINUX environment.

Delft University of Technology



2 Exploring the capabilities of AI in digital asset trading

• must mainly be written in C++.
• must work in a live trading environment.
• must be modular and scalable for future

development.
• must be able to place buy and sell orders,

with at least one pair of currencies (e.g.
BTC-USD).

1.3.2. Should Haves
The trading engine

• should be able to test its performance with
historical datasets.

• should be able to make decisions based
on at least three (3) financial market
indicators.

• should make one (1) decision per hour time
frame whether to HOLD, BUY or SELL.

• should have a backup function, whereas
the order is not triggered due to an un-
expected fall/rise of the price, to recreate
the order in the new circumstances.

1.3.3. Could Haves
The trading engine

• could have paper trading possibilities in a
live trading environment.

• could be considered successful if it can
maintain the starting monetary value with
a lower limit of -10%.

1.4. System design

The approach that we are taking is, using a
Recurrent Neural Network, or in short RNN.
This type of neural network has the property
that it feeds the information back to its hidden
layer. Since it can use the previous state to help
to make a decision for the next state, we find it
a fitting solution to the prediction of the stock
prices.

Next, we have chosen to use one hidden layer.
Although many papers use many hidden layers
and thus also a large amount of hidden neurons
[27, 25, 49], one paper supports our view [39].
Our view is that digital assets have a higher
level of fluctuation than traditional stocks, and
thus that the chance of sudden unexpected

movements is more significant in digital assets,
compared to traditional stocks. Although using
more hidden layers increases the accuracy of the
prediction, according to the training data, its
ability to predict a sudden movement is worse
[39].

Furthermore, we have chosen to start with 16
hidden neurons. We have looked at the rule-of-
thumb methods, mentioned in [37] to determine
the number of hidden neurons. As mentioned
before, other neural networks, predicting stock
prices, use a more massive amount of hidden
neurons, but the paper, supporting our point
of view, which was mentioned before, only
uses one hidden layer and 16 hidden neurons.
The author of that paper, [39], found out that
using that configuration, it also could predict
the unexpected price movements pretty well.
Therefore, we have decided to take that as a
baseline and will optimise it in a later stage.

The 13 input neurons of the neural net-
work consist of the price data, volume, and
indicators. These different kinds of data are
described in chapter 2.3. The input neurons
are enumerated below:

• Open
• Close
• High
• Low
• Trading Volume
• SMA

• EMA
• MACD
• RSI
• SRSI
• ROC
• CCI

The 5 output neurons, will consist of the
predicted price data and the volume. This
results in the following list:

• Open
• Close
• High
• Low
• Trading Volume

1.5. Validation

Cross validation The main task of the
trading engine is to minimise potential losses.
Therefore our baseline validation tool will be
the monetary value of a digital asset at a

Delft University of Technology



3

certain point in time, compared to the value
of the assets after a period of trading. Since
the course of an asset may inherently bear an
unpredictable loss, a second baseline validation
will be the course of the asset itself.

As a secondary set of validation baselines, we
aim to compare the developed trading engine to
existing systems with similar functionality, such
as Gekko [3]. Further validation can be done
through training and prediction using historical
data.

1.6. Project Planning

The Bachelor Project consists of three phases
[2]. The first phase is the research phase, the
second phase is the actual development of the
software, and the final phase is the completion
phase. Following is the breakdown of the
planning of the next weeks:

• Research Phase(week 1-2)
In this phase, we will start with the
research on this project. The goal is to gain
a deeper understanding of the problem
along with learning methods to solve the
problem. The research phase is concluded
with a report containing the research done
along with an outline of the developed
product and a research question.

• Development Phase(week 3-8)
This phase contains the actual software de-
velopment, and the product is constructed
according to the requirements set before-
hand. Then the implementation will be
done along with the testing. Since neural
networks may take much time to crunch
all the data and be fully trained, this will
be initiated in week 5, so there will be
enough time to evaluate the results and
make changes when needed.

• Completion Phase(week 9-10)
In the completion phase, the attention will
be set on several things. The code has to
be evaluated by SIG and changes to the
code have to be made according to the
report SIG delivers. Furthermore, the final
report has to be written. In this report, the
whole process of the project is explained

along with the results and discussion. The
final thing in the completion phase is the
presentation. Here we will present the
final report and talk about the project in
general.

The following chapters will further define the
context of the research project and motivate
design choices related system design, choice of
framework, and the research question.

2. FINANCIAL MARKET

Financial markets have existed for a long time,
and the stock market has been the primary
market of it. However, the white paper of
Satoshi Nakamoto has introduced a new pillar
in this financial market. The Bitcoin, which
was introduced in the white paper by the
author mentioned above, was released in 2008
[35], and it has been operational since 2009.
Consequently, exchanges opened where this
’new’ digital asset could be traded. These
exchanges have evolved to the level, where it
contained $831,871,000,000 on 07 January 2018
[4]. This money is traded on the exchanges.
The traders, which are actively trading on the
market, may earn a profit, by analysing the
market, followed by buying and selling the
assets at the right time. Since the AI also has
to trade in the market of digital assets, this
chapter will give a more thorough explanation
and our choices of the tools that the AI will use.

2.1. Market analysis

To be able to analyse the market, it is
required to understand what is happening, and
how the current price has been established.
Subsequently, the two main types of analyses,
that are used in analysing the market are
fundamental analysis and technical analysis.

2.1.1. Fundamental analysis
Fundamental analysis is the observation and
analysis of the fundamentals of an asset.
Instead of just looking of the graphs, you
analyse the other streams of information and
thus are digging deeper into the asset itself.
Examples of a stream of information could be

Delft University of Technology



4 Exploring the capabilities of AI in digital asset trading

the releases of new products, news, financial
statements, etc [44]. When analysing these
streams of information, it is usual to extract
several kinds of intelligence, such as profit
and growth potential, relative riskiness, and
finally, if the asset is under-, over-, or fairly
valued in the current market. Evaluating the
fundamentals of an asset is mostly used to
compare it with itself, competitors, or the
broader market [7].

2.1.2. Technical analysis
Whereas the fundamental analysis emphasises
on analysing the fundamentals of an asset to
extract the intrinsic value, technical analysis
focuses on analysing the price, volume, and the
trend [31]. Using a more elaborate explanation,
technical analysis focuses on patterns of price
movements, trading signals and a variety of
other analytic tools to evaluate an asset’s
strength or weakness [8].

2.1.3. Combination
When a choice is made, to only choose to use
fundamental analysis and not to use technical
analysis or the other way around. There is
much extra unused information, of which you
also could have extracted information. To get
the advantage over other people and making
the decision just a bit earlier than the mass,
results in a profit for the trader. So that is the
reason that conventionally both fundamental
and technical analysis is used to analyse an
asset. Both approaches have their advantages,
so using both could give you that small advan-
tage compared to other people [33].

The time of this project is limited, and
the AI around natural language processing is
not advanced enough yet, to easily and accu-
rately implement a processing algorithm, for
example, news articles [48]. Thus we have cho-
sen to start with solely implementing technical
analysis in our AI trading engine. If there is
enough time to implement a processing algo-
rithm for fundamental analysis, we will have a
look at that as well.

2.2. Trading tools

When we look at the financial market, there
are several tools which can assist you with
making a decision regarding buying or selling
stock. There are indicators, which are metrics
to manipulate and visualise the data available
using a mathematical formula. When you have
decided to buy or sell an asset, an order has to
be placed. There are different kinds of orders,
which each have their usability.

2.2.1. Indicators
Technical indicators use historical trading data
such as price, volume and open interest to
analyse short-term price movements and are
mostly used by active users [9]. There are
thousands of different indicators available, and
traders create a combination what works best
for them. Different combinations yield different
results and finding a combination that suits the
traders’ strategy varies a lot. A selection of
indicators [11] that will be included is:

• Simple Moving Average (SMA)
The average price of a given time period,
with equal weighting given to the price of
each period.

• Exponential Moving Average (EMA)
The average price of a given time period,
with more weight given on recent prices.

• Moving Average Convergence/Divergence
(MACD)
Based on the differences between two
moving averages of different lengths, a fast
and slow moving average, called the trend.
This is compared to a moving average of
the MACD itself, called the signal line. If
the MACD falls below the signal line, a
’sell’ should be considered and vice versa.

• Relative Strength Indicator (RSI)
The RSI represents the current price
relative to preceding prices of a given time
period.

• Stochastic Relative Strength Indicator
(SRSI)
Indicates whether an RSI value is oversold
or overbought. Especially useful when the
RSI is confined within the typical signal

Delft University of Technology



5

levels of 20 and 80.
• Rate of Change (ROC)

Compares the current price to the price of
n periods ago. The current price is divided
by the previous price and is represented as
a percentage.

• Commodity Channel Index (CCI)
Determines whether an asset is in the
condition of being oversold or overbought.
It compares the current mean price with
the average mean price over a given time
period.

2.2.2. Different kinds of orders
When the decision is made for which asset to
buy, or to sell, an order has to be placed. Just
using the buy or sell button may cause slippage.
Slippage is the difference of the price what you
expect and the price at which the trade is filed.
Slippage can be substantial and may be the
difference between winning or losing a trade.
Certain order types allow you to specify the
exact price and thus to minimise the slippage
[5]. The most common order types are:

• Market Order
The most basic type of order. It is used
for buying or selling at the best available
price. If there is enough liquidity, this is
executed immediately.

• Limit Order
An order to buy or sell at a specified price,
and prevents negative slippage. However
the execution is not guaranteed, the trade
will only be filled if the price reaches the
specified price.

• Stop Order
A Stop Order is used to trigger a Market
Order or Limit Order once a specified price
has been reached. It is useful when it
is important to know whether the price
is rising or declining, by placing the Stop
Order above or below the current price.

FIGURE 1. Visualisation of a candlestick,
showing the different components, adopted from
Wikipedia, the free encyclopedia [1].

• Trailing Stop Order
A sell Trailing Stop sets the stop price at a
fixed amount below the current price with
a trailing amount. When the market price
rises, the stop price moves along with the
rise, but when the market prices decline,
the stop price is not changed. When the
market price equals the stop price, the
asset is sold. For a buy Trailing Stop the
opposite is done, so the stop price is set
above the current price and moves along
with declines.

These are the types of orders that will be
included. Each of them has their own
merits and combining this with the previously
mentioned indicators, having the choice to
select different indicators and orders can result
in different strategies each user can use, thus
creating a wide variety of strategies with each
having their own benefits.

2.3. Different kinds of data

In the trading setting, there are different kinds
of data streams. The primary data streams are

Delft University of Technology



6 Exploring the capabilities of AI in digital asset trading

price, volume, and order book data. Each of
these data streams provides intelligence to the
trader. However, the price data is used the
most. Almost all indicators solely utilise the
price data to extract new forms of intelligence,
such as buy and sell signals. Also, when
combining a signal of an indicator with another
signal of another information stream, it could
give an extra confirmation. In the following
sections, the three primary varieties of data,
and our choice of data, used in the engine, are
explained.

2.3.1. Price
When an ask and demand order match, an
equilibrium price arises and these equilibria
prices over a specific period form the basis of
a candlestick [6]. An example of a candlestick
can be found in Figure 1 on page 5. This price
data is usually visualised in a candlestick chart,
where a candlestick is a snapshot of 4 pieces of
information at a specific time frame:

• High
This is the highest price that the candle-
stick has reached in the specific time frame.
Conventionally, this is displayed as the up-
per shadow of the candlestick.

• Low
This is the lowest price that the candlestick
has reached in the specific time frame.
Conventionally, this is displayed as the
lower shadow of the candlestick.

• Open
This is the price at the opening time of
the candlestick in the specific time frame.
Conventionally, this is displayed at the top
of the body of the candlestick.

• Close
This is the price at the ending time of
the candlestick in the specific time frame.
Conventionally, this is displayed at the
bottom of the body of the candlestick.

This data is mainly collected in the form of
candlestick data, and since candlesticks are
relative to a specific period, the data also
differ, when you choose other time frames for
a candlestick.

FIGURE 2. Visualisation of an order book,
including the depth chart.

2.3.2. Trading volume
Like a candlestick, the volume is also subjective
to a specific period. The volume is the
monetary value of the occurred trades in a
specific time. Also, usually, it is associated
with the candlestick of the same time frame.
Furthermore, the volume data is used to
measure the relative strength of a market move
[10].

2.3.3. Order book (market depth)
The order book or market depth is the
list of all buy and sell orders for a specific
asset, sorted by price. Subsequently, the
order book is used to see the balance of
price and orders. When there is an imbal-
ance in orders, it shows the spread and will
most likely give hints about the direction
of the price of the asset [12]. An example
of an order book is given in Figure 2 on page 6.

The choice for the thesis project is to
start with using the price data and try to find
patterns in the price data, in combination with
the indicators. Afterwards, we can feed addi-
tional data, such as volume and order book
data, to verify the predicted price of the AI.
Also, financial data is scarcely available, and
the price data is the easiest to fetch.

3. ARTIFICIAL INTELLIGENCE

One of the primary objectives of this research
is to predict the course of digital assets
successfully. That is, to discover the rules
and patterns embedded in financial markets.
Human traders often base their predictions on

Delft University of Technology



7

a myriad of indicators [31], as described in
the previous chapter. Conventional algorithms,
although capable of making such predictions
suffer from an inability to adjust their
predictions based on new information like a
human expert would. We, therefore, propose
implementing a form of artificial intelligence,
or AI [42].

The term artificial intelligence is commonly
used to describe the ability embedded in
automated systems to make autonomous
decisions. This decision-making process is
usually fuelled by information received from
the environment and may develop over time
according to a learning process. Numerous
forms of AI exist with varying applications,
ranging from genetic algorithms [23] that
evolve through trial-and-error, to rule discovery
through Bayesian networks [40], and expert
systems [46]. The next section introduces
the concept of machine learning; a subset
of AI techniques popularly used in pattern
recognition and classification tasks [36].

3.1. Machine Learning

ML techniques employ statistical methods [15,
36, 38] to improve their performance after
observing an input and (usually) an associated
output. The system adjusts as more data is
observed, thereby achieving a learning process
without the need for explicit programming.
Typically, ML systems are initialised with
random values and subsequently trained using
a training dataset. The training process can
be supervised, semi-supervised or unsupervised
depending on whether the training input
contains a classification of the desired output
or not. Generally, supervised learning aims to
discover a mapping between input and output,
while unsupervised learning aims to discover
hidden patterns in data. One especially
powerful technique that has gained traction in
recent years is the artificial neural network [47].

The Artificial Neural Network, or ANN, is an
interconnected system of nodes, each of which
may be tailored to a specific task or implement
a specific algorithm. These nodes loosely

represent the neurons of the biological brain.
Each layer processes the input received from
the previous layer of neurons and outputs the
result to the next layer. Complex hierarchies of
nodes allow ANNs to identify different features
of the original input. A dynamic set of weights
allows the network to adjust the relevance of
certain features in order to approximate the
desired output. Neural networks composed
of many layers and neurons are collectively
known as Deep Learning (DL) techniques. DL
has achieved significant results in many fields
[20], rivalling or outperforming human experts
[41, 21].

3.2. Deep Learning

As mentioned, deep learning networks are com-
posed of many successive layers of processing
units [32]. A large number of hierarchical lay-
ers allows the network to distinguish multiple
levels of abstractions. Varying the number of
layers and layer sizes can provide different de-
grees of abstraction [14].

Globally, deep neural networks can be further
divided into two categories; convolutional
neural networks (CNN) and recurrent neural
networks (RNN). The main difference between
these two forms of networks can be simplified
as follows: CNNs recognise components across
space (e.g. pixels of an image that make
up a car) [30]. RNNs instead recognise
patterns across time, such as in speech analysis
[24] where previous words partially define the
meaning of those that follow. Although either
method can be used to solve many problems
interchangeably, RNNs allow for some measure
of memory not present in CNNs.

Long-Short Term Memory (LSTM) is an-
other popular machine learning implementation
with similar properties to the RNN. In RNNs
the gradient function decays exponentially over
time, thereby minimising the impact of data
not in recent history. However, in the proposed
application the increased importance of recent
data is a desired property. Therefore, we opt to
implement a recurrent neural network.

Delft University of Technology



8 Exploring the capabilities of AI in digital asset trading

3.3. AI Frameworks

Numerous frameworks and libraries implement-
ing functionality for neural networks and ma-
chine learning are currently in existence, some
with very general specifics and others spe-
cialised for a set number of tasks. We have
mostly explored some well-known and widely
recommended frameworks in order to determine
which one would best suit our goals. Due to ef-
ficiency requirements and personal preference,
we sought to find a framework written in C++
or could be accessed through a C++ API.

3.3.1. Tensorflow
Tensorflow is the most used open source soft-
ware library for high-performance calculation
by data scientists worldwide. Developed by
Google, it is used by big corporations such as
eBay and NVIDIA. It is flexible and uses a high-
level API, meaning it is compatible with numer-
ous online tools and usable for a wide variety
of applications [13].

However, such flexibility and extensibility
cost performance, and due to our specific
requirement of only machine learning software,
we would not use the vast majority of this
library.

3.3.2. Caffe
This deep learning framework is well known
for its speed, transposability and modelling
Convolution Neural Networks. Its biggest
benefit comes from its ability to access the deep
net repository ”Caffe Model Zoo”, where pre-
trained networks are stored and immediately
usable for user applications. Caffe is primarily
used in visual analysing data (such as image
recognition systems) [26].

However, Caffe does not support the finely
tweaking of network layers, making deep
learning applications harder to build. Again,
it is optimised for applications that have little
to do with stock price prediction.

3.3.3. Scikit-Learn
Scikit-Learn is a well known open source library
focused on machine learning. It is intended
for small projects and for beginners to get

experience with AI and focuses on simplicity
and speed [16].

Sadly, Scikit-Learn does not support deep
learning, something we are planning to use for
accurate prediction. Furthermore, the library
is entirely written in Python. During stock
market trading, speed is of utmost importance,
so the few milliseconds advantage that well
written C++ code might offer over Python code
could be essential in turning a profit.

3.3.4. MxNet
Written in C++, MxNet is a flexible and
efficient deep learning library. It is known
for its great scalability, so it’s mainly used
for handwriting recognition, forecasting, and
neuro-linguistic programming [17].

It has a few downsides. It boasts a much
smaller community than frameworks such as
Tensorflow and is not well known within the
research community.

3.3.5. MLPack
MLPack is another machine learning library
written in C++. It is focused on speed,
efficiency, and ease-of-use. The library’s
contents encompass mainly just the bare
essentials, remaining fairly low-level and thus
has the potential to offer low latency. Such is
of great importance for our specific project [19].

The only problem is that it is relatively
unknown and the documentation is minimal.

After some consideration, we chose to imple-
ment an RNN, because this type of neural net-
work takes the factor of time into account, as
should be done when dealing with fluctuating
market prices of (digital) assets. To reduce la-
tency, we selected to work with the MLPack li-
brary, as it contains just the functionality we
need in a relatively low-level language. We
consider the other more extensive libraries and
frameworks as bloatware that would unneces-
sarily slow down the trading engine.

REFERENCES

[1] Candlestick chart - wikipedia.
https://en.wikipedia.org/wiki/

Delft University of Technology



9

Candlestick_chart. Accessed: 18
November 2018.

[2] Course browser searcher. https:

//studiegids.tudelft.nl/a101_

displayCourse.do?course_id=45696.
Accessed: 20 November 2018.

[3] Gekko. https://gekko.wizb.it/. Ac-
cessed: 20 November 2018.

[4] Global charts — coinmarketcap. https://
coinmarketcap.com/charts/. Accessed:
20 November 2018.

[5] Introduction to order types. https:

//www.investopedia.com/university/

intro-to-order-types/. Accessed: 16
November 2018.

[6] Investopedia - equilibrium. https:

//www.investopedia.com/terms/e/

equilibrium.asp. Accessed: 16 Novem-
ber 2018.

[7] Investopedia - fundamentals. https:

//www.investopedia.com/terms/f/

fundamentals.asp. Accessed: 16 Novem-
ber 2018.

[8] Investopedia - technical analysis.
https://www.investopedia.com/

exam-guide/series-3/studyguide/

chapter5/technical-analysis.asp.
Accessed: 16 November 2018.

[9] Investopedia - technical indicator.
https://www.investopedia.com/

terms/t/technicalindicator.asp.
Accessed: 16 November 2018.

[10] Investopedia - volume. https:

//www.investopedia.com/terms/v/

volume.asp. Accessed: 16 November
2018.

[11] List of technical indicators. https:

//www.tradingtechnologies.

com/help/x-study/

technical-indicator-definitions/

list-of-technical-indicators/. Ac-
cessed: 16 November 2018.

[12] Order book definition — investope-
dia. https://www.investopedia.com/

terms/o/order-book.asp. Accessed: 16
November 2018.

[13] Mart́ın Abadi, Paul Barham, Jianmin
Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale
machine learning. In OSDI, volume 16,
pages 265–283, 2016.

[14] Yoshua Bengio, Aaron Courville, and Pas-
cal Vincent. Representation learning: A
review and new perspectives. IEEE trans-
actions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[15] Léon Bottou. Large-scale machine learning
with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages
177–186. Springer, 2010.

[16] Lars Buitinck, Gilles Louppe, Math-
ieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae,
Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, et al. Api design for ma-
chine learning software: experiences from
the scikit-learn project. arXiv preprint
arXiv:1309.0238, 2013.

[17] Tianqi Chen, Mu Li, Yutian Li, Min
Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng
Zhang. Mxnet: A flexible and efficient
machine learning library for heterogeneous
distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[18] Rohit Choudhry and Kumkum Garg.
A hybrid machine learning system for
stock market forecasting. World Academy
of Science, Engineering and Technology,
39(3):315–318, 2008.

[19] Ryan R. Curtin, Marcus Edel, Mikhail
Lozhnikov, Yannis Mentekidis, Sumedh
Ghaisas, and Shangtong Zhang. mlpack

Delft University of Technology



10 Exploring the capabilities of AI in digital asset trading

3: a fast, flexible machine learning library.
Journal of Open Source Software, 3:726,
2018.

[20] Li Deng and Dong Yu. Deep learn-
ing: Methods and applications. Foun-
dations and Trends in Signal Processing,
7(34):197–387, 2014.

[21] Andre Esteva, Brett Kuprel, Roberto A
Novoa, Justin Ko, Susan M Swetter,
Helen M Blau, and Sebastian Thrun.
Dermatologist-level classification of skin
cancer with deep neural networks. Nature,
542(7639):115, 2017.

[22] Justin Fox and Alan Sklar. The myth of the
rational market: A history of risk, reward,
and delusion on Wall Street. Harper
Business New York, 2009.

[23] David E Goldberg and John H Holland.
Genetic algorithms and machine learning.
Machine learning, 3(2):95–99, 1988.

[24] Alex Graves, Abdel-rahman Mohamed,
and Geoffrey Hinton. Speech recogni-
tion with deep recurrent neural networks.
In Acoustics, speech and signal process-
ing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE, 2013.

[25] Tsung-Jung Hsieh, Hsiao-Fen Hsiao, and
Wei-Chang Yeh. Forecasting stock mar-
kets using wavelet transforms and recur-
rent neural networks: An integrated sys-
tem based on artificial bee colony algo-
rithm. Applied soft computing, 11(2):2510–
2525, 2011.

[26] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and
Trevor Darrell. Caffe: Convolutional archi-
tecture for fast feature embedding. In Pro-
ceedings of the 22nd ACM international
conference on Multimedia, pages 675–678.
ACM, 2014.

[27] Ken-ichi Kamijo and Tetsuji Tanigawa.
Stock price pattern recognition-a recur-
rent neural network approach. In Neu-
ral Networks, 1990., 1990 IJCNN Interna-
tional Joint Conference on, pages 215–221.
IEEE, 1990.

[28] Kyoung-jae Kim. Financial time series
forecasting using support vector machines.
Neurocomputing, 55(1-2):307–319, 2003.

[29] Miroslaw Kordos and Andrzej Cwiok. A
new approach to neural network based
stock trading strategy. In International
Conference on Intelligent Data Engineer-
ing and Automated Learning, pages 429–
436. Springer, 2011.

[30] Alex Krizhevsky, Ilya Sutskever, and Ge-
offrey E Hinton. Imagenet classification
with deep convolutional neural networks.
In Advances in neural information process-
ing systems, pages 1097–1105, 2012.

[31] Ramon Lawrence. Using neural networks
to forecast stock market prices. University
of Manitoba, 333, 1997.

[32] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[33] Yu-Hon Lui and David Mole. The use
of fundamental and technical analyses
by foreign exchange dealers: Hong kong
evidence. Journal of International Money
and Finance, 17(3):535–545, 1998.

[34] Leonardo C Martinez, Diego N da Hora,
Joao R de M Palotti, Wagner Meira,
and Gisele L Pappa. From an artificial
neural network to a stock market day-
trading system: A case study on the
bm&f bovespa. In Neural Networks,
2009. IJCNN 2009. International Joint
Conference on, pages 2006–2013. IEEE,
2009.

[35] Satoshi Nakamoto. Bitcoin: A peer-to-
peer electronic cash system. 2008.

Delft University of Technology



11

[36] Nasser M Nasrabadi. Pattern recognition
and machine learning. Journal of
electronic imaging, 16(4):049901, 2007.

[37] Gaurang Panchal, Amit Ganatra,
YP Kosta, and Devyani Panchal.
Behaviour analysis of multilayer per-
ceptronswith multiple hidden neurons
and hidden layers. International Journal
of Computer Theory and Engineering,
3(2):332, 2011.

[38] Carl Edward Rasmussen. Gaussian
processes in machine learning. In Advanced
lectures on machine learning, pages 63–71.
Springer, 2004.

[39] Akhter Mohiuddin Rather, Arun Agarwal,
and VN Sastry. Recurrent neural network
and a hybrid model for prediction of stock
returns. Expert Systems with Applications,
42(6):3234–3241, 2015.

[40] Christian Robert. Machine learning, a
probabilistic perspective, 2014.

[41] Jon Russel. Googles alphago ai wins
three-match series against the worlds best
go player, 2017. [Online; accessed 16
November, 2018].

[42] Stuart J Russell and Peter Norvig.
Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,,
2016.

[43] Nicholas I Sapankevych and Ravi Sankar.
Time series prediction using support vec-
tor machines: a survey. IEEE Computa-
tional Intelligence Magazine, 4(2), 2009.

[44] Jack D Schwager. A complete guide to
the futures markets: fundamental analysis,
technical analysis, trading, spreads, and
options. John Wiley & Sons, 1984.

[45] Jian-Zhou Wang, Ju-Jie Wang, Zhe-
George Zhang, and Shu-Po Guo. Fore-
casting stock indices with back propaga-
tion neural network. Expert Systems with
Applications, 38(11):14346–14355, 2011.

[46] Sholom M Weiss and Casimir A Ku-
likowski. Computer systems that learn:
classification and prediction methods from
statistics, neural nets, machine learning,
and expert systems. Morgan Kaufmann
Publishers Inc., 1991.

[47] B Yegnanarayana. Artificial neural
networks. PHI Learning Pvt. Ltd., 2009.

[48] Tom Young, Devamanyu Hazarika, Sou-
janya Poria, and Erik Cambria. Recent
trends in deep learning based natural lan-
guage processing. ieee Computational in-
telligenCe magazine, 13(3):55–75, 2018.

[49] Yudong Zhang and Lenan Wu. Stock mar-
ket prediction of s&p 500 via combination
of improved bco approach and bp neural
network. Expert systems with applications,
36(5):8849–8854, 2009.

Delft University of Technology



12 Exploring the capabilities of AI in digital asset trading

4. ATTACHMENTS

F
IG

U
R
E

3
.

P
ro

ject
p

lan
n

in
g

Delft University of Technology





Bibliography
[1] Futures definition| investopedia. https://www.investopedia.com/

terms/f/futures.asp. Accessed: 25 January 2019.

[2] Order book definition | investopedia. https://www.investopedia.com/
terms/o/order-book.asp. Accessed: 25 January 2019.

[3] Multiple time frames can multiply returns. https://www.investopedia.
com/articles/trading/07/timeframes.asp. Accessed: 25 January
2019.

[4] Investopedia - volume. https://www.investopedia.com/terms/v/
volume.asp. Accessed: 25 January 2019.

[5] The dsdm agile project framework (2014 onwards), Jun 2017. URL https:
//www.agilebusiness.org/content/moscow-prioritisation.

[6] Git flow, jan 2018. URL https://www.atlassian.com/git/tutorials/
comparing-workflows/gitflow-workflow.

[7] Google c++ style guide, jan 2018. URL https://google.github.io/
styleguide/cppguide.html.

[8] Sanjoy Basu. Investment performance of common stocks in relation to their
price-earnings ratios: A test of the efficient market hypothesis. The journal
of Finance, 32(3):663–682, 1977.

[9] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks, 5(2):157–166, 1994.

[10] Binance. Binacpp, March 2018. URL https://github.com/
binance-exchange/binacpp.

[11] BusinessDictionary.com. Definition of stakeholder, January 2019. URL
http://www.businessdictionary.com/definition/stakeholder.
html.

[12] Peter Christoffersen and Denis Pelletier. Backtesting value-at-risk: A
duration-based approach. Journal of Financial Econometrics, 2(1):84–108,
2004. doi: 10.1093/jjfinec/nbh004. URL http://dx.doi.org/10.1093/
jjfinec/nbh004.

[13] Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yannis Mentekidis,
Sumedh Ghaisas, and Shangtong Zhang. mlpack 3: a fast, flexible ma-
chine learning library. Journal of Open Source Software, 3:726, 2018. doi:
10.21105/joss.00726. URL https://doi.org/10.21105/joss.00726.

[14] Marcus Edel. Fast lstm layer documentation, June 2018. URL
https://github.com/mlpack/mlpack/blob/master/src/mlpack/
methods/ann/layer/fast_lstm.hpp.

[15] Mario Fortier. Ta-lib, 2007. URL http://ta-lib.org/.

71

https://www.investopedia.com/terms/f/futures.asp
https://www.investopedia.com/terms/f/futures.asp
https://www.investopedia.com/terms/o/order-book.asp
https://www.investopedia.com/terms/o/order-book.asp
https://www.investopedia.com/articles/trading/07/timeframes.asp
https://www.investopedia.com/articles/trading/07/timeframes.asp
https://www.investopedia.com/terms/v/volume.asp
https://www.investopedia.com/terms/v/volume.asp
https://www.agilebusiness.org/content/moscow-prioritisation
https://www.agilebusiness.org/content/moscow-prioritisation
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://github.com/binance-exchange/binacpp
https://github.com/binance-exchange/binacpp
http://www.businessdictionary.com/definition/stakeholder.html
http://www.businessdictionary.com/definition/stakeholder.html
http://dx.doi.org/10.1093/jjfinec/nbh004
http://dx.doi.org/10.1093/jjfinec/nbh004
https://doi.org/10.21105/joss.00726
https://github.com/mlpack/mlpack/blob/master/src/mlpack/methods/ann/layer/fast_lstm.hpp
https://github.com/mlpack/mlpack/blob/master/src/mlpack/methods/ann/layer/fast_lstm.hpp
http://ta-lib.org/


72 Bibliography

[16] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-
nition with deep recurrent neural networks. In Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on, pages 6645–6649.
IEEE, 2013.

[17] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and
Jürgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions on
neural networks and learning systems, 28(10):2222–2232, 2017.

[18] Eric Han. Intra-exchange cryptocurrency arbitrage bot. 2018.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[21] NVIDIA. Nvblas, 2015. URL https://docs.nvidia.com/cuda/nvblas/
index.html.

[22] open-source parsers. Jsoncpp, January 2019. URL https://github.com/
open-source-parsers/jsoncpp.

[23] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International Conference on Machine
Learning, pages 1310–1318, 2013.

[24] Conrad Sanderson. Armadillo c++ linear algebra library, June 2016. URL
https://doi.org/10.5281/zenodo.55251.

[25] Jim Y.F. Yam and Tommy W.S. Chow. A weight initialization method for
improving training speed in feedforward neural network. Neurocomput-
ing, 30(1):219 – 232, 2000. ISSN 0925-2312. doi: https://doi.org/10.
1016/S0925-2312(99)00127-7. URL http://www.sciencedirect.com/
science/article/pii/S0925231299001277.

https://docs.nvidia.com/cuda/nvblas/index.html
https://docs.nvidia.com/cuda/nvblas/index.html
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
https://doi.org/10.5281/zenodo.55251
http://www.sciencedirect.com/science/article/pii/S0925231299001277
http://www.sciencedirect.com/science/article/pii/S0925231299001277

	Introduction
	Problem Analysis
	Defining the Stakeholders
	Stakeholder Analysis
	The Company
	The University
	The Developers

	Conclusion

	Problem Description
	Definition of Done
	Requirements
	Must Have
	Should Have
	Could Have

	Research Question
	Conclusion

	Solution design
	Design specifications
	Neural network
	Trading strategies
	Trading assets

	Design limitations
	Design justification
	Conclusion

	Implementation
	Implementation plan
	Environment
	Data-visualizer
	Libraries
	Packages

	Issues encountered
	Conclusion

	Results
	Cross-Validation
	Time Series k-fold Cross-Validation

	Network Parameter Optimisation
	Initialisation
	Optimisation Algorithm
	Look-back - Rho
	Hidden Layer Complexity

	Trading Strategies
	Default Parameters
	Random Walk
	Rate of Change
	Relative Strength Indicator
	Double Exponential Moving Averages
	Moving Average Convergence / Divergence

	Conclusion

	SIG feedback
	Feedback
	Reflection
	Code quality tools
	Internal code conventions
	Version control
	Conclusion

	Discussion & Recommendations
	Discussion
	Recommendations
	Add volume data
	Add order book data
	Add other samples
	Add other exchanges
	Use other intervals
	Combine multiple strategies
	Optimise network parameters
	Change the interface to emphasise UX

	Conclusion

	Conclusion
	Infosheet
	System Decomposition
	Data-visualizer
	Research Proposal
	Bibliography

