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Abstract

In the current era emphasizing sustainability and circularity, supply chain network design
is a critical challenge for making reliable decisions. The optimization of facility location-
allocation inventory problems (FLAIPs) holds the key to achieving dependable product
delivery with reduced costs and carbon emissions. Despite the importance of these challenges,
a substantial research gap exists regarding economic, reliability, and sustainability criteria
for FLAIPs. This paper aims to fill this gap by introducing a multi-objective mixed-integer
linear programming model, focusing on configuring a reliable sustainable supply chain net-
work. The model addresses three key objectives: minimizing costs, minimizing emissions,
and maximizing reliability. A notable contribution of this research lies in elaborating on five
levels of a supply chain network catering to the delivery of multiple products across various
periods. Another novelty is the simultaneous incorporation of economic, environmental, and
reliability objectives in the network design—a facet rarely addressed in prior research. Results
highlight that varying demand levels for each facility lead to altered trade-offs between objec-
tives, empowering practitioners to make diverse decisions in facility location allocation. The
proposed mathematical model undergoes validation through numerical examples and sensi-
tivity analysis of parameters. The paper concludes by presenting theoretical and managerial
implications, contributing valuable insights to the field of sustainable supply chains.

Keywords Sustainable supply chain - Carbon emissions - Facility location - Reliable supply
chain - Multi-objective optimization

1 Introduction

Globalization has significantly influenced the geographical distribution of manufacturing,
warehousing, and distributing facilities in the supply chain networks. Consequently, com-
panies worldwide seek guidance for formulating and implementing strategies that ensure
reliable and sustainable operations, harmonizing various stakeholders to meet customer needs
(Gupta et al., 2021; Xue and Lee, 2023). The Facility Location Problem (FLP) is extensively
explored in many supply chain research; however, an integrated approach, encompassing
supply chain network design, location-allocation, and inventory decisions are determining
and leads to facility location-allocation inventory problems (FLAIP). Integrating this design
helps supply chain managers in optimizing product flow and meeting circularity requirements.

Extended author information available on the last page of the article

Published online: 22 April 2024 9\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-024-05961-2&domain=pdf
http://orcid.org/0000-0003-1664-9210

Annals of Operations Research

Factors such as capacity, geography, sustainability, reliability, and order quantity limitations
influence FLAIP decisions (Li & Ouyang, 2010; Sun et al., 2023).

Supply chain networks consistently face unexpected uncertainties disrupting product flow
between different facilities (Abbasian et al., 2023). For example, the COVID-19 outbreak
impacted material flow, logistics, and routing optimization, causing disruption in supply chain
networks (Li et al., 2020; Singh et al., 2021). Facility disruption may necessitate customer
reassignment, leading to increased transportation costs or customer loss. Hence, developing
reliable supply chain network designs become crucial in mitigating the impact of unexpected
circumstances. Reliable designs are vital across decisions levels, as disruptions in one level
significantly affect the entire chain, impacting sales revenue, return on investment, purchasing
strategies, and overall supply chain performance (Amirian et al., 2022; Li et al., 2022). A reli-
ability index, adjustable by disruption probability, can be proposed for each facility, Demand
uncertainty is another determinant affecting facilities’ performance in SCND, necessitating
a reliable model that considers environmental objectives alongside minimizing operational
costs in an uncertain environment (Yildiz et al., 2016).

Sustainability considerations has gained prominence, with carbon emissions being a
major environmental concern (Sepehri et al., 2021). Carbon emissions are unpredictable
in FLAIPs, given different transportation modes, manufacturing methods, and material han-
dling approaches with varying environmental impacts (Rezaei Vandchali et al., 2020; Tavana
et al., 2023). Many companies adopt practices to mitigate emissions and meet environmental
stakeholder requirements (Jahani et al., 2021).

Despite the challenges in SCND, there’s a need for an integrated approach covering cost
efficiency, emission mitigation, and reliability simultaneously. This study addresses this
gap by formulating research questions, developing a methodology, and proposing numer-
ical experiments. Research questions include formulating facility reliability in SCND, using
sustainability criteria, integrating reliability and sustainability in SCND, and adapting SCND
to real-world conditions. A mathematical model optimizes cost, emissions, and reliability
concurrently, aiming to find the optimal number, location, and capacity of distribution cen-
ters. The study focuses on economic and environmental aspects to avoid model complexity.
The following research questions are proposed.

e How reliability of facilities can be formulated in SCND problems?

e What sustainability criteria can be used in the formulation of SCND?

e What objectives and constraints exist when integrating reliability and sustainability criteria
aspects of SCND?

e How a SCND problem formulation can be changed to make it closer to real-world condi-
tions?

Due to capacity constraints complexity, a Lagrangian relaxation approach with an adap-
tive m-objective e-constraint technique determines the Pareto front, showing the correlation
between objective functions. The model transforms into a single-objective MILP problem
solved by the CPLEX solver in GAMS software. The study’s main contribution is proposing
a model for a five-level supply chain network, designed for multiple products and periods,
addressing three conflicting objectives with a novel e-constraint method.

The manuscript is organized as follows. Section 2 reviews related literature, emphasizing
the study’s novelty. Section 3 states the problem, introduces terminology, assumptions, and
the mathematical model. Section 4 proposes the solution procedure, while Sect. 5 presents
numerical examples and sensitivity analysis. Section 6 provides theoretical and managerial
insights, summarizes findings, and discusses future research directions.
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2 Literature review

Selecting facility locations is a pivotal challenge in SCND, crucial for material and infor-
mation flow across suppliers, manufacturers, distributors, retailers, and customers. Effective
allocation, considering uncertainties, minimizes disruptions, fostering a reliable supply chain
network. Addressing time, cost, and emissions during product transportation further enhances
reliability (Snyder & Daskin, 2005).

To comprehend these challenges, this section reviews two literature streams, concurrently
addressing reliability and sustainability aspects in SCND. By highlighting recent trends and
identifying research gaps, this study contributes by formulating a problem that integrates
reliability and sustainability, employing a novel solution approach.

2.1 Reliable SCND

Establishing reliability in the location-allocation of facilities leads to minimizing costs, dis-
ruption, and environmental impacts. The uncertainty has added complexities to the SCND
problem based on different constraints such as the storage capacity of facilities and environ-
mental regulations.

An early work in this elaboration was proposed by Xi-feng et al. (2008) who formulated a
model with a stochastic service level function in which the total costs of establishing facilities
and transportation between facilities are minimized when meeting a certain service level. A
trade-off between minimizing costs and maximizing reliability is discussed by Yildiz et al.
(2016) when the upstream impact of the supply chain on the reliability of individual entities
is discussed as an approach to address the mentioned trade-off. Reliability was addressed
as customer satisfaction maximization by Jalali et al. (2016) when multiple capacity levels
are considered for facilities within a supply chain network. They proposed a bi-objective
model that minimized the relevant costs and maximize the customers’ demand satisfaction
and solved the model using a stochastic programming approach.

Relief networks that are significant in controlling disruptions during disasters were
addressed by Yahyaei and Bozorgi-Amiri (2019) who considered the risk of disruption for
each facility. Separating reliable and unreliable distribution centers in this study helped the
practitioners to mitigate the risk of disruption. The mathematical model developed in this
study was then solved by a robust optimization technique. Later, Mohammadi et al. (2020)
suggested a model in which multiple objectives aimed to minimize the logistics costs, the
time of relief operations, and the variation between the upper bound and lower bound of the
transportation cost. The uncertain nature of the disruptive events leads to uncertainty in the
demand from disaster regions, the capacity of facilities capacities, and the time and cost of
transportation. To address this challenge, they employed a robust optimization to develop a
reliable facility location, victims’ evacuation, and truck routing problem.

Disruption can also be a result of the stochastic nature of parameters. In this regard,
Tolooie et al. (2020) developed a single-objective model to minimize the costs associated with
facility setup, transportation between facilities, and disruptions in a SCND. A novel multi-
cut approach in stochastic MILP was adopted in this study as a solution procedure which
showed an improvement in computational results and increased the reliability. Disruption
due to pandemic conditions in the case of a pharmaceutical supply chain is outlined by
Abbasi et al. (2021) who aimed to control it with multiple sourcing and backup fortification.
The developed model in this study minimized the costs and time of product delivery to the
customers for perishable medical products. In a similar case, Delfani et al. (2022) proposed a
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model to minimize the total delivery cost and time separately while maximizing the reliability
of transporting medical products under uncertainty. A robust optimization approach was used
by Mondal and Roy (2021) to address a close-looped SCND problem based on the demand
priorities of COVID-19. In this work, total costs, transportation time, and blocklog amount
of forward and reverse flow were minimized.

In the case of biofuel delivery, Habib et al. (2022) considered unpredicted events that cause
network disruptions. This study not only discussed the resilience of network design but also
aims to minimize the total costs and emissions using a scenario-based robust probabilistic
flexible programming. The trade-off between total cost and viability performance of the
network under continuous changes was discussed by Wang and Yao (2023) who adopted a
hybrid Lagrangian relaxation algorithm and Genetic Algorithm (GA). Alikhani et al. (2023)
suggested different strategies for addressing the reliability of SCND based on the source
of disruption (nature-based, pandemic-oriented, human-made, etc.). Moreover, they showed
that the interaction between these strategies is affects the facility location-allocation.

Reliability was studied along with sustainability in SCND by Akbari-Kasgar et al. (2022)
who elaborated a problem under uncertain conditions and aimed to maximize the total profit
as the economic objective, minimize the water consumption as emissions as the environmen-
tal objective, and maximize the social utility in the establishment of potential facilities as
the social objective. Then, e-constraint technique and Weighted Sum Method (WSM) were
applied to tackle the complexity of the model. Moadab et al. (2023) proposed another study
in the same context to minimize costs, negative societal impact caused by shortages, and
environmental impact using a scenario-based approach with stochastic programming.

2.2 Sustainable SCND

The sustainability aspect in SCND is attended by different sectors of a supply chain network
encompassing economic, environmental, and social criteria. For instance, greenhouse gas
emissions affects the facility location-allocation since they can be mitigated by minimizing
the transportation frequency of products between facilities.

An early study proposed by Nagurney et al. (2007) developed the concept of sustainability
in SCND in which manufacturers produce similar products. Carbon emissions which are
considered as the major environmental considerations reformulated the developed model
based on an elastic demand transportation network equilibrium problem. Later, economic,
environmental, and service-level aspects were integrated by Xifeng et al. (2013) using three
separate objectives. This research aimed to minimize the total cost of network design (cost
of establishing facilities and transportation between facilities), minimize total emissions
due to transportation, and maximize the service level of each facility. Manufacturing and
transportation cause carbon emissions while different emission reduction regulations can be
selected during the location-allocation process in SCND. To address this issue, Turken et al.
(2017) aimed analyzed different carbon policies and concluded that carbon tax policy is not
efficient in minimizing emissions and the mitigation policy should be based on the number
of transported products per distance covered.

In another study, Das and Roy (2019) compared different modes of transportation in
an Integer Programming (IP) model. Then, they proposed a solution approach based on
the combination of locate-allocate heuristic and neutrosophic compromise programming
under carbon cap-and-trade policy. Location allocation is also studied by Sundarakani et al.
(2020) using a robust optimization approach under demand uncertainties. Four levels of an
SCND are studied in this study to minimize the number of disruptions in delivery. Carbon
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cap-and-trade policy in FLAIPs was also addressed by Liu et al. (2021) when multiple
products are produced, demand is dependent on the selling price, and production capacity is
limited. The mixed-integer quadratic programming model developed in this work was solved
by adopting a piecewise-linear envelope method. Later, Golpira and Javanmardan, (2022)
compared different carbon emission reduction policies such as carbon tax, carbon cap, and
carbon cap-and-trade when the only objective is to minimize the amount of carbon emissions
in SCND.

Stochastic parameters were analyzed by Lotfi et al. (2021) to combine sustainability and
reliability in SCND using a robust optimization approach. In another study, Midya et al.
(2021) aimed to minimize transportation costs, time required for transportation, and total
carbon emissions simultaneuosly under an intuitionistic fuzzy environment. The developed
deterministic model was solved using a hybrid weighted Tchebychef metrics programming
and min—-max goal programming.

Designing a network for perishable items was studied Ali et al. (2021) for the case of a
dairy supply chain. This study focused on managing the items’ delivery with the least number
of losses due to deterioration. The same problem was then addressed by Pervin et al. (2023)
when the demand for items is dependent on their lifespan. The total costs consist of costs for
ordering, inspection, production, holding, deteriorating, transportation, and carbon tax was
aimed to be minimized in this study.

Three economic, environmental, and social aspects of sustainability were addressed by
Ghosh et al. (2022) in an Mixed Integer Non-Linear Programming (MINLP) model for the
case study of solid waste management. Total costs and emissions are aimed to be minimized
and the total number of generated job opportunities are aimed to be maximized in this
study. Joint economic and social aspects were also discussed by Tirkolaee et al. (2023)
considering the adverse impact of COVID-19 on a blood supply chain network design. This
study formulated the problem in an uncertain environment when donation centers, disposal
rate of items, and market demand are stochastic and needs to be determined.

Sustainability and reliability aspects of a SCND problem were discussed by Rajabi-
Kafshgar et al. (2023) for a close-looped supply chain when total costs (fixed and variable
costs) are aimed to be minimized. Besides, this study minimized the number of disruptions
in the whole network when the emissions are maintained as low as possible. This study then
solves the model using meta-heuristic algorithms and the results are compared to determine
the efficiency of each algorithm. A summary of the reviewed studies is shown in Table 1 to
highlight the research gaps and the contribution of this research to the literature.

3 Research gaps

The reviewed studies focused sustainability and reliability in SCND, with sustainability
categorized into economic, environmental, and social objectives, and reliability addressing
disruptions and parameter uncertainties. Despite the increasing number of studies on FLAIP,
the simultaneous investigation of economic, environmental, and reliability aspects in SCND
remains limited. The complexity of SCND is heightened by multiple levels of actors, diverse
product types, and varied transportation modes, reflecting real-world supply chain scenarios.

This study aims to bridge this gap by considering the aforementioned complexities,
developing a problem that aligns with real-world conditions. The objective is to create an
environmentally-friendly SCND while emphasizing the reliability of each facility in the face
of disruptions. The proposed model incorporates three objectives: minimizing total costs,
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minimizing emissions, and maximizing facility reliability. The approach integrates supplier
selection, location-allocation, and maximum flow considerations. Supplier selection is based
on sustainability levels, while facility locations aim to mitigate disruption probabilities and
transportation costs. The model seeks to maximize the flow of raw materials and finished
products within the supply chain, accommodating various transportation modes.

To solve the mathematical model, an adaptive m-objective e-constraint approach is
employed to identify the optimal Pareto front, revealing the interaction among economic,
environmental, and reliability objectives. This methodology quantifies trade-offs, crucial for
decision-making. The proposed approach is tested with different demand levels, providing
a comprehensive understanding of the trade-offs in the SCND problem. This study strives
to contribute a practical and holistic solution for supply chain managers facing the intricate
challenges of sustainability and reliability simultaneously.

4 Problem and model development
4.1 Problem description

The existing literature on FLAIP lacks a comprehensive examination of multiple objectives
within the SCND context. To address this research gap, a multi-objective problem is for-
mulated, targeting FLAIP. The proposed mathematical model is designed to simultaneously
minimize the total costs associated with establishing facilities and transportation, minimize
emissions from manufacturing/processing and transportation, and maximize facility reliabil-
ity during disruptive events like the COVID-19 pandemic.

The distinctive features of the model include the consideration of multiple types of raw
materials and finished products, which are transported across five levels of the supply chain
network. This extended scope of analysis for five network levels represents a notable departure
from previous research. Additionally, the model introduces the flexibility for raw materials
and finished products to be transported using different modes across various timestamps,
reflecting real-world supply chain complexities.

An innovative aspect of the mathematical model is the emphasis on maximizing the
reliability of each facility, a critical factor during disruptive situations. This feature addresses
a significant gap in the literature, as previous studies have not sufficiently explored the
simultaneous optimization of economic, environmental, and reliability objectives in a multi-
level supply chain. Figure 1 provides a visual representation of the proposed supply chain
network, illustrating the intricate connections and flows within the five-level structure.

The SCND problem involves various relevant costs, encompassing manufacturing, pro-
cessing, transportation, setup, and warehousing costs. These operations, integral to the supply
chain network, also contribute to carbon emissions. Each facility in the network is associated
with a failure probability, dependent on its specific properties.

The formulated model addresses a multi-item forward dynamic supply chain network,
responding to customer demands for a specific product (k) in a given period (¢). All problem
parameters are treated as certain, yet disruptions may occur at manufacturing, warehousing,
and distribution centers due to unforeseen circumstances. Transportation between facilities,
conducted in a forward direction, is facilitated through multiple modes such as trucks, trains,
and planes.

To manage carbon emissions, the model allows for the control of emissions during trans-
portation by selecting between road and non-road transportation modes. The latter includes
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Suppliers Manufacturers Warehouses Distributers Customers
s=12,..,8 m=12,.,.M w=12.,W d=1.2,..,D c=12..,C

OO

L

Products
k=12,..,K

-
G,
-.

Periods of time
t=12,..,T

Fig. 1 Proposed supply chain network

planes and locomotives. The unit emissions are contingent on factors like engine setup,
fuel type, the quantity of transported products, and the distance between facilities. Various
operations in different facilities, including manufacturing, transportation, and warehousing,
contribute to overall carbon emissions. Figure 2 provides a simplified representation of carbon
emissions for each facility, highlighting the environmental impact associated with different
operations in the supply chain network.

The development of reliability is a crucial aspect of this problem, particularly concerning
disruptions faced by three intermediate facilities. In practical scenarios, these disruptions
can lead to delays in receiving products from an upstream facility. Various factors, including
natural disasters, piracies, changes in supply chain stakeholders, order input errors, and
adverse weather conditions, contribute to disruption times T’y for facility f. These disruption
times follow an exponential probabilistic distribution function with an average of 7 ;.

The reliability of facility f is calculated as the probability of uninterrupted operation
for at least W units of time. This reliability metric is essential for assessing the robustness
and dependability of the supply chain network in the face of disruptions. The probabilistic

Suppliers Manufacturers Warehouses Distributers Customers
s=12,..,8 m=12,..,.M w=12..,W d=12..D c=12..,C

ETE™ X disgy, ETF™ X disp,,

. tdk < i
ETME X dis,yg ET;™ X disg,

Es™ Ef™
ETS™ ETMm* ET#*
EHS™ EH™ EHY* EHg¥

Fig. 2 Carbon emissions in the suggested supply chain network
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nature of disruption times introduces a level of uncertainty, and the formulation considers
the probability of facilities working without failure for a specified duration, contributing to
the overall reliability assessment in the SCND problem.

Ry=P(Tf>W)=e" Vf,1. )

At the start of the time horizon, facilities operate without disruptions, and once disrupted,
they are irrecoverable. Decision factors for facility location include setup, capacity, and
reliability costs, crucial for customer satisfaction. Balancing these factors is essential for
optimal facility placement, considering setup, capacity, and reliability costs while ensuring
efficient and reliable service to meet customer demands.

4.2 Assumptions

The formulated problem in the previous section is expressed as a mathematical optimization
model under the following assumptions:

e Three intermediate facilities, as depicted in Fig. 2, may experience disruptions and break-
downs for specific durations. Disruptions can be attributed to natural disasters, piracies,
changes in stakeholders, order input errors, and adverse weather conditions, causing delays
in receiving products from an upstream facility (Tirkolaee et al., 2020).

o Disruption time 7'y for each facility follows an exponential probabilistic distribution func-
tion with an average of 77,. This probabilistic model is commonly used in reliability
analysis using Eq. (1) (An et al., 2015).

e This study focuses on a five-level supply chain network involving suppliers, manufactur-
ers, warehouses, distributors, and customers. The research aims to determine the optimal
location of facilities for three middle centers, while the number of suppliers and customers
remains fixed (Vali-Siar & Roghanian, 2022).

e Capacity constraints exist for suppliers, manufacturers, and distributors. Manufacturers,
warehouses, and distributors have fixed lead times for product delivery. Finished products
are instantaneously shipped from manufacturers to warehouses (Tirkolaee et al., 2023).

e The problem is solved considering different modes of transportation in each level of the
supply chain network, with each mode having capacity constraints (Delfani et al., 2022).

e Carbon emissions due to manufacturing and warehousing depend on the number of pro-
duced and stored products, respectively. Transportation-related emissions are influenced
by the transport mode, distance between facilities, and the number of transported products
(Liu et al., 2021).

e Each downstream facility’s demand can be fulfilled by one or multiple upstream facilities
in the supply chain network.

e Supplier selection is based on sustainability levels, with decisions considering factors such
as cost efficiency and emissions. However, suppliers have limited capacity for product
delivery.

e Shortages are permissible at warehouses and distribution centers.

Considering these assumptions, a multi-objective optimization mathematical model is
developed. The model seeks to minimize relevant costs (manufacturing, warehousing, and
transportation), reduce carbon emissions, and maximize the reliability of three middle facil-
ities.
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5 Notations

The mathematical model utilizes notations and terminologies summarized in Table 2 for
clarity and consistency in elaboration. The table provides a reference for the key symbols
and terms employed in the formulation of the model, ensuring a clear and standardized
presentation of the mathematical expressions and constraints.

5.1 Mathematical model

The following multi-objective optimization mathematical model can be developed based on
the mentioned notations and assumptions.
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Table 2 Notations used in the model

Indices

N

g 3

X ™ R

Parameters
FSCf
VSC ik
PCIS,
ORy;
McCy
TCi

smr

TCc*

muwk

B
Tcwdk

Y
Tcdck

HC frs
BC fpt
dl'Sff/
Cap fy

Caplgy,
Dem iy
Krk
Efk

ET,

Ty

Index of suppliers;s = 1,2, ..., S,

Index of manufacturers; m = 1,2, ..., M,

Index of warehouses; w = 1,2,..., W,

Index of distributors; d = 1,2, ..., D,

Index of customers; ¢ =1,2,...,C,

Index of products; k = 1,2, ..., K,

Index of raw materials; r = 1,2,..., R,

Index of time periods; t = 1,2,..., T,

Index of transportation modes in supply facilities;i = 1,2, ..., 1,

Index of transportation modes in manufacturing facilities;a = 1,2, ..., A,
Index of transportation modes in warehousing facilities; 8 = 1,2, ..., B,
Index of transportation modes in distribution facilities; y = 1,2, ..., T,

Index used to represent all the transportation modes

Fixed setup cost of facility f; f € {m, w, d},
Variable setup cost of facility f for product k at period ¢; f € {m, w, d},

Unit purchasing cost of raw material r from supplier s for manufacturer m at
period ¢,

Fix ordering cost to supplier s at period ¢,

Unit manufacturing cost of product £ by manufacturer m at period ¢,

Unit transportation cost of raw material r from supplier s to manufacturer m
using transportation mode i,

Unit transportation cost of product k from manufacturer m to warehouse w
using transportation mode «,

Unit transportation cost of product k from warehouse w to distributer d using
transportation mode S,

Unit transportation cost of product k from distributer d to customer ¢ using
transportation mode y,

Unit holding cost of product £ in facility f at period ¢; f € {w, d},

Unit shortage cost of product & in facility f at period #; f € {w, d},

Distance between facilities f and f7; f € {s,m, w,d} and f7 € {m,w, d, c},

Capacity of facility f to manufacture/process product k at period ¢;
felmw,dl,

Capacity of supplier s to supply raw material r at period ¢,

Demand of customer ¢ for product k at period 7,

Consumption coefficient of raw material  in one unit of product k,

Unit carbon emission due to manufacturing/processing of product k by facility
fif €{m, w, d},

Unit carbon emissions due to transporting of raw materials/products by
transportation mode v,

Average of the exponential probabilistic distribution function of reliability for
facility f atperiod t; f € {s, m, w, d},
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Table 2 (continued)

v
B

Decision variables

A minimum time interval where no failure occurs,

An optional large number

Ymt A binary variable indicating whether manufacturing center m is set up at period
t,

Ywt A binary variable indicating whether warehouse w is set up at period 7,

Ydt A binary variable indicating distribution center d is set up at period ¢,

Yitrs A binary variable indicating manufacturing center m purchase raw material r
from supplier s at period 7,

x;‘r‘l wik Amount of product k transported from manufacturer m to warehouse w at
period ¢ using transportation mode o,

xf) dtk Amount of product k transported from warehouse w to distributer d at period ¢
using transportation mode S,

xgm( Amount of product k transported from distributer d to customer ¢ at period ¢
using transportation mode y,

xin trs Amount of raw material r transported from supplier s to manufacturer m at
period ¢,

IN ¢ps Amount of product k available at facility f at period t; f € {w, d},

SH fpe Shortage of product k at facility f at period t; f € {w, d},

subject to

Z Z Z 'u“’”kxémtrk = Z sz;wtk Vk,m,t, (5)
ros i

1 o w
szzwtk = Z fo)dtk Yw, 1, k, (6)
Z fo)dzk = szzi/ctk vd, 1.k, @)
B w y ¢

Demeyy =Y | > xy o+ SHau | Vet k, (8)
d v
DO Xups < Capl,, Vrits, )
i m

lexfrlzwtk < Capmisym Vm. 1.k, (10)
i ixf;drk < Capuwisywr Yw, 1.k, (11

B d
DD b < Caparyar V. 1k, (12)
VZCx,’m < BYpupy V.15, (13)

i
INwkt = INwia—1 + D 3 X+ SHups = 3 xby Yw.r k. (14)
o w

B d
INaie = INgir—1 + 9 3 by + SHa = Y Demey V. 1.k, (15)
B d c
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Ymts Ywt» Ydt € {07 ]} Vm, w, dvt» (]6)

Vm,w,d, tm,tw,

17
td, t, k,s,r. amn

o B Y rs
Xmwtkr Xwdrk> Xdetk> Xmt Ikat’ Skat =0

Equation (2) focuses on minimizing the total fixed and variable costs associated with
manufacturing, warehousing, distribution, transportation, and purchasing, including costs
related to facility shortages. Equation (3) targets the reduction of carbon emissions stemming
from manufacturing, warehousing, and inter-facility transportation. Equation (4) aims to
maximize the reliability of various facilities within the supply chain network.

To ensure balance, Egs. (5), (6), and (7) equate the transportation of raw materials and
products between facilities to the downstream facility’s demand at each level. Equation (8)
ensures that the final manufactured products transported from distribution centers to cus-
tomers meet demand, accounting for potential shortages. Constraints (9), (10), (11), and (12)
enforce that the handling of raw materials and finished products adheres to facility capacities.

Constraint (13) dictates that manufacturers only produce when they receive raw materials
from suppliers. Equations (14) and (15) express inventory constraints for warehouses and
distributors, respectively. Constraints (16) and (17) stipulate that all facility establishment
decisions must be binary, and raw materials, products, and transportation variables must be
non-negative.

6 Solution procedure

This section proposes a solution procedure for the developed MILP model to identify Pareto’s
optimal solutions, providing insights into the interaction between different objective functions
and aiding decision-makers in selecting optimal facility locations and product shipment
quantities (Hajiaghaei-Keshteli & Fathollahi Fard, 2019). An alternative approach for multi-
objective optimization is the e-constraint method, where one objective is transformed into a
constraint. Subsequently, the optimal solution is obtained iteratively for different objective
functions (Govindan et al., 2023).

This study employs an adaptive m-objective e-constraint approach to solve the problem
for various cases involving a reduction in the number of objective functions. The resulting
Pareto fronts for these cases are compared to determine optimal facility locations, product
shipment quantities, and shortages (Laumanns et al., 2006). The adaptive m-objective e-
constraint approach offers advantages over other algorithms like Goal Programming (GP)
and Generalized Additive Model (GAM). Notably, it provides control over the number of
efficient Pareto solutions by adjusting grid points, enabling the acquisition of exact Pareto
solutions rather than approximations, especially beneficial in complex problem scenarios
(Mesquita-Cunha et al., 2023).

6.1 Pareto optimality

In the context of maximizing all objective functions, let f : X — F, where X is the decision
space and F C R™ is the objective space. The components of X and F are defined as
decision vectors and objective vectors, respectively. A decision vector x* € X is considered
Pareto optimal when no other vector dominates it, meaning x* > x for all decision vectors.
In mathematical terms, for any x* € X, there exists no x such that f;(x) > f;(x*) for all
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i=1,2,3,and f;(x) > fi(x*) for at least one index i. The set of all Pareto optimal decision
vectors X * is defined as Pareto sets, and F* = f(X™) is the set of all Pareto-optimal objective
vectors, defined as the Pareto front.

The significance of the Pareto front in multi-objective optimization problems lies in reveal-
ing correlations between different objectives.

6.2 Adaptive m-objective s-constraint approach

The e-constraint technique, introduced by Haimes (1971), is a common methodology for
generating the Pareto front in multi-objective problems. This approach involves selecting
one objective function as the sole objective while treating the remaining objectives as con-
straints. The Pareto front’s diverse elements can be visualized using different bounds. The
e-constraint technique operates by solving the single-objective problem with generated con-
straints, defined as opt(f, ¢, 7). For the case of maximizing all objectives in an m-objective
scenario, the e-constraint problem is formulated as follows.

maximize f(x) = (fi(x), ..., (X)) (18)
subject to

& < fi(x) <& Vief2,....m}, 19)

xeX. (20)

Initially, various sub-regions of the optimal space are explored to address the single-
objective problem, leading to the identification of Pareto optimal solutions. Subsequently,
lower and upper constraints for each objective function are established, and optimal values
for epsilons are determined. In this process, the solution algorithm presented by Laumanns
et al. (2006) is employed to discover the Pareto front and determine the optimal facility
locations selected to serve downstream facilities. The pseudo-code of this approach is shown
by Fig. 3.

7 Numerical experiments
7.1 Numerical solutions

To validate the formulated mathematical model, a series of numerical experiments are con-
ducted, utilizing random samples across small, medium, and large scales. For simplicity,
stochastic parameters are assumed to follow a uniform distribution function. Following the
generation of these numerical values, the model is solved using the CPLEX solver in the
GAMS software version 44.3.0.

The solution approach employed is the adaptive m-objective e-constraint method within the
GAMS environment, facilitating the determination of Pareto solutions. Comparative analyses
are performed on these solutions across various scenarios, considering different demand levels
from downstream facilities that influence the location of middle facilities and the quantity of
shipped products between them. Table 3 presents three distinct problems, representing small,
medium, and large-scale instances, each differing in the number of facilities, raw materials,
finished products, and transport modes within the supply chain network.
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Algorithm: Adaptive tri-objective e-constraint method
P:= @ (already found Pareto solutions); Q: = @ (already searched regions); ¢;: = (=0, ) Vj € {2, ...,m}

1

2 i=(P|+1)? {starting to count sub-regions}

3 ii=i—1

4 Ifi < 0 then stop {no new solution found}

5  (&¢") = getContraints(i, e, P) when e is a sorted vector

6 If[e €] € Q then go to step 3 {if the sub-regions are already searched}
7 xi=opt(f,&¢") {solve single-objective problem}

8 Ifx =null then Q:= Q U [g,€']; go to step 3 {if sub-region is empty}

9 IfdyeP:y>xthenQ:= QU [g€']; go tostep 3 {if solution dominated}

10 P:=PuUf{x}

11 Q:=QUlgf(x)]

12 e:= updateConstraints(f(x), e)

13 Go to step 2 {found new Pareto optimal solution}
Output: Set of Pareto-optimal decision vectors P

Function getContraints(i, e, P)
1 Forj = 2,3do

2  d:=imod (|P|+1)
. i—d
3=
4 g =g, {lower constraint of objective j}
5 e,f =€, {upper constraint of objective j}
6  End for
7  Return (g,¢&")
Function updateConstraints(y, e)
1 Forj = 2,3 do
2 ii=1
3 Whilee;, <y;do
4 ii=i+1 {search for insertion position}
5 End while
6 ¢= (ej], s € Vj» €y e ej“pm) {insert new constraint value}
7  End for
8  Return e: = (e,, e3)

Fig. 3 Pseudo-code of the adaptive m-objective e-constraint approach

Table 3 Number of each actor in the developed network (problem scale)

Problem N M w D C K R T 1 A B r
1 2 3 5 8 10 2 4 6 2 2 2 2
2 4 6 10 13 20 3 6 12 3 3 4 3
3 7 8 13 15 25 4 8 12 4 4 5 5

To introduce stochasticity into the problem, all parameters are assumed to follow a uniform
distribution function for simplicity. The lower and upper bounds for each parameter are
estimated based on experiential knowledge, and these values are compiled in Table 4.

Leveraging the parameter values outlined in Table 4, a numerical experiment is executed
in the GAMS software to derive optimal values for each objective. In each instance, a sin-
gle objective is transformed into a constraint, allowing for the determination of values for
all decision variables. Subsequently, the optimal value for each objective function can be
ascertained (Table 5).

The Pareto front can be constructed from the acquired results for each objective function,
elucidating the interplay between the two objectives. This quantification gains significance,
particularly in the presence of conflicting objectives. Table 6 showcases the values of Pareto

@ Springer



Annals of Operations Research

Table 4 Parameters distribution in the problem instances

Parameter Value Parameter Value

FSCy uniform(4000,10,000) dis g, uniform(4,5)

VSC fi uniform(50,350) Cap sy uniform(500,1200)
PCIS, uniform(10,50) Cap/gy uniform(1500,3500)
ORy; uniform(1000,2000) Demi; uniform(15,60)
MCkml uniform(1,6) Mk uniform(1,5)
TC§m1~ uniform(8,18) Efr uniform(0.1,0.2)

T C‘,"n wk uniform(10,24) ET, uniform(0.1,0.2)
TCﬁ)dk uniform(5,15) Tft uniform(1,2)

TCh uniform(3,10) v /2

HC fi uniform(2,9) B 108

BC fis uniform(20,30) - -

Table 5 Optimal values of the objective functions in different problem instances (pay-off table)

Problem Objective Objective function 1 Objective function 2 Objective function 3
1 minZ 775,680.967 3608.226 146.893
minZ, 1,609,119.084 3102.097 133.980
maxZ3 1,550,228.730 3635.309 213.009
2 minZ 3,418,316.519 20,706.138 465.176
minZy 7,383,897.964 16,647.045 424.927
maxZ3 7,646,911.340 20,398.735 637.826
3 minZj 5,162,697.151 35,637.390 860.797
minZy 1.163523E 4 7 28,467.704 799.513
maxZ3 1.097156E + 7 35,669.440 1335.375

points for each objective function in the three examined problems based on the eight Pareto
breakpoints.

Subsequently, with the identification of Pareto points, the Pareto fronts for each problem
can be delineated for distinct objective functions. Figures 4, 5 and 6 illustrate the Pareto
fronts for the three problems, respectively.

In summary, while different Pareto fronts emerge in the three distinct problems illustrated
in Figs. 4, 5 and 6, the overall trend of the Pareto fronts remains consistent as the problem
scales increase. The Pareto front in Problems 2 and 3 exhibits nearly identical patterns,
indicating that the interaction between objectives remains relatively stable with changes in
the problem scale concerning the number of facilities, products, and transportation modes.
Consequently, decision-makers can determine the optimal point on the Pareto front based on
available resources.

Analysis of the relationship between the first and second objectives reveals that increasing
costs results in decreased carbon emissions, a trend consistently observed across different

@ Springer



Annals of Operations Research

Table 6 Optimal values of the Pareto points concerning breakpoints

Problem Breakpoint Objective function 1 Objective function 2 Objective function 3
1 1 915,204.922 3160.749 152.859
2 909,627.947 3158.749 154.737
3 895,945.48 3240.645 165.485
4 847,146.98 3382.158 182.411
5 822,491.837 3502.006 183.252
6 818,492.13 3531.195 182.162
7 813,345.45 3554.457 178.385
8 808,508.081 3592.991 173.494
2 1 4,090,977.646 17,654.432 554.601
2 3,973,128.440 17,891.546 581.121
3 3,891,237.873 18,135.452 578.541
4 3,675,541.506 18,499.534 577.989
5 3,560,689.338 19,183.978 558.155
6 3,537,852.250 19,472.325 543.541
7 3,523,145.926 20,112.658 515.946
8 3,519,328.070 20,623.598 485.131
3 1 6,697,568.115 29,367.921 894.386
2 6,496,874.952 29,932.154 951.145
3 6,283,145.490 30,945.258 989.541
4 6,011,398.844 31,618.251 1066.64
5 5,885,998.016 32,068.572 1089.854
6 5,804,327.417 33,198.894 1118.841
7 5,712,235.252 34,097.259 1098.654
8 5,626,732.781 35,668.835 1068.392

problem scales. Additionally, elevating facility reliability leads to higher carbon emissions
and lower costs in the supply chain network. When prioritizing between increasing reliability,
achieving demand satisfaction, lowering costs, and minimizing carbon emissions, decision-
makers must carefully consider the trade-offs to optimize the supply chain network for lower
costs, enhanced customer satisfaction, and increased product deliveries while minimizing
disruption risks.

In this analysis, the Simple Additive Weighting (SAW) method is employed to identify
the best Pareto optimal solution in each problem instance. Three weights—0.45, 0.3, and
0.25—are assigned to Z;, Z,, and Z3, respectively. Subsequently, the objective function
values are normalized based on their types, and the final scores are presented in Table 7. The
Pareto optimal solutions are then highlighted in Figs. 4, 5 and 6, emphasizing the maximum
scores. For a more in-depth understanding of the application of SAW (Wang & Rangaiah,
2017).

The runtime of the solution code in GAMS experiences a notable increase when upscaling
the problem. Table 8 and Fig. 7 illustrate this exponential rise in the solution time, highlighting
the inefficiency of the proposed solution procedure for large-scale problems.

To assess the influence of different periods on the SCND, Fig. 8 depicts the number
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of established facilities within the middle three levels of the network for varying periods.
Concurrently, the figure illustrates the flow of finished products between these established
facilities, providing insights into the selection and establishment dynamics at each level over
time.

Following the categorization of the solution into six distinct time periods that influenced
facility selection, further analysis is conducted in Table 9. This analysis focuses on quantifying
the number of each product type transported from manufacturers to warehouses using various
modes of transportation. The table provides a detailed breakdown, offering insights into the
distribution and transportation patterns across different product types and modes of transport.

7.2 Sensitivity analysis

The effectiveness of the proposed adaptive m-objective e-constraint approach is evaluated
through a sensitivity analysis on the optimal values of objective functions. This analysis
explores the impact of fluctuations in the total demand of customers for a specific product
during a given time period (Dem.k;) on facility location and product shipment decisions
across the supply chain network. The sensitivity analysis is conducted simultaneously for
each problem scale, providing insights into decision-making trends.

For this analysis, the demand of customers is adjusted by decreasing and increasing it by
10 and 20 percent. The initial focus is on the smallest-scale problem at the eighth breakpoint.
It is observed that an increase in demand results in an overall increase in all objectives,
although the proportional changes differ across the different cases. The changing trends in
all objectives during demand fluctuations are summarized in Table 10.

Figure 9 illustrates the interactive trends between all three objective functions by analyzing
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Table 7 Pareto optimal solutions obtained by the SAW method

Problem Breakpoint Normalized value Normalized value Normalized value Score

of Z; of Z» of Z3
Weight = 0.45 Weight = 0.3 Weight = 0.25
1 1 0.883418 0.999367 0.834146 0.905885
2 0.888834 1 0.844395 0.911074
3 0.902408 0.974728 0.903046 0.924264
4 0.954389 0.933945 0.995411 0.958511
5 0.982998 0.901983 1 0.962944
6 0.987802 0.894527 0.994052 0.961382
7 0.994053 0.888673 0.973441 0.957286
8 1 0.879142 0.946751 0.95043
2 1 0.860266 1 0.954364 0.925711
2 0.885783 0.986747 1 0.944626
3 0.904424 0.973476 0.99556 0.947924
4 0.957499 0.954318 0.99461 0.965823
5 0.988384 0.92027 0.96048 0.960974
6 0.994764 0.906642 0.935332 0.953469
7 0.998916 0.877777 0.887846 0.934807
8 1 0.856031 0.834819 0.915514
3 1 0.840116 1 0.799386 0.877899
2 0.866068 0.98115 0.850116 0.896604
3 0.895528 0.949028 0.884434 0.908805
4 0.936011 0.928828 0.953344 0.938189
5 0.955952 0.915785 0.974092 0.948437
6 0.969403 0.884605 1 0.951613
7 0.985032 0.861299 0.981957 0.947143
8 1 0.823349 0.95491 0.935732
Table 8 Solution time for
different problems Problem 1 2 3
Solution time (seconds) 18.67 170.14 625.17
Fig. 7 Solution times comparison 200 Solution times comparison
,g 600
£ 500
£ 400
5 300
5 200
S0 .
o —etttt
1 2 3
Problem
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Fig. 8 Schematic view of the solution obtained for Problem 1

changes in their values between two objectives separately.

The results indicate that an increase in demand leads to an increment in total costs, total
emissions, and total reliability. However, the increase in the objectives varies with a specific
percentage of increase in the total demand, and the total cost experiences a lower fraction
of increase. The reason for this increase is that the higher the demand, the more the number
of products transported between facilities, and the variable setup cost in the first objective
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Table 9 Amount of transported products from manufacturers to warehouses in Problem 1

Period Product Transportation mode * Manufacturer Warehouse
1 2 3 4 5
1 1 1 1 3 46 50 38
2
3
2 1 14
2 8
3
2 1 1 35 36
2
3
2 1 34 22 10
2
3
2 1 1 1 32 30
2 47 43
3
2 1 21
2
3
2 1 1
2 33 13 27
3
2 1
2 14 16
3
3 1 1 1 3
2 33 37 23 16
3
2 1
2 50 13
3
2 1 1 35 23 42 23
2
3
2 1 39 35
2
3
4 1 1 1 32
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Table 9 (continued)

Period Product Transportation mode * Manufacturer Warehouse
1 2 3 4 5
2 21 16 18
3
2 2 1
2 38
3
1 1 1
2
3 48 47 19
2 2 1
2
3 33 43
5 1 1 1 22
2
3
2 2 1 14 48 38 18
2
3
1 1 1
2
3 41 38 17 13
2 2 1
2
3 24
6 1 1 1 45
2
3 20 14
2 2 1 24
2
3 36
1 1 1
2
3 48
2 2 1
2
3 24 16 16 36

*Transport mode 1: Road transportation; Transport mode 2: Non-road transportation
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Table 10 Sensitivity analysis of the objective functions against demand parameter

Objective function

Changes in demand functions

— 20% — 10% 0% +10% +20%
1 669,146.257 749,687.412 808,508.01 933,132.920 984,236.482
2 1686.435 2261.020 3592.991 3931.164 4883.924
3 154.095 168.871 173.494 183.252 183.945
Fig. 9 Sensitivity analysis of the Sensitivity analysis
objective functions against 1200000 6000
demand fluctuations 1000000 5000
800000 4000
< 600000 3000 §
400000 2000
200000 1000
0 0
-20%  -10% 0% 10%  20%
Change interval
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(a) First vs. second objective
Sensitivity analysis
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function is increased accordingly. Besides, total purchasing, transportation, and warehousing
costs increase when more products are transshipped. A lower fraction of the decrease is
illustrated when analyzing the objective of minimizing carbon emissions. Expanding the
flow in the supply chain network increases the emissions due to different operations. For
instance, an increase of 20% in demand results in approximately a 54% increase in total
emissions. In this regard, practitioners should prioritize a trade-off between fulfilling the
demand of downstream facilities and minimizing carbon emissions.

A notable surge in the total expected products distributed occurs when the demand
decreases by 10%, primarily due to the exponential nature of the reliability function. A
reduction in the number of shipped products across the entire supply chain leads to dimin-
ished investments in reliability-related objectives for facilities. This is because serving fewer
downstream facilities or delivering fewer products doesn’t necessitate an extensively reliable
system. In the case of a 20% reduction in demand, the reliability-related objective experiences
a 12% decrease, emphasizing the importance of maintaining reliable service. Conversely, an
increase in demand correlates with a more reliable supply chain. A 10% demand increase
doesn’t alter the reliability-related objective, while a 20% increase results in only a marginal
uptick in the reliability function. Essentially, the reliability function remains close to its opti-
mal value, suggesting that facilities need not significantly enhance their reliability-related
objective when facing larger order sizes.

Examining the influence of demand across the three discussed problems aims to assist prac-
titioners in striking a balance between diverse objective functions amidst fluctuating demand.
Given the dynamic nature of demand, its effects on total covered distance, production plan-
ning, and logistics decisions become pivotal. Consequently, understanding demand behavior
and its impact on conflicting objectives enables managers and supply chain experts to strate-
gically position facilities and navigate optimal trade-offs, mitigating disruptions effectively.

8 Discussion

This study addresses a significant challenge in the literature by incorporating green and
reliability considerations into facility location decisions. The research highlights that adher-
ing to green and reliability regulations not only fulfills environmental responsibilities but
also enhances the efficiency of network design. The model developed in this work spans
three dimensions, capturing the interplay of economic, environmental, and reliability fac-
tors. Additionally, the study explores the impact of dynamic demand on these objectives
through a Pareto optimality approach. It is noteworthy that adjusting the facility location
may lead to a trade-off, where reducing relative costs could result in increased carbon emis-
sions. Importantly, this trade-off remains consistent regardless of the number of echelons in
the supply chain network.

This study makes a significant contribution to the existing literature by developing a five-
level Supply Chain Network Design (SCND) and making decisions for various facilities
and their connections. This multi-level approach adds realism to the problem, considering
the involvement of multiple actors in a supply chain network concurrently. Additionally,
the study introduces the novel aspect of addressing three objectives—cost-efficiency, carbon
emissions, and reliability simultaneously within a SCND problem. While the main findings
align with previous research in this area, the proposed solution algorithm stands out by
providing precise solutions to the problem.
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This study makes a substantial theoretical contribution by extending the insights from
empirical works, such as the one conducted by Amin and Zhang (2013), which focused on
facility location decisions in closed-loop supply chains under demand uncertainty. In contrast,
our research represents a pioneering effort as it concurrently incorporates considerations of
carbon emissions and reliability into FLPs. This unique model not only builds on existing
literature but also provides a comprehensive framework for addressing the joint economic,
environmental, and reliability aspects in the context of SCND. The presented model serves
as a compelling call to action for researchers and practitioners, encouraging them to explore
the intricate dynamics of environmental and reliability decisions within the facility location
paradigm, particularly when regulatory policies mandate carbon emission reduction and
ensure reliable product transportation between facilities.

From a practical standpoint, this study holds implications for decision-makers in sup-
ply chain management, emphasizing the critical role of facility location decisions in
simultaneously addressing economic, environmental, and reliability objectives. Specifically,
manufacturing facilities can strategically position themselves in locations that optimize acces-
sibility, minimize relevant costs, reduce carbon emissions, and enhance overall reliability.
This integrated approach becomes particularly relevant in responding to dynamic customer
demands. In times of emergencies, such as natural disasters or pandemics like COVID-19,
these insights can guide the establishment of emergency facilities to improve response capa-
bilities. Furthermore, the application of digital technologies, such as the Internet of Things
(IoT), emerges as a key enabler for efficient and sustainable supply chain operations, provid-
ing real-time data for decision-making.

In the decision-making process for the facility location problem and determining the
number of shipped products between facilities, decision-makers must consider legal and orga-
nizational factors that enable them to strike a balance between various scenarios. This study
formulates these scenarios based on the influence of customer demand on decision-making
regarding the sustainability and reliability of the Supply Chain Network Design (SCND).
Additionally, considerations related to circularity can be incorporated when choosing the
optimal scenario, emphasizing the facilitation of product flow between different facilities.

9 Conclusion

The optimization of materials flow is essential for effective network design and the estab-
lishment of facilities within a supply chain. Practitioners strive to address the materials flow
problem to streamline manufacturing, warehousing, and distribution operations, ensuring the
satisfaction of customer demands. Additionally, environmental concerns, particularly carbon
emissions, pose significant challenges in supply chain operations.

Another critical aspect of supply chain network design involves ensuring the reliability of
delivering raw materials and finished products to downstream facilities. Consequently, sus-
tainable development, encompassing economic, environmental, and social considerations,
becomes paramount. In this context, solving a Facility Location-Allocation and Inventory
Problem (FLAIP) to create a reliable and sustainable supply chain network gains significance.
This paper focuses on developing three objectives — minimizing facility location costs, min-
imizing total emissions, and maximizing reliability. The adaptive m-objective e-constraint
approach is employed to solve the mathematical model and determine optimal Pareto fronts,
addressing these interconnected objectives.
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It is crucial to acknowledge the study’s limitations. While the model accounts for setup
and transportation costs as influencing factors, other considerations, such as accessibility and
governmental regulations, are not explicitly addressed. Future research could delve deeper
into these factors to provide a more comprehensive understanding of facility location deci-
sions in the context of sustainability and reliability in supply chain networks. The future
research implications are outlined as follows.

e Advanced Forecasting Methods: Future studies could enhance the applicability of the
model by developing more accurate forecasting methods for demand. This might involve
using distribution functions with higher precision instead of assuming a uniform distribu-
tion. Additionally, exploring multi-attribute decision-making approaches, such as fuzzy
AHP and fuzzy TOPSIS, to rank suppliers based on their service level could be a valuable
extension.

e Coordinated Models and Contractual Relationships: Researchers may consider devel-
oping coordinated models that incorporate regulated contracts between different facilities.
Exploring collaborative gaming and comparing centralized versus decentralized scenarios
could provide insights. Future studies could also introduce financial considerations, such
as proposing trade credit periods for downstream facilities to stimulate demand and facil-
itate revenue accumulation. The study addresses carbon emissions but does not discuss
specific methods for controlling them in the supply chain network.

e Optimizing for Reverse Flow: A potential contribution to future research could involve
optimizing supply chain network design based on the possibility of reverse product flow.
Exploring return policies for defective raw materials or final products at various levels of
the supply chain could enhance customer service.

o Integration of Production and Inventory Processes: Integrating production and inven-
tory processes into the model could add novelty. Considering different methods, equipment,
and policies for producing and storing items in various warehouses based on product types
might significantly impact the cost and energy efficiency of the entire supply chain.

e Comparison of Multi-Objective Solution Methods: Researchers might explore and com-
pare various multi-objective solution methods, such as the augmented e-constraint method
and AWTM, against the proposed adaptive m-objective e-constraint technique to validate
its performance in greater detail.

e Investment in Green Technologies: Another potential extension involves investigating
the impact of investing in green technologies on reducing costs associated with carbon
emissions. For instance, comparing carbon emissions for different modes of transport,
especially when transporting materials using various modes, could be an insightful avenue
of research.
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