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Preface

The work done within the scope of this thesis, as ever, is just a little step along the path tow ards

longer term objectives. It is believed to �t in the general shift of natural sciences over the passed

couple of decades, towards the support of sustainable development and management of natural

resources, at a global scale and in a broader sense. Owing to this shift, the modelling of natural

obje ctshas bene�tted strongly from growing attention, the fruits of which are showing up in wide-

area earth observation systems, �green� engineering, genetic analysis and modi�cation techniques,

space programmes, and a wealth of other realms. The advent of boosting computing-power being

a critical precursor and a prerequisite alike.

As a �rst consequence, an ever higher lev elof modelling detail and accuracy has been pursued.

Secondly, consensus has gro wnamong scientists on the suite of developments required to ma-

terialise the desired shift: empirical exploration of natural resources needs to be swapped with

pr edictiveexploration. Key incentive is to bring in the dynamics, so as to get a handle on the

ruling dynamic process behaviour, rather than creating merely a more detailed description based

on current observation. Understanding the dynamic behaviour is also the key to turn descriptive

models in to pr edictive models. Figure 1�1 illustrates this. Proper evidence of this capacity is

shown for example in the Australian 4D Geodynamical Model (Price,1997, Cox et al.,1997, Hron-

sky ,1997,Mueller et al.,1998). Process-based dynamic modelling should thereby bene�t more

from the advancements in simulation techniques, such as genetic and ev olutionary simulation

approaches and the pow er of distributed computing pow er.F urthermore,concurrent engineering,

scenario development and rapid modelling tec hniques have accelerated the modelling cycle.

Modelling hasto be led aw ayfrom the domain of geometric modelling and brought to a higher

lev el of abstraction, thus turning it in to true scenario-driven, knowledge-based modelling. Ob-

ject feature-based modelling paradigms, analogous to what has become customary in engineering

and design, is bound to in vade natural sciences too. Editing will migrate from geometric and

topological manipulation directly on faces, edges, etc. to variations on a restricted number of

characteristic dimensions and constrained high-level variables. In natural sciences, where mod-

elling usually involv es shape reconstruction, editing often seeks to optimise inversion problems of

some sort, with observed data bearing knowledge of the physical parameters of the target object.

The use of reusable, adaptable pre-shaped objects, autonomous yet interacting, is a possible

solution reaching to that extend. In addition to merely the geometry and topology, more and

more features and functions can be prede�ned within these primitives, driving the simulated

static and dynamic behaviour of the instantiated objects within the framing model. Whatever

knowledge may be embedded, a model and its constituent objects can be further constrained as

more or more precise data becomes available. Of course, new modelling approaches shall remove

(at least in part) the apparent model mismatch betw eenmany of the current geometric and

numerical models.

An omni-potent modelling approach, enabling the aforementioned longer term objectives is still

lacking. Conventional geometric and topological modelling approaches, usually inherited from

design and engineering disciplines, are too immature to cope with the intrinsic shape complexity

of natural objects. Simulation is at the very heart of dynamic control. The model mismatch

with simulation can be traced back to a mismatch between geometric and topological require-

ments on the models that statistics, fractals, �nite element and (control v olume) �nite di�erence



method s need. Conversions into cellular decompositions or spatial enumerations are commonly

needed, probably requiring interpolation. Topology, all too often, is restricted to manifold topol-

ogy .Numerical accuracy and stability further narrow the geometric and topological modelling

freedom.

At the Netherlands Institute of Applied Geoscience, much in similar vein, we have launched the

idea of working on a new approach to subsurface modelling, considering the earth as a collection

of organisms or dynamic systems. A complex dynamic earth system consists of interacting

subsystems framed in a single structural and stratigraphical system architecture coined earth

ar chitecture. Earth architectures contain full subsystem relations in space, time and property

dimensions at all relevant geological scales. The various life cycle states of the subsystems change

over time under the in�uence of geologic events, the behaviour of other earth systems and human

acting. Hyper-sp atialdata structur es are used to describe and store collected a priori knowledge

(spatio-temporal and property constraints) in the form of parametrised, pre-shaped objects,

shapes for short. Shapes, collected in an earth catalogue, can be used to instantiate dynamic

systems within a model at various scales. A model, in this regard, is a geoscienti�c framework

framing all the shapes and their constraints and giving context and meaning to the embedded a

priori knowledge.

No suitable geometric primitive shape could be found for the complex subsurface objects, until

w e came across the concept ofα-complexes. α-Complexes appear to be able to bridge the gap be-

tw een point set topology and complex polyhedral objects, o�ering various handles for parametri-

sation, subjectivity-through-weighting, constraints, and pre-storage of subdivisions. They o�er

the necessary implicit control through parameter variation that paves the w ayfor mature and

unimpeded knowledge-based subsurface modelling. On top of that, they show descriptive lucidity

and completeness. At present, α-complexes are singled outas the principal candidate to de�ne

the pre-shaped primitives in the earth catalogue. T rainingdata sets can be used to equip them

with multi-purpose sampling data point sets, best-guess initial weight sets and sensible domain

constraints on the α-ranges.

The eventual longer-term objective is to implement shapes by creating a collection of distributed

objects, together making up a living subsurface model. Every object obeying pre-stored rules,

within the regime of the Earth Architecture, but further capable of ev olving according to an y

simulation scenario it is fed with. F urtherconstraining data, typically seismic, can be brought

in to driv ethe in versionof model and observation. Planned acquisition can be used to obtain

targeted reliability at minimum cost. The idea of creating a lively collection of interconnected

natural objects is steadily growing towards realit y.In the forthcoming years, technical develop-

ments in the area of distributed computing are foreseen to become mature enough to facilitate

the required technical en vironment. A modelling system like this bears all the characteristics

needed for concurrent modelling, which, in turn, is believedto bring about important costsa v-

ings inducing economic exploration and exploitation of less trivial natural resource occurrences,

and spiralling further.



Chapter 1

Introduction

1.1 Natural objects

The vast majority of all the objects in our living en vironments are natural objects, endow ed

by nature in an evolutionary development process. They di�er from men-crafted engineering

obje cts (or: artifacts) in a number of w ays. �Fitness for purpose�, tec hnical limitations and a

striv e for design and production cost minimisation typically induce a smooth and regular shape

for engineering objects, whereas natural objects generally possess a �rougher� shape. Natural

objects are studied, among others b y means of destructive and non-destructive observation.

Occasionally, the shape of natural objects is so complicated, that only a sampling data set, such

as a CT-scan, a measure robot output or a seismic re�ection image can accurately represent them;

other descriptions are either overly elaborate, complex or virtually impossible. A sampling data

set typically consists of 2D contour data, 2D cross-sections, 2D or 3D sample data points, and

the lik e. The human mind has the perceptual capability of constructing an object out of these

points, but in terms of computer representations, it is only through a shape reconstruction recipe

that the observed object's solid model can be attained. For instance, through triangulation or

spanning of the convex hull. Moreover, evolving (�living�) objects may fall apart in to multiple

parts, e.g. moving clouds. As a result, creating or reconstructing natural objects using computer

models is complicated.

Engineering objects are studied and crafted in engineering sciences, arc hitecture and in-

dustrial design. In contrast, natural objects are studied primarily in natural sciences. Examples

are medicine, biology, earth sciences, astrophysics, etc. In engineering sciences, engineers and

designers came to understand how to unambiguously describe engineering objects in terms of

boundaries and volumes over the past couple of decades. Today, using prede�ned primitives,

sweeps, extrusion and part-whole descriptions, fairly complex objects and assemblies can be

created. Chie�y relying on explicit descriptions of geometry and topology. Practical imple-

mentations exploiting these capabilities, ho w ever, are often limited to engineering objects and

assemblies, with regular mathematical properties. As soon as natural objects are to be modelled,

many such practical approaches fall short. The more so if modelled objects of this type are to

be submitted to some numerical analysis tool, e.g. for stress analysis. Also, many of today's

modelling approaches are incapable of handling changing topologies. Problems of this kind are

encountered regularly in clinical imaging and medical scene analysis, subsurface modelling, im-

1
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Figure 1�1: abstraction levels in the creation and use of models and its potential meaning in terms of

modelling capabilities. The lev el of understanding gro ws over time, with an indication of the present

state.

age analysis and a wealth of other geometry-dominated natural object recognition and modelling

problems.

The above contrast between natural and engineering objects does not inasmuch imply a

w atershed as it suggests; measuring robots probing an engineering object will produce a �noisy�

data set, while a raindrop may resemble a perfectly smooth object. But generally, contrary to the

�free form� modelling world of engineering, natural sciences deal almost exclusively with observed

sampling data sets followed by shape reconstruction. Often,the object of interest cannot be

isolated from its hosting environment; it has to be studied in situ, i.e., while remaining embedded

in its hosting �background�. When determining the shape of a carcinoma, for example. Even

on a detailed medical image, telling sane tissue apart from damaged tissue is far from trivial.

Imperfections in the observation and inhomogeneous hosting material can blur the shape to

be reconstructed. This is another distinction betw eenengineering design and natural object

modelling: it tak esdata processing and interpretation skills and craftsmanship to shape natural

objects on the basis of imperfect observations. T osome extent, lacking data can be replaced

by a-priori knowledge, quali�ed guesses or corrections to the sampling data set; the scanned

data set of a human heart may sho wa �hole� near the outlet to the aorta but one may safely

assume that the patient would have passed aw ay if it were really there. The handling of hosting

background material is also complicated. A mere data classi�cation is generally not su�cient.

Usually, location, pro ximity and spatial and temporal inter-event information has to be taken

into account as well. Chapter 3 will elaborate on this.

For a correct understanding, a more adequate notion is needed of what is meant b y the

shape and the model of a natural object. The object's shape will be discussed mainly in terms

of geometry and topology. The desire to come up with a crisp de�nition of a natural object

is �rmly felt here. But this w ouldset us up a mighty endeavour: it is virtually impossible to

cover the natural objects subject to study in natural sciences with a single succinct de�nition.

A number of common characteristics can be enumerated, though:

• Identity
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Figure 1�2: abstraction levels in the creation and use of models and its potential meaning in terms

of modelling capabilities for earth science applications. The �gure sketches the relativ ee�ort of pure

geometric modelling versus more abstract modelling approaches, lik e parametric (variational) subsurface

modelling and knowledge-based modelling (after [SM94], with modi�cations).

A natural object has an identity admitting it to be pointed to, referenced, etc., as it di�ers

b y a (limited) number of properties from other objects.

• Finite in space

A natural object is assumed to be �nite in space. It can be sampled by a �nite set of

sample points.

• Finite in time

Natural objects, in the sense of living organisms ([RG96]), can grow together, assimilate,

connect, encapsulate one another, etc. On the other hand, natural objects may crack, wear,

be torn apart, split, erode, dissolve, change phases, be expelled from hosting material and

indeed vanish completely. Ideally, a dynamic model of a natural object has the capacity

to re�ect all these state changes in a genuine birth-life-death cycle. Natural objects are

therefore not necessarily connected and may have holes of any topological nature. Neither

are all (parts of an object) necessarily convex (too be explained further down).

• Compound objects

A natural object may in fact be a compound of multiple objects or object parts. One

such natural object compound may consist of a target object embedded in some hosting

material. Another example is a multi-phase system of immiscible �uids and gasses (e.g.,

[BB91, ABBM94, T ak98]). It w asalready noted that in practice the separation betw een

the various compounds may be intangible indeed.
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• Roughness

Natural objects are rough. Owing to their shape, surface textures and the impact of

ongoing natural processes, surface curvatures may spread across a wide range. This is in

fact the feature that makes the modelling of natural objects a scale-dependent process and

limits the meaning of fractal descriptions (e.g., [HB94]).

• Dimension

In this thesis, a natural object basically possesses a �nite volume and mass, so as to

endorse a ph ysicalin terpretation. Still, this doesn't obstruct the dimension from being

raised to dimensions beyond three if modelling operations desire so. More on this, shortly.

Of coarse, there's much more to say to common characteristics, but these are the prevailing

ones in this context. Although objects can be recognised by interpreters within sampling data

point sets, turning them into solid object representations with a correct geometry and topology

is far from trivial. T oturn a geometric model into a numerical model or even a process model

often requires that the geometric model is further simpli�ed, to allow proven numerical schemes

to be applied. Abridging the gap between the world of observations in points and the world

of solid geometric and numerical modelling therefore takes a revision and extension of classical

tools mostly inherited from the domain of CAD. One new development capable of providing an

answer to just those questions is formed by the α-complex.

1.2 New developments based on α-complexes

The modelling of natural objects is a realm where α-complexes came up-front as a new and

in tuitive w ayof modelling. A w aitinga more concise de�nition and roughly speaking, an α-
complex may be understood as a triangulation governed by a single geometric parameter α,
giving rise to the term α-complex. See the elementary and real data example in �gure 1�

3 and 1�5, respectively . A triangulation of a �nite point set in d-dimensional model space Ed

is a tessellation of the underlying convex space spanned by that point set with a collection of

connected non-overlapping simplices (points, edges, triangles, tetrahedra, ..., depending on d).
The points become vertices of the simplices in the triangulation. Unlike a triangulation, an

α-complex may be an �incomplete� tessellation, in the sense that part of the underlying space

may not be covered by simplices. It th us resembles something in between the point set itself and

the triangulation of that point set. What exactly, depends on α that determines ho wclose the

α-complex is to the triangulation. A low value of α yields an α-complex close to just the point

set, a higher value of α results in a complex which matches or nearly matches the triangulation.

The e�ect of a variation of α is that a certain degree of coarseness can be obtained. Figure 1�3

shows this, with α increasing from left to right. In the leftmost picture of �gure 1�3 the α-
complex is separated, with two exteriors and three interiors. The bounded exterior in the centre

is an internal hole, called a void. In the centre left picture, the void has become �lled, with one

unbounded exterior remaining. The separation has been lifted b y a singular edge (observe the

solid edge), connecting both parts. Interiors remain separated. In-�lling of the boundary cavities

starts. In the centre right picture the separation is completely lifted and only one interior is left.

In the righ tmostpicture of �gure 1�3, the α-complex grows towards the triangulation and its

α-shape (the α-complex without internal edges) tow ards the convex hull. The sliver-like triangles

near the boundary of the convex hull enter the α-complex last. In contrast with triangulations,



Section 1.2: New developments based on α-complexes 5

a single α-complex may consist of multiple (separated) parts. It doesn't need to be connected,

nor convex. All pictures in �gure 1�3 show a single α-complex.

Figure 1�3: example of a simple α-complex. The data points are located on a regular grid, but are

themselves irregularly spaced. The α-value (proportional to the squared diameter of the sphere) grows

left-to-right from low to high and so do the edges that en ter the α-complex. Gray-�lled triangles and

solid edges belong to the α-complex. The dashed lines indicate the underlying triangulation.

A formal de�nition of an α-complex will be given in chapter 2. E�ectively, the α parameter

in�icts an upper bound on the length of the edges in the triangulation. Edges exceeding this

upper bound drop from the triangulation. What remains after this α-�ltration is an α-complex.

Repeating this process for varying α yields an entire family of α-complexes, called the α-family,

generated by the same point set. It is somewhat harder to understand the impact of α-�ltration
on triangles, tetrahedra, etc. This will be explained in chapter 2.
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Figure 1�4: increase of area with growing α. F or a monotonically increasing α, the area of the α-
complex increases monotonically too. For α → αmax, the area of the α-complex approaches that of the

triangulation.

The underlying space occupied by an α-complex is called an α-shape. It is an α-complex

without internal edges. F or example, the most completeα-complex is the triangulation, for which

α is high enough to prevent any edge from being dropped. No edge is �ltered o�. The underlying

space occupied by the triangulation is the convex hull and for this α, the corresponding α-shape
is identical to the convex hull. If the partitioning of the underlying space is irrelevant, α-shape
can also be read where α-complex is written. In the absence of crisp criteria to prefer one α-
complex over the others, selecting an α-value is somewhat subjective. T ypically, modellers will

attempt to re�ect their a priori c onception in the eventually preferred α-complex.

In the context previously described, α-complexes o�er various advan tages over for example

triangulations, tessellations and hulls, at little extra cost. Like triangulations, tessellations and
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Figure 1�5: example of an evolving α-complex with α increasing left-to-right: left: α = 3.096634e+ 01,
yielding a complex that is little more than just the point set with a few singular edges, gradually developing

into right: an overly fat (α = 1.805128e + 03) complex obscuring all the �ne details of the face and

the nec k, almost grown into the convex hull. The most appropriate α for the details of the face is

approx. α = 1.444991e+ 02, the value of the cen tral picture (data set by Silicon Graphics, number of

points N = 2780).

convex hulls, they are de�ned (or: generated) b y an input data point set. But unlike triangula-

tions, tessellations and hulls, they o�er the additional �exibility to capture holes and separations.

The use of α-complexes can signi�cantly simplify the modellingof natural objects and improve

the eventual modelling results. This is intuitively seen from the examples and will be made ex-

plicit in the forthcoming chapters. The α-complex may also be merged with other triangulated

geometries, or may be transcribed into an �ordinary� solid.

The sample data points can be attributed a weight ; a real-valued magnitude expressing

the dominance of that point over other points. Weight acts as a bias in addition to α. With

w eights, the evolvement of an α-complex is not only determined by proximity (as re�ected by

the α-value), but also by dominance. In a neighbourhood of points with higher weights, the α-
complex tends to develop at low erα-values, whereas negative weights discourage the α-complex

to develop. Sometimes, a distinctionis made bet w eennon-weighted and weighted α-complexes.

Here, that distinction will not be made and α-complexes herein shall always be weighted. Of

course, all weights can be chosen equal, possibly zero. Weighting, on top of variation of α, makes

�special modelling e�ects� possible, and is in fact the key to practical applications. Chapter 4 is

devoted to weighting.

1.3 Previous work

The concept of α-complexes is mainly due to Edelsbrunner ([EKS83, Ede87, Ede92, EM94])

and builds on the results of regular triangulations of weighted point sets (e.g., [Lee91, ES96]).

Weighted points are commonly in terpreted as spheres and balls. The study of the sphere and

ball intensi�ed in the early tw entieth century, in the research of the geometry of complex num-

bers. Classical such studies can be found in [Coo16, Bra47, Max52]), with more recent w orkin

[Sch79, Hah94, BP94, Bix94, Bix98]. The study of α-complexes �nds its roots in, among others,

the study of simplicial complexes. Good starting points are [Cox73, Mun75, Mun84]. Paoluzzi

et al., in [PBCF93], pointed out the suitability of multi-dimensional simplicial complexes for ge-

ometric modelling. They did not encompass, however, non-regular complexes, like α-complexes.

Applications of simplicial complexes to geological modelling were also reported in [ABB+97].

Literature on w eighting strategies is sparse; the theory of weighting is fairly w ellunder-

stood, particularly in conjunction to sphere-geometry (e.g., [Aur87b, AI87, Ede87, Ede92]), but

the use from the modellers' perspective is faintly addressed ([AAL+99, Ger98]). The mathemat-



Section 1.3: Previous w ork 7

ical foundation of representation schemes is mainly due to Requicha and Voelcker ([Req80]). In

more recent work, Kalay, in [Kal89] further works out a number of details of various representa-

tion schemes. F urther, refer to [Req83, Zei91].

Taking a somewhat wider scope, several k ey solutions, contributing to the concept of

α-complex-modelling, can be identi�ed. Firstly, foundations of computational geometry w ere

laid do wn by Preparata and Shamos in [PS85], Edelsbrunner in [Ede87], Aurenhammer in

[Aur87b, Aur87c, AI87], De Berg et al. in [dBvKOS97], and many others. Mehlhorm et al. in

[MMN+97] discuss many general dimension implementation details. Lee in [Lee91] described reg-

ular triangulations, fundamental to the derivation of weighted α-complexes. A profound overview

of the history and the current state of V oronoidiagrams is presented in [OBSC00]. Recently,

Aichholzer et al. in [AAL+99] explored skew Voronoi diagrams, an approach in which the basically

scalar w eight is replaced by a weight vector. A valuable source for geometric graphs in general

is Gross and Tucker [GT87] and O'Rourke [O'R94]. Brisson in [Bri90] discussed implementation

details of the �cell tuple�; general dimension geometric and topological data structures.

Regarding the application of α-complexes, not so muc h can be found in literature. Edels-

brunner et al., in [EFL98], described an application of α-shape-modelling to macro-molecular

docking and Gerritsen, in [Ger98] described applications in earth sciences. Tentative appli-

cations to h yper-spatial modelling have been described in [GR97, Ger98, GVdWV00a]. The

latter also ga vemore detailed descriptions with respect to weighting strategies and the e�ects

of w eighting in general. Gerritsen et al. also presented a method to carry out �nite element

computations over α-complexes, using a commercial �nite element analysis package in [GZT01].

P arameterisedobjects were used as template objects in shape reconstruction for an application

in the reconstruction of coronary vascular trees in [SdGN+90].

Shape theory from a topological point of view can be found for example in [MS82]. Stochas-

tic geometry is discussed among others by Diggle in [Dig83], Stoyan and Stoyan in [SS94], Tijms

in [Tij94], Stoyanet al. in [SKM95], Barndor�-Nielson et al. in [BNKVL99] and Ok abe et al. in

[OBSC00]. Marked point processes (to be discussed in chapter 4) is discussed, among others by

Stoyan et al. in [SKM95] and Sigman in [Sig95]. Statistical shape analysis is discussed by Dryden

and Mardia in [DM98]. Scale-space analysis (chapter 3) is discussed by Ritter and Wilson in

[R W96] and Lindeberg in [Lin94]. A recent survey paper on shape matching was presented by

V eltk amp and Hagedoorn in [VH01].

F ractalsha ve been applied for simulation purposes, but mainly in cases where constraining

data was absent or sparse (e.g., [HB94]). F ractals generally provided (too) little control over the

shape reconstruction. Another development is Medial Axis Transform (e.g., [Ogn94], [OBSC00]):

a shape description that de�nes in ternal region and boundary information, at various scales.

MAT is well-suited for rough boundaries but not for internal holes and separations.

A pioneering attempt to reconstruct an ordered sequence of natural subsurface objects

within a constraining framework using knowledge-based modelling was presented by Simmons in

[Sim92]. Simmons' problem solver is based on a �generate-test-debug� cycle, bearing similarity

with the approach presented in chapter 3. One of the prime contributions from his w orkis

probably the abilit yto generate geological scenarios (in this context: a possible history to the

given present geology in terms of geological events) and evaluate them against a dynamic set

of constraints. In the case of failure, the fault ypart of the scenario is repaired after which

the next cycle is en tered. In parallel, but independent from Simmons, Flewelling, Frank and

Egenhofer [FFE92] developed a 3D-GIS environment in which scenarios can be examined that
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might explain how the current state came into being. For low-complexity geological problems, see

also Meseguer [Mes89] and Kumar [Kum92]. V ariational geometry and its relation to knowledge-

based modelling is discussed for example by Woodbury in [Woo90], Taylor in [Tay92], Tong and

Sriram in [TS92b] and Syan and Menon in [SM94].

1.4 Objectives

The primary objective of this thesis is to explore the merits and the value of a modelling approach

with α-complexes and to verify and validate its model description correctness for the modelling

of subsurface objects and natural objects in general within the light of longer-term objectives

of high-abstraction, knowledge-based modelling. Assumptions are that observed data points are

available,along with property value sets for the objects to be modelled and that a solid model

description is the target. The description must be geometricly and topologically adequate to cope

with the abundant lev el of detail of natural objects.Also, numerical modelling must be possible

using the same model. Moreover, the object model description shall support static behaviour,

dynamic behaviour and process modelling. The modelling of subsurface objects shall be put

in the context of in version-based,possibly iterative, constrained forward modelling. A formal

evaluation of the α-complex as an object description and as a representation is considered critical

for a successful embedding of such a modelling approach with existing and legacy modelling

environments.

These objectives demand an evaluation study more than anything else, with emphasis on

practical value. Therefore, the focus will be on modelling aspects, not on geoscience details, not

on mathematics and not on implementation details. The use of mathematics will be instrumental,

in support of formalisation of relevant aspects of the evaluation.

1.5 Scope

1.5.1 Planned acquisition

Planned acquisition is an acquisition strategy for sampling data points by which a coarse model

is step wise re�ned by determining, sampling and adding only those points that further contribute

to some optimised model. The process is stopped when the desired optimisation level is reached

or further improvement ceases to occur. The optimisation level is usually a trade o� between

acquisition cost and increase of quality. Planned acquisition, for instance driven by a step wise

re�ned reliability model is foreseen in the gathering of sampling data points. Planned acquisition

is mostly based on sto chastic geometry. This topic has gained muc hattention, lately . See for

example [Dig83, SS94, Tij94, SKM95, RW96, DM98, BNKVL99, OBSC00]. The subject by itself

is beyond the scope of this thesis. The main issue here is that sampling data points may be

added batch-by-batch, as local demands require. The collection of training data for instance,

may assist in deriving typical scenario's, parametrised object templates (primitives) and typical

values. A few remarks regarding planned acquisition will be made in chapters 3 and 4. The

modelling approach to be designed shall not obstruct its introduction.
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Level Geometry Topology Properties Applications

6 dynamic dynamic dynamic virtual universe, paleo-reconstruction mod-

elling, complex, geomechanics driven basin

analysis, dynamic virtual reality models

5 dynamic dynamic static simulation and prediction models, like geome-

chanical studies, basin analysis, simple paleo-

reconstruction modelling, simple virtual real-

ity models

4 static dynamic static simulation and simple prediction models, fault

systems studies, simple (hydraulic) fracturing

studies, crack propagation studies and 3D GIS

applications

3 dynamic static dynamic simple prediction models, long geological

timespan simulation models, e.g, compaction

studies or migration studies, hydrocarbon gen-

eration and diagenesis studies, accurate reser-

voir depletion studies, or advanced groundwa-

ter and polution studies and 3D GIS applica-

tions

2 static static dynamic state-of-the-art simulations, usually resulting

in time series of properties developments. For

example, production monitoring and "ordi-

nary" GIS applications

1 static static static description of the universe, current status

T able1�1: classi�cation of geometry and topology in levels of complexity with application examples

tak en from earth sciences. Up to level 3 is common ground in today's geoscience modelling applications,

from level 4 on w ardis the target for tomorrows geoscience needs. After Ritsema and Floris, [RF94],

modi�ed.
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1.5.2 Dynamic geometry and topology

A natural object model is a living thing and the model shall be dynamic, i.e., allow for a dynamic

geometry and topology and time-dependent property values. As stated earlier, natural objects

can assimilate, erode, etc. As a consequence, dynamic geometry and topology are required

to accommodate simulation of this kind of dynamic behaviour. Table 1�1 peeks into a useful

levelling of the various degrees of �dynamics�, to recur further down this thesis.

1.5.3 Hyper-spatial modelling

F ollo wing pioneering approaches in physics and statistics, there is a steadily growing tendency in

natural sciences to endow models with an increasing number of dimensions. Three dimensional

models extend to four dimension for time, usually referred to as spatio-temporal models (e.g.,

[FFE92, ABB+97, OBSC00]). Models extended with an arbitrary dimensional parameter spac e

are usually referred to as multi-dimensional or hyper-sp atialmodels. In mathematics, the term

general dimension is customary to indicate arbitrary dimension.

Figure 1�6: principle of hyper-spatial modelling on strati�ed data in hyperspace. Left: three classes

(re�ected by sphere radius) of data randomly distributed in space. Centre: after augmenting model space

by the 1-dimensional radius parameter space, the mixed classes of data appear as strata in hyperspace.

Right: an α-complex of this data set will naturally �nd three clusters.

Why hyper-spatial modelling? The motivation to augment geometry space with parameter

space is in fact manifold (also see �gure 1�6):

• It allows for a generic geometric and algorithmic approach, regardless the number of param-

eters. Hyper-spatial modelling leads to a mathematically coherently integrated approach

to various sorts of data: geometry, topology, time, properties, guesses, uncertainties, . . . .
It makes data commensurable, in a mathematical sense. In a sense, parameters become

geometrically coupled/un-coupled in parameter space. Great prudence must be exercised

with respect to causality and time.

• It allo ws for generalisation of property-ruled geometry, thereby supporting fundamental

operations, suc has projections and in tersections and level set cut-o�s and fundamental

objects, such as graphs and triangulations.

• It supports generic d-dimensional �total space� in versionschemes, with d-dimensionalreal

data sets, including the same parameter space. The inversion itself is beyond the scope of

this thesis and will be further disregarded.
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• Having a d-dimensional topology at hand, greatly facilitates the k-dimensional constraints

solving frequently required in order to obtain meaningful or (physically) possible solutions.

• It is easier to work with "holes" in the d-dimensional object in a geometric sense than with

lacking, out-of-range data in the "select-from-database" approach.

• With the advent of reliability analyses (e.g., for Decision Support Systems) and error

analysis it is no longer su�cient to create iso-surfaces by running property-based queries

over a database. By creating reliability contours overa iso-surface, it is easily seen that

reliability constraints lead to holes in the iso-surface. The required set of data may well be

a set of unconnected volumes, rather than a surface. F or generalised queries like these, it is

muc hmore convenient to rely on an spatial engine based on local h yper-spatial topology.

Speci�cally in the ev en tthat a sligh tmodi�cation in the query induces a rerun of the

database query.

• Non-manifold topologies can be �unrolled� such that they become manifold, by adding more

dimensions. The practical meaning of this is that systems of which the topology changes

over time, can be unrolled in time, such that their history is preserved. For example, when

studying the morpho-dynamics of a �caniballistic�, labyrinthine meandering river system.

• Hyper-spatial shapes facilitate the storage of pre-de�ned grids, triangulations, hulls, α-
complexes, and, related to the grid size, proper time steps for iterative processes. A

�oating-scale geometry and topology can be implemented, operating silen tly within the

scope of a single object, optimised for that object at that scale, without user intervention.

The same holds for up-scaling of properties and parameter values.

Many aspects mentioned above ha venot yet been discussed, but will be in the forthcoming

chapters, as far as directly linked with α-complexes. Others, suc h as visualisation of hyper-

spatial models are considered beyond the scope. The discussion on the role of time has two sides

to it, neither of which will be discussed in detail in this thesis:

1. A mathematical side: Is spatio-temporal space Euclidian?

2. A philosophical side: What is the e�ect of adding the time-dimension to space with regard

to logic, causality, reversibilit y,etc?

For an answer on the �rst aspect, see for example [Cox73, Ban90]. F orthe second, refer to a

fairly verbose treatise in [Rei58, Ruc82, Gar88].

General dimension comes do wnto low general dimension in practical implementations,

due to the many restrictions imposed by time and space complexity. Hyper-spatial modelling by

itself is a huge research topic in its own right that can only be pondered upon in this thesis.

1.5.4 The geometric description

The geometric description in this thesis is always polyhedral b y nature (e.g.,[Cox73, PS85,

Ede87, Kal89, PBCF93]). Description is either b y means of its in terior, its boundary or b y

its constituting parts. Geometry is not necessarily deterministic. Moreover, sto chastic geometry

([Dig83, SS94, Tij94, SKM95, BNKVL99]) has advanced by leaps and bounds in the past decade.
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Stochastic geometry yields a set of more or less likely models, rather than just a single deter-

mined one. Deterministic geometries can also be based on or constrained by stochastic observed

data. A stochastic approach is also the key to (geometric) reliability analysis. Shape theory and

statistical shape analysis ha veprogressed in a similar manner during the past decades. Mainly

under the in�uence of image pattern recognition, feature extraction, biometric recognition, etc.

[DM98]. Also see [RW96, Lin94, VH01].

1.5.5 Topology

Geometry is a much more widely understood term than topology. Some work ers ([Mun75, Kal89])

refer to topology as �rubber sheet geometry�: move around the vertices, as long as the connectivity

doesn't change, the topology remains the same. Shape theory from a topological point of view

can be found for examplein [MS82]. A good source is also [Edg90], and the classical references

for topology are [Mun75, Mun84]. Manifold as well as non-manifold topology are considered

with natural object models, and regularisation will be considered to make topology manifold on

a part-by-part basis if necessary. This topic will be further discussed in chapter 2.

With α-complexes, topology is sort of implicit. There is no need to explicitly describe

the topology. It is uniquely determined by the sample points, the weights and the α-value.
α-Complexes inherit their topology from simplicial complexes, to be explainedin c hapter 2.

1.5.6 Numerical modelling

The approach in this thesis will be to use the triangles, tetrahedra, etc., of the α-complex and

use them as grid elements in �nite element computations. Somehow, a �x has to be found for

the separations and singular faces that α-complexes may contain. A serious problem is also

posed by the �slivers�; the sharp, needle-like elements of which the aspect ratio (element shape,

say) can be very odd (�g. 1�3). Many numerical computations become suspicious when fed

with such triangles. Figure 1�3 already sho wed that many slivers (but not necessarily all of

them) are formed near the border of the convex hull when α approaches its maximum value. In

many practical circumstances, these slivers may be dropped from the α-complex without severe

penalty. More on this, in chapter 3.

1.6 Contributions from this thesis

No applications of weighted α-complexes were found in literature. The application of α-complexes

for the description of subsurface features has been introduced by the author in [GR97] and [Ger98]

and in a more general sense for natural objects in [GVdWV00a] and [GVdWV01]. The same

holds for hyper-spatial modelling of subsurface features [RG96]. No earlier integrated approach

for geometric, topological and property data within a single data structure has been encountered

in literature, although generic k-faces were in troduced by others. Using primitive instancing is

completely new to subsurface modelling. Capturing the geometry and topology of shape families

by means of an icon α-complex is not previously presented in literature. Instantiation of shape

families using transformations on the icon α-complex wasn't found in earlier work either. Also,

α-complexes are ev aluated in a formal sense, as an object description and as a representation

scheme, which has not been done earlier.
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T ransformationsmay be applied on the points sampling the object before the α-complex

is determined. This has not been studied and described in literature before. In this thesis, the

implication for the α-complex and for the Lebesgue measure, a d-volume, say, will be discussed.

Weighting strategies for the purposes as in this thesis are completely absent in literature.

V ariousweighting strategies are developed in this thesis. For the most appealing strategy for

natural objects, a quanti�cation has been worked out to determine the relative distribution

of the w eight overthe point set, the up-scaling of the weight to match the nearest neighbour

distribution, and the use of attr actor models, to obtain a hole-free (part of the) object. The

author also describes ho wthe empirically observed sample points can be fruitfully supported

by the use of a theoretical model,for whic h the Poisson marked point processwill be presented

in chapters 3 and 4. Using this weighting strategy within this modelling framework, a semi-

automated object extraction can be obtained, capable of �nding solid object descriptions of

objects in seismic data on the basis of determinant properties but without any prior knowledge.

Also, shown by practicalapplication in this thesis is a strategy to run �nite elemen t com-

putations overα-complexes, exploiting the relationbet ween the α-complex and the underlying,

embedding triangulation. T othe author's knowledge, neither of these matters ha vebeen de-

scribed in literature before. See [Ger98, GZT01] for more details. The authors point out and

demonstrate how this can be used in geodynamic deposition/erosion models. Erosion and depo-

sition are described bymeans of evolutionary maps and homeomorphisms. Evolutionary maps

have never been applied to subsurface modelling before. Erosion and dilation are well understood

morphological operators, but only on point sets, not on α-complexes.

The longer term perspectives and goal of creating a virtual universe (see �gure 1�1 and

table 1�1 and the Preface to this thesis) has come into closer reach no w that the geometryand

topology description can be solved in a satisfying manner using α-complexes.

1.7 Organisation of this Thesis

From this point on, this thesis is organised as follo ws. Chapter 2 in troduces the fundamentals

underpinning the notion of an α-complex. T othat extent, it starts with the de�nition of a

sample point pattern, or point pr ocess. T w orelated subdivisions, induced by the same point

process appear to encode how the α-complex will develop with changing α and weight: the

w eighted V oronoidiagram and the corresponding regular triangulation. They will be discussed

in chapter 2 too. The virtues of α-complexes will be described in the light of their application

in natural object modelling. Next, chapter 3 merits the modelling process with α-complexes and

sets forth the modelling framework, to be put to work in the cases to be worked out. Chapter 4

discusses one of the very cornerstones of the use of w eighted α-complexes: the design of the

w eight set. V arious weighting strategies will be explored. In chapter 4, the gearing mechanisms

of weighting, based on the geometric and topological features of ball and sphere con�gurations,

will be discussed. Modelling ingenuity is primarily embedded in the details of chapter 3 and 4.

These chapters also illustrate how a theoretical model can be �t to the empirical sampling data

point set, lik e a Gaussian curve to a histogram. Chapter 5 more formally seeks to explore the

quali�cations of α-complexes as a solid object description and as a formal representation scheme.

It also gives an introduction to the treatment of the important subject of spatial occupancy and

consistency. Chapter 6 shows α-complexes applied to practical problems in a number of tentativ e

case studies in the earth sciences. It puts the developed modelling framework and weighted α-
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complex-based icons to a test. Chapter 7 concludes this thesis. A number of open issues and

aspects boiling do wnwill be singled out as suggestions and directives for further research and

collected in this chapter, too.

Annexes complete this thesis. Annex A recaptures the underpinning mathematical con-

cepts. Part of the audience may want to read Annex A up front. Should this annex still lea ve

too many aspects untouched or contain too many blind spots, then the reader is referred to

the standard references giv en in-there. Annex B contains a guide for the terminology practised

in this thesis. A Nomenclature is also contained near the end of this thesis. It outlines the

typesetting and the symbols used in the text. Checking out the Nomenclature is recommended.

Next, annex C explains why the Laguerre distance, dominantly present in this thesis, is neither

a measure nor a metric. Annex D describes guidelines for point set analysis and the veri�cation

of the Poisson null-h ypothesis of point sets.



Chapter 2

Alpha complexes

2.1 Overview of this c hapter

In this chapter, the concept of an α-complex will be in troduced, along with its background, as

far as instrumental giv enthe scope and objectives of this thesis. The practical approach taken

in this thesis rules out many mathematical complications, without loss of practical value. In

the majority of the discussions, point set topology and regular triangulations tend to frame the

mathematical context. An elementary example of an α-complex was already given in chapter 1,

�gure 1�3 and a �real data� example was given by �gure 1�5.

This chapter starts, in section 2.2, with a description of the various spaces and sets in

which and by which an object is represented in the process from sampling to the ev en tualα-
complex model. Next, in section 2.3, the concept of an α-complex will be formalised, along

with its �building blocks�: the point process and the related subdivisions of space that such

a point process in troduces. The point process formalises the sampling data point set. T w o

related subdivisions, induced by the same point process appear to encode ho wthe α-complex

will develop with changing α and weight: the weighted V oronoi diagram and the corresponding

regular triangulation. Moreover, these tw o subdivisions appear to be closely related.Once these

tw o subdivisions have been discussed, the process of deriving theα-complex from the information

provided by these tw o subdivisions can be treated.

Next, section 2.4 shows the basic e�ects of varying α and w eight. Section 2.5 discusses

ho w a family ofα-complexes can be formed out of a single point set by variation of α. To study

this aspect, three more concepts are needed. The simplicial complex, the skeleton and the power

set. Every α-complex is also a simplicial complex. Section 2.5 therefore introduces the simplicial

complex and skeletons drawn from the simplicial complex �rst, follow ed by the power set. These

concepts allow proper classi�cationof the faces to expect in an arbitrary α-complex.

After this exposure, section 2.7 will pay attention to some speci�c geometric features

of the α-complex, suc has holes, in all their topological variet y.In modelling practices, many

discussions turn out to be linked somehow to the presence or absence of holes. An α-complex can

also be regarded as a (geometric) graph. This view will be presented in section 2.6 and the most

important graphs related to the α-complex, the nearest neighbour graph and the local-furthest

neighbour graph will also be discussed in this section. Finally, in section 2.8, combinatorial

15
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aspects will b ediscussed.

2.2 Objects, sets and spaces

In this thesis, Ed shall denote a d-dimensional Euclidian space for some d ≥ 0. An arbitrary

dimensional space like this is also known as a general dimension space. Notation E
d refers to the

set that covers space E d. Sets and spaces are di�cult to separate and when subtle di�erences do

not matter, sets and spaces will be used interchangeably. The set of real numbers is commonly

denoted as R. Later on, when the issue of weighted points will be discussed, these tw ospaces

will be combined in a space co vered by the set of weighted points. F urthermore, space S will

denote the sample space in which the sampling data point set S is represented. When associated

with a point process, in a more morphological context, this set will also be denoted as the set of

landmarks. Anonymous top ological spaces will be denoted by X .

2.2.1 Sample space S

The observed sampling data point set S, by which a physical object is sampled, is largely deter-

mined by the observation tec hnique. In practice, for the locations, we mostly have that S ⊂ R
2

or S ⊂ R
3, i.e., members of S being de�ned by 2 or 3 spatial coordinates. F rom a mathematical

point of view, w ede�ne S in general dimension, i.e., S ⊂ E
d. Single point space E 0 can be

de�ned in the same w ayand sampling it takes no coordinates. A single point represents the

entire space. We will see later that it yields a trivial n ull-triangulation and α-complex. S can

also be an empty set, yielding another trivial triangulation and α-complex. More on this, in

chapter 3. The set S is not necessarily de�ned in Cartesian coordinates. The members of S may

for example be speci�ed relative to one another, along spaces curves or in cylinder coordinates.

More on this aspect in chapter 3.

The central role of S is that its members generate the triangulations, complexes and hulls of

the object model. In a topological sense, sample points become the vertices of the triangulations.

Poin tsalso act as a container (location) for property values in parameter spaces. The members

of S are assumed to be in general position. When in general position, all positively oriented

k-simplexes ha vea �nite positive determinant and hence a positive (Lebesgue) measure for the

length, area, volume, . . . , d-volume.

An open set is denoted as
◦
S, a closed set b y S̄, and a set complement b yCompl S̄. The

follo wing further precisions and restrictions apply to sampling data point set S in this thesis:

(i) Set S is a �nite compact set.

(ii) Set S is in general position.

(iii) Since assumptions are that S is compact and therefore closed, it always samples the com-

plete boundary of the sampled object, which includes the internal boundaries.

If these preconditions are not ful�lled b y the end of the sampling process, S has to be brought

to meet these requirements in a data preparation step before the α-complex can be determined.
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underlying space
space partitioning

cell decomposition D(S) ∼= T (S)

solid V (S) ∼= H(S)

simplicial complex C(S) =
⋃

σ(k)

α = 0

∼= Hαmax
∼= Uαmax

con vex h ullH(S) ∼= Wαmax

triangulation T (S) ∼= Cαmax

V oronoi diagramV(S)
(power diagram Π(S) ∼= V(S))

α = αmax

k = d

point set S

α-shape Wα(S) ∼= |Cα|

α-hull Hα(S) = Compl
⋃

(A ∩ S = ∅)

α-complex Cα(S) ⊆ C(S)

polytope P(k)(S) = |⋃ σ(k)|

α-diagram Uα(S) =
⋃
B(S)

(space �lling diagram F(S))

k = 0

Figure 2�1: relations betw een mathematical concepts discussed in this chapter. Upper part re�ects space

partitioning concepts, lower part the matching underlying space concepts. For clarity, tilde notations to

denote weighting have been dropped. The relation of a polytope with α-diagram, α-hull and solid depends

on the de�nition of a polytope. See Annex A.

2.2.2 Topological space and its subdivision

A topolo gical space with its subdivisions is a convenient notion to describe an α-complex, Voronoi

diagram, or triangulation from a topological point of view. Topological spaces can be regarded

as an abstraction of more concrete spaces like the Euclidean space. As it turns out later, in sec-

tion 2.5.2, every α-complex is also a simplicial complex. The reverse is not true. T riangulations

the way de�ned in this thesis are also instances of a simplicial complex. That is why the topo-

logical space of a simplicial complex is a convenient concept to study for instance how properties

of set S set forth to properties of simplicial complexes generate d or spanned byS. The theory of

simplicial complexes is wealthy and maturely developed [Cox73, Mun75, MS82, Mun84, Eng89].

Therefore, the relation with the simplicial complex will be exploited. Many of the α-complex'

properties are obviously inherited from the simplicial complex.

A topological space has a (topological) dimension. V arious such topological dimensions ex-

ist, but in this work, topological dimension will always be the �Cech�Lebesgue covering dimension,

denoted as dimX . According to the embedding theor em (e.g., [Mun75, Nag83]), under certain

conditions, a topological space can be embedded in Euclidian model space M ⊂ E d. With what

has been stated for sample space S , the follo wing is immediate about the simplicial complex

C(S):

(i) With S being �nite and compact, C(S) will be compact too.
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(ii) A compact C(S) can be embedded in a compactmodel space M ⊂ Ed.

With S being �nite and compact in this thesis, its V oronoidiagram, triangulation, hull

etc., will also be �nite. Bounded by the convex space spanned by S, V oronoicells, d-simplices,

etc., are all bounded, too. T oindicate this and distinguish it from an unbounded subdivision,

containing unbounded cells, some authors write D(S)
⋂

S rather than just D(S). In this thesis,

some subdivision D(S) of topological space X , spanned by S shall be understood as a subdivision

bounded by the convex hull of S and the notation
⋂

S is further discarded.

2.2.3 Model space M

In practice, 2-space E 2 (the XY -plane, say) and 3-space E 3 are among the most frequently

encountered modelling spaces. Dimensions beyond three (hyper sp aces) are mainly used to span

parameter spaces, obtained by augmenting geometry with a parameter (sub-)space:

Definition 2.1 (parameter (or: property) space)

A parameter spac eis a subspac eRm ⊆ E d
in which m par ameters(or: prop erties)ar e located

ac cording to their values •

With m = 2, a parameter space may be seen as the familiar cross plot. P arameterspaces in

general are in fact multi-dimensional crossplots. When attached to the geometric information,

the whole of the augmented space is commonly denotes b y the term hyperspac e. Classical ap-

plications are encountered in factor analysis. Figure 1�6 in chapter 1 already illustrated its

principle.

Observation2.1 (property locations)

A precondition for the use of parameter spaces is that parameter values are de�ned in the sample

points •

The hyper-spatial approach works in all dimensions equally well, but is compellingly more com-

plicated to handle and visualise in higher-dimensions. In practice, h yper-spatial is always low

hyper-spatial. Natural objects as considered in this work are inherently three-dimensional. F or

modelling and simulation purposes, tw o-dimensionalobject representations are sometimes con-

venient. Spatio-temporal spaces (XY Zt, say) are used to describe dynamic models, including

time topolo gy. How ev er,spatio-temporal space is not Euclidian perse, due to cause-even t-e�ect

relations betw een temporal events. F urtherdiscussion is postponed to chapter 3.

In the previousc hapter, the notion of an icon has been introduced. The icon is generally

de�ned in some topological (h yper)space X whereas the instantiation for modelling purposes

takes place in model space M , not necessarily h yper-spatial. F or Euclidean spaces (refer to

[Mun75, Mun84, Nag83, Eng89]), the dimension of a subspace M ⊂ E d also has dimension d,
i� IntM 	= ∅. A product space M ⊂ E d × R has dimension: dimM ≤ dimE d + dimR and in

practice dimM = d+ 1.
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Class in ∂Cα in Int Cα ∃σ(k+1) : σ(k) ∈ σ(k+1)

singular
√

no

regular
√

yes

interior
√

k < d

[0, α0)︸ ︷︷ ︸
not exposed

[α0, α1)︸ ︷︷ ︸
singular

[α1, α2)︸ ︷︷ ︸
regular

[α2,∞)︸ ︷︷ ︸
interior

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→α

T able 2�1:classi�cation of the k-faces {σ(k)} of an α-complex in terms of singular, regular and internal

faces. In general, a k-face goes through the intervals as indicated in the table. F aces need not become

singular, faces may become regular or in terior straight aw ayupon becoming �rst α-exposed. F or α
su�ciently large, all faces have become either regular or interior.

2.3 Alpha complexes

2.3.1 The Poisson point process

An α-complex is always based on (or: generated by) a point set. Sampling an object yields an

empirical point set S. In stochastic geometry, such point sets are usually referred to as point

pr ocesses. Based on a point set S ⊂ E
d, say, in some arbitrary dimension d ≥ 0, the point

process ΦS(x) de�nes some spatial relation, empirical or in terms of probabilities, among the

members of S, and among arbitrary points x ∈ E d and members of S. F or example,S may be a

randomly distributed set of points in E d, and the point process may formalise the distribution

of distances among the members of S and betw een an arbitraryx and the nearest-by member of

S. In the context of morphology and point processes, the set of points S is usually called the set

of landmarks, the role of which will be further explained in section 3.3.

One branch of stochastic geometry is concerned with the study of point patterns gener-

ating triangulations and tessellations [Hal88, SKM95, Møl94, BNKVL99, OBSC00]. This thesis

addresses this type of problems applied to the input data set for weighted α-complexes. More

precisely, the design of a weight set for a weighted α-complex, suc hthat the level of geometric

detail (or: resolution) can be controlled locally. A point process is called a marked point process

(an mpp for short) if every point carries some value drawn from some marker set V embedded

in marker space V . Often, the marker represents some geometric shape (typically, a disc, a

rectangle, a sphere, etc.) of which the size is proportional to the marker value. This is the case

in this work too: the marker value w ∈ W, the weight, is represented by a (d)-ball of radius
√
w,

giving the mpp Φ˜
S
(x). The set S̃ is identical to set S, but each of its members has now been

assigned a marker: a real-v aluedweight w ∈ W ⊂ R. Set S̃ so becomes the ordered Cartesian

product S̃ = S ⊗ W with S̃ ⊂ E
d × R. F roma geometric point of view, a member s̃j ∈ S̃ can

represented by a d-ball Bj of radius
√
wj , cen tredin sj. Its region-of-dominance is bounded by

a (d − 1)-sphere Sj = ∂Bj, called the weight-sphere. Notice that the weights are generally not
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independent. Among other things, we are in terested in the coverage of space b y the union of

the interiors of these balls. Weight cannot be un-coupled from the underlying point process. As

it turns out later, w eighting is basically a cover ageproblem. Such an mpp is called a cover age

process, for ob viousreasons. If only the total co verageor non-coverage of space is of interest,

then coverage processes are commonly indicated asBoolean models or more generally germ-grain

models [Hal88, SKM95].

A Poisson point process (a ppp for short) is a point process of which the points are spaced

according to a P oissondistribution with intensity λ, with λ de�ned as the number of events

per unit of space. In 3D, for example, λ represents the number of points per unit volume. If

sampling the process is invariant to shifting the sampling window, then the process is called

stationary and if also in variant under rotation, the process in called isotropic. A point process

that is stationary and isotropic is called a homogeneous process and inhomogeneous otherwise.

Inhomogeneous ppp's cannot be characterised by a scalar λ; in that case λ is di�erent everywhere

in space: λ = λ(x). Coverage processes can be studied as topological coverings, more precisely, as

partitionings of space in non-overlapping partitions. See [Mun84] for details. V oronoi tessellations

and triangulations are such space partitionings. V oronoi diagrams based on a ppp are sometimes

called Poisson Voronoi diagrams and the corresponding triangulations Poisson triangulations

(e.g., [OBSC00], Ch. 5).

2.3.2 The weighted Voronoi tessellation

In an �ordinary� �rst-order, Euclidean nearest-site Voronoi diagram (e.g., [Ede87, Aur87b]), the

nearest neighbour distance is based on Euclidean metric. In the presence of weights, Voronoi

cells are de�ned byweighted distances. T odiscriminate weighted from Euclidian distance, the

former will be denoted by a tilde over the symbol. F or tw oweighted points s̃i, s̃j ∈ S̃, with

s̃i = (si, wi) and s̃j = (sj, wj), L(s̃i, s̃j), si,j ∈ S, wi,j ∈ W (refer to �gure 2�2), the Laguerre

w eighted distance is de�ned as:

L(s̃i, s̃j) = 〈si − sj , si − sj〉 − (wi + wj) (2�1)

where 〈·, ·〉 denotes the standard inner-product. The Laguerre distance can also be written in

the form: L(s̃i, s̃j) = ‖si − sj‖2 − (wi +wj) = ‖si‖2 + ‖sj‖2 − 2〈si, sj〉 − (wi +wj). Apparently,
the Laguerre distance between tw ow eighted points is equal to the squared Euclidean distance

minus the sum of their weights, cf. �gure 2�2. Spaces endow ed with a Laguerre weighted distance

are non-metric. Even if all weights are positive, some weighted distances may become negative.

Moreover, if only one w eight is chosen large enough, all weighted distances are negative. Let

L(x1,x2) denote a weighted distance between tw o of its points x1 and x2. As shown in annex C,

L is not a symmetric bilinear positive de�nite form, because the condition L(x1,x2) ≥ 0 does

not hold for all points x1 and x2. This (rather technical) matter is further elaborated upon in

Annex C.

A point that seeds a Voronoi cell is called a nucleus, to refrain from confusion with Voronoi

vertices. In a Voronoi diagram generated by S̃, all members of S̃ become a nucleus, see �gure 2�3,

left picture. A weighted V oronoi diagramis then de�ned as follows:

Definition 2.2 (weighted Voronoi diagram)

A weighted Voronoi diagram is a partitioning of space into Voronoi cells: non-overlapping d-cells



Section 2.3: Alpha complexes 21

π

Sπ2(y)

x

r
s

p
p′

Sr2(s)

π
p′

x

s
r

p

Sr2(s)

Figure 2�2: left: Laguerre distance L(s̃1,x) = π2 of x with respect to (1)-sphere Sw1(s̃1) = Sr2(s̃1) in

E2. Right: similar con�guration in E3; x has been assigned an orthogonal weight: s̃2 = (x, w2) = (x, π2)
in tersects s̃1 = (s, w1) exactly in p and p′ and L(s̃2, s̃1) = 〈x − s,x − s〉 − (π2 + r2) = 0.

xr
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Figure 2�3: Relations betw eenweighted V oronoidiagram (solid), regular triangulation (dashed) and

α-exposedness. Left: L(x, s̃) to the closest nucleus, equal to the squared radius of the dashed sphere.

Centre: coverage B by gray weight-plus-alpha balls Bi on the vertices of S̃ and the associated coverage A
by dotted α-balls Aj in the radical centres. Right: local orthogonal α-balls A

�
j .

ar ound the nuclei s̃j = (sj, wj) composed of all those points x for which s̃j is the nearest nucleus,

in terms of weighted distance •

In mathematical terms, a Voronoi diagram is built of k-faces: k-dimensional elements such

as vertices, edges, etc. up to d-faces (or: d-cells). A k-face is denoted by σ(k). The bounding

(d − 1)-face separating one V oronoicell from an adjacent cell is contained in the radical plane

of the two nuclei and Voronoi vertices are at the intersection points of radical planes, called the

radical centres. A radical plane H�
ij of tw ow eighted points s̃i and s̃j is a hyperplane consisting

of points x at equal weighted distances to both weighted points: L(x, s̃i) = L(x, s̃j), for all

points x in H
�
ij, see �gure 2�4. Radical planes are generally not in general position and generally(

d+1
2

)
such planes intersect in a single 0-�at (point). Refer to table 2�2. If the weights of s̃i and

s̃j are equal, H
�
ij perpendicularly bisects the edge s̃is̃j. When unequal, H

�
ij still perpendicularly

in tersects s̃is̃j , but not in the middle. Assume that nuclei have unequal weights but further grow

at equal rate, e.g., proportional to α. Then radical centres are the last points of the Voronoi cell

to be swept out by the growing nuclei. The associated growing nucleireac h their radical cen tre

simultaneously.
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si

s̃i

s̃′i

√
wi

qi

q′
i

p
p′

sj
s̃j

√
wj

qj

H
�
ij H

�′
ij

Figure 2�4: the radical plane H
�
ij of two weigh ted points s̃i = (si, wi) and s̃j = (sj , wi) intersects edge s̃is̃j

halfway in p if wi = wj (solid) and moves aw ay from the middle if weights wi and wj change by unequal

amounts (dashed). With q = si + µ(sj − si) and δ2 = 〈sj − si, sj − si〉, µqi
≤ µp ≤ µqj

. Furthermore,

µq
i
= µp = µq

j
= 0 ⇔ wi = 0, wj = δ2 and µq

i
= µp = µq

j
= 1 ⇔ wi = δ2, wj = 0

Space E 1 E2 E3 E 4 · · · Ed

cardσ(d) 2 3 4 5 · · · d+ 1

planes through C� 1 3 6 10 · · ·
(

d+1

2

)

T able2�2: Combinatorial aspects of radical centres. The number of radical planes required to de�ne a

radical centre C� in Ed is given by cardσ(d), but generally, more radical planes pass through this centre

(bottom row).

V oronoi tessellations are often studied in combination with ball unions. Also in this thesis.

After all, a Voronoi tessellation can be constructed by a growing ball union B =
⋃
Bi centred in

the nuclei si from which all the o verlap has been removed and alternately, by a ball union A of

α-balls Aj in the radical centres. With balls Bi growing proportional to α2, the corresponding

balls Aj shrink at a rate proportional to α2, until Aj is just a point (zero-radius ball) when Bi
sweeps out the radical centre at which Aj is cen tred. Both of these co verageprocesses can be

seen in �gure 2�3, central picture. In this thesis, the focus will be on B. Figure 2�5 demonstrates

this sweeping process of coverageB in greaterdetail, for increasing α.

What relates a family of growing balls to a corresponding family of α-exposed faces is the

notion of a (geometric realisation of a) nerve N (S̃). De�ning the balls as subsets of E
d, N (S̃)

contains a k-face connecting k+1 weighted points if the k+1 subsets have a common intersection.

Definition 2.3 (nerve)

Let Y be a cover of E d. Then the nerve NrvY is an abstract simplicial complex compose dof the

collection of non-empty intersections of subsets of cover Y •

See e.g., [Mun84]. In other words, as soon as tw o balls touch, they become connected by an edge
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s s s

Figure 2�5: V oronoi cell swept by growing weight-plus-α-balls Bj . The Voronoi is shown by the solid

lines. The size and the union of the gray weight-plus-α-balls Bj increases left to right, with α = 0 in the

left picture. Observe in the central picture, that only one of the �ve radical centres (Voronoi vertices)

has been swept out.

and as soon as three balls intersect in a common point they become connected by a triangle, etc.

This means that in �gure 2�5 no triangles are formed in the left picture, one (dashed) triangle is

formed in the central lo w er part of the central picture (generated by the three lowest Bj) and that

in the right picture, all triangles are formed, except the leftmost and the topmost. The leftmost

radical centre is in this case the last one to be swept out, which can be veri�ed by noticing that

the corresponding radical α-ball A
�
j takes the highest α-value, as indicated in the righ tpicture

of �gure 2�3. Observe that any pair of intersecting balls also forms a Voronoi edge, as any pair

of balls (intersecting or not) has a radical plane. See �gure 2�5. As shown byEdelsbrunner in

[Ede92, Ede93]:

Observation 2.2 (geometric nerve of the weighted Voronoi diagram)

The geometric realisation of the nerve of the ball union B asso ciated with weighted V oronoi

diagram is the regular triangulation •

With variable size balls, the nerve varies as well: with X2 ⊆ X1:

Observation 2.3 (nerve containment of a sub-cover)

If a set X1 is contained in the nerve of a cover Y , then so is its subset X2 •

and, referring to [Ede92, Ede93] for details:

Observation 2.4 (nerve of the ball union and α-complex)
The geometric realisation of the nerve of the growing ball union sweeping the weighted V oronoi

cells is an α-complex, a subcomplex of the regular triangulation •

Here is the very essence of the relation of a co verageb y a ball union B of w eight-plus-

alpha balls Bj(sj) and the resulting α-complex. The event of tw oballs touching, so forming an

edge in the nerve happens to coincide with the event of that edge becoming α-exposed (dashed

spheres in right picture �gure 2�3). Edelsbrunner in [Ede93] show ed this duality and also showed

that a deformation-retraction can be formulated that takes the family of ball unions onto the

α-family. This duality relation will be exploited in the weighting strategy described in chapter 4.

It reduces introducing or removing vacancies from α-complexes to a coverage-by-weight problem,
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also known as the space �lling pr oblem ([Ede92]). Changing weight independently brings about

local changes in the ball of the nucleus and in the radical planes of the nucleus with its neighbours

and therefore in the Voronoi cells of the nucleus and its neighbours. If the ball radius changes,

then consequently the α-exposedness of the corresponding edge in the triangulation changes.

2.3.3 Regular triangulation

Associated to the weighted Voronoi diagram is the regular triangulation. What sets o� a regular

triangulation from a Delaunay triangulation is the notion of weights. A weighted sampling data

point set induces a weighted triangulation ([Aur87b, Lee91, Ede92]). Every �nite point set can be

triangulated in �nitely many ways. Within this family of triangulations, some triangulations are

preferred over others. The preferred triangulation discussed inhere is the regular triangulation.

F ormally, a d-triangulation is de�ned as follows:

Definition 2.4 (d-triangulation)
A d-triangulation of some topolo gical d-spac eX is a partitioning of that space into non-overlapping

d-simplices •

The term triangulation is not restricted to subdivisions in E 2 and indeed, a d-triangulation in

this context can be in an ydimension. As such, it is ob viouslyalso a cell(ular) de composition,

as �gure 2�1 rev eals. The in tersection of tw osimplices, if non-empty, is also a face of the

triangulation, along with all its subfaces.

A regular triangulation is determined by tw ocriteria: �rstly, regularity of eac h of its

constituting k-faces and secondly, orthogonality. Regular triangulations are associated with the

notion of regularity and regular simplices:

Definition 2.5 (regular simplex)

A d-simplex in a triangulation is said to be regular if all vertices not belonging to the simplex

have positive weighted distance to each of the d+ 1 vertic esin the simplex •

If a point in S has negative distance with respect to another member of S , it cannot take part

in the regular triangulation; it is ruled out as redundant:

Definition 2.6 (redundant point)

A sample point not ful�lling the regularity criterion is classi�ed as r edundant •

This gives rise to the following observations:

Observation2.5 (coinciding points)

R egarding the sphere ar ound a weighted point as its region of dominance, and realizing that a

point with negative weighted distance must be located in that sphere, a redundant point may be

regarded as a generalisation of two zero-weight points that coalesce •

Observation2.6(zer o-impact of redundant points)

R edundantpoints cannot take part in a regular triangulation and as a consequence, with s̃j a

redundant point, the regular triangulation T (S − {s̃j}) of S − {s̃j} is equal to T (S).

Orthogonality is de�ned as follows:
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Definition 2.7 (orthogonal spheres)

Two spheres are said to meet orthogonally (or: be orthogonal) if they intersect at a 90◦ angle •

Figure 2�6 illustrates this for a pair of spheres in a 2-space, but in fact this holds true for spheres

of any dimension, even for 0-dimensional spheres (points). In �gure 2�6, left picture, tw osuch

in tersection points p and p′ exist for spheres Sw1(s̃1) and Sw2(s̃2) in E 2. These points coincide

if and only if the radius of one of the spheres is zero, i.e., when one of the spheres is a point

located exactly on the other sphere.

s1 s2

H
�
12

p

p′

H�

Figure 2�6: left: two spheres in 2-space E2 that meet orthogonally. The line passing through the tw o

intersection points p and p′ is called the radical plane. Any third sphere orthogonal to both spheres has

its cen tre on this radical planeH
�
12. Right: two spheres in E 3. The dashed circles that lie in the �glass�

radical plane are equi-distant lines with respect to both spheres.

Observation 2.7 (dimensions and ratio's orthogonal spheres)

The intersection points of two orthogonal spheres in E 2 constitute a pair of triangles, of which

the sides ar e given by the Euclidean distance between the two centres, the radius of one sphere

and the radius of the second, orthogonal sphere.

For tw o2-spheres in E3, in�nitely many such intersection points exist, because there are in�nitely

many pairs of orthogonal tangential support planes. All these intersection points lie on a circle

contained in the radical plane (�gure 2�6, right picture). In Ed, this generalises straightforwardly.

Observation 2.8 (zero equi-distant sphere)

Two orthogonal (d − 1)-spheres in E d intersect in a (d − 2)-sphere S0, contained in the (d − 1)-
radic al plane.The (d− 2)-sphere S0 is the set of all points in the radical plane with zero-distance

with respect to both orthogonal spheres.

In fact the regularity and orthogonality criteria come together in the following: for each

k-face in a regular triangulation there exists an empty (d−1)-sphere, that orthogonally intersects

the weight spheres of all vertices of the face, and so that all other vertices not belonging to that

face have non-negative w eighted distance to each of the vertices of the face (regularity). Notice

the conjunction of the orthogonality criterion with the α-exposedness: once α is high enough to

erect such a sphere, the face mentioned above becomesα-exposed. F orα → ∞, all such spheres

can be created, and N (S̃) grows in to triangulation T (S̃) of S̃. Also notice that b y de�nition,

such spheres must be located in the radical cen tres,to obtain orthogonal in tersection. With S

being �nite and a bounded α-complex, α will not go to ∞, but reach a maximum value αmax

beyond which no new faces will become α-exposed anymore, and the α-complex is identical to

the triangulation.
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Aijk
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�
ijk
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�
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�
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H
�
jk

si
sj

sk

Figure 2�7: left: radical planes H� of three weighted points in E
2 that meet in a radical centre C

�
ijk. The

real ball A
�
ijk (dashed) is empty and the dashed triangle will be contained in the triangulation. Right:

regular triangulation of three vertices decaying into a zero-w eight Delaunay triangulation. The radical

plane moves as the weigh ts change and so does the radical centre (open dot). F or clarit y, intermediate

radical planes and α-balls are not shown.

Delaunay triangulations can be regarded as zero-weight regular triangulations, which is

easily understood if one realizes that if weight decays to zero, the local Delaunay criterion of d+1
vertices lying on a common (d−1)-sphere with no point lying in its interior, complies precisely to

the regularity and orthogonality criterion. Without dwelling on mathematical details, this fact

is demonstrated in �gure 2�7, right picture. In this �gure, three pencils of concentric spheres are

visible, depicting three weighted points of which the weight varies from some maximum value

down to zero-weight. While the weight decreases down to zero, the radical centre tra verses the

path indicated by the small open dots until located in the in tersection of the perpendicular

bisecting radical planes, corresponding to the Delaunay triangulation. Figure 2�7 also shows the

movement of the radical plane and the α-ball (start and end situation are displayed). The �nal

α-ball corresponds to the circumscribing Delaunay ball. The triangulation in this case is a trivial

s̃i

s̃j

s̃k
s̃l

s̃i

s̃j

s̃k
s̃l

s̃i

s̃j

s̃k
s̃l

Figure 2�8: applying local criterion to �nd the regular triangulation. Left: switching diagonals is

irrelev ant in this case; the tw o empty real orthogonal α-balls coincide and the weighted distances along

solid and dotted diagonals are equal. Centre: �ipping diagonals is now required to restore the local

criterion. Right: criterion is ful�lled and �ipping would breach the local criterion.
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one and is not in�uenced by the changing weight.

Edelsbrunner and Shah in [ES96] showed that like for the Delaunay triangulation, a local

criterion can be applied to obtain a globally preferable triangulation. Figure 2�8 shows an

instance. In the left picture, switching does not change the meeting of the criterion, as both

diagonals ha veequal weighted norms. In the central picture the balanced situation of the left

picture has been perturbed by increasing the weight of s̃l and s̃j. Flipping diagonals is no w

required to restore the local criterion, because orthogonal α-ball A
�
ikl (dashed) is not empty. The

(also smaller) orthogonal α-ball A
�
ijk is empty and so is α-ball A

�
jkl. In the right picture, weight is

distributed such that the criterion is ful�lled and �ipping would only violate the local criterion.

Examine the impact of weight changes on the triangulation.

2.3.4 Weighted α-complex

Earlier in the section, the relation between a growing ball union and the α-complex has been

discussed, and the role of the nerve therein. The fact that the faces of the α-complex are

also found in the triangulation of the same point set, suggests that an α-complex can also be

obtained from that triangulation by �ltration, and indeed, such approaches ha ve been proposed

[Ede92, Mue93, EM94]. T riangulations andα-complexes are instances of the much wider class of

simplicial complexes to be introduced in section 2.5. An α-complex Cα(S) ⊆ C is a subcomplex

of the simplicial complex C ∼= T (S) formed by a triangulation T of the point set S ⊂ E
d. Cα

is not just any subcomplex drawn from C. Rather, Cα can only result from an α-�ltr ation: let

F = {F(k)} be the set of k-faces (in this case: k-simplices) of C ∼= T , with 0 ≤ k ≤ d. Then the

faces Fα = {F(k)|F(k) ∈ Cα} of Cα are those faces of F that are α-exp ose dfor a given value α ≥ 0.
All α-exposed faces pass the �ltration, those that are not α-exposed do not. Firstly, observe that

apparently Fα ⊆ F, in other w ords,the α-complex is completely erected by faces also found in

the triangulation. Secondly, a more concise de�nitionis needed of α-exposedness. Assume an α
that monotonically increases from zero towards in�nity. A face F becomes α-exposed for some

α-value if an empty (d− 1)-sphere exists of radius
√
α, that intersects all weighted points s̃j of F

orthogonally (e.g., [Coo16, Max52, Ede93, Bix94]), in accordance with the regularity criterion.

This leads to the following de�nition of a weighted α-complex that will be further adhered to in

this thesis:

Definition 2.8 (weighted α-complex)
Given a weighted point set S̃ and a real value α ≥ 0. A weighted α-complex Cα(S̃) ⊆ C is

a sub complex of the simplicial complex C ∼= T (S̃) formed by a regular triangulation T of S̃

containing all k-faces of the triangulation that pass the α-�ltration for the given value of α •

Also, refer to [Lee91]. The spatial occupancy by an α-complex is called an α-shape and an α-
complex is in fact a triangulated α-shape. If the partitioning of the underlying space is irrelevant,

α-shape can also be read where α-complex is written. Varying α de�nes a �nite ordered family

of α-complexes, called α-family A. The point set is the lower extreme member of that family,

the triangulation the upper extreme α-complex and the corresponding convex hull the equivalent

α-shape.

Back to the process of α-�ltration. All topological spaces discussed in this thesis shall be

triangularizable, a bold term with the simple meaning that it admits one or more triangulations.

More details on triangularizability can be taken from[Sha77],for example. More in particular,
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every convex p o lyhedron can be triangulated (e.g.,[Mun84]), and b eing a p olyhedron, every

convex polytope can so too. They are triangularizable topological spaces. F orexample, ev ery

convex hull, a convex polytope, is triangularizable with every k-simplex, 0 ≤ k ≤ d again

a convex hull and polytope. All that the notion of an α-complex adds to a triangulation is

a parametrisation by α acting as a �ltration, no new faces. See �gure 2�12. The following

observation follows immediately from de�nition 2.8:

Observation2.9 (embedding Cα(S) in T (S))
Each α-complex ��lter ed�from T is again embeddable in the top ological space T •

2.4 Varying alpha and weight

2.4.1 The domain of α and w

There are no compelling mathematical reasons to restrict the domain of either α or w. From a

modellers' perspective, there is, how ever. For convenience, assume that all weight are zero. As

soon as α drops into negative values, the underlying triangulation is no longer the nearest site

triangulation, but �ips to the furthest site triangulation. The same holds for the dual Voronoi

diagram. F rom a modellers' perspective, this is often counter-intuitive. Instead of attracting one

another, points become repulsive. F or this simple practical reason, negative α's are disregarded

in this thesis.

The situation with negative weights is quite di�erent. Again from a modellers' perspective,

negative weight is an important tool to slow down or demote the pace of growth of an α-complex

in certain areas, as α increases. A negative weight can shift the entrance of certain k-faces in

the α-complex to higher values of α. Negative weight, increasing the weighted distance, has to

be compensated for b y an equal-magnitude positive value of α �rst. Negative w eights will be

discussed in greater detail in chapter 4. The various aspects involved in the de�nitions of the

domain of α and w are displayed in table 2�3.

2.4.2 The relation between weight and distance

The e�ects of weight and α add up. More precisely, weight acts as a bias to α. Weight and

distance come together in a weighted distance. Weighting can be regarded as being equivalent

to a geometric transformation ([Ede92]). Looking at the de�nition of the Laguerre distance,

ob viously, adding positive weight decreases distances. So, in a neighbourhood of high w eights,

points tend to connect more easily than in neighbourhoods with lower weights. Increasing α
means larger distances can be abridged, larger weight means a decrease of weighted distances or,

equivalently, a bias to the starting value of α. Figure 2�9 shows the various parameters in play.

Experiment 2.1 and �gure 2�10 shows how a similar α-complex can be created with a zero-weight

and a zero-alpha α-complex. In other words the e�ect of a certain α can be completely replaced

by the equivalent e�ect of weight, as already pointed out by Edelsbrunner in [Ede92].

Experiment 2.1 (inter-changeable effect of distance and weight)

Given an initially regularly spac edzero-weight point set in E2
. The original lattic e (or: grid)

is depicted in �gure 2�10, right picture. For this point set, there exists a 0 ≤ λ ≤ 1 and an

α ∈ [α1..α2], with 0 ≤ α1 ≤ α2 ≤ λαmax, such that the α-complex for that α is similar to a graph
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α ∈ [0,∞] α ∈ [−∞,∞]

Zero-weigh t - null-spheres

- nearest neighbours

- irregularly spaced only

Mucke (1993),

Edelsbrunner and Mucke (1994)

- null-spheres

- furthest/nearest neighbours

- irregularly spaced only

Edelsbrunner et al. (1983),

Edelsbrunner (1987)

w ∈ [0,∞] - r-spheres

- no demotion of points

- irregularly/regularly spaced

- nearest neighbours

- i-spheres

- no demotion of points

- irregularly/regularly spaced

- furthest/nearest neighbours

w ∈ [−∞,∞] - i-spheres

- promotion/demotion of points

- irregularly/regularly spaced

- nearest neighbours

Gerritsen (1998),

Gerritsen et al. (2000,2001)

- i-spheres

- promotion/demotion of points

- irregularly/regularly spaced

- furthest/nearest neighbours

Edelsbrunner (1992,1993)

T able2�3: aspects related to the domain choices for α and w. The term i-spheres refers to imaginary

spheres, with imaginary radius, to be discussed in chapter 4.
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large distance

small weight

small α − value




⇐= Demote ===== Promote =⇒




small distance

large weight

high α − value

Figure 2�9: the various parameters acting upon an α-complex. At the left, the �demoters�, at the right

the �promoters�.

4-connecting all ne ar estneighbours. In other words: the α-complex looks similar to the lattic e

itself. Observe that all 2-balls ar e equally lar ge, fully determined by the magnitude of α. Next,

the outer points (remote from the centre) are translated outwards (see left picture), such that

for the same value of α, a 1-skeleton α-complex remains as in the left �gure. In this geometric

transformation, weights remain zero. Points that moved under the transformation have become

unconnected from the remaining 1-skeleton and the skeleton contains exactly those points that

were map ontotheir original locations.

Now, let us revert to the original point set, located on the original lattic e in the right

�gure. Weight of the same magnitude as α above, is now assigned to the point that were not

moved and zero to the ones that moved (right picture). As �gure 2�10 shows, the same α-
complex is formed. The �gure shows the similar and inter-changeable e�ect of α and weight:

Cα=w(S ⊗ W|wi=0) = Cα=0(S ⊗ W|wi=α) •

Figure 2�10: result obtained from experiment 2.1. left: irregularly spaced but equally weighted points,

right: regularly spaced, but unequally weighted points. Spheres represent weight; same size means same

weight. Points with no spheres (right) ha vezero weight. The α-complex here is a 1-skeleton (�wire-

frame�), the e�ect how ev er, can be generalised.

It is precisely this possibility to substitute distance for weight v.v., that sets forth a hyper-

spatial approach to shape reconstruction on the basis of observed physical properties in the

sample points. Equivalent classes of properties lead to to equivalent classes of weight. In param-

eter space, equivalent classes of properties tend to cluster naturally based on distance information

and distinct clusters in parameter space naturally leads to distinct weights. This aspect will be

further elaborated upon in chapter 4. Also, revisit �gure 1�6.

The big di�erence betw eenα and w is that weight is �static�, whereas the α-value has a

�dynamic� nature. More precisely, weight acts upon the regular triangulation during its creation
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and its e�ect is �staticly� re�ected in that triangulation. Its e�ect is �xed, once this triangulation

has been generated. In contrast, the role of α does not cease with the triangulation process, but

lies in the α-�ltration process, afterwards. It is this varying of the α-value that delivers the

α-family.

2.5 Families and faces

2.5.1 F amiliarfaces

It is of utmost importance to understand which of the faces of a triangulation may be encountered

under what conditions in an α-complex. Most and for all to understand the topological features

of an α-complex. The exact topology has great consequences for aspects, such as numerical

modelling and conversions. T o study this aspect, three more concepts are needed.The simplicial

complex, skeletons and pow er set.

s s

Figure 2�11: left: a simplicial complex consisting of the grayed triangles plus the solidedges. Right:

the (closed) star ¯St s subcomplex of the simplicial complex, made up by the gray closed triangles plus

the solid edges emanating from s.

2.5.2 Geometric simplicial complexes

Simplicial complexes were already silently introduced in the preceeding part of this chapter. A

more structured discussion follows in this section. A simplicial complex is an important and fairly

w ell understood mathematical construction.Inhere, a simplicial complex is basically a geometric

simplicial complex, as opposed to an abstr act simplicial complex (e.g., refer to [Mun75, Mun84]).

Consider again a triangulation of a �nite compact point set. A triangulation in thiscon text, is

also a simplicial complex. But theclass of simplicialcomplexes is m uc hwider than the class of

triangulations. Moreover:

Definition 2.9 (simplicial complex)

A �nite geometric simplicial k-complex C(S) in E d
is a connected or unconnected collection of

simplexes, with 0 ≤ k ≤ d, all satisfying two properties:

(i) Every subface of a each simplex needs to b ea simplex contained in the complex too.
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(ii) The shared subfaces (in the intersection of any twosimplic es) needs to b ea simplex in the

complex too •

It is basically composed of members of S plus a collection of closed faces with members of S as

vertices. F aces arenot necessarily those also found in the regular triangulation. See for instance

�gure 2�11, containing faces not complying to the local criterion.

Observation2.10 (finiteness)

A triangulation of a �nite compact set S has �nitely many d-simplices all with �nitely many

subfaces and outof this c ollection of faces, �nitely many simplicial complexes can be created •

Definition 2.10 (subcomplex)

A subcomplex is any part of a complex that is itself a complex •

It can be shown (e.g., [Mun84]) that if the simplicial complex is �nite (which is always the case

in this work), the underlying space is compact and so are its subcomplexes. A simplicial complex

may degenerate to a linear graph or point set. One speci�c subcomplex applied in chapter 4 is

the starof a vertex sj :

Definition 2.11 (closed star)

The close dstar ¯St sj (or simply: St sj) of vertex sj ∈ C(S) is the subset of all closed fac esof C
incident upon sj •

See �gure 2�11. The notion of stars generalises to general dimension. For further details, see

[Mun84, Eng89]. F urther observe:

Observation2.11 (shared faces and stars)

F ac esincident upon two vertices are found in the intersection of their stars •

2.5.3 Skeleton

A k-sk eleton is related to a subcomplex of a simplicial complex in the following manner:

Definition 2.12 (k-skeleton of a simplicial complex)

A k-skeleton K(k) of a simplicial complex is a sub complex compose dof all the k-faces and their

subfaces •

F or instance, the0-sk eleton of a simplicial complexC(S) ∼= T (S) is point set S, and the 1-skeleton
of the triangulation is a spanning, connected linear graph containing S and the nearest neighbour

graph, to be discussed in section 2.6.

2.5.4 Power set 2S

A power set is a suitable notation for a closed collection of proper subsets. For example in the

follo wingreasoning. The set of faces F created during triangulation of S is �nite and well (but

not necessarily uniquely) de�ned. Out of these faces, a �nite set C of simplicial complexes can

be created. Assume a simplicial complex C ∈ C\{T }, so not identical to the triangulation. Then
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A

C

T
S

A = {Cα(S)} set of α-complexes

C = {C(S)} set of simplicial complexes

S set of generating points

T = {T (S)} set of triangulations

Figure 2�12: set relations between faces of α-complex and triangulation. All members of A can be

obtained by appropriate α-�ltration from the set F. F or consistence, setT is the set of triangulations of

S with generally one, but possibly multiple triangulations. Multiple triangulations (e.g., due to degen-

eracies) lead to multiple families in A.

the set of k-faces constituting each of these complexes C is a member of the pow erset of F in

the following sense:

{σ(k)

C } ⊆ F
(k) ∈ 2F

(k)

⊆ 2F (2�2)

where notation: 2F denotes a power set of F. A pow erset is de�nedb y the following de�nition

in which it is important to notice the term proper :

Definition 2.13 (power set)

A power set 2S
of S is the set of all pr oper subsets thatc an be drawn from S •

Example 2.1 (vertices power set member)

The set of vertices {σ(0)} ⊆ F
(0)

, contained in a C ∈ C\{T } is a subset of S. If its cardinality

card{σ(0)} < card S, the subset belongs to the power set of 2S
of S, which in turn is a member

of the power set 2F •

Among the faces of the triangulation are all faces of any possible α-complex that can be generated

by S. Faces not contained in F are not encountered in the α-complexes. So for the faces of an

arbitrary α-complex, including the triangulation itself, one may state:

{σ(k)

Cα} ⊆ F
(k) ∈

(
2F

(k)⋃
F

(k)

)
⊆
(
2F
⋃

F

)
(2�3)

F or the pow er set of faces of a triangulation,this leads to a hierarchy as in �gure 2�13.

2.5.5 Singular, regular and in teriorfaces

We are now in a position to give a classi�cation of the faces of an α-complex, already displayed

in table 2�1. It is convenient to de�ne the minimum and maximum α-values for which the

α-complex is unequal to one of the trivial extremes: the point set and the triangulation :

Definition 2.14 (αmin and αmax)

The smallest α of the smallest α-complex other than the point set S is termed αmin, the smallest

α for whichthe α-complex is identical to the triangulation is termed αmax •
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0-skeleton

0-�ltr ation

permutation
permutation

α-�ltration

α-�ltr ation

triangulation

F = {σT }

C = 2C

S = F
(0)

{σ
(0)

C } ∈ 2F
(0)

T

{σC} ∈ 2F A = 2Cα

Figure 2�13: hierarc hy diagram of the power sets of k-faces of a triangulation.

Observation2.12 (αmin and αmax)

Generally, αmin 	= 0 and αmax is �nite. F urther observe that αmin is the α-value for which

the �rst one or more edges becomeα-exposed and αmax is the α-value for which the last d-face
becomes α-exp ose d•

With α growing from αmin to αmax, more and more and ultimately all faces become contained

in the α-complex. Thereby, in general, faces asynchronously traverse the followingstages:

• Singular face:

When a k-face becomes α-exposed but the (k + 1)-face it is bound to be incident upon

does not yet. Or, equivalently: the k-face belongs to the k-skeleton, but does not belong
to the (k+1)-sk eleton. Singular faces are always contained in the boundary and are never

interior.

• Regular face:

When a k-face is α-exposed and so is a (k + 1)-superface it is incident upon: the k-face
belong to the (k + 1)-skeleton. The k-face is contained in the boundary of a (k + 1)-
dimensional complex.

• In teriorface:

When a k-face is contained in the in terior of some (k + 1)-dimensional complex: in this

case too, the k-face belong to the (k+1)-skeleton. By observation 2.17: if the superface is

α-exposed, then the k-face is so, too.

2.5.6 The α-family

For a �nite point set, a �nite set of triangulations can be generated, and by the same token,

a �nite set of α-complexes can be �ltered o�. This �nite set of α-complexes may be ordered

by α-value. Starting out with the canonical v ertices set for α < αmin, one �nds for increasing

values of α a new α-complex for every insertion of one or more faces into the previous α-complex,

until arriving, for α = αmax at triangulation T . For α < αmin, points may be lead to enter the
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α-complex only if their radius is real, i.e., if w + α > 0. This detailis further left unconsidered

here. The α-family is now de�ned as follows:

Definition 2.15 (α-family)
The set A of order edpairs (Cα(S), α) is called the α-family •

where α is the smallest α yielding that complex. Generally, within this family, w eha vethe

follo wing:

Observation2.13 (not necessarily unequal α-complexes for unequal α)

α1 	= α2 	⇒ Cα1 	= Cα2

Observation 2.14 (unequal intervals of α)

i 	= k ∨ j 	= l ⇒ αi − αj 	= αk − αl

As a consequence, the ordering of the α-family b y α delivers a partially ordered set. A strict

partial order relation can only be obtained by the introduction of an α-rank:

Definition 2.16 (α-rank)
The α-rank ( is a unique index intothe α-family •

as proposed by Mücke in [Mue93] and Edelsbrunner and Mücke in [EM94]. De�nition 2.15 can be

modi�ed accordingly. Strict ordering of the α-family is bene�cial, as it allows for a more e�cient

storage schemes and faster queries. A single α-rank covers a range of α-values and increments

only when the corresponding α-complex expands. Notice also that this de�nition allows us to

topologically sort the set A, according to the index (.

2.5.7 Alpha exposedness

Alpha exposedness is less trivial than it may seem at �rst glance. Here, it will be discussed

in greater depth to gain proper understanding of α-�ltration. A simplex in E d is said to be

α-exposed if there exists an empty real (d − 1)-sphere, radius
√
α, that is orthogonal to eac h

of the vertices if the simplex. This (d − 1)-sphere is the boundary of a d-ball, called an α-ball.
An α-ball in Ed can be regarded as a weighted point with weight α, giving rise to the following

de�nition of α-exposedness given in [Ede92]:

Definition 2.17 (α-exposedness,Edelsbrunner,1992)
A simplex is α-exposed if ther e exists a weighted point, with weight α such that this point is

orthogonal to each of the vertices if the simplex and all other vertic es have positive weighted

distance to this weighted point •

Observation 2.15 (α-exposedness of a regular simplex)

F oreach regular simplex there exists an α ∈ [0,∞) for which the simplex is α-exposed •
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si si

Hij

Figure 2�14: k-simplex, k < d, α-exposed by in�nitely many α-balls, lik e here edgesisj . The minimum-

radius ball is located at the intersection of the carrying line connecting the centres and the radical plane.

As the centre of the orthogonal α-ball moves aw ay along theradical plane, its radius becomes greater

and greater. When in�nitely far remote, the ball becomes a half plane and the edge becomes contained

in its border.

If the orthogonal α-ball is empty all v ertices ha veindeed positive weighted distance to this α-
w eight weighted point. F or ak-simplex, with k < d, in�nitely many α-balls exist, that cause the
k-simplex to be α-exposed. We have the following:

Observation2.16 (strictly increasing α-balls)
If a k-fac e, k < d, has become α-exposed for α = α1, then for any α-value α > α1, again an

orthogonal α-ball can be found •

As anexample, see the edge in E2 in the left picture of �gure 2�14. The tw oweighted vertices

generate a hyperbolic pencil of spheres (to be introduced in chapter 4), with all orthogonal spheres

passing through tw odistinct points lying on the edge. The minimum-radius and maximum

radical α-ball are the ones of principal interest. The minimum radical α-ball because this ball

determines the α-value for which the face �rst enters the α-complex. The maximum radical

α-ball, with in�nite radius corresponding to α = ∞, because it guarantees that all vertices in

the border of the convex hull can be connected by an edge for some α ∈ [0,∞).

For a d-simplex in Ed, there exist exactly one orthogonal α-ball, or none. The generalisation
of α-exposedness of an edge to α-exposedness of a k-face in general would take a detailed technical

discussion, which will be skipped here. The interested reader may refer to [Ede92, Mue93, EM94].

One more important aspect will be mentioned, ho wever:

Observation2.17 (α-exposedness of superfaces)

If all subfaces (e.g., the edges of a triangle) are α-exposed, then that is not a su�cient condition

for the face to be α-exposed too, as �gure 2�15 illustrates. On the other hand, if a sup erfac eis

α-exp ose d,then soar e its subfaces •
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si sj

sk

Figure 2�15: α-exposed edges belonging to a non α-exposed triangle. A real orthogonal sphere located

in the radical centre exists. In this case, the orthogonal α-ball coincides with the inscribed ball. Only

when the chosen α-value permits the formation of this α-ball, the triangle will become α-exposed, whereas
edges are α-exposed for an α close to zero.

2.6 The α-complex as a graph

2.6.1 Geometric graph

In order to be able to relate a triangulation to nearest neighbour information, to be discussed

shortly, the notion of a geometric graph is now introduced:

Definition 2.18 (finite geometric graph)

A �nite geometric graph is a graph in which a �nite set of edges represent distances of some kind

between vertic esand a �nite set of vertices represent points in spac e•

F or instance, a Delaunay triangulation can be considered as a geometric graph. Geometric graphs

are assumed undirected. If not explicitely stated, they are also assumed �nite and simplicial:

Definition 2.19 (simplicial geometric graph)

A geometric graph is said to be simplicial if it contains no self-loops or multiple edges among any

pair of vertices •

How is this with weighted vertices and weighted distances? As stated earlier, swapping

Euclidean distance b y the Laguerre weighted distance causes space to become non-metric. See

Annex C. Recall that weighted distances are not necessarily positive. A graph with edges based

on a Laguerre distance may cause arcs (edges) to represent negative distances. As a consequence:

Observation 2.18 (not a geometric graph)

The regular triangulation is not a geometric graph •

2.6.2 The nearest and the local-furthest neighbour graph

The nearest neighbour and local-furthest neighbour appear to be the vertices associated with

the smallest and greatest α-value, resp. For this reason, nearest and local-furthest neighbour

information is of keen interest in local neighbourhood analysis. Let T (S) be the triangulation of

point set S. Then the nearest neighbourgraph is de�ned as follo ws:
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Figure 2�16: nearest and local-furthest neighbour graph of a weighted point set. Top row: zero-weigh t

case, bottom row: w eigh ted case.Left-to-right: triangulation, NNG (centre) and LFNG (right). Weights

are indicated as weight balls.

Definition 2.20 (nearest neighbour graph NNG)

The ne arest neighbour graph NNG(S) connects each member in S to another member that is:

(i) connected by an arc in T (S), and:

(ii) closest by •

and, in similar vein:

Definition 2.21 (local-furthest neighbour graph LFNG)

The local-furthest neighbour graph LFNG(S) connects each member in S to another member that

is:

(i) connected by an arc in T (S), and:

(ii) furthest apart •

Remark that the second condition in de�nition 2.20 implies the �rst. The objective here is more

to match the de�nitions 2.20 and 2.21 of NNG and LFNG and put them in the context of the

triangulation. Also see �gure 2�16. Further notice that the LFNG as de�ned here, may coincide

but has no explicit relation to the furthest-site triangulation (e.g., [Ede87, O'R94]).

As a direct consequence of the de�nition of NNG and LFNG:
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Observation 2.19 (triangulation and NNG and LFNG)

NNG(S) ⊆ T and LFNG(S) ⊆ T •

Local-furthest and nearest neighbours are de�ned in the setting of a local neighbourhood, more

precisely for a vertex s:

Observation2.20 (arc in T (S) and star)

For the ar c in T (S) mentioned in de�nition 2.20, sisj say, one hasthat sisj ∈ St si
⋂
St sj •

Neither nearest neighbour nor local-furthest neighbour relations are symmetric. Therefore, their

graphs need be directed, as appropriate. F urthermore, neither nearest neighbour nor local-

furthest neighbour relations are unique. One vertex may ha vemultiple nearest and/or local-

furthest neighbours and a vertex may be the nearest- and/or local-furthest neighbour of multiple

other vertices and also, v ertices may be another vertex' nearest and local-furthest neighbour

at the same time, and vertices may have one and the same vertex as local-furthest andnearest

neighbour. A notable instance of �non-uniqueness� is formed by regularly spaced vertices. Neither

NNG nor LFNG are generally connected or complete, but both are spanning. Figure 2�16 shows

an example of a NNG and a LFNG of a weighted point set. Both graphs will return in chapter 4

and will be used in the case studies of chapter 6. For a further introduction, see e.g. [O'R94].

2.7 Holes

Holes play an important role in modelling with α-complexes. Indeed, α-complexes can be ap-

preciated inasmuc hfor their abilit yto model what is not there, i.e., b y their holes, as for their

capabilities of snapping materialised subspace. The duality in object and void space is partic-

ularly suited for the modelling of dual shapes, suc has tw o-phasesystems. This aspect will be

further exploited in c hapter5. But the variet yin which holes appear leadsastra y easily .Some

further de�nitions and classi�cations are therefore needed (also see table 2�4):

Definition 2.22 (various holes)

A cavity is a depression lying in the boundary of the obje ct, accessible via the (unbounded)

exterior of the object.

A pocket is a cavity with a small �neck�.

A v oid is an entir ely internal hole. This is a special hole in that it creates an additional

(bounded) exterior of the object.

A handle or tunnel is a pathway from boundary to boundary, piercing the object. It can be

regarded as a pocket or a void with two distinct connections (necks) to the single unbounded

exterior of the object •

A bit more formal:

Definition 2.23 (genus)

The genus is a topological characteristic indicating the number of handles on an object and a

genus g obje ctis an object with g handles •
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Hole (none) Cavity Pocket Void Tunnel Separation

Genus 0 0 0 0 > 0 0
Int 1 1 1 1 1 > 1
bounded Ext 0 0 0 1 0 0
unbounded Ext 1 1 1 1 1 1

T able 2�4:T opological characteristics of various types of holes.

T riangulations of a point set in E d bounded by set S have no unbounded cells. They always have

at least one exterior. When a (triangulated) object contains one or more voids, m say, there will

be m additional (bounded)exteriors, completely surrounded b y the interior.

Observation2.21 (Disjoint exteriors and interiors)

Disjoint exteriors imply multiply connected interiors, and vice versa •

Observation2.22 (separation of Cl Cα and Int Cα)

Closure Cl Cα may be connected, while Int Cα is separated •

Figure 2�17 shows this.

Figure 2�17: example of an α-shape for which its in terior (grayed) IntWα is separated, but not the

closure Cl Wα thereof.

Starting out with a triangulation (i.e., Cα
∼= T ), and assuming a monotonically decreasing

value of α, voidsma y gro w into pockets, pockets into cavities and/or handlesand handlesma y

grow in to separations of the α-complex. During this process, the genus (number of handles)

changes according to table 2�4. F or speci�c intervals of α, the genus may be alternating betw een

zero and non-zero. In chapter 4, it will become clear how a negative weight may be used as a

seed for an internal hole and how this void may �nally grow into a non-zero genus object.

2.8 Time and storage complexity

The exact asymptotic storage complexity of a d-simplex (i.e., the number of its k-faces) is given
by:

cardF = Θ(2d+1) (2�4)
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Example 2.2 (faces of a 2-simplex)
A 2-simplex (triangle) is made up of 23 (sub)faces: one 2-face plus thr ee 1-faces (edges) plus

thr ee0-faces (vertic es)plus the only �improper� −1-fac e, empty set ∅, which totalsup to 8 •

See [PS85, Ede87]. Notice that edges, v ertices and indeed also the empty set are simplexes

themselves. Asymptotic time and storage complexities of triangulation, α-complex and α-shape
are giv enin table 2�5. The time complexity to generate the regular triangulation turns out to

be the yardstick. A triangulation in Ed can be found in O(n� d
2
�) running time. Deriving the

α-family from this triangulation bymeans of α-�ltrationα-�ltration can be done in time linear

in the number of faces, obtaining both α-complex and α-shape (see [Mue93, EM94]).

Ed Wα(S) Cα(S) T (S)

time O(n� d
2
�) O(n� d

2
�) O(n� d

2
�)

storage Θ(n� d+1
2

�) Θ(n� d+1
2

�) Θ(n� d+1
2

�)

T able 2�5:asymptotic time and storage complexities.

Mücke shows that for a point set S in E3, with card S = N , at most 2N2 − 5N α-shapes
can be formed. F or further details, see [Mue93]. Complexities for general dimension w erenot

found in literature. F or the storage complexity, w emay further take the triangulation as an

upper bound. For E d, Seidel ([Sei91]) sho wsthat the storage complexity cannot exceed exact

bound Θ(n� d+1
2

�), as table 2�5 indicates.

The time complexity of α-complex queries, for example for point locations, can be done in

O(n), which follows trivially with what is found for triangulations in [MSZ99]. P oin t location is

not further discussed in this work. Generally, in E d, k radical planes of k + 1 points in general

position intersect in a single d−k-�at. P ermutations of ordered pairs out of d+1 points generate

m radical planes, with:

m =
(
d+ 1

2

)
=

1
2
(d+ 1)!
(d − 1)!

(2�5)

For a d-simplex, the m radical planes intersect in a single 0-�at (point), causing the arrangement

of radical planes to be not in general position and not simple. More details can be found in

[Aur87b, BP94]. Also, refer to table 2�2.



42 Chapter 2: Alpha complexes



Chapter 3

Modelling steps

3.1 Overview of this c hapter

In chapter 1, α-complexes have been proposed for the geometric and topological description of

subsurface objects. In the previous chapter, the background of α-complexes has been introduced

in greater detail. In this chapter, attention will be focused on the application of α-complexes

in the modelling process. A framework or environment to support this modelling process does

not yet exist; it has to be developed. A modelling process like this has tw o sides:�rstly, �nding

an appropriate α-complex that adequately captures the sampled object and secondly, the re-

instantiation of templatised primitive objects, stored as an α-complex. This chapter will set

forth a modelling framework covering both of these aspects.

First thing in this chapter, is a discussion on the notion of shapes in section 3.2. Goal

of the discussion is to identify the important aspects of shapes and families of shapes. Also in

this section, a few classes of shapes of special importance for the modelling of natural objects.

Modelling with α-complexes is a multi-step process. In section 3.3, an initial kernel modelling

framework for modelling with α-complexes will be postulated, which will be further expanded and

re�ned in the course of this chapter. Section 3.4 discusses the details of the sampling data point

set, among other things, the organisation of the sampling data point set. Next, in section 3.5,

attention turns to the analysis of the sampling data point set. Section 3.6 contains a discussion on

transformations. More in particular, how they can be applied as a preprocessing step to further

precondition S, and the pitfalls that come along with transformations. This section also discusses

normalisation as a special instance of transformation. The modelling steps triangulation and α-
family derivation, being automated steps without further h uman in teraction, are not discussed

in this chapter. Details w eregiven in chapter 2. Section 3.7 sheds someligh t on further details

of the assignment of w eights. Weighted is the subject of chapter 4. The �nal modelling steps,

transcribing the α-complex in another representation, will be discussed in section 3.8. Section 3.9

present the point processes as a foundation for the theoretical model. Then, section 3.10 presents

a further re�ned and expanded modelling framework. Section 3.11 treats the aspects involved in

the modelling of dynamic problems with α-complexes. Of particular interest to geological models

is the treatment of dilation and erosional processes.

43
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Figure 3�1: wider scope of a constrained simulation- and inversion-based forward modelling environment,

using planned acquisition and α-complex geometry and topology. The �gure shows how, eventually, the

modelling can be embedded in a knowledge-based approach. The grayed box at the left re�ects the part

for which a modelling framework will be outlined in this chapter. The modelling iterations stop when

the measure-of-merit (T aylor in [Tay92]) cannot be improved anymore.

3.2 Shapes

3.2.1 What is a shape?

In the preceeding chapters, the notion of a shape has been introduced, relying on the reader's

intuitive understanding of what a shape involves. A more precise de�nition of a shape is no w

due. Following Kendall (1977), the de�nition of shape reads as follows:

Definition 3.1 (shape,Kendall,1977)

Shape is all the geometric information that remains when location, scale and rotational e�ects

ar e �lter edoutfr om an object •

Shape in this work, applies to the shape of natural objects. Natural objects can be classi�ed

in so many ways that no attempt will be made here. Neither has there been or will there be made

an endeavour to come up with a de�nition of what a natural object is exactly. Even without

a precise de�nition, the use of this widely applied de�nition may be debatable for subsurface

modelling. Firstly, orientation may be relevan twith regard to di�erences in horizontal and

vertical properties and in conjunction to this point, in a sequence of ev ents and en vironments,

processes like gra vit y,erosion and �ooding may typically act di�erently on di�erently oriented

shapes. Size issues may also be important. These issues will not further be discussed in this

thesis but will be posted as open problem, i.e., marked for further research. See chapter7.
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In this thesis, an object's shape can be represented in di�erent manners and in di�erent

spaces. Refer to chapter 2. The shape of an observed object in sample space is described by a set

of landmarks, a de�nition of which will be given below. In topological space, a shape will usually

be discussed in a topological manner, possibly neglecting the geometric details all together. In

model space, the space is usually represented by an α-complex.

In this chapter, the sampling of objects will mostly be discussed in terms of landmarks

(cf. Bookstein, 1978), a term in customary use in morphology. A landmark, until a more precise

de�nition will be given, is a characteristic point of the object, typically shared by all such shapes.

Such landmarks will be exactly the points expected in a sampling data point set.

3.2.2 Shape classi�cation

Shape classi�cation in all its details, though looming at the horizon of this thesis, is beyond the

scope of this thesis. A very crude outline will be giv enhere, just to pick up enough context

for the remainder of this chapter. For further details, refer to [SS94, DM98]. From no won a

shape is assumed to comply with de�nition 3.1. A suitable de�nition for the size of an object,

represented by its set of landmarks S has been proposed by Dryden and Mardia (1998):

Definition 3.2 (size)

Size is the positive real valued factor λ that can be decrease dor increased, such that the shape

W(S) is being preserved •

In mathematical terms, with set function W(S) indicating the shape generated by S:

W(λS) = λW(S), λ > 0 (3�1)

Shapeclassi�cation is usually done against a family of shapes, and based on the value(s)

of one or more characteristic shape parameters. A shape parameter is de�ned as follows:

Definition 3.3 (shape parameter)

A shape parameter is a real valued par ameterthat given a set of landmarks S sets o� a single

characteristic of the individual shape against a typical value or distribution of that characteristic

among the family •

Let G : E d (→ R represent a real-valued shape parameter relation. Then, with S ⊂ E
d and

g ∈ R, set function g = G(S) denotes a shape parameter that depends on the set of landmarks. In

the case of shape analysis (refer to �gure 3�1), landmarks are usually rework ed into Helmertized

landmarks (denoted: S�), i.e., landmarks from which location information has been removed

and the size (scale) has been normalised. This operation is sometimes referred to or combined

with homologisation, an operation aiming to send certain reference points, or origins among the

landmarks, into �xed locations in sample space, in order to enhance comparison of shapes. F or

further details, refer for example to to [SS94, DM98].

Definition 3.4 (shape space)

Shape spac e is the (hyper-)sp ac espanned by the set of all possible shapes b elonging to a c ommon

family, in which shapes are being repr esented by the set of landmarks, possibly augmented by

weight and value sets and possibly by time •
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Definition 3.5 (icon)

An icon is a member of a shape family that is believed to be a typical representative of that family

•

Icons will generally serv eas sample models on which the templatised shapes (or: primitives)

℘(S�) will be based. See �gure 3�1.

3.2.3 Shape matching

Once a family of shapes has been analysed and its shape parameters are known, unknown objects

can be matched against these parameters. The term shape matching will be used for that process.

The problem of shape matching can now be formulated as follows:

F ormulation 3.1 (shape matching)

Given a set of landmarks sampling an unclassi�ed object, pose the hypothesis that the object

belongs to a shape family and try to achieve ac ceptance or rejection of the hypothesis. If the

hypothesis can be ac cepted then the shape is an instance of the family and it can therefore be

reconstructed from the family icon bycho osing appropriate values for the shape par ametersfrom

their valid domains. If the hypothesis must be rejected, the unknown shape does not belong to this

family and instantiation cannot generally take place with this family's shape parameters within

valid range.

The idea of the matching procedure is to bring landmarks in normalised form, b y successively

removing positional (location and orientation) information, along with size and scale. This

process is well-studied and extensively discussed in the literature. See e.g., [DM98, BNKVL99].

For a recent survey on shape matching, refer to [VH01].

This subsection is concluded with a quote taken from [SS94]:

Quote 3.1 ([SS94], pp. 54: descriptive power of shape parameters)

�In most cases, one cannot expect that form (shape) parameters uniquely determine �gures (ob-

jects) in the sense that a (full and unique) reconstruction is possible�.

perhaps best understood by looking at the matching process in mathematical terms. Let XS�
be

an N × d matrix representing the landmarks in its rows. Furthermore, let E be an N × d matrix

representing the uncertainty of the landmark locations in its rows. Then for the reconstruction

process of shape W(XS):

W(XS) = W
(
λ(XS�

+E)TR + IOT
)

= W(λXS�
TR + IOT +E′) (3�2)

where TR is a d × d rotation transformation matrix and O is a d × 1 matrix containing the

components of the translation vector of some reference point of the shape. The N × 1 matrix

I contains the components of N -unit v ector 1N . The term E
′ is the important point: some

uncertainty, or: fuzziness remains.
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3.2.4 The two fundamental modelling problems

Building natural object shapes from scratc his a formidable task. Therefore, modellers usually

turn to a sketch, cartoon or an icon of an existing physical object to create a possible realisation

of such a shape. Object templates, called primitives, serve exactly that purpose. In order to give

further structure to the discussion, the following modelling problems are to be formulated, both

considered in the context of α-complexes:

Free form Shape reconstruction

Nature of synthetic, immaterial observed from physical model

the data subjective only subject to error and noise

volatile to be honored

MoM generally lacking optimisation object-/ cost function

subjective best �t with physical model

anatomic landmarks largely absent dominantly present

mathematical landmarks computed computed

pseudo landmarks taken for anatomic landmarks additional constraints and detail

T able3�1: summary of the principle characteristics of the tw oclasses of modelling problems in the

context of the use of α-complexes. MoM is an acronym for: measure-of-merit.

F ormulation 3.2 (free form shaping)

The shape, represented by the α-complex is built from a modeller-generated, (pseudo-)landmark

point set, base don a simulated or assumed geometry and a-priori knowledge. Generally, the

set of possible solutions to the problem is not limited to a single solution and changes to the

data point set S and/or the weight set W may be use d to alter the shape. Usually, no crisp

measure-of-merit exists (MoM) and the selection of the preferred shape is the modellers' choice •

F ormulation 3.3 (shape reconstruction)

The sampling data point set is now based on observed data. Generally, the observation will be

subject to noise and errors. Although basically multiple solutions can be found, a single �best

�t� can generally be identi�ed accor dingto optimisation of some objective or c ost function.This

commonly takes the form of a constrained interpolation problem. The observed (anatomic) land-

marks, are commonly left untouched (one doesn't change observations) and control must therefor e

come from changes to weight set W or from additional acquisition of (pseudo)-landmarks •

T able3�1 summarises. Both classes of problems �t in the conceptual modelling environment

of �gure 3�1. Roughly speaking, the left part of the scheme is the in version en vironment, the

righ tpart is the knowledge part including the primitives and the scenarios. At the core of this

modelling en vironment is the constrained simulation- and inversion-based forward modelling

problem (gra yedbox), the origin and motivation of which was in troduced in chapter 1. Notice

also that generally, both modelling problem classes will be submitted to some form of numerical

analysis.

At �rst glance, the tw oclasses of modelling problems seem to mutually exclude one an-

other. In this thesis, how ever, the tw o problems gracefully coexist, although shape reconstruction
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remains the dominant problem. Finding the icon is basically shape reconstruction and the same

goes for constrained re-instantiation. Free-form modelling occurs within the bounds of fuzzi-

ness (as mentioned in the previous subsection) and to bring in a-priori knowledge that is not

represented by the existing set of landmarks.

Finally, notice that �nding an icon among a family of shapes and re-instantiation of shape

instances from this icon havemany aspects in common, such as sizing and positioning, and the

constraining to observed data.

3.2.5 Shape families

F amilies in this context are most conveniently subdivided according to the process that they

undergo. More precisely:

Definition 3.6 (shape families)

• Raw shape family

A raw shape family is a collection of she ar identical objects, of which the hypothesis of

their Helmertized landmarks being identical to those of the icon has not yet been ac cepted

or rejected.

• F ormalisedshape family

A formalised shap e family is a family of which all members have been accepted to have the

same shape, identical to the shape of its icon.

• Realisation of a shape family

A realisation of a shape family is a set of instantiated shapes, the icon variety, generated

by the icon by means of shape par ametervariation (variational geometry).

• T ransformedshape family

A tr ansformed shape family is a transformation of a realisationof a shape family •

Example 3.1 (shape families)

A set of balls, resize d to have arbitrary �nite radii, is a realisation of a shape family of the

formalised shape family of balls. After mixing these balls by arbitrarily random moves of their

centres in space, a transformed shape family is obtained. However, all the resulting balls can be

traced back to the formalised family of balls. Their Helmertized landmarks are identical to that of

the ball ic on. A set of sheared shape family members, i.e., a set of shape instantiations, generated

by the same icon but transformed using a di�erent shear transformation, forms a realisation of a

shape family, but as a raw shape family, can no longer be trac ed back to a formalised shape family.

Due to the shearing, which changes the shape, their Helmertized landmarks even if corrected for

orientation, di�ers •

Example 3.2 (transformed shape families)

Figure 3�2 shows a family of a linearly (a�nely) transformed shape and a sheared shape from

a section of a meandering river icon. The leftmost shape is the icon. The central shape was

obtained by an anisotropic transformation and has therefore not the same shape as the icon. Also

the sheared shape family member at the right has a di�erent shape than the icon. The rightmost

shape was obtained by shearing along the X-axis by 60◦. Refer to �gures 6�38 and 6�39, for a

further expanded family •
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Figure 3�2: linearly (a�nely) transformed shape family member (central) of a section of a meandering

river icon at the left, transformed by an anisotropic scaling transformation (scaling vector (2 1)T ). Right:

family member obtained by shearing transformation along X-axis b y60◦.

3.2.6 Property-ruled geometry and topology

In the observation of physical objects, it is not always feasible to ha vephysical access to the

(interior of the) target object. Quite often, an object can only be observed while embedded in its

background material. Some observation techniques are based on re�ections of some signal (for

example echoscopy, re�ection seismic, ultra sound) some are based on the principle oftomography.

Refer for example to [BCM+93]. Di�erent observation techniques may deliver di�erent sets

of landmarks and observed value sets of di�erent properties eac h reveal a di�erent geometry.

Moreover, using a di�erent sampling technique often delivers a di�erent value set on the same

property. The geometry so becomes dependent on the observed property and observation method.

We regard to such shapes as prop erty-ruled shapes:

Definition 3.7 (property-ruled shape)

A shape is called property-ruled if it is directly depending on the measured property or observation

technique •

See �gure 3�3. An illustrating example has been presented in [XJG+99]:

Example 3.3 (melonama and non-melonama)

A surgeon locating and removing a skin cancer will somehow rely on tissue properties to deter-

mine where to cut. F requently,ther e will not be just a single dominant property, but a suite

of properties, each with their own local and global signi�cance. Di�erent experts apply di�erent

criteria and rules and merit the observed facts di�erently. The weighting of pr operties in order

to discriminate object material from its background leads to the belief in this thesis that in the

curr entpr actices, the shape of natural objects is in fact property-ruled •
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physical object

property-ruled shape

method
observed
property values

observation

Figure 3�3: dependency diagram for a property-ruled shape. A source-to-destination arrow denotes a

dependency of the source on the destination.

3.2.7 Strati�ed shapes

Shapes can be strati�ed, or more precisely, be sampled such that the sampling data points appear

as strata:

Definition 3.8 (stratified d ata)

Sampling data points are said to be strati�ed if their values cluster in layers. Each layer has its

typical value range •

An example of strati�ed data was shown in chapter 1, �gure 1�6. F or convenience, if the sampling

data points show to be strati�ed, the corresponding layered shapes are also referred to as strati�ed

shapes.

3.2.8 Geometrically coupled shapes

Shapes can be geometrically coupled in the following sense:

Definition 3.9 (geometrically coupled objects)

Two objects are said to be geometrically coupled if a change in one is necessarily coupled to a

complementary spatial occup ancychange in the other •

Example 3.4 (multi-phase objects)

Consider a system of immiscible �uid and solid phases. A volume change in one phase induces

an equally large volume change in one or more coexistingphases •

It is not uncommon (e.g., [Kal89, RG96]) to also attribute a shape (geometry and topology)

to �uid and gaseous bodies, yielding �uid objects and gaseous objects. Or to couple their shape

in the frame of a multi-phase system (e.g., [BB91, ABBM94, Tak98]).

3.2.9 Holes

One of the celebrated capacities of α-complexes is their capability of handling the topology of

all sorts of holes in an intrinsic manner. Even in a dynamic way: as α changes, or the point set,

one type of hole may decay in to another type, holes may fade aw ayand new ones may invade
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a) b) c) d) e) f)

Figure 3�4: salt diapir with various forms of holes, to illustrate the terminology; left to right: a): diapir

without holes (a simple shape), b): diapir with cavity or boundary hole, c): diapir with pocket, d): diapir

with internal hole, or void, e): diapir with tunnel or handle, f): separation. A void induces a separation

of the exterior, while the others do not. Observe that the interior of a)..e) is connected, the interior of f)

is separated.

Figure 3�5: α-complex containing tunnels (left) and nearly similar α-complex, without tunnels (right).

The left complex has genus > 0, the right is a genus 0 complex. Generally, the (boundary) surface and

the curvature of the right complex will be smaller than that of the left complex.

the complex. This is of particular interest for the modelling of for instance geometrically coupled

objects, like multi-phase immiscible solid-�uid systems. In chapter 2, some of the topological

features were already discussed. Here, �gure 3�4 shows an example, the terms and the topological

characteristics. Figure 3�5 shows an example of nearly equal shapes, with tunnels and tunnel-

free.

3.3 Modelling shapes with α-complexes

Now that families of shapes, their classi�cation and the role of properties have been discussed,

it is time to look at the modelling approach itself, based on the use of α-complexes. The nuts

and bolts of α-complexes ha vebeen discussed in greater detail in chapter 2. The focus in the

previous chapter w asmore on mathematical background and technical details. In this chapter,

the focus will be on application of α-complexes to practical modelling problems. This section

presents a kernel modelling framework for modelling with α-complexes. This kernel framework

will be re�ned and expanded in the course of this chapter. Before this can be done, the individual
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components need further clari�cation, which will b edone in the sections follo wingthis one.

3.3.1 A k ernelmodelling framework

landmarks

design and
attach weights

compute regular
triangulation

inspect
visualize and

family
compute alpha

geometric model

data point set
prepare sampling

s

S

S̃ = S ⊗ W

A = {Cα}

selected Cα

Figure 3�6: the kernel modelling framework containing the basic steps involv ed inmodelling with α-
complexes. Some steps may be void, occasionally. Starting point is always a sampling data point set and

the �nal result is always a geometric model, represented by an α-complex. T riangulation andα-complex

computation are steps with no or little human interaction. The modelling ingenuity is chie�y in the �rst

steps.

The kernel of a modelling framework for α-complex modelling is depicted in �gure 3�

6. In its essence, it closely resembles the approach presented in [Mue93, EM94]. It will be

further expanded in this chapter. The �rst steps involve the preparation of the sampling data

point set (landmark set) S, possibly endow edwith one or more sets of property values sampled

at those locations, and the weight set W. The more meaningful points in the data set, the

landmarks, are guiding in the determination of the weights. Optionally, transformations may be

used beforehand to precondition S. Then, the α-family is determined, which was also described in

chapter 2. T o draw the preferred complex from this α-family, some measure-of-merit ([T ay92])

is needed, indicating the goodness of �t for eac hα-complex. If no such measure is available,

subjective criteria may be used instead. V ariousmodelling cycles (iterations) may be needed
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before a satisfactory result is obtained.

Once identi�ed, the appropriate α-complex may be converted into alternate representa-

tions. The α-complex may also be merged with other triangulated geometries, or may be tran-

scribed into an �ordinary� solid. F or dynamic problems, the modelling cycle may be time-geared:

sample points sets, weights and preferred α-values may vary over time. The same holds for cost-

and objective functions. These topics will be dealt with near the end of this chapter.

How does this kernel modelling framework relate to the gra yedbox in the conceptual

modelling environment in �gure 3�1? A paleological or geological scenario is retrieved from a

knowledge base, imposing the �living environment� and evolutionary regime for the objects to

instantiate. Scenarios enable certain geodynamic processes and constraints. Then, objects are

instantiated from icons stored in the earth catalogue data base of templatised icons (primitives).

After �tting a theoretical model to the instantiated shape (to be discussed later in this chapter)

simulation can take place, yielding expected value sets that can be compared to observed value

sets. This inversion, together with some measure-of-merit, tells where the shapes so far need

adjustments in order to improve the merit-of-measure. Improvement can be brought about b y

geometric changes on the landmarks, b y changing weight and by changes of α. The latter tw o

are less likely than the former. Weights, α and constraints are foreseen to be determined by

knowledge-base stored rules.

Until the knowledge-base part of the environment will ha vebeen developed, icons are

derived directly from the observed landmark set. As long as simulation is absent, and the

inversion is still un-installed, evaluation is simply the experts view on the α-complex created so

far. Physical �tting criteria, such a estimated volumes, areas and size ma y assist in �nding the

best α-complex. This is exactly what the kernel modelling framework supports; no more, no less.

3.4 The sampling data set

3.4.1 Landmarks and value sets

The sampling data point set S may consist of various types of landmarks. A further subdivision

of the landmarks is therefore convenient:

Definition 3.10 (landmark)

A landmark is a point which identi�es a salient feature of a shape. More speci�cally:

Anatomic landmark An anatomic landmark identi�es a feature shared byevery instance of a

family of shapes.

Mathematical landmark A mathematical landmark is a feature repr esenting an extremity of a

mathematical property, such as maximum curvature, local or global maximum or minimum,

singularity, etc.

Pseudo-landmark A pseudo-landmark is a constructed landmark that has been introduc edby

the modeller, so as to re�ect certain a-priori knowledge, constraint or hypothesis •

There are many synonyms for landmarks: �rst of all sample points, but also: sites, markers,

anchor points, control points and a few others. In this work, landmarks are always points in space
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and/or time. Anatomic landmarks are always observed or simulated, mathematical landmarks

are always computed, pseudo-landmarks are simulated or speci�ed.

Organising sample points on a lattice brings up a discussion as to whether landmarks

identi�ed in the grid nodes can be classi�ed as anatomic landmarks. There are many arguments

in favour of regarding grid nodes as mathematical landmarks. F urtherdiscussion is not in the

interest of this thesis and will be abandoned here.

Commonly, in the landmarks, some process is being sampled, in thisw ork typically some

physical property. This set of properties is called the (property)value set belonging to S, and is

denoted PS:

Definition 3.11 ((property)value set)

A value set PS belonging to S is an observation of some pr ocessin the points in S •

In this work, the value set is input for the design of the weights W. Strictly speaking, this

does not belong to the kernel modelling framework and it is therefore not shown in �gure 3�6.

The sampling of some physical objects in this thesis is mostly sparse sampling:

Definition 3.12 (sparse sampling)

A sampling is said to be a sparse sampling if the number of the sample points is only a small

portion of the available observation points that can be chosen of •

Example 3.5 (sampling seismic cube)

A sampling data point set consisting of a seismic cube can generally not be considered as sparse.

Interpreted seismic horizon picks will generally be sparse •

No generic de�nition of what "small" is exactly can be given. In this work, small will be de�ned

as less than one-quarter, unless stated otherwise. The motivation for this choice is that one out

of four is in the same order of magnitude as one sample point for each tetrahedron in E 3. Other

choice can be taken equally well.

3.4.2 Landmarking

Sometimes, the initial sampling data set is abundant enough to complete the picture in a single

modelling process. Brett and Taylor found for example that in their studies, on smooth objects

and on biological objects, no more than some ten percent of the observed points can be classi�ed

as anatomic landmarks. Observations came fromsliced data (contours) that were triangulated,

see [BT00]. More often, how ever, further sampling of anatomic landmarks is necessary.

Once the anatomic landmarks are su�ciently present in the sampling data point set, addi-

tional landmarks typically pseudo-landmarks may be added, to re�ect topological details, form

features, a-priori knowledge, constraints, hypothesis and other desired details. This brings up

the matter of data commensurability; how to unify data of various nature. In the current concept

of α-complex-modelling, heterogenous data types have to be �transformed� into an appropriately

w eighted sampling data point sets, anticipating some appropriate value of α.

When faced with a strati�ed object, sampling is not always as straightforward as it appears.

In strati�ed domains, the various strata have to be co vered in the sampling. In order for the

strata to be captured in the resulting α-complex, all the essential landmarks of all strata ha ve

to be present in the sampling data set.
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Figure 3�7: Contour sampling data point set of the femur, the upper extreme of the thy bone. The

α-complex geometric model is shown at the right (contour data obtained form the organ data base,

Tel Aviv university, Gill Barequet).

3.4.3 Organisation of the landmarks

Landmark sets may be regularly spaced, organised on a lattice, or irregularly spaced, as a scat-

tered point set. Lattices are taken �exible in this thesis; spacings may di�er along di�erent

directions, may make jumps along a single directions, may involve spaceas w ell as time dimen-

sions, etc. Probably the best known examples of lattices are the regular rectangular grid and

the time series with constant timein terval. F or further background on lattices, see for example

[BD74, HM83].

Definition 3.13 (regularly sp aced landmarks)

L andmarks ar e said to be regularly spaced if their locations match some lattic e and irregularly

spac edotherwise •

The consequences of regular spacing are severe. Di�erences in neighbouring distances are

removed by a lattice. Obviously, the assumption that S is in general position does not hold if S

is organised on a regularly spaced lattice and in the context of α-complexes, an S so organised

introduces many degeneracies.

Di�erences betw een adjacent α-complexes in the α-family can be traced back to variations

in distances to the nearest neighbours and variations of weight. Experiment 2.1 in chapter 2

showed that these e�ects accumulate. In the case of regularly spaced data points (in space

and/or time), neighbouring distance variations are eliminated, so theremaining variation must

be brought about b y the weighting model. Figure 3�8 shows four models, three of which were

in troduced before. The numerical model is a model derived from the α-complex for numeri-

cal computations, such as �nite element computations. If also equal weights w erechosen, the

α-complex will be degenerate in the sense that faces in the complex all become α-exposed (chap-

ter 2), simultaneously. The α-family then consist of only few members and the modelling �ex-

ibilit y (geometric variation) is largely absent. Therefore, in �gure 3�8, regularly spaced points

with regular w eights attached is a no-go path, and regularly spaced sample points require un-

equal weighting. In case of irregularly spaced landmarks and unequal weighting, the number of

α-complexes in the α-family will approach the theoretical maximum (chapter 2). Even in the
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equal weights

irregular alpha-complex

numerical grid

irregular alpha-complex

regular alpha-complex

regular alpha-complex

numerical gridnumerical model

geometric model

model
weighting

sampling model
irregularly spaced landmarks regularly spaced landmarks

unequal weights

Figure 3�8: schematic view on the relation between landmark organisation, geometry and numerical

model geometry. Gray-ed boxes show the path follow ed withα-complexes. Observe that both irregularly

and regularly spaced landmarks can be turned into an α-complex. F or regularly spaced landmarks (e.g.,

digital pictures), the use of unequal weights is a prerequisite. �Spaced� in this sense also refers to �spaced

in time� and �spaced in property-space�.

case of equal weights (e.g., zero weights), spatial variation can be large enough to admit a �rich�

α-family.

3.5 Sampling data point set analysis

Analysis of S is important both in view of further acquisition, for the pre-conditioning of the

data and for the design of a proper weight set. The �rst aspect has been discussed above. The

latter t w o aspects will be discussed below. As a matter of fact, pre-conditioningof the data and

w eighting are closely interconnected. Not only intuitively, also in a formal sense.

One of the central concepts in spatial analysis is the notion of a con�guration. A con�gu-

ration is de�ned as follows:

Definition 3.14 (configuration)

A con�guration of a sampled object is the �nite set of all landmarks of thatobje ct •

V ariousparameters characterise this con�guration. These parameters are the set parameters,
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common to any set and the more speci�c geometric parameters, typical to geometric sets. T o

characterise the shape that the landmark set represents, shape par ameters can be determined. In

general, set and shape parameters are real-valued set functions of the form g = Ψ(S). Compare

equation (3�1) and de�nition 3.3. Generally, pure shape parameters are independent of size, i.e.,

with λ > 0:

g = Ψ(λS) = Ψ(S) (3�3)

whereas set parameters are generally not size independent.

Example 3.6 (set and shape parameter)

The volume of the convex hull H(S) is a set parameter but not a shape par ameter. The aspect

ratio, de�ned as height divided by width is both a set and a shape parameter •

Set parameters in general can further be divided in empirical parameters (observed) and

theoretical parameters (expected, based on some theoretical model). All these parameters in

common giv ean insight in the spatial point and the associated distribution quality of the data

set. So many of these parameters have been proposed that giving an exhausting overviewis a

bad idea. Rather, a number of typical parameters will be introduced and occasionally given for

the data cases to follow in chapter 6. Also, refer to annex D.

3.6 Transformation of the data

3.6.1 Classes of transformations

T ransformationis a mathematical term that co vers an extensive class of operations. Attention

will be restricted here to the pre-conditioning of the landmarks and its impact on the evolvement

of the α-complex. This can be done from a domain point of view and from a mathematical point

of view. F rom a domain point of view:

1. Geometric transformations apply exclusively to landmark set S.

2. Property transformations or value transformations
1 always apply to value set PS.

3. Weight tr ansformationsalways apply to weight set W. Weights can also be seen as a value

set, and weighting as a value transformation.

Property and weight transformations will be discussed in greater detail in chapter 4. The

former will now be discussed. In other words, the discussion to follow, unless explicitly stated

otherwise, applies to Euclidean geometric transformations on landmarks only. F roma mathe-

matical point of view, there are three main classes of transformations;

1. The isometric transformations.

1
sometimes called image transformations, but this terminology is confusing in this context and will be avoided
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2. The wider class of a�ne transformations to which also the linear transformations belong.

3. Other transformations that are neither isometric nor a�ne.

A�ne combinations of points w erediscussed in chapter 2. The properties of these three main

classes of mathematical transformations are of particular in terest to α-complex modelling. At-

tention will thereby be concentrated on only two central questions:

1. What impact does the transformation have on the development of the α-family?

2. What impact does the transformation have on the Lebesgue measure?

Finally:

Definition 3.15 (metric property)

A prop erty is calle da metric property if it is left invariant under an isometric transformation,

like translation, rotation, etc •

Definition 3.16 (topological property)

A property is called a topological pr operty if it is left invariant under a homeomorphic, i.e.,

one-ton-one continuous transformation •

3.6.2 Isometric transformations

Isometries leave Euclidean distances in variant under isometric transformation. Euclidean dis-

tance is therefore a metric property under an isometry. Obviously, if weights are not transformed,

then also Laguerre distances remain invariant.

Definition 3.17 (Euclidean isometric transformation)

A transformation T : S (→ U is said to be an isometry (isometric) if it leaves the Euclidean

distance between two arbitrary members of S invariant, i.e., unchanged •

An important theorem for Euclidean geometry can now be formulated:

Theorem 3.6.1 (classification Euclidean isometric transformations)

An isometry is either a translation, a rotation, a re�ection, a glide re�e ctionor an identity •

A proof can be taken for example from [Bix94]. Isometries are also known as rigid motions.

Rigid motions can freely be applied to α-complexes, without any impact on their development

or Lebesgue measure. The α-family remains invariant.

A bijection T between S and U as a one-to-one correspondence betw eenoriginals si and
images ui. If the mapping from S onto U and back is a bijection, the inverseT−1 can be shown to

exists and both T and T−1 are continuous. A proof can be found in almost any textbook on this

matter, e.g., see [ND88]. A transformation T from S onto U is called a homeomorphic translation

(or: homeomorphism
2) if it is bijective and both T and T−1 are continuous. Every isometry, for

instance, is a homeomorphism. Every rotation, being an isometry, is also a homeomorphism.

2do not confuse with another topological characteristic, called a homomorphism between two maps (see e.g.,

[Mun75, Ch. 8])
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Figure 3�9: An-isotropic scaling T1 : S (→ U1 (left-on to-centre) and isotropic scaling T2 : S (→ U2

(left-on to-right).

A transformation T : S (→ U that maps a set S ⊆ E
d onto a set U ⊆ E

d is said to be an

isotr opicscaling if it multiplies (scales) all coordinates of the originals by a constant real factor

λ. A transformation that scales di�erent coordinates di�erently is called an an-isotropic scaling.

Example 3.7 ((An)isotropic scaling)

Figure 3�9 shows two di�erent transformations T1 and T2 mapping a domain S onto U1 and

U2, resp. An-isotropic scaling T1 mapsthe ellipse-shaped domain S ⊂ E2 ontothe unit ball and

must ther efore apply a di�erent scaling λX and λY in X and Y -direction, resp. More pr ecisely,

with eX and eY being the main radii of the ellipse, we have that: λXeX = 1 and λY eY = 1 and

eX 	= eY in this case. Isotropic scaling T2, on the other hand, scales by a single factor λ in both

X and Y -direction, preserving the �shape� of S. Now we have that λXeX = 1 but λY eY < 1.
Both transformations are homeomorphisms, neither of them is an isometry •

3.6.3 A�ne transformations

The latter example provides a good introduction to the next class of transformations, the a�ne

transformations.

Definition 3.18 (affine transformation)

A transformation T : S (→ U is called a�ne if the members of U can be written as an a�ne

combination of the originals in S •

Definition 3.19 (linear transformation)

A transformation is called linear if composite e�ects may be reduced to a cascade of elementary

simple transformations, i.e., if: T(λ1s1 + λ2s2) = λ1T(s1) + λ2T(s2) •

If linear, the transformation can be shown to be also a�ne and a continuous inverse can be shown

to exist if the transformation is homeomorphic. Homeomorphism excludes n ull-transformations

which fail to be bijective.

Observation 3.1 (affine and linear transformation)

An a�ne transformation may stretch or shrink a compact original set S in every dir ection and

translate it, but such that it remains compact. It can be composed of a translation by a translation

vector and a linear transformation. If the translation vector is a null vector, then the a�ne

transformation is a linear transformation •
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assuming that the linear transformation is non-singular. The glide (translation) part of an a�ne

transformation, like a rigid motion, has no impact onthe development of an α-complex. What

remains is a linear transform with impact on both the development of the α-complex and the

Lebesgue measure.

Example 3.8 (affine and linear transformation)

Both transformations in �gure 3�9 are a�ne and linear •

3.6.4 Other transformations

Members of the third class are not a�ne and therefore neither linear nor isometric. No explicite

statements can be made upon their impact on the α-family and the Lebesgue measure. Evidently

and generally speaking, they cannot be expected to leave the development of the α-family or the

Lebesgue measure invariant. Their properties must be evaluated on an individual basis.

Central in the meriting of transformation, irrespective of the class it belong to, is always

the notion of image space imT covered byU0 ⊆ U and kernel or nullsp ac e kerT. F or isometric

and a�ne transformations, it is not di�cult to see that U0 = U. For the identity transformation,

w eev enha vethat U0 = U = S. But for other transformations than these, this does not hold

true, generally.

With regard to the kernel kerT, for isometric and a�ne transformations, the kernel can

at most contain a single point. In other w ords,with isometric and a�ne transformations, the

dimension of the kernel, dim kerT = 0, assuming that T is not a null-transformation. This is

as expected in the case of a bijective relation and in line with what has been said for the image

space. Bijection can be shown to imply that kerT = {0}. Bijectivity also implies that U0 = U

and therefore dim imT = dim U .

3.6.5 Transformations and the Lebesgue measure

The impact on the Lebesgue measure can be made explicit, under certain limitations and condi-

tions, by estimating the norm of the transformation. The discussion here is, for practical reasons,

limited to transformations that are at least linear and not null. The norm of the transformation

is a measure for the impact that transformation has on the domain. The norm indicates an upper

bound on the �magni�cation e�ect� betw eenan yof the images and its original. The norm has

tw o properties that are useful to de�ne when estimating the impact on Lebesgue measures (e.g.,

[ND88]):


 ‖Tk(S)‖ ≤ ‖T(S)‖k

‖λT(S)‖ = |λ| ‖T(S)‖
(3�4)

In this work, the above norm is called the global norm, and for our purposes, realizing that

the Lebesgue measure is position independent, a local norm or Helmertized norm is de�ned as

follows:
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Definition 3.20 (local norm or: Helmertized norm)

The local norm of a transformation is the norm obtained after Helmertization, i.e., after trans-

lating the image T(0) of the origin back to the origin, so as to remove the e�ect of the translation

on the norm •

Determining the local norm is equivalent to determining the norm relative to a translated basis

or, equivalently, a local axis system with the same basis vectors as the global. The following may

be observed:

Observation 3.2 (invariance of the Lebesgue measure)

The impact on the Lebesgue measure is none if the local norm of the transformation is equal to 1.
The reverse is not ne cessarilytrue •

The global norm of an arbitrary isometry is not necessarily 1. Consequently, this also holds
for an arbitrary a�ne transformation and for other transformations. In fact, the global norm

is only equal to unity for an identity transformation, for a re�ection in a hyperplane through

the origin, for translations that resemble a re�ection of the supremum in a hyperplane through

the origin, and for rotations around an axis through the origin, and a glide-re�ection that is a

re�ection (zero-glide) as above. In many occasions where linear transformations are used, the

local normcan be made 1. In the case of isotropic scaling, the local norm is equal to λ and the

impact on the Lebesgue measure is given by:

νdL(T(S)) = c‖λdT‖ = c|λd| ‖T‖ (3�5)

3.6.6 Classifying transformations for α-complex modelling

With these de�nition, it is no wpossible to further subdivide the geometric transformations in

the context of α-complex modelling:

• T ransformations that have no impact on the α-family nor on the Lebesgue mea-

sures

By far the most important classis formed by the isometric transformations. Neither Eu-

clidian distances not Laguerre distances change. Both these properties are metric and

topological properties under these transformations. The local norm of these transforma-

tions is equal to 1.

• T ransformations with no impact on theα-family but with impact on the Lebesgue

measures of the α-complexes

T ypical representativ es are isotropic scaling, among which isotropic normalisation. Euclid-

ian distances are scaled b y a (non-zero) factor |λ|. The impact on the Lebesgue measure

for isotropic scaling is given by eqn. (3�5).

• T ransformations with impact on both the evolvement of the α-complex and the

Lebesgue measures

T ypicalrepresentativ e; gridding and anisotropic scaling. A�ne transformations in gen-

eral, with non-zero glides, belong to this class. The impact of a�ne transformations on
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the Lebesgue measure is given by equation (3�5). Generally, both shape, topology and

Lebesgue measures change. If not linear, no explicit statements can be given.

3.6.7 The e�ect of weighting

So far, transformations w ereEuclidean transformations, i.e., their properties w erediscussed in

terms of Euclidean metric. How is this when distances are weighted Laguerre distances? After

all, weighting can also be regarded as a translation in product space; see �gure 3�10.

Consider a transformation that keeps the α-family invariant but not necessarily the Lebesgue

measure. For example, assume an isotropic scaling b y a factor λ. Regarding the Laguerre dis-

tances, tw osituations may occur:

1. Weight set W is scaled by a factor λ2. The Laguerre distances, being a power distance are

then scaled conformingly (e.g., [Kyt98]) and weight is then a metric property under this

w eight transformation.

2. Weight set W is scaled b y a factor unequal to λ2. The Laguerre distances may then be

modi�ed such that the development of the α-complex is a�ected. Laguerre distances may

become negative, for example. If the development of the α-complexes is indeed a�ected,

the transformationbelongs to the third class, described abo ve.

T w oexamples:

Example 3.9 (weighted lattice)

Figure 3�10 shows a translation Tw by a vector [0 w]T , w > 0, along the w-axis in positive

direction. Tw maps the back-plane grid onto the front grid. F or the sake of clarity, the point size

has been incr eased in the front grid, so as to expr essits increased region of dominance •

Tw

Y

W

X

Figure 3�10: w eigh tingof a regular grid depicted as a translation in product space E 2 × R. Tw is

translated by a vector [0 w]T .

Example 3.10 ((an-)isotropic weighted scaling)

Figure 3�11 shows an weight transformation Tw that is an an-isotropic scaling (centr alpicture)

and isotr opic (right picture) both by a factor λ = 1
2 . In the latter case, the weight is scaled

conformingly, i.e., by a factor λ2 = 1
4 •
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Figure 3�11: an-isotropic and isotropic weighted scaling in E2 × R by a factorλ = 1
2 , central and right

picture, resp. Weights are depicted by their region of dominance (see chapter 2).

Figure 3�12: The e�ect of applying di�erent scale factors in di�erent directions demonstrated here on

tw oadjacent sheet like sand bodies. left: un-scaled, right: scaled with TV = 1
2TH . Notice that the

α-complex develops di�erently. In the un-scaled picture, tw obodies are w ell separated, but start to

interconnect after scaling, for the same α-value.

Obviously, all weighted isometric transformations that leave Laguerre distances invariant

(i.e., identity transformations), leaveα-complexes invariant. In c hapter 4 it will become clear that

this does not imply that it is also a Euclidean isometry, vice versa. This is almost immediate

if one returns to the product space Ed × R and realizes that Euclidean transformations are

transformations that (at least in this thesis) are maps from E d (on)to E d, in other w ords,the

w eight-coordinate is assumed to remain una�ected. Both domain and image are completely

contained in a hyperplane of product space E d × R and the transformation does not a�ect the

remaining coordinate. A Laguerre transformation is de�ned from Ed × R (on)to E d × R. It may

be broken do wnin a pure Euclidean transformation that doesn't change w eights, and a pure

translation or re�ection orthogonal to the hyperplane E d or a combination. See �gure 3�10.

Definition 3.21 (Laguerre isometric transformation)

A transformation T : S̃ (→ Ũ is said to be an isometry (isometric) if it leaves the L aguerre

distance between two arbitrary members of S̃ invariant •

A number of reasons, however, prevent transformations based on weighted distances from being

further treated this way and from this point on, the well established mathematical fundament of

linear Euclidean transformations has to be abandoned. Mainly because (see also Annex C):

1. The Laguerre distance is not a metric and it is not a metric property under Euclidean

isometric transformations and even not a metric property under Laguerre isometries.
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2. Product space E d × R, endow edwith the Laguerre distance is not a metric space and

behaves non-Euclidean.

3. As Laguerre distances may become negative, it is unclear (in the scope of this thesis) what

the topological consequences are and therefore also whether the Laguerre distance fails to

be a topological property.

Actually, all these aspects are inter-related and a result of the nature of the combination space-

metric. F urtherresearch in to the Laguerre transformation seems necessary at this point. This

issue is posted as an open problem for further research in chapter 7.

3.6.8 Normalisation
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Figure 3�13: The e�ect of merging independently normalised data sets. Figures show a tri-variate

distribution of permeability K (in Darcy), pore area Ap and grain surface Ag (in µm2) in an upper

part (unit 3) and low erpart (unit 2) of a point bar. Pictures at the left show non-normalised data,

clearly revealing a clustering in the data. The right-hand side depicts the independently normalised data,

resulting in a completely di�erent α-complex. (data samples taken from Martinius, [Mar96] with minor

modi�cations).

This section on data transformations will be concluded by a discussion of one of the prin-

cipal transformations in modelling with α-complexes. Normalisation is an a�ne transformation

that causes data, possibly de�ned on di�erent scales, to become homogeneous in terms of met-

rics. Normalisation is a common step in shape analysis, and α-complex modelling alik e,aiming
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to rule out size e�ects and directional e�ects. This w ay,distances betw eenlandmarks along

di�erent axes can be brought on an equal scale �rst, before weights are attached. A �rst step in

normalisation is usually an (isometric) translation to the origin of the unit domain, after which

the actual scaling takes place. The remainder can be seen as a linear transformation.

If normalisation is an isotropic scaling, then the only e�ect is that it:

1. Scales the α-spectrum by a factor λ .

2. Scales the Lebesgue measure (d-volume) b y a factor c‖Πd−1
j=0λj‖ = c|λd| .

If an-isotropic, results cannot be stated explicitely. Generally, ho w ev er,the development of the

α-complex and the Lebesgue-measure will be a�ected. Figure 3�12 illustrates this e�ect.

There is a second pitfall in normalisation. More precisely, when di�erent sets of landmarks

are normalised isotropicly but independently.

Example 3.11 ((in)dependent normalisation)

Let Y1 and Y2 be two landmark sets in sample space, with Y1, Y2 ⊂ S ⊂ Ed, that are independently

normalised using the following transformations: T1 : Y1 (→ [0, 1]d and T2 : Y2 (→ [0, 1]d. Both

normalisation transformations are isotropic and the corresponding scaling factors of T1 and T2

ar e given by:

λ1 =
1

supj,k{|sjk |} , s ∈ Y1 (3�6)

and:

λ2 =
1

supj,k{|sjk |} , s ∈ Y2 (3�7)

resp., where sup denotes the supremum. Obviously, 0 ≤ j < d. The problem is now apparent:

sinc eλ1 	= λ2, in general, the landmark sets are merged, while unequally scale d. Figure 3�13,

showing two landmark sets in E
3 of di�erent parts of a single object, shows how clusters of points

ar e completely smeared in the merger •

Finally, the following observations can be formulated:

Observation 3.3 (normalisation of subsets of landmarks)

Isotr opic normalisation of subsets is in itself not a su�cient condition for the development of the

α-family based on the union of subsets to be invariant. Normalisation of subsets of landmarks,

together forming a set of landmarks can only lead to an invariant α-family if they are all scaled

by a common scaling factor. In other words, if isotropy is among dimensions and subsets •
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3.7 Assigning the weights

Basically, we augment our geometry and/or parameter space with a real valued weight, denoted

as h yper-spatial modelling and described in chapter 2. The actual model �ingenuity� is basically

in this step, together with any pre-conditioning on the landmarks that might ha vetaken place.

The idea is to endow the landmarks with weights suc h that the right landmarks connect in the

chosen interv alof α and undesirable connections do not show up. Weighting may become a lot

easier after applying the appropriate transformations, as the kernel modelsho ws. On the other

hand, to some extent, weighting may depend on the spatial scale of the problem. If weighting

still does not show the righ tresults, the point process may be modi�ed by �seeding� additional

pseudo-landmarks, suc h that the eventual weighting model �ts the desired α-complex of the

object.

In chapter 6, applications will be discussed in which weights are computed from one or

more value sets. Basically, this is a mapping of one or more marked points processes onto a

covering process with the same point process. Weighting is a complicated process and a topic in

its own right. It will be discussed in greater detail in chapter 4.

3.8 Inferring a solid object

Once the best-suiting α-complex has been selected, and assuming a d-polytope, w ehave come

to a point that we may wan t to turn theα-complex into one or more connected or disconnected

d-faces or d-cells Conv Yj or a solid object. The following steps are required for this purpose:

Remov esingular faces singular faces can simply be dropped.

Optionally, remov etunnels from our �nal α-complex The only possibility is to triangu-

late the underlying space |Ct|, using the vertices lying in the border Yt = {x|x ∈ S
⋂Ht}.

Optionally, remov ev oidsand pockets from the α-complex Similar.

Compute the underlying space This is basically the space |Cα| obtained by collecting all the

d-simplexes in the complex.

Capture the underlying space in a reduced n umber of d-faces The most straightforward

w ay to do this is just to keep the result from the previous step. In addition, one may wan t

to �lter o� (part of the) internal v ertices so as to reduce the storage complexity.

Notice that the pros of α-complex modelling will be partly undone by an all too negligent removal

of tunnels, voids, etc. It leads, ho w ever, to a geometry and topology which is somewhat easier

to import in many modelling en vironments. It may be a necessary step to obtain seamless

integration with existing modelling environments.

3.9 Theoretical analysis

Point processes ha vebeen in troduced in chapter 2. Time related issues are usually described

by renewal theory ([Tij94], with the P oisson process a time dependent problem, and spatial
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occupancy issues, such as the region of dominance of a weighted point are conveniently described

by a cover agepr ocess(e.g., [Hal88]). Point processes can be de�ned over time muc h in the same

fashion as in space. Assume a point set S = S(t) for some t ∈ (t0,∞) and assume that sample

points are no wobserved on an individual basis at speci�c moments in time. The constraints

that S is �nite and compact posed in chapter 2 remain in place. It makes sense to de�ne eac h

s(t) ∈ S(t) as a sequence in time such that time t is strictly increasing:

t0 < t1 < t2 < · · · < tn (3�8)

with:

lim
n→∞ tn = ∞ (3�9)

hypothesis ppp
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generate expected
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Ŝ

parameters
theoretical model

P̂SŜ

Figure 3�14: basic steps in theoretical point process model estimation.

The ordered sequences s(t) = [s1..sn] of a single �xed sample point overtime, where s1

denotes s at t1, etc., form a marked point process, with the observed value set as the set of

marks and the arrival times tj as events. It makes more sense to study the (theoretical or

empirical) point process in spatio-temporal space as an entirely spatial point process. This way,
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the generally simple non-delayed renewal process is turned into a spatial Poisson poin t process.

In that case, time is also de�ned on a half-space, i.e., t > t0. F or further details, see for example

[Sig95, SKM95]. Approaching temporal problems bymeans of a spatio-temporal sample space

carries along the risk that the uni-directional quality of the cause-even t-e�ect and in ter-event

relations of time gets blurred in the spatio-temporal space. In spatial problems, in ter-event

relations are usually notuni-directional, whereas problems de�ned in the time domain, tend to

develop inter-event relations that are working aw ay in time only. Not backwards.

The null-hypothesis of the ppp being (homogenous) Poisson is to be veri�ed and accepted

or rejected, according to good statistical practices. The intensit yof the Poisson point process

(shortly: ppp), is given by λ = E[ΦS([0, 1]d)]. F or a homogenous ppp, thisλ will be independent

of the subset tak en from ΦS. F or a true ppp, points are uniformly distributed in space and

stationarity and isotropy (or: homogeneity) can be proven. If a sampling window is placed over

the sample space and samples are only drawn from the window area, then for a stationary random

spatial point pattern, the in tensit ywill be uniformly distributed too. More in detail, with Σ(d)

a d-dimensional window:

E[ΦS(Σ(d))] = E[card Σ(d)] = λνdL(Σ(d)) = λ|Σ(d)| (3�10)

where νdL(Σ(d)) = |Σ(d)| is a Lebesgue measure for the window. It is important to notice that

stationary Poissonpoin t processes have the so called conservation property:

Observation3.4 (Poisson point process conservation property)

A (non-singularly) linearly transformed stationary Poisson point process is again a stationary

Poisson point process•

V eri�cationof the null-h ypothesis of a ppp is a topic further discussed in annex D.

What theoretical support can be provided by a ppp, �t to an observed point set? More

precisely: ho wcan these models be used to determine estimators for the expected α, weight,
nearest neighbour distances and voids, along with their variances? In this work, tw oco verage

processes are of interest:

• A cov eragewith weight-plus-alpha balls in the landmarks

This is a coverage with the union B =
⋃

j Bw+α(sj) of weight-plus-alpha-balls, resembling

the space �lling diagram F(S̃) ∼= Uα(S̃), as discussed in chapter 2. Refer to �gure 2�1.

This union has a dual, which is the geometric realisation of the nerve, coinciding with the

α-complex as a sub-complex of the regular triangulation for that α.

• A cov erageof the radical centres with equally sized α-balls

The radical centres coincide with the vertices of the Voronoi diagram V(S̃), as explained
in chapter 2. These radical centres C� become the centres of the co verage process A =⋃

j Aα(C
�
j and the α-balls become the grains.

The latter coverage process is associated with the former in the sense that both are parametrised

b yα. What does the coverage process tell about the resultingα-complex? What is the expected

α for example? The grains of both coverage processes generally:
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• Do not overlap or touch for α < αmin

No edge between any tw o nearest neighbours is α-exposed yet.

• Overlap and touch for αmin ≤ α ≤ αmax

Part of the V(S̃) is still uncovered but both processes do overlap or at least touch. If not,

no α-exposedness could occur and the α-complexw ould not develop.

• Completely o v erlapfor α ≥ αmax

No part of the V oronoi diagram is uncovered anymore, i.e., V(S̃) is fully co vered by

Uα
⋃Bw+α(S̃).

With respect to both co verage,the probability of a void of a given size, for a homogenous ppp

given by Pr[ΦS(Aα) = 0] and its complement 1 − Pr[ΦS(Aα) = 0] is of interest, as it denotes the
probability of a vacancy, an incomplete coverage, and consequently a hole of either nature in the

α-complex. More detailed discussions on this matter and also consequences of inhomogeneous

underlying Poisson point processes in chapter 4.

This section is concluded with the de�nition of the remaining open problem, about the

need for full spatial occupancy in an icon and the instantiated objects from that icon. Firstly,

it is important to come to a conclusion as to whether a void space be justi�ed from a geological

point of view and if so, under what circumstances. If not, what should be done to �repair� the

presence of a void. Should it be �lled with some appropriate �background� material, like clay or

sand, or should it be saturated by a �uid, like w ater? Secondly, if void space is allo wed, ho w

should it be handled in the scope of scenarios and in the modelling framework processes, such

as inversion?

3.9.1 Stochastic parameters

Section 3.5 discussed the analysis of a sampling data point set. Now that the ppp has been given

a place in the modelling framework, a couple of analysis tools can be added. Annex D provides

background on the describing parameters. This section focuses on the meaning of distance-based

parameters in the analysis process.

T riangulationsdeliver a nearest neighbour analysis in the sense that NNG(S) ⊂ T (S),
and also LFNG(S) ⊂ T (S) where generally, the nearest neighbour graph NNG(S) and the local-

furthest neighbour graph LFNG(S) generally di�er. Recapture from chapter 2 that the important

parameters that determine a triangulation and �ltered α-complexes, are:

• The number of points per unit (hyper-)volume, expressed by the empirical point density

λ̄. The theoretical counterpart is the point process intensity λ.

• The empirical distribution of the Euclidean nearest neighbour distances, for example, ex-

pressed and tied to a location by the geometric Euclidean distance based nearest neighbour

graph NNG(S). The theoretical counterpart is the theoretical k-th nearest neighbour dis-

tribution, for example given in [SS94, Ch. 4].

• The distribution of the Euclidean local-furthest neighbour distances, expressed and tied

to a location by the geometric Euclidean distance based local-furthest neighbour graph
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LFNG(S). The theoretical counterpart is the theoretical local-furthest neighbour distribu-
tion that is determined in the k-th nearest neighbour distribution, above.

• The distribution of the nearest neighbour Laguerre distances, expressed and tied to a

location by the Laguerre distance based weighted nearest neighbour graph NNG(S̃). The

theoretical counterpart must be modelled using a Boolean model in which weight is related

to the grain size, or a Poisson point process in hyperspace.

• The distribution of the local-furthest neighbour Laguerre distances, expressed and tied to a

location by the Laguerre distance based weighted local-furthest neighbour graph LFNG(S̃).
The theoretical counterpart is the same model as with the nearest neighbour distances.

• The degree of coverage of the Voronoi diagram by the d-ball union U(S̃) ∼= B(S̃), expressed
by the empirical coverage factor κ̂. The degree of void space, the empirical void ratio ε̂, can
be derived from the di�erence betw eenthe convex hull H(S) and W(S̃). The theoretical

counterpart being the expected ε.

• A distribution of the Laguerre distance of an arbitrary point to w eighted points, among

other things an indication for the α-values required for α-exposedness, expressed by the

theoretical point-ev en t distance distribution.There if no direct equivalent, but the Voronoi

diagram contains this information in an implicit fashion.

T able 3�2 summarises.

3.10 Re�ning the kernel modelling framework

Figure 3�15 shows the expanded kernel modelling framework, the initial kernel version of which

has been presented in section 3.3. Given a MoM on the one hand and the theoretical support

and the empirical and theoretical point process analyses on the other hand, the question is

ho w to determinethe α-complex with the best goodness-of-�t. As long as the inversion and the

knowledge-based part of the modelling environment (see �g. 3�1) are not ready, visual inspection

and human in teraction stop the model geodynamic modelling cycle. Present characteristics of

the α-complex that can be related to the empirical and theoretical parameters and values, to

allo w for repair. Repair is basically: �rst try to modify weights to improve the coverage, adding

pseudo-landmarks if needed. As soon as the knowledge-based part is ready, adding more detailed

facts and possibly new rules and constraints becomes a third option.

3.11 Dynamic models

So far, object models have been static, i.e., independent of time. In this section, dynamic prob-

lems based on α-complexes will be discussed. The use of dynamic models �ts in a wider objective,

already fain tlypainted in chapter 1. Recording and replaying geological ev olutionary scenarios

must be supported by the α-complexes that represent the objects. The more concrete objective

of this section is to abridge the use and de�nition of landmarks and the α-complexes they set

forth and their dynamic behaviour. It has been stipulated before, that dynamic modelling a�ects

geometry, topology and properties. T able 3�3 elaborates on this.



72 Chapter 3: Modelling steps
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Figure 3�15: the expanded sequence of steps involved in modelling with α-complexes, some steps may be

void. Not shown in this �gure is the domain decomposition that can be imposed on S, on the triangulation

and on the resulting α-complex.

Instantiated objects are constructed to receive their dynamic behaviour to both internal

processes that have been embedded in the icon, to external processes that run in the environment

and have been embedded in the scenarios and to external objects that act upon them.

Example 3.12 ( processes)

Internal creep, governed by embedde d an internal creep model, may cause the object to deform as

its overburden increases. The incr ease of radiogenic heat �ow that passes through the obje ct,a

pr ocess de�ned in the environment, accelerates the object's plastic deformation. The object may

then become hydrocarbon saturated under the in�uence of a source rock system below, that expels

the multi-phase �uid �ow containing thehydr ocarbon and impermeable rock ontop that caps the

object, trapping the hydrocarbon •

The unimaginable extent of geological scales also has its in�uence on the description of

dynamic models. Depending on the chosen scale, geological events can tak e the appearance

of discrete instantaneous state changes but at a �ner scale, become continuous evolutionary
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processes.

Example 3.13 (infill of a valley by a meandering river system)

Assume that the in�ll of a valley by a river system takes O(104) A, order of magnitude of ten

thousand years. In a geomorphological scenario that studies exactly this in�ll process, the �uvial

sedimentation process studied at a regional scale and within a seasonal time frame is continuous

and evolutionary. F or a paleological scenario that runs at a continental spatial scale and at

a geological era or period time scale, like Miocene, a O(106 − 107) A-timescale, say, the same

sedimentary process is usually beyond the model's time resolution and in�ll occurs instantaneously

•

Geodynamic objects must therefore be implemented such that they can act and respond to

both modelling approaches. F rom a theoreticalpoint of view, both the continuous evolutionary

and instantaneous state change scenarios can be accommodated by a single dynamic model

description, but in practice, implementation of suc happroaches is inconvenient. Therefore, the

tw o descriptions will be treated separately.

3.11.1 Continuous evolutionary model

Dynamic models that follow a continuous evolutionary development are commonly described by

an analytic model based on a system of linear or non-linear (partial) di�erential equations. The

majority state a boundary value or initial value problem, or a combination thereof. Occasionally,

analytical model are used directly for computations. This will not be regarded here. Here, the

de�nition of a numerical model is assumed. The numerical geometric model to be derived from

the icon α-complex (see �gure 3�8) then becomes usually a model based on one of:

• Finite element model

Faces from the α-complex can be used for the de�nition of the elements, under certain

conditions:

� Elements are generally 3D.

� The aspect ratio of the simplices must be reasonable.

� Element families are not always as mature as quad-like elements, for example regarding

the capabilities to handle orthotropic phenomena.

The honouring of conservation laws, like mass conservation, poses some problems for node-

based �nite element formulations, occasionally.

• Finite di�erence model

The problem here is that regridding must usually take place. Finite di�erence approaches

based on simplices were not found in literature.

• Control v olume�nite di�erence model

This class of numerical models poses roughly the same problem as the �nite element models,

but honouring conservation laws can mostly be guaranteed.
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There are many variations on thesecen tral n umerical model descriptions, but the main outline

of the problems remains usually valid. With there being a vast amount of literature on these

n umerical approaches, no further description will be presented here. See for example, general

discussions in [Zie83, Str86, Hug87, Sew88, Tay92] and discussion related to the �eld of natural

sciences and earth sciences in particular in [LP82, Aki90, DS90, ZN93, ABBM94, ABBM95].

In troducing dynamics in a �nite element model derived from an icon α-complex means the

de�nition of time dependent landmarks and value sets. Making topology dynamic is hardly or not

at all supported by the current generation FEM-codes. The use of α-complex models, with their

implicit topology, may change this. One of the cases in chapter 6 demonstrates how. Regarding

dynamic geometry, aspect ratio's of elements must remain within safe ranges. Classical themes

are always stability and convergence.

3.11.2 Finite state model

In a �nite state model, a dynamic system is brought from a stable or unstable state into a

(possibly other) stable state, b y w ell-de�nedplanned actions or events, triggered to operate

upon them. T odescribe a �nite state dynamic model, the approach given in [SH96] is closely

follo wed, except the fact that here a mapping acts on a set rather then on a vector.

Time in the analytic model description will be denoted by t. Time since t0 in initial value

problems will be denoted as τ = t− t0. The discretized time in a numerical model is denoted by

the ordered sequence t0, t1, t2, .., tj , tj+1.. In analytical problems, a time step is denoted by dt, in
(iteratively solved) numerical problems by ∆t ∼= ∆τ .

Long-time dynamic behaviour is modelled in the approach by Stuart and Humphries using

invariant sets and limit sets:

Definition 3.22 (invariant set)

An invariant set is a set which is mapped onto itself •

Definition 3.23 (limit set)

A limit set is an invariant set that is transformed towards a attractor set, i.e., a set of values

towards it is attracted under the ruling dynamics •

Example 3.14 (invariant and limit sets)

Steady state solutions, periodic solutions and chaotic solutions ar e instances of invariant sets.

Maximum distance solutions, zero-fr equency solutions and thermodynamic equilibrium ar e in-

stances of limit sets •

Let S denote a compact �nite set of landmarks in E d. Further, let G : Sj (→ Sj+1 be a time

discrete mapping process, i.e., a process that sends a set Sj at time tj into a set Sj+1 at time

tj+1, with tj+1 = tj + ∆t and j ∈ N. In mathematical terms:

Sj+1 = G(Sj) (3�11)

which means that for every vector sj , the image is given by sj+1 = G(sj). Further, at time t = t0
S0 is given, S0 = S. An instance of suc hmapping process is an erosion process, in this thesis
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taking the form of a morphological erosion of landmark set S by some other set. Erosion will be

described, shortly.

The step-wise evolution of the mapping process can be written simply as a half-open time

sequence of the form:

[S0,S1,S2, ..,Sj ,Sj+1, ..,S∞) (3�12)

that denotes the ev olutionary time sequence of unique system states, represented by the time

discrete set of landmarks. With S compact and �nite, one demands from G that it lea ves

Sj+1 = G(Sj) compact and �nite, in other words that every image is again a valid original. This

sets forth demands on the norm of the mapping process, to be discussed, shortly. Also, in order

for unique mappings (solutions) to exist, G is assumed to be single-valued.

The S0 is called the initial value set or initial data set. Equation (3�12) is called a mapping

pr ocess or iteration, de�ned as follows:

Definition 3.24 (time discrete mapping process)

A time discrete mapping process, in this work, sends a set of landmarks into a modi�ed set of

the same landmarks, ac cording to some mapping de�nition, de�ned between discrete time steps

from starting time t0 onwards •

In the above form, G : Sj (→ Sj+1, with Sj+1 according to eqn. (3�11), is an explicit

formulation. Many problems, e.g., non-linear problems cannot be formulated in an explicit form.

They can only be formulated in an implicit form H : Sj × Sj+1 (→ Sj+1, with Sj+1:

Sj+1 = H(Sj+1,Sj) (3�13)

Explicit formulations can be derived from implicit and the implicit form is also called the gener-

alise d form. T ypical candidates for explicit and implicit formulations are the forward Euler and

Backward Euler, resp., and the more general Runge-Kutta methods. The norm of a mapping

process is given by:

‖G‖ = sup
sj

‖G(Sj)‖
‖Sj‖

(3�14)

An evolutionary map Γn is an n-fold product sequence of mapping processes Gj , i.e., Γn =
Gj ◦Gj+1 ◦Gj+2 · · · Gj+n. Assume the norm in any of these mappings is at most |γ|, i.e., ‖G‖ ≤ γ.
The norm of the evolutionary map then has the upper bound:

‖Γ‖ ≤ |γ|n (3�15)

F or further details, refer to [Tay92, Ch. 5] and [SH96].
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3.11.3 Dynamic geometry

Dynamic geometry is fundamental to the use of instantiated templatised shapes. Now that a

description of a dynamic model b y means of taking S = S(t) has been presented, it is no w

appropriate to look at the further implications that this may ha veon the shape. F orexample,

geometric changes may induce topological changes. It has been explained that if the evolutionary

map can be characterised as a isometric map, the topology of the α-complex does not change.

If, on the other hand, the weighted nearest neighbour distances change an-isotropicly (a�nely),

the α-value, the α-rank and the topology will generally change.

In the case of shape instantiation from an icon, tw ofurther strategies can be follo wed to

handle a dynamic α-complex-based object model:

• Violate the α-complex

Instantiate the icon, transform to �t observed data, keeping the icon's topology. Due to

the transformation, the resulting shape may be a simplicial complex but not an α-complex

anymore (see also: chapter 2).

• Keeping the α-complex sane b yregeneration

Instantiate the icon, transform to �t observed data, but update the topology as required

to restore appropriate α-�ltration. The result is now an α-complex again, but the topology

may di�er from that of the icon.

What happens if α is de�ned as a function in time. i.e., α = α(t)? Even if the evolutionary

map is equal to an identity, still, the changing α may introduce changes in the topology. This is

basically the problem of variational geometry, possibly leading to invalid or undesired topologies.

Geometry here is parametrised by α and variational geometry means: changing α. The question
as to whetherthis is a problem depends on the problem at hand.

The e�ect on the Lebesgue measure is not easily stated in general terms. The discussion

on dynamic geometry is concluded by an example, illustrating this.

Example 3.15 (compaction process)

Consider a non-linear isotropic compaction process, given by the evolutionary map ΓnS0 with

S0 = S. L etSj+1 = α(t)S with αj+1 = 2αj . Assume α(t) . w, thus neglecting the e�ect of

w and ‖Γn‖ ≤ |γ|n. F urther, realise that if α doubles, the radius of an α-ball increases by 2
1
2 .

Then the e�ect on the L ebesguemeasure of a changing α can be estimated using the inequality

νdL(ΓnS) ≤ |γ| 1
2
nd. Although true for some n ∈ N, the tricky part is that |γ| is monotonically

growing for gr owingn and unbounded for n → ∞ •

3.11.4 Dynamic topology

In chapter 2 it is has been demonstrated that weight and α ha vesimilar e�ects and that it is

the combination of w + α that governs the development of the α-complex. Also take a preview

on �gure 4�4. The latter sho wsin fact an accumulation of the tw oe�ects, in the sense that

ε(α) = w + α. T w o questions are now important:
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1. Is the whole distribution of nearest neighbour distances running out of sync with the current

α over time?Then remedy by setting α = α(t) and if the divergence is stationary, then in

addition or alternatively, an isotropic scaling transformation S = S(t) can be applied. The

clue here is to apply global Euclidean transformations.

2. Is the cover agelocally getting too low or too high? Then remedy by taking w = w(t), thus
modifying the local Laguerre distances in the identi�ed neighbourhoods. The clue in this

case is to apply local weight transformations.

More concisely, assume a time dependency, i.e., take ε(w(t), α(t)). The topology will remain

in variant if the time derivative of ε(w(t), α(t)) is equal to zero:

d

dt
ε(w(t), α(t)) =

∂ε

∂w

dw

dt
+

∂ε

∂α

dα

dt
= 0 (3�16)

A trivial way to obtain this is settingw(t)+α(t) = w+α = c, another trivial way is to compensate

changes in weight by changes in α, an e�ect already shown by experiment in chapter 2:

∂ε

∂α

dα

dt
= − ∂ε

∂w

dw

dt
(3�17)

F rom a practical point of view, such schemes are not easily designed for the general case.

3.11.5 Dynamic properties

In this work, a vector of value sets map in to a single weight set. In fact, dynamic properties,

leading to dynamic value sets and dynamic weight, are the triggers for changes in the shape to

occur. This is only a natural consequence of the property-ruled shapes that w eencounter for

natural objects. If properties become functions in time, so become the corresponding vertices in

the parameter space and so becomes their equivalence class membership and so becomes their

w eight. See chapter 2.

The property-weight relation, as will be explained in chapter 4, can be stated in normalised

form:

w = λ1p1 + λ2p2 + · · · + λmpm =
m∑
j=1

λjpj (3�18)

such that w eha ve
∑

j λj = 1, for the properties pj , 1 ≤ j ≤ m in concern. Let the coe�cient

vector3 Λ = [λ1, λ2, . . . , λm]T denote the relative weights λj in equation (3�18). V ectorΛ
usually results from some data analysis process, typically discriminant and factor analysis (e.g.,

see [Dav86, Boc96, Mos97]). It states the relative discriminating power of each of the individual

properties and it is itself not likely to change over time.

3the term: weight vector w ould be more appropriate, but in this context confusing
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Assuming dΛ/dt = 0, the e�ect of the property vector P(t) = [p1(t), p2(t), . . . , pm(t)]T on

the weight w(t) is zero if:

∥∥∥∥dPdt
T∥∥∥∥ = 0 (3�19)

again from a theoretical point of view and complicated to estimate in practice for the general

case.

3.11.6 Dilation and erosion

The geodynamic process of deposition and erosion are of paramount importance in the replay

of ev olutionary geological scenarios. P articularlywith sedimentary type of objects primarily

focused on in this thesis. F roma geological or geomorphological point of view, it is relevant to

determine if material sources and sinks are in ternal to the environment or external. Deposited

material may be streamed into the environment as an input �ux or may be originating from

erosional processes elsewhere within the system. Likewise, eroded material may be exported

from the environment. If not, it must be deposited in a sink elsewhere in the environment or

remain �owing around.

These geological processes are nicely supported by their morphological abstract counter-

parts dilation (supporting deposition), erosion (supporting erosion), opening (supporting wear,

crac king and separation) and closing (in�ll of holes). Dilation and erosion are tw owell un-

derstood set operations in mathematical morphology. F roma mathematical point of view, an

erosion is a mapping for GE : S (→ S / U. It sort of wipes out(erases) landmarks of the eroded

object, contained in the pathw ayof the eroder.

The important aspect here is to establish the capability of α-complexes to support such

operation in a natural way.This will be discussed now.

Erosion

As explained earlier, objects are eroded by processes in the en vironment or b yother objects in

their vicinity. The latter are called eroders.

Definition 3.25 (eroder)

An eroder is an instantiated object that erodes an adjacent object •

An easy geometric shape of the eroder makes the de�nition of the erosion mapping process less

complicated, but basically, any object represented by any α-complex may become an eroder.

The shape of the eroder is then always the α-hull or α-shape Wα(S). The eroder itself may also

become eroded. So in the general case, two objects are both eroder and subject to erosion. This

leads to an important observation:

Observation 3.5 (changing cardinality of eroder and eroded shape)

Erosion becomes manifest in a changing cardinality card S of boththe er oder and erode dshape •
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How to deal with vanishing points? As with dynamic geometry, there are basically tw o

strategies:

• Violate the α-complex

For the evolutionary map to remain a bijection, points may not vanish and the cardinalities

may formally not alter. T w o possible solutions materialise:

Replace eroded elements b yneutral elements Degradate vanishing landmarks and

their star to empty sets, i.e., lower their dimension to −1, making them an improper

(−1)-face (empty set). This collapses faces to void space. In so doing, the bijection

of the ev olutionary map can be maintained. It how ever violates the topology and

changes the Lebesgue measures within the α-complexes.

T ranslateeroded points Move vanishing points to the new boundary resulting after ero-

sion. P oints so moved survive as landmarks. They may be moved until at in�nitesimal

but non-zero distance from the landmark with which an edge is shared in the complex.

If further translation is needed, then both these landmarks will ha veto move. This

keeps the topology of the α-complex in variant, but may no longer correspond to the

underlying triangulation criteria (see chapter 2).

• Keeping the α-complex sane b yregeneration

Instantiate the icon, erode it and regenerate the regular triangulation after every evolu-

tionary step. T riangulationare bound to change and therefore also the α-complex. The

result is a valid α-complex, in contrast with the previously presented solutions.

A third but basically di�erent approach is the following. Eroded landmarks are re-inserted

under a closing operation. This mimics the process of relocating eroded material in existing

holes. It must then be bound to some material balance. Such a process has not yet been found

in literature.

Applying these morphological operations in the context of α-complexes is a subject that

is hardly investigated. It deserves much further attention but room to do this in this thesis

is lacking. The conclusion is that erosion and the other operations are naturally supported by

the notion of evolutionary maps and hence by dynamic shapes represented by α-complexes. F or

further details, refer to [SS94, App. D] and [SKM95, RW96, DM98, BNKVL99].

Dilation

Dilation is a gro wthprocess in which a dilator, following the boundary of the dilated object,

wipes out a part of space that is added to the dilated object.

Definition 3.26 (dilator)

A dilator is an instantiated object that dilates an adjacent object •

The strategies presented for erosion can basically also be applied to dilation. Degradating points

may be replacedb y promotion of empty sets (dormant landmarks) to landmarks. Dilation may

also be seen as a auxiliary process to implement in�ll withsome background material to obtain

complete spatial occupancy. Spatial occupancy will be further discussed in chapter5.
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3.11.7 Time series v ersus4D models

In the following section, the organisation of landmark set with respect to their time value will

be reviewed. Although �gure 3�8 keeps its validity for time dependent landmark and value sets,

throughout. In many cases, said 4D models are in fact time series. In CAD, models in which

the z-coordinate is explicitely de�ned: z = F(x, y), areoften referred to as 2.5D-models. In the

same spirit, one might speak about 3.5D-models, if the time coordinate is explicitely de�ned in

terms of x, disallowing multiple values.

Definition 3.27 (3.5D sp atio-temporalmodel)

A spatio-temporal model is said to be a 3.5D spatio-temporal model if the time coor dinate satis�es

an explicit de�nition of the form t = G(x) •

Observation 3.6 (uniqueness of time coordinate)

The explicit de�nition of the form t = G(x) implies that 	 ∃x : t = G(x) not unique •

If on the other hand the time coordinate can only be given by an implicit relation of the form

Ψ(x, t) = c, then the model apparently requires a �full� 4D topology.

Definition 3.28 (4D sp atio-temporalmodel)

A spatio-temporal model is said to be a 4D spatio-temporal model if the time coordinate can be

multi-valued •

Generally, 3.5D spatio-temporal models can be supported using time-series of 3Dα-complexes

from a 3D icon, i.e., using a time discrete evolution of a mapping process, 4D models must borrow

from a (weighted) 4D icon de�nition ℘(S̃) ∈ (E3 × R)× R. Without going too deep into all kinds

of philosophical details regarding dimensions, this discussion will be concluded by a couple of

examples.

Example 3.16 (3.5D versus 4D model)

In e arthsciences, a frequently encountered geological scenario is the following:

Interval 1: deposition New material is supplied at the top.

In terval 2: uplift The geodesicaltitude is increasing.

In terval 3: erosion The deposite d material is eroded under the in�uence of environmental pro-

cesses, such as a glacial climate.

Interval 4: deposition New material is deposited again.

in this case, a true 4D topology is required to ade quately model the sequence of events, over time.

Depositions at position x may originate from more than one era. It may, for example, be deposed

during the �rst period of deposition or during the latter. In this example two time values t1 and t4
project orthogonally onto a hyperplane parallel to the spatial subspace. Equivalently, one may say

that a hyperplane parallel to the spatial subspace exists, that intersects the top-most depositions

twic e•
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Figure 3�16: left: projection of a 4D meandering channels into 3D. Right: ZXt-intersection of 4D struc-

tural spatio-temporal model. Back-to-front, time increases from t = −500 MA to t = 0 MA in the front,

with land environment in the back, switching to marine at t ≈ −460 MA and switching back to land at

t ≈ −310 MA. All along the X -direction, subsidence is rapidly increasing at t ≈ −250 MA. The dashed

line at the right indicates a linear subsidence model.

Example 3.17 (erosional channel o vertime)

Consider a �cannibalistic�, erosional channel system over time, see �gure 3�16, left picture. Of

inter est is the tracing of materials at all times and at all locations. Such systems cannot be

described conveniently in a three dimensional Euclidean space. R easonfor this is that the shape

carves itself away and its �nal shape do es not adequately model all the deposit material. In

other words; it takes a 4D geometric and top ological description, rather than a dynamic 3.5D

description. In 4D, the shapes is �stretched� along the extra time dimension, such that the

cannibalistic e�ect is removed and the complete shape can be studied at any location in time.

Conservation laws ar e to be honoured at any time, so material conservation is considered over

a time cross-se ction.4D models are hard to visualise. Figure 3�16, left picture is a view on the

projection from 4D into 3D space, more formally: P : E3xT → E 3 •

Example 3.18 (E 2xT structural subsidence model)

A structural model evolving over time due to subsidence, compaction, and faulting, is depicted in

the right part of �gure 3�16. These systems cannot be adequately repr esented in 3D either. Some

aspects of the structural model can conveniently be described by a E2xT spac e.The �gure depicts

an intersection along a hyperplane perp endicularto the Y -axis and parallel to the ZXT -spac e.

The dashed line at the right denotes a line ar subsidence model •

3.11.8 Alpha and weight as a function of time

In the previous sections, time dependent forms of α and w have been discussed. It is also relevan t

to consider α and w in conjunction. For example in the context of geometric constraints. See

table 3�4.
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Description

w(t) dynamic weighting, possibly in combination with α(t); generally induced by

dynamic value sets FS(t) of properties p(t)

w(α) weight a function in α. Geometric static constraints

w(α, t) weight function in α and t. Geometric dynamic constraints

w(α(t)) weight function in time dependent α. Geometric dynamic constraints

T able 3�4:various dynamic forms of weight.
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Chapter 4

Using weight as a modelling tool

4.1 Overview of this c hapter

In this chapter, the use of weighted data point sets as input for α-complexes will be addressed.

Weighted points are fundamental to the use of weighted α-complexes, and in fact, as a modelling

instrument, they endow α-complexes with practical meaning. Emphasis will be on the mechanism

of weighted points and how this mechanism can be applied to pursue the desired α-complex. The

basic idea is to use w eights to bring the α-complex into a state close to the perceptual target

shape and to use α for a lean-to-fat variation within a limited part of theα-family.

For the geometric interpretation of weighted points, understanding the geometry of the

ball and sphere is essential; a good portion of this chapter will be devoted to it, starting with

section 4.2. There is a wide body of literature available on the geometry of sphere and ball,

e.g., [Coo16, Coo24, Bar27, Max52, Sch79]. Unfortunately, much less is knownabout w eighting

strategies. Moreover, no particular applications of weighted α-complexes w ereencountered in

literature. To date, there is no such thing as a general purpose weighting recipe. T o that extend,

a few possible problem-dependent approaches will be examined (section 4.6). In the light of

subsurface objects, coupling weights to observed ph ysicalproperties stands out as the most

natural and fruitful approach. After all, we found that the shape of observednatural objects is

often property-ruled (refer to chapter 3, �g. 3�3). Therefore, most of the attention goes to this

approach.

The problem of designing a weight set based on observed ph ysicalproperties can conve-

niently be split into tw o parts:

• Finding the relative contribution of each property

This is basically an instance of a factor or discriminant analysis problem. The relative

contribution of each of the selected properties (factors) to the weight is determined in this

analysis. The result is a weight set W̄ of normalised weights.

• Scaling the weight

The second part is to relate the normalised weights to the nearest neighbour distances to

abridge. In this chapter, this problem is translated into an equivalent coverage problem by

85
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the weight-plus-α-balls. Property-derived normalised weights are matched with the nearest

neighbour distances by means of weight transformation, i.e., translation and scaling mostly.

Weight transformation must be such that the desired coverage is obtained and for instance

the assumed hole-free regions are indeed fully covered. The result is the �nal weight set W

to be assigned to S prior to triangulation.

T echniques and methods for the �rst part of the problem can be taken from widely available

literature on this matter. See for example [Boc96] for a review of recent developments. As

indicated, the second part is less well documented. The second part is dominated by the question:

how to �nd the largest α-complex in which no edges are enforced by weight alone and a second

α-complex which is the smallest hole-free complex. These tw ocomplexes de�ne the boundaries

of the α-interval within the α-family in which the expected α and α-complex are to be found

in practical applications. Boundaries should be such that variation of α provides su�cient lean-

to-fat variation within this interval. Recall from chapter 2 that the α-values belonging to the

tw oα-complexes must be equal to α = αmin and α close to αmax, resp. See de�nition 2.14 and

observation 2.12. As weight increases, αmin will move towards zero but not reach it. The �rst

edge enters the α-complex as soon as α exceeds αmin. The α-complex is guaranteed to be hole-

free, b y de�nition, when α ≥ αmax. Refer to �gure 4�1. The forming of an edge occurs when

tw ow eight spheres intersect and hole-free can be associated with full coverage by weight-plus-α
balls. How exactly, will be discussed further down. The scaling of weight can thus be reduced

to a coverage-by-weight problem.

α0

α-interval

αmin αmax

Cα
∼= S Cα

∼= T

hole-free α-complex

Figure 4�1: target α-interval for weight transformation of part two, ranging from αmin up to an α close

to αmax.

T o further unravel the discussion on part two of the weighting, it is appropriate to identify

two distinct w eight transformation cases to obtain the desired coverage:

• Case I: isotropic scaling of the property-derived normalised weights

The relative distribution of the normalised weights is to be preserved and w eights are

therefore up-scaled b y a global scale factor to match globally smallest nearest neighbour

distance.

• Case II: anisotropic scaling of the normalised weights

In this case, the relative distribution of the normalised weights will be disrupted and weights

are up-scaled to match their individual nearest neighbour distance.

Case I applies to property-ruled objects. Case II ruins the idea of a property-ruled geom-

etry ,but is the way to obtain a hole-free object. Observe that case II may follow case I, either

for the whole object or for certain parts. F orcase II, the Stienen model willbe discussed. The

Stienen model points out exactly the lower boundary weight corresponding to the local nearest
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neighbour distance. Section 4.8 discusses the use of the Stienen model. Unfortunately, there is

no clear estimator for the upper boundary.

Up till now, weights w ere tak en scalar b y nature. In practical modelling applications

however, tying w eights to physical parameters such as a �uid �o woften requires w eights to be

de�ned as vectors or tensors. This would require an extension to the current de�nition of the

w eighted α-complexes and is therefore considered beyond the scope of this thesis. An outlook on

the problem and possible further research will be given in section 4.9 by the end of this chapter.

4.2 Weighted points

Weighted points were already brie�y introduced in section 2.3 and will be further discussed here.

Recall that as far as the geometric in terpretation is concerned, a weighted point s̃ = (s, ws) is

often represented and interpreted as d-ball or (d − 1)-sphere cen tredat s and having a radius

r =
√
ws. In case r2 < 0 the (d − 1)-sphere becomes an imaginary sphere (or: i-sphere).

Imaginary spheres will be discussed a little further, in paragraph 4.2.1. T ounderstand the

geometric in terpretation of negative weights and the geometric in terpretation of con�gurations

of weighted points, a suitable formalisation is needed. A convenient form to do so is by borrowing

from the geometric description of complex numbers developed mainly at the end of the 19-th-

and the beginning of the 20-th cen tury. Refer for instance to [Coo16, Max52, Sch79, Hah94].

Using this formal description, con�gurations of spheres will be classi�ed and the combined value

of w + α will be associated with the resulting classes.

4.2.1 F ormalisationof weighted points

Let z ∈ C be a complex number, such that z = x+ iy and z̄ = x − iy is it's complex conjugate.

F urthermore, let C = (c0, c1) be an arbitrary point in C. A (1)-sphere Sρ2(C) with radius ρ
centred at C:

(x − c0)2 + (y − c1)2 = (z − C)(z̄ − C̄) = |z − C|2 = ρ2 (4�1)

can be represented by a Hermitian matrix S ([Max52, Sch79]). Equation 4�1 can be written in

the general form Kzz̄+Lz+Mz̄+N = 0. By comparing this general form with equation (4�1),

a characteristic Hermitian matrix can be found:

S =
(
K L
M N

)
= K

(
1 −C̄

−C CC̄ − ρ2

)
(4�2)

representing the sphere. Constant K is real and commonly K ≥ 0. Constant K may be set to

unity, but as for any λ 	= 0, S1 = λS2 represent the same sphere real, any K > 0 will again

represent the same sphere. Indeed CC̄ − ρ2 = |C|2 − ρ2 is real and C and C̄ are eac hothers

conjugates. The determinant ∆ of matrix S is b y de�nition given by:

∆ = |S| = K(CC̄ − ρ2 − CC̄) = −Kρ2 (4�3)
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Observe that ∆ ∈ R, as expected.

The cases in which K = 0 or K,L,M,N = 0 yield a straight line or do not yield a proper

circle and are excluded. In line with equation (4�3), it is now possible to derive the following

classi�cation of spheres:

Class |S| ⇔ Radius ρ

real sphere ∆ < 0 ⇔ ρ2 > 0

point sphere ∆ = 0 ⇔ ρ2 = 0

i-sphere ∆ > 0 ⇔ ρ2 < 0

If K 	= 0, then ∆ = 0 ⇒ ρ = 0 leads to a point sphere.

Example 4.1 (imaginary unit sphere)

The unit sphere S−1(0) in C is given by zz̄ + 1 = 0. The Hermitian of this sphere is:

S =
(
1 0
0 1

)
All diagonal elements are real and for all elements: sij = s̄ji, as expected for a Hermitian matrix.

For |z| ↓ 0, the sphere goes to a point sphere centred at C = (0, 0) or, e quivalently,C = 0 + i0 •

Using the above formulation, a con�guration of two real spheres can now be represented

as a pencil of spheres. A pencil of spheres P = {λjS|λj ∈ R}. A pencil of two spheres in Ed is a

linear combination:

P = λ1S1 + λ2S2 (4�4)

represented in matrix notation by P = λ1S1 + λ2S2. Denote the elements of the Hermitian

matrices S1 byK1, L1,M1,N1, resp. and likewise for S2. The determinant of the con�guration

is then given by:

∆ = |P| =
∣∣∣∣λ1K1 + λ2K2 λ1L1 + λ2L2

λ1M1 + λ2M2 λ1N1 + λ2N2

∣∣∣∣ = ∆1λ
2
1 + 2∆12λ1λ2 + ∆2λ

2
2 (4�5)

a quadratic form in the real λ1 and λ2 and therefore again ∆ ∈ R. In equation (4�5), ∆1 = |S1|,
∆2 = |S2| and 2∆12λ1λ2 = (K1N2 +K2N1)− (L1M2 +L2M1). Let S1(C1) be centred at C1 and

S2(C2) be centred at C2, with radii ρ1 and ρ2, resp. Then, using equation (4�3):




∆1 = −K2
1ρ

2
1

∆2 = −K2
2ρ

2
2

2∆12 = K1K2

[
δ2 − (ρ2

1 + ρ2
2)
] (4�6)

where δ2 = (C1 − C2)2 = |C1 − C2|2. This leads to the following classi�cation of con�gurations

of two real spheres:
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Class Description |λ1S1 + λ2S2| ⇔ Radii ρ1, ρ2, δ

1.1 no intersection, inside ∆1∆2 − ∆2
12 < 0 ⇔ |ρ1 − ρ2| > δ

1.2 no intersection, outside ∆1∆2 − ∆2
12 < 0 ⇔ ρ1 + ρ2 < δ

2.1 1 point in common, inside touch ∆1∆2 − ∆2
12 = 0 ⇔ (ρ1 − ρ2)2 = δ2

2.2 1 point in common, outside touch ∆1∆2 − ∆2
12 = 0 ⇔ (ρ1 + ρ2)2 = δ2

2.3 all points in common, complete

overlap

∆1∆2 − ∆2
12 = 0 ⇔ ρ1 = ρ2, δ = 0

3.1 2 distinct common points, inter-

section

∆1∆2 − ∆2
12 > 0 ⇔ ρ1 + ρ2 > δ

3.2 2 distinct common points, orthog-

onal, real

∆1, ∆2 	= 0, ∆12 = 0 ⇔ ρ2
1 + ρ2

2 = δ2

Figure 4�2 shows these con�gurations. A few additional remarks can be made with regard to

the classi�cation of pairs of spheres:

1. F orall classes: an ine qualitywith respect to the determinant leads to an ine quality of δ,
ρ1 and ρ2, and zero-determinants (equality) yield an equality in δ, ρ1 and ρ2 .

2. F or class 2.3, the tw o spheres coincide completely, their centres coincide and their radii are

equal.

3. For class 3.2, if ∆1 > 0 or ∆2 > 0, i.e., one of the spheres is an i-sphere, ∆12 = 0 still

says that the t w ospheres meet orthogonally, but ρ2
1 + ρ2

2 	= δ2. Any sphere orthogonal to

an i-sphere is itself real ([Sc h79,Ch. 1]). This will turn out to be relevan tfor a regular

triangulation whit negative weights.

4. Also for class 3.2, although straight lines ha vebeen excluded by stating that K 	= 0, it is
trivial that every straight line through the centre of a sphere can be considered a sphere of

in�nite radius intersecting the other sphere orthogonally.

5. Still for class 3.2, a point sphere (∆1 = 0 or ∆2 = 0) can be shown to be orthogonal (refer

to [Sch79, Ch. 1]) to a sphere i� completely contained in the circumference of that sphere.

The only point of a point sphere is its cen tre,so this condition is equivalent to the even t

of the centre of the point sphere lying in the circumference of that sphere. Obviously, this

does not give 2 distinct common points, as usual for class 3.2 .

6. If both S1 and S1 are point circles (i.e., ∆1 = 0 and ∆2 = 0), one cannot discriminate

betw een class 2.1, 2.2 and 2.3 .

Now that a classi�cation for spheres has been established, and one for con�gurations of

tw o spheres, the questions that remain are:

1. How can the above classi�cation be used in the light of weight-plus-α spheres and balls?
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2. How does this formalisation extend to higher dimensions?

3. How does the classi�cation behave under the landmark transformations discussed in chap-

ter 3 and under the weight transformations to be discussed in this chapter?

r

π

Class 1.1
∆ < 0, |π − r| > δ

r
π

Class 2.1
∆ = 0, (π − r)2 = δ2

r
π

Class 3.1
∆ > 0, π + r > δ

r π

Class 3.2
∆12 = 0, π2 + r2 = δ2

r
π

Class 2.2
∆ = 0, (π + r)2 = δ2

r
π

Class 1.2
∆ < 0, π + r < δ

r

π

Class 2.3
∆ = 0, π = r, δ = 0

Figure 4�2: classi�cation of con�gurations of tw o real spheres with radii ofπ and r. In the bottom-right

con�guration of class 2.3, the tw o spheres coincide.

Using the classi�cations for weighted points

An important role in the classi�cation is apparently playedb y the joint determinant ∆12, more

in particular b y the term δ2 − (ρ2
1 + ρ2

2). In case of orthogonality (class 3.2), this term fades

to zero. Substituting w1 for ρ2
1 and w2 for ρ2

2 (or better: w1 + α for ρ2
1 and w2 + α for ρ2

2)

connects class 3.2 to orthogonality of w eighted points and zero Laguerre distance. Furthermore,

class 1.1, class 2.1 and class 3.1 correspond to the redundant vertices de�ned in chapter 2,

de�nition 2.6. Also see observation 2.6. They violate the regularity constraint (de�nition 2.5) in

the regular triangulation and will be dropped. Reducing the weight (except for class 2.3) may

lift the regularity violations and cause con�gurations to �ip to another class, e.g., to class 3.2,

class 2.2 or class 1.2 . Class 2.2 and 3.2 model the formation of an edge as soon as weight spheres

overlap in weight-plus-α co veringB. Class 1.1, 2.1 or 2.3 con�guration may also occur, but only

for non-zero α. Class 3.2 is typical for the formation of an edge in the radical α-ball covering.

Negative weight

The notion of i-spheres can be used in a straightforward manner for the ac cumulation of α and

w eight, with α+ w associated with radius ρ. Call the combined e�ect ε(α), de�ned as:

ε(α) =
{

a+ w , for: w + a ≥ 0
i2(α+ w) , for: w + a < 0

(4�7)
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As stated in chapter 2, α will be drawnfrom the ra y domain [0,∞) ⊂ R.

What is the geometric interpretation of negative weight? A poin t with a negative weight

contains no real points. It has an imaginary marker attached to it, with a negative radius. The

distinction to be made with respect to marker radius r in case of negative weights is expressed

by ([Ede92]):

r =
{ √

w , for: w ≥ 0
i
√
w , for: w < 0

(4�8)

An alternate approach that circumven ts the problem ofi-spheres altogether has been pro-

posed in [Ede92]: dra wboth α and w from the ray domain [0,∞) ⊂ R
1
2 . Let α′ =

√
α and let

w′ =
√
w. Then inequality ε < 0 reads α′2 + w′2 < 0, which is never the case. In this case, ε is

associated to r and ρ rather than r2 and ρ2.

T owards higher dimensions

A sphere in Ed can be described in normalised form by ([Bar27, BP94]):

xTx − 2mTx − ε2 = 0 (4�9)

and relating this to the formKzz̄−zC̄−z̄C+CC̄−ρ2 = 0 (compare equation (4�1)) is not trivial.

No further attempt will be made. A real equivalent of the Hermitian matrix is an orthogonal

matrix and a formulation of orthogonality extends into higher dimensions straight aw ay.The

fact that δ2 − (w1 + w2) = 0 denotes orthogonality is not limited to any dimension.

4.2.2 The Laguerre fan

This section discusses the L aguerre fan. Refer to �gure 4�3. The Laguerre fan is de�ned as

follows:

Definition 4.1 (Laguerre fan)

The L aguerre fan is the fan spanned by all positive L aguerre distances of a point relative to a

weighted point •

Given a weighted point s̃1 = (s1, w1) and a point s̃2 = (s2, w2). Parametrise their Laguerre

distance b y a single parameter w1 and furthermore use as a shorthand notation L12(w1) =
δ2

12 − (w1 + w2). Then :

d

dw1
(L12) =

d

dw1

[
δ2

12 − (w1 + w2)
]
= −1 (4�10)

so that the Laguerre distance monotonically decreases with a strictly increasing w1. Moreover,

L12 = δ2
12 is a global maximum for this con�guration and L12 = 0 is a minimum for positive
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C1
C2

w2(w1)(×.1)
w1(×.1)
r2(w1)
r1(w1)

w1

9008007006005004003002001000

90

80

70

60

50

40

30

20

10

0

Figure 4�3: left: Laguerre fan (bounded by the dashed circle) of a weighted point (C2, 0) relative to

a weighted point (C1, w1) ∈ E2, for positive distances. The spheres in the right bundle, centred at C2,

are orthogonal spheres to (C1, w1). Right: e�ect of increasing w1 on orthogonal w2, and radii of both

spheres.

distances. The same holds true for L12 and w2. F urther, withr1 =
√
w1 and r2 =

√
w2, we have

that:

δ2
12 = r2

1(w1) + r2
2(w1) (4�11)

which is the form of a sphere, so that all intersection points in all members of the bundlelie on

a circle, centred half-way of the line carrying s1 and s2. Observe the following:

Observation4.1 (Laguerre fan)

The sphere bounding the Laguerre fan in E d is the smallest (d−1)-sphere intersecting the centr es

s1 and s2 •

Observation4.2 (Laguerre fan and Thales theorem)

The L aguerre fan follows basic ally from the application of Thales theorem in E2, stating that

two orthogonally intersecting lines through the centres s1 and s2 (�g. 4�3) lie on a circle with

diameter ‖s2 − s1‖ passing trough both s1 and s2 •

4.2.3 The synthesis of α and weight

The role of α and weight w in the development of the α-complex is di�erent. An increasing α
causes all w eight-plus-α balls to gro wwhereas an initial weight only pro videsa bias at a zero

α-value. This means that w and α can only be seen in close conjunction. In this section, the

relative in�uence of each will be discussed and contrasted with their joint e�ect.

Weighting actsas a modelling instrument to shape the desired α-complex. In practice, it

is convenient to let some co veragebe conquered byα. This is the �lean-to-fat�-variation in the

α-interval [αmin, αmax] introduced earlier in this chapter. This w ay,a tar get α will be chosen

which is approximately of the magnitude of w. Call the combined e�ect ε, like in equation (4�7),

so that ε is equal to the square of the radius r of the weight marker. Then for the derivative dr
dα :
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Figure 4�4: marker radius r =
√
ε versusα for various weights w, depicted on a

2log-linear scale.
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Figure 4�5: relativ e in�uence of α. The �gures show the limited in�uence for α 2 w and α . w.
Observe the negative weigh t-curv es and their local maximum for their derivative

dr
dα .

dr

dα
=

{
1

2
√
a+w

, for: w + a ≥ 0
−i

2
√
a+w

, for: w + a < 0
(4�12)

Then clearly, the relative in�uence of α is small as long as α is small compared to w, i.e., α 2 w,
strongly increasing when α ≈ w and α completely wipes out the in�uence of w when α . w.
Weight is �xed-valued and its e�ect decays rapidly for increasing α-values. To get a grasp: for a

dominance function d(α) with α1 = w and α2 = 10α1, radius ε2, associated with α2 is equalto

ε2 = 1
2

√
22ε1 ≈ 2.345ε1. For α1 = 10w and α2 = 10α1, this reduces to ε2 = 1

2

√
22ε1 ≈ 0.0000ε1.

See �gures 4�4 and 4�5. The weight may be chosen such that expected α-value E[α] and w are

approximately on equal scale, in order to experience the e�ects of both. Local variation depends
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on the distribution of the ratio betw eennearest and local-furthest neighbour distances and the

distribution of the local coverageκ. This issue will be further discussed in section 4.6.5 and will

give rise to the de�nition of one of the possible weight transformations to apply.

4.2.4 Incremental weight

Next question to be raised is: can weight be added and subtracted incrementally? In the current

de�nition, α is equal for all members of S. Imagine a set A of α-values for eac h individual

member of S, although w eknow all thesev alues are equal. Firstly, notice that the cardinalities

of S, A and W are equal. Then the Minkowski sumA ⊕ W re�ects the bias wj plus the increased

α for a vertex s̃j ∈ S. Minkowski set subtraction is de�ned similarly, but in general, Minkowski

set subtraction is not the in verse of a Minkowski set addition (e.g., [SKM95]). Caution should

also be taken when considering the re�ection of the weight of a weighted set S̃ = S ⊗ W:

Definition 4.2 (set reflection)

The re�e ctionof aset is obtained by scalar multiplicationof all elements by λ = −1 •

Notation: S̆ or simply −S. The re�ection of the weight may yield unexpected and undesired side

e�ects.

Minkowski set additions are associative and commutative. As a consequence, building up

the weight set from di�erent parts is trivial:

S ⊕ (W1 ∪ W2 ∪ . . . ∪ Wm) = (S ⊕ W1) ∪ (S ⊕ W2) ∪ . . . ∪ (S ⊕ Wm) =
⋃
j

(S ⊕ Wj) (4�13)

4.3 Centres

F or a thorough understanding of con�gurations of spheres, it is also important to understand the

existence and nature of various centres, unique to that con�guration. Here, the following centres

will be discussed:

Circumcentre: the centre of the circumscribing sphere (�gure 4�6).

Centre of simultude: the apex of the single and double tangential conic of two weighted points

(�gure 4�7).

Radical centre: the single point of intersection of radical planes of pairs of (d − 1)-spheres, as
discussed in chapter 2.

Napoleon centre: an exterior point associated with each (d−1)-face in the boundary, in which

a sphere can be positioned that intersects that face' v ertices orthogonally, as w ellas the

orthogonal radical α-ball (�gure 4�11).

The circumcentre in Ed is de�ned for a con�guration of d+1 weighted points, in this work. The

cen treof simultude is a centre belonging to a con�guration of tw ow eighted points, the radical
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centre and the Napoleon centre generally require more than tw oweighted points. According to

Napoleon's Theorem (e.g., [Hah94]), the Napoleon sphere is only de�ned for triangles spanned

by zero-weight vertices (See �gure 4�11). The de�nition is adapted for weighted vertices. The

precise discussion of this con�guration will be postponed to section 4.3.

s1

s2

s3
C�

s1

s2

s3

C�

Figure 4�6: Circumcentre of a con�guration of three weighted points in E2. The circumcentre C� is

located in the in terior of triangle s̃1s̃2s̃3 i� the triangle is acute. The circumcentre coincides with the

radical centre and the circumscribing sphere is equal to the orthogonal radical α-ball Aα(C�). Left:

zero-weight vertices, right unequal weights.

s1

s2

Cext

Cint

Figure 4�7: Tangential conic of tw oweighted points s̃1 and s̃2. The external cen tre of simultude is

located on the carrying line through the tw opoints outside the locus of the tw opoints, the internal

cen tre of simultude is also located on that line but in betw een the tw o points.

Circumcentre

The circumscribing sphere of d + 1 points in d-space can be found in almost an ytextbook on

geometry. Here, this de�nition for un w eighted point is stretched to also cover weighted points.

Doing so is more or less trivial if the de�nition is made the same as an orthogonal sphere centred

in the radical centre. The circumsphere is then identical to the radical α-ball. Refer to �gure 4�6.

Centre of simultude

The centre of simultude is theapex of the tangential conic of tw oweighted points, as shown in

�gure 4�7. In fact two such conics can be drawn: a single conic and a double conic. This yields

two centres, an internal centre of simultude:
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s1

s2

Cint

H12

Figure 4�8: Centre of simultude and the radical plane. Only for two equal-weighted points, the radical

plane passes through the centre of simultude Cint.

s1

s2

√
L

Figure 4�9: Relation betw een centre of simultude and the Laguerre distance. Extracting the smallest

weight from the greatest and determining the (collapsing internal and external) cen tre of simultude,

gives a c hord that corresponds to the geometric representation of the Laguerre distance. This �gure also

demonstrates that if ∆w1 = ∆w2 ⇒ ∆L = 0.

Cint =
s1

√
w2 + s2

√
w1√

w2 +
√
w1

(4�14)

located in between the tw opoints and de�ned by the double conic, and an external cen treof

simultude:

Cext =
s1

√
w2 − s2

√
w1√

w2 − √
w1

(4�15)

de�ned by the single conic and located external to the locus of the tw ospheres. The external

centre of simultude, de�ned by equation (4�15) can be at in�nity. This is the case for equal-

w eighted points. In that case, the internal centre lies on the radical plane, see �gure 4�8. If one

of the w eighted points has zero-weight, then the external and the in ternal cen treof simultude

coalesce in the centre of that point. The chord from the external centre of simultude re�ects the

Laguerre distance, in that case. Figure 4�9 demonstrates this.
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Radical centre

A line segment along the radical plane spans an edge in a weighted V oronoi diagram.A radical

plane satis�es:

x · dx =
〈s2, s2〉 − 〈s1, s1〉 − w2 + w1

2
= D (4�16)

where D is a term that denotes the position relative to the tw ow eighted points. The radical

cen tre inE2 can then be computed from the intersection of tw osuch planes:

(
dx21 dy21

dx31 dy31

)(
x
y

)
=

1
2

(
D2 D1

D3 D1

)
(4�17)

an equation of the form Ax = B. The term dy21/dx21 in equation (4�17) denotes the direction

of the hyperplane of s̃2 and s̃1.

The radical plane does not necessarily pass through the internal centre of simultude Cint.

This is only true for tw o equally weighted points. See �gure 4�8. In that case, external centre of

simultude Cint is located in the ideal point at in�nity and the other one is on the perpendicular

bisector, which in this case coincides with the radical plane. And, hence, the latter passes through

the centre of simultude. Refer to �gure 4�8.

C�
C�

C�

Figure 4�10: location of the radical centre in E 2 for acute, isosceles and obtuse triangle. With equal-

weigh ted vertices, the centre lies inside if the triangle is acute (left), in the boundary if the triangle is

isosceles (centre) and outside an obtuse triangle (right).

In dimensions higher than 2, multiple shapes of �bad aspect ratio� d-faces exist, such as �slivers�,

�needles�, etc. See [Bak89, BCER95].

Napoleon centre

The Napoleon theorem (e.g., [Hah94]) says the following. Expand eac h edge of an arbitrary

(primal) triangle into an equilateral triangle (gray triangles in �gure 4�11, left picture). A positive

orientation must be applied (e.g., [Sto91]), to ensure that the apex is outside of the primal
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s1

s2

s3

N12
N23

N31
s1

s2

s3

N12

N23

N31

Figure 4�11: the relation betw een Napoleon's theorem and obtaining full coverage of the d-simplex. Left:

zero-weigh tpoints. Connecting the Napoleon centres Njk gives an equilateral dual triangle (dashed).

Right: w eighted version, which generally does not yield a regular dual (d)-face. Legs of the (weighted)

equilateral triangles have not been drawn.

triangle. Connecting the circumcentres of these equilateral triangles gives a dual equilateral

triangle. Napoleon's theorem holds for acute, isosceles and obtuse triangles. What makes the

Napoleon theorem interesting is the fact that it creates a full ball co verageb y the Napoleon-

spheres in all occasions. Figure 4�11 shows this for a single triangle, �gure 4�12 sho wsthis

for a triangulation. F ullco verageis not obtained by the set of dual triangles. Moreover, these

triangles do not form a coverage at all, let alone a triangulation.

The situation becomes di�erent when w orkingwith w eighted vertices (�gure 4�11, righ t

picture). The edges of the dual Napoleon triangle are contained in the radical planes of the

Napoleon spheres and the orthogonal radical α-ball. The dual triangle connecting the Napoleon

centres is no longer equilateral. Even not when w orkingwith w eighted distances. F orw eights

too high, the Napoleon sphere may become an i-sphere and its geometric interpretation blurs.

Many aspects of this coverage remain unclear and this covering is therefore left alone for further

research.

4.4 Modelling with weight

This section treats the issue of modelling mechanisms, obtained by manipulating the distribution

of w eight. The e�ects of changing distances and weight will be demonstrated by means of

�dynamic con�gurations� of spheres. In the �gures used, pairs of spheres will move up ward by

a �xed step, while changing. This is done for readability. Figures are parametrised b y a single

parameter t in the following sense: x(t) = c3t
3+c2t

2+c1t+c0 and also: w(t) = c3t
3+c2t

2+c1t+c0.

Example 4.2 illustrates this.

Example 4.2 (dynamic configuration)

Assume a coor dinatesystem in which x(t) increases �to the right� and y(t) runs upward. L et

pencil P(t) = λ(S1(t) + S2(t)) be de�ned as follows. S1(t) = ((−t2 + t+ 10, 5t + 2), 4t2 + t+ 30)
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Figure 4�12: the relation betw een Napoleon's theorem and obtaining full coverage and α-exposedness of
the d-simplex, here for a weigh ted triangulation.Left: dual triangle coverage, right: ball coverage. Solid

lines depict primals, dashed lines the duals.

and S2(t) = ((2t2 − t
√

2 + 30, 5t + 2), 100). The development of this con�guration is given for

0 ≤ t ≤ 5. Notice that the �height� of both spheres is given by the expression y(t) = 5t+ 2.

t = 0
t = 1
t = 2
t = 3
t = 4
t = 5

y, t

Observe the following. Parameter t runs in the dir ectionof y, i.e., upward. The �gure shows

pairs of spheres, the left of which increases in weight with t, the right of which has constant

weight. The location of the spheres diver ge. The radical plane moves to the right as a result of

this •

The Laguerre distance L(s̃1, s̃2) = 〈s1 − s2, s1 − s2〉 − (w1 + w2) can also be written as

L(s̃1, s̃2) = 〈s1, s1〉 + 〈s2, s2〉 − 2〈s1, s2〉 − (w1 + w2). Again, this sho wsthat the movement of

points s̃1 and s̃2 corrected for their joint movement in the same direction is important and on

the other hand, their common weight. This is again the distance and the w eight. Figure 4�13
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sl H
�
lr

sr sl H
�
lr

sr sl H
�
lr

sr

Figure 4�13: e�ect of distance and/or weight changes on the con�guration of tw ospheres and the

orthogonal α-ball. Changes are such that the radical plane H12 remains �xed. The left picture shows a

variation of distance to the radical plane with ∆δ2
l = ∆δ2

r = c1t + c0. The central picture shows how a

quadratic increase of the weigh t from zero-weight to orthogonality (class 2.2 con�guration) acts upon the

orthogonal ball. The right picture shows a compensation of a change in ∆δ2
l by a decrease ∆wr of the

weight of the right point. Dashed spheres are i-spheres.

shows the e�ect of changing these components. T omake the �gure easier to read, changes are

such that the radical plane H12 remains �xed. Let δ2
l be the squared distance of point sl to the

nearest point s� in the radical plane H
�
12 and let wl be its weight. Likewise for the right point.

The left picture in �gure 4�13 shows a variation of distance to the radical plane (location of the

centres) such that ∆δ2
l = ∆δ2

r = c1t
2. The central picture shows how increasing the weight by a

factor c1t
2 from zero-weight to a class 2.2 con�guration acts upon the orthogonal ball. Distance

δ2
l = δ2

r = 100 is kept constant. If the weight of both spheres increases by ∆w = t2, the Laguerre
distance to the radical α-sphere becomes zero as soon as we have that δ2 − t2 = 0 which occurs

for t = 10. Increasing the w eight up to a class 3.2 con�guration (orthogonality) would turn

the radical α-sphere into an i-sphere. The right picture of �gure 4�13 sho wsa compensation

of a change in distance of the left point b y an increase of the weight of the righ tpoint, i.e.,

∆δ2
l + ∆wr = 0. The weight of the right point becomes negative and the sphere becomes an

i-sphere as the left point movesa w ay from the radical plane.This relation can be derived from

the following:

Ll

Lr
=

〈sl − s�, sl − s�〉 − wl

〈sr − s�, sr − s�〉 − wr
=

δ2
l − wl

δ2
r − wr

= 1 (4�18)

and also, to restore this invariant :

∆Ll

∆Lr
=

∆δ2
l − ∆wl

∆δ2
r − ∆wr

= 1 (4�19)
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If only the left point sl moves and only the right weight changes, then this results in:

∆δ2
l = −∆wr (4�20)

and with equation (4�18) one obtains:

∆δl(2δl + ∆δl) = −∆wr (4�21)

The Laguerre distance L(sl, s�) is equal to the squared radius of the orthogonal ball in

�gure 4�13. A change in the Laguerre distance is therefore proportional to a change in the α-
value for α-exposedness, vice-versa. The left picture is easily associated with isotropic scaling, the

centre with weight transformation still to be discussed and the right picture with the combined

and inter-c hangeable e�ect of distance and weight demonstrated in experiment 2.1. As stated,

w e do not take into account negative α-values, but in geometric modelling, locally demoting the

development of the α-complex is of great practical importance and negative weights are vital for

that. Negative weights obstruct the entrance of those vertices and faces into the α-complex until

the negative weight is compensated by the α-value and their sum is positive again (section 4.2).

In terms of α-complexes, a great enough negative weight attached to an interior point

s ∈ Int Cα of the α-complex, is a seed for a void, or a pocket that can gro winto a void for a

greater α. It acts as a white spot that cannot be covered by the α-complex with the current value

of α. Figure 4�14 illustrates this phenomenon. The e�ect of strong enough a negative weight is

that it �de�ects� the formation of d-faces in a direction radial to the negative weight. Figure 4�15

shows this e�ect clearly. The stronger the negative weight at the top-right, the more needle-like

the triangles get in a diagonal direction, emanating from the negative weight. Apparently, the

negative weight seeds a elongated star of d-faces.

Figure 4�14: the e�ect of negative weight as a seed for a hole in the interior of an α-complex. In this

case, the negative weigh t has been attached to the centroid.

4.5 Weighted points as a point process

A set of weighted points can be considered as a marked point process, with the weight balls as

markers. If the coverage by weight markers is of interest, the point process can also be considered



102 Chapter 4 : Using weight as a mod ellingtool

Figure 4�15: regular triangulations of the same point set for di�erent weight sets. Left: zero-weighted

case, centre: w eights increase linearly from zero for the lower-left vertices to a much higher value for the

upper-right region. Notice that di�erences show up only where weigh ts have been changed. Right: overly

dominating upper right points, strongly directing the formation of the faces radially out of this region of

dominance.

as a coverage process. Both marked point process and coverage process were in troduced in

chapter 3. In fact tw omarked point processes can be considered. The question may be raised

as towhether theseco verage processes lead to the same conclusions for the development of the

α-complex. The two coverage processes are:

• Weight-plus-α markers located in the points S

This process reaches full coverage when the markers, growing with increasing α, eventually
will have swept out all pow ercells. This is coverage B discussed in section 2.3, �gure2�3

show edan example.

• The α-markers located in the radical centres

This is coverage processA, discussed in section 2.3 too. The process reaches full coverage

when the α-markers located in the radical centres and growing with increasing α, eventually
will have intersected the weight markers in the vertices of S orthogonally. Refer to �gure 2�3

again for an example.

Both processes reach their full coverage for the sameα-value, which can be understood with the

principle of transfer of dominance to be discussed in the sections ahead. In this work, emphasis

is on the �rst process. This process is easily related to the Stienen model, to be discussed later.

The second process will be discussed, where appropriate.

4.5.1 Transfer of dominance

T o study the relation between these coverage processes, it is convenient to understand the prin-

ciple of dominance transfer, coined in [Ede92].
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Definition 4.3 (transfer of dominance)

Dominance transfer between two weighted points is the transfer of weight of one point onto the

other. L et s̃1 = (s1, w1) and s̃2 = (s2, w2) be two di�erent weighted points. L et s̃1′ = (s1, w1 −
∆w1) and let s̃2′ = (s2, w2 + ∆w1). Then, L(s1, s2) = L(s1′, s2′) •

Figure 4�16: the principle of weight transfer demonstrated. The radical plane moves but the radius of

the radical α-sphere remains constant.

The principle is demonstrated in �gure 4�16 . Obviously, with transfer of weight, the radical

plane moves along, as indicated. Apparently, the weighted distance between two weighted points

remains unchanged if the sum of the weight changes is zero, which can be readily seen from the

de�nition of the Laguerre distance. Recall that the weighted distance is zero if tw oweighted

points are orthogonal. Let s̃1 and x̃2 be orthogonal. Then apparently, orthogonality also occurs

for these two points, with weights of w1′ = w1+w2 and w2′ = 0, i.e., a complete transfer of weight

from one point onto the other. Apparently, orthogonality is preserved for these tw oorthogonal

points s̃i and s̃j under a complete transfer of weight from one point onto the other. This leads

to the following observation ([Ede92]):

Observation4.3 (dominance transfer of orthogonal points)

Assume that two weighted points s̃i and s̃j are orthogonal. After a complete transfer of weight

from s̃j onto s̃i, the former must be on the enlarged sphere of s̃i and the radius of the enlarged

sphere around the receiving s̃i must have becomeequal to the Euclidean distance between the two

points •

Observation 4.3 is illustrated graphically in �gure 4�16. Dominance transfer further simpli�es the

computation of α-exposedness. Sticking to the example of an edge, all weight may be transfered

from one vertex onto the other. The Euclidean distance between the zero-weight donor point

and the increased sphere of the receiver point is now to be abridged by an α-ball, centred in the

in tersection point of the radical plane and the carrying line through the tw opoints. Of course,

if both vertices ha vezero-weight, the α-ball will ha veto cover exactly the Euclidean distance

betw eenthe vertices. The following observation for α-exposedness of edges is easily veri�ed

(�g. 4�16):

Observation 4.4 (α-value for α-exposedness of an edge)

The α-value of the minimum-radius α-ball, centred in the intersection point of radical plane and

edge corresp onds to the weight to be additionally transfered to the receiver in or der to make it

intersect the zero-weight donor •



104 Chapter 4 : Using weight as a modelling tool

The �rst real sphere that intersects tw oweighted point orthogonally is important for α-
exposedness. If two weighted points already intersect as a class 2.2 type, the α-ball is a null-sphere
lying in their intersection point. Recall that this point is also located on the radical axis. Assume

the weight of the two points is further increased to a class 3.2 con�guration, i.e., to orthogonality.

Radical α-balls located inside their intersection in terior are imaginary, with ∆ > 0. Negative

w eight must be transfered in order to restore the class 2.2 con�guration. In fact the α-ball located
in the intersection point of radical axis and edge determines the weight to be added/subtracted

for the points to touch. The following example illustrates this.

Example 4.3 (orthogonal radical α-ball)
The α for which an edge �rst becomesα-expose d,can be determined as follows. De�ne α = ρ2

,

and weight w = r2
, then a weighted point s̃1 = (s1, w) is represented by a sphere with radius r

and a weighted point s̃2 = (s2, α) with weight α is represented by a sphere with radius ρ. We have

that:

‖s1 − s2‖ − (r1 + r2 + 2ρ) = δ − (r1 + r2 + 2ρ) = 0 (4�22)

from which we immediately have:

ρ =
1
2
[δ − (r1 + r2)] (4�23)

This concludes the example •

A concluding remark on transfer of dominance. The principle of dominance transfer also

holds if dominance becomes a function of weight plus alpha, like in w(α) = w + α:

(wi + α) + (wj + α) = (wi + 2α+ wj) + (wj + α − wj − α) (4�24)

4.6 Weighting strategies

A weighting strategy is a process to obtaining a weight set W such that for some α ∈ [0..∞) the
resulting α-complex is ful�lling all the geometric and topological constraints imposedupon the

object's model. See chapter 3. This w asfurther narrow eddo wn,earlier in this chapter, in the

sense that with appropriate weighting E[α] ∈ [αmin, αmax]. But what is a proper strategy to

design weight sets accomplishing this? Of course, the answer to this question depends on the

pr oblem on the one hand and the modelling objectives on the other hand. A couple of strategies

will now be discussed. Also, refer to [GVdWV00b].

4.6.1 Unstructured weighting

Weight can be assigned on a per-point basis. This form of w eighting will be referred to as

unstructured weighting. The use of unstructured weighting, applicable to both regularly and



Section 4.6: Weighting strategies 105

Function Definition Function Definition

gamma(ζ) Γ(ζ) =
∫∞
0 e−ηηζ−1dη, ζ > 0 -ln(ζ) − ln(ζ) =

∫ ζ

0 η−1dη, ζ > 0

normal(ζ) p(ζ) = 1
σ
√

2π
e

(ζ−µ)2

2σ2 error(ζ) erf(ζ) = 2√
π

∫ ζ

0 e−η2
dη

sign(ζ) sign(ζ) =




−1 for ζ < 0

0 for ζ = 0

1 for ζ > 0

bloc k(ζ) p(ζ) =


 0 for ζ 	∈ [a, b]

1 for ζ ∈ [a, b]

T able 4�1:natural weigh t functions exhibiting a �cut-o��e�ect. Use the linear transform ζ = β1ξ + β2,

with β1, β2 ∈ R, to shift and scale of the �cut-o�� point.

w3(ξ) = a3Γ2(ε3ξ) + c3

w2(ξ) = a2erf(ε2ξ) + c2

w1(ξ) = a1 ln(ε1ξ) + c1

log ξ

lo
g
w
(ξ

)
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Figure 4�17: Weight functions with �cut-o�� e�ect. w1(ξ) has upper-bound for 0 < ξ < ε−1
. The rapid

weight drop at ξ = ε−1
can readily be seen from the �gure. V erticeswithin this ε−1

-ball cen tred at

ξ = (0, 0, . . . , 0) will be attracted to one another, those outside the ball will be distracted for equal values

of α. Weigh t functionsw2(ξ) and w3(ξ) ha ve similar e�ects.

irregularly spaced data, is of limited practical value. It is typically used in combination with

free-form modelling of simple shapes. T osome extend, the painting (spraying) of weight can

be regarded as unstructured weighting. Unfortunately, such tools are still lacking for 3D. A

best-practice solution would be the use of sliced data. The comet West case to be discussed in

chapter 6 follows this approach.
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4.6.2 Weight functions

Weights can also be based upon some function de�ned over the domain E d of S, parameter space

Em or subspaces thereof. Generally, a w eight function is of the form g : Ed → R and mostly

exhibits a sharp "cut-o�" e�ect. Figure 4�17 and table 4�1 show a few such functions. Using

w eight functions is easily combined with the masking technique, to be discussed in the next

section.

canvas W¬=

&=

|=
...

+=

−=

∗=

...

mask

T S R

S

Cα

Figure 4�18: schematic overview of the masking technique; the aim is to compose a weight set W, that

�highlights� the desired geometry (Cα) in the regularly spaced sampling data point set S. Starting point

is an empty canvas (lattice) of the size of S. Successively, masks (partial, basic weight sets) are added

to the w eigh tset W using transformations and one or more logical or mathematical operations. The

Cartesian product S × W is then input to Cα.

4.6.3 Masking

A 2-lattice L is a regularly organised subset of Z
2. Each of these points has a location, an ordinal

number, and may be assigned one or more values. A lattice with no suc hvalue sets assigned

yet, is called an empty canvas. Let point set S be organised on a lattice. Consider the following

w eighting strategy for such a regularly spaced sampling point set S:

Step 1: Create an empty canvas to contain the eventual weight set W of the size of the data

set and initialise the canvas to zero-weight.

Step 2a: Instantiate a (library-based) standard weight mask by generating it with appropriate

parameters.

Step 2b: T ranslate, rotate and scale the mask, as appropriate.

Step 2c: Map the instantiated mask onto the canvas. Mapping onto is essentially a �pixel�-based

logical or mathematical operation.

Step 3: Construct the weighted α-complex, based on S ⊗ W.
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Figure 4�19: the masking process: the lattice-based regularly spaced set S, covering the canvas (bottom),

is weighted using prede�ned masks (middle); here a mask containing Descartes folium. F or−∞ < t < ∞,

the folium is given b y the parametrised equations:x = 3t/(1 + t3) and y = 3t2/(1 + t3). The mask cuts

out a singular point at (0, 0).

Repeat steps 2 and 3, as appropriate.

This strategy is referred to as masking. Fig. 4�18 depicts this process, and �g. 4�19 shows an

example using a mask that cuts out a folium-of-Descartes-shape. In terms of image algebra

([RW96]), a mask consists of a topological space made up by the points in L (or: S), a value set

W of values associated with these points and a discrete topology. Incremental weight addition is

justi�ed by equation (4�13). Standard masks can be collectedin a library . Masks can be based

on standard weight function, like the ones in table 4�1. These functions can be taken relative to

a point, a line, a plane, etc. Arbitrary constrained weight functions can be compiled using for

example Lagrange polynomials. Basically, masking is applicable to regularly spaced landmark

sets of any model space dimension E d, although weight design tools become increasingly sparse

for dimensions larger than 2.

4.6.4 Using physical properties

Shape reconstruction is relevant as far as object models are to be derived from real-live coun-

terparts, asadv ocated in section 3.2. Not only in earth sciences or in clinical analysis, but also

for example when a measuring robot establishes the tolerance mis�t of a cast-iron part. Often,

properties are stored in the form of raw or aggregated data. Sometimes, observed data are en-

coded in colour encoding systems. Sometimes, a value can be directly sampled in each landmark,

sometimes the landmark is inaccessible and some interpolation of the value set is required.
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Figure 4�20: Alpha-complex of the left and right shoulder blade (data set by courtesy of Delft
Univ. of Techn., Dep. Elec.Eng., 3434 points). Refer to [GVdWV00b] for details.

In any case, the exact geometry depends on a number of things. Among others:

• The data observation technique features.

• The �contrast� present or achievable in the data.

• The threshold value chosen to discriminate �background� (embedding environment) from

�foreground� (the object).

• The suite of properties observed.

Often, observed sampling data get blurred by noise and other undesired e�ects. If such

features hamper the �nding of the righ tα-complex, �ltering aw ayremote areas outside the

region of interest is easily accomplished with an AND-mask, i.e., a logical & =-operation. Many

algorithms exist in the domain of image analysis to enhance contrast and to �nd, manipulate

and extract features. Refer for instance to [RW96]. Another problem with observed data is the

translation of vector- and tensor-properties to scalar, omni-directional weights. A veraging is one

technique to circumven t this, �nding dominant phenomena and �tting weights to them is another

approach.

The use of physical properties to determine weights is most relev an tand fruitful for nat-

ural objects (e.g., [GVdWV00b]). Therefore, this strategy will be giv en further attention in

section 4.7.
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Figure 4�21: Left: distribution of the nearest neighbour distances of the scapula-sampling data set of

�g. 4�20. Right: the increase of α vs. α-rank of the scapula-sampling data set of �g. 4�20.

4.6.5 Neighbourhood weighting

The w eighting strategy based on nearest neighbour distances exploits the complementarity of

w eight and distance. The goal with nearest neighbour distances based weight assignment is to

minimise the variance of the Laguerre distances. This minimisation chokes and moves the target

α-in terval (�gure 4�1) and the expected α-valueE[α]. It also a�ects the formation of the α-family

and through this the relation of α vs. α-rank ρ, which is related to the accumulative distribution

of the nearest neighbour distances (see �g. 2�10). Generally, the cardinality of the α-family will

show only minor changes if at all. Let l̄ be the empirical mean Laguerre distance and let lij
denote the empirical variance of the Laguerre distance betw eens̃i and s̃j, giv enb y:

(N − 1)s̃2 =
N∑
i=1

(
lij − l̄

)2
(4�25)

Minimisation of the empirical variance s̃2 of the Laguerre distances requires that:

min{s̃2} ∼= min

{
N∑
i=1

(
δ2
ij − vij − l̄

)2}
(4�26)

where vij = vji = wi +wj, making up the matrix V. The value of l̄ is not constrained. F urther:

Observation 4.5 (homogenous Laguerre distances)

In case of the theoretical minimum variance s̃2 = 0, all weighted points in S ⊗ W lie on a

hyperplane parallel to E d •

Figure 4�21 sho wsthe distribution of the nearest neighbour distances for the scapula-

sampling data set of �gure 4�20. Figure 4�22 shows the initial versus the minimised distribution.

An optimal value of the Laguerre variance is generally desirable but insu�cient for a optimal

or even meaningful α-complex, unless the α-complex coincides with the regular triangulation.

The latter can be controlled b y the minimum variance weight set. On the other hand, it is

not desirablethat some faces in the resulting α-complex are enforced by the weight alone. It is
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Figure 4�22: Euclidean (dashed) vs. minimised Laguerre distance distribution (solid) of the scapula

sampling data point set.

therefore a constraint that all the Laguerre distances remain positive, so that the low er boundary

αmin of the in terv alof α as discussed in section 4.1 is also positive. This, in turn, implies that

the Euclidean nearest neighbour distance are limiting the weight.

Minimising the dispersion (variance) is quite di�erent from minimising the mean value.

Moreover, one may in fact cho osea target mean Laguerre distance l̄∗ and determine the minimised

w eights against that mean value, obeying the non-negative constraint. It must be noted that the

Laguerre distances are not independent. The elements vi,j = vj,i of V mutually in�uence one

another. Minimisation of the weights on a per-point basis decreases the variance in Laguerre

distances, whereas a mere isotropic scaling scales the variance in a global fashion. A translation of

the mean Laguerre distance has only limited in�uence on the variance and non on the coe�cient

of v ariation.F urther down this chapter, weight transformations will be discussed. It is interesting

to contrast Laguerre distance minimisation with weight transformations.

4.7 Physical properties based weighting

In this section the use of physical properties to determine the weight set will be further outlined.

First, the estimation of the normalised weights will be treated, follo w edby the weight transfor-

mation of the normalised w eights to reach their �nal values. T osupport the estimation of this

w eight transformation, a theoretical model, a ppp, will be �t. This strategy forms a natural link

between the observations and measurement of a physical example and the optimal �t of some

the or etical model.

4.7.1 The colour encoding of physical properties

The start of the w eighting step is always a data analysis of the value sets PS, generally one

value set per property, see chapter 3. V ery often, physical properties are encoded as colour value

on some colour scale. The BGR, blue-green-red scale is a frequently used scale, red-white-blue

is a common colour scaling for seismics, and of course gray-scaling. If magnitudes of physical

parameter values are directly transcribed into colour values, then no information is lost. Provided

that the used transcription (in particular, the �clip values�) are similar, tw ocolour-scaled maps

of physical parameters can be compared one-to-one.
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Homogenous Clustered

St atistic x1 x2 x1 x2

minimum 2.41537e-04 6.11700e-03 1.49715e-03 6.98440e-03

maximum 9.99460e-01 9.94870e-01 9.95577e-01 9.92220e-01

mean 5.18196e-01 5.02282e-01 5.58130e-01 5.60698e-01

variance 8.47603e-02 8.99756e-02 9.20329e-02 1.12539e-01

standard deviation 2.91136e-01 2.99959e-01 3.03369e-01 3.35469e-01

standard error 2.65770e-02 2.73824e-02 3.16284e-02 3.49750e-02

coe�cient of variation 5.61827e-01 5.97193e-01 5.43546e-01 5.98306e-01

skewness -6.83696e-02 -1.43748e-01 -1.72102e-01 -8.92594e-02

- signi�cance level 2.23607e-01 2.23607e-01 2.55377e-01 2.55377e-01

kurtosis -1.17019e+00 -1.22903e+00 -1.15783e+00 -1.48348e+00

- signi�cance level 4.47214e-01 4.47214e-01 5.10754e-01 5.10754e-01

w eigh ted sum 6.21835e+01 6.02738e+01 5.13480e+01 5.15842e+01

N 120 92

diameter 9.99218e-01 9.94080e-01

orthogonal breadth 9.88753e-01 9.85236e-01

diameter/breadth ratio 1.01058e+00 1.00898e+00

T able 4�2:condescriptive statistics of the homogenous (left) and the clustered ppp (right). The signi�-

cance levels for sk ewness is taken

√
6
N and for the kurtosis

√
24
N .

Quite di�erent is the situation when dealing with an en tirepalette of colours, that ha ve

to be interpreted by name. Such a situation occurs for example when observing natural objects

using a digital camera. Or, when spotting a comet from an observatory station, with a huge

telescope. It is also a prerequisite in our desire to merge all kind of knowledge in primitives.

In those instances, ph ysicalproperties values are reconstructed indirectly from this pallete of

colours. F or example: the ion tail of a comet is pale blue. But what is pale blue.

In fact, this is an instance of a colour classi�cation problem or colour naming problem,

studied for more than a century. There is much to say to this problem, but an extensive discus-

sion is beyond the scope of this thesis. The approach chosen here is to split o� intensity from

chr omaticity, a procedure common in colour research. The CIE chromaticity diagram1 is con-

sulted for colour naming and composition, where needed. For further details and descriptions,

refer to a standard references on colours or computer graphics, like [FvD82, SS87] and for a more

mathematically oriented discussion on these colour models, see for example [Lam94].

4.7.2 Point process analysis

In order to �nd the weight transformation, an analysis must be made of the underlying ppp.

Refer to the outline of the modelling steps presented in section 3.9. Here, these steps will be

further worked out with the aim to illustrate how to obtain a properly scaled weight set. In

the remainder of this section, the analysis of tw oconcrete related point process examples will

be taken for illustration. The tw oprocesses are depicted in �gure 4�23. The processes di�er

mainly in the degree of clustering. The two processes are de�ned in two-space, but procedures are

similar in higher dimensions. Unfortunately, computation get sometimes complicated in higher

dimensions. See e.g. [SKM95] for details.

1
composed by the Commision Internationale de l'Éclairage (CIE) in 1931, based on panel results
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Figure 4�23: top: homogenous P oissonpoint process, de�ned on the 2D unit domain [0, 1] × [0, 1].
bottom: a clustered ppp on same domain. F or theχ2-test, the domain is divided in 3 × 3 equal-sized

regions.

Point process homogeneity

The null-h ypothesis of homogeneity of the ppp can be veri�ed by a classical chi-square test. The

graphs NNG(S) and LFNG(S) may reveal a �rst clue of problem spots for weighting. See annex D

for further details on the veri�cation of ppp's and the statistics underpinning this. Table 4�2

shows these condescriptive statistics of the homogenous and the clustered ppp in comparison.

The results of the χ2-test will now be discussed �rst, follow ed by the nearest neighbour distance

analysis.

A simple χ2-test on the homogenous ppp with K = 9 cells shows that while a cell has an

expected E[k] = λ = 120/9 = 13.33, the minimum cell contains 10 landmarks and the maximum

cell 16. This yields a χ2 = 2.85 at 8 degrees of freedom. F or the clustered ppp, these �gure are:

E[k] = 10.22 4 landmarks and 17 landmarks, and a resulting χ2 = 16.0. Table 4�3 presents the

�gures of both ppp's. Notice the signi�cant change of the value of χ2. We have that for the

clustered ppp, χ2
.05 < χ2 < χ2

.025, so homogeneity can be accepted not even at a 5% signi�cance

level. Compare for the homogenous ppp: χ2
.95 < χ2 < χ2

.90. The results of the chi-square analysis

may be directly related to the locally expected weight E[w] and expected local coverage E[κ].
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St atistic Homogenous Clustered

N 120 92

νL 1.00000e+00 1.00000e+00

global λ 1.20000e+02 9.20000e+01

E[k] per cell 1.33333e+01 1.02222e+01

minimum k 1.00000e+01 4.00000e+00

maximum k 1.60000e+01 1.70000e+01

(row,col) of min k row=0,col=1 row=0,col=1

(row,col) of max k row=0,col=0 row=2,col=1

χ2 2.85000e+00 1.60000e+01

DOF (K = 9) 8 8

T able4�3: results of the χ2
-test on the homogenous and the clustered ppp. Left: for the homogenous

ppp, right column for the clustered ppp.

Figure 4�24: left: triangulation of the homogenous ppp of �gure 4�23. Centre: nearest neighbour graph

(dark er edges), right: local-furthest neighbour graph (darker edges).

Neighbourhoods analysis

T o study di�erent regions, some sense of neighbourhood must be de�ned and the de�nition must

be convenient in the context of the regular triangulation. Recall that an α-complex is �ltered o�

from a triangulation. The close d star ¯St s of a vertex s is the subset of the triangulation T of all

closed k-faces incident upon s and all their sub-faces. See section 2.5. Then for a neighbourhood:

Definition 4.4 (neighbourhood)

A neighbourhood N(s) is the spac ecovered by the close dstar ¯St s of s •

Among the faces in this N(s), at least one 0-face can be denoted as the nearest neighbour NN(s)

and at least one 0-face as the local-furthest neighbour FN(s). Figure 4�25 shows the distribution

of the nearest neighbour distances of the homogenous and a clustered ppp. Figure 4�24 show

triangulation and neighbour graphs of the homogenous ppp. In general, nearest- and local-

furthest neighbours are not unique. The k-th nearest neighbour is the 0-face in S
⋂
St s that is

the k-th closest to s. N(s) is convex and NN(s) and FN(s) are always contained in the boundary

∂N(s). Each N(s) has one or more associated radical centres. A radical centre is not necessarily

located in IntN(s); see section 4.3, and �gure 4�10.
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Figure 4�25: Distribution of the Euclidean nearest neighbour distances of the homogenous and clustered

ppp. left: homogenous ppp. Right: inhomogeneous, clustered ppp, in comparison to the theoretical ho-

mogenous ppp nearest neighbour distance distribution (dashed). The clustered ppp diverges considerably

more from this theoretical distribution than the homogenous ppp. The skewness of the former ppp is

higher (i.e., more positive) than the homogenous ppp.

St atistic Homogenous Clustered

N 120 92

NN min 7.61398e-03 9.37712e-03

NN max 1.02002e-01 9.31548e-02

NN mean 4.89148e-02 3.49612e-02

NN s2
5.51644e-04 3.74663e-04

NN s 2.34871e-02 1.93562e-02

NN |s| 1.94520e-02 1.52009e-02

NN skewness 1.74291e-01 9.03845e-01

- signi�cance level 2.23607e-01 2.55377e-01

NN kurtosis -2.70554e-05 -1.43057e-05

- signi�cance level 4.47214e-01 5.10754e-01

T able 4�4: condescriptive statistics of the nearest neighbour distances of the homogenous and the

clustered ppp. Signi�cance levels for skewness and kurtosis as in table 4�2.

Non-homogeneity and skewness

There is a relation betw een the skewness of the nearest neighbour distances distribution and the

degree of non-homogeneity, here the degree of clustering. Check out table 4�4 and �gure 4�25.

Skewness is de�ned as follows:

Observation4.6 (skewness of a distribution)

Skewness (or: thir d central moment) is a measure of symmetry for distributions: if non-zero, a

distribution is not-symmetric, and if symmetric, a distribution has a zero skewness •

Let S generate a ppp on some domain D and let y denote the random variable of the Euclidean

inter-ev en t distance betw een a sites ∈ S and its nearest neighbour NN(s) ∈ S. Then the theoretical

distribution function D(y) (e.g., [Dig83, SKM95]) is given by:

D(y) = 1 − exp(−λπy2) , y ≥ 0 (4�27)

and for the corresponding probability density function:
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d(y) = 2λπy exp(−λπy2) (4�28)

Local co v erage

Assume that an initial weight set has been designed and attached to S and assume all Voronoi

cells to be bounded, if needed, by convex hull H. The local coverage κ(sj) is de�ned as:

κ(sj) =
νdL (Bα(sj)

⋂
V(sj))

νdL (V(sj))
(4�29)

F urtherdetails will be discussed below. In practice, point process statistics point at the same

�problem spots�.

4.7.3 Combining landmarks and weight

Many times in this thesis, the Cartesian direct product S ⊗ W has been mentioned. Apart from

the values of W, what does this product set look like? and how to create it? Let card S = N
denote the number of landmarks in S. Recall that the rows of the con�guration matrix XS
contain the coordinates of the landmarks and its dimension is therefore N × d. Let m-vector

p(s) ∈ Em be the vector of (scalar) properties measured in point s. These property values may

be organised in an N ×m-property matrix PS in which the j-th row contains the property vector

of sj . The �geometric� space, represented by con�guration matrix XS may now be augmented

by the �property� space, represented by PS, in the following sense:

X∗
S

=
(
XS|PS

)
(4�30)

where X∗
S
denotes the augmented matrix, resulting in a hyper-spatial representation discussed

in section 3.3.

Weighting based on physical properties can be regarded as a projection of m property

coordinates onto l w eight coordinates, i.e., W : Em (→ Rl. Basically, this projection is continuous.

Limitations in the current concepts of weighted α-complexes preven tl from being di�erent from

1. Representing weight by a complex rather than a real value has some advan tages (e.g., [Ede92,

Ede93]). Moreover, further research has to be initiated, into the representation of v ectorialand

perhaps tensorial weight (for non-scalar properties) b y the use of (imaginary) quaternions (see

chapter 7). In this work, w e always ha vel = 1 so that the set of weights W can be represented

by a n-vector w:

w = PSΛ (4�31)

with:
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Λ = [µ1, µ2, . . . , µm]t with:

m∑
j=1

µj = 1 (4�32)

an m×1-coe�cient matrix of the relative contribution µj of each of the properties on the weight.

Storage in an icon of such weight sets must somehow be made size- and scale independent.

Normalisation can accomplish this. On instantiation, weight transformations canbe applied to

adapt the normalised weight set to the current spacing of the landmarks. First, the determination

of the normalised weights will be discussed and then the weight transformation.

4.7.4 Determining the normalised weight

Generally, value sets need to be brought on equal scales b y normalisation �rst, so that they all

contribute in equal manners to the normalised weight set W̄. For the elements of W̄:

0 ≤ |w̄(s)| ≤ 1 (4�33)

The values of the µj 's are commonly resulting from a discriminant or principle component or

factor analysis. The goal of such operations is generally to investigateor enhance classi�ability,

b y which w eunderstand the abilit yto subdivide the data in clusters and classes. Generally,

the outcome of the factor analysis does not or only w eaklydepend on the con�guration of the

landmark set. This subject is not further discussed here. A recent overviewon the status of

cluster analysis and data classi�cation is given by Bock in Diday et al. ([Boc96]). Clustering in

this work is basically distance-based and clustering is therefore geometric clustering. We assume

the ordinary Euclidean metric applicable to the property space Em. Morein particular, in this

context, a cluster is de�ned as:

Definition 4.5 ((geometric realisation of a) cluster)

Let Ψ(x) be an implicit de�nition of close dd-volume in Em
. Then a (geometric realisation of

a) cluster of geometric data values in a space Em
is de�ned as a �nite compact region C ⊂ Em

containing data that satisfy some c1 ≤ Ψ(x) ≤ c2, with c1, c2 ∈ R and c1 ≤ c2 •

Obviously, edges in the nearest neighbour graph NNG indicate pairs that tend to cluster earlier

in a common cluster than pairs in the LFNG as the mean length of edges in LFNG is at least

the mean length of edges in NNG. F ora single property pk, associate an N × N dissimilarity

matrix ∆ with property matrix PS, for which:




δij ≥ 0 for i 	= j
δji = δij for all 1 ≤ i, j ≤ N
δii = 0 for all 1 ≤ i ≤ N

(4�34)

A subdivision Y = {Y1,Y2, . . . ,Yq} of S in q clusters is a sub-partitioning if ∀j, 1 ≤ j ≤ q:
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Yj ⊂ S

Yj 	= ∅
Yi
⋂

Yj = ∅, i 	= j
(4�35)

If
⋃

j Yj = S then the sub-partitioning becomes a partitioning. Each partitioning according to

this de�nition, is also a covering ofS. In the general case, α-complex Cα(S) will havem in teriors

and l exteriors. Each separate sub-complex forms a clique. A clique partitioning is a partitioning

in q clusters which minimises
∑q

j=1

∑
k,l∈Yj

δkl. In other words, a clique partitioning minimises

the total dissimilarities among cluster members of the same cluster, for each cluster. Dissimilarity

matrix ∆ can be reorganised such that ∆j is its Nj × m sub-matrix where Nj = cardYj is the

cardinality of clique. Sub-matrix ∆j is minimised in the sense that
∑

k,l∈Yj
δkl = min. Now

let the geometric realisation of a clique partitioning be found bymeans of a general dimension

α-complex in property space. Let α = 0. Then the clique partitioning found is the absolute

minimum of 0 for q = card S clusters: eac hpoints a cluster. Each row in ∆ is a clique sub-

matrix ∆j and all its columns are zero. Now let α increase monotonically. We then have that if

α2 > α1 ⇒ q2 ≤ q1. Let sl = NN(sk) at distance δkl. The points cease to exist as a separate clique
as soon as α exceeds α = 1

4δ
2
kl. Let E[δk,NN(k)] and E[δk,FN(k)] denote the expected Euclidean

distance (mean edge length) to the nearest and the local-furthest neighbour of sk, respectively.
Then, trivially:

E[δk,NN(k)] ≤ E[δk,FN(k)] (4�36)

Let sk ∈ NNG and sl ∈ LFNG. Then, as a result, for any α and any clique Yj, one has that:

Pr[sk ∈ Yj] ≥ Pr[sl ∈ Yj] (4�37)

which re-establishes the indicative capacity of NNG and LFNG. Finally:

Observation 4.7 (normalised weighted points do not lie on a hyperplane)

Prop erty-based normalised weighted points lying in augmented space E d × R ar e generally not

lying on a common hyperplane •

4.8 Weight transformation

4.8.1 Di�erent approaches

Once the normalised weights ha ve been determined, the individual weights ha ve to be translated

and up-scaled so as to reac hthe desired co verage. The steps in volved can be taken from the

scheme presented in �gure 3�15. The tw o basic type of transformations are a translation by ∆w
and a scaling b y a real factor. Using observation 4.5 and 4.7, the case I and case II weighting

discussed can now be made further precise:
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• Case I: isotropic scaling normalised weights

A�ne w eight transformation: w(s) = w0 + (w̄(s), where w0 is a constant weight. The

transformation is composed of a translation byw0 plus a isotropic scaling b y a non-zero

real factor (. This scaling preserves the ordering of the normalised weights. The coverage

so obtained is atmost the co verage of case II, the resulting weight set is an a�ne variet y

of the normalised weights.

• Case II: attracting of the normalised weights to an attractor

This is the approach to obtain a desired coverage, for example the one obtained by a Stienen

attractor model. In contrast to the �rst approach, the ordering of the normalised w eights

is not necessarily being preserved. The coverage so obtained can be determined or at least

estimated beforehand, and is a property of the model.

Determining the parameters of case I

The value of w0 is chosen such that the remaining empirical variance of the nearest neighbour

distances is acceptable, which of course depends on the model at hand. Recall that as a result

of a case I transformation, variance s̃2 becomes (2s̃2. The variance is directly related to the

covariance of the properties that contribute to the normalised weight. The nearest neighbour

distance to be abridgedb y the transformed weight can be divided into three parts:

1. A part to be consumed by the weight translation by w0 .

2. A part to be consumed by the weight scaling by ( .

3. A part to be consumed by varying α .

The sum of the e�ects of the �rst tw oparts de�nes the boundaries [αmin,αmax], but which one

contributes what part can still be manipulated. F or example,w0 can be chosen such that ( = 1,
or even less. The discriminating pow er of the weight vanishes then, how ev er.It has been shown

that weighting makes sense only if α ≈ w.

Using an attractor

Assume a �xed set Y of points in space Ed × R, with cardY = N . Further assume that the

normalised weights W̄ are transformed such that the set distance ‖Y − S ⊗ W‖ becomes smaller

and smaller, until some arbitrary small value. Set distance D, in this context, is de�ned as:

∆ =
N∑
j=1

√
(ỹj − s̃j)2 (4�38)

Then, the �xed set Y is called an attractor and S̃ is attracted byY. In this work, an attractor

will be used in the sense of a geometric realisation of an attractor. The attractor that will be

discussed for case II transformation is the Stienen model. This attractor will be discussed in

detail in the next section.
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The purpose of a case II weight transformation is chie�y to obtain hole-free (parts of)

objects. In that case, the coverage needs to be complete, i.e., be κ = 1 . T argetis the weight

distribution belonging to the moment that points in the α-complex are about to be connected

by an edge. This is the point of no enforcement, discussed in the overview of this chapter. A

case I w eight transformation cranks up the weights up to the point that the �rst edge is about

to enter the α-complex. F romthat point, attractor models suc has the Stienen model may be

used to further increase the local weights, while obeying the no-enforcement.

Finally, notice with the latter approach that the normalised weights may as well all be set

to unity, or zero, or an yother constant value. In that case, in contrast with observation 4.7,

they are located on a common hyperplane. The attraction �forgets� their normalised value and

maps all domains S ⊗ W
′ of original values to the same model-dictated value S ⊗ W. As such, it

behaves as a surjection.

4.8.2 The Stienen model

The Stienen model (e.g., [SKM95]) is a Voronoi tessellation V(S plus a ball union B(S) in which

balls have maximum radius without overlapping. Weights are such that theirspheres touc h the

nearest radical plane, i.e., the nearest boundary of their Voronoi cell. As a result, spheres of tw o

adjacent V oronoicells touch at their common cell boundary i� the tw oare nearest neighbours.

The nearestneigh bour relation is not symmetricand as a consequence, not all spheres actually

touch their nearest neighbour sphere. See �gure 4�26. In the Stienen model, none of the radical

centres can be covered and hence, none of the cells can be completely swept out. This means

that all local coverage κj < 1. The geometric realisation of the nerve of the Stienen modelis a

sub-graph of NNG. The Stienen model produces safe low erbound values for the weight set W:

all edges become α-exposed for some �nite non-negative α, and all �rst edges in the star St s
become α-exposed for minimum α. The latter does of course not imply that all edges become α-
exposed for the same value ofα. Increasing α causes the edges in the star to enter the α-complex

one-by-one, until ultimately, the edge with the local-furthest neighbour enters.

Does the Stienen model ha vean equivalent that may serve as an upper bound αmax for

the w eight? Unfortunately, no such model w asencountered in literature. The radical centres

(Voronoi vertices) are the last points of the Voronoi cell to be swept out by the growing spheres

Bα. This can be further made precise, in that the radical centre contained in the radical plane

of a point s with its local-furthest neighbour FN(s) is the very last point being co vered as α
grows. If weight is increased such that the sphere reaches this point, the entire Voronoi cell will

be co veredby the sphere, i.e., κ = 1. This holds for each cell and full coverage will th us be

obtained. Unfortunately, this strategy also introduces many redundant points. Also notice that

if κ = 1 in each V oronoicell, varying α is no longer relevant. In general, assigning weights to

points modi�es the weighted Voronoi diagram, as it causes radical planes to move. In practice,

the size of the weight sphere touching the furthest Voronoi vertex (radical cen tre)is therefore

multiplied by a factor 0 ≤ ω ≤ 1. Of course, ω should be chosen such that the weight is greater

than the weight based on the Stienen model. By absence of better terms, nearest Stienen model

and local-furthest Stienen model will be used to denote the models discussed.

If all V oronoicells incident upon a radical cen treha velocal coverage κ = 1, that radical
centre cannot lie inside a hole. Since all balls Bα gro win equal amounts as α changes, a hole

shrinks so that the radical centre is always in its interior. On disappearance, the hole consists of

only the radical centre. But for an arbitr aryradical centre to become covered, it is not necessary
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Figure 4�26: Stienen model of the homogenous Poisson point process (�gure 4�23). T w o spheres

may touch at their common cell boundary i� the two are nearest neighbours, but not all nearest

neighbour spheres do, due to asymmetry. Observe that none of the radical centres can be covered.

that all V oronoicells incident upon a radical centre ha veκ = 1. A local co verage κ = 1 is

only reac hedif also the radical centre with the local-furthest neighbour is co vered, and not all

radical centres are generated by a vertex contained in LFNG. Local co verage is generally not

independent. In addition, the desired coverage is not necessarily obtained through weight alone.

In practice, it is convenient to let some coverage be conquered by α, as discussed. Local variation
depends on the distribution of the ratio betw eennearest and local-furthest neighbour distances

and the distribution of the local coverage κ. V ariationcanbe equalised by varying local values

for ω.

4.9 To wards Vectorial weight

V ectorialweights, in addition to the scalar weights discussed so far, are highly desirable to

support the coupling with vectorial properties. A few illustrations: a potential variable, suc h

as �uid pressure, may be described just �ne b y a scalar. Fluid pressure is intrinsically omni-

directional (or: undirectional). Radiogenic heat �o wfor example, is a �ow variable, generally

described by a vector �eld and a weight set based on it would require weights to be vectorial. Some

material properties, such as strains and permeability, or variables such as hydraulic conductivity,

are in trinsically tensorial, i.e., they are described by a tensor. For instance, for a problem in a

3-model space, a tensor can be represented by a 3 × 3 generally unsymmetrical matrix of tensor

coe�cients. How to extend the current use and interpretation of weight, in order to accommodate

for vectorial and tensorial weight is an open problem. In [AAL+99], skew Voronoi diagrams
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have been proposed, using direction-dependent distances and direction-sensitive measure. The

approach taken may be a good starting point to further work out the concept of vectorial weight.

Details are left undiscussed and will be posted as an open problem for further research.

See chapter 7.
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Chapter 5

Alpha complexes as a representation

5.1 Overview of this c hapter

In this chapter, α-complexes will be examined with regard to tw o important aspects: their

quality as a solid object description and their quality as a representation scheme. These tw o

terms will be de�ned shortly. Where appropriate, a comparison will be made with the more

widely applied fac etedboundary representation (faceted BRep, for short), the constructive solid

geometry representation (CSG) and the cell(ular) decomposition. As explained in chapter 3, in

practical applications, α-complexes may be mixed, merged and converted into other descriptions

and representations and �nding out about their qualities as such is therefore important. Little

is known about α-complexes as a solid object description and as a representation scheme. By

side stepping into CSG- and BRep and cell decomposition representations, some reasoning about

representation schemes and α-complexes is possible. Much like in the previous chapters, spatial

occupancy, holes and singular faces are the leading thread running through this chapter.

The outline of this chapter is as follows. Section 5.2 introduces solid object descriptions and

then presents a list of criteria to evaluate such descriptions against. The section concludes with

the actual ev aluation of the α-complex as an object description. Next, in section 5.3 a similar

discussion is being presented with regard to the evaluation of representation schemes against

a number of criteria. This section closely follows the expose given by Requicha, in [Req80],

Chapter 1, and Kalay, in [Kal89]. Questions concerning the two most important maps, the icon

derivation and the primitive instantiation (chapter 3), in relation to variational geometry, are

discussed more extensively in section 5.4. Section 5.5 presents a more formal description of holes,

their topological relation to the α-complex and their mutual topological relation. T opreserve

homeomorphism of the representation maps, a nil-icon and a nil-object are then introduced,in

section 5.6. Their roles in originating, transforming and terminating processes of the birth-life-

death life-cycle of natural objects is discussed. Finally, set regularisation, important to get rid

of singular faces in conversionmappings, is discussed in section 5.7.

123
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5.2 Solid object descriptions

5.2.1 Object descriptions and computer models

So far, four types of models have been discussed: the sampling model, the weighting model, the

α-complex model and numerical model, see �gure 3�8 in chapter 3. These models were primarily

analytical models in the sense that their discussion was not directly targeted at computer im-

plementations. Now, attention turns to the formal description and representation of objects for

computer implementation purposes.

Definition 5.1 (computer model,Kalay,1989)

Computer models capturing real world obje ctsand phenomena can be regarde d as languages of

representation compose dof symbol structures and syntax rules to manipulate them, assigning a

meaning to a collection of symbols and an interpretation in terms of the real world objects they

represent •

In this context, instantiated primitives are the symbolic structures and intra- and in ter-

object constraints are the syntax rules. Emphasis is now on proper ways to describe objects, more

precisely, solid objects of general dimension d, with non-empty in terior in Ed and in geometric

and topological terms. For computer modelling purposes, di�erent approaches exist for that

purpose ([Kal89, Zei91, Tay92]). E.g.,

• Volumetric description

The objects' geometries and topologies are described in terms of the underlying space, or

(hyper-)volume or d-volume. Recapture from previous chapter that in general dimension,

this volume can be quanti�ed by means of the general dimension Lebesgue measure (e.g.,

chapter 3).

• Boundary description

The objects' boundaries are described, bounding the objects interiors and separating the

in terior from the exterior. Recall that in this work, objects are generally no monoliths, but

composites, having multiple in teriors and exteriors, the number of which may vary with

α and vary over time. When partitioned, the objects' internal boundaries, separating the

internal cells are also part of this description.

• Part-whole description

In this approach the objects' compositions are described in terms of primitive parts and

some recipe to assemble them into the aggregation of the model.

This subdivision suggests a muc h sharper distinction betw eenthese approaches than practical

implementations admit. The true meaning of the subdivision is chie�y theoretical. In practice,

many hybrid approaches exist and software codes may occasionally transcribe one representation

into another.
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5.2.2 Object description evaluation criteria

In order to evaluate the ��tness for purpose� of α-complexes as a solid object description, criteria

are needed that make sense in the context of natural objects. Such criteria have been presented

in for example [Kal89, Zei91]. Apart from the general criteria of well-formedness, generality and

completeness, the following criteria are of particular interest in this context:

• Solidity

A convex polytope P (e.g., a simplex), divides space into tw oregions: interior Int P and

exterior Ext P, separated by boundary Bd P . An important question is how and to what

extent a description supports this unambiguous division of space and related operations

such as point location, that relies entirely on this subdivision.

• Homogenous dimensionality

The issue of homogenous dimensionality is about the boundary-interior topological relation.

Homogenous dimensionality is obtained if each face in the boundary Bd Cα is incident upon

the interior Int Cα, in other words: bounds a d-cell.

• Rigidity

Rigidity is obtained when the geometry and topology of the modelled object do not depend

on the objects position, i.e., on its location or its orientation in space. If rigid, geometry

and topology of the object are left invariant under isometric transformation (see chapter 3).

• Continuit y

Continuity requires that the represented object shall not be composed of disjunct (uncon-

nected) parts.

• Closure

Closure is obtained if none of the k-faces is incident upon a singular face. F orexample,

in the case of a triangulated object, when every k-simplex is incident upon exactly d + 1
(k−1)-simplices. If closure is obtained, k-faces can be represented as regularised set (r-sets,
to be discussed in section 5.7).

• Disjunct in teriors

The interiors of tw ok-faces fi and fj shall be disjunct, i.e., Int fi
⋂

Int fj = ∅, ∀i, j .

• Orientability

Full orientabilit yis obtained if all k-faces are orientable, i.e., if their orientation can be

told to be positive or negative.

• Finite time and storage complexity

Finite time and storage complexity is obtained if all computer operations involved in storing

the objects representation in a computer can be shown to be asymptoticly �nite in terms

of processing time and storage.
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5.2.3 Evaluation of alpha complexes as an object description

A solid object description based on an α-complex as described in this thesis carries the charac-

teristics of:

• A part-whole description

With primitive instancing of k-simplices.

• A v olumetricdescription

By means of a cellular complex, erected by d-simplices (possibly after regularisation, to be

explained later).

• A (faceted) boundary description

Built from the (d − 1)-simplices describing the boundary of the α-complex and spanning

its underlying space.

The description that comes closest to α-complexes would be a part-whole description, describing

an α-complex as an assembly (complex) of geometric realisations of a single primitive (icon): the

k-simplex.

A number of observations are immediately following from the discussion in the previous

chapters:

Observation5.1 (Homogenous dimensionality and singular faces)

T oo low anα-value and the resulting singular faces (chapter 2) present in an α-complex generally

violate homogenous dimensionality •

Observation 5.2 (Closure and singular faces)

Singular faces (chapter 2) present in an α-complex generally violate closure. Removing them

generally lifts the violation, provided α is high enough to admit d-cells •

Observation 5.3 (self-intersection)

The criterion of disjunct interiors also excludes self-intersection •

Observation 5.4 (orientation of holes)

Holes ar e assigned a ne gativeorientation. This follows from an implied positive orientation of

the boundary of an object •

Observation 5.5 (time and storage complexity)

Based on the �ndings of section 2.8, time and storage complexity ar e �nite •

Above, a list of criteria was given for the evaluation of object descriptions. Going down

this list, the following evaluation can be made:

Observation 5.6 (solidity of an α-complex)
For α-complexes, with their internal voids and possibly singular faces, the solidity-criterion is

not necessarily met •
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Observation5.7 (homogenous dimensionality of an α-complex)
Provided that α is high enough to permit the forming of d-fac es, removal of singular faces ensures

homogenous dimensionality and closure •

Observation5.8 (rigidity of an α-complex)
The rigidity criterion is obviously met: the α-complex is determined bydistanc e and weight, not

by position or orientation. T ransformations that can be repr esented by a homeomorphic mapping

do not change the α-complex topolo gy•

Observation5.9 (continuity of an α-complex)
Continuity of the interior cannot be guaranteed, moreover, α-complexes can scatter into many

disjunct parts •

Observation5.10 (Closure of an α-complex)
For α-complexes, with their singular fac es, the closure-criterion is not necessarily met •

Observation5.11 (disjunct interiors of an α-complex)
The interior of any two k-faces is always disjunct, as they are faces in the underlying triangula-

tion. This also excludes self-intersection •

Observation5.12 (orientability of an α-complex)
Faces of an α-complex are orientable. Voids are commonly attributed a negative orientation,

oppositely oriented to the boundary faces •

Observation5.13 (finite time and storage complexity of an α-complex)
For �nite complexes, base don a �nite compact pointset, �nite storage complexity can be shown

to exist, as well as �nite time complexity for creation, traversal, visiting, removal and linear

pr ocessingoperations up onthem •

Continuity of the in terior cannot be guaranteed. Moreover, α-complexes can scatter into

many disjunct parts. This is not necessarily a �a w;it is one of the celebrated features for the

modelling purposes in this w orkand a great advantage for object descriptions with a dynamic

topology, subjected to an erosional ev olutionary map (see chapter 3). On the other hand, it

complicates validit y and consistency veri�cations on the model as well as further operations on

the model. With respect to the criterion of w ell-formedness, it is obvious that continuity is

not guaranteed and boundary is generally not connected, only on a part-by-part basis. If the

boundary is closed and connected, e.g., close to α = αmax, the following holds:

Observation5.14 (well-formedness of an α-complex)
If Bd Cα can be triangulated (tessellated with triangles), and the boundary is closed and connected,

then these twopr op ertiesensure well-formedness •

As far as completeness is concerned; the data structure storing the α-complex can be

easily augmented with auxiliary parameters, like material properties, central moments, etc. The

simplex, the basic building block, allows for relatively simple computational schemes, for instance

barycentric calculus (e.g., [BP94]).

Observation5.15 (completeness of the α-complex)
The completeness of α-complexes is comparable to that of triangulations and therefor esu�cient

in the context of this work •



Section 5.3: Representation schemes 129

The above observation is very similar to the characteristics of a cellular decomposition. T o

a great extent, α-complex object descriptions can be compared to them, assuming the α-complex

has dimension d. The only di�erence is then posed by the singular faces.

The outcome of the evaluation of α-complexes as a solid object description is collected in

table 5�1.

5.3 Representation schemes

5.3.1 Representation schemes and computer models

One might say, an object representation is concerned with what to describe of a physicalobject

in the model. A repr esentationscheme is concerned with the question as to how to describe this

knowledge in terms of syntax, symbols say, and semantics, rules say. Loosely formulated:

Definition 5.2 (representation scheme)

A representation scheme is a way to describe real world objects in a symbolic notation •

Some notations are purely mathematical (abstract representations), some are graphically oriented

symbolic notations that can be rendered using a computer. In this thesis, emphasis is on the

latter.

Widely used schemes are the Constructive Solid Geometry (CSG), the Boundary Represen-

tation (BRep), the cell(ular) decomposition, the spatial enumeration and voxel representation.

Every representation has its own characteristics. In a sense, α-complexes can also be seen as a

means of representation. Table 5�2 summarises the most important characteristics of the three

principle representation schemes CSG, BRep and cell decomposition, setting them o� against

the α-complex representation. One may also want to review �gure 2�1 at this point. Table 5�2

compares the hyper-spatial representation to these three schemes. For further details, see for

example [Kal89, Sam90b, Sam90a, Zei91, RNS93, Har96].

At the core of the discussion about mapping and the mathematical aspects of the entire

mapping �chain� is the notion of surje ctivity, injectivity and bijectivity. The latter one is the easier

one to start with: it is simply a one-to-one relation, in which all elements of domain (originals)

and co-domain (image) are involved. Figure 5�2, left picture shows a surjective map, the right

picture shows an injective map. Either not all the elements in domain V (surjection) or co-

domain W (injection) are involved, images in the co-domain have multiple originals (surjection),

or originals in the domain have multiple images in the co-domain.

Representations can be regarded in the same manner:

Definition 5.3 (mapping)

A mapping de�ned on a set V is a function that sends every original member in V into an image

in W •
Observation 5.16 (surjective mapping)

In a surje ctivemapping, every image has at least one original •

Observation 5.17 (injective mapping)

In a inje ctivemapping, every image has at most one original •
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(real world objects)
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alternate model space Q

(converted objects and models)

sampling data space S

(landmarks)
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?

℘2

?

?

M2

M1

?

M4
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MP

S4

S1

?
S3

S2

?

?

training data ST

landmarks S

QTQ : M (→ Q

TL : E d (→ S

T� : S (→ P

TI : P (→ M

Figure 5�1: �chain� of representation-to-representation mappings in the hyper-spatial approach. Dotted

arrows and question mark-labelled elements refer to the questions raised in the text. Mapping of real

w orld objects(1 and (2 on to abstract primitives ℘1 and ℘2 would be valid in case of analytical de�nitions

of those abstract primitives. As explained, this is not considered here. The mapping of value sets has

been left out, for clarity.
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v2 w2

V T : V → W

v4

v3

w4

v1

W

w3

w1

v2 w2

T : V → W

v4

v3

w4

v1

WV

w1 w5

w3

Figure 5�2: a surjective (left) and injective (right) mapping. F ormally, the surjection is not a mapping,

because not all the originals in V are mapped into W.

Observation5.18 (bijective mapping)

In a bijective mapping, every image has exactly one original and every original exactly one image

•

There are many synonyms for bijective mappings, e.g., homeomorphic mapping, isomorphic

mapping, invertible mapping.

How does this translate to the problem of mappings in the hyper-spatial mapping chain?

As an example, the instantiation mapping TI will be considered:

Example 5.1 (instantiation mapping TI : P (→ M )

Mapping TI : P (→ M maps abstr act primitives ℘ into a model M ∈ M , by instantiation

(�gure 5�1). When surjective but not inje ctive (and hence not bijective), model components

cannot be be uniquely traced back to a single original object and not ne cessarilyall primitives

can be instantiated in a model (also see problem 5.1, questions 1 and 2). Such a model may be

subje ct to multiple interpretation, which is generally catastr ophic and objectionable. On the other

hand, if not all originals in the domain have an image in the co-domain, then apparently, the

modelling method does not have the capability ne eded to cover the entir edomain: some objects

cannot be described by the modelling representation. If a map does not reach the entire co-domain,

then that map is not surje ctiveand therefore not bijective. Apparently, more (other) models of

objects can be create dthan the domain permits. Object models exist that have no original with

the corresp onding characteristics. This in itself is not a �aw. If models can always be traced

back to a single object then apparently, they have at most one primitive as their original and the

mapping is an injection. If not an injection, function T is formally not even a mapping in the

sense of de�nition 5.3. Only the combination of surje ctivityand injectivity yields a crisp and

unambiguous one-to-one relation (homeomorphism) between model components and primitives •

5.3.2 Representation scheme evaluation criteria

Representation scheme evaluation criteria are mostly stated with typical engineering applications

in mind. Here, only those criteria will be regarded that are relevan tin the context of natural

object modelling and α-complexes. Widely agreed such criteria for representation schemes are:

• Uniqueness

Uniqueness refers to the cardinality of all representations that describe the modelled object
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under this representation scheme. Uniqueness demands that representations are one-to-one

and that mappings from one representation on to another are homeomorphic.

• Completeness

The richness of description, say, in support of operations, analysis and conversions. Com-

pleteness in�icts no heavy implications on the mapping, only on the representation. For-

mally, in conversion mapping, additional information must be �mappable� too.

• Domain

The class of ph ysicalobjects that can be represented in relation to the class of valid

representations the representation scheme can produce. Example 5.1 show ed that domain,

representations and mapping betw eenthem must be compatible. If homeomorphism is to

be preserved, then this is a severe requirement.

• Validity

The validity of theobjects produced under this representation scheme. The greatest con-

cern in this regard is the variational geometry and the topological variet y it can generate.

More formally, the instantiated primitives must belong to the icon variety, thereby exclud-

ing topological variet y.In other words, as long as instances remain within the icon variety,

they remain topologically equivalent with the icon. As stated, a framework of domain

variable and parameter constraints (or: pr edicates) must be de�ned for this.

These criteria will be applied to the evaluation of α-complexes as a representation scheme.

Definition 5.4 (icon variety)

The icon variety is the set of valid instantiations thatmay b e generate d by the icon by means of

par ametervariation •

5.3.3 Evaluation of α-complexes as a representation scheme

In literature, representations and mappings of point sets are relatively well understood. Simplicial

complexes are less well understood in this regard. See for example [Gib77, PBCF93]. Recall

that an α-complex is a simplicial complex (�gure 2�1, chapter 2). It can be sho wn([EM94])

that an α-complex establishes a unique relation between the data point set S, the α-complex

Cα and its underlying space |Cα|. What is it then, that makes representations based on α-
complexes di�erent? Basically the same as what makes simplicial complexes topologically more

complicated: holes and singular faces. Holes in this regard, is a general term for a variet yof

topological features, refer to de�nition 2.22 and table 2�4 in section 2.7 and table 5�6.

What elements from the mapping chain to evaluate?

The modelling framework presented in chapter 3 contains several representations and mappings

thereof. F or example the sampling data point set that is meant to represent the anatomic

landmarks of a physical object. Basically, not only the α-complex representation is relevant, the

�in-betw een� representation are so too. And also the mapping from one representation to another.

A discussion of all these aspects is delicate, however. Therefore, the discussion is narrow ed down
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to those mappings where α-complexes are most involv ed, the derivation of icons and the primitive

instantiation. Other representations will be considered only within the whole of the mapping

chain. If uniqueness is lost as a result of the sampling process, for example, than this also a�ects

the uniqueness of the physical object-α-complex representation as a whole. Those aspects will be

discussed. Finally, as long as the complete modellingen vironment of �gure 3�1 is not installed,

a �reduced� mapping chain can be sketched, as in �gure 5�3. The main di�erence is in the fact

that icons are absent. α-Complexes representing the modelled objects are directly derived from

the landmark set. Discussions on the h yper-spatial mapping chain will always trailer a similar

look on the reduced chain. So:
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α-complexes

model space M

R5

R2

R1

R4

R3

?

S2
S4

S3

S1
?

physical universe
(real world objects)

Q1

Q2

Q3

?

Q4
?

??

?

C4
C2

C1

C3

QA
TQ : A (→ Q

sample space S

TL : Ed (→ S

T : S (→ A

Figure 5�3: simpli�ed �chain� of representation-to-representation mappings in modelling with α-
complexes. The simpli�cation is in the fact that there are no icons. A is the set of α-complexes, Q

the set of conversions. Dotted arrows and question mark-labelled elements refer to the questions raised

in the text.

• Hyper-spatial mapping chain cf. �gure 5�1

This is the full mapping chain, relating α-complexes to physical objects using the following

intermediate representations and mappings:

physical object R
TL⇐⇒ landmarks S

T�⇐⇒ icon ℘
TI⇐⇒ instance M

• Reduced mapping chain cf. �gure 5�3

This is the direct usage of landmark sets for α-complex representations of modelled objects,

without the use of a collection of icons:

physical object R
TL⇐⇒ landmarks S

T⇐⇒ object model M
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where icon ℘, instance M and object model M are α-complex-based. Mapping TQ may be follow

either of these chains.

F undamental problem of representation evaluation

The follo wing fundamental problem may now be formulated with respect to α-complex repre-

sentations of subsurface objects:

F ormulation 5.1 (α-complex as a representation scheme)

Assume the existence of a collection of icons representing their shape families and covering the

class of subsurface objects to be modelled. Then essential questions with regar dto the use of

α-complexes as a repr esentationscheme are:

1. Can ev ery subsurface object be repr esented by the instantiation of some icon, such that it

can be made to represent the same object again?

2. Can every icon be instantiated (within valid constraints) within an yearth architecture?

3. Does any of the mappings allow for the creation of invalid icons or invalid re-instantiations

from them?

4. How to represent geometricly coupled obje cts?

5. Shall shape families be �orthogonal�? In other words, do the shape families that two icons

can generate (their icon varieties) overlap? If so, is there ambiguity then in r elating mod-

elled objects back to real world objects?

6. What ar e the consequences of the fact that morphological op erationsand transformations

that do not leave the shape invariant (e.g., erosion), prevent instantiated shapes from being

back-tr ac eable to their generating icon?

7. After converting a primitive instance into another representation through conversion, does

the unique relation between the obtained representation and the original object still hold?

Evaluation of the icon α-complex representation

T riangulations are assumed bounded by the convex hull of the generating point set and therefore

having only bounded cells. Evolutionary maps are assumed to be simplicial. Recall that a simpli-

cial map is a homeomorphic map that maps a simplicial complex C1 through a�ne transformation

on to simplicial complexC2. F urthermore, assume the availability of suitable observation method.

Evaluation of the α-complex representation of the icon shows the following. With respect to the

domain:

Observation 5.19 (physical object)

Physical objects are generally dynamic, not necessarily rigid composite regions, with heterogeneous

values in the landmarks and subject to evolutionary maps •

Observation 5.20 (domain of the landmark sampling representation)

F or the class of objects of interest in this work, every physical object can be represented by a �nite

compact sampling data point set, with arbitrary accuracy •
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Observation5.21 (Helmertization of the landmarks)

For the class of obje ctsof inter estin this work, every family of raw physical shapes and objects

can be made to deliver a Helmertized landmark set, possibly empty •

If redundant points are removed, point set S� can be shown to be identical to 0-skeleton F (0),

obtained by 0-�ltration of the α-complex of the icon. See �gure 2�13, chapter 2.

Observation5.22 (triangularizability of the landmark set)

Each (�nite and compact) landmark set in non-degenerate position can be triangulated. Every

landmark set is thereby the carrier of an equivalence class of triangulations •

The trailing part of this de�nition points out a problem that shows up later, when unevaluated

representations will be considered. F or a while, this aspect will be ignored. Every convex

polyhedron can be triangulated (e.g., [Mun84]). Duplicates and redundant points, too close

to dominant points must be dropped, singular objects result in a trivial triangulation, i.e., a

0-triangulation or a nil-triangulation.

Definition 5.5 (0-triangulation)
A 0-triangulation consists of a single 0-face (vertex) •

Observation5.23 (singular object)

Singular (or: minimum) objects, sampled by a single point, result in a 0-triangulation •

Definition 5.6 (nil-triangulation)
A nil-triangulation consists of an empty set •

A nil-triangulation may also result from empty Helmertized landmark sets. Empty landmark

set are more of theoretical than of practical importance.

Observation5.24 (nil-object)
Any nil-object sampled by an empty set result in a nil-triangulation •

instantiated by a nil-icon:

Definition 5.7 (nil-icon)
A nil-icon is a templatized empty set, and the only icon having an empty set as its landmarks •

Observation5.25 (nil-icon)
De�nition 5.7 is not in contradictionwith the c onstraints imposed on S in section 2.2, chapter 2

•

Finally, with these steps, we have that:

Observation5.26 (domain of the icon α-complex representation)

The domain of the icon α-complex representation contains the icons of the physical objects given

in observation 5.19 •
Observation5.27 (completeness of the icon α-complex representation)

The completeness of the α-complex representation of an icon is su�cient. Arbitrary value sets can

be stored in a hyper-spatial icon α-complex, along with auxiliary information, in a way compatible

with cells in a cellular decomposition •
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The validity of an icon α-complex representation assumes that the α-complex is a valid α-
complex in terms of geometry and topology and that the icon represented is indeed a valid icon.

The geometry of the α-complex is dominated by the landmarks. Assuming a valid landmark

set, then this linearly results in a valid geometry. The topology is dominated by weights and

α. The topology of the icon must be constrained so that the icon topology represents the

�topology� of the physicalobject. This is assumed to be accomplished by the right coverage b y

anatomic landmarks and proper weighting, resulting in a properly-chosen icon variet y.As stated,

a framework of domain variables and parameter constraints (or: pr edicates) must be de�ned for

this purpose.

Observation5.28 (validity of the icon α-complex representation)

The validity of the icon α-complex repr esentationis generally satis�ed by the right cover ageby

anatomic landmarks, prop erweighting and �nally a properly-chosen icon variety that covers the

raw shape family •

Uniqueness demands that representations are one-to-one and that mappings from one rep-

resentation onto another are homeomorphic. Unfortunately, the set of landmarks does generally

not uniquely represent physical objects. The more landmarks, the less physical objects are being

represented:

Observation 5.29 (uniqueness of landmark representation)

A set of anatomic landmarks does generally not uniquely represent physical objects. For the limit

case where the cardinality of the landmarks goes to in�nity, the number of repr esented physical

objects can be reduced to an arbitr arysmall number •

Observe that b y the generation of an α-complex from the landmarks, the non-uniqueness is

largely reduced, muc h as with triangulations. F urthermore, assuming that redundant points

have been dropped from the Helmertized landmark set:

Observation 5.30 (uniqueness of an icon represented by its α-complex)
An icon r epr esented by its α-complex can be uniquely traced back to its generating landmark set,

v.v., an icon landmark set generates a unique α-complex •

Evaluation of the instance α-complex representation

Evaluation of the instance α-complex representation proceeds largely along the lines of the icon

α-complex representation:

Observation 5.31 (uniqueness of an instance α-complex)
Instantiated primitives repr esented by an α-complexes generate d by an icon and belonging to the

icon variety can be trac edback uniquely to this icon. The icon variety of an icon can uniquely be

determined •

Completeness in�icts no heavy implications on the mapping, only on the representation:

Observation 5.32 (completeness of the instance α-complex representation)

Completeness of the α-complex representation can be compared with that of cellular de composi-

tions •
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Domain and validity are the same as that of the icon.

It is also interesting to look at the domain of the model space M . The class of ph ysical

objects that can be represented in relation to the class of valid representations that the scheme

can produce and mappings between them must be compatible. The α-complex representations

of all instantiated icons must be embeddable in model space. But generally, model space will

be able to accommodate more α-complexes than the suite of icons can generate. This generally

holds for primitive instancing schemes. It makes the mapping betw een icon domain and domain

an injection at best. More on this later. The greatest concern in this regard is the variational

geometry and the topological variety it can generate. More formally, the instantiated primitives

must belong to the icon variet y,thereby excluding topological variety. In other w ords,as long

as instances remain within the icon variety, they remain topologically equivalent with the icon.

As stated, a framework of predicates must assure this

As long as the reduced mapping chain is used and landmarks are not Helmertized:

Observation5.33 (uniqueness of an α-complex)
α-Complexes can generally not uniquely be traced back to a landmark set •

It is mostly the weight set, possibly causing points to become redundant that ruins the unique-

ness. In the process of shape analysis and deriving the icon, these points are carefully removed.

Doing so in the reduced scheme is su�cient to re-establish the one-to-one relation betw eenα-
complex and landmark set and 0-skeleton of the complex and the landmarkset. Further, recall

that the representation of physical objects by sample points is generally not unique.

V ariations in theα-value, even though constrained, may instantiate a �nite family of object

models (e.g., �gure 1�5). F ormally, due to their di�erent topologies, this family of models α-
complexes cannot be thought of as an equiv alent class, comparable with some icon variet y.The

mapping of the icon on tosuc han α-complex w ouldnot be simplicial in that case. In practice,

some limited range of α-variations may be appealing to further match details not shared by

the icon with observed data. This would extend model and in versionpossibilities. Lean-to-fat

variation may be made adaptable after instantiation, so as to honour additional constraining

data.

Unevaluated α-complex representation

It has been noticed already that α-complexes are back-traceable uniquely to a Helmertized data

point sets and they can be uniquely reproduced from them. This makes an unevaluated repre-

sentation feasible, which reduces storage requirements considerably.

Observation5.34 (unevaluated representation)

Alpha complexes can be stored and uniquely repr oduced using unevaluated representation by their

Helmertized landmark set •

In practice, how ev er, there are tw o complication.The �rst complication occurs when equal-length

edges occur that may be �ipped in the process of triangulation (chapter 2). If the arbitrary choice

among equal edges is not preserved (only landmarks are preserved) but reproduced, then the next

time (evaluating the unevaluated representation) another edge may be chosen in the triangulation

and therefore in the complex, changing the topology. More speci�cally, tw o triangulations belong

to an equivalence class:
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Definition 5.8 (equivalent triangulations)

Two triangulations are said to be equivalent if they can be made equivalent by topolo gical �ips of

equal length edges, i.e., if an orthogonal α-ball exists for four weighted vertic es•

See example 5.2 for a sketc h. Also, see chapter 2.

Example 5.2 (equivalent triangulations)

Figure 5�4 shows two topologically di�erent but according to the regularity and orthogonality cri-

terion equivalent triangulations. Flipping any of the diagonal edges neither changes orthogonality

nor the regularity and any of the 29 possible triangulations therefore belong to one equivalence

class •

Figure 5�4: T opologically di�erent triangulations belonging to one equivalence class.

This problem, which is actually only of theoretical concern, is easily solved. The de�nitions

of equivalent triangulations helps to remedy the problem of di�erent triangulations and the α-
complexes they set forth, from the same landmark set of the same icon. By considering the

equivalent class rather than the individual triangulation, homeomorphism can be preserved even

for unevaluated α-complexes. Like with CSG-representations, this aspect may be exploited in

the sense that the representation can be retainedin an unevaluated data structure:

Definition 5.9 (evaluated d atastructure)

A data structure is calle d evaluated if the geometric and topological elements are explicitely stored

and immediately available on request, without further operations •

and evidently, an unevaluated data structure needs processing �rst. F or example, the CSG-tree

may need to be evaluated �rst, before spatial queries on a CSG-representation can be answered.

The second complication is formed by the lack of storage for auxiliary information in the

edges, triangles, tetrahedra, etc. In practice, this problem can be solved rather easily ,but part

of the storage saving is then undone.

Conv ersions

A conversion transforms an α-complex representation Cα of an object model M into another

such representation Q (�gure 5�1). Its characteristics depend heavily on the target representa-

tion of the conversion. If the representation byCα and in Q are homeomorphic, then a bijective

relation can be shown to exist ([Mun84]) and conversion can basically be without loss of infor-

mation. T opological relations existing inCα are then preserved under conversion. This does not

necessarily imply a simplicial map.
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Example 5.3 (Conversion)

Consider an α-complex repr esentationCα to be converted into a cellular de composition Q in E 3.

Assume α to b e high enough to permit the α-complex to contain tetrahedra and assume a hole-free

α-complex. The fac es in the α-complex are regularised �rst, thus removing any singular faces.

What remains then is a complex of 3-simplices (tetrahedra), themselves composed of k-simplices,

0 ≤ k < 3, all regular or internal (see chapter 2). These regular and internal k-simplices

convert one-to-one and back-and-forth continuously onto a tetrahedral cellular de composition.

Once regularised (removing the singular faces) no top ological or ge ometricinformation is lost in

the conversion, i.e., the original α-complex can be readily regained from the cell de composition

after conversion.

On the other hand, assume enough regularity on the simplicial complex to be converted

into a hexahedral cellular decomposition. For example, S is located on some grid. Five or six

tetrahedra map onto one hexahedral 3-cell. It is then generally impossible to reproduce the same

simplicial complex again, after conversion. Topological information and values have been lost •

Observation5.35 (uniqueness of a conversion)

Generally, multiple conversions exist for a single α-complex and, dep endingon the typ e of the

conversion, generally, multiple α-complexes lead to the same conversion •

Conversion mappings are all too often not homeomorphic. In particular holes and singular

faces that may be present, are often to be skipped from the converted object. This aspect will

be discussed somewhat further down. F urthermore,there is not so much more that can be said

in general about the conversion representation.

Evaluation of the mappings

Now that the icon and instance representation, plus the landmark representation has been eval-

uated, it is time to look at the mappings between representations. A mapping maps one rep-

resentation onto another one. A mapping may be examined and evaluated at three lev els, as

�gure 5�5 depicts:

level 3: shape Wα(S)

level 2: value sets PS

level 1: landmark set S

Figure 5�5: levels of impact of a mapping. Mapping of value sets depends hea vilyon the value sets

themselves. Of interest are primarily level 1 and 3.

level 1 and level 3, landmarks and shape (�g. 5�5), are of most interest.

The full �chain� of mappings underpinning the hyper-spatial modelling approach is depicted

in �gure 5�1. The mapping to account for discretisation with �nite precision computer internal

number representations, like in [Wor92], is not explicitly showed but is assumed to be included in

the data sampling step. T o structure further discussion, we subdivide the chain into the following

maps (refer to �gure 3�1 and �gure 5�1):
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• Landmarking TL : E d (→ S

This is the landmarking mapping of some ph ysicalobject onto its representing sampling

data point set. Data may be added subset b y subset, e.g., contours. Multiple suc hpoint

sets Sj may exist for a giv enobject. A subset ST of point set S may be set apart as a

learning data set, or training data set. The �promotion� of data point sets to training data

is in itself a pure subset operation and not a mapping. Data points in S and ST ha ve the

same representation and it can be shown that T(ST ⊆ S) has the same characteristics as

T(S) .

• Icon derivation T� : S (→ P

In so doing, populating the earth catalogue of abstract primitives P = {℘}. This mapping

maps sampling data points, the anatomic landmarks S, onto the Helmertized landmark set

of the icon in primitive space P . The elements in {℘} are said to form an alphabet A℘

(de�nition follows), making up the contents of the earth catalogue. The derivation can, but

not necessarily shall be, derived from training data set ST . Depending on the orthogonality

(to be discussed, shortly) of the alphabet, zero, one or more data point sets Si may map

on to the same primitive and zero, one, or more primitives may map back onto a particular

data set Si. At the shape level, the raw shape is mapped onto the icon shape.

• Primitive instantiation mapping TI : P (→ M

Mapping primitives in icon shape space P onto primitive instances in model space M . The

shapes in M will generally form an alphabet TI(A℘) too, with M the set of syntactically

correct symbol structures overTI(A℘), that is, the whole of the valid icon varieties. Varia-

tional geometry, i.e., v ariations in geometric parameters that describe how family members

relate to the icon, though constrained, may instantiate an in�nite cardinality equivalence

class of primitive instances of the same icon. As an inadvertent by-product, however, vari-

ational geometry may also introduce topological changes, that if occurring, causes them to

diverge from the icon. It is assumed here, how ev er, that parameter constraint and internal

rules prevent this. This aspect will be further discussed in the next section. Also, see

�gure 5�6. Scaling, rotation and translation may be applied to send the Helmertized icon

landmarks S� on to the instantiated shape landmarks S. Meanwhile, at the shape level, the

icon shape W(S�) is transformed into the instance shape W(S). The earth catalogue is

assumed to form an orthogonal alphabet (see next section). When the icon collection is

orthogonal, primitive instances can be traced back uniquely to icons, after instantiation.

• Conv ersionmapping TQ : M (→ Q

Mapping (a collection of) primitive instances (a model) in M on to some other representa-

tion in Q . The mapping and its characteristics largely depends on the target representation

of the conversion. If the representation in M and in Q are homeomorphic, then a bijec-

tive relations exists and conversion mapping is basically without loss of information and

topological relations existing in M are preserved under conversion. An example of a home-

omorphic conversion is the simplicial one-to-one map of tetrahedra of the geometric model

to the numeric FEM model. An example of a non-homeomorphic representation is a pro-

jection from Ed onto Ed−1. Multiple conversions in Q may exist for a single modelin M
and, depending on the type of the conversion, generally, multiple models in M may lead

to the same conversion inQ .
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T able5�3 summarises the results. The overall �ndings on the ev aluation of representations

plus mappings in the h yper-spatial mapping chain and its reduced form are shown in table 5�

4. T able5�5 compares the α-complex representation with the faceted BRep, CSG and cellular

decomposition representations.

What sets out α-complex modelling from BRep and CSG is the capability of handling a

large number of cells, singular faces and disjunct parts. F or example, inserting massive amounts

of cells in a CSG-model is not very convenient. Unless regularised, singular k-faces will cause

a CSG-representation to fail on an arbitrary α-complex. F or example, when determining the

union of a cellular volume with a singular point. An α-complex is not necessarily convex. As a

result, boundary representations fail to describe the d-volume of an arbitrary α-complex. The

representation that comes closest to what is needed to accurately and unambiguously describe

α-complexes would be a part-whole description, built up using instantiated simplices. An α-
complex establishes a unique relation betw eenthe data point set S, the α-complex Cα and its

underlying space |Cα|.

5.4 Primitive instancing and v ariationalgeometry

T oformalise the discussion on primitive instancing and the e�ect that variational geometry

has on it, the �rst thing needed is a de�nition of a primitive in the context of representations

([Req80, Kal89]):

Definition 5.10 (symbolic representation a primitive)

A primitive (icon) is a symbolic structure composed of landmarks, domain variables, quanti�ers,

pr edicates and internal constraints •

A symbolic construct represents objects, environments and processes (forces) that shape them

([Req80, Kal89]).

Definition 5.11 (predicate)

A predicate is an (in)equality bounding (a) variable(s) •

An alphabet can be de�ned as follows:

Definition 5.12 (alphabet)

A (�rst-order language) alphabet A is de�ned as a composition of �nite sets of tokens, i.e., simple

variables, domain variables, relational constants and symbols, function constants and symbols,

pr edicates, connectives, quanti�ers and punctuation symbols •

De�nition 5.12 can be further sharpened for this context, to a composition of shapes that

can be combined in to a model according to inter-object constraints Θ bound to some scenario.

An alphabet is called orthogonal if:

Definition 5.13 (orthogonal alphabet)

An alphabet is said to be orthogonal if each token generates an expression (or: sentence) that

cannot be generate d by any other (combination of) token(s), vice versa, each expression can be

decomposed uniquely in anor der edsequence of tokens •
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In this thesis, orthogonality of the alphabet means that models M can uniquely be decomposed

in to instantiated icons from the alphabet A℘
∼= {℘}. Finally, for the instantiation mapping TI :

Definition 5.14 (instantiation mapping)

The instantiation mapping TI is an op erationin which symbolic variables are valuated (given a

value), ob eying internal and external constraints (syntax Θ) over the generating alphabet •

A model in this sense, is an ordered sequence of shapes, generated from some alphabet of

icons (earth catalogue) of which the syntax Θ is giv en by the inter-object rules in the scenarios of

the earth architecture (see c hapter1 and 3). The mapping of hyper-spatial primitives, or icons,

in tomodel space (�gure5�1) can be considered as a variant of parametric modelling, using the

technique of primitive instancing. See for instance, Requicha in [Req80, Kal89, Zei91, DL91,

RNS93, Ram93, SM94, RG96].

Definition 5.15 (variational geometry)

V ariational geometry is a geometric modelling concept by which geometry is manipulated indirectly

by the variations of a �nite set of geometric parameters •

Rb

hb

Rn

Rt

ht

Rb

hb

ht

Rt

Rn

Figure 5�6: changing topology as a result of geometric variation. Given an abstract primitive

salt_dome ℘1 = (Rb, Rn, Rt, hb, ht). If w evary the geometry by decreasing Rn from a given positive

value down to 0, the salt dome grows from a manifold object (left) in to a non-manifold object (right).

What if we have that: Rb . Rn . Rt? Then the shape is more that of a pillow. V ariational geometry

then leads to variational topology as a by-product. A predicate of the form: Rn > 0 may prevent this.

A more realistic predicate takes the form: c1 ≤ Rn

Rt
≤ c2 ∧ c3 ≤ Rn

Rb
≤ c4. F or theheight, something

similar can be formulated.

Example 5.4 (variational topology and orthogonality)

The undesirable e�ect of variational topology that may come inadvertently with variational geom-

etry is shown by �gure 5�6. Given an earth catalogue P = {℘1 = salt_dome, ℘2 = salt_diapir}.
These two icons templatize only a minority of the possible salt shapes. [Hal67], for example,

described an extensive variety of shapes in the Gulf-South Louisiana Coastal Basin: not only salt

domes, but also diapirs, pillows, mono-clines, anti-clines, ridges and massifs •

When the icon collection is orthogonal, primitive instances can be traced back uniquely

to icons, after instantiation. But in practice, due to object ev olution (deformations and other
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Rb

hb

ht

Rt

Rn

Rb

ht

Rt

Rn hb

Figure 5�7: salt dome-salt diapir representation ambiguity due to non-orthogonality; assume two prim-

itives: saltdome ℘1 = (Rb, Rn, Rt, hb, ht) and saltdiapir ℘2 = (Rb, Rt, hb, ht). The object displayed in

the left picture can only be an instance of primitive saltdome ℘1. It is only in the iconv ariety of the

saltdome only. But the object in the right picture, in which Rt = Rn, cannot be uniquely be traced back

to salt_dome ℘1 or salt_diapir ℘2. It can be an instance of both. A representation scheme that allows

for such ambiguity is called an ambiguous representation.

transforming processes), this may cease to be true for ev olutionarymaps after some period of

evolution. Erosion may vanish an object completely.

If constraining is also to be applied over time, then tw osolutions exist, that may be

combined:

• Use spatio-temporal landmarks

Spatio-temporal landmarks de�ne landmarks sets that change overtime and in so doing,

allow the α-complex they generate to become dynamic.

• Keep evolutionary maps simplicial

This can be done by the use of −1-faces, which allows eroded faces to become empty sets.

Observation5.36 (spatio-temporalversus sp atial constraints)

Evolutionary maps, such as erosion and dilation, may cause shapes to alienate from their instan-

tiating icon. If shapes need to b econstrained over time as well, then they need to be instantiated

from a spatio-temporal icon rather than from a spatial icon or use nil-simplices to keep maps

simplicial •

5.5 A formal description of holes

In this section, tw o aspects of holes will be discussed in greater detail.Firstly, the description of

void space and secondly the topological relations among holes and betw een holes and shapes.In

the former, the exact geometry does matter, in the latter, distances, orientations and locations

are irrelevan t.
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5.5.1 The hierarch yof holes

When an object contains one or more voids, m say, there will bem additional (bounded) exteriors,

completely surrounded by the in terior. Notice that disjoint exteriors imply multiply connected

interiors, vice versa. With a changing α, holes may be transformed into other types of holes,

follo wingthe hierarch y as in �gure 5�8. Observe in this �gure that during this traversal (for a

growing α), the genus (number of handles) eventually drops to zero, after the last handle has

vanished. Recall that when approaching αmax, the α-complexs turns hole-free. Also, in this

traversal of the hierarch y,multiple steps may be traversed at once, for instance, a tunnel may

turn into a void, without ever becoming a pocket and cavities may disappear without ever having

had a di�erent anatomy.

separation cavity

tunnel pocket void ∅set S

α = 0 α = αmaxα = αmin

Figure 5�8: hierarc hy of holes, ranked according to the α-value. With increasing α, holes go down the

hierarc hy from left-to-right. Multiple transitions can take place at a small increment of α.

The point set S is one extreme in the α-family, the triangulation is the other extreme.

Recall that if these tw oextrema are neglected, the remaining interval of α is α ∈ [αmin, αmax),
the α-in terv alof �gure 4�1. Within this in terv al,singular k-faces may exist, multiple exteriors

may exist and/or multiple interiors. Recall from observation 2.22 that in terior Int Cα may be a

separation, while closure Cl Cα is not. Zeid, in [Zei91], distinguishes four classes of polyhedral

objects (see table 5�6). P olyhedralobjects are planar-faceted objects, with non-curved planar

polygonal k-faces. Zeids classi�cation has been expanded by one more class, to support separation

(see �gure 5�8).

Class Holes Genus Separation Description

1 no 0 no simple polyhedra (1 loop, 1 shell, simple k-
shell)

2 no 0 no same, but with inner loops, non-conforming

2-faces

3 yes 0 no same, with cavities, pockets and voids

4 yes > 0 no same, with handles (genus-m polyhedra)

5 yes > 0 yes same, separated interior, composite regions

[CDFvO93]

T able5�6: topological classi�cation of polyhedral objects. F or example, a triangulation classi�es as a

class 1 polyhedral object, an α-complex classi�es as a class 5 object. Modi�ed, after Zeid ([Zei91]), class 5

has been added, for separations and composite regions.
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T riangulations,triangulated objects and holes

It can be sho wn(e.g., [Mun84]) that a every convex polytope can be triangulated. This also

holds if the polytope contains holes. At this point, great care is how ever needed, because there

are multiple forms (classes) of triangulations, not all compatible with the triangulation as de�ned

in the context of chapter 2.

F ormulation 5.2 (triangulation problem formulations)

Consider two di�erent forms of triangulation problem formulations:

Type Triangulation problem formulation

Type I triangulation T I(S) of the interior of an object with a given closed bound-

ary triangulation T (∂S). ∂S may also de�ne internal boundaries, bound-

ing holes inside the object. Points S 	∈ ∂S may or may not become vertices

in T I(S)

Type II triangulation T II(S) of the hole-free interior IntH(S) of the convex hull

H(S) of p oint setS, ther eby taking each point in S as a vertex in T II(S)
•

T ype I triangulations are often used for FEM mesh generator, for instance.T ype I triangulations

will not be considered here. A triangulation in this thesis, in accordance with its de�nition in

chapter 2 is always a t ype II triangulation, bounded by the convex hull.

The underlying space of holes

In the discussion of holes, it is often more convenient to consider α-shapes rather than α-
complexes. Recall that their underlying space is identical (chapter 2) and consequently the

underlying space of a convex hull and the triangulation thereof is equal too. An α-shape Wα

di�ers from the convex hull H, the underlying space of the triangulation, by the total amount of

space occupied by the various holes. This space is commonly denoted by the term void space1:

Definition 5.16 (void space)

The void spac eis thetotal amount of space, occupied by the union of all holes in an α-shape •

If α ≥ αmax then the underlying space of the holes is a null-space, as indicated by the empty set

in �gure 5�8.

The underlying space (or: spatial occupancy) di�erence betw eena convex hull and an α-
shape is easily established. See also section 2.7 in chapter 2. Let convex hull H(S) be the convex
hull of S and let αmin ≤ α < αmax. F urthermore,let |V∅| denote the underlying space of a hole,

no t w o holes intersect. Holes in E d are homeomorphic with an open d-ball, so a hole is an open

set in this work. F or the underlying space the following expression is then obtained:

1
although the term may be somewhat confusing with the term voids, its use is so common that it will be used

here as well
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|H| = |Wα|
⋃ ∣∣∣∣∣

(
m⋃
i=1

V∅i

)∣∣∣∣∣ = |Wα|
⋃ (

m⋃
i=1

|V∅i
|
)

(5�1)

Notice that equation (5�1) uses the fact that holes do not overlapand that equation (5�1) can

also be written as a function in α. Only for α ≥ αmax and hence |Wα=αmax | = |T | = |H|, we are

guaranteed to have:

|H| = |Wα|
⋃

(| ∅ |) = |Wα| (5�2)

Experiment 5.1 (underlying spa ce)

The chalice in �gure 5�9 is object of which half the boundary of a 2D-cross section has been

sampled (�gur e 5�9, left picture). Notice thatall sample points are located in the boundary. The

boundary was de�ned from this half outer contour by a rotational sweep over 2π radians. At

discr etesteps, landmarks were �dropped�. The chalice was then modelled by de�ning its interior

as one big pocket, induced by the almost close dboundary. The α-shape is the almost closed

boundary in 3D, while α-shape plus pocket plus cavities �surrounding� the chalice �ll the convex

hull. Remark that inste adof a pocket, the interior might also have been de�ned as a genuine

void, using a closed boundary •
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Figure 5�9: chalice obtained by modelling its interior as a pocket. Left: half a cross-section: all sample

points are located in the boundary. Second left: wire-frame representation, showing the �empty� interior.

Right: resulting complementary pocket.

This geometric duality feature is extremely important for the modelling of geometricly

coupled shapes, such as immiscible multi-phase rock-�uid systems. Let
⋃m

i=1 |V∅i
| = |¬Wα|

denote the total void space, so that according to equation (5�1), |Wα| + |¬Wα| = |H|. In this

formulation, the unary operator ¬ denotes the complement of the underlying space of the shape

against the convex hull. The total void space |¬Wα| can itself be regarded as an α-shape: the

dual shape |Wα|:

Observation5.37 (geometricly coupled shapes and void sp ace)

F or a geometricly coupled shape, the total void space |¬Wα| of the primal shape |Wα| de�nes the

coupled dual shape |Wα|, v.v. •
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dual shape

primal shape

|Wα| + |H|=|Wα|

+ |Wα| = |H||Wα|
+ +

|| ||
|H||H|

Primal and dual shapes can be swapped, such that the boundary now belongs to the geometricly

coupled dualshape, if also the complemen t of landmark set S ⊗ W is taken. F orexample, with

regularly spaced landmarks, by re�ecting the weight set in the origin. F urthermore:

Observation 5.38 (geometricly coupled shapes and simplicial maps)

The geometry duality of geometricly coupled obje ctsis preserved under simplicial representation

maps T� : S (→ P and TI : P (→ M •

In many situations, it is convenient to consider the void ratio:

Definition 5.17

The void ratio, denoted by η, is the ratio between the void space and the underlying spac eof the

α-shape •

in mathematical terms:

η =
|¬Wα(S)|
|Wα(S)|

=
|Wα(S)|
|Wα(S)|

(5�3)

Notice that void space and void ratio are both functions in α and expression (5�3) can alsobe

written as a function in α.

Example 5.5 (immiscible multi-phase r ock-fluid system)

The void space of the rock phase in an immiscible multi-phase rock-�uid system has a dual in

the form of the saturate d�uid in the rock pores, vice versa, the void space of the �uid geometry

is �lled with rock. With a set S sampling the rock, let |Wα(S)| be the space occupied by the

rock and consequently |Wα(S)| = |¬Wα(S)| denote the void spac e|⋃V∅|, in this case the total

por espace. The total por espace is also given by φ|H|, where φ is the porosity. The void ratio

η is then
|¬Wα(S)|
|Wα(S)| = |¬Wα(S)|

|H(S)|−|¬Wα(S)| = φ
1−φ . Assume that the saturation is by two immiscible

�uid phases, one of which occupies 70% of the por espace. Then the �uid content of this �uid

amounts to 0.7|¬Wα(S)| = 0.7φ|H|. The volume of the second �uid is equal to 0.3φ|H|. When

the por epr essure incr eases,and assuming a �xe douter boundary of the rock for simplicity, the

por evolume may increase for example by 2% andc onsequently, the rock volume must change by

a growth-factor λ < 1, such that again λ|Wα(S)| + 1.02|¬Wα(S)| = |H|. The void ratio η then

changes by a factor 1.02(1−λ)−1 . V oid ratio η is preserved under a linear simplicial mapping •

5.5.2 Topological relations with holes

F or the description of topological relations of objects with their holes, an approach based on the

description of topological relations among sets will be used. Refer to Egenhofer et al. (1994) for
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a background on the fundamentals of this approach and to Clementini et al. (1995) for a further

extension for composite regions. A relation is called symmetric if we have that:

Definition 5.18 (symmetric relation)

A relation is called symmetric if: X =⇒ Y implies Y =⇒ X •

where =⇒ denotes a relation. The following topological relations are de�ned:

Definition 5.19 (set topological relations)

Two sets S1 and S2 have exactly one of the following topological relations:

• Set S1 disjoint S2

Sets S1 and S2 have no points in common. This relation is symmetric: S1 disjoint S2

implies S2 disjoint S1 .

• Set S1 meets S2

The boundary ∂S1 and ∂S2 touch (have points in common), but the intersection of the

interiors IntS1 and Int S2 is empty. This relation is symmetric.

• Set S1 contains S2

Set S2 is completely contained in the interior of S1. The boundary of S2 is also lying in the

interior of S1. Not symmetric.

• Set S1 covers S2

The boundary of S2 is partly lying in the interior of S1, partly in the boundary of S1. Not

symmetric.

• Set S1 equals S2

Interiors IntS1 and Int S2 ar e equal as well as the two boundaries. Symmetric.

• Set S1 o v erlapsS2

Set S1 is partly contained in the interior of S2, partly in the exterior of S2. Symmetric.

• S1 inside S2

Set S1 is completely contained in the interior of S2. Not symmetric.

• Set S1 cov eredByS2

The boundary of S1 is partly lying in the interior of S2, partly in the boundary of S2. Not

symmetric •

The possible outcomeof these binary topological relations is in {∅,¬∅}.

α-shape =⇒ conv exhull

First, the relations of an α-shape to the convex hull will be examined. With an α-complex being

a sub-complex of the triangulated convex hull, �v e relations can immediatelybe dropped:
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Observation 5.39 (impossible relations α-shape =⇒ convex hull)

Wα disjoint H ⇒ impossible

Wα meet H ⇒ impossible

Wα contains H ⇒ impossible

Wα covers H ⇒ impossible

Wα overlaps H ⇒ impossible

•

lea ving only three possible relations. Egenhofer et al. compile a so called 4-intersection matrix

per relation. A 4-intersection matrix is a matrix:


∂S1

⋂
∂S2 ∂S1

⋂ ◦
S2

◦
S1
⋂
∂S2

◦
S1
⋂ ◦
S2


 (5�4)

The outcome of these in tersections determine the type of relation. Each relation th us has its

characteristic matrix, vice versa. Consider the topological set relations Wα =⇒ H. The 4-

intersections are given by table 5�7.

equal ∂H
◦
H

∂Wα ¬∅ ∅
◦

Wα ∅ ¬∅

inside ∂H
◦
H

∂Wα ∅ ¬∅
◦

Wα ∅ ¬∅

coveredBy ∂H
◦
H

∂Wα ¬∅ ¬∅
◦

Wα ∅ ¬∅

T able 5�7: 4-intersections for Wα =⇒ H. Left-to-right: Wα equal H, Wα inside H and

Wα coveredByH.

Geometricly coupled shape Wα =⇒ Wα

In a dual geometry of geometricly coupled shapes, primal shape Wα is represented by a union

of closed sets (closed bounded interiors), and dual shape Wα = ¬Wα by a union of open sets,

representing the holes (open bounded exteriors). In teriors here are the interior parts of the

primal shape. Multiple in teriors means that the primal shapema y consist of multiple parts. It

is illustrative to look in to the dual geometry of a geometricly coupled shape, denoted by the

relation Wα =⇒ Wα.

F ormulation 5.3 (topological relation dual geometry)

The following questions ne edto be answered:

1. Which are the topolo gical relations among the exteriors? In other words, how do the parts

of the dual shape relate to each other? How many di�erent relation are possible?
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2. Which are the topolo gical relations between an arbitrary interior and an arbitrary exterior?

In other words, how do parts of the primary shape relate to parts of the dual shape? How

many di�erent relation ar e possible?

3. What does the 4-intersection matrix look like for each topolo gical relation combination and

what is its dimension?

The primal shape consists of closed sets. F or the dual shape, sets are open and therefore
◦

Wα =
Wα. Points lying in the boundary belong to the primal shape. In a topological sense, parts

of the primal shape may be connected by only a single point, ha vingseparated in teriors but

non-separated closures (Observation 2.22). Primal shapes parts may meet in a singular point

lying in the boundary of both parts. But trivially, for their interiors:

Observation5.40 (possible topological relations among interiors)

The interiors of the primal shape can impossibly meet, contain, be inside, equal, cover or be

cover edby or overlap any other part of the primal shape. The only possible topological relations

among interiors is disjoint •

The dual shape consists of open sets. P oin tslying in the boundary of the closure of the

exterior do not belong to the dual shape but to the primal. As a consequence, in contrast to

primal shape parts, dual parts cannot meet at all. F or the exteriors:

Observation5.41 (possible topological relations among exteriors)

The exteriors of the dual shape can impossibly meet, contain, be inside, equal, cover or be covered

by or overlap any other part of the dual shape. The only possible top ological relations among

exteriors is disjoint •

more or less trivial and in consistency with the fact that the α-shape is closed and by de�nition

shares no points with its holes:

Observation5.42 (topological relation in- and exteriors)

A part of the dual shape (an exterior)c an impossibly meet, contain, be inside, equal, cover or be

covered by or overlap with any part of the primal shape (an interior), vice versa •

Observation 5.42 implies that the only possible relation Wα =⇒ Wα is disploint, repre-
sented by a 4-intersection matrix of only empty set members.

Hole =⇒ conv exhull

Atten tionno wturns to individual holes and their relation to the convex hull. This extends the

approach in the direction of the approach in [CDFC95]. It is important to understand these

relations in conversion mapping and other mappings where holes or the removal of holes plays

an important role. A good example is the conversion of the α-complex in to a FEM mesh, that

generally cannot contain separations, for example. Holes are open sets and their closures may

intersect, i.e., they may meet but not overlap:

{
BdCl E i

⋂
BdCl Ej 	= ∅

E i
⋂ Ej = ∅ (5�5)
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where i 	= j, BdCl E = ∂Ē and the in terior of an open set is equal to the open set itself. Holes

can be intersected by singular faces. Such singular faces appear as a �spike� in truding the hole.

Despite the spike, that is contained in the boundary ∂Wα of the surrounding α-complex, the

hole remains topologically homeomorphic with an open disk. A single hole may also be bisected

so that tw oadjacent holes are formed, the closures of whichmeet. Figure 5�10 illustrates these

cases. Since a hole is covered by an open set, with i 	= j, w eha vethat Int E ∼= E , E i
⋂ Ej = ∅,

but BdCl E i
⋂

BdCl Ej 	= ∅.
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Figure 5�10: left: the closures of E i and Ej meet. Right: as long as the in teriors of E i and Ej are

not separated and the bisecting in ternal boundary separating them is not closed, E i and Ej could be

modelled as a single hole. T opologically, the open set (dotted line) remains homeomorphic with an open

disk, despite the �spike�.

As long as the in teriors of E i and Ej are not separated and the bisecting internal boundary

separating them is not closed, E i and Ej may be modelled as a single hole. F or consistency,

however, the hole will be assumed to consist of as many holes as there are d-simplices in the

triangulated hole. Doing so greatly facilitates the implementation of simplicial maps. This leads

to the following important observation:

Observation5.43 (number of holes in the v oidspace)

F rom a topological p oint of view everyd-simplex in the (triangulated) void space is to be considered

a separate hole •

Observation 5.43 is immediate if one reconsiders the α-family of a dual geometry. If honoured,

a clear split of the set F of faces of the triangulation T (S) is obtained:

Observation 5.44 (α-exposedness and dual geometry)

Every face that is α-exposed belongs to Wα, as explained in chapter 2, every op ennon-exposed

face belongs to Wα. For α < αmin the set of faces {σ(k)

Cα

} = F. With α traversing the α-

interval [αmin, αmax], a k-face that becomes α-exp osed moves from {σ(k)

Cα

} to {σ(k)

Cα
} and as soon

as α ≥ αmax, set {σ(k)

Cα

} = ∅ and set {σ(k)

Cα
} = F . By de�nition, faces in {σ(k)

Cα

} ar e open. When

a face becomes α-exp osed and traverses from {σ(k)

Cα

} to {σ(k)

Cα
}, its subfaces, needed to close the

face ar e already α-exp ose d(Observation 2.17) and therefore contained in {σ(k)

Cα
} •
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5.6 Representing holes

5.6.1 Modelling with nil-icons and nil-objects

The domain of the α-complex representation scheme is further expanded, if holes can be ex-

plicitely represented and treated as part in a bigger assembly . Therefore, a nil-object can be

used. Nil-objects are geometrically and topologically conforming (�tting) to any neighbouring

object. As a consequence, nil-objects can be inserted in betw eenan y tw oadjacent objects.

Nil-objects mapto background elements (�embedding material�) in a con versionmapping onto

FEM-models. With this de�nition of a nil-object, consistent spatial occupancy of model space

E d and well-formedness of the modelled object are more easily obtained. Also, homeomorphisms

implied by simplicial maps are more easily maintained.

F orconsistency, abstract primitive space P and its alphabet A℘ are therefore augmented

with a nil-icon ℘nil and a nil-symbol nil. The nil-icon can also be instantiated ℘nil, generating

a nil-object Mnil in model space M . See �gure 5�5. A nil-icon is generated by an empty

landmark set ∅. A nil-icon generates a perfectly �regular� primitive instance, with m dimensions

(b y the properties of mapping TI , but only de�nes the geometry to be void. When de�ned as

an α-complex, the corresponding simplicial complex Cα will be the empty set ∅, the in terior

Int Cα = ∅, the underlying space will be empty, etc. Such an α-complex is obtained by α-
�ltration from the nil-triangulation (de�nition 5.6). Observe that alphabet, space and syntax

remain �nite, which is essen tial.

Advantages and consequences of the introduction of a nil-object are:

• Evolutionary map homeomorphisms

Nil-objects may represent void space, occurring for example when objects vanish at the end

of their life cycle. This capability is important for the evolution maps to remain simplicial

and thereby homeomorphic, e.g., when �iterating back and forth in time� during inversion.

• Missing tokens in the alphabet

During the built-up of the training data set, non-covered real world objects, i.e., object for

which there is no icon (yet), can be represented by nil-objects, to be re�ned and rede�ned

later.

• Alien objects

By convention, real world subsurface objects that are not represented by a primitive in-

stance (alien objects) may be represented by a nil-object. This way, originating processes

and the instantiation of primitives as such can be de�ned consistently.

• Consistent spatial occupancy

With the de�nition of a nil-object, the spatial occupancy of model space M is easily ob-

tained. nil-objects are geometrically and topologically conforming (�tting) to an yneigh-

bouring object. By conven tion,nil-objects can be inserted in betw eenan ytw oadjacent

objects.

The augmented icon space
∗
P th us becomes:
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∗
P = P

⋃
{ ℘nil } (5�6)

The augmented model space
∗
M becomes:

∗
M = M

⋃
{ nil } (5�7)

and also, for the augmented alphabet
∗

A℘:

∗
A℘ = A℘

⋃
{ nil } (5�8)

and for the augmented syntax
∗
Θ:

∗
Θ = Θ

⋃
{ nil } (5�9)

5.6.2 Mapping processes and the nil-representation

In chapter 3, the morpho-dynamic processes operating upon instantiated object models have been

discussed, mostly in the context of a birth-life-death cycle of dynamic objects in an evolutionary

scenario. Here, these processes will be subdivided form a mapping point of view. See table 5�8.

Type of pr o-

cess

Geodynamic process Morpho-dynamic pr o-

cess

Map

originating deposition, sedimentation dilation, closing TI : nil (→
∗
M

transforming compaction linear evolutionary map Γn :
∗
M (→

∗
M

terminating erosion erosion, opening Γn :
∗
M (→ nil

T able 5�8:Originating, transforming and terminating processes that model the birth-life-death life cycle

with the use of nil-objects.

5.7 Set regularisation

Regularisation is a set operation that is used in this work to remove singular parts from objects.

Set regularisation is applied to the set covering the underlying space occupied by the object

(part). In terms of α-complexes, regularisation can be used to drop singular faces from the

complex. The problem of regularisation has considered considerable attention in the realm of

CSG implementations.

A regular op enset and a regular closed set are de�ned as follows:
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Definition 5.20 (regular open set)

A regular open set (or: op enr-set) X, is a set for which X = IntClX •

and also:

Definition 5.21 (regular closed set)

A regular close dset (or: close dr-set) X, is a set forwhich X = Cl IntX •

What set regularisation does is shown in �gure 5�11.

Figure 5�11: regular open and closed set, obtained by regularisation. Left two pictures: regular open

set, right tw o pictures:regular closed set. In this case the regular open and closed sets are equal, although

the procedure to obtain them is di�erent.



Chapter 6

Application cases

6.1 Overview of this c hapter

In this chapter, a number of application cases will be presented, by which the α-complex-based

modelling approach of the previous chapters will be demonstrated. Cases have been tak en from

the domain of earth sciences, more in particular subsurface modelling in support of and aiming at

the exploration and production of hydrocarbons, ores and minerals and other natural resources.

The approach of this thesis is by no means limited to this �eld of application: see [GVdWV00b]

for engineering and design applications and clinical imaging applications. The focal point in the

cases is on sedimentary facies (structures) found in �uvial, aeolian and alluvial environments,

such as lenses, fans, scroll bars, point bars, channels, river systems, etc. Alpha complex modelling

is believed to be best applied there. Section 6.6 therefore also provides some background material

on river systems, point bars, etc., as an onset to the cases to follow. Cases in this chapter cover

geometric modelling and numerical modelling.

Section 6.2 discusses a �rst case on the Gulf of Thailand in which the objective is to capture

the geometry of subsurface objects embedded in the seismic data. Emphasis in this case will be

on landmark set de�nition and analysis. After the Gulf of Thailand case, the North Sea L8 river

system will be discussed in section 6.3. Like in the previous case, seismic goes in and a geometric

model comes out. Section 6.4 presents the largest (in terms of data and computing e�ort) case

on the salt pillow or salt dome in the South Marsh Island area, in the Gulf of Mexico. More than

anything else, this case uncovers the practical limits of computational e�orts with α-complex

modelling on todays computer systems.

Having discussed these three seismic-based models, attention is shifted to numerical mod-

elling. Section 6.5 presents a dynamic numerical process model of a barchan dune, evolving over

time. The ev olutionarymap is dictated by erosion, deposition and avalanching processes. This

not-too-complicated case paves the way to more complicated models. The geometry is hole free

and the only di�culty is formed by the changing topology when avalanching takes place. A more

complicated point bar system is discussed in section 6.6. Unlike the former cases, these models

are based on stochastic realisations of deterministic models with stochastic input. In fact this

case is based on a semi-analytic model, i.e., analytic descriptions, perturbed or augmented by

stochastic data. A numerical α-complex-based model of the point bar is presented, that describes

coupled single-phase �uid �ow with linear stress.

159
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Shape instantiation has been extensively discussed in chapter 3. Section 6.7 presents a case

in which the instantiation from the L8-icon will be demonstrated. T odemonstrate the model

editing capacity, also discussed in chapter 3, section 6.8 discusses the CometW est case. In this

case, the model editing capacity was used to create a 3D-object from various 2D cross sections

and views.

Once again and emphaticly, it is brought to the attention that �nding the best model or

the best modelling method overall is in no case an end in itself in this thesis. The cases presented

merely seek to demonstrate and exemplify the techniquesdev eloped in the previous chapters.

6.2 The Gulf of Thailand meandering river system

6.2.1 Problem description

The seismic survey of the Gulf of Thailand, as presented by Brown in [Bro96], contains a buried

meandering river system at a depth of approx. 196 ms. This buried meandering river system

(�g. 6�1) is the subject of this case study. F romthe mid-Miocene up, i.e., at altitudes above

900 ms, the survey ed area is almost perfectly �at. The time slice containing the meandering

river system belongs to this region. Owing to the absence of dips and major phase changes, this

case is relatively uncomplicated.

Figure 6�1: Gulf of Thailand survey, capturing the geometry of a meandering river system, �visible�
in a time slice at the left, using an α-complex. The resulting river system geometry is shown in the
central and right picture. The captured geometry is parametrisable by varying the α-value. The centre
α-complex has a low erα-value yielding a leaner geometry, the right α-complex has a higher α-value
yielding a �fatter� geometry (time slice taken from [Bro96])

6.2.2 Data set

Landmark and value set in most of the cases to be discussed are derived from seismic data. In this

thesis, seismic is essentially exploration seismic, i.e., re�ection seismic, initiated and recorded

at the earth's surface. The process of seismic surveying, stripped to its barest essence, consists

of the excitation of the subsurface b ymeans of vibration energy sources and collecting the re-
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sponse returned from the subsurface by means of geophones or hydrophones. The hydrophone or

geophone records the acoustic pressure or particle velocity in the response signal as a function

of travel time. The essentially non-stationary response signal carries information determined

by the travelled path through the inhomogeneous subsurface and the location and cause of the

re�ection. After appropriate stacking and processing, an acoustic image can be obtained from

the subsurface. Primarily in the space-tra vel time domain and after a time-depth conversion in

2D or 3D space. Generally, the amplitude and the angular information (phase and frequency) of

the recorded signal in re�ection seismic carries di�erent types of information, revealing di�erent

subsurface features. Occasionally, assuming isotropy, pressure w ave(or: p-wave-) response is

separated from shear-wave(or: s-wave-) response, eac hth us pro vidingdi�erent types of infor-

mation.

Figure 6�2: Landmark sets of the Gulf of Thailand case, composed of regularly spaced landmarks plus

an amplitude attribute value set. Left: the lo wer-valued amplitude landmark set, right: the lower- and

medium-valued amplitude landmarks. The empirical intensity λ̂ in the left and the right picture di�er.

V ariousseismic attributes can be calculated from the actually measured seismic data. In

the case studies to follow, both amplitude-related attributes and angular attributes will be used.

Attributes used here belong to the class of instantaneous attributes. Edge detecting attributes,

might but will not be used. T race attributes, like average frequency, cannot be used. Instanta-

neous amplitude and re�ection strength can be used in the exploration of bright spots (e.g., the

one in the L8 data set, �gure 6�9), changes in the amplitude and/or phase generally indicate

major lithologic changes and abrupt impedance changes. F or further details on practical use and

interpretation of seismic, see for example [Bad85, BW85, Bro96].

The data set of the Gulf of Thailand case consists of a single time slice of the survey at

a depth of 196 ms. Lying above the mid-Miocene unconformity, it is essentially �at. In a time

slice, data are regularly spaced. The original landmark set of 2110713 points has been re-sampled

to 82800 points, to do wn-scalethe problem to manageable size. The only value set is that of

the amplitude attribute shown in �gure 6�1, left picture. Basically, all points of the input time

slice could be used as a landmark in the α-complex computation. Each w eighted according to

its attribute value. T osavecomputational e�ort, points that will be prevented from taking

part in the resulting α-complex, may as w ellbe �ltered o�, at beforehand. In the case studies

presented here, this strategy will be followed. So after an initial subgridding of the original time

slice, reducing the initial 2110713 samples to 82800 samples, the landmark set is further reduced
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Amplitude attribute

nr. of inlines 400
nr. of cross lines 207
nr. of samples 1
w avelet length unknown

target zone unknown

inline spacing unknown

cross line spacing unknown

sample rate (resampled) 4 ms

survey length ≈ 12.7 km

survey width ≈ 8.0 km

depth 196 ms

nr. of traces 82800
nr. of samples 82800
classi�ed landmarks 20k

T able 6�1:Gulf of Thailand landmark set dimensions.

by dropping the high-valued amplitude landmarks, the darker landmarks in the left picture of

�gure 6�1. An additional thinning process cuts landmark set cardinality further down to slightly

overN = 20000.

The following modelling questions arise:

1. Should medium-valued amplitudes (white-coloured landmarks in left picture of �gure 6�1)

be classi�ed as belonging to the meandering river system? More speci�cally, could suc h

values indicate channel sand depositions, such as point pars and scroll bars?

2. Is the h ypothesis justi�ed that the channel shows no phase change, i.e., that the entire

seismic response of the channel is shown by one and the same class of amplitude values, in

this case the lower-valued amplitudes?

3. Could it be that the channels are mud-�lled and therefore show a di�erent seismic response

than the sandy depositions next to the channels?

These are questions that cannot be answered conclusively without additional data, not available

in this case study. Only plausible assumptions can be made in this case and in fact this is what

has been done. Assumptions are that:

1. The channel structure is shown entirely by the minimum-valued amplitudes.

2. The channel is assumed to lie entirely in a horizontal plane, at 196 ms, as justi�ed in

[Bro96].

3. The channel is assumed to show no phase change.

4. The sand/clay or sand/silt structure depositions, such as poin t bars and stacked layers in

the �ood plane are shown in the seismic by medium-valued amplitudes.
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T othat extent, peaks, high-valued amplitude landmarks, will be removed from the land-

marks, leaving the medium- and lower-valued amplitudes. T w o speci�c landmark sets were com-

piled: a lower-valued amplitude landmarks set, and a second set with low er- plus medium-valued

amplitude landmarks. Figure 6�2 sho wsboth landmark sets. For the landmark coordinates,

inline numbers and cross-line number w eretaken, yielding a regularly spaced landmark set. T o

make the landmark sets 3D, landmarks were duplicated with z = 0 and z = 1 depth coordinates.

St atistic x1 x2 x3

minimum 1.00000e+00 0.00000e+00 0.00000e+00

maximum 2.06000e+02 3.99000e+02 1.00000e+00

mean 1.16696e+02 2.26816e+02 5.00000e-01

variance 2.04090e+03 9.28981e+03 2.50012e-01

standard deviation 4.51763e+01 9.63837e+01 5.00012e-01

standard error 3.12776e-01 6.67307e-01 3.46180e-03

coe�cient of variation 3.87129e-01 4.24942e-01 1.00002e+00

skewness -5.26566e-01 -2.74034e-01 2.04370e-18

- signi�cance level 1.69589e-02 1.69589e-02 1.69589e-02

kurtosis -2.90963e-01 -4.46459e-01 -2.00019e+00

- signi�cance level 3.39178e-02 3.39178e-02 3.39178e-02

weighted sum 2.43451e+06 4.73184e+06 1.04310e+04

N 20862

diameter 3.99000e+02

orthogonal breadth 1.00000e+00

diameter/breadth ratio 3.99000e+02

T able 6�2:Condescriptive statistics Gulf of Thailand landmarks set, lower-valued amplitude landmarks

only .Higher- and medium-valued amplitude landmarks have been dropped.

6.2.3 Data analysis

Condescriptive statistics as described in section 3.5 were computed of eac h of the landmark

sets so compiled. T able6�2 summarises the principle statistics of the lower-valued amplitude

landmarks, table 6�3 those of the low er- and medium-valued amplitude landmark set. Comparing

the statistics reveals the following more or less trivial features:

• The low er-valued amplitude landmark set has a somewhat smaller variance. The same

holds for the coe�cient of variation.

• It is also somewhat more sk ew than the landmark set with medium-valued amplitude

landmarks. Skewness is above the adopted signi�cance level of

√
6
N .

Remark that if all points on a grid are accepted as landmark, then spatial statistics become

fairly predictable. If speci�c classes are �ltered o� (like for instance the lower-valued amplitude

landmarks) understanding the statistics becomes more important. Also noticethat ev en if only
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St atistic x1 x2 x3

minimum 0.00000e+00 0.00000e+00 0.00000e+00

maximum 2.06000e+02 3.99000e+02 1.00000e+00

mean 1.10961e+02 1.99932e+02 4.97260e-01

variance 3.10746e+03 1.15738e+04 2.50005e-01

standard deviation 5.57446e+01 1.07581e+02 5.00005e-01

standard error 3.89946e-01 7.52557e-01 3.49765e-03

coe�cient of variation 5.02378e-01 5.38090e-01 1.00552e+00

skewness -2.47033e-01 -3.12217e-03 1.09620e-02

- signi�cance level 1.71347e-02 1.71347e-02 1.71347e-02

kurtosis -9.73475e-01 -1.06019e+00 -2.00008e+00

- signi�cance level 3.42695e-02 3.42695e-02 3.42695e-02

w eigh ted sum 2.26761e+06 4.08582e+06 1.01620e+04

N 20436

diameter 3.99000e+02

orthogonal breadth 1.00000e+00

diameter/breadth ratio 3.99000e+02

T able6�3: Condescriptive statistics Gulf of Thailand landmarks set, low er- and medium-valued ampli-

tude landmarks.

certain classes are selected as landmarks, their statistics may remain invariant. For instance, the

nearest neighbour distances. If selected landmarks are adjacent, forming a contiguous area, their

typical nearest neighbour distance will be that of the grid.

Figure 6�3: Gulf of Thailand, nearest neighbour (left) and local-furthest neighbour graph (right) of the

oxbow region in the troughs-only landmark set.



Section 6.2: The Gulf of Thailand meandering river system 165

Nearest neighbour and local-furthest neighbour analysis

The role of the (weighted) nearest neighbour graph is that it point out the neighbouring landmark

in that closed star St s of s to which s will be connecting �rst, sharing a singular edges with it

as soon as that edge becomes α-exposed. The local-furthest neighbour graph connects s with

the last neighbouring landmark to which it does connect in the underlying triangulation. These

graphs are of great aid in the analysis of weighting problem spots. See chapter 3. Figure 6�3

shows the nearest neighbour and the local-furthest neighbour graph of the oxbow detail of the

river system.

6.2.4 Weighting

Weighting is prett ymuc h straightforward in this case. Assigning initial weights is trivial for

the low er-v aluedamplitude landmark set, with only a single value class selected. Weights are

assigned values in the range [0.1, 0.4], according to amplitude value and a scaling directly related

to the typical grid spacing. In the case of low er-and medium-valued amplitude landmarks,

w eights are in range [−0.8, 0.4].

6.2.5 Result

The resulting geometric model (family) of the meandering river is shown in �gure 6�6, with

an intermediate result, triangulation plus α-complex, shown in �gure 6�4. Consulting �gure 6�

6, the lower-valued amplitude landmark set (the upper family) best models the mere channel

structure of the riv er system, as presumed. If more of the �ood plane is to be incorporated,

medium-valued amplitude landmarks are to be included, as the bottom family in �gure 6�6

shows. This family also sho wsa horizontal line pattern clearly caused by data artifacts. This

pattern comes with the inclusion of medium-valued landmarks in the landmark set. Selecting the

most appropriate α-value is less trivial. The leftmost family members in �gure 6�6 haveα-values
of O(100 −101). More precisely, the third family member from the left of the upper and the lower

family haveα-values of 17.2 and 9.06, resp., about the maximum that can be accepted with the

w eights assigned. While the α-family unrolls for growing α in �gure 6�6, the river system, being

property-ruled, must also be clearly �visible� in property space. Figure 6�5 shows the property

space α-complex, projected do wnfrom the hyper-spatial α-complex in 6-space. The property

space α-complex of �gure 6�5 shows the following:

• The higher-valued amplitude cluster is well separated from the low er-valued amplitude

cluster and the medium-valued amplitude cluster for a large range of α-values.

• The lower-valued amplitude cluster and the medium-valued amplitude cluster are less well-

separable, indicating a unsharp transition from channel to channel sand depositions.

• For large values of α, when the property-α-complex approaches the triangulation, the

cluster tend to develop a saddle-like shape.

• The diameter of the higher-valued amplitude cluster is small, compared to the diameter of

the other clusters.
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Figure 6�4: triangulation plus embedded α-complex intermediate result of the lower-valued amplitude

landmark set. Observe the sliv er-lik e triangles near the boundary.
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Figure 6�5: property cube α-complex of the minimum-valued amplitude landmark set of the Gulf of Thai-

land.

Figure 6�6: Gulf of Thailand α-complex families: the mildly weighted lower-valued amplitude family on

top, and the low er- and medium-valued amplitude family at the bottom.
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Figure 6�7: Gulf of Thailand, calculated physical c haracteristics as a function ofα-rank ρ. Mild- and

heavy weigh t sets for lo w er- and medium amplitude landmarks create di�erent α-families, with di�erent

α-ranks, as shown.

• As expected, the range of α-values for which the river geometry and topology appears

reasonable, corresponds with the α-value range in which the clusters of the properties

are well separable. This appeals to and once more con�rms the idea that geometry is

property-ruled.

The analysis of singular faces, see �gure 6�8, is important in the process of �nding the

best-�tting α-complex. Singular faces are often rejected by modellers as topological artifacts,

to be duly removed from the model. But within an α-family, singular faces are important

gro wth indicators of an object for varying α. In other words, it reveals the gro wthdirection

and locations for an increased value of α. This information, combined with a-priori knowledge

about the modelled object, may be helpful in �nding the appropriate α-value. Finding the best

α is a process that is also constrained by physical parameters, suc has total volumes, areas and

curvatures. These values may be observed, calculated or statistically estimated. Figure 6�7

shows these constraints as calculated from the α-family.

Discussion

Due to the �atness of the facies and to the absence of phase changes, the single amplitude

attribute admits a relatively easy extraction of the target object from its embedding environment.

These circumstances are more an exception than a rule, however. In this case, property space was

more used asa c heck for the initially assigned weight than a means to �nd the properw eights.

The reason for this is that the channel is indicated by a distinct value of the attribute that is

easily discovered by the human eye. Generally, this process will be too complicated and a factor

analysis in property space is required �rst. Only after this step, weights can be determined.

Without precise knowledge on the �ood plane, the inclusion and promotion of medium-

valued landmarks may be argued. Without further constraining data, from a process model

simulation, exploration wells, or any other source, no precise estimation can be given for the best

α in this regard.
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Figure 6�8: singular face analysis of Gulf of Thailand α-complex. The darker faces are the singular

faces, showing the growth trend of the α-complex. Observe for example the oxbow region and compare

this to the same region in the nearest- and local-furthest neighbour graph. Also notice the growth trend

in the upper part of the river system, as indicated by singular faces.

6.3 The North Sea L8 meandering river system.

6.3.1 Problem description

The L8 block in the North Sea shows various land-marine coastal �uvial and alluvial environ-

ments. This data contains well conserved clinoforms and tidal channels in a deltaic structure. At

smaller altitude (approx. 100 ms), the data contains a vaguely showing meandering river system.

The river system contains tw o separate channels, stacked on top of each other. The goal of this

case study was to capture the geometry of this river. The case is more complicated than the the

Thailand case.

6.3.2 Data set

The data set consisted of a carefully interpreted1 seismic cube and horizons. The seismic cube

consists of re�ection strength data. The re�ection strength is the continuous polarity independent

measure of the signals energy de�ned at any time in the travel time domain. No further seismic

attributes are available. In terpretation, as stated, targeted at a target zone way deeper than the

river (see table 6�4). F rom this cube, time slices were extracted starting at 96 ms up to 112 ms,
at 4 ms sample rate. The time slices are shown in �gure 6�9. As with the Thailand case, a further

cut of the amount of landmarks is required to match the computational limitations imposed. A

1Interpretation by: Sevgi Tigrek, Delft University of Technology
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region of in terest containing the channel and the surrounding depositions was cut out in eac h

of these time slices and remote regions were clipped aw ay.See for instance �gure 6�10. The

statistics of the initial landmark set are given in table 6�4. The spacing of the regularly spaced

landmark set, after resampling is 37.5 × 37.5 m . The statistics of the re�ection strength value

set are given in table 6�5.

Re�ection strength

nr. of inlines 211
nr. of cross lines 117
nr. of samples 5
w avelet length unknown

target zone > 1000 ms

inline spacing 37.5 m

cross line spacing 37.5 m

sample rate (resampled) 4 ms

survey length ≈ 7.9 km

survey width ≈ 4.4 km

depth 48 − 148 ms

nr. of traces 24687
nr. of samples 123435
classi�ed landmarks 30k − 67k

T able6�4: North Sea L8 channel landmark set dimensions, after clipping and subgridding from the

initial 211 inlines by 1415 X-lines by 860 ms L8 data set. The initial sample rate before subgridding and

sampling was 4 ms and the initial inline-by-X-line spacing was 37 × 12.5 m.

St atistic p1

minimum -1.27000e+02

maximum 1.26000e+02

mean 5.15782e-02

variance 1.10656e+03

standard deviation 3.32650e+01

standard error 6.46765e-03

coe�cient of variation 6.44943e+02

skewness -3.91431e-02

- signi�cance level 4.76250e-04

kurtosis 3.38240e+00

- signi�cance level 9.51499e-04

w eigh ted sum 1.36442e+06

Table 6�5: North Sea L8 re�ection strength value set statistics.

6.3.3 Data analysis

Human eye perception is good enough to quickly discover a channel system, butthe recognised

object is not trivially taken from the data values in this case. The marginal quality of the data
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Figure 6�9: North Sea L8, re�ection strength time slices for tw o-way tra vel timet = 96 − 112 ms. T op:

t = 96 ms, bottom: t = 112 ms, di�erence ∆t = 4 ms. Observe the bright spot (gas?) in the centre of

the data set and also observe the phase changes this spot exhibits over time.
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is in great part due to the fact that the target zone for the seismic w asw aydeeper than the

depth of the channels. Unlike the Gulf of Thailand case, the L8 channel shows a number of

phase shifts. As a result, there is no obvious relation between the only available attribute and

the w eight. Phase information is not available as a value set, unfortunately. Nearestneigh bour

analysis provides only trivial information in this case.

Figure 6�10: Single attribute-based w eigh tmodel. Left: phase shifts along the river cause the river

geometry in the seismic to be illuminated only partially when only peaks are considered. Also taking

in to account zero-crossings (right picture), includes a lot of misclassi�ed material. Obviously, the single

attribute lacks su�cient discriminating capacity.

6.3.4 Weighting

Weighting in this case is muc hmore complicated than with the Gulf of Thailand case. There is

only a single attribute available, which by itself is not su�ciently discriminating to tell channel

or river system depositions apart from embedding material. Adding supplementary attributes

and/or phase information would be the appropriate solution, but since unavailable, other strate-

gies have to be developed, based on the only available re�ection strength. Three strategies were

evaluated(see �gure 6�11):

• Strategy 1: seismic amplitudes only

The design of the weights is entirely based on seismic amplitudes, analogous to the previous

case.

• Strategy 2: seismic amplitudes locally at a support model

A geometric model is �t across the anticipated channel and attribute values are evaluated

a this geometric support model location.

• Strategy 3: seismic amplitudes and inverse distance-based weights froma sup-

port model

A (geometric) support model is �tted across the conceptual channel and a inverse distance-

based weight estimation takes place, in addition to the local attribute value.

Strategy 1

Unlike the Gulf of Thailand river system, phase changes do pla ya role in this data. In volving

merely the seismic attribute values erroneously classi�es data as belonging to the riv er, v.v.
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Figure 6�11: three strategies to obtain a weight model for the L8 river system with only a single weakly

discriminating attribute. Top left: the presumed support model, underneath which attribute values are

evaluated. The result (strategy 2) is shownat the top right. Bottom left: the result of strategy 1, in

which only attribute values are considered. Bottom right, the result of the attribute values plus an inverse

distance penalty from a presumed support model (strategy 3).

Even at the bright spot, the signal changes from trough to peak and back. Channels show peaks,

troughs and zero-crossings. Therefore, the discriminating pow erof the seismic amplitude is

insu�cient to base the weight upon and this strategy has to be rejected. The result of strategy 1

is shown in �gure 6�11, bottom left picture.

Strategy 2

Strategy 2 delineates a support model, but evaluates the attributes only at the model location

causes the river to be of constant width and neglects its lateral extension. Even if greater channel

widths are chosen, then still the variation is largely breached. The support model is shown as a

line along the channels main axis in �gure 6�11, upper left picture. The result of the strategy 2

evaluation underneath this model in the upper right picture.

Strategy 3

Strategy 3 takes into account both the available re�ection strength attribute value and the lateral

channel extension. It honours both peaks and zero-crossings, right at the channels' paths as well

as fain tly remote from the channels. The further remote from the channel, the greater the

distance penalty and the smaller the weight. Details of the distance penalty are discussed below,

the result is shown in �gure 6�11, bottom right picture.
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Figure 6�12: L8, �nal weighting model. F or this regularly spaced landmark set, the channel geometry

can easily be recognised in the weight set.

6.3.5 Result

Strategy 3 appeared to giv e the best control and the best results. Time slice t = 104, the

middle time slice of the river system, was used to develop the best inverse distance-based weight

functions. V arious functions were evaluated. All of the general form:

w = g(p1) − (δ − µ)m − (t − 104)
16

(6�1)

where p1 is the re�ection strength, (δ −µ)m is the distance penalty, with δ the shortest distance

to the channel central axis and (t− 104) being the �time distance� to the middle time slice. The

channel has been assigned a width 2µ = 24 m. P ow ervaluesm = 2, m = 1.5 and m = 1.2 w ere

evaluated �rst. Even tually, power m = 1.32 turned out to give the best result shown in �gure 6�

11, bottom right picture. Recall from table 6�5 that re�ection strength p1 ∈ [−127, 126] and the

best matching global w eight scale factor was set to ( = 0.04. River channel width 2µ = 24 m
was derived from the top-right river mouth (6�9), which is approximately 60 units, with 1 unit

being 12.5 m. The bend at the low erleft part (the two branches) span approximately 45 units.

Representatives of the resulting α-family are shown in �gure 6�13. F orthe w eight component

g(p1) it is necessary to take into account the phase information. The dominant polarity associated

with channel sands across the time slices is negative for t = 96 ms and then turns to positive for

times t > 96 ms. A 3D oblique view of the river is shown in �gure 6�14.

6.3.6 Discussion

It is emphasised once more that using a geometric support model is undesirable but caused by

the fact that the available attributes lack su�cient discriminating capacity to fully rule out the

geometry of the object. The good thing about this case is that it exactly uncovers the limitations

of the approach of this thesis. If the quality of the property value sets is poor, then the weight

set has only w eakmodelling capacity and without a decisive weight set, the geometry will be

vague and with considerable model uncertainty.
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Figure 6�13: Resulting α-family of the L8 river, based on strategy 3.

Figure 6�14: resulting α-complex of the L8 river, 3D oblique view. T oindicate the typical size of

tetrahedral elements, the �gure shows a slightly exploded view. The total number of tetrahedra amounts

to 38835.
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Using a support model, however, opens up the road to distance based w eighting. The

model could be further re�ned if somehow, the multiple channels could be identi�ed within the

bigger picture. Figure 6�14 shows one possible such model, at the right. This model is to be

accepted with great caution, as su�cient data are lacking.

6.4 Salt dome in the Gulf of Mexico

6.4.1 Problem description

The South Marsh Island salt dome belongs to the group of salt domes in the T exas-Louisiana

Coastal Basin, discovered mainly in the late sixties. The South Marsh Island area is located

on the continental shelf in the Gulf of Mexico, west and adjacent to the present day Mississippi

delta, approximately in the deepestpart of the basin. The basin contains mono-clines, pillows,

an ti-clines,domes, ridges and massifs, the deepest part contains primarily diapirs and domes.

The region consists of a feeding salt layer and younger depositions separated at a depth of

approximately 980 ms by a sub-marine canyon. The canyon laps on a steep salt dome, fed b y

the feeding salt layer(which is not contained in the data). The canyon is in-�lled with marine

cla ys. Embedded in the clay are tw oapprox. 250 m wide channels, with only marginal lateral

accretion, roughly at the deepest point of the sub-marine canyon. Below the sub-marine canyon,

too, channels were reported. Faults radially emanates from the salt dome. The geologic trend

is Miocene, late tertiary. This description was largely taken from [Hal67, Ste97]. F or further

details, see [Hal67].

The true signi�cance of this case is lying in its size. More than the tw o preceeding cases did,

this case approaches realistic dimensions. The model rapidly outgrew the customary workstation

con�guration. The model of the Gulf of Mexico salt dome was therefore crafted on a Silicon

Graphics2 Onyx2 InfiniteReality2E Workstation, equipped with 1 GB of internal memory

and four 250 MHz R10000/10010 MIPS processors/FP-processors.

6.4.2 Data set

The sampling data point set consists of 3D seismic data, containing tw oseismic attributes;

instantaneous time dip and re�ection strength. In an earlier study, Steeghs ([Ste97]) found

that the instantaneous time dip is a good indicator to �lter o� salt from other lithologies. The

landmark set is a slice starting at approx. 500 ms and extending to slightly over 1450 ms.
Unfortunately, the top and the foot of the dome are missing in the value sets. F urthermore, the

data contain few minor acquisition and migration defects, causing the occurrence of a regular

pattern across the data.

The cube consist of 876 inlines, 287 cross-lines and 119 samples. The spatial distribution

of the data is as follows. Inline distances are 25 m and cross lines are spaced at 50 m a distance.

The sample rate of the data is 8 ms, after resampling from 4 ms. Moreover, the seismic cube

was composed from time-migrated 2D-sections and re-sampled by a factor 2 in each direction.

The dimensions of the data set taken for this study are given in table 6�6.

The largest model that can be run can be expressed in terms of the number of land-

2kindly made available b y Silicon Graphics Benelux; see:A cknowledgements
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Re�ection strength Time dip

nr. of inlines 876 876
nr. of cross lines 287 287
nr. of samples 126 119
w avelet length unknown unknown

inline spacing 25 m 25 m

cross line spacing 50 m 50 m

sample rate (resampled) 8 ms 8 ms

surv ey length 21.900 km 21.900 km

surv ey width 14.350 km 14.350 km

depth 504 − 1456 ms 480 − 1480 ms

nr. of traces 251412 251412
nr. of samples 31677912 29918028
classi�ed landmarks 140k − 300k 50k − 300k

T able6�6: Gulf of Mexico South Marsh island salt dome landmark set dimensions. Columns show the

speci�c time dip and re�ection strength value set dimensions. T op and foot of the salt dome are missing

from the value sets.

marks �ltered o�, although the actual memory limitations came from triangulation and α-family-

computations. The �original� data set counts 876×287×119 = 29918028 time dip samples. This

landmark set could only be accommodated on the Onyx2 after �ltering o� landmarks with a nor-

malised time dip in excess of 0.83, corresponding to a time dip value in range [1.18000−1.41774]
and shadowing the 1 GB internal memory by a 1 GB swapspace, later on expandedonce more

b y some 0.5 GB. The cardinality of this landmark set measures N = 288417, i.e., less than one

percent! The characteristic dimensions of this landmark set can be found in table 6�7.

Sampling factor Spacing factor [m]
X-lines 1 1 × 50 = 50 m

Inlines 1 1 × 25 = 25 m

Samples 1 1 × 8 = 8 ms ≈ 8 − 10 m (v = 2000 − 2500 m/s)

Time dip δ̄ ≥ .83 2.88417 · 105 landmarks

T able 6�7:Gulf of Mexico non-resampled instantaneous time dip attribute value set dimensions. A clip

level of normalised time dip value δ̄ ≥ .83 �lters o� slightly under 300000 landmarks, i.e., less than one

percent of the points, yielding the largest possible model that could be run.

A typical �data voxel� in this case measures approximately 25 × 50 × 10 m, i.e., far from cubic.

The following strategies were evaluated to handle this:

• F urtherresampling

This straightforwardly follows the sampling and subgridding that already took place, up

to this stage. Aim is to sample such that the data voxel shape becomes more or less cubic.

• Applying a landmark transformation

A landmark transformation may be applied to reshape the data voxel.
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F urther sampling would imply that inlines and samples have to be dropped. A �112�-resampling

variant may be chosen, in which only every second sample is accepted as a landmark. This

stretc hes the depth dimension of the data voxel to 16−20 m. T able 6�8 shows the characteristics

of this resampling.

Sampling factor Spacing factor [m]
X-lines 1 1 × 50 = 50 m

Inlines 1 1 × 25 = 25 m

Samples 2 2 × 8 = 16 ms ≈ 16 − 20 m (v = 2000 − 2500 m/s)

Time dip δ̄ ≥ .83 1.45187 · 105 landmarks

T able6�8: Gulf of Mexico �112�-resampled instantaneous time dip attribute data cube. A clip level of

normalised time dip value δ̄ ≥ .83 �lters o� less than half a percent of the points as landmarks.

Sampling and subgridding this way already excluded some99.5% from the initial landmark

set, ho w ev er.Dropping more samples may cause the sampling to become too crude along the

time domain. On the other hand, the salt dome itself does not extend the whole area of the

landmark set. Cutting o� the dome region itself may bring about a reduction of the landmark

set extent down to approximately 47%. The salt area is found in the inline range [1, 401] and this

area may be chopped o� as the area of interest. With no further resampling (111-con�guration),

the area measures 401 × 287 × 119 = 13695353 landmarks. This option may be used to allow for

a less sev ere sampling with a lower clip level so that more landmarks are passing the �ltration.

This would increase the intensit yλ of the underlying point process. A �124�-resampling scheme

accomplishes an approximately cubic data voxel of 50× 50× 40m, allowing the clip level to drop

to δ̄ ≥ .6 . See table 6�9:

Sampling factor Spacing factor [m]
X-lines 1 1 × 50 = 50 m

Inlines 2 2 × 25 = 50 m

Samples 4 4 × 8 = 32 ms ≈ 32 − 40 m (v = 2000 − 2500 m/s)

Time dip δ̄ ≥ .6 3.53946 · 105 landmarks

T able 6�9:Gulf of Mexico resampling of the instantaneous time dip attribute data cube. A clip level of

normalised time dip value δ̄ ≥ .6 and resampling to data voxels of size 50 × 50 × 32 m yields a landmark

set of 3.53946 · 105 landmarks.

F urther resampling has also been examined, using the same clip level δ̄ ≥ .6 . A �246�-

resampling w ascreated, with the spatial landmark characteristics as giv enin table 6�10. Re-

sampling beyond the �124�-resampling is acceptable still for the salt dome itself, but too coarse

for the rest of themodel. As it turns out later, this model contains a sub-marine canyon. This

canyon can be missed completely in too coarse a resampling. Of course, the accuracy of the salt

dome itself is also limited with a coarse sampling.

Applying a landmark transformation is another option. Landmark transformation should

make the data voxel cubic. Reconsider the 111-con�guration with a data voxel of dimension

25 × 50 × 10 m. An anisotropic scaling vector T = (2, 1, 5)T w oulddeliver a cubic data voxel
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Sampling factor Sp acing factor [m]
X-lines 2 2 × 50 = 100 m

Inlines 4 4 × 25 = 100 m

Samples 6 6 × 8 = 48 ms ≈ 48 − 60 m (v = 2000 − 2500 m/s)

Time dip δ̄ ≥ .6 5.89918 · 104 landmarks

T able 6�10:Gulf of Mexico resampling of the instantaneous time dip attribute data cube. A clip level of

normalised time dip value δ̄ ≥ .6 and resampling to data voxels of size 50 × 50 × 32 m yields a landmark

set of 5.89918 · 104 landmarks.

of dimension 50 × 50 × 50 m. The transformation needs to be applied prior to the computation

of the α-complex and a back transformation byT−1 turns the landmark set back in to normal

con�guration. Both further resampling and the transformation option have been evaluated.

6.4.3 Data set analysis

Re�ection seismic returned by salt structures is in trinsically chaotic. The salt dome �anks are

so steep in this case (�gure 6�16), that any re�ection by them received at the surface is to be

mistrusted. Migration e�ects in this case play an important role. The time dip attribute has

been found to indicate the salt fairly well, refer to [Ste97]. But in addition to the salt, the

sub-marine canyon also illuminates in this attribute. This clearly shows in the condescriptive

statistics for speci�c altitudes, found in �gure 6�15.
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Figure 6�15: left: primary statistics of the time dip attribute of the Gulf of Mexico in the time domain.

Dev and V ar are the time slice' empirical standard deviation and variance, resp., δ̄ and δmax are the

observed mean and maximum time dip, resp. Right: the 1, 3, 5, 10, 15, 50, 85, 90, 95, 97 and 99%
percentiles, resp., from left to right. Observe that in the time window 800− 1000 ms, the 99%-percentile

crosses the δ = 1.2 grid line.

A �rst analysis of the time tip statistics shows that the range of the time is basically

stationary across the time domain. This does not hold for the cen tralmoments, mean and

variance. The variance is highest at the depth of the sub-marine canyon, approx. at 950−1000 ms.
It is apparent from �gure 6�15 that considerable more landmarks are going to be pic ked up in
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the time window approx. 800 − 1000 ms. It no wbecomes ob viousthat too coarse a sampling

that does not properly sample the depth region around this 950 ms zone, can never reproduce

this phenomenon.

The landmark set sampling the salt regions produce again a typical nearest neighbour

distance that originates directly from the underlying grid, and therefore depends on the data

voxel size. As a result, the global scaling factor of the weight transformation can be directly

derived from the size of this data voxel.

6.4.4 Weighting

Weighting is a linear combination of attribute values. The tw oattributes available, re�ection

strength and time dip can be combined as follows:

w = w(δ, p) = λ1δ + λ2p, λ1 + λ2 = 1 (6�2)

where δ(x, t) denotes the time dip value and p(x, t) the re�ection strength. No improvement is

delivered by adding the re�ection strength attribute. Replacing re�ection strength by instanta-

neous phase (�gure 6�16) doesn't bring an improvement either. As stated, the re�ection strength

and also the instantaneous phase are much weak erindicators than the time dip and therefore,

the normalised weight is approximately equal to the normalised time dip. Instantaneous phase

and re�ection strength are not independent. Re�ection strength and instantaneous phase w ere

therefore dropped, leaving only the time dip attribute for weighting.

The time dip is semi positive-de�nite, in this case in the range [0.00000, 1.41774]. With a

seismic velocit yv ≈ 2000 − −2500 m · s−1, the dimensions of the data voxelsare as indicated

in the tables 6�7 to 6�10. The global weight transformation scale factor will be of the same

magnitude as the smallest of the inline, cross-line and depth dimensions, usually the latter.

6.4.5 Result

After selecting up to a maximum of approximately 300k landmarks from the seismic, and attach-

ing w eights to them, the dedicated �high-end� computer took roughly 5 hours computing time

and full memory to prepare the geometric model of the salt dome. A �112�-resampled landmark

set turned out to reproduce the salt dome fairly well, too. Coarser resampling produced coarser

geometries, as expected, up to inadequate and sometimes unrecognisable geometries beyond a a

resampling by a factor 5 of the samples along the traces. River geometries are faintly showing,

further statistic analysis must reveal whether their pattern are random or indeed indicate a typ-

ical river shape. Such analysis is considered beyond the goal of this case study and has not been

carried out, therefore.

6.4.6 Discussion

The salt of the Gulf of Mexico case is geometrically reproduced fairly well. The only �defect�

being the sub-marine canyon, also highlighted by the time dip. The combination of re�ection
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Figure 6�16: Gulf of Mexico, South Marsh Island, re�ection strength and instantaneous phase attribute.

These attributes show similar features compared to the time dip and neither of them provides an additional

discriminant parameter. The salt dome is at the left part of the �gure, the sub-marine canyon runs o�

from the salt dome �anks, stretching to the right across the middle of the �gure.

Figure 6�17: Gulf of Mexico canyon, top view, with at the left the dome, and the time dip illuminating

canyon �lling the rest of the picture.



182 Chapter 6: Application cases

Figure 6�18: Gulf of Mexico salt dome plus canyon, lateral view. Top and feeding layer are absent in

this picture. The sub-marine canyon is clearly visible in the model.

strength and time dip is not su�ciently discriminant to wipe out the over-exposure of landmarks

in the time window 800−1000 ms resulting from the time dip response to the sub-marine canyon.

In this case, the top of the dome (extending above 500 ms) and the �feeding� foot w ere

not included. The entire model w ould have been too big and beyond the computing equipment

capabilities. It shows that for practical purposes, the size of the problem that can be coped

with is still severely limited. In terms of real-world problems, this case is still to be considered

small. A typical E&P-survey will be bigger and will comprise more value sets. V aluesets are

not the problem, because turning attribute values into weight takes place in before the α-family

is computed and that is where the limitation is. The amount of landmarks that can take part

in the computations is too small. It is fair, however, to expect computers to increase overthe

coming years in suc h a manner that one million landmarks would be possible within ten years.

In addition, domain decomposition tec hniques can be applied to break down the problem in

smaller equivalents. A cluster of workstations may then solv ethe smaller problems in parallel,

re-assembling the entire solution afterwards. See chapter 7, where this problem is posted as an

open problem for further research.

6.5 A barchan dune

6.5.1 Problem description

A barchan dune is a type of dune resulting from a wind �eld with a strong current and dominant

wind direction, acting on a relatively �at plane with particle sediments, grains, say. See �gure 6�
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19. Barchan dunes commonly appear in a spatial distribution, with a typical neighbouring scale

in the order of O(101 − 103) m. Spatial distribution is assumed such that interaction among

dunes is only faint and regarding a single dune on a further empty �at is justi�ed. Barchan

dunes �live� at the surface but their structural left-overs can also be found in the subsurface.

A barchan dune changes shape and migrates under the in�uence of the wind induced shear

stress acting upon its upper surface. Height and position change gradually, but avalanching may

cause abrupt changes in its topography. Here, barchan dunes are assumed to have shapes such

that their height to length ratio LH/Le ≤ 0.05. V ariousmodels have been proposed for the

modelling of morpho-dynamic behaviour of 2D and 3D barchan dune models. In this thesis,

a simple morphological process model will be used for a single dune, co veringthe erosional

and depositional process plus the avalanching, taken from Stam [Sta94]. Aim is to evaluate

the re-gridding capacity of the α-complex applied. Strictly speaking, triangulations also ha ve

this capacity but not the �exibility of α-complexes, for instance in the case of separations and

in the context of erosion. The use of α-complexes therefore applied to a much wider class

of dynamic behaviour, compared to triangulations. Moreover, icons of dunes are based on α-
complexes. Emphasis will be on the handling of the topology avalanching stage. A valanching

will be induced merely on the basis of shear stress conditions, so that avalanches sho wup at

unidenti�ed moments in time. This way, evolution of the dune may be simulated in a single-stage,

uninterrupted simulation, without any intervention.

lee sidestoss side lee sidestoss side

Figure 6�19: Process model of the barc han dune. The dashed line marks the zone in which the wind

velocit y pro�le builds up. Outside this zone, the wind �eld is assumed undisturbed. At the stoss side,

erosion takes aw ay grainy sediments, to be deposited again at the lee side. The top of the dune accretes

at the right and upwards. A valanching discontinuously reduces height and slope.

A one-dimensional process model

Consider a topographic surface plane described by a Cartesian coordinate system in E 3, in which

positions are denoted by location vector Nx. The shearing wind across the topography of this

plane causes sediment particles to be transported by saltation. The sediment transport capacity,

denoted by the vector function q(Nx, t) in space and time, can be considered as a function of the

wind induced shear stress τ(x, t):

q(x, t) = F (τ(x, t)) (6�3)

F urthermore, mass conservation (or: sediment-continuity) demands that:
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ρ
∂h

∂t
+ ∇ · q = R(q) (6�4)

where:
h = topographic height [m]

t = time [s]
ρ = sediment density [kg · m−3]

q = sediment transport capacity vector per unit length [kg · m−1 · s−1]

R(q) = sediment in�ux [kg · m−2 · s−1]

Consider the one-dimensional form of equation (6�4):

ρ
∂h

∂t
+

∂q(x, t)
∂x

= R(q) (6�5)

with the one-dimensional sediment transport equation given by:

q(x, t) = F (τ(x, t)) (6�6)

A simple 1D-model can be obtained by adopting Bagnold's sediment transport equation (e.g.,

[Sta94]), for 1D of the form q(x, t) = CBτ(x, t)
3
2 . Bagnold grouped a number of grain and other

constants in the so called Bagnold constant CB , dimension [s2 · m 1
2 · kg− 1

2 ]. An expression for

wind induced shear stress τ(x, t) is not readily found. A linearised model can be obtained by

assuming a linear relation between transport and shear stress with a linear correction term for

the topographic height:

τ(x, t) = τ0 + τ1(x, t) ≈ τ0 + C1h(x, t) (6�7)

where C1 is a constant. Assuming a relatively smooth topography with small curvatures, the

shear stress can be written as the above linear combination, where τ0 is a constant for the shear

stress, and τ1 represents a correction term for the height, depending on place and time. An

estimation of the cut-o� error due to the linearisation can be taken from [Sta94, Ch. 4]. The

assumed linear relation for the linearised sediment transport yields:

q(x, t) = CBτ
3
2

0 +
3
2
CBτ

1
2

0 τ1(x, t) = CBτ
3
2

0 +
3
2
CBC1τ

1
2

0 h(x, t) (6�8)

Hence, one ends up with:

∂h

∂t
+

3
2
CBC1

ρ
τ

1
2

0

∂h

∂x
=

C2 + CBC3τ
3
2

0

ρ
+

3
2
CBC1C3

ρ
τ

3
2

0 h (6�9)
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In equation (6�9), the term 3
2
CBC1

ρ = v denotes the dune migration velocity in [m ·s−1] and term

3
2
CBC1C3

ρ τ
3
2

0 is known as the dune amplitude growth factor. For positive right-hand side R(q), for
instance for the one-dimensional model:

R(q) = C2 + C3q(x, t)) (6�10)

the crest of the dune will move in de direction of the wind, the dune will increase height and

the lee-side slope will become steeper. A valanching (to be discussed, shortly) is bound to occur.

Figure 6�20 shows the dune evolution for a constant wind during 106 s ≈ 12 da ys.

120100806040200
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3
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0
-1
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Figure 6�20: ev olving barchan dune during t = 106 s ≈ 12 days simulation time. The direction of the

wind is left-to-right, constant strength. Observe that the crest of the dune moves right, increases height

and that the steepness of the slip-face, the lee-side slope, increases over time.

A valanching, or land-sliding, is a complicated phenomenon that occurs frequently in nature.

In this case, avalanching is assumed to take place along a planar slip-face. Let s denote a unit

vector along the slip-face (see �g. 6�21) and g be the gravity vector. Then in the case of

the evolving dune, the term g · s increases as the slope gets steeper due to sedimentation. In

contrast, the shearing resistance that can be delivered by the interloc king grains remains constant.

When roughly equal, a zone of slope instability appears and a slight disturbance may trigger the

avalanche. Once started, moving grains a�ect other grains in the slip-face and as a result, grainy

material slides down the slip-face, lea ving the slope at a decreased angle, known as the angle

of repose γr. At this steepness, stability has returned and the process of deposition and angle

increase starts all over again, heading for the next avalanche. Figure 6�21 sketches this.

Emphasis will be on the handling of n umerical complications due to avalanching. In the

case of the barchan dune model, using an α-complex has hardly any decisive advantages over

for example a triangulation. Except for the handling of separations and holes. T oexplore the

capacity of an α-complex in numerical modelling, the relatively simple application of the barchan

dune has been selected as a �rst case.

6.5.2 Data set

The process model is used to generate landmarks for the evolutionary landmark set. More

precisely, the process model predicts the 1D dune pro�le overtime, according to equation (6�

5). The resulting ev olution of the dune pro�le has been adopted for a �nite thickness around

a cen tralcross section of the barchan dune. The pro�le de�nes the topography of the dune, a

reference plane chosen at an arbitrary altitude below the dune pro�le de�nes the dune �bottom�
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Figure 6�21: sketch of the anatomy and principle of an avalanche. Observe the zone of instability,

bounded by the contours of τj hitting the slope, inducing the avalanche. F ormass conservation, the

sliding volume must be equal to the deposited volume. Also notice that avalanching prevents the dune

from growing to in�nite height.

plane. The begin and end plane of the dune topography are chosen remote from the dune itself,

to minimise the local e�ects of boundary conditions. The interior space betw eenthe so de�ned

boundaries is then populated with grid nodes laid out witha regular spacing. Altogether, after

triangulation, this yields a quasi-3D cellular complex, from which α-complexes can be �ltered

o�. The quasi-3D model strik esout most of the hairy details of a true 3D model, and grasps

quod est demonstrandum equally well. Value sets are not generated: the dune material can be

considered homogenous and unsaturated.

6.5.3 Data analysis

The typical nearest neighbour distance is in this case directly tied to the step size ∆x at which

the dune pro�le is being computed and populated. In this case, ∆x = 1 m or, equivalently,

∆x/L = 0.01, where L is the length of the dune (�gure 6�19). Notice that the so generated

landmark set is formally not a Poisson point process and landmarks are not randomly distributed

in space.

6.5.4 Numerical model

A 4-th order Runge-Kutta scheme has been used to solv eequation (6�4). A central di�erence

scheme can be follo w edto �nd spatial derivative ∂
∂xh(x, t). The grainy material is assumed

unsaturated so that the e�ective stress is equal to the total stress. A further assumption is

that in the slip-face, the role of the normal stresses is minor, so that the critical stress τcrit =
c + σn tanφ ≈ c, where c denotes the appar ent cohesion resulting from grain interloc king. The

apparent cohesion can be tak enfrom diagrams existing for various grainy and other materials,

e.g., see [Bru79].

The numerical model aims at the computation of the shear stress along the slope, and

predicts the instability zone in this slope. This zone is assumed to become unstable when the
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shear stress right beneath the surface exceeds some critical value, i.e., when τ ≈ τcrit. A valanching

may then start in this zone. The instability zone is centred around the steepest point. As soon

as a certain fraction ε of the slope has become unstable in the model, an avalanche is said to

tak e place.The movement of the grains in an avalanche is assumed kinematically determined by

the angle of repose.

An α-complex has been used to describe the numerical model. An α-complex, in terms of

n umerical computing, is generally an unstructured grid. The �nite element method (FEM) was

chosen as the analysis method to apply. Asimple linear-elastic tetrahedral element with nodal

displacements as degrees of freedom. The set of k-faces {σ(k)

Cα
} of an arbitrary α-complex, as

outlined in �gure 2�13 in chapter 2, cannot be inserted straightforwardly into a regular FEM-

code. Before we can run a �nite element analysis (FEA) on an α-complex, three major problems,

directly owing to the composition of the set of faces {σ(k)

Cα
}, have to be resolved:

1. The removal of singular faces.

2. The problem of separated interiors.

3. The problem of sliver-lik ed-faces.

Singular faces

Obviously, in a FEA formulation, w ew an tto end up with only complete d-faces. Complete in

the sense of topologically complete: a complete d-simplex with all its sub-faces. In customary

FEA-approaches, singular faces need to be removed �rst. For any value smaller than αmax, there

is a chance that suc hsingular faces occur. The physical meaning of singular faces is unclear.

From a modelling point of view, they show how the α-complex tends to grow if α is sligh tly

increased. Removal of singular faces is trivial and causes no further problems, which is easyto

understand in conjunction with the embedding-approach to be discussed now.

Embedding the α-complex

For α < αmax, α-complex Cα is not necessarily connected. T ocircumvent this problem, w e

explored the fact that triangulation and α-complex share the same faces. Which implies that an

α-complex can always be embedded in a triangulation, in accordance with Observation 2.9. A

triangulation is connected. This approach will be further explained, shortly.

Slivers

Slivers are simplices with very bad aspect ratios, or shape parameters. F or example, a tetrahedron

with one edge that is extremely small compared to its other edges. Slivers are primarily developed

near the boundary of the convex hull of S and en ter the α-complex at the highest values of α
just prior to reaching αmax. Figure 6�22 sketc hes this.

Sliv ers are hardly ever present in the α-complex itself, but they are present in the embed-

ding triangulation of course. They must be removed from the triangulation if the FEM-code

repulses them. In the vast majority of cases, this can be done without the risk that separations

reappear. More on this, shortly.
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Int Cα

Bd Cα

fans

Figure 6�22: the generation of slivers near the border of the convex hull when α approaches αmax,

when an increase of α allo ws �fans� in the triangulation near the border of its convex hull to enter the

α-complex.

Figure 6�23: fragment of the barchan dune grid at time t = 0 s. The form of the dune is easily recognised

in the grid. The grid contains t w o fans along the top boundary with (necessarily) a elevation of the pro�le

(to the right of the toe of the slip face) separating them. Decreasing αmax a bit will easily remove the

slivers adjacent to the slip face.

The embedding approach

A new approach has been developed to run FEA overα-complexes, that overcomes the problems

of singular faces, separations and slivers, identi�ed in the previous section. The outline of this

approach is as follows. Firstly, tetrahedra of the α-complex model (�foreground material�) are

turned into tetrahedra FEM-elements. This α-complex of the object is embedded in the hosting

triangulation (�background material�) that acts as the embedding environment (or: �bulk�).

After applying suitable boundary and/or initial conditions, computations can be started. Since

dealing with a 3D-model, the d-face is a tetrahedron, but the approach applies to d-simplices

of any dimension. The approach developed here exploits the fact that an α-complex is a sub-

complex of the triangulation. A triangulation, which is a cellular decomposition continuum, can

always be input to an FEM-code, and boundary conditions can be attached to its boundary faces.

Rather than taking the bulk at αmax, w e lower α somewhat to get rid of slivers. More in detail,

the steps to follow are:

Step 1: select an embedding background α-complex

Compute the α-family and select an embedding background α-complex close to the tri-

angulation. Select the largest sliver-free α-complex. P ossibly, a trial-run may be needed

to �nd out which tetrahedra can be accepted by the FEM-code, and which cannot. If

the shape-test is explicitly indicated, a preprocessing step may be conducted, before sub-

mitting the model to the FEM-code. Once a bulk-α-complex has been found acceptable,
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background material properties (or: �bulk�-properties) are assigned to the elements of the

embedding α-complex.

Step 2: determine the boundary of the embedding background α-complex

If α ≤ αmax, this boundary is no longer the boundary of the convex hull of S. We also

assumed that the background α-complex is connected and hole-free and therefore has no

internal boundaries. Compute the normals of all the triangles in the boundary of this

α-complex, in order to �nd out how boundary conditions need to be attached to the

embedding α-complex.

Step 3: select the foreground α-complex

Select the α-complex representing the foreground material of the modelled object. In this

case, this is the α-complex that best represents the barchan dune. Assign foreground

material properties to the object model α-complex. Next, �inject� this complex into the

embedding background-complex, i.e., for each tetrahedron in the foreground α-complex,

locate the corresponding tetrahedron in the embedding background complex, and �ip the

background material properties to foreground properties. If applicable, initial conditions

may be assigned after this step.

Step 4: run the FEA-analysis

Run the FEA-analysis and optimise the α-complex as appropriate. If modelled objects

erode, foreground material may decay into background material. If completely eroded,

only background material is left. Accreting material may cause background material to

turn into foreground material, up to a complete disappearance of the background material.

A few additional words will be spent now on the selection of background material prop-

erties. In order not to (signi�cantly) in�uence the results, background material properties must

be �neutral�: an order of magnitude more permeable, sti�er, conducting, etc., which depends on

the physics underpinning the model.

6.5.5 Results

The dune ev olutionwas simulated over1 million seconds, at a time step ∆t = 1000 s. A value

of CB = 0.867 s2 ·m 1
2 · kg− 1

2 w as speci�ed for the Bagnold constant, which is relatively high but

speeds up the evolution. A value of τ0 = 0.150 Pa has been used. F urther,regular unsaturated

dune sand parameter values were taken. Given the value of h(0, t), a compatible transport q(0, t)
at x = 0 can be computed from CB(τ0 +C1h0)

3
2 , for the non-linearised version of equation (6�9).

At the toe-side (�gure 6�21) of the dune, at x = L, the boundary condition in�icted is that[
∂
∂xh(x, t)

]
x=L

= 0.

Selecting the embedding background (step 1) is trivial in this case. As revealed by �gure 6�

23, slivers occur near the slip face (and also near the stoss side not shown in this �gure). Low ering

α delivers an embedding environment that in this case is nearly identical to the dune α-complex

(step 3) itself. Moreover, since the dune α-complex contains no separations, embedding is not

ev en necessary in this case. Embedding a hole- and sliver-free α-complex in itself is b y no means

in contradiction with the embedding approach outlined. Finding the �right� α-value (step 3),

comes down to match the volume of the α-complex with the volume estimated by equation (6�8).
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At every 0.2 Ms (1 Ms = 106 s ≈ 12 da ys), the shear stress has been recomputed.Figure 6�24

shows the results.

As the dune evolves, the steepness of the slip face increases and the crest of the dune rises

and rises. The critical shear stress contour moves from the bottom of the dune, under the low er

part of the slip face, upw ards. See �gure 6�24. When it reac hestheslip face, the critical shear

stress seeds a zone of instability, as sketched in �gure 6�21 and easily identi�ed in �gure 6�24.

At some point, avalanching will occur along a not necessarily �at plane more or less parallel to

the slip face, along which the shear stress between grains surpasses the critical value for slope

stability. The movement of the sediment in the avalanche is kinematically bound to tak eplace

along this plane. The FEM-computations aim at the �nding of this sliding plane and the moment

of reaching the critical value. When surpassed, the avalanche takes place in the model, i.e., grid

points of the a�ected area �slide downhill� along the plane, towards the toe of the dune, until the

moving mass comes to rest at the toe of the dune. The sediment-transport, meanwhile continues

and the process repeats if the conditions tell so.

In the process of avalanching mass conservation needs to be obeyed. The density of the

downhill deposited material is assumed similar to the sliding material uphill, so mass conservation

comes down to volume conservation. A �residue�-approach has been followed: when assigning

new locations to the displaced material, w elaid out new grid nodes at preferred, evenly spaced

locations. T omaintain this approach, a certain mass residue may result after the processing of

the avalanche. The residue of the current step will be equalised in the next avalanche and in the

long run, the residue will be kept close to zero. No aggregation of residue is allow ed.

The process of erosion/deposition, shear-stress computations and avalanching takes place

in a single contin uous non-interrupted cycle made possible by the capacity of the α-complex to

re-grid, to uniquely restore its topology on the basis of distances betweenpoin ts.

6.5.6 Discussion

The stress model maintained over time identi�es the occurrence of avalanches. A valanches change

the topology of the numerical model. Due to the capacity of an α-complex to reconstruct its

topology, the erosion, shear stress computations and handling of avalanches can be processed

in a single non-interrupted iterative computation, allo wing an evolutionary process model to

evolve b y uninterrupted time-stepping. The use of an α-complex is an e�ective solution to the

regridding problem in modelling phenomena such as the avalanching: grid nodes may freely

roll do wnthe slip face, after which re-computation of the complex follows. In this case, a re-

triangulation might have accomplished the same result, but generally, an α-complex allo wsfor

a muc h wider class of topological changes to occur, up to complete separations. The embedding

approach allows such models still to be captured in a single numerical model. This opens up new

possibilities for birth-life-death type of models,suc h as deposition/erosion models and dynamic

topology models in general. Not discussed here, but certainly a topic for further research is the

use of control v olume �nite di�erence methods instead of �nite elements.
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Figure 6�24: top-to-bottom: time series of dune ev olution. Pictures depict the shear stresses τxy at

t = 0 s at the top to t = 1 Ms (106 s) at the bottom. The bottom two picture show the handling of the

avalanche. The pictures top-down show how theinstabilit y zone slowly builds up. Thesecond picture

from the bottom shows the shear stresses right before avalanching takes place. The instability zone is

easily identi�ed. The bottom picture shows the shear stresses right after a valanching has taken place.
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Figure 6�25: Example of the complex, partly labyrinthine, partly jig-saw morphology of a meandering

river system. Picture shows a 2.3 × 2.6 km area of the Milhako river, Alberta, Canada. Observe the

frequently reworked depositions (scrollbars) on the river banks at the inner bends. Also the clay-/mud-

�lled �dead� river channels, abandoned after a short cutting �neck chute�. The point bars form a labyrinth

of permeable �ow-channels and are able to trap hydrocarbons. Well design and reservoir simulation is a

tedious task in such a reservoir. Photo taken from Allen (1985). Copyright c©: Alberta Energy Company.

Reprinted with permission.



Section 6.6: Modelling point bars 193

1850
1871
1907

20040060080010001200
1650
1700
1750
1800
1850
1900
1950

1907
1970
1989

20040060080010001200
1650
1700
1750
1800
1850
1900
1950

Figure 6�26: The river Bollin, near Wilmslow, Cheshire, Northwest England, as observed o ver a time

frame of nearly one-and-a-half century, from 1850 up to 1990. T op:development during the late 19th cen-

tury, bottom: ev olution during the 20th century (data taken from [BHTP92]).

6.6 Modelling point bars

6.6.1 Meandering river systems

River system can be subdivided in many respects. One such subdivision sets braided river systems

apart from meandering river systems. Under certain conditions, river systems start to meander,

mostly when they have become mature ([RS80]), i.e., in their middle section. Sin uosity ma y be

low or relatively high and may alter on a given part of the river during its lifetime. Upstream,

when in their youth, rivers are often running on gravel beds and sediment load is often relatively

coarse roc k debris. This part of the riv er system can be characterised as gra vel-ric hand low

sinuosit y.Most rivers systems in their maturity tend to migrate towards mixed sediment load

systems, in which sand from erosion, downstream transported rock material and �ner clay, mud

or silt material is found in some mix, and sinuosit y will generally be higher.At this stage, river

systems will be denoted as sandy �uvial systems, to be o�set from gravelly or bouldery systems.

Many processmodels ha ve been developed tomodel the process of meandering and their

evolvement in time. F orinstance [WR69, CG76, Mia78, Wal80, RS80, All85, Ric87, DS90]. A

recent state-of-the-art can be taken from [BHTP92]. The models developed so far tak emany

input parameters on alluvial plane topography and river geometry, disc harge, sediment load and

characteristics, climate, etc., but it is now recognised that additional human factors, such as

land use, urbanisation and engineering measures, must be known to come up with reasonable

simulation results. See for instance Hooke and Redmond in [BHTP92]. In this thesis, such

models are left undiscussed further. An important parameter thereby is the �erodibility� of the
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river banks versus the erodibility of the river bed. It is assumed here that the river banks erode

easily enough to allow meanders to grow. In that case, meanders tend to grow outw ardand

downstream in various fashions, meanwhile depositing material in their inner bends. Coarser

material at the foot of the inner bend, �ner material more upward. The out w ardlyaccreting

inner bend is known as a point bar. When the disc hargeregime changes, the formation of the

current point bar may come to an end and another point bar, with slightly di�erent con�guration,

grow path, steepness, etc., may start to grow where the former point bar terminates. This way,

a so called composite point bar may be formed, as a succession of v arious individualpoint bars

in the same meander. Figure 6�27 sketc hes this process.

point bar point barpoint bar
composite point bar

thalweg

fourth−order bounding surfacefifth−order bounding surface

Figure 6�27: Sketch of a composite point bar, consisting of a succession of individual point bars separated

by third- and fourth-order boundary surfaces and bounded by �fth-order surfaces.

A common value for the migration velocit y of meanders isO(100−101) m/A, but it depends
on many parameters. The curvature of the meander increases until the neck breaks trough (�neck

shute�). This leaves behind a mud-�lled dead channel, or oxbow lake which by itself may gives

room to a renewed extension of a meander. Once in a while, usually seasonal, the riv er will

be �ooding and the en tirealluvial plane or river valley will be �ooded by commonly �ne grain

material such as �ne sand or clay. If seasonal, often multiple (composite) point bar systems

can be found: a low disc hargepoint bar system and a �ooding disc hargepoint bar system, in

which the tidal area of the low discharge point bar often gets carved by small scale chutes and

cut-o� channels and lobes. In this case, those features will be neglected. Also, paleosol and lag

depositions will be neglected. V egetationand other in�uences often create a usually carbonate

paleosol on top of the composite point bar. At the toe of the point bar, at the river bed, coarse

roc k material that cannot go into suspension, will be deposited. This may create a distinct thin

layer of relatively coarse material. T osweep o� unnecessary details, it will be ignored in this

case study.

In a longer time frame, the river may form an alternate avulsion point, i.e., choose an

entirely other branch or thalweg (�gure 6�27). Assuming a net in�ux of sediment, the valley

in which the river bed is located will tend to �ll up by the stacking layers of river depositions,

deposited in the various geomorphic cycles. Meanwhile, meandering avulsion and other processes

and even tsmay cause erosion to occur. As a result, the topology may become extremely com-

plicated. A real-world example can be taken from �gure 6�25, which shows a 2.3 b y 2.6 km

area of the Milhako river, Alberta, Canada and from �gure 6�26, which maps the development

of meanders of the river Bollin, recorded over a longer period. Most of the river system features

discussed here can be recognised in this picture.

Point bars are of interest to the oil- and gas industry because when buried, they may form

structural traps for hydrocarbons. The result is a channel system of dead and connected channels
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Figure 6�28: Secondary �ow in meander cross section, with velocit y pro�les. Left: point bar in the inner

bend. The top of the point bar is commonly �ner material, deposited in ripple lamination, the lower part

if commonly coarser material, deposited as trough-shaped cross-strati�ed sets.
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Figure 6�29: point bar �ow types. The �ow type III top of the point bar consists of �ner material,

deposited in ripple lamination, the low erpart, �ow type II, consists of coarser material, deposited as

trough-shaped cross-strati�ed sets.

of more or less permeable sands, co vered and dissected by impermeable cla y or silt sheets. T o

model such a reservoir, for instance for in�ll drilling, is beyond today's tec hnical reach. In the

case to be discussed here, a simple geometric point bar model is a �rst objective. The geometric

point bar model will be obtained by stochastic simulation. Next, �uid �ow simulations are to be

conducted in the direction of the meander and perpendicular to the meander. Finally, erosion will

be in�icted on the point bar and �uid �ow computations will be repeated to study the e�ect. The

numerical modelling of the point bar, though much more complicated, builds upon the results of

the barchan dune. Without the approach outlined in section 6.5.4, numerical computations as

to be carried out here would not have been possible.

6.6.2 Data set

The landmark and value sets were constructed using a Monte Carlo technique on measured data

from �uvial outcrop studies of the Tortola �uvial system in the Loranca Basin in Central Spain

b y Martinius in [Mar96]. Characteristic dimensions and rock/grain parameters were drawn from

these outcrop studies. The composite point bar of the medial area, (�type B, geomorphic zone

3�) served as a model for the point bar. Its parameters w ereinput in a point process resulting

in a stochastic landmark set and the resulting α-complex will further be used as a basis for

�uid �ow computations. Figure 6�29 sketches the tw o�ow unit types constituting the point
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bar: the genetic type point bar is further subdivided in �ow unit types, according to litho-facies,

petrographic (internal) boundary surfaces, permeability distribution and gamma-ray response.

T able 6�11 captures the geometric parameters for both �ow unit types.

Sand Sil t

P arameter Symbol Unit II III II III

thic kness ū m 5.8 5.8 0.12 0.12

∆umax m 1.7 1.7 0.04 0.04

width W̄ m 68.0 68.0 68.0 68.0

∆Wmax m 26.1 26.1 26.1 26.1

T able 6�11:Characteristic parameters of the Type II and III �ow unit type. Refer to �gure 6�29 for the
de�nition of the thickness and width. No parameter values were found on the thickness of the separating
clay/silt sheet ush.

The landmark set of the point bar has been stochastically simulated by drawing samples

from a type III �ow unit on top of a type II unit. Starting at some geological age A0, the

composite point bar starts to accrete with a point bar plus silt drape per seasonal cycle Tcyc, in
which one period of failing discharge and one period of high discharge are adjoint. The seasonal

cycle parameters used in the simulation are Tcyc = 0.001 kA and for avulsion Tavul = 1.000 kA.

Meanders w ereassumed symmetric and an arc can be speci�ed around this axis of symmetry

over which the point bar deposits. The following parametric function w asused to describe the

basic point bar shape in a tw o dimensional cross section (see �gure 6�30):

x

z

y

D

h

u

u2u1

Figure 6�30: sketch of the point bar model anatomy used for stochastic simulation. F or an explanation
of the parameters, see text.

x(u) = (u1, u2,−h erf(tan β u1 + u) +D) (6�11)

where:
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h = height of the point bar [m]
β = slope of the point bar [rad]
u = thickness of the point bar at central altitude [m]
u1 = trajectory coordinate along bottom-to-top central axis

in the cross section [m]
u2 = trajectory coordinate along the outer boundary

of the point bar, orthogonal to the cross section [m]
D = depth of the point bar [m]

In equation (6�11), u, u2, h and D are assumed to be constant over time, but u1 = u1(t).
A �slab� of landmarks is created this w ay,later on to bended and con�ned according to the

meander geometry. F urthermore, if u1 > ρ(u1max − u1min), the sample is assumed to lie above

the internal bounding surface betw eenunit type II and type III and belong to unit III. Next, a

standard uniform random number r is drawn on the domain [0, 1), and stoc hasticdeviation is

added as follows:

xi = xi + (2r − 1)nimax (6�12)

where nimax = fi(V ar(xi)), in other words, the maximum stochastic deviation is determined by

the implied variance in that direction.

The value sets are primarily composed of petrophysical properties. In a Monte Carlo-

based stochastic realisation as for the geometry, samples are drawn from the distributions given

in [Mar96].

Sand Silt

P arameter Symbol Unit II III II III

permeability K̄ D 1.7 3.7 0.090 0.124

∆Kmax D 0.8 1.2 0.008 0.10

porosity R̄ [.] 0.102 0.102 0.51 0.51

∆Rmax [.] 0.06 0.06 0.22 0.22

T able 6�12:Characteristic parameters of the Type II and III �ow unit type. E�ective permeability K is
obtained from vertical and horizontal permeabilities found from Darcy's law and single-phase �uid �ow
simulations on a homogenised grid. Refer to [Mar96, App. I] for details.

6.6.3 Data analysis

The petrophysical parameters turn out to be distributed according to a lognormal distributions.

In the stochastic simulation, random uniform samples are therefore drawn and �weighted� against

a lognormal distribution, before transformation: accept if f(u) <= lognormal(u, 1., .01), reject
otherwise, with:

f(u) =
1

σu
√

2π
e

−(ln(u)−µ)2

2σ2 (6�13)

Figure 6�31 shows a clear separation of the property clusters (in property space) of the type III

and the type II �ow units. Although pore surface Ap and grain surface Ag are not independent
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Figure 6�31: P etrophysical parameters of �ow unit type II and III. Cross plot of e�ective permeability

K against pore surface Ap and grain size Ag. Pore surface is de�ned as a surface within a certain

measurement area. Porosity as a fraction can be obtained by linear transformation.

and probably their dimensionless ratio Ap/Ag should be considered instead. The di�erences in

permeability are relatively small, which should be kept in mind for the �uid �ow numerical model

to be developed.

The bounding surfaces of third-, fourth- and �fth-order are believed to form impermeable

ba�es, kinematically restricting the �uid �ow ([Mar96, pg. 36]). The internal bounding surfaces

are partly formed by silt drapes and mud/clay sheets, deposited in times of �ooding and paleohy-

drodynamic changes. The result is a system of permeable (upw ard-�ning)sandstone embedded

in mud- and siltstone. The progradation and retrogradation of the riv er system, along with

a corresponding change of geomorphic conditions, is believed to pla yan important role in the

ev entual connectivity of the labyrin thinestructure of channels ([Mar96, General conclusions])

6.6.4 Weighting

The weight is taken dependent on the position within the point bar. Let ū1 denote a normalised

parametric variable on the domain [−1, 1] running along the central line bottom to top along the

cross section of the sandy point bar and the silt drape. The shape of the point bar is such that

it con�nes as |ū1| increases, that is, when moving aw ay from the central altitude towards top or

bottom. The same is true for angle φ moving aw ayfrom the central hart line of the meander,

where the point bar has its greatest thickness. The normalised weighting here is done by means

of a weight function:

w(u1, φ) = cosφ − |ū1| + C (6�14)

where C is a constant, and the global weighting is done according to properties: higher weight

for silt, lo w er for sand.The intention is to �highlight� the silt drapes. Notice in equation (6�14)
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that the cosine is an ev enfunction. F ora height h of the point bar, with h = 0 for u1 = 0, w e

have that h̄ ∈ [−1, 1] and ū1 = −1 ⇔ h̄ = −1, ū1 = 0 ⇔ h̄ = 0 and ū1 = 1 ⇔ h̄ = 1. The

stoc hastic realisations of the weight �pro�les� for the normalised w eight along the normalised

height within the point bar and the normalised angle around the cen talaxis of the meander is

shown in �gure 6�32 and 6�33, resp.
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Figure 6�32: relative weight distribution w̄(h̄) over point bar height h, at relative height h−1, h0, h.75

and h.95. Weight changes smoothly over the relative heights.
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Figure 6�33: relativ eweight distribution w̄(φ̄) over point bar angle φ. The relative weights at three

three c haracteristics angles are shown: w̄1 at φ−π/2, w̄2 at φ0 and w̄3 at φπ/2 .

6.6.5 Geometric modelling results

Figure 6�34 shows the cross sections of the point bars so obtained. Appropriate transformations

can bend them into the �arc� of the meander. Figure 6�35 shows the �nal result. The right

picture in �gure 6�35 clearly reveals the silt drapes, de�ning the inner �ow channel structure.

6.6.6 Numerical modelling results

Like with the barchan dune, the embedding approach outlined in section 6.5.4 has been follow ed.

The objective was to �nd a plausible inner structure for the point bar, subjected to overall con-

straints, focusing on �uid �ow computations. Meanwhile, a more comprehensive understanding
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Figure 6�34: Resulting α-complex of a 2D point bar cross section (left), and a series of such cross

sections (right).

Figure 6�35: α-complex of a point bar system. Left: oblique view, right: cross section. Observe the silt

drapes in the cross section.

should be gained of the ph ysicalmeaning of tunnels, pockets and voids. This lead us to work

out tw o further approaches:

A clay bulk complex with a sandy complex injected

T unnels, pockets and voids represent barriers, plugs, clay inclusions, etc. This approach is

�ne for the secondary �ow directions, but less meaningful for the principle �ow directions.

A sandy bulk complex with a clay complex injected

T unnels, pockets and voids now represent high permeable channels. F rom a computational

point of view, this is the preferred approach for principle �ow directions.

The selection of an appropriate approach will also be directed by the kind of input data available.

First, an overall v elocit y�eld was computed for simple �uid �ow across the monolithic

point bars at regional scale. This gave an indication of the Darcy velocities, water pressures, and

hydraulic conductivities for the point bars as a whole. Then, the internal structure of the point
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Figure 6�36: injected, heavily eroded sand point bar for �uid �ow computation on a stochastic point

bar α-complex. Shown are the tetrahedra plus the singular edges, removed before the actual FEM-

computations commence.

Figure 6�37: �uid �ow computation on a synthetic point bar α-complex. The point bar has been created

by �injecting� a heavily eroded sand α-complex into a clay bulk. Left: pressure distribution in x-direction,
parallel to the point bar's internal structure, right: pressure distribution in y-direction, perpendicular to
the internal structure.
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bars was re�ned by stochastic simulation of the silt drapes. For various values of α, conduc-
tivities were re-computed, imposing the overall regional (�up-scaled�) conductivity as a physical

constraint. Next, the �ne-scale conductivities were computed using a commercial �nite element

code, employing combined linear stress/single phase �uid �o wcomputations. The commercial

code, not b y any means designed to be fed with awkward FEM-grids, acted repulsively on the

injected α-complex. Prescribed grid element aspect ratio tests are w aytoo restrictive for this

kind of n umerical models. The most e�ective solution w ouldbe to lift the input restrictions.

This was not feasible, ho w ever. Therefore, the model has to be adapted. The geometric model

had to be modi�ed suc hthat the most critical parts w ereeliminated. The modi�ed α-complex

�injected� is shown in �gure 6�36. The results of �uid �ow computations, the pressure distribu-

tion in x-direction, parallel to the point bar's internal structure, and the pressure distribution in

y-direction, perpendicular to the internal structure, are shown in �gure 6�37.

6.6.7 Discussion

Using the parameters collected on outcrops, the de�ned stochastic simulation model appears to

be able to generate fairly realistic point bar models, from a geometric point of view. Deterministic

process models can be found in literature, though, but stochastic models were not found. The

initial problems with the numerical simulation are en tirelydue to the sev ere shape aspect ratio

constraint imposed on the numerical grid elements. The constraints are imposed with inmind,

freely generated grids in typical engineering problems. Relaxing the constraints is one w ayto

get around (not possible in this case), using an alternate FEM-code is another. FEM codes

used for this purpose were b y no means meant to cope with geometries of this nature. It would

therefore be in teresting to evaluate alternate FEM approaches, suc has the edge element, dual

grid approach proposed in [Bos98]. This aspect will not be discussedan y further in this thesis.

Rather, it will be posted as an open problem in chapter 7.

One may further raise the question of �nding some optimal α-value, related directly to the

computed hydraulic conductivity. As might be expect, it turned out to be impossible to �nd an

optimal α for both the horizontal and the vertical conductivity. Optimisation is only possible

for a combination.

6.7 The L8-icon shape family instantiation

6.7.1 Problem description

This case is a bit of a bold one among the others in this chapter. This case seeks to demonstrate

the shape family instantiation from the L8-icon. This is an important building block in the

modelling framework introduced in chapter 3. For a quick glance, review �gure 3�2. Given

an icon, derived as discussed in chapter 3, instantiate a shape family using a�ne and shear

transformations.

6.7.2 Resulting L8 shape-family

Figure 6�38 shows a linearly (a�nely) transformed shape family, �gure 6�39 a sheared family of

a section of the L8 meandering river icon. The central shape is always the icon. Shapes along



Section 6.8: the L8-icon shape family instantiation 203

Figure 6�38: linearly (a�nely) transformed shape family of a section of a meandering river, transformed

by a scaling transformation. The centre shape is the icon, left-to-right is a scaling of X by a factor .5,
1. and 2.,resp., bottom-to-top is a scaling of Y by a factor .5, 1. and 2., resp. Icons on the diagonal

bottom-left to top-right have identical shape as the icon.
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Figure 6�39: transformed shape family of a section of a meandering river, transformed by a shear

transformation. The centre shape is the icon, left-to-right is a shearing along the X-axis b y−60◦, 0◦

and 60◦, resp., bottom-to-top is a shearing along the Y by −60◦, 0◦ and 60◦, resp. None of the shapes

(except the icon itself) is identical to the icon shape.
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the diagonal (bottom-left to top-right) are always transformed isotropicly, i.e., the same for X
and Y . Only the shapes along the diagonal in �gure 6�38 have the same shape as the icon. All

other instantiated shapes diverge from the icon shape.

6.7.3 Discussion

Figure 6�38 and �gure 6�39 sho wthe diversity that can be obtained by geometric transforma-

tion alone. This case demonstrates the basic principle of shape parametrisation and primitive

instancing discussed in chapter 3. Indeed, the icon parametrises en entire family of river shapes.

The even tually applied family members are to be further constrained by additional data and

ph ysical constraints. Applying transformation matrices rather than the (continues) transforma-

tion mapping further enhances geometric modelling �exibility, provided such detailed constraints

are a vailable.This issue will not be further discussed here.

6.8 The Comet West

6.8.1 Problem description

A comet is an irregularly shaped natural object of frozen gas and rocky debris, orbiting around

the sun. A comet has a focal bright approximately 10 km wide kernel, called the nucleus. When

approaching the sun, a comet develops three tails: the bright3 coma, a large trailing cloud of

di�use material, the pale-blue ion tail of ionised plasma, and the yellowish hydrogen envelope,

with hydrogens that escaped the comet's gravity. The Comet West4 has been observed by various

observers during its bright appearancein 1976. See �gure 6�40, left picture.

Emphasis in this case will be on the model editing capacity as discussed in chapter 3.

Model editing will be applied to signi�cantly modify the initial result.

Figure 6�40: α-complex of the Comet West. Left: as observed. Centre: nucleus (gray-scale weighting,

with threshold: 0.4). Right: ion tail, obtained by extraction of the blue cluster points shown in �gure 6�

41.

6.8.2 Data set

The data set was composed from the many digital pictures disclosed through the Internet. One

of the major challenges was the uniformation of the colour encoding of the observations. The

3
the colour actually depends on the observation and recording methods

4named after the astronomer West, who �rst described his observation of the comet.
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Figure 6�41: α-complex of the colour spectrum property space. X-axis represents red, Y-axis green and

Z-axis blue. Clusters represent di�erent parts of the comet. Dark cluster represents the blue ion tail. The

α-value increases left-to-right. Separation is weak and clusters concentrate around the gray-diagonal.

ev entual value set PS w ascomposed of the spectral conten tof the ligh temitted by the comet.

Using a named colour model (section 4.7.1), the ion tail w as encoded pale-blue and the hydrogen

envelope and dust tail where coloured white, with a yellow component for the hydrogen content.

The resulting data set contained only data in 2-space E2.

6.8.3 Data analysis

Spectral contrast is very weak and clustering is bad: �gure 6�41 depicts the normalised property

space in the unit cube, looking down the gray-scale diagonal. Nonetheless, three �clusters� are

visible: a blue cluster (dark) representing the ion tail and the edges of the dust tail, a gray cluster

along the main diagonal representing the dust tail and a rest cluster (n ucleus, coma, dust tail).

Due to the �pale� colours, the property values tend to accumulate around the main diagonal.

Contrast cannot be enhanced without modi�cation of the observed value sets.

6.8.4 Weighting

Cluster members, i.e., landmarks, were extracted from the landmark set S by membership of

the clusters in property space. The blue ion tail cluster for example, is composed of exactly

those landmarks making up that tail. See �gure 6�40, right picture. The nucleus was found by

extracting landmarks of which the properties showed a very low hydrogen conten t. See �gure 6�

40, central picture.

Figure 6�42: 3D α-complex of the Comet West, reconstructed from cross sections, that were edited

using �g. 6�40 as a template. Dust and ion tail have been extended and modi�ed (the claim that the

model �ts the observations must be abandoned).
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6.8.5 Result

The model of �gure 6�40 was created by hyper-spatial modelling, with the property space spanned

by the spectral content of the light emitted by the comet. How to come from a 2D-model to a

model in 3D? With only data available in 2D, no 3D model could be made without editing.

6.8.6 Editing the result

The coma was in part reconstructed from various pictures, using �paint-brushes� to spray land-

marks on cross sections. In this case, a paint-spray tools could be modi�ed such that the intensit y

λ and the area could be tuned. Property values were then interpolated/extrapolated from the

value sets available for the cross sections. The initial result of �gure 6�40 was taken as a template

for further editing. Figure 6�42 shows the even tually acceptedresults.

6.8.7 Discussion

In many aspects, this case uncovers the limits of this approach. In the �rst place the problem of

compiling property value sets from various sources, some of which su�er from the named colour

problem (section 4.7.1). In the second place the limits imposed by the w orkingwith observed

properties with only little contrast. Clustering in this case is extremely weak and as a result so

are the tail boundaries. As expected with property-ruled objects.

On the other hand, the model editing capacity could be demonstrated quite conveniently

with this case. It is not very complicated to evaluate various scenarios. Unfortunately, suitable

tools for editing are still lacking. A spraying tool like the one used here is not bad a �rst attempt.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

7.1.1 The concept of an α-complex

In this thesis, α-complexes have been merited in the context of their anticipated role in the mod-

elling framework discussed in chapter 3. This modelling framework targets at the reconstruction

of natural objects. The storage of icons in a catalogue of template objects is foreseen. Natural

objects are generally too complex to describe them analytically. Sampling point sets are there-

fore the only w ayto represent observed objects. This concept is also known as morphological

landmarking and the sampling points are called landmarks. F or most modelling purposes, repre-

sen ting an object by landmarks is inadequate. Many purposes require a solid object description.

A solid object description is a prerequisite for topological queries, most numerical computations

and simulation. Alpha complexes turn out to be able to abridge the gap between point sets

and solid objects and appear to be ideal for accreting and eroding objects. Such objects are

frequently encountered in nature. The use of α-complexes on this type of objects reduces the

problem of the dynamic geometry and topology across the full deposition-erosion cycle to the

de�nition of a dynamic point set. Its implicit topology can cope with an ytopological change,

no matter in how many parts the objects scatters, persisting to keep its modelling �exibility. T o

further enhance modelling �exibility, particularly in the presence of regularly spaced landmark

sets, w eighted α-complexes were used, generated by weighted landmarks. In a neighbourhood

of high weights, the α-complex tends to develop at lower α-values, whereas negative weights

discourage the α-complex to develop.

7.1.2 The use of α-complexes to implement icons

In this thesis, the idea of icon shapes, primitives carrying the parametrised anatomy and dynamics

of families of natural objects, has been presented. Its application has been demonstrated pri-

marily on subsurface objects, a class of natural objects. In addition to the conceptual capacities

just mentioned, α-complexes can be de�ned in general dimension, which makes them well-suited

for hyper-spatial modelling. Hyper-spatial modelling is a modelling approach in which geometric

space is augmented with property space. Additional a-priori knowledge and constraints that can

209
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be transcribed into landmarks or property values can be merged. Cluster analysis and factor

analysis may help to build property space and the augmented landmarks may be stored in a

single icon α-complex. Projections plus in tersections and cluster-membership allow landmarks

representing embedded objects )parts) to be extracted from a larger set, or embedded objects

from their embedding background. F urthermore,icon objects can be endow ed with process def-

initions and in ternal constraints, enabling them to act as process models. Dynamic modelling

of α-complex models is conveniently supported by morphological set operations on the generat-

ing landmark set, such as dilation and erosion. The result is an ev olutionarymap, driven by a

morphological process. Instantiation of parametrised objects is a matter of creating the object

from an icon, b y assigning actual values to its parameters, assigning a location, an orientation

and a size. Deformation can be accomplished with transformations, such as re�ection, scaling,

shearing, etc. If required, additional observed data can be used to serv eas an attractor that

further shapes the instantiated primitive. An inversion-based forward modelling scheme can also

be imposed.

The derivation of icon has been based upon the principles of shape analysis and shape

matching, which is maturely developed. T w o approaches to instantiation have been discussed in

this thesis. One approach constrained to generate objects with a topology similar to the icon,

i.e., objects within the linear icon variet y.Another approach relaxes these constraints and allows

the topology of the instantiated object to diverge from the icon's topology. Keeping within the

icon variet yensures the instantiation mapping to remain homeomorphic. On the other hand,

the second approach giv es room to a more �exible instantiation and a wider family of shapes.

7.1.3 The design of weight sets

Weighting has been one of the key issues in this thesis. F or natural objects, weights can be

derived from a w ell-chosen combination of discriminating observed physical properties. This is

not the only possible approach but for natural objects in general, it is the most in tuitive and

fruitful approach. Determining the weights has been treated as a tw o-stageproblem: deter-

mining the normalised weights and a weight transformation. The accumulation of the relative

contributions of the normalised properties in property space leads to the normalised w eights.

Normalised weights can be stored within the icon, independent of the landmark spacing. Weight

transformation relates the normalised weights again, accounting for the actual nearest neighbour

distances. Commonly, the relative distribution of weight found in this normalised weight set is to

be preserved in the weight transformation, obeying the property-ruled nature of the object un-

der creation. Weight transformation is therefore mostly isotropic and determined by the globally

smallest nearest neighbour distance. T oobtain a hole-free object or a hole-free region, weight

transformation may be taken one step further: an attractor, suc h as the Stienenmodel may be

used to de�ne the locally largest possible weights.

Theoretical support b y a co verage process was found to provide valuable insight in the

initial design and incremental improvement of the weights. After �tting of a theoretical model

to the observed empirical point process, many more quantitativ e estimations can be determined

to aid in the process of weighting. Most underlying point processes are Poisson point processes,

with some degree of clustering. An analysis of the nearest neighbour and the local-furthest neigh-

bour distances provides quantitativ einformation on the local Laguerre distance to be abridged

by weight. In fact this problem w as turnedin to a coverage problem and the quantitativ einfor-

mation on the local coverage w as used.T ransformations can sometimes be used to improve the
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spatial distribution of the landmarks, prior to weighting. F or instance, landmarks with strongly

directional patterns were found to be ill-suited and transformation can be applied to entirely

or in part eliminate the improper spatial distribution. Accumulating e�ects of transformations

and w eight require detailed knowledge of the underlying sampling data set and modelled ob-

ject. When applying transformations, it is important to understand the e�ect on the Lebesgue

measure and on the development of the α-complex with varying α. Weighting has an omni-

directional e�ect, ignoring tensor-like and vector-like phenomena. The lack of support for vector

and tensor-like phenomena is something to be improvedb y future research.

7.1.4 Alpha complexes as a formal object description

The abilit y to handle singular faces and disjunct parts in object descriptions based on α-
complexes is both a strength and a complication: it provides modelling �exibility during the

modelling process, but at the same time, it complicates the formalisation of certain parts in the

modelling framework, particularly in conversions. Holes and geometrically coupled complemen-

tary objects, such as �uids in pore space, are inherently de�ned, along with the object itself. An

α-complex may violate the criteria of contin uity, solidit y, closure and homogeneous dimensional-

ity, but regularisation and the background-embedding approach, as with the dune and the point

bar case, can be follow ed to remedy this.The introduction of the related nil-object greatly aids

in achieving homeomorphic maps. The α-complex as a representation scheme is unambiguous

but not unique. V alidationis generally expensive.

7.1.5 Numerical modelling with α-complexes

Running numerical computations over an α-complex does not require a transcription between

the geometric model and a numerical model. But turning an α-complex into a numerical model

for FEA does, however, require a solution for three problems: singular faces, separations and

sliv ers. In this thesis, a framework has been developed that circumvents these three problems

by exploiting the fact thatα-complex and triangulation of the same point set share faces. This

allo ws for an embedding of the α-complex in the always connected triangulation. T akingan

α-complex close to the triangulation rather than the triangulation itself is generally su�cient to

remove all or enough of the slivers to make the numerical grid acceptable for FEM-computations.

Sliv ers,like obtuse triangles, turn out to be generated mostly in the boundary region and for

α-values close to αmax. The ev olving barchan dune model of section 6.5 demonstrated the

use of this framework in an ev olutionary process model, including topological changes due to

avalanching. Due to the capacity of an α-complex to reconstruct its topology, the erosion, shear

stress computations and handling of avalanches can be processed in a single non-interrupted

iterative computation, allowing an evolutionary process model to evolve by time-stepping without

human intervention. The use of an α-complex is an e�ective solution to the regridding problem

in modelling phenomena such as the avalanching, particularly when separations and holes may

be expected.

7.1.6 Computational demands

Generally, detailed models require vast amounts of data and large computers to process them. F or

simple models (O(102) to O(103) landmarks), results show that implementations can generally
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be made fast enough for interactive use. F or more complex and bigger problems (O(104) to (106)
landmarks), storage becomes increasingly critical. The largest model, the Gulf of Mexico salt

dome, had almost 3 · 105 landmarks and took more than 1 Gb internal memory and 5 to 6 hours

of dedicated processing time on a pow erful 4-processorOnyx 2 Silicon Graphics �high-end�

computer. This case points out the current limits which are fairly restrictive, still. With the

adven t of faster computers with more memory, this limit is believed to be lifted soon. Addition-

ally , domain decomposition, not discussed in this thesis, can help to break down the problem

in smaller sub-problems and ha vemultiple smaller computers compute the solution in parallel.

The necessary methods, techniques and tools to implement such solutions are already available.

Storage requirements can be reduced by exploiting the fact that α-complexes can be stored as

unevaluated object descriptions, i.e., the complex itself can be uniquely be reproduced from the

set of landmarks alone.

7.1.7 General conclusion

All in all, this makes α-complexes a suitable candidate to serve as a storage container for icons in

a convenient manner. As such, α-complexes have been proven to be formal (chapter 2), mature,

widely applicable (chapter 6) and robust (chapter 5) enough to serve as the container object to

capture the icon shape as discussed in chapter 3. Although some improvements are feasible, a

w eighting approach has been developed (chapter 4) that is powerful y et �exible enough for the

purposes de�ned in the scope of this thesis. The use of α-complexes o�ers good possibilities for

knowledge-based modelling and variational geometry. Crisp measures-of-merits and cost function

are mostly lacking, for natural objects, and topological constraints are often unde�ned. With the

help of ph ysicalconstraints such as mass and volume, fairly realistic geometries and topologies

can be obtained,follo wing the approach as outlined in chapter 3 and applied in chapter 6.

7.1.8 An outlook on longer-term perspectives

The idea of creating a lively collection of in terconnectedco-existing natural objects (shapes) is

steadily growing tow ards reality. In the century lying ahead, technical developments in the area

of distributed computing are foreseen to become common ground and sound enough to facilitate

the technical environment. A modelling system like this has all the characteristics needed for

concurrent subsurface modelling, which, in turn, is believed to bring about important cost savings

for the E&P-industry. Meanwhile, the search for appreciable de�nitions and design of shapes can

take place, with enhanced domain analyses and object-oriented tec hniques as a starting point.

For shapes based on α-complexes, the key step is to establish a relation relating geophysical

properties to the value of α and the corresponding weight set. Enhanced computing capabilities

will do the rest.

At the end of the day, natural object models comprise more then just geometry and topol-

ogy and there is a strong urge for natural object model editing to be brought up to a higher level

of abstraction. Pure geometric modelling shall be replaced by geological modelling, biomedical

modelling, etc. Geometry and topology shall be modelling process output rather then user input.

The process of �translating� model updates into required geometric and topological modi�cations

�rst, before evaluating the e�ect of these changes in terms of geology, biometrics, etc. is error-

prone and simply too time consuming. Geological modelling ought to take place on the basis of

geological concerns, manipulating geological parameters only. Within the domain of geological
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modelling, geometry and topology are mere derivatives.

It is exactly this philosophy that underpins the idea of parametric modelling and knowledge-

base dmodelling. P arametric (variational) modelling is based on capturing the characteristic

features in a few determinant parameters. Geometry and sometimes also topology may alter by

variation of these parameter values. V ariational geometry, topology and functional characteristics

cannot be seen in isolation: one a�ects the other. Important here is the fact that, within the

limits set by a net work of in ternaland external constraints, geometry and/or topology changes

imposed by the variation of a limited set of parameters, can bring about well-determined changes

in functionalc haracteristics (see e.g., [Kal89]).

Knowledge-based modelling proceeds solely in terms of knowledge-based and cased-base

reasoning and scenario development. The geometry and topology is generated only just prior to

representing models and results. As a matter of fact, the user is hardly given a position therein

to directly manipulate the geometry or topology. Modelling with hyper-spatial primitives, though

akin to parametric modelling, tries to emphasise more on knowledge modelling, b y embedding

(aggregated) property values and a-priori knowledge. An abstract primitive is a symbolic con-

struct ([Req80, Kal89]) composed of domain variables, quanti�ers, predicates and constraints,

and it is in representation schemes that symbolic variables are valuated (given a value), obeying

rules and constraints.

7.2 Recommendations for improvements and further research

7.2.1 Planned data acquisition

All too often, sampling is a single step process, without su�cient knowledge of the expected

objects being sampled. Ideally, sampling is driven by an early model, that is further re�ned using

planned ac quisition of further samples. The practical value for today's oil exploration at large

may be argued. Seismic acquisition in regional surveys for instance, is mostly a one time vent,

�bulk�-type acquisition. Nevertheless, planned acquisition approaches ha ve been introduced, for

example in in tegrated hydrocarbon reservoir management approaches. Reservoir management

targets at the monitoring of production characteristics such as pressure depletion, over time. This

dynamic modelling approach relies onan in tegrated data acquisition, notably 3D or 4D seismic

plus well logs. Keywords here are rapid model update and low-cost. F ora practical approach,

refer for example to Pink in [Pin93].

The idea of planned data acquisition (e.g., [Tay92]) is basically to start with a limited

detail model of the object, based on a preliminary sampling data set, a-priori knowledge, a

h ypothesis, or a combination of these. Next, an acquisition plan is generated or re�ned as new

constraining data is brought in, after which this cycle is repeated. The di�culty of implementing

a planned data acquisition is more in the �nding of a measure-of-merit, MoM for short (Taylor, in

[Tay92]; see �g. 3�1), objective functions and cost functions that assist in converging to the best

among the suite of possible solutions for the object's geometry. It is therefore necessary to have

a measure of the �distance� betw eena template object and the actual object. The Procrustes

distance is commonly used for this purpose, e.g., [SKM95, DM98]. This subject further remains

un-addressed here.

First goal is the aggregation of the anatomic landmark set. Anatomic landmarks are

usually extracted from a set or family of identical sampled objects. In the parlance of scheme 3�
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1, identical objects represented by training data. By de�nition, the landmarks are present in all

of the family members, and therefore also in the icon. In the identi�cation process of anatomic

landmarks, salient features ought to be preserved. T o facilitate comparison, the family members

are normalised �rst, i.e., their centres of gravity are translated to the origin �rst and their mean

distance relative to this common origin is normalised by scaling.

V arious approaches exist for the estimation of landmarks. To paint the idea, an outline of

the approach can be found [BT00]. This method seems applicable to a broad class of natural

objects. Brett and Taylors automated landmarking approach is centralised around the building

of a binary tree of which each node contains the merger of shapes contained in the left and

righ tbranch. Merging in this context, means that pairs of corresponding landmarks ha vebeen

identi�ed and positioned in a w aythat interpolates both shapes best. More in particular, the

leaves contain the observed family members, and the root contains the mean shape of the entire

family. The root contains the landmark set that survived in the propagation from observed

family members all the way up to the root. This common set of anatomic landmarks propagates

back down the branches to the observed objects. An estimate of the mis�t of the individual set

of anatomic landmarks from the aggregate set in the root is a goodness-of-�t measure for that

individual family member against the aggregate shape. The root shape is the natural but not

necessarily the only candidate for an icon. Brett and Taylor show that following their approach,

roughly ten percent of the observed points make it into the �nal root anatomic landmark set.

They also found that errors introduced on relatively smooth objects tend to swing up and may

be inadvertently identi�ed as landmarks.

Planned acquisition involves the observation of these points on a ph ysicalobject in the

�rst place. The observed object takes the role of a new family member. Even if all anatomic

landmarks ha vebeen measured for an observed shape, further observations may assist in the

�nding of the exact geometry of the object. F ormally, these observations cannot be regarded

as anatomic landmarks anymore, because they are not found profoundly enough on the other

family members. Such observations may nevertheless be necessary for a further hovering of the

reliability of the model. Of course, weighting model and planned acquisition go together hand

in hand.

The open problem of planned acquisition in combination with landmarking consists of the

follo wing questions:

Open problem 7.1 (Planned acquisition in landmarking)

7.1a What is a prop er start, in terms of anatomic landmarks, or initial reliability, for an initial

model to b ase further ac quisitionupon?

7.1b How ar e holes �detected� by a stepwise re�ned ac quisition approach? Moreover, how to

resolve the issueof ambiguous topology?

7.1c Weighting model and planned acquisition go together hand in hand. Can the derivation of

weights be dir ectlycoupled to the coarse model at the basis of planned acquisition?

7.1d Planned acquisition for a dynamic model is still a problem. Moreover, optimising objective

and/or cost functions at any time is di�cult and highly problem-dependent. How to tackle

the issue of time dep endentgeometry evaluation in a general sense?

7.1e Should the merger of pseudo-landmarks be included? What if pseudo-landmarks become

disquali�ed by later anatomic landmarks?
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7.2.2 Shape uncertainty and uncertainty shapes

In this thesis, weight are primarily linked to ph ysicalproperties. Uncertainty in the physical

properties thus propagates to uncertainty in the weight and �nally to uncertainty in the geome-

try. Inmany modelling approaches and ev aluations,uncertainty is a key factor, for instance in

Decision Support Systems (DSS) and Economic and Risk Management (ERM) systems. Rep-

resenting spatial uncertainty is an important step. Instead of physical properties, w eights can

be coupled to uncertainty. Doing so opens up the road to a ordered family of shapes, ordered

by (un)certainty. Such families can represent stoc hastic geometries. Remark that themem bers

of such a family may again show holes and separations if uncertainty goes do wnto zero. Ge-

ometric constraints may be the result of economic or business constraints. F or instance, b y a

�nancing company accepting no uncertainty less than 34% or a governmental agency accepting

no volumetric estimation involving material with a porosity of less than 0.28 + 0.06. Numerical

computations may be needed to aggregate uncertainty across the shape.

The following open problem can be de�ned:

Open problem 7.2 (Uncertainty shapes)

Given a shape, represented by an α-complex, such that in every of its vertices the uncertainty of

the geometry is given. Then:

7.2a How to determine an uncertainty shape with a given maximum level of uncertainty, based

on these values?

7.2b How to aggregate uncertainty across k-faces? How to aggregate uncertainty across separate d

parts?

7.2c How to interpret the topology of uncertainty shapes? What is for instance the meaning

of holes that may be made arbitr arysmall or may be made to disappear by increasing α?
Should uncertainty shapes for DSS-es and ERMs ful�l certain top ological constraints in

order to be meaningful?

7.2d With uncertainty coupled to weights, what is the meaning of α?

7.2e How to couple the ordered α-family of uncertainty shapes to planned acquisition (Open

problem 7.1)?

7.2f Which top ological queries are required for modellers to interpret the uncertainty shapes?

7.2g How to insert statistical a-priori knowledge and constraints?

7.2h Howto treat anisotropic uncertainty distributions?

7.2i How to pr ocess and store the results of numerical computations?

7.2j How to compute di�erenc eamong two shapes within a family? Which norm is to used for

that? How to visualise uncertainty �distances�?

For an introduction of decision analysis and risk analysis, see for instance [Meg84, New75].
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7.2.3 Shape analysis

In chapter 3, shape analysis has been introduced for the derivation of icons from observed land-

mark sets. It is unclear to what extend the orientation of subsurface shapes plays a role in their

classi�cation. It is quite common for subsurface properties to di�er considerably in horizontal

and vertical direction, or in conformal direction (in the plane of deposition) and perpendicular.

Open problem 7.3 (oriented versus non-oriented shape)

The question may be raised, from an earth science point of view, as to whether subsurface shapes

can be classi�ed, irresp ectiveof their orientation.

The open problem consists of the following questions:

7.3a With processes signi�cantly in�uenced by orientation, can internal processes and constraints

of subsurface shapes be considered identical irresp ectivethe directionof gr avity forces? For

example: is a su�ciently tilted cap rock a trap?

7.3b How to identify featur es that somehow are relate d to the orientation?Consider for example

a tilted block of compacted rock.

7.3c Can size equip a shape with di�erent b ehaviour?How small a trap should still be seen as a

trap?

Regarding open question 7.3a: in the further research into this matter it appears to make sense

to include the possibility of vectorial weights, to be discussed below. See open problem formu-

lation 7.4. Regarding open question 7.3b: here, scale-space analysis may be helpful. Funda-

mental approaches can be taken from [Lin94, SNFJ97]. Also see [Ogn94, AK95] and for further

background on applications refer to [Wan83, Ran87, Hel94]. F orthe impact on the α-complex

de�nition, also refer to [MD00].

7.2.4 Generalisation of weights

For α-complexes to have increased practical meaning in subsurface modelling, the current concept

needs to be endow edwith a generalised weight vector : g : E d → Rm. Practical forms being,

for example: g : E 3 → R3, a vector �eld w(x) of weight vectors in 3-space, or g : E 3 → R2,

with g adding a weight in gravity direction and one perpendicular to this direction. F orevery

data vector, consisting of a geometry in E3, with an additional parameterspace constituted by

k (pseudo-)parameters, each of which may be a scalar, a vector or a tensor:

x(d) =
( d dimensions for geometry+k independent parameter (groups)︷ ︸︸ ︷
x = (x, y, z)︸ ︷︷ ︸

location

,p1 = (p1,1, p1,2, . . . , p1,l)︸ ︷︷ ︸
parameter subspace 1

, · · · ,pk = (pk,1, pk,2, . . . , pk,m)︸ ︷︷ ︸
parameter subspace k

)

delivering a weight vector:

w(d) =
( d dimensions for geometry+k independent parameter (groups)︷ ︸︸ ︷
w = (wx, wy, wz)︸ ︷︷ ︸

location

,wp1 = (wp1,1 , wp1,2 , . . . , wp1,l
)︸ ︷︷ ︸

parameter subspace 1

, · · · ,wpk
= (wpk,1

, wpk,2
, . . . , wpk,m

)︸ ︷︷ ︸
parameter subspace k

)
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Potential variables, such as �uid pressure, may be described just �ne b y a scalar. Fluid

pressure is in trinsically omni-directional (or: undirectional). Radiogenic heat �o wfor example,

is a �ow variable, generally described by a vector �eld and a w eight set based on it would

require weights to be vectorial. Apart from potential variables, represented by scalars, there

also exist vector potentials. The edge-element method, a FEM-variant, is based on the vector

potential. See for instance [Bos98]. Some material properties, suc has strain and permeability,

or v ariables such as hydraulic conductivity, are intrinsically tensorial, i.e., they are described by

a tensor. F or instance, for a problem in a3-model space, a tensor can be represented by a 3 × 3
generally unsymmetrical matrix of tensor coe�cients. Refer for instance to [Bra47] for a general

background introduction.

√
wx

√wy√
wz

p

Figure 7�1: geometric interpretation of vectorial weight, using an ellipsoid. As a reference, the 2-sphere
with ε =

√
wx has been added.

How to extend the current use and interpretation of weight, in order to accommodate for

vectorial and tensorial weight? A weight value w is called vectorial if its values can be represented

by a vector, de�ned in some vector space and similarly, a weight value is called tensorial if its

values can be represented by a tensor, de�ned in some vector space. V ectorialweights can be

accommodated for using ellipse geometry (�gure 7�1). A classi�cation as discussed for spheres in

section 4.2 could be implemented using quaternions, a generalisation of a complex number. More

in particular using imaginary quaternion, with a zero real part and for instance three imaginary

parts. An i-quaternion is de�ned as: q = r + ip1 + jp2 + kp3, with r = 0. Like with the sphere,

p1, p2, p3 are associated with the radii along the main axes (see �gure 7�1) and each of the radii

may be negative, independent of the others. Background material on quaternions can be found

in [Sho85, SM86, NM88], the majority of which is targeting at the application to rotation vectors.

A fundamental discussion in to the matter of using spatial complex coordinates and quaternions

can also be taken from [Nee97].

Projective geometry may used to map an ellipse geometry on a ball or sphere geometry.

In a more general context, (d − 1)-spheres and (d − 1)-ellipsoids can be regarded as centr al

conic sections; sections obtained by intersecting a cen tral conic. The geometric properties,

tangential chords, to the ellipse need to be described, so as to establish orthogonality of tw o

ellipses, paving the way to the de�nition of skew regular triangulations. Inversion seems to be an

important linking concept betw een spheres and ellipsoids and their orthogonality. In [AAL+99],

skew V oronoidiagrams have been proposed, using direction-dependent distances and direction-

sensitive measure. The approach taken may be a good starting point to further w orkout the

concept of vectorial weight. Also refer to [vdW73, Sha77, SK79, Hua81, Mun84, Oda88, Sto91,

Bix94, KK96, Bix98].

Open problem 7.4 (Generalisation of weight)

7.4a Is it necessary to generalise weight into general dimension? Or would a vectorial and/or a

tensorial weight description in 3-space R3 be su�cient?
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7.4b Apart from �ow variables and potential variables, the use of vector potential variables has

been suggested. Se e for instance [Bos98]. How to treat these variables and how to merge

them in the concept of generalise dweight?

7.4c The concept of quaternions seems limited to the use in 3-space only. Mainly in relation to its

geometric interpretation and description of the ellipsoid geometry. If weight is generalised

to Rd, how can its implementation be supported by quaternions?

7.4d Can a d-ellipse, parabolic, hyperbolic, in general, an section thr ough a (d + 1)-conic be

interpreted geometricly as a vectorial weight? Can projective geometry be use dto come to

a formulationby Hermitian matrices, like in se ction 4.2 (also see [Hua81])?

7.4e Can this be extended to tensorial weight?

7.4f Can operation upon them be supported by pr oje ctivetransformations?

7.4g T othat extent, can homogenous coor dinatesor Plücker coordinates be use d to reach to

simpler and less computational formulations?

7.2.5 Composed weight functions

Weights and their e�ect can be stacked, i.e., withg : E → R and assuming a 1-dimensional case,

with g = f1 ◦ f2 ◦ · · · ◦ fp we have that for a vertex xi, the weight is giv en by a function:

wi = f1(xi) + f2(xi) + · · · + fp(xi) =
p∑

l=1

fl(xi) (7�1)

This may be a powerful approach to analyse and design the e�ects of weighting. It enables to

�t a w eight (composed) function to user de�ned constraints that must be honoured. Certain

basic weight functions γl may be designed, of which the e�ect is well understood. Choosing a

line arcombination of such basic functions may provide the desired e�ect. Let W = {wi} be a

set of prescribed w eights, i.e., for all v ertices xi ∈ X, 1 ≤ i ≤ cardX = N , one may write for

w(x) = Γ(p)(x), the p-order linear combination:

w(x) =
{ ∑p

l=1 aiγl(xi) , such that

wi for ∀x = xi ∈ X
(7�2)

with ai ∈ R being some real coe�cient. F or these basic weight functions γl : E d → R the use of

Lagrange polynomials [LP82, Zie83, Hug87] may be considered.

The following open problem can be formulated.

Open problem 7.5

7.5a Are L agrange polynomials indeed the most appropriate class of functions to apply for the

basic weight functions? With multi-dimensional solutions in mind, should tensor-product

splines be considered?

7.5b Can the curve �tting approach be generalised into general dimension hyper-surface �tting?
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7.5c How can the approach be combined with the masking weighting strate gy described in sec-

tion 4.6.3?

7.5d Is there a motivation to couple weight functions with their counterparts in FEM element

de�nitions?

7.2.6 Transformations of weighted points

There seems to be no mathematical foundation for weight transformations, like there is for linear

Euclidean transformations. Mainly because (see also Annex C):

1. the Laguerre distance is not a metric and it is not a metric property under Euclidean

isometric transformations and even not a metric property under Laguerre isometries

2. product space E d×R, combined with the Laguerre metric is not a metric space and behaves

non-Euclidean

3. as Laguerre distances may become negative, it is unde�ned (in the scope of this thesis)

what the topological consequences are and therefore also whether the Laguerre distance

fails to be a topological property

Actually, all these aspects are inter-related and a result of the nature of the combination space-

metric.

T o answer these questions, one approach might be to study the Laguerre transformations.

See for example [Coo16, Ch. VIII�X1]. In c hapter 4 attention has been restricted to underlying

w eighting e�ects, and w eighting strategies. Open problem formulation 7.6 will further give

directives for future research into this matter.

Open problem 7.6

The description of this open problem borr ows heavily from [Coo16, Ch. VIII-XI]. Transformations

that impact on the weight-sphere of a weighted point are in fact sphere transformations. Spherical

transformation in Cartesian space are always conformal and may be de composed in inversions

and re�ections. Dualities can be established between spherical and L aguerre transformations by

mapping them into an augmented spherical spac e. Set S̃ can be approached by a convex set

circumscribed by an oriented sphere (see also [Sto91]) that is completely on one side of a set

of oriented tangent hyperplanes (along which the power is measured, chapter 2). A duality so

found is that every L aguerre transformation can be decompose d into four (if dir ect, i.e., acting

on a sub-group) or �ve (if indirect) Laguerre inversions. A dir ect Laguerre transformation can

be described as a rigid motion (translation, rotation or screw about a real axis) in an augmented

spherical spac e,like a penta-spherical or hexa-spherical space, obtained from the original spac e

by adding improper points at in�nity. Dualities can then be established between invariant in the

original spac eand the augmented spherical spac e.

The open pr oblem consists of the following questions:

7.6a Can Laguerre transformation be formulated in general dimension? One of the problems may

be that a generalisation of problem descriptions base don complex numbers into general

dimension raises many practical problems. One strategy is the use of quaternions, e.g.,

[NM88]. Quaternions have their limitations, however
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7.6b Is it possible to augment space E d such that it obtains a prop erlyde�ned asso ciated aug-

mented spherical space?

7.6c Do real rigid motions exist in augmented spherical space that are homeomorphic, apart from

the identity transformation?

7.6d If it were possible to conveniently de�ne transformations in the augmented spherical space

by means of (decomposed) L aguerre of which the invariants are well understood, what does

this mean in the light of classifying transformations like above?

7.6e Is it possible to �nd explicit formulations for the real and the imaginary part of the norm

of the transformation?

7.2.7 Handling void space in an icon

Model building using instantiated objects means populating model space with autonomous ob-

jects the shapes of which do not conform. Inevitably, space between them is not occupied by

some objects. On top of that, instantiated objects may themselves ha veholes. The generalised

problem of handling void space in geometric and numerical modelling and its interpretation in a

ph ysical sense requires further research. The following open problem can be formulated.

Open problem 7.7 (handling void spa ce)

Assume a model spac eto b epopulated with instantiated objects from icons.

7.7a Can void spac e be justi�ed from a (geo)physical pointof view?

7.7b If not, should it be �lled with some appropriate �background� material, like clay or sand, or

should it be saturate d by a �uid,like water?

7.7c If void spac eis allowed, how to handle void spac ein the anticipated inversion?

7.7d Dilation may also be seen as a auxiliary pr ocess to implement in�ll with some back-

ground material to obtain complete spatial occupancy. What is the relation of dilation

with item 7.7b?

7.2.8 Modelling erosion processes

Eroding faces may be associated with improper empty set nil-faces. In fact this is what has

been suggested to keep evolutionary maps homeomorphic. In�ll of holes is handled by nil-faces
co veringthe hole. Alternately, eroded landmarks can be re-inserted under a closing operation.

This mimics the process of relocating eroded material in existing holes. It must thenbe bound

to some material balance. Such a process has not yet been found in literature.

The following open problem can be formulated.

Open problem 7.8 (Re-inserting eroded landmarks)

Assume a model space to be populated with instantiated objects from icons, all objects r epresented

by α-complexes.

7.8a Can void (model) space be justi�ed from a (geo)physical point of view? How does �uid

expulsion and transfer take place? What boundary conditions ar e de�ned then?
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7.8b If not, should it be �lled with some appropriate �background� material, like clay or sand, or

should it be saturated by a �uid, like water? Whatpr operties do such materials have?

7.8c If void space is allowed, how to handle void space in the anticipated inversion?

7.8d If in�ll with eroded landmarks takes place, how can evolutionary maps be kept homeomor-

phic?

7.2.9 Constraints

Constraints can be subdivided in a variety of w ays; equalities and inequalities, in ter- and in-

tra shape, hard, soft, etc. Thanks to the hyper-spatial approach, ph ysicalconstraints can be

translated into geometric constraints: points that need to be honoured, or relative positions that

need to be honoured. F or instance volumetric constraints, time constraints, parameter constraint

(attr actors), parameter dependencies, etc.

Each shape instantiated from a primitive has to obey the intra-shape constraints; inter-

nal rules framing the initial and any of the future states during the evolvement of an object.

Inter-object constraints are de�ned among shapes; in which order of appearance they may be

instantiated, which shape counteracts to which, which parent shape gives birth to which child

shape, which shape can modify processes in other shapes, etc.

The de�nition and implementation of constraints is still a very active research area. See

for instance [Mes89, FBMB90, Aki90, DL91, Kum92, TS92b, Tsa93, FH97]. This certainly also

holds for the solving of a set of constraints. The subject, challenging as it may seem, has not

been discussed in this thesis. It will remain as an open problem for future research.

Open problem 7.9 (geometric and topological constraints)

In many pr actic alsituations, it is convenient to be able to impose geometric and top olo gical

constraints onthe α-complex, independent of the α and weight set chosen.

The open problem consistsof the following questions:

7.9a Can geometric constraints be successfully de�ned in the form: Ψ(α,w) = c, e.g., α+w ≥ c,
with c a given constraint?

7.9b Can topological constraints be successfully de�ned in terms of α-exposedness, and when

state d in the form of the previous question: α + w ≥ c with c = αexp + w, can they be

satis�ed simultaneously?

7.9c Can constraints be de�ned time dependent? E.g.,in the form: Ψ(α(t), w(t)) = c(t)

7.9d If constraints can be de�ned time dependent, how to keep them satis�ed under erosion?

7.9e The e�ect of weight cannot be dir ected along one speci�c edge, but works across the entir e

top ological star. How to satisfy con�icting constraints along di�erent edges in the same

star?
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7.2.10 Numerical modelling

F urther research should target at more complicated erosional models. At some point, the use

of control volume �nite di�erence methods (CVFD) may be preferred over the FEA. Node-

based FEM methods may sometimes lead to inaccuracy, such as a loss of mass. This is generally

unacceptable. Face-based FEM methods can be stated such that this �aw does not occur. Primal

and dual grids, associated with nodes and faces, respectively, can be combined. Bossavit ([Bos98])

for instance, suggests to use approximate formulation on primal and dual grid and to combine

the exact formulations of both grids. Bossavit uses metric-less topological formulations and uses

the hodge-operator to couple them. One of the di�culties to overcome is to handle improper

dual elements near the boundary of the completion of triangulations. Another problem is the

vulnerability for slivers and needle-like elements. F or instance inE2, this implies a triangulation

with only acute triangles, so that radical centres are guaranteed to be inside the triangle and

dual edge representing �ow variables are guaranteed to intersect their primal edges orthogonally.

The following open problem can be de�ned.

Open problem 7.10

7.10a Can the formulation be further be optimised for simplicial elements?

7.10b How to guarantee triangulations containing no obtuse triangles?

7.10c How to �rep air� failing dualities in the improp er faces gained from the completion of a

triangulation?

7.10d How to copy with holes and evolutionary maps froma numerical point of view?

7.10e Can the formulation as described above be combined with the background embedding ap-

pr oach?Canneutr al pr op ertiesalso be formulated in a dual sense?

7.2.11 Development of a ShapeEditor

A major problem to be solved is the development of an intuitive ShapeEditor. Editing of shapes

will be at a di�erent level of abstraction, compared to geometric modelling. Rather than mod-

ifying thegeometry , so as to end up with the desired implicit changes of the geology, end users

will no wwork on the geology directly, manipulating constraints, parameters, etc. Up-scaling,

meshing, boundary conditions, interpolations, etc. will all be hidden in the shape, by the domain

expert.

What still remains to be done is the design of a suitable end user level ShapeEditor, a

tool that can easily modify an already existing shape thereby verifying active constraint and

modifying adjacent shapes, wherever applicable. F urthermore, a sample data set will have to be

compiled, capturing all characteristics needed for the derivation of shapes. The use of case-based

reasoning is anticipated.

The following open problem may be formulated.

Open problem 7.11 (ShapeEditor)

7.11a How to implement visualisation and selection of landmarks from hyper-sp ac eto the mod-

eller?
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7.11b Once landmarks have been sele cted,how to perform an incr ementaltriangulation and α-
complex computation?

7.11c How to pr esent the icon variety to themo deller?

7.11d How to display internal constraints?

7.11e Should landmark selection be restricte dto anatomic landmarks or do es it also include

pseudo-landmarks?

7.11f How to visualise the shape under creation?

7.11g How to feed the shape under creation with planned acquisition (open problem 7.1). Can the

planned acquisition plan be replayed by the ShapeEditor?

7.2.12 Percolation problems

A multi-phase system is a system in which various phases of possibly multiple components may

co-exist in thermodynamic equilibrium. A three-phase system for instance may be composed

of a w aterphase, an oil phase and a gaseous phase, in eac hof which water plus hydrocarbon

components may be con tained, in some stable or unstable composition. Such a system may for

instance �ow through the void space of some porous medium. Numerical models exist to predict

the transport through such media, based on Darcy's law. V arious workers used Poisson Voronoi

diagrams to (stochastically) model a porous medium (e.g., see [OBSC00, pp. 301�306]). It would

be in teresting to compare this approach with results obtained using an α-complex pore space

geometry description.

Open problem 7.12

7.12a Howto map a multi-phase system to the dual-shape description as described in chapter 5?

How to split up the �uid and gaseous phases?

7.12b There must be a relation between the number of handles (tunnels) and the permeability.

What is this relation?

7.12c Can more accurate computation be made by considering the joint prob abilities of solid phases

and �uid phases within the framework of dual shapes?

7.12d Is it advantageous to de�ne a multiply complementary geometrically coupled shape, rather

than just a dual, for multi-phase systems?

7.2.13 Domain decomposition

Methods and techniques to apply domain decomposition on the computation of an α-family are

in fact all presented and understood already. A domain decomposition decomposes the problem

domain in a number of smaller identical problems. A cluster of workstations may then solve

the smaller problems in parallel, re-assembling the entire solution afterwards. This would allow

bigger problems to be handled faster, while saving expenditures in computer platforms.

Open problem 7.13

7.13a Divide-and-conquer algorithms on triangulations need to be revise din the light of this ap-

plic ation. See for instance [Ede87, Goo87, Buc88].
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7.13b Design similar algorithms to merge partial α-complexes

7.13c Design strategies to handle weight e�ect on internal domain boundaries.

7.13d Design strate gies for numerical computations on sub-domains.

7.13e Design strate gies for asynchronically running initial value numerical computations on sub-

domains.

7.13f Design algorithms to spread the computational e�ort andb alance the computational load.

7.2.14 Data on natural objects

A �nal remark on sampling data. Surprisingly few suitable sampling data point sets were encoun-

tered on subsurface objects and natural objects in general. In the medical research scene, there

is an organ database, created byGill Barequet, at the Tel Aviv University. No equivalent w as

found for natural objects or subsurface objects. Having such data sets w ouldgreatly facilitate

further research lik e the cases described in chapter 6.



Annex A

Mathematical concepts

A.1 Overview

This annex will brie�y in troduce the mathematical concepts underlying an α-complex. The

discussion presented here should be su�cient to understand the broad merits of α-complexes.
Nomenclature can be taken from the Nomenclature overview up fron tof this thesis. T ermi-

nology is explained in annex B, see for instance table B�1. F or aspects left untouched, and

for more detailed treatise, the reader is referred to the following standard references. Alge-

braic and geometric topology: Van der Waerden, [vdW73], Semple and Kneebone, [SK79],

Munkres, [Mun75],[Mun84]. F or computational and combinatorial geometry: Preparata and

Shamos, [PS85], Edelsbrunner, [Ede87], Stol�, [Sto91], Boehm and Prautzsch, [BP94], Hartwig,

[Har96], De Berg et al., [dBvKOS97], simplicial complexes: Giblin, [Gib77], Nagata, [Nag83],

Munkres, [Mun84], Paoluzzi, Bernardini, Cattani and Ferrucci, [PBCF93] and more speci�cally,

for α-complexes, [Ede92], [Mue93], Edelsbrunner and Mücke, [EM94]. Background on topolog-

ical graphs and related topics can be found in Giblin, [Gib77] and Gross and Tucker, [GT87]

and Thulasiraman and Swamy, [TS92a], background on weighted Voronoi diagrams can be found

in Aurenhammer, [Aur87b], Edelsbrunner, [Ede92], and Boehm and Prautzsch, [BP94]. For

point process and mathematical morphology, refer to: [Dig83], [SS94], [SKM95], [BNKVL99] and

[OBSC00]. F or clustering, classi�cation and factor analysis, refer to: [Mos97] and to [Boc96]. A

recent survey paper on shape matching was presentedb y Veltkamp and Hagedoorn in [VH01].

A.2 Sets, domains and co-domains

A set is an unordered collection of unique entities drawn from some common universe of discourse.

Discussions in this thesis involve numbers drawn from the following sets:

A�1



A�2 Annex A: Mathematical concepts

N the set of natural numbers

Z the set of integer numbers

R the set of real numbers

Q the set of rational numbers

C the set of complex numbers

Elements of a set are either enumerated, like in:

S = {s1, s2, s3} (A�1)

described by means of some (in)equality) or equivalence class, like:

Y = {s ∈ S | c1 ≤ si ≤ c2} (A�2)

for some suitable c1, c2, and:

Y = {s ∈ S | si an extreme point} (A�3)

A set is called closed (open) if it contains (does not contain) the points of its boundary. An

open set is denoted as
◦
S, a closed set as S̄ and the boundary by ∂S. The set complement

ComplS is composed of all elements in the universe of discourse not belonging to S. If a set S̄ is

closed, its complement ComplS is open, vice versa. The closure ClS is the smallestclosed set

containing set S. A set is said to be bounded if all of its members can be contained in a �nite

radius ball and a set is called compact if it is bounded and closed. A set is called �nite if its

cardinality, the number of elements, is in set N of natural numbers. Notice that a compact set

is not necessarily �nite. A set is called symmetric if S = −S. The re�ection of a set −S (or:

S̆ ) of a set S ⊂ E
d is obtained by scalar multiplication with λ = −1:

−S = {−s | s ∈ S} (A�4)

A set is said to be convex if all its members can be written as convex combinations (see further

down) of its boundary members. Every subset of a convex set is again a convex set and the

closure of a convex open set is also a convex set.

A Minkowski set addition of tw o �nite setsS1 and S2 is given by:

S1 ⊕ S2 = {s1 + s2|s1 ∈ S1, s2 ∈ S2} (A�5)
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and the corresponding Minkowski set subtraction:

S1 / S2 = {s1 − s2|s1 ∈ S1, s2 ∈ S2} (A�6)

One has, with a third �nite set S3:

S1 ⊕ (S2 ∪ S3) = (S1 ⊕ S2)
⋃

(S1 ⊕ S3) (A�7)

and with S1 ⊂ S2:

S1 ⊕ S3 ⊂ S2 ⊕ S3 (A�8)

In general, Minkowski set subtraction is not the inverse of a Minkowski set addition.

A set is a regular open set if:

S =
◦
S (A�9)

and a regular closed set if:

S =
◦
S̄ (A�10)

and furthermore:

S̄ =
◦
S

⋃
∂S (A�11)

So one has that:

◦
S ⊆ S ⊆ S̄ (A�12)

A relation maps originals from a domain onto their images belonging to some co-domain.

Domains and co-domains are covered by sets and relations may take the form of:

H : S (→ (0 ..1 ] (A�13)
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where, in equation (A�13), H is the relation, S is the domain to draw the originals from and

interval (0 ..1 ] is the co-domain. Intervals are either open, half-open or closed. Relations

are also de�ned betw een the set covering the domain and the set covering the co-domain. In this

w ork, intervals are mostly de�ned on N, R or C:

open: (r1, r2) = {r ∈ R | r1 < r < r2}
half-open: [r1, r2) = {r ∈ R | r1 ≤ r < r2}
half-open: (r1, r2] = {r ∈ R | r1 < r ≤ r2}
closed: [r1, r2] = {r ∈ R | r1 ≤ r ≤ r2}

(A�14)

Let a set function T : V (→ W be de�ned on a domain set V, that assigns a value in co-domain

set W to members in V. One also saysthat w ∈ W = T(v ∈ V) is the image of the original v.
If all members v ∈ V are assigned an image in W by the function, then the function is called a

mapping from V in toW.

A function is called an injection of V into W if every image w ∈ W has at most one original

v ∈ V. If all members w ∈ W are an image of at least one original v ∈ V then the function is

called a surjection of V onto W. If a function is both an injection and a surjection, then every

image has exactly one original, v.v. Such a function is called a bijection.

Let T = T1 ◦ T2 ◦ · · · ◦ Tm be a chain of m set functions Ti : Vi (→ Wi, 1 ≤ i ≤ m, with

Wj = Vj+1. Then:

∀i : Ti a bijection ⇒ T = T1 ◦ T2 ◦ · · · ◦ Tm a bijection (A�15)

and:

∃i : Ti not a bijection ⇒ T = T1 ◦ T2 ◦ · · · ◦ Tm not a bijection (A�16)

An order relation (or: simple order, or: linear order) on a set X is a relation for which:

(i) x 	= y ⇒ x P y ∨ y P x,∀x ∈ X

(ii) ¬(x P x) ∀x ∈ X

(iii) x P y ∧ y P z ⇒ x P z (A�17)

where the operator P denotes the order relation. One of the principle order relations is the �less

than� order relation <. According to this de�nition, the relation ≤ is not an order relation, as

it violates (ii). A partial order is a relation, denoted by< for which:

(i) x < x ∀x ∈ X

(ii) x < y ∧ y < x ⇒ x = y

(iii) x < y ∧ y < z ⇒ x < z (A�18)
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A strict partial order is a relation, denoted by ≺ for which

(i) ¬(x ≺ x) ∀x ∈ X

(ii) x ≺ y ∧ y ≺ z ⇒ x ≺ z (A�19)

A.3 Points, vectors and spaces

Let E d denote a d-dimensional Euclidian space, for some d ≥ 0. Then in this thesis, this

d-space can be written as:

E d =
d∏

k=1

Rk = R1 × R2, . . . ,×Rd︸ ︷︷ ︸
d dimensions

(A�20)

Given a point x in Ed. P oin tx can be represented by its d-tuple of coordinates in E d,

x = (x1, x2, . . . , xd), b y its coordinate vector on some natural basis x = (x1, x2, . . . , xd), or,
equivalently, in matrix representation byX = [x1, x2, . . . , xd]

T . The above representations

will be used interchangeably.

Expanding space E d with the real number space R yields a Cartesian product space Ed × R
and representations for a point x become (d+1)-tuples over this Cartesian product. Let S ⊂ E

d

and a W ⊂ R. F ora pair of equal cardinality sets S ∈
(

E
d

N

)
and W ∈

(
R

N

)
, so that card S =

card W = N , one obtains a set of N ordered 2-tuples:

s̃ = (s1, s2, . . . , sd, w) ∼= (s, w) ∈ S ⊗ W (A�21)

where ⊗ indicates an ordered Cartesian product. In the sequel, the tilde-notation will often

be dropped, as in general, data points may be assumed to be always weighted.

The points x of a set X = {x},X ⊆ E
d are said to be in general position if every sub-

set Yj, Yj ⊆ X, card Yj ≤ d + 1 is geometrically independent. A set X ⊆ E
d, with X =

{x1,x2, . . . ,xd,xd+1} is said to be geometrically independent if:

∑d+1
i=1 aixi = 0∑d+1
i=1 ai = 0


 ⇒ ∀i : ai = 0 (A�22)

When in general position, all positively oriented k-simplexes have a positive determinant and

hence a positive length, area, volume, etc. Let a point xi be given by it's coordinate vector
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xi = (xi,1, xi,2, . . . , xi,d). Then the orientation of a (d+1)-sequence (xi0,xi1 , · · · ,xid) of points
in X is positive, if:

∆ = det




xi0,1 xi0,2 · · · xi0,d 1

xi1,1 xi1,2 · · · xi1,d 1
...

...
. . .

...
...

xid,1 xid,2 · · · xid,d 1




> 0 (A�23)

If ∆ < 0 then the orientation is said to be negative and if ∆ = 0, i.e., if the d + 1 points

lie in a single h yperplane, the orientation is not de�ned. Also, with Yi = {y(i)
1 , y

(i)
2 , . . . , y

(i)
d+1}

and Yj = {y(j)
1 , y

(j)
2 , . . . , y

(j)
d+1}, Yi 	= Yj, there exists a δ > 0 for which |y(i)

k − y
(j)
k | < δ, for

1 ≤ k ≤ d+ 1. Apparently, when in general position, nok + 1 vertices lie in a common (k − 1)-
dimensional �at.

A topological space is a mathematical abstraction of a space. A topological space X is said

to be metric (metrizable), with a metric µ(x1,x2) i� for all x ∈ X:




µ(x1,x2) ≥ 0 ∧ µ(x1,x2) = 0 ⇔ x1 = x2 positive de�niteness

µ(x1,x2) = µ(x2,x1) symmetry

µ(x1,x3) ≤ µ(x1,x2) + µ(x2,x3) triangle inequality

(A�24)

Euclidean space exploits a Euclidean metric, a measure which de�nes the distance betw een

any tw opoints x1 and x2 along a line connecting them, by:

d(x1,x2) ∼= ‖x1 − x2‖ = 〈x1 − x2,x1 − x2〉 1
2 =

√∑
i

(x1i − x2i)2 (A�25)

where 〈., .〉 denotes the standard dot- or inproduct.

A σ-algebra is a system of sets and subsets that is closed under basic operations, lik e union,

intersection, complement, etc. The power set is an example of of a maximal σ-algebra and the

family of Borel sets B(d) is another important one. The family of Borel sets form the smallest

σ-algebra on Ed that contains all open subsets on Ed. It is strictly smaller than the power set

and it can be constructed by basic operations from open subsets. As new open subsets can be

added, it can be made to contain all closed (compact) subsets. P oin t setS is a subset of a Borel

set. Let µ be a measure on X and let Σ be a σ-algebra on that space. A measure µ(d) on (X ,Σ)
is a function µ : Σ (→ [0,∞] suc h that:
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µ(∅) = 0

µ
(⋃∞

j=1 Vj

)
=

∑∞
j=1 µ(Vj)

(A�26)

Being a measure, ν(Yj) ≥ 0, ∀Yj ⊆ S. A locally �nite measure can be de�ned on a

hypercube by:

ν
(d)
L (I) = (v0 − u0)(v1 − u1) · . . . · (vd−1 − ud−1) (A�27)

where I = [0, 1]d is the unit d-cube. The Lebesgue measure ν
(d)
L (I) is a measure thatcan be

constructed from this unit cube according to eqn. (A�26). It can be regarded as a generalisation

of the length and it is usually de�ned by considering a half-open interval co vered by smaller

half-open interval. It resembles the length for d = 1, the area for d = 2 and the volume for d = 3.
In general in this thesis, it also resembles the d-volume or hyper-volume in general dimension.

Let Yi,Yj ⊆ X be di�erent subsets of X so that i 	= j ⇔ Yi
⋂

Yj = ∅. The Lebesgue measure

ν(X) is set function for which:




ν(∅) = 0

ν(Yj) ≥ 0, ∀Yj ⊆ X

ν
(⋃

j Yj

)
=
∑

j ν(Yj)

(A�28)

Euclidean metric forms a Lebesgue measure, the Laguerre distance not, see annex C. The

Lebesgue measure has the following properties. Let T≡ denote an isometry and S denote a Borel

set. Then, under transformation T≡ : S (→ [0,∞), with corresponding transformation matrix

T≡, we have for the Lebesgue measure:

ν
(d)
L (T≡S) = ν

(d)
L (S) (A�29)

and also, for a subset Y ⊆ S:

ν
(d)
L (Y) ≤ ν

(d)
L (S) (A�30)

A Radon measure is a measure that is �nite for every bounded set. A Lebesgue measure is

also a Radon measure. See [SKM95]. Therefore, with S a bounded Borel set:

ν
(d)
L (S) < ∞ (A�31)
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Euclidean space is a v ector space, allo wing, among others, for vector addition and scalar

multiplication, resp de�ned as:

x1 + x2 = (x10 + x20 , x11 + x21 , . . . , x1d−1
+ x2d−1

) (A�32)

and, with λ ∈ R:

λx = (λx0, λx1, . . . , λxd−1) (A�33)

A.4 Flats, planes, linear v arietiesand subspaces

A h yperplane is a (d − 1)-dimensional �at, spanned by d + 1 points in general position, that

bisects d-space in to tw ohalf-spaces with dimension of at most d. In 2-space, for example, a

h yperplane is a1-�at (a line) and in 3-space it is a 2-�at (a plane). According to the above de�-

nition, hyperplanes are always considered ��at�, i.e., not skew or curved. A bisecting hyperplane

can also be obtained by a (d − 1)-sphere of in�nitely large radius with the interiorand exterior

of the corresponding d-ball on either side. A hyperplane satis�es the implicit equation:

H = {x ∈ E
d | 〈x,a〉 = c } (A�34)

for some a 	= 0. T w o such hyperplanes H1 and H2 are parallel if:

H1 = {x ∈ E
d | 〈x,a〉 = c1 } (A�35)

and:

H2 = {x ∈ E
d | 〈x,a〉 = c2 } (A�36)

for some c1, c2 ∈ R, c1 	= c2. If hyperplanes are not parallel, a number of them can be arranged

(positioned in space) such that they fully wrap (bound) a part of space. F or example,d+1 such

hyperplanes (no tw o parallel)su�ce to span a d-cell σ(d). Their intersection:

⋃
 d⋂

j=0

Hj


 = ∂σ(d) (A�37)

An open half-space satis�es the general implicit de�nition:
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Ψ(x) < c (A�38)

and, accordingly, a closed half-space:

Ψ(x) ≤ c (A�39)

Let hyperplane H be given by the equality 〈x,a〉 = c. An open half space H− ⊂ E
d is de�ned as:

H− = {x ∈ E
d | 〈x,a〉 < c } (A�40)

and analogously, for an open half space H+:

H+ = {x ∈ E
d | 〈x,a〉 > c } (A�41)

the border being formed by the h yperplane H for which Ψ(x) = c. P oin tsin H− are said to lie

beneath H, points in H− lie above or beyond H. Observe that this imposes an orientation

on H. An open (closed) half-space is that part of space that lies on one side of (or on) a

h yperplane.

A support plane of a convex set is a tangential plane to that set, such that the intersection of

the tangential plane and the convex set is only a single point. F or every point in the boundary

∂S of a convex set S there exists a support plane and a convex set intersected by a hyperplane

is a compact �at (possibly reduced to a single point). In the latter case, the h yperplane is a

support plane.

A radical plane between tw oweighted points s− and s+ is a hyperplane of points at equal

w eighted distance to these tw o points:

Ψ(x) = L(s−,x) − L(s+,x) = 0 (A�42)

where L(s−,x) is the Laguerre weighted distance of a point x relative to point s− ∈ H− and

s+ ∈ H+ to be discussed later.

A convex combination of m points pj ∈ E
d is a linear combination λ1p1 +λ2p2 + · · ·+λmpm

with each 0 ≤ λj ≤ 1 and the sum of all coe�cients λj = 1. Let H(S) denote the convex hull of

the points pj . The convex hull is the set of all convex combinations of S. A point x belonging

to this hull can then be written as:

x = λ0(x)s0 + λ1(x)s1 + . . . + λm−1(x)sm−1 (A�43)
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The scalar coe�cients λj(x) are sometimes called the conv ex coordinates or barycentric

coordinates of point x with respect to the convex hullH(S). Related to convex coordinates is

the concept of linear v arieties. Consider for instance a closed edge sisj. An arbitrary point x
on the edge can be given in parametric form by:

x = (1 − λ)si + λsj (A�44)

with 0 ≤ λ ≤ 1. This is a direct consequence of the fact that the edge is a convex set. A subspace

that can be written in the form of equation (A�44) is called an a�ne linear subspace. This

generalises to general dimension. All a�ne linear subspaces are convex sets.

A lattic e is a collection of locations in a space of which the distance of two adjacent points along

one direction �ts some regular pattern.

A.5 Transformations

A transformation T : S (→ U is a mathematical operation de�ned on all elements of a set S of

originals, called the domain, creating a second, basically di�erent set U of transformed originals,

called image or range. A translation (or: glide) transformation is a move of all points by an

equal vector u. A rotation is a revolution over some angle and around some axis of revolution.

A re�ection transformation is a perpendicular mirroring of eac hpoint in a h yperplane or an

intersection of at most d such hyperplanes. Changing the sign of the x0-coordinate of all points,

for instance, is a re�ection in a hyperplane perpendicular to and crossing the origin of the X0-

axis. A glide re�ection is a re�ection followed by a translation by a vector lying in the re�ection

hyperplane. A transformation is said to be an identity transformation if it leaves position

(i.e., location and orientation), size and shape in variant and a transformation is said to be an

isometry (or: isometric transformation or: rigid motion) if it leaves the Euclidean distance

betw eentw oarbitrary members of S invariant, i.e., unchanged. If an isometric transformation

contains an in variant point (a centr e), then it must be a rotation or a re�ection. If suc han

invariant point does not exist, then it must be a translation or a glide-re�ection. If all points are

invariant points, then it must be the identity transformation, by de�nition.

A transformation T : S (→ U is a linear transformation if:

T(λ1s1 + λ2s2) = λ1T(s1) + λ2T(s2) (A�45)

An a�ne transformation is a transformation that can be composed of a translation by a

translation vector and a linear transformation. If the translation vector is a null vector, then the

a�ne transformation is a linear transformation.

The image space U0 ⊆ U of transformation T, denoted by imT, is the part of co-domain U

that can be �reached� b y transformationT. The kernel or n ull spaceS0 ⊆ S of transformation

T, denoted by kerT, is the part of domain S that is mapped onto the null-vector 0 under
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transformation T. The norm of a transformation T, denoted ‖T‖, is the supremum of the

ratio betw een a norm of the image and that of its original.With s 	= 0:

‖T‖ = sup
sj

‖T(s)‖
‖s‖ (A�46)

F urther,‖T‖ ≥ 0 and ‖T‖ = 0 only for the null-transformation. F urthermore:


 ‖Tk(S)‖ ≤ ‖T(S)‖k

‖λT(S)‖ = |λ| ‖T(S)‖
(A�47)

T ransformation norm ‖T‖ can be computed from the eigenvalues of a system of the form

A = TΛTT , where T is a matrix called the transformation matrix, representing the transfor-

mation. F or details, refer for example to [Str86].

A.6 Representations and maps

A representation is a symbolic construct composed using the letters of an alphabet A℘

and some syntax Θ. An alphabet A℘ is a �nite set of symbols {℘} . An element ℘ ∈ A℘ is

called a letter or a token. A map T : V (→ W transforms one representation V into another

representation W . A mapping chain is a sequence T = T1 ◦ T2 ◦ · · · ◦ Tm of maps Tj . A

map(ping) is called a surjectivity , injectivity and bijectivity, resp. if:

∀w ∈ W : ∃v ∈ V : t(v) = w ⇒ T : V → W surjective (A�48)

and:

∀v ∈ V : w1 = w2 ⇒ v1 = v2 ⇒ T : V → W injective (A�49)

∀v ∈ V : ∃w ∈ W : w = T (v) ∧ ∀w ∈ W : ∃v ∈ V : w = T (v) ⇒ T : V → W bijective (A�50)

Also, see section A.2. A map is called a homeomorphic map (or: homeomorphism) if it is

a bijective map, and consequently, a map T : V (→ W is homeomorphic, it can be shown that

kerT = {0} and imT = W . A map is called a nil-map 0 if:

∀v ∈ V : 0(v) = 0 (A�51)
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A.7 Graphs

A graph G = {S,F} is a set of v ertices(or: nodes) S and a set of edges (or: arcs, or: faces)

F connecting them. A �nite graph is a graph composed of a �nite set of vertices and edges. If

edges represent relations betw een nodes that are not symmetric, edges are directed, constituting

a directed graph. Assume card S ≥ 2. The nearest neighbour graph NNG(S) connects each
member in S to another member in S that is:

(i) connected by an arc in triangulation T (S)

(ii) closest-by

A local-furthest neighbour graph LFNG(S) connects each mem ber in S to another member

in S that is:

(i) connected by an arc in triangulation T (S)

(ii) furthest apart

In a geometric graph, edge lengths are representing some distance between the nodes and

the nodes represent points in space. A geometric graph is said to be a simplicial geometric

graph if it contains no self-loops or multiple edges among any pair of nodes. If based on the

Euclidean metric, nearest neighbour and local-furthest neighbour graph as used in this work are

�nite directed geometric graphs.

An incidence graph IG = {Σ, I} is a graph in which the collection Σ = {σ(k)} of k-simplices,

−1 ≤ k ≤ d + 1, is represented as nodes and incidence relations I = {deg(σ(k))} as edges.

Also, refer to annex B.

A.8 Balls and spheres

Given a Euclidean d-space E d, and ε ∈ R, ε ≥ 0 a real number. Then an open d-ball

◦
B(d)
ε (c) with

radius
√
ε and centred at c is the set of points x ∈ X ⊆ E

d, for which in Cartesian coordinates:

◦
B(d)
ε (c) = {x,x ∈ X ⊆ E

d | 〈x − c,x − c〉 − ε < 0} (A�52)

while a closed d-ball B̄(d)
ε (c) with radius

√
ε and centre c is the set of points x belonging to E

d,

for which:

B̄(d)
ε (c) = {x,x ∈ X ⊆ E

d | 〈x − c,x − c〉 − ε ≤ 0} (A�53)
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Note that, by de�nition, an open d-ball is (covered by) an open set and a closed d-ball is a closed

set. Moreover: Int B ∼=
◦
B, Cl B ∼= B̄, and Bd B ∼= ∂B.

A (d − 1)-sphere S
(d−1)
ε (c) with radius

√
ε and centred at c is the set of points x ∈ X ⊆ E

d, for

which:

S(d−1)
ε (c) = {x,x ∈ X ⊆ Ed | 〈x − c,x − c〉 − ε = 0} (A�54)

Notice that S
(d−1)
ε (c) = ∂B

(d)
ε (c). F urthermore,S

(d−1)
ε (c) can be written in normalised form:

S(d−1)
ε (c) = {x,x ∈ X ⊆ E

d | xTx − 2cTx + ‖c‖2 − ε = 0} (A�55)

Let line L belong to a pencil through point x and be giv enby y = uλ, such that uTu = 1.
Line L enters sphere S for λ = λ1 and lea ves sphere S at a point on L where λ = λ2. Let line L
belong to a pencil of lines through point x, giv enby v = µu, with uTu = 1. The pow erof x
with respectto the (d − 1)-sphere is given by the product of µ1µ2 and in the tw opoints p and

p′, µ1 = µ2 = π2. This classical problem is also known as the circle intersection chord-problem

and µ1µ2 = π2 is also known as Vieta's formula. For a proof of the fact that power π2 does not

depend on the heading of line L, see for example [Max52, Ch. V], for a sphere in E 2. A proof

for a general dimension (d− 1)-sphere was not found but follows readily from generalisation into

general dimension.The normalised equation for S (see equation (A�55)), takes the form:

aλ2 + bλ+ c = 0 (A�56)

where:




a = uTu = 1

b = 2
(
xT − cT

)
u

c = xTx − 2cTx + ‖c‖2 − ε

(A�57)

This is an ordinary quadratic equation in λ which has tw oreal roots λ1,2 if D = b2 − 4ac > 0,
i.e., if ε > 0. If ε < 0, roots will be imaginary, associated with a negative weight w = −Q = i2Q
where Q > 0 and i2 = −1. A sphere with ε < 0 is called an i-sphere. The power of a point x
has the follo winggeometric interpretation ([Aur87b],[Ede92],[BP94]). With point x, a point in

X ⊆ E
d and S̄(d−1)

ε (c) a closed (d − 1)-sphere in Ed, the power of x with respect to S̄(d−1)
ε (c) is

the square of the distance π = d(x,p) = ‖x − p‖, with p being a contact point of a line through

x, touching the sphere. Point p′ is the other tangent point, and for p one may also read p′, so
π = d(x,p) = d(x,p′). If radius ε of S̄(d−1)

ε (c) grows, such that a point x becomes contained in

the border Bd S̄(d−1)
ε (c) of the sphere or in the interior Int S̄(d−1)

ε (c) of the sphere, then its pow er
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becomes zero, and negative, resp. According to equation (A�53), a weighted closed d-ball
˜̄B

(d)

wc
(c) can now be de�ned as a d-ball with radius

√
wc, centred at point c, of which the interior

consists of points having a non-positive power with respect to B:

˜̄B
(d)

wc
(c) = {x,x ∈ X ⊆ E

d | 〈x − c,x − c〉 − wc ≤ 0} (A�58)

For a negative weight wc = −Q = i2Q < 0, c̃ = (c, wc) = (c,−Q) can be in terpreted as an

i-sphere (d-ball) centred at c with radius −i
√
Q. Oftenin geometry, therefore, weighted points

are treated as d-balls.

A pencil of two spheres in Ed is a linear combination:

P(S1, S2) = λ1S1 + λ2S2 (A�59)

The Lebesgue measure (or: d-volume, or: hyper-volume) of a d-ball B
(d)
R with radius r =

√
R is

given by:

ν
(d)
L (B(d)

R ) = eπR
[
1 + erf(r

√
π)
]

(A�60)

F or further details and proofs, see [DFM90].

A.9 Weighted triangulation

A d-triangulation is a tessellation of d-space with non-overlapping d-simplices as building

blocks. As such, it is obviously also a simplicial complex and a cellular complex (or: cell(ular)

decomposition). In a topological sense, a tessellation of non-overlapping cells is also a cov er.

The in tersection of tw oof its simplices, if non-empty, is also a face of the triangulation, along

with all its subfaces. A topological space is said to be triangularizable if it admits one or

more triangulations. More details on triangularizability can be taken from [Sha77], for example.

More in particular, every convex polyhedron can be triangulated (e.g.,[Mun84]), and being

a polyhedron, ev ery convex polytope and therefore every convex hull can so too. They are

triangularizable topological spaces. Every k-simplex, 0 ≤ k ≤ d is again a convex hull and a

polytope.

V ariousweighted distances exist (see [Aur87a]):

Name ([Aur87a]) Definition

Laguerre weighted distance ‖x̃ − s̃‖L = ‖x − s‖2 − ws

associative weigh ted distance ‖x̃ − s̃‖a = ‖x − s‖2 − w2
s

muliplicative weighted distance ‖x̃ − s̃‖m = ‖x − s‖2/ws
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In this thesis, only the L aguerre distance will be considered. The Laguerre distance is de�ned

as:

L(s̃i, s̃j) = 〈si − sj , si − sj〉 − (wi + wj) =
‖si‖2 + ‖sj‖2 − 2〈si, sj〉 − (wi + wj) (A�61)

T wo weighted points x̃i and x̃j are said to be orthogonal if L(x̃i, x̃j) = 0.

A simplex is called regular if all vertices except the ones belonging to the simplex have positive

w eighted distances to each of the vertices in the simplex. In other words:

∀s̃i ∈ S̃ − Ỹ ,∀ỹi ∈ Ỹ : L(s̃i, ỹi) > 0 (A�62)

where Ỹ ⊂ S̃. Moreover, a d-simplex contained in the regular triangulation must ful�l tw o

conditions:

• 1. Regularity:

The simplex must be a regular simplex.

• 2. Orthogonality:

A (d − 1)-sphere must exist, centred in the radical cen tre, that meets all the simplex'

weighted vertices orthogonally.

A.10 Weighted Voronoi diagram

A weighted Voronoi diagram (or: power diagram or: Dirichlet complex or: Laguerre

diagram) Π(S̃) of a �nite set of weighted points S̃ is a space partitioning dividing Ed in a cell

complex such that for every si, sj ∈ S, i 	= j, V(si) de�nes a Voronoi cell for which:

V(si) = {x ∈ E
d | 〈x − si,x − si〉 − wi < 〈x − sj,x − sj〉 − wj } (A�63)

An (open) Voronoi cell V(sj) generated by a point sj contains all the points beneath all members

in an arrangement A(H) of h yperplanes ofsj :

V(sj) =
⋂
j

H−sj
(A�64)

b y virtue of which one may also write for the (closed) Voronoi cell:
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V(si) = {x ∈ E
d | L(si,x) − L(sj,x) ≤ 0} (A�65)

for all sj 	= si.

A radical (hyper)plane is the hyperplane of equal powers with respect to two weighted points.

Representing weighted points as (d − 1)-spheres S1(c1) and S2(c2), c1 	= c2. With normal

equations:

xTx − 2cT1 x + ‖c1‖2 − ε1 = xTx − 2cT2 x + ‖c2‖2 − ε2 (A�66)

for the radical hyperplane:

H = {x,x ∈ E
d | 2(c2 − c1)Tx −

[
‖c2‖2 − ‖c1‖2 − (ε2 − ε1)

]
= 0} (A�67)

With equations (A�35) and (A�36) it is obvious that if ε2−ε1 changes, the radical plane translates

along a normal vector of the radical plane, taking a new parallel position. Independent of the

w eights, H is perpendicular to the line segment connecting the centres of both weighted points.

Also S1 ∩ S2 	= ∅ ⇒ H ∩ S1 	= ∅ and H ∩ S1 	= ∅ ⇒ H ∩ S2 	= ∅. Generally, in Ed, k hyperplanes

in general position intersect in a single (d − k)-�at. If radical hyperplanes in tersect in a single

(0)-�at, a point, this point is called the radical centre. F or a radical centre C�:

C� = H�
1

⋂
H�

2

⋂
. . .
⋂

H�
m =

m⋂
j=1

H�
j (A�68)

Permutations of the ordered pairs of 2 out of d+ 1 points generate m radical planes, with:

m =


d+ 1

2


 =

(d+ 1)!
2!(d + 1 − 2)!

=
1
2
(d+ 1)!
(d − 1)!

(A�69)

which generally do not form a simple arrangement because such radical planes are not in gen-

eral position. By de�nition, the k-faces, k < d, of a V oronoidiagram are contained in the

radical planes separating the region of dominance of the corresponding w eighted points. The

line segments bet w eentw oweighted points bisected by a radical plane, are edges in the regular

triangulation, see for example [Ede92] or [Ede93]. More in particular, with 0 ≤ k ≤ d, if the
V oronoi cells ofk+1 w eighted points have a point in common then this point is a radical centre

and the k + 1 points form a k-simplex in the dual regular triangulation.
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A.11 Simplicial complex and skeletons

A �nite simplicial k-complex C(S), with S =
⋃

Yj is a connected or unconnected collection

of simplexes (or: simplices), with 0 ≤ k ≤ d, all satisfying tw o properties:




σ
(k)
Yj

∈ C ⇒ σ
(k−1)
Y ′

j
∈ C′ ⊆ C

σ
(k)
Yj

∈ C, σ(k−1)
Y ′

j
∈ C′ ⇒ C ∩ C′ = ∅ ∨ C ∩ C′ = C′

(A�70)

Apparently, every subface of a simplex needs to be in C too, and ev ery subcomplex C′ ⊆ C is

itself also a simplicial complex. A simplicial complex may degenerate to a point set, a linear

graph, etc., having a highest dimension m < d.

A subcomplex K(k)(C) of C(S) containing all l-faces 0 ≤ l ≤ k, is called a k-skeleton. The 0-
skeleton K(0)(C) is the set of vertices S itself and 1-skeleton K(1) is a �wireframe� of the simplicial

complex C. The closed star ¯St sj of vertex sj in C(S) is the subset of all (closed) faces of C
incident upon sj . Similarly, an open star (or simply: star) St sj of v ertexsj is the union of all

in teriors of the subset of faces of C incident upon sj . The di�erence between open and closed

star:

Lk s = ¯St s − St s (A�71)

is called the link Lk sj of s. The star of vertex sj is the union of all points x de�ned by

some convex combination for which λj(x) > 0. The link Lk sj of a vertex sj is not necessarily

connected.

A.12 Alpha complex

An α-complex Cα is a one-parameter �nite simplicial k-complex. As such, it is also a subcomplex

of the regular triangulation T , which is a d-simplicial complex. A weight-plus-alpha ball is

de�ned as follows:

B
(d)
wc+α(c) = {x,x ∈ X ⊆ E

d | 〈x − c,x − c〉 − (α+ wc) ≤ 0} (A�72)

With α ∈ [0..∞), B has a �start�-radius of
√
wc and grows proportional to

√
α as α increases

from a very small value to αmax.

Let σ
(k)
Yj

∈ Cα denote a k-simplex belonging to the α-complex Cα(S) and Yj ⊆ S. Assume that

for every such σ
(k)
Yj

there exists an α-ball in the radical centre C� of Yj. A k-simplex σ
(k)
Yj

, formed

byk + 1 points xi ∈ X is α-exposed if with an empty α-ball in its radical centre:
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L(xi, C
�
Y ) =


 0 , ∀xi ∈ Yj (orthogonality)

> 0 , ∀xi ∈ S − Yj (regularity)

(A�73)

Aweighted alpha complex Cα(S) is a subcomplex of the regular triangulation T (S), containing
all α-exposed k-faces of T . Notice that equation (A�73) de�nes exactly those faces of the regular

triangulation T that are α-exposed. Also notice that if σ
(k)
Yj

is made up of zero-weight points,

then the k + 1 vertices xi ∈ σ
(k)
Yj

will be contained in the boundary Bd A and Int A = ∅. The

follo wing also holds:

αi ≤ αj ⇒ Cαi ⊆ Cαj (A�74)

For su�ciently low a value of α, i.e., for α < αmin, the α-complex Cα = S. This complex is

growing, with increasing value ofα, into triangulation T , and the underlying space |Cα| into
the convex hull Conv S = H(S) = |Cαmax |.

Let Y be a cover of E d. Then the nerve NrvY is an abstract simplicial complex composed of the

collection of non-empty intersections of subsets of cover Y :

NrvY = {X1,X2 ⊆ Y | X1

⋂
X2 	= ∅ } (A�75)

The geometric realisation of the nerve of the weighted V oronoidiagram is the regular

triangulation. F urthermorefor a X2 ⊆ X1:

X1 ∈ NrvY ⇒ X2 ∈ NrvY (A�76)

An α-parametrised Voronoi cell can be described by:

Vα(sj) = Bwj+α(sj)
⋂

V(sj) (A�77)

and, with H
�
ij denoting the radical plane of ordered pair (si, sj), so that V(sj) is given by V(sj) =⋃

k H
�−
jk , one has that:

Vα(sj) = Bwj+α(sj)
⋂(⋃

k

H
�−
jk

)
(A�78)
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and the part of the V oronoidiagram swept out for the giv envalue of α by ball union B, one
obtains:

U =
⋃
j

{
B(sj)

⋂(⋃
k

H
�−
jk

)}
(A�79)

Without pro vidingall the details: the geometric realisation of the nerve of the α-parametrised

ball union is an α-complex. F or details, refer to [Ede92] and [Ede93].

Generally, an α-complex contains l-sk eletons, with 0 ≤ l ≤ d. The k-faces contained in α-
complexes may be singular, regular or interior for a speci�c value of α. Let 0 ≤ j < m ≤ d
and let σ(j), σ(m) ∈ Cα. Now w ecan tell singular k-faces apart from regular ones, as follows

[EM94]:


 σYj ∈ Bd Cα ∧ σYj 	∈ σYm → singular face

σYj ∈ Bd Cα ∧ σYj ∈ σYm → regular face

A face in the interior of Cα, i.e., σYr ∈ Int Cα, is classi�ed as interiorface.

The set A of all ordered pairs (ρ, Cα(S)) denotes the �nite set of α-complexes of set S, called the

α-family, and 2-tuple (ρi, Cα(S)) ∈ A denotes a member of that set. Here, ρ is a unique index

into the α-family, such that:

ρi < ρj ⇒ αi < αj (A�80)

and:

ρi < ρj ⇒ Cαi ⊂ Cαj (A�81)

whereas in general, for αi < αj ⇒ Cαi ⊆ Cαj doesn't always yield a proper subcomplex. Observe

that whereas α only allows for a partial ordering of the α-family, ρ allows for a strict partial

or dering using a linear order relation �<�. Notice also that this de�nition allows a topological

sort of the set A, according to the index ρ.

A signature [EM94] (for positive α-values) is a function S : [0,+∞) → D, providing a value for

a speci�c property.

Weights can be generated on a per point basis, they can also be generated as a function. We

will refer to such functions as weighting functions, of the form f : E d → R. Weights are called

unstructured weights if tw o arbitrary functions values (function images) f(x1) and f(x2) ha ve

auto-covarianceCovxx(x1,x2) → 0.
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A.13 Polyhedral objects

A topological space P is a k-polyhedron if there exist a collection of l-simplices σ(l), 0 ≤ l ≤ k,
and a set F of faces of those simplices such thatthe polyhedron is entirely erected by the faces

in F. A polyhedron is the polytope of a simplicial complex. A k-polytope P(k)(S) is a bounded

k-polyhedron. With Yi = {y(i)
1 , y

(i)
2 , . . . , y

(i)
d+1} and Yj = {y(j)

1 , y
(j)
2 , . . . , y

(j)
d+1}, Yi 	= Yj, there

exists a δ > 0 for which |y(i)
k − y

(j)
k | < δ, for 1 ≤ k ≤ d + 1. Every polytope is a compact

topological space. If a polytope spanned by a set S is convex and free of holes, it coincides with

the convex hull H(S). A conv exhull of a point set S is the smallest convex set that contains

S. A convex hull of a �nite point set is a compact space. If tw opoints pi and pj of a convex

set H(S) ⊂ E
d belong to H(S), then also all points lying on the straight line segment pipj are

part of H(S) which, b y itself, is a su�cient condition for a set to be convex. The intersection of

a support plane and a convex hull is always an (extreme) member of S. A point x belongs to

the convex hull of S if x can be written as a convex combination in the m vertices ofS:


 S

1T


Λ =


x

1


 (A�82)

i.e., �nding a solution vector Λ of which the m elements λi ≥ 0 and 1TΛ = 1. This makes a

system of d + 1 linear equations, with m unknowns. Λ is unique if the card S ≤ d + 1, i.e., if S

spans a simplex and not unique card S > d+ 1.

A.14 Morphology

A �nite con�guration space S ⊂ E
d is the space of all possible landmark coordinates. A

con�guration is now described by its con�guration matrix XS, an N × d-coordinate matrix

of the form:

XS =




x0,0 x0,1 · · · x0,d−1

x1,0 x1,1 · · · x1,d−1

· · · · · · · · · · · ·

xN−1,0 xN−1,1 · · · xN−1,d−1




(A�83)

When in general position, this matrix is assumed to have full rank. F or a lattice, the con�guration

matrix reduces to:
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XS =




x0 x1 · · · xd−1

x0 x1 · · · xd−1 + ∆d−1

x0 x1 · · · xd−1 + 2∆d−1

· · · · · · · · · · · ·

x0 x1 · · · xd−1 + (N − 1)∆d−1

· · · · · · · · · · · ·

x0 + (N − 1)∆0 x1 + (N − 1)∆1 · · · xd−1

x0 + (N − 1)∆0 x1 + (N − 1)∆1 · · · xd−1 + ∆d−1

x0 + (N − 1)∆0 x1 + (N − 1)∆1 · · · xd−1 + 2∆d−1

· · · · · · · · · · · ·

x0 + (N − 1)∆0 x1 + (N − 1)∆1 · · · xd−1 + (N − 1)∆d−1




(A�84)

F or a regular square grid, for which ∆j = ∆, starting in the origin, so that xi = 0 for all 0 ≤ i < d
this can be further simpli�ed.

A�ne transformations can now be written in matrix notationas:

T(XS) = TG +XT
S
T (A�85)

where TG is an N×d glide or translation matrix and T is a d×d square transformation matrix

associated with transformation T. F urther dimension analysis learns that withXS being N × d
and assuming that dim imT = N and therefore T(XS) is an N × d matrix. Equation (A�85) is

the expression for a general a�ne transformation. We now have the following special cases:

• Linear transformation

If TG = 0 then T is linear.

• Rotation

If TG = 0 and TTT = I, or equivalently: T−1 = TT , then T is orthogonal and T is a

rotation.

• An-isotropic scaling

If TG = 0 and T = ΛI, then T is an an-isotropic scaling.

• Isotropic scaling

If TG = 0 and T = λI, then T is an isotropic scaling.
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• Identity transformation

If TG = 0 and T = I, then T is an identity transformation.

where I is the identity matrix and Λ is a diagonal matrix, Λ = diag T. Kernel kerT ⊂ S is the

set for which: kerT = {s ∈ S | T(s) = 0}. One also has that kerT = T−1(0). F orthe image

imT = {T(s) | s ∈ S}. It can be shown (e.g., [Str86]) that for T:

(i) T an injection ⇐⇒ kerT = {0}

(ii) T a surjection ⇐⇒ imT = U

(A�86)

with which the combination (i) and (ii) for a bijection is immediate.

Shape matching seeks to map the observed landmark set, represented by con�guration matrix

XS onto the con�guration matrix XS℘
of the icon, and shape instantiation does the reverse. So,

for example for shape instantiation, �nd a T, represented by matrix T, such that:

XS℘
T = XS (A�87)

where S℘ is the landmark set of the icon. Assume dim imT = dim S = d. This is in line with

the fact that T is homeomorphic, so T(XS) and XS ha vesimilar dimensions and the rank of

matrix T = d. Also, since S,U ⊂ E
d both S and U have the same (Euclidean) vector norm.

Finally, S has been assumed compact and �nite, and with scale parameter |λ| < ∞, U is also

compact. Given an a�ne transformation, as in equation (A�85). A Helmertized norm ‖T‖�

is then de�ned by:

‖T‖� = sup
sj

‖T(S)‖�

‖S‖ = sup
sj

‖XT
S
T‖

‖S‖ (A�88)

and the impact on the Lebesgue measure is given by:

νdL(T(S)) = c‖λdT‖� = c|λd| ‖T‖� (A�89)

A shape W(S), generated by landmark setS is a set function for which:


 W(λS) ∼= W(S)

W(S + y) ∼= W(S)
(A�90)

A shape function g is a real-valued function g : Ed (→ R of the form g = G(S).
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A.15 Point process

Let ΦS(x) be a Poisson point process on S ⊂ E
d with intensity λ. Then:

λ =
E[ΦS(B)]
νdL(B)

(A�91)

where B ⊂ Ed is some window on Ed. If ΦS(x) is stationary, then:

λ = E[ΦS([0, 1]d)] (A�92)

Let ΦS(x) be stationary, with intensit yλ and let T : E d (→ E d be a non-singular linear trans-

formation, de�ned by:

T(ΦS(x)) = {xT : x ∈ ΦS} (A�93)

Then, by virtue of the conservation property, we have that:

ΦS(x) stationary ⇒ T(ΦS(x)) stationary (A�94)

and the transformed in tensity is given by:

λT = det T−1 (A�95)

The probability of a v oidspace of the size Bα is giv en by:

GV (α) = Pr[ΦS(Bα) = 0] (A�96)

and as a consequence, the probability of α-ball contact of an α-ball centred in a radical cen tre

with radius
√
α is:

G∅(α) = 1 − Pr[ΦS(Bα) = 0] (A�97)

F or a stationary Poisson process, these probabilities are:
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GV (α) = Pr[ΦS(Bα) = 0] = exp(−λνdL(Bα)) (A�98)

and:

G∅(α) = 1 − Pr[ΦS(Bα) = 0] = 1 − exp(−λνdL(Bα)) (A�99)

A.16 Objects and systems

A dynamic system can be described as a time series of system states for some discrete t ≥
t0, tj = t0 + j∆t. Let S ⊂ E

d be a compact �nite set of landmarks, let Σ = {S} be the set of

all possible landmarks and let G : Sj (→ Sj+1 denote time discrete mapping process. Further, let

tj+1 + ∆t = tj and j ∈ N. Then an explicit mapping process:

Sj+1 = G(Sj) (A�100)

such that G(Sj) ∈ Σ and:

Sj+1 = G(Sj) =
⋃

s∈Sj

G(s) (A�101)

where Sj is the set at discrete time tj = t0 + j∆t. S0 is the initial data set. A step-wise

evolution of the mapping process can be written as a time sequence:

[S0,S1,S2, ..,Sj ,Sj+1, ..,S∞) (A�102)

where landmark set Sj represents a unique solution. An explicit formulation F : Uj (→ Uj+1

is giv en by the form:

Uj+1 = F(Uj) (A�103)

and an implicit formulation H : Uj × Uj+1 (→ Uj+1 is given by:

Uj+1 = H(Uj+1,Uj) (A�104)



Annex A: Mathematical concepts A�25

equivalent to the general form:

Ψ(Uj+1,Uj) = c (A�105)

Assume an explicit mapping process given by Sj+1 = G(Sj) and an implicit mapping process by

Sj+1 = H(Sj+1,Sj). Then an explicit F orward Euler solution of Sj+1 is:

Sj+1 = Sj + ∆t g(Sj) +O(∆t2) (A�106)

and an implicit Backward Euler solution for Sj+1 by:

Sj+1 = Sj + ∆t h(Sj+1) +O(∆t2) (A�107)

with g(Sj) a set derivative function dS
dt (t) de�ned by:

dS

dt
= lim

∆t→0

Sj+1 − Sj

∆t
(A�108)

and h(Sj+1) de�ned likewise. In all these formulations, S0 = S is the initial data set. The norm

of an evolutionary mapping process is given by:

‖G‖ = sup
sj

‖G(Sj)‖
‖Sj‖

(A�109)

An evolution semigroup or evolution map Γn : E d (→ E d is a n-times product of maps Gj,

i.e.,:

Γn = Gj ◦ Gj+1 ◦ Gj+2 · · · Gj+n (A�110)

and with n,m ∈ N and S0 = S, an action of evolution map Γn is de�ned by:

Sn+m = Γn
Sm = Γm

Sn = Γn+m
S0 = Γn+m

S (A�111)

Semigroup Γ0 = I is an identity transformation. Let |γ| de�ne an upper bound on the norm of

‖G‖, i.e., ‖Gk‖ ≤ γ,∀j ≤ k ≤ j + n. Then we have for the norm of the evolutionary map:
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‖Γ‖ = sup
sj

{‖G(Sj)‖
‖Sj‖

‖G(Sj+1)‖
‖Sj+1‖ · · · ‖G(Sj+n)‖

‖Sj+n‖

}
≤ |γ|n (A�112)

Let a weight function w : Rm (→ R be given by:

w = λ1p1 + λ2p2 + · · · + λmpm =
m∑
j=1

λjpj (A�113)

with
∑

j λj = 1. F urthermore,let Λ = [λ1, λ2, . . . , λm]T denote the relative weights, assumed

constant. P(t) = [p1(t), p2(t), . . . , pm(t)]T is a vector function in time. Then:

d

dt
w(P (t)) = λ1

∂w

∂p1

dp1

dt
+ λ2

∂w

∂p2

dp2

dt
+ · · · + λm

∂w

∂pm

dpm
dt

= Λ
[
dp1

dt
,
dp2

dt
, · · · , dpm

dt

]T
(A�114)

Weight function w(t) = ΛPT (t) = c i�:

∥∥∥∥ ddtPT

∥∥∥∥ = 0 (A�115)

F or a discrete�nite state dynamic model, described in state space P , let δ denote a discrete
time event time metric, and let the pair (P , δ) form a metric space. Further, let D0(t) denote
a start scenario atabsolute time t. An erosion function QE(α) for an eroded shape Wα(S)
by an eroder shape Zα(Y), S,Y ⊂ E

d, is de�ned as:

QE(α) = Wα(S) / Z̆α(Y) = Wα(S) / Zα(Y̆) (A�116)

where Y̆ = −Y is the re�ection of Y in the origin. A dilation process QD(α) is de�ned by:

QD(α) = Wα(S) ⊕ Z̆α(Y) = Wα(S) ⊕ Zα(Y̆) (A�117)

If TT denotes a translation along some path, then Zα(TT (S)) shall denote the shape Zα during

its glide along the path. In other words:

TT (S) = {λsTT |s ∈ S, 0 ≤ λ ≤ 1} (A�118)
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With this description of a moving eroder, the erosion results in an eroded shape Wα based on

an eroded set SE, for which:

SE = {s ∈ S | ∀y ∈ Y̆, s − y ∈ S} (A�119)

and analogously:

SD = {s + y | s ∈ S,y ∈ Y̆} (A�120)

The opening QO of an eroded shape Wα(S) by an eroder shape Zα(Y), S,Y ⊂ E
d, is de�ned

by:

QO = QD ◦ QE (A�121)

and the closing QC by:

QC = QE ◦ QD (A�122)

Minkowski set additions are associative and commutative. As a consequence, building up the

w eight set from di�erent parts over time is trivial:

A ⊕ (W1 ∪ W2 ∪ . . . ∪ Wm) = (A ⊕ W1) ∪ (A ⊕ W2) ∪ . . . ∪ (A ⊕ Wm) =
⋃
j

(A ⊕ Wj) (A�123)

and:

S1 ⊕ S3 ⊂ S2 ⊕ S3 (A�124)

A.17 Asympthotic time and storage complexity

Let c, c1, c2 > 0 and nmin > 0 and assume functions φ(n), γ(n) in n. Then the asympthotic

upper bound complexity O(φ(n)) is giv en by the inequality:

O(φ(n)) = {γ(n) | |γ(n)| ≤ cφ(n),∀n > nmin} (A�125)
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the asympthotic lower bound complexity Ω(φ(n)) by:

Ω(φ(n)) = {γ(n) | γ(n) ≥ cφ(n),∀n > nmin} (A�126)

and the asympthotic exact complexity Θ(φ(n)) by:

Θ(φ(n)) = {γ(n) | c1φ(n) ≤ γ(n) ≤ c2φ(n),∀n > nmin} (A�127)

Notice that these inequalities actually denote equivalence classes rather than exact solutions.
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Terminology and parlance

B.1 Overview

This annex pro videssome structure to the terminology and parlance practised in this thesis.

Most of the terminology originates in the domain of combinatorial geometry and topology. Most

of the terminology deals with simplicial complexes, polyhedra and con�gurations or arrangements

of lines, planes, spheres, etc.

Mathematical background and de�nitions are not provided in this annex. These can be found

in annex A. F urthermore, the use of terminology regarding earth sciences is mostly restricted to

the cases presented in chapter 6 and is therefore de�ned and explained in this chapter, not here.

B.2 Subfaces, faces and superfaces

A point, a line, a surface, a volume, · · · , a hyper-volume are geometric elements having topological

counterparts called a vertex, an edge, a 2-face, a 3-face, · · · , a k-face, where k refers to an

arbitrary dimension in range −1 ≤ k ≤ d. Dimension −1 may seem somewhat odd at �rst, its

role is explained in the text of the chapters. From a topological point of view, a k-facema y be

contained in the boundary of a (k+1)-face. For instance, an edge, a 1-face, may bound a 2-face,
e.g., a triangle. In that case, the k-face is called a subface of the (k + 1)-face and the latter is a

superfac eof the k-face. Some sub- or superfaces are also known by alias terms, mostly only in a

special context. Principle terms have been collected in table B�1.

In this thesis, faces are mostly but not exclusively simplices. A simplex is the d-face with

the smallest possible n umber of vertices, namely d + 1. The term simplex is related to the

dimension of the space it is de�ned in: a point (for d = 0), an edge (d = 1), a triangle (d = 2)
and a tetrahedron (d = 3) are the simplices (or: simplexes) in E0, E 1, E 2 and E3, resp. A

triangulation is a space-partitioning entirely built up of d-simplices. Non-simplex d-faces with

more than d+ 1 points are for instance found in Voronoi diagrams. Voronoi cells are examples

B�1
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of polyhedral fac es, faces that are compounds (or: complexes) of k-faces. Faces in this thesis are

�at, excluding curved or �skew� edges and edges connecting a vertex with itself, curved triangles,

etc.

General Arrangement Polytope Simplicial Com-

plex

Absolute, impr. (d+ 1)-face arrangement

depending d-face cell cell, simplex simplex

on d (d − 1)-face hyperplane (sub)facet facet

· · · · · · · · · · · ·

(k + 1)-face superface superface superface

relative k-face face face face

(k − 1)-face subface subface subface

· · · · · · · · · · · ·

absolute, 3-face �at tetrahedron tetrahedron

independent 2-face plane, �at triangle triangle

of d 1-face line, line segment edge edge

0-face vertex vertex vertex

impr. −1-face ∅ ∅ ∅

T able B�1:polyhedral terminology and parlance.

B.3 Open and closed faces

A face is called a closed (an open) face if it contains (does not contain) the points of its boundary.

Open faces are composed solelyof their in teriors, or covered by an op enset. An open edge, for

example, does not contain the extremal vertices, spanning it.

B.4 Topological relations among faces

T w otopological associations of faces are particularly important in this thesis: the notion of

incidence and the notion of neighbourship.

B.4.1 Incidence relations

T w o faces are said to bedir ect (or: proper) incident upon one another, if one is a proper subface

of the other. For combinatorial convenience, an improper−1-face is usually de�ned, too. In this
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thesis, it is the −1-dimensional simplex σ(−1) = ∅, incident upon all vertices and hence contained

in each k-simplex.

B.4.2 Incidence graph

An incidence graph is a graph in which the k-faces σ(k) are represented as nodes and incidence

relationships as edges. As such, an incidence graph is capable of representing the incidence

relationships of a regular triangulation T (S), an α-complex or a simplicial complex in general.

More formally, an incidence graph IG = {Σ, I} is a graph in which the collection Σ = {σ(k)} of

k-simplices, −1 ≤ k ≤ d+ 1, is represented as nodes and incidence relations I = {deg(σ(k))} as

edges. The incidence graph is augmented by tw oimprop er faces: a (d + 1)-face upon which all

(at most Θ(N � d+1
2

�)) d-faces are upward incident and the empty set ∅, the only (−1)-face upon

which all the N vertices are downward incident. See [Ede87], Seidel in [Sei91] and [Mue93] for

further details.

Let deg(σ(k)) ↑ denote the upward incidence, i.e., the incidence with respect to a superfaces, and

similarly, let deg(σ(k)) ↓ be the downward incidence of k-simplex σ(k) in a triangulation T (S),
with card S = N . Then an incidence graph of a triangulation shows the following nodal degrees:

k = d+ 1 ⇒ deg(σ(d+1)) ↑ = 0

k = d+ 1 ⇒ deg(σ(d+1)) ↓ ≤ Θ(n� d+1
2

�)

k = d ⇒ deg(σ(d)) ↑ = 1

k = d ⇒ deg(σ(d)) ↓ = d+ 1

k = d − 1 ⇒ deg(σ(d−1)) ↑ = [1, 2]

k = d − 1 ⇒ deg(σ(d−1)) ↓ = k + 1

. . . . . . . . .

k = 2 ⇒ deg(σ(2)) ↑ ∈ [1, 2]

k = 2 ⇒ deg(σ(2)) ↓ = 3

k = 1 ⇒ deg(σ(1)) ↑ ∈ [1, 2]

k = 1 ⇒ deg(σ(1)) ↓ = 2

k = 0 ⇒ deg(σ(0)) ↑ ∈ [2,N − 1]

k = 0 ⇒ deg(σ(0)) ↓ = 1

k = −1 ⇒ deg(σ(−1)) ↑ = n

k = −1 ⇒ deg(σ(−1)) ↓ = 0
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B.4.3 Neighbourship

T w o faces are said to bedirect (or: pr oper) neighbours if they share a proper subface or superface.

Each vertex in a k-simplex is thus a proper neighbour of any of the other vertices in the simplex.

A near est neighbour is a neighbour that is nearest-by. Nearest neighbourship is mostly considered

in the context of points in a point process. Analogously, the k-th nearest neighbour is the k-th
nearest-by neighbour. The local-furthest neighbour is the furthest-apart neighbour within the

topological star, i.e., connected by an edge in the triangulation. With the ne ar estneighbour

graph being a sub-graph of the triangulation, it is ob viousthat up to local-furthest neighbour,

each k-th neighbour, since connected by an edge in the triangulation, is also a direct neighbour

within the context of the underlying triangulation.

B.4.4 Examples

The following examples illustrate the above terminology.

Example B.1 (two triangles connected by only a single vertex)

Two 2-fac es (triangles, say) that share a common 0-face (vertex) are neither prop er incident nor

pr op erneighbours •

Example B.2 (the edges of a triangle)

Two 1-fac es (e dges) that belong to the same 2-face f (triangle) are direct neighbours, because they

shar ea common 0-face (vertex). In this case, they also share a common superface, the 2-face f
they are incident upon •

Example B.3 (vertices sharing the improper simplex σ(−1))

All vertices are incident up on the only improp er simplex σ(−1), but since this is not a proper

subface, all vertic esar e not each others pr oper neighbours •

B.5 Singular, regular and interior faces

The faces of an α-complex can be classi�ed as singular, regular or internal. With α growing from

αmin to its maximum value αmax, more and more faces of the triangulation become contained in

the α-complex. A k-face is called a:

• Singular face:

If it becomes α-exposed but the (k + 1)-face it is bound to be incident upon not yet.

Singular faces are always contained in the boundary and are never in terior.

• Regular face:

If it is α-exposed and so is a (k + 1)-superface it is incident upon. The k-face can be

contained in the boundary of a (k + 1)-dimensional complex.

• In teriorface:
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If it is contained in the in terior of some (k + 1)-dimensional complex. If the superface is

α-exposed, then the k-face is so, too.
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Annex C

The Laguerre weighted distance

C.1 Introduction

A topological space endow ed with a Euclidean distance based metric is a metric space known as

a Euclidean space, denoted Ed. What are the consequences if Euclideandistance is replaced b y

the Laguerre distance? This annex deals with this question.

C.2 The Laguerre weighted distance

A metric spac e is de�ned as follows (e.g., [Mun75]):

Definition C.1 (metric (metrizable) topological sp a ce)

A topological space X is said to be metric (metrizable), with a metric µ(x1,x2) i� for all x ∈ X:




µ(x1,x2) ≥ 0 ∧ µ(x1,x2) = 0 ⇔ x1 = x2 positive de�niteness

µ(x1,x2) = µ(x2,x1) symmetry

µ(x1,x3) ≤ µ(x1,x2) + µ(x2,x3) triangle inequality

It is easily veri�ed that the Euclidean metric ‖x1 −x2‖ = 〈x1 −x2,x1 −x2〉 1
2 , where 〈·, ·〉 de�nes

the standard inproduct, satis�es the axioms of a metric. Apparently, a µ that satis�es the above

axioms must be a symmetric positive de�nite bilinear form. The question is no w: is it possible

to de�ne a metric using the Laguerre distance rather than the Euclidean distance? Recall that

the Laguerre distance is de�ned as:

L(x1,x2) = 〈x1 − x2,x1 − x2〉 − (w1 + w2) = [x1 − x2]T [x1 − x2] = ‖x1 − x2‖2 − (w1 + w2)

C�1
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T oanswer this question, all the above axioms have to be chec ked, for all x ∈ X.

C.2.1 Positive de�niteness

Let space X be covered by the set X of 2-tuples x̃ = (x, w). V erify that for allx1,x2 ∈ X:

L(x1,x2) ≥ 0 ∧ L(x1,x2) = 0 ⇔ x1 = x2

By de�nition:

L(x1,x2) = ‖x1 − x2‖2 − (w1 + w2)

which becomes non-positive as soon as:

‖x1 − x2‖2 ≤ w1 + w2

so in general the positive de�niteness axiom does not hold and as a consequence, the Laguerre

distance does not permit for a metric space. Moreover:

L(x,x) = −2w

Although this already answers the question raised in this annex, for completeness the veri�cation

of the symmetry and the triangle inequality is con tinued below.

C.2.2 Symmetry

V erify that for allx1,x2 ∈ X:

µ(x1,x2) = µ(x2,x1)

One has that:

L(x1,x2) = 〈x1 − x2,x1 − x2〉 − (w1 + w2) =
〈x1,x1〉 + 〈x2,x2〉 − 2〈x1,x2〉 − (w1 + w2) =

〈x2 − x1,x2 − x1〉 − (w2 + w1) = L(x2,x1)

so this holds.
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C.2.3 triangle inequality

V erify that for all triplets of di�erent x1,x2,x3 ∈ X:

L(x1,x3)
?
≥ L(x1,x2) + L(x2,x3)

In other words:

L(x1,x3)
?
≥ L(x1,x2) + L(x2,x3) ⇒

〈x1 − x3,x1 − x3〉
?
≥ 〈x1 − x2,x1 − x2〉 + 〈x2 − x3,x2 − x3〉 − 2w2 ⇒

− 2〈x1,x3〉
?
≥ −2〈x1,x2〉 + 2〈x2,x2〉 − 2〈x2,x3〉 − 2w2 ⇒

〈x1,x3〉
?
≤ 〈x1,x2〉 − 〈x2,x2〉 + 〈x2,x3〉 + w2

which can be rewritten as:

〈x1,x3〉
?
≤ 〈x1,x2〉 + 〈x2,x3〉 − (〈x2,x2〉 − w2)︸ ︷︷ ︸

R

The �rst part (without rest term R) is equal to an �ordinary� (Euclidean) triangle inequality a

proof of which can be found in almost any math textbook. Regarding the rest term R, in which

〈x2,x2〉 = ‖x2‖2 ≥ 0, things split up in three cases:

w2 < ‖x2‖2 ⇒ inequality does not hold

w2 = ‖x2‖2 ⇒ inequality holds

w2 > ‖x2‖2 ⇒ inequality holds

so as a general conclusion, the triangle inequality axiom does not generally hold for the Laguerre

w eighted distance. Observe that weight w1 and w3 have dropped from the expressions and

apparently play no role in the inequality.

C.3 Laguerre distance and the Lebesgue measure

Let Yi,Yj ⊆ X be di�erent subsets of X so that i 	= j ⇔ Yi
⋂

Yj = ∅. The L ebesguemeasure

ν(X) is set function for which:
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ν(∅) = 0

ν(Yj) ≥ 0, ∀Yj ⊆ X

ν
(⋃

j Yj

)
=
∑

j ν(Yj)

F rom this de�nition, it is immediate that non-negative function values are excluded. A Laguerre

distance can produce negative such values. Therefore, it violates the de�nition of a measure.

C.4 Bibliographic notes

F or further details on metric spaces, refer to [Mun75] and [Mun84], [Sha77], [Nag83], and [Edg90].

Regarding the (geometry of the) Laguerre distance, refer to [Coo16], [Sch79], [Aur87b] and

[Ede92]. The Lebesgue measure is discussed in [Mun84], [SS94], [SKM95], [Edg90].
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Set and point process analysis

D.1 Introduction

Set analysis greatly aids in the understanding of the resulting α-complex. Set analysis usually

results in the determination of a number of set parameters that together characterise the set.

Apart from the customary set parameters, a number of speci�c geometric set parameters can be

de�ned for the geometric sets used in this thesis. Moreover, in this thesis, point processes are

assumed to be Poisson point processes, shortly denoted as ppp's. See for instance the chapters 2, 3

and 6. It is, however, good statistical practice to verify whether this a-priori hypothesis or

null-hypothesis holds, in a statistical v eri�cation. And if so, a test has to be performed as to

whether the ppp is a homogeneous ppp or not. Appropriate discussions of how to perform such

veri�cations can be found in v ariousstatistical texts, e.g. in [Dig83]and [SKM95]. There is no

such thing as an ultimate test for ppps. Many tests have been proposed in literature, some more

mature, some testing only a single aspect. This annex provides an outline of the methods used

in this thesis, touching only basic aspects and without any claim or intention to be complete.

The ppp itself is not described; see chapter 2 for an introduction.

D.2 Point set analysis

Set parameters

Firstly, the cardinality of the set is of in terest. The cardinality of cases to be discussed in this

thesis typically range from O(102)−O(106). If set members are valued, which is always the case

in this work, characteristic values such as mean, mode and median, standard deviation, variance,

sk ewness, etc. In the case studies presented in chapter 6, so called one pass statistics were used,

using Spicer's provisional mean algorithms for weighted values. See [Spi72]. Let 0 < k ≤ N .

Spicer's algorithm incrementally computes the pow ersum:

D�1
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k∑
j=1

(pi − p̄k)
r =

k−1∑
j=1

(di − δp)r + (k − 1)r(δp)r (D�1)

where p̄k means the incremental mean value after including k observations, di = (pi − p̄k−1) and
δp = (pk − p̄k−1)/k. These pow er sums are used to compute the �rst four central moments about

the mean for weighted variables. The approach was inspired b y [Nor79, Ch. 14]. For further

background, see for instance [Hal52, Nor79, PR96, Cra99].

Geometric parameters

For a closed convex set, the diameter always coincides with the distance betw eentw oof its

members. If not convex, the set can be replaced by its convex hull. Then by de�nition, the

diameter of a close dconvex set is given by:

diam(S) = max{‖si − sj‖, si, sj ∈ S} (D�2)

F orempty sets, the diameter is unde�ned, for single member sets the diameter is 0 and for sets

with card S = 2, the diameter is equal to the nearest and the furthest neighbour distances. The

orthogonal breadth denoted by breadth⊥ S, of a closed convex set S is the minimum distance

betw een t w o support planes ofS parallel to the line carrying the tw o extremal points generating

the diameter. The (orthogonal) aspect ratio φ is the ratio betw een the (orthogonal) breadth and

the diameterof the set.

The convexity ratio γ is the ratio of the space occupied by S and the space occupied by the

corresponding hull of S. The underlying space of the convex hull is uniquely and unambiguously

de�ned. The problem lies in the de�nition of the space occupied by S. V arious approaches exist

for the determination of this space. For open sets, a maximum curvature or some other criterion

can be taken to determine the boundary. See for example [Vel94]. The convexity ratio γ is zero

for strongly concave shapes and grows to unity for convex shapes.

It is not immediately clear how to quantify strongly clustered points and scattered shapes. F or

example, an eroding object. F orno w,the best approach seems to hook up to cluster analysis

like approaches and de�ne in tra-cluster diameters in a hierarch y,in relation to the inter-cluster

distances. The convexity ratio of the α-hull and the convex hull is closely related to convexity

ratio γ. For small α-values, up to some α function γα(α) is likely1 to be a minorant, i.e.,

γα(α) < γ. The reasoning is that the α-complex is generally not hole-free and the α-complex

will be smaller than |S| by the amount of underlying space of the holes. F or greaterα, when holes

have vanished γα(α) > γ because it starts �lling in concavities when approaching the convex

hull. This underlying space will generally not belong to |S|. Finally, for α = αmax one has that

γα = 1. This is the function's global and only maximum, since it is a non-strictly monotonically

increasing function. The maximum value of 1 is common to γ and γα, but γ becomes 1 for

convex shapes only.

1
without an exact de�nition of the underlying space of |S| for γ only qualitative reasoning is possible
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D.3 Poisson point process statistics

In this section, statistics will mainly apply to empirical distributions, i.e., to observed data. Point

processes, generated by a point set S ⊂ E
d are denoted by ΦS(x), are assumed simple, which

means that no points s coalesce. Finally, the ppp is assumed fully mapped, which means that

the locations of all of its points are known and the global mean intensit yλ̄ of the point process

as a whole is known.

D.3.1 Poisson distribution of point-counts

One of the �rst things to estimate is the empirical density (or: empirical intensity) λ̂(x) and its

dispersion across the ppp, relative to its expected value or �rst-order moment λν
(d)
L = E[Φ(x)].

This is commonly done by some point counting procedure on a grid cell (or quadrat or window),

either exhaustively , or b y sampling. F or fully mapped ppps, point counting procedures are

generally preferred overdistance-based methods, to be discussed later. The entire space of the

ppp is therefor partitioned in equal-sized grid cells and for each cell, the number of points (or:

events) falling into that cell are recorded. The number of points counted in each cell is expected

to follo wa P oissondistribution with mean value Λ(νL(D)), where D denotes a cell on the ppp

and νL(D) its Lebesgue measure. The size and hence the number of cells is depending on the

test statistic to be applied further downthe h ypothesis veri�cation.

Rather than analysing the count distribution, one usually measures its dispersion from a uniform

distribution. A frequently used test is the χ2-goodness-of-�t test for independent and uniform

distribution of the points. F orthe χ2 test, rules can easily be found. Generally, the size of the

grid cell must be taken such that the least-densely populated cell still counts Ω(101) points. T o

test uniform distribution, there is no need for the grid cells to be equal-shaped: as long as their

size is equal, the Lebesgue measure is equal. Unfortunately, the number of grid cells chosen also

determines the degrees-of-fr eedom, equal to the number of grid cells minus one, making the result

somewhat scale-dependent.

Basically, the χ2 test sets o� the total of the counted number of points cardDj in each of the m
cells Dj against expected number of points in those cells:

χ2 =
m∑
j=1

(cardDj − E[Dj])
2

E[Dj]

where the expected number of points E[Dj] = (cardΦS)/m. The value of each cell is expected

to follow a χ2 distribution with m − 1 degrees-of-freedom.

When exceeding some critical level, taking in to account the degree-of-freedom and a chosen

signi�cance level α, the h ypothesis of a homogeneous ppp must be rejected, either indicating

too high a variability (not stationary enough), in the case that χ2 > χ2
D−1:1−α, or too high a

regularity (not enough Poisson; regular but not random), if χ2 < χ2
D−1:α, both at a signi�cance

of 100α%. Critical levels are usually looked up in a table. Homogeneity is not only determined by

stationarity but also by isotr opy, so that the intensity has to be veri�ed for directional patterns

as well. If not trivial, this can be done by de�ning grid cells emanating radially from a centr oid.
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The index-of-dispersion test (e.g., [SKM95, Ch. 2]) is essentially a variant of the χ2-test, and an

extension in the sense of taking into account the counts of neighbouring cells is known as the

Greig-Smith method. Another alternative which can be applied if the ppp has been fully mapped

is the reduced second-order moment veri�cation. See [SKM95, Ch. 2] for further details.

D.3.2 Distance measurements

Distance measurements are performed in this thesis, not directly for the aim of accepting of

rejecting the homogeneous ppp hypothesis, but to provide an additional distance analysis as

input for the w eighting. Nonetheless, the nearest neighbour distances distribution is related

to the question as to whether the ppp is homogenous or not. For strongly clustered point

patterns, the empirical nearest neighbour distance distribution will considerably diverge from

the theoretical ppp nearest neighbour distance distribution function, given by:

D(x) = 1 − exp(−λν
(d)
L )

and the same holds for the corresponding empirical and theoretical densities. Strongly clustered

patterns will exhibit a stronger positive skew density than ppps.

T oillustrate this, consider a point process ΦS(x), with S ⊂ E 2. The model nearest neighbour

distance distribution function is given by:

D(y) = 1 − exp(−λπy2), y ≥ 0

and for the corresponding density function, one �nds by spatial derivation:

d(y) = 2λπy exp(−λπy2)

with mean equal to:

µD =
1

2
√
λ

and variance:

σ2
D =

1
πλ

− 1
4λ

F or clustered processes,µ ˆD
< µD, yielding a more positive skew density function. Notice that D

is not symmetric and hence its skewness is non-zero. Similar reasoning holds for the k-th nearest

neighbourfunction, with k > 1.



Abstract

Using Weighted Alpha Complexes in
Subsurface Modelling

Reconstructingthe shape of observed natural objects

Bart H.M. Gerritsen

Over the passed couple of decades, the study of natural objects has advanced dramatically. The

advent of boosting computing-pow erhas shown to be a critical precursor. But as of today,

modelling natural objects remains complicated. This not only holds for the attainment of photo-

realism, but also regarding an adequate description of its shape. Natural objects, with their

abundant complexity and level of detail, can be so complicated, that only an observed sampling

data point set can accurately capture their shape. Analytic descriptions are either overly compli-

cated or simply infeasible. Properties measured in these sampling points are commonly required

to reveal whether a point belongs to the object or to its natural background. Generally, sampling

data point sets will represent not only the object, but (some of its) background along. With

objects being represented this w ay,the problems is then to reconstruct the solid object from

these sample points.

The problem in this thesis is largely compatible with the above problem: after all, subsurface

obje ctsbelong to the class of natural objects. The key issue in this thesis is the �nding of an

icon out of a sampling data point set. An icon can be understood to be the representative

of a family of objects that belong to one class. For instance, an icon of a meandering river,

a dune, a lens or a point bar. An icon can be stored in a database and a single icon can

instantiate (reproduce) an entire family of objects again, assigning them dimensions, a location

and an orientation. Generally speaking, b y applying an instantiation transformation to the

icon. Additional constraining sample data may be drawn from an observedtarget to which the

instantiated object must comply. This thesis proposes an inversion-cycle and forward modelling

loop based modelling framework, that anticipates the advent of such constraining data.

With regard to the basic problem, the abridging of the gap between the sample point topology

and the solid object model contemplated, new math concepts have been proposed in recent

literature, appearing w ell-applicableto the problem at hand. Among others, the notion of an

α-complex. In the approach followed in here, α-complexes will be used both for the derivation

and storage of the icons and for the instantiated objects. Primary objective is to verify as to

whether α-complexes can meet the requirements as stated and �t the approach tak en. The use

of α-complexes has a couple of characteristics in common with triangulation and convex hull,

but also o�er a number of distinct advan tages, at only little extra computational cost.T o some

extent, an α-complex can be regarded as a parameterised triangulation, with an upper bound

on the edge length. It can describe the geometry and topology of a one-part object, separated

object parts, objects with holes, etc., as a single mathematical entity. In this thesis, emphasis is

on weighted α-complexes, in which parameterisation is by distance, biased by weight.

Manipulation of the spatial distribution of the observed sampling data point set and the at-

tac hment of w eights allo w for �special modelling e�ects�. In order to fruitfully exploit these



capabilities, the e�ects of transformations of the sample points must be thoroughly apprehended

and a weighting strategy has to be designed, adapted to the modelling of sampled natural objects.

In this work, various such strategies will be explored and the most promising and appealing will

be further worked out. Owing to their general dimension, α-complexes allow for a hyper-spatial

approach, which, in turn, aptly applies to the notion of property-ruled geometry and topology

of natural objects.

Cluster and/or factor analysis of the observed properties can be used to identify the ruling

properties (factors) telling object apart from its natural background. In a hyper-spatial approach,

a cluster analysis tends to yield the geometry of the property clustersand cluster membership,

projections and intersections may be used to �nd the object's �ordinary� geometry. In a typical

application, property subspace will be swapped with resulting weight. Either the hyper-spatial

points or the weights can be stored with the icon, mainly depending on the details of the object

instantiation process. The weight so obtained can be matched with the typical distances to be

abridged, using a transformation. F or instance,the globally smallest ne ar est-neighbour distance

may be tak ento determine the weight scale factor. In this case, the relative distribution goes

unchanged and the resulting object is solely determined by the observed properties. Alternately,

w eights may be locally up-scaled to their local maximum values, i.e., to the maximum values

without enforcing an edge in the α-complex by weight alone. Such local maximum values seek to

guarantee a hole-free (part of the) object. The genuine relation with the ruling property values

will generally get lost, in this case. Any sampling data point set has an attr actor associated with

it, that denotes these local maximum values.

An α-complex-based de�nition o�ers the opportunity to examine various appearances of the

same sampling data point set. In this case, this capacity is exploited to �nd and describe the

icon. The family of object appearances to draw from is obtained by varying the value of α. With

an increasing α, icons tend to grow more �fat�, whereas icons get �leaner� when α comes do wn.

Obviously, the α-value can be manipulated directly, eventually however, crisp criteria and cost

functions should be developed underpinning the �right� value of α. For example, stratigraphic

constraints or geomechanical process simulation. Optionally, the icon may be improved by edit-

ing. Editing in this context, comes down to manipulating or augmenting the sampling data point

set, for instance b y inserting additional points re�ecting a modellers a-priori knowledge on the

object. The customary process of object reconstruction su�ers from an inherent lack of data

and su�ciently commensurable data. This largely induces the desire to bring in the available

a-priori knowledge. E.g., to remove or seed holes in the object. Any kind of knowledge that can

be expressed in terms of a con�guration of points can trivially be inserted.

The process of analysis,in terpretation and editing may be supported by the �t of a theoretical

model, in similar vein with �tting a Gaussian curve to a histogram. Once a theoretical model

has been matched, many more mature and concise propositions can be made with respect to the

underlying sampling data point set.

The notion of an α-complex is well-formalised. It is, nevertheless, of great practical importance

for an α-complex to be easily related to, paired with and transcribed into existing (legacy) object

model descriptions and representations. Existing model descriptions tend to be rarely based on

cellular structures featuring holes and separations. This implies that α-complexes need to be

veri�ed and validated as a model description and as a representation scheme. The most widely

used representations, the Constructive Solid Geometry (CSG) and the boundary representation

(B-rep), will be taken as a reference.



Furthermore, α-complexes shall support numerical modelling, probably after some endowment,

and possess the longer-term perspective of serving as a vehicle for dynamic process modelling.

This thesis presents a novel approach to conduct numerical computations on an α-complex. Ex-

ploiting the fact that the α-complex and the corresponding triangulation share faces, a topological

embedding can be found that allows for instance a �nite element approach. Even in the presence

of holes and separations. This approach is also the key to process simulations of objects subject

to depositional and erosional processes, a frequently occurring and therefore important class of

processes in nature.

Application cases are carried out to verify the approach developed in this work. Most applications

are drawn from the realm of earth sciences. The selected applications �rstly aim at the veri�cation

of details of the geometric modelling approach. The analysis and preprocessing of sample points,

the assignment of weights and the interpretation of the result α-complexes are discussed. Every

�case� yields a model that may act as an icon. Secondly, applications seek to verify the numerical

modelling approach with α-complexes and �nally, α-complex based process models. As far as

the latter is concerned, a deposition/erosion process model has been selected, inducing a change

of topology, with the idea that this type of process best demonstrates the power of the developed

approach.

F urther to these cases, there is a case showing how a previously derived icon can be used to

instantiate a complete family of descendent objects. Another case demonstrates the editing. A

larger point set case uncovers the largest size that can be implemented on today's computing

platforms.

Conclusions

The research of this dissertations sets forth the following conclusions and principle �ndings.

The conceptof α-complexes conveniently abridges the gap betw eensampling data point sets of

observed physical objects, and the targeted solid object models needed for instance for process

modelling. Using an α-complex, an icon can be drawn from the sampling data point set and

stored in a database. Using transformations, entire families of objects can be generated by the

icon. This w ay,initial objects can be rapidly created, to be further constrained by additional

data. F urthermore, it appears feasible to store additional process information enabling the

object to act as a process model. The object's dynamic behaviour may be su�ciently formalised,

despite deposition and erosion, using morphological operators. This results in an evolutionary

map, go vernedby the morpho-dynamic process. Many natural objects are in fact multi-phase

systems. With holes de�ned as complementary space relative to the convex hull, an α-complex

preciously de�nes a two-phase system, like a percolation system or a gas-�uid system.

Weighting can successfully be turned into a modelling instrument. Weighting is of great practical

importance, particularly in those cases where neighbouring distances between sample points are

equal. Weighting based on a restricted number of factors intuitively and practically conforms to

the modelling of sampled natural objects. Intuitively because of the property-ruled nature of ge-

ometry and topology and practically because this way of weighting is easily implemented through

hyper-sp atialmodelling. F orobjects that contrast only faintly with the embedding background,

cluster-membership (α) and/or weight should be taken such that the vague boundary between



object and background is su�ciently stored along with the sample data in the icon. If so, the

boundary can be reproduced in all its vagueness during instantiation. Su�cient discriminant

power of the ruling properties is decisive to discriminate the object from its natural background.

A lack of strong factors results in a poor weighting and poor modelling. Weighting based on

observed properties is best approached as a tw o-stageprocess. The �rst step implements the

�nding of the normalised weights and the second step transforms weights to match the nearest-

neighbour distances. The Stienen model is a suitable attractor guaranteeing maximum local

w eight without enforcement of any connection by weight alone.

The sampling data point set can be considered as a homogenous or in-homogenous empirical

Poisson point process. Clustering e�ects, as expected, turn out to be re�ected by the stochastic

characteristics of the process fairly well. Using a marked P oissonpoint process, the problem

of weighting may be rede�ned in terms of a coverage problem, which helps to further make the

problem transparent.

So far, only the bene�ts of the approach tak enhave been highlighted. As ever, the approach

comes with a number of �aws and omissions, too. Implicit topology, for instance, blocks a full

control over the topology. Occasionally, for certain con�gurations, the sample points generate an

incorrect or undesirable topology. The framework anticipates repair of undesired topologies with

a couple of �instruments�: transformations may be applied to manipulate (i.e., improve) the spa-

tial distribution of the sample points. Line-patterns, for instance. F urthermore, normalisation, a

special type of transformation, can be used to homogenise scales and spaces of property values,

and the like. Repair of undesired topologies is not always possible this way. In case all this fails,

the insertion of pseudo-sample points can be tried as a remedy. Further enhancements are also

expected from anisotropic forms of weight: weight which is direction dependent. Moreover, al-

ternate solutions have been proposed in literature recently, based on local metric and rede�nition

of α-complexes. This will also further recently improve topological control. Nonetheless, cases

that cannot be su�ciently controlled are not believed to cease occurring in the near future.

Another disadvantage of the approach presented in here is that it takes detailed knowledge

on the underlying sampling data point set, in order to fully comprehend the join t e�ect of

transformation and weighting. Also, the consequences for the Lebesgue measure, the hyper-

volume, say,contin uously ha veto be kept in mind. A theoretical model may assist in gaining

insight, though, but not su�ciently under all circumstances.

As an object model description, an α-complex generally violates the continuity criterion, as well

as the criteria for solidit y,closure and homogeneous dimensionality. Set regularisation and the

�embedding approach� can eliminate these �aws. The introduction of a nil-object aids greatly in

the search for homeomorphic maps. As a representationsc heme, the α-complex is unambiguous

but not unique. V alidation of the representation scheme is generally expensive.

Contrary to many other object model descriptions, no transcription is needed before running

numerical computations on anα-complex. Solutions have to be found, though, for three inherent

problems: singular elements, separations and �slivers�. Sliv ersare needle-like elements with a

very bad aspect ratio. Singular elements are easily �ltered o�. Separations can be coped with

using the �embedding�-approach. Slivers appear to be primarily generated in the vicinity of

the α-complex' border, for higher values of α. Rather than taking the triangulation as the

embedding background, an α-complex that approaches the triangulation can be tak en, with

a slightly smaller α-value. Doing so generally removes the sliv ers. This strategy, along with



the implicit topology, brings about unattended iterative process modellingwith no in tervention

required by the modeller. T opological changes are implicitly adapted for, muc h in the fashion of

an automatic regridding. This approach turns out to facilitate process modelling of deposition-

erosion objects fairly well, covering an extremely important class of natural objects.

Regarding model size and performance, the following conclusions can be drawn. Generally,

detailed models require vast amounts of data and large computers to process them. F orsimple

models (O(102) to O(103) points), results sho wthat implementations can generally be made

fast enough for interactive use. F or more complex and bigger problems (O(104) to (106) points),
storage becomes increasingly critical. The largest model had approximately 3 ·105 sample points

and took more than 1 Gb internal memory and 5 to 6 hours of dedicated processing time on a

pow erful 4-processorOnyx 2 Silicon Graphics
2. This case uncovers the current limits which

are somewhat too restrictive, still. With the adven t of faster computers with more memory, this

barrier is believed to be trespassed soon. Additionally, domain decomposition, not discussed in

this thesis, can help to break down the problem in smaller sub-problems and have a network of

moderate computers calculate the solution in parallel. Storage requirements can be reduced by

exploiting the fact that α-complexes can be stored as unevaluated descriptions, i.e., the complex

itself can uniquely be reproduced from the stored set of sample points plus an α-value.

The use of α-complex-based icons o�ers good possibilities for a hook-up with knowledge-based

modelling and variational geometry. In a somewhat broader context, the idea of creating a lively

collection of communicating co-existing natural objects (shapes) is steadily growing towards

realit y. In the century lying ahead, technical developments are foreseen to become mature

enough to facilitate the technical environment. Modelling tec hnique developments are felt to

become the critical factor for appreciable progress. Nevertheless, the approach presented in this

thesis is believed to contribute to signi�cant cost savings for the E&P-industry, in the very near

future. Mainly due to the accelerated modelling process, and enhanced and more reliable models.

2kindly made available b y Silicon Graphics Benelux, at De Meern





Samenvatting

Het Gebruik van Gewogen Alpha Complexen
bij het Modelleren van de Ondergrond

Het reconstrueren van bemonsterde natuurlijke objecten

Bart H.M. Gerritsen

De studie naar het modelleren van natuurlijke objecten heeft een enorme progressie geboekt,

de laatste jaren. Vooral de komst van krachtige computers is daarbij van belang geweest. Het

modelleren van natuurlijke objecten blijft evenwel een moeilijk probleem, ook met de huidige

modelleer-technieken. Dat geldt voor het verkrijgen van foto-realisme, maar zeker ook voor

het nauwkeurig beschrijv envan de vorm. Natuurlijke objecten, met hun overvloedigecomplex-

iteit en mate van detail zijn vaak zo gecompliceerd dat alleen met behulp van een verzameling

bemonsteringspunten de vorm ervan op een adequate manier kan worden beschreven. Analytis-

che beschrijvingen zijn ofwel v eel te gecompliceerdofwel simpelweg onmogelijk. Eigenschappen

gemeten in de bemonsteringspunten moeten meestal uitsluitsel gev enof en zo ja in w elk emate

dat w aarnemingspunt tot het object moet w ordengerekend en wat als natuurlijke achtergrond

moet w ordengerekend. In v eelgevallen komt er iets van deze natuurlijke ac htergrond mee met

de verzameling bemonsteringspunten. Het probleem met opdeze manier bemonsterde objecten

is v erv olgens om een solid object te creeëren uit deze punten verzameling.

Het probleem van deze dissertatie sluit aan bij bovenstaand probleem: objecten in de ondergrond

zijn immers ook natuurlijke objecten. In deze dissertatie gaat het met name om het vinden van

een icon uit een verzameling bemonsteringspunten. Een icon is een kenmerkende representant van

een familie van soortgelijke objecten. Bijvoorbeeld een icon van een meanderende rivier, een duin,

een lens, een point bar, etc. Een icon kan worden opgeslagen in een database en met één enkele

icon als �template� kan ook weer een hele familie worden geinstantieerd (gereproduceerd), door

toekenning van afmetingen, een locatie en een orientatie. Samengevat, door een transformatie

toe te passen op de icon. Met aanvullende bemonstering, die als �constraining data� w orden

gebruikt kan het gecreeerde object zo goed mogelijk in overeenstemmingworden gebrach t met

de observaties van de w erk elijkheid.Daartoe wordt in deze dissertatie een modelleeromgeving

voorgesteld die uitgaat van een inversie-cyclus en een forward modelling loop en die voorzienis

op invoer van dergelijke constraining data.

Voor het kernprobleem, het overbruggen van de kloof tussen punt-topologieën van de bemon-

steringspunten en de beoogde solid models zijn in de recente literatuur nieuw emathematische

constructies voorgesteld, die hier met vruch t kunnen worden toegepast. Een daarvan is het

α-complex. In de hier beschreven aanpak wordt bij het bepalen van icons en bij het weer in-

stantieren van �afstammelingen� daarvan gebruik gemaakt van α-complexen. In deze dissertatie

gaat het er met name om om te bezien of α-complexen daarvoor gesc hiktzijn en passen in de

aanpak als beschreven. Het gebruik van α-complexen op zich heeft een aantal k enmerken gemeen

met het gebruik van triangulaties en convex omhullenden, maar biedt ook een aantal speci�eke

voordelen, tegen slec hts geringe extra rekenkosten van de computer. T otop zek erehoogte kan

een α-complex worden opgevat als een geparametriseerde triangulatie, met een bovenlimiet voor



de lengte van een edge. Een α-complex kan de geometrie en topologie beschrijven van een object

uit een stuk, maar ook van een een object met gaten en separaties, in één enkele wiskundige

entiteit. Dit in tegenstelling tot een triangulatie of een convex omhullende. In deze dissertatie

ligt de nadruk op gewogen α-complexen, gebaseerd op gewogen punten, waarbij de paramterisatie

dan niet alleen is gebaseerd op onderlinge afstand, maar tevens op een �bias� als gevolg van het

gewich t.

Manipulatie van de ruimtelijke verdeling van de bemonsteringspunten en het gebruik van gewich t

maken �speciale modelleer-e�ecten� mogelijk. Om deze modelleer-e�ecten te kunnen benut-

ten moeten de e�ecten van transformaties van de punten w ordengeanalyseerd en moet er een

w eegstrategiew ordenon twikkeld die aansluit bij het modelleren van bemonsterde natuurlijke

objecten. In dit onderzoek w ordenversc hillendestrategieën voorgeteld en degene met de in dit

verband beste perspectieven wordt verder uitgewerkt. Het feit dat α-complexen van arbitraire

dimensie kunnen zijn, maakt hyper-spatieel modelleren (veel-dimensionaal modelleren) mogelijk,

hetgeen weer goed beantwoord aan de door eigenschappenbepaalde geometrie en topologie van

natuurlijke objecten.

Een cluster en/of factor analyse wordt gebruikt om te bepalen welke eigenschappen in welke mate

bijdragen tot het onderscheiden van een object van zijn natuurlijke ach tergrond. In een hyper-

spatiele aanpak geeft een cluster analyse als het ware de geometrie in de eigenschap-deelruimte

(�property space�) en cluster membership, projecties en intersecties kunnen dan vervolgens wor-

den gebruikt om de �gewone� geometrie en topologie te bepalen. Voor de meeste toepassingen

zal daarbij uiteindelijk de eigenschap-deelruimte w ordenvervangen door gewich t. Voorwat be-

treft de icon kunnen ofwel de h yper-spatial bemonsteringspunten w ordenopgeslagen, ofwel de

gewogen bemonsteringspunten, afhankelijk van het instantieringsproces. Hetop deze manier in

elk bemonsteringspunt bepaalde gewich t kan door middel van transformaties in relatie worden

gebrach t met de te overbruggen afstand tussen bemonsteringspunten. Bijvoorbeeld door de kle-

inste near est-neighbour afstand te bepalen en alle gewich ten in gelijk emate op te schalen met

een factor die gebaseerd is op die afstand. De onderlinge verdeling van de gewich ten blijft dan

(in relatieve zin) gelijk en zal dus leiden tot een object dat volledig bepaald is door de bemons-

terde eigenschappen. Het gewich t kan locaal verder worden opgeschaald tot de locaal maximale

w aarde,d.w.z. de maximale w aardezonder dat op dat punt een verbinding in het α-complex

w ordt afgedwongen door het gewicht alleen. Locaal maximale waarden van de gewich ten kunnen

bijvoorbeeld w ordengebruikt om een gaten-vrij (deel van een) object te krijgen. De duidelijke

relatie met de bepalende eigenschappen gaat dan over het algemeen verloren. Bij elk e verza-

meling bemonsteringpunten hoort een attr actor w aaruitdeze locaal maximale waarden kunnen

w orden afgeleid.

De�nitie op basis van een α-complex biedt de mogelijkheid om verscheidene vormen van een en

dezelfde puntenverzameling te evalueren. In dit geval wordt deze mogelijkheid dus ingezet om

de icon te vinden en eenduidig te besc hrijven. De verschillende versies van het object worden

uit de bemonsteringspunten verkregen door de waarde van de parameter α te varieren. Neemt α
toe, dan wordt de icon �vetter�, bij een afnemende α wordt de icon �magerder�. De waarde van

α kan direct worden gemanipuleerd, maar het uiteindelijke doel is om dit te baseren op �harde�

criteria, bijvoorbeeld strategraphische constraints of processimulaties. Eventueel kan de icon nog

w ordenaangepast door middel van editing. Editing houdt in dit verband in dat de verzameling

punten w ordt gemanipuleerd, bijvoorbeeld door het toevoegen van punten om bepaalde a-priori

k ennis in te brengen. Het reconstructie-proces van het bemonsterde object gaatin het algemeen

gebukt onder een gebrek aan voldoende en voldoende gelijksoortige data. Mede daarom is er de



w ensom a-priori kennis in te brengen. Bijvoorbeeld om gaten weg te werk en of aan te brengen.

Elke soort kennis die vertaald kan worden in aanvullende punten kan daarbij gemakkelijk worden

ingebrach t.

Het process van analyse, in terpretatie en editing kan worden ondersteund met behulp van een

theoretisch model, net zoals een Gausische model curve bij een histogram. Als eenmaal een

theoretisch model is �gematched�, dan kunnen aanmerkelijk meer en betere uitspraken worden

gedaan ten aanzien van de onderliggende verzameling bemonsteringspunten.

De geometrische en topologische beschrijving op basis van een α-complex zijn mathematisch

volledig geformaliseerd. Het is van groot praktisch belang dat α-complexen kunnen worden

gecombineerd met bestaande object model beschrijvingen en representaties die maar zelden zijn

gebaseerd op cellulaire structuren met gaten en separaties. Dit betekent dat α-complexen ook

beoordeeld moeten w ordenals model beschrijving als representatie. De twee meest toegepaste

representaties, de Constructive Solid Geometry (CSG) en de boundary representation (B-rep),

w orden daarbij als referentie aangehouden.

Ook moeten α-complexen geschikt zijn of kunnen worden gemaakt als numeriek model en uitein-

delijk kunnen dienen als basis voor een dynamisch pr ocess model. Er wordt een nieuw eaanpak

voorgesteld voor numerieke berekeningen op basis van α-complexen. Door gebruik te maken van

het feit dat de elementen waaruit een α-complex is opgebouwd ook voorkomen in de triangulatie

van dezelfde punten verzameling kan een topolo gische inbedding (embedding) worden gevonden die

een berekening met bijvoorbeeld eindige elementen op basis van een α-complex mogelijk maakt.

Zelfs als er gaten zijn of het object gesepareerd is. Deze aanpak w erktook voor processimu-

laties van deposities en eroderende objecten, een belangrijke klasse van processen die veelvuldig

voorkomen in de natuur.

De ontwikkelde aanpak wordt getoetst met behulp van toepassingen, vooral betrekking hebbend

op de aardwetenschappen. De gekozen toepassingen zijn in de eerste plaats bedoeld en ges-

electeerd om de aspecten van het geometrisch modelleren te belich ten. De voorbewerking van

bemonsteringspunten, de toekenning van gewich ten en het interpreteren van α-complexen komen

daarbij aan de orde. Iedere �case� eindigt in een model dat als icon kan worden opgeslagen. V erder

het numerieke modelleren op basis van α-complexen en ten slotte het maken van een proces model

met behulp van een α-complex. Wat dit laatste betreft is gekozen voor een erosieprocess, dat

tot wijzigingen leidt in de topologie, omdat hierin het best de kracht van de gekozen aanpak tot

uitdrukking komt.

Een van de toepassing laat zien hoe een eerder afgeleide icon kan worden ingezet om hele familie

van objecten te creeren. Ook is er een toepassing die laat zien hoe de verzameling vanbemon-

steringspunten w aaruitde icon wordt afgeleid kan worden aangepast met behulp van editing.

In de peri�erie is het verder van belang de grenzen van de techniek te verk ennnen:een van de

toepassing beoogt daarom de maximale grootte van de verzameling van bemonsteringspunten af

te tasten, die op de huidige computerplatforms kan worden verwerkt.

Conclusies

Uit het onderzoek beschreven in deze dissertatie kunnen de volgende conclusies worden getrokken.



Het concept van α-complexen leent zich bij uitstek om het gat te dic hten tussen enerzijds de

bemonsteringstechnieken die h un resultaten als verzameling punten a�everen en solid models

die onder meer nodig zijn voor een proces-simulatie van het object. Met behulp van α-complex

kan uit een verzameling van bemonsteringpunten van gelijksoortige objecten een icon w orden

afgeleid en opgeslagen in een database. Met behulp van transformaties kunnen hiermee complete

families van objecten w ordengegenereerd. Op deze wijze kan snel en eenvoudig een initieel

object worden gecreeerd, dat verder met een waargenomen werkelijkheid in overeenstemming kan

w orden gebracht. Verder is het zo dat in een op een α-complex gebaseerde icon procesinformatie

kan w ordenopgeslagen, zodat een object kan dienen als een procesmodel. Het blijkt mogelijk

om het dynamisch gedrag van dergelijke objecten, ondanks depositie en erosie, voldoende te

formaliseren met behulp van morfologische set operatoren. Het resultaat is dan een evolutionary

map, bepaald door het morfologische proces. V eel natuurlijke objecten zijn in feite op te vatten

als meerfase systemen. Doordat gaten zijn gede�nieerd als complementaire ruimte ten opzichte

van de convex omhullende, leent een α-complex zich bij uitstek om een tw ee-fasesysteem te

beschrijv en, bijvoorbeeld percolatie modellen en gas-vloeistof problemen.

Weging kan met succes worden ingezet als een modelleer-instrument. Weging is van grote praktis-

che betekenis vooral in die situaties waarin de onderlinge afstanden tussen de bemonsteringspun-

ten identiek zijn. Weging op basis van een beperkt aantal bepalende eigenschappen (factoren)

sluit intuitief en qua opzet het best aan bij het modelleren van bemonsterde natuurlijke objecten.

In tuitief omdat de geometrie en topologie immers vooral bepaald worden door de waarden van

de eigenschappen in de bemonsteringspunten en qua opzet omdat deze w eegstrategiegemakke-

lijk kan w ordengeimplementeerd met behulp van hyper-spatieel modeller en. Voor objecten die

moeilijk te onderscheiden zijn van hun achtergrond is het aan te bevelen om cluster-membership

(α) en/of gewich ten zodanig te kiezen dat een de vage grens in voldoende mate met de icon wordt

opgeslagen. Bij het instantieren is deze grens dan w eervoldoende reproduceerbaar. Voldoende

discriminerend vermogen van de bepalende eigenschappen is belangrijk om het gezochtte object

als hetw arete con trasteren met de natuurlijke ach tergrond. Als geengesc hikte combinatie van

zulke factoren kan w ordengev onden,dan is als gevolg daarvan het gewich t als modelleer-e�ect

ook zwak. Weging op basis van waarden van bepalende eigenschappen kan het best als een tw ee-

stappen strategie w ordengezien. In de eerste stap wordt het genormaliseerde gewich t bepaald,

in de tw eede stap vindt een transformatie plaats om het gewich t qua grootte in overeenstemming

te brengen met de spatiëring van de bemonsteringspunten. Het Stienen model is een geschikte

attractor die garandeert dat geen enkel punt verbonden wordt met een buurman op basis van

het gewich t alleen en elk punt toch zijn locaal maximale waarde heeft.

De verzameling bemonsteringspunten kan w ordenopgevat als een empirisch homogeen of inho-

mogeen Poisson punt pr oces. Clustering e�ecten blijken, zoals mag w ordenverwac h t,duidelijk

terug te vinden in de stochastische karakteristieken van het process. Met behulp van een marked

P oissonpoint process kan het bepalen van gewich t w ordengeherformuleerd als een dekkings-

probleem (coverage pr oblem), hetgeen het bepalen ervan meer intuitief maakt.

Tot nu toe zijn een aantal onderdelen van de voorgestelde aanpak genoemd die met succes

kunnen w orden ingezet voor de beoogde doelen. Daar staan een aantal (nog) niet opgeloste

problemen en nadelen tegenover. Een impliciet afgeleide topologie is een handige eigenschap

van een α-complex, tegelijkertijd blokkeert het een volle dige controle overde topologie. In een

aantal gevallen, voor zekere con�guraties van bemonsteringspunten, ontwikkelt zich een onjuiste

topologie. Corrigeren lukt niet in alle gevallen volledig. In de voorgestelde aanpak zijn een aantal

�instrumenten� aanw ezigom de topologie onder controle te krijgen. Met behulp van transfor-



maties kan de ruimtelijke verdeling van de bemonsteringspunten worden beinvloed. Bijvoorbeeld

bij sterk lijn-georienteerde bemonsteringspunten. Een speciaal geval van een transformatie, de

normalisatie, kan w ordengebruikt om ruimtelijk e schalen en de schaling van de w aardenvan

eigenschappen op gelijk niv eaute brengen. Als dit alles niet afdoende is kunnen aanvullende

pseudo-bemonsteringspunten w ordentoegevoegd. Veel wordt ook verwac h tvan anisotrope vor-

men van w eging, d.w.z., het gewich t wordt rich tingsafhankelijk gemaakt. Ook zijn er in de

literatuur voorstellen gedaan om te werk en met een locale metriek en een voorstel om de de�ni-

tie van α-complexen aan te passen. Ook hiervan mag een verdere verbeteringw orden verwacht.

Toch blijven er gevallen over die niet de gewenste topologie opleveren.

Een ander nadeel is dat om het samengestelde e�ect van transformatie en weging volledig te

begrijpen, er gedetailleerde kennis nodig is van de onderliggende verzameling bemonsteringspun-

ten. Ook moet continue w orden afgevraagd, wat transformaties betekenen voor bijvoorbeeld de

Lebesgue measure, eenvoudig voor te stellenals een maatv oor hyper-volume. Welliswaar biedt

een theoretisch model aanvullend inzich t,maar dit is niet in alle gevallen toereikend.

Een α-complex als object model beschrijving zal in het algemeen continuiteitscriteria schenden,

evenals criteria voor solidit y,closure and homogeneous dimensionality. Set regularisatie en de

�inbedding aanpak� kunnen dit bezwaar wegnemen. De in troductie van een nul-object help om

homeomorfe afbeeldingen en conversies te verkrijgen. Als representatie schema is het α-complex

eenduidig maar niet uniek. Het valideren van het representaieschema is over het algemeen kost-

baar.

In tegenstelling to een aantal andere model beschrijvingen is geen vertaling nodig van een α-
complex voordat er numerieke berekeningen op uitgevoerd kunnen worden. Wel zijn er oplossin-

gen nodig voor de volgende drie problemen: singuliere elementen, separaties en �slivers�. Slivers

zijn naald-vormige elementen met een uitermate slechte aspect ratio. Singuliere elementen kun-

nen eenvoudig verwijderd w orden,bijvoorbeeld door �ltratie. Separaties kunnen w ordenopge-

heven door gebruikmaking van de ontwikkelde �embedding�-techniek. Slivers blijken voornamelijk

gevormd te worden voor hoge waarden van α, nabij de buitengrens van het α-complex. In plaats

van de triangulatie als ach tergrond voor inbedding kan men daarom beter een α-complex nemen

dat de triangulatie benaderd maar waarvan de α-w aarde ietw at lager ligt.Deze aanpak zorgt er

over het algemeen voor dat de slivers verdwijnen. Deze strategie, gecombineerd met het feit dat de

topologie impliciet is gede�neerd, maakt het mogelijk om een procesmodel te �draaien�, op basis

van een iteratief proces zonder verdere interventie van de modelleerder. T opologie-veranderingen

kunnen door het impliciete karakter worden opgevangen, waardoor een soort automatische re-

gridding optreedt. Deze aanpak blijkt ook zeer geschikt voor processimulaties van deposities en

eroderende objecten, die veelvuldig voorkomen in de natuur.

Voor wat betreft de model-grootte kan het volgende worden geconcludeerd. Gedetailleerde mod-

ellen vragen enorme hoeveelheden bemonsteringspunten. Simpele modellern, in de orde-groote

vanO(102) to O(103) bemonseringspunten, resulteren in toepassingen die zich over het algemeen

op een gemiddeld recent model werkstation lenen voor interactief gebruik. In geval van grotere

en meer complexe modellen (O(104) to (106) punten ), wordt het problematisch. Het groot-

ste model dat kon worden gecreeerd heeft ongeveer 3 · 105
bemonsteringspunten en vergt meer

dan 1 Gb in ternal memory and 5 to 6 CPU-uren berekeningstijd op een 4-processor Onyx 2

Silicon Graphics3. Deze case legt duidelijk de huidige grenzen bloot. Met de komst van

krach tiger computers kunnen deze grenzen uiteraard worden doorbroken. Daar komt bij dat

3ter besc hikking gesteld door Silicon Graphics Benelux in de Meern



(hier niet ter sprake gebrach te) technieken als domein decompositie en �parallellisatie� kunnen
w ordenaangewend om het eigenlijke probleem op te delen in kleine soortgelijke deelproblemen

en op die manier in stapjes op te lossen, ev entueel met een net werk van samenwerkende kleine

computers. Wat de huidige grenzen van de opslag van de icon betreft: even tueel kan worden

overgegaannaar een unevaluated opslag van het α-complex van de icon. Dat wil zeggen dat

het α-complex zelf niet w ordtopgeslagen, maar alleen de gewogen puntenverzameling en de

α-w aarde.Het α-complex kan hieruit opnieuw worden bepaald.

Het gebruikt van icons op basis van α-complexen biedt goede mogelijkheden voor knowledge-based

modelling en variational geometry. In een wat breder verband komt het creëeren van een collectie

levende, onderling communicerende objecten die samen een levend model van de aarde vormen,
steeds dich terbij. In deze nieuw e eeuw zal de technischev ooruitgang van computers snel genoeg

gaan om geen belemmering meer te vormen. De voortgang van de on twikkeling van de mod-

elleertechnieken wordt naar verwach ting de beperkende factor. Desalniettemin wordt er vanuit

gegaan dat met deze nieuw e tec hnieken belangrijke kostenbesparingen kunnen worden bereikt in

de E&P-industrie, op korte termijn. V oornamelijk als gevolg van het sneller beschikbaar komen

van betere modellen, met een kleinere onzekerheid.
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Nomenclature

Sets and domains

∅ = empty set

K = the set of cardinal numbers

I = the set of ordinal numbers

N = the set of natural numbers

Z = the set of integer numbers

R = the set of real numbers

Q = the set of rational numbers

C = the set of complex numbers

(r1, r2) = open interval r1 < r < r2

[r1, r2) = half-open interval r1 ≤ r < r2

[r1, r2] = closed interval r1 ≤ r ≤ r2

[e1..e2) = half-open (sub)sequence e starting with e1 up to but not including e2.

Furthermore, similar to intervals

Sets and spaces

X = topological space

E d
= d-dimensional euclidian space, with d ≥ 0

E
d

= set covering d-space Ed
; E

d =
∏d−1

k=0 Rk = R0 × R1, . . . ,×Rd−1

x = point in E d
, with x = (x0, x1, · · · , xd−1)

S = �nite sampling data point set, or: landmark set, S ⊂ E
d

s = sample point, s ∈ S

N = card S = �nite set cardinality of S; N ∈ N

S1 × S2 = Cartesian product of set S1 and S2

S1 ⊗ S2 = ordered Cartesian product of set S1 and S2, card S1 = card S2

S1
⋃

S2 = set union of S1 and S2; S1
⋃

S2 = {s|s ∈ S1 or s ∈ S2}

S1
⋂

S2 = set intersection of S1 and S2; S1
⋂

S2 = {s|s ∈ S1 and s ∈ S2}

S \ Y = set di�erence of S and Y ⊂ S; S \ Y = {s ∈ S|s 	∈ Y}



S1 ⊕ S2 = Minkowski set addition; S1 ⊕ S2 = {s1 + s2|s1 ∈ S1, s2 ∈ S2}

S1 / S2 = Minkowski set subtraction; S1 / S2 = {s1 − s2|s1 ∈ S1, s2 ∈ S2}

−S = re�ection of S; −S = S̆ = {−s | s ∈ S}

S̆ = re�ection of S; S̆ = −S

Conv S = convexset spanned b y S

ComplS = complement of S

S� = Helmertized, interpolated �nite landmark set

Weighted points

W = set of real weights to be attached to S; W ⊂ R

S̃ = w eighted sampling data point set; S̃ = S ⊗ W

2
˜
S

= power set of S̃; 2
˜
S = {Y|Y ⊂ S̃}

s̃ = sample point with attached weight, s̃ ∈ S̃; s̃ an ordered 2-tuple

(s,w) ∈ S ⊗ W

x̃ = w eighted point in E d × R, with x̃ = (x0, x1, · · · , xd−1, w) ∼=
(x, w)

w = real weight, w ∈ (−∞..∞)

Geometry

A = arrangement; a spatial con�guration

St s = (open) star of vertex s; union of in teriors of all faces incident

upon s

¯St s = closed star of vertex s; union of all closed faces incident upon s

Lk s = link of vertex s; Lk s = ¯St s − St s

S̃
�

= �nite set of radical centres, generated by S̃, in which the empty

w eighted α-balls are located; card S̃
� 	= card S̃; S̃

�
coincides

with the set of Voronoi vertices

P = k-polytope; a k-dimensional bounded polyhedron

|P| = the underlying space of P , the part of Ed
occupied by P



Int P = in teriorof P; IntP ∼= ClP − Bd P
◦
P = interior of P;

◦
P ∼= IntP

Bd P = border of P; Bd P ∼= Cl P − Int P

∂P = border of P; ∂P ∼= Bd P

Ext P = exterior of P.

ClP = closure of P; ClP =
⋂
i
Cl Qi, ClQi ⊂ P

P̄ = closure of P; P̄ ∼= ClP

H(S̃) = convex hull of weighted point set S̃; H(S̃) ∼= Wαmax(S̃)

V(S̃) = weighted Voronoi diagram of weighted point set S̃

Π(S̃) = pow er diagram of weighted point set S̃; Π(S̃) ∼= V(S̃)

T (S̃) = regular triangulation of weighted point set S̃; T (S̃) = Cαmax(S̃)

F(S̃) = space �lling diagram; F(S̃) =
⋃(

Bα(S̃)
)

C(S̃) = simplicial complex based on S̃; C(S̃) =
⋃
σ(k)

, with: σ
(0)
j ∈ S

Cα(S̃) = weighted α-complex; Cα(S̃) ∈ A and Cα(S̃) ⊆ T (S̃)

K(k)(C) = k-sk eleton of simplicial complexC; collection of all k-faces plus
subfaces; K(k) ⊆ C

NrvY = nerve of coverY ; NrvY = { X ⊆ Y ‖ X 	= ∅ }

Hα(S̃) = weighted α-hull; Hα(S̃) = Compl
⋃

(Bα(S̃
�
)) ∩ S̃ = ∅)

Wα(S̃) = weighted α-shape, underlying space of the α-complex;

Wα(S̃) ∼= |Cα(S̃)|

Uα(S̃) = weighted α-diagram; Uα(S̃) =
⋃
Bα(S̃); Uα=0(S̃) ∼= F(S̃)

W(S) = shape of landmark set S

℘(S) = primitive or: icon shape, templatized by Helmertized, in terpo-

lated landmark set S�

D(S̃) = cell decomposition of the convex polytope spanned by S̃;

inhere: D(S̃) ∼= T (S̃)

V (S̃) = solid covering the underlying space spanned by S̃; V (S̃) ∼= H(S̃)



α-Complexes

A = α-family; �nite set of α-complexes generated by a single point

set

α = real alpha value, with α ∈ [0..∞)

αmin = smallest α for which Cα > S

αmax = smallest α for which Cα
∼= T

Γ(Cα, α) = real-v alued signatureΓ : E
d × [0,∞) (→ R of an α-complex

ρ = index into the ordered α-family A = {Cρ
α(S̃)} of all α-complexes

for a given set S̃

Flats and F aces

H = hyperplane; a (d − 1)-�at de�ned by: Ψ(x) = c, c a constant

H+
= open half-space Ψ(x) > c, beyond hyperplane H

H− = open half-space Ψ(x) < c, beneath hyperplane H

H
�
ij = radical (hyper)plane of tw opoints si and sj ; H

�
ij de�ned by:

πsi(x) − πsj (x) = 0

πs̃(x) = power of x relative to weighted point s; πs̃(x) = ‖x − s‖2 − ws

H�+
= open half-space for which πs+(x) < πs−(x), beyond radical

plane H�

H�−
= open half-space for which πs−(x) < πs+(x), beneath radical

plane H�

C�
= radical centre; C� =

⋂
j H

�

k-face f(k)
= face of dimension k, −1 ≤ k ≤ d; typically a simplex inhere.

σ(k)
= k-simplex, a simplicial k-face (point, edge, triangle, tetrahe-

dron, . . . )

Int f = in terior of facef; covered by open set

◦
f

Bd f = boundary of face f; coincides with ∂f

Cl f = closure of face f; covered by closed set f̄

Ext f = exterior of face f; covered by set complement Compl f

F
(k)

= set of k-faces; F
(k) ⊆ F, the set of all faces



Distance, metric

d(x1,x2) = Euclidean distance betw eenx1 and x2;

d(x1,x2) = ‖x1 − x2‖2 = 〈x1 − x2,x1 − x2〉 1
2

〈. , .〉 = standard dot product or inproduct; 〈x1,x2〉 = (xT
1 x2)

1
2

d̃(x̃1, x̃2) = Laguerre (or: pow er)distance between x1 and x2; d̃(x̃1, x̃2) =
‖x1 − x2‖2 − (w1 + w2) = 〈x1 − x2,x1 − x2〉 − (w1 +w2)

L(x̃1, x̃2) = Laguerre distance d̃(x̃1, x̃2)

ν(E d) = measure on E d
; a set function: G : E

d (→ R
+

µ(x1,x2) = metric on Ed
; a function: G : (x1,x2) (→ R

+

∆, δ = arbitrary small Euclidean distance

∆̃, l = arbitrary small Laguerre distance

L12 = shorthand notation for L(s1, s2)

Balls and spheres

B(s) = d-ball centred at s

Aα = α-ball centred at a radical centre, radius
√
α

S(s) = (d − 1)-sphere centred at s; S(s) = ∂B(s)

B
(d)
R (s) = general d-ball centred at s, radius r =

√
R

ρ = ball or sphere radius

∆1 = determinant of sphere S1

∆12 = determinant of pencil P = λ1(S1 + S2)

Weighting

W = set of weights; W ⊆ R

w = N -v ector of weights; wj ∈ W

w̄ = normalised weight vector

w0 = �xed weight o�set in weight translation

N (sj) = neighbourhood of sj used for weighting



κ = ball coverage; 0 ≤ κ ≤ 1

κ(sj) = local ball coverage around sj

( = weight scaling factor

ωT = weight overshoot factor on weight transformation T

Graphs

G = graph G; G = {V,E}

deg(s) = degree of vertex s; the number of edges eminatingfrom s

NNG(S) = nearest-neighbourgraph on set S

LFNG(S) = local furthest-neighbour graph on set S

IG(C) = incidence graph of complex C;

IG = {Σ, I}, Σ = {σ(k)}, −1 ≤ k ≤ d+ 1, I = {deg(σ(k))}

Shape Analysis

G(S) = real shape parameter set function G : E
d (→ R

g = real shape parameter

X(S)
= con�guration matrix spanned by landmarks in S; row vector

x(S)
j = sj

Stochastics

λ = in tensity of Poisson point process (ppp)

Φ(S) = point process generated by point set S

V ar X = variance of random variable X

s2
X = empirical variance of random variable X

σ2
X = theoretical variance of random variable X

E[X] = expected value of random variable X

Pr[e] = probability of event e occurring

D = (theoretical) nearest-neighbour distances distribution

D̂ = empirical nearest-neighbour distances distribution

χ2
X = chi-square of random variable X



Linear algebra

1k = k-dimensional identity vector

Ik = k × k-identity matrix

detM = determinant |M| of matrix M

Permutations

m! = faculty of m
n

m


 = permutation m unique out of n;


n

m


 = n!

m!(n−m)!

Complex numbers

z = complex number; z ∈ C

z̄ = complex conjugate of z; z̄ ∈ C

Re z = real fraction of z; Re z ∈ R

Im z = imaginary fraction of z; Im z ∈ R

Scale and size

λ = real scale or size factor; generally, λ 	= 0 and in dilations λ > 0

λ = real scale or size d-v ector; elements λi as above

Λ = real scale or size d×d-diagonal matrix; elements λij, µij as above

ν
(d)
L = d-dimensional Lebesgue-measure; d-(hyper)volume

O(10m) = order of magnitude 10m

x1 2 x2 = x1 much smaller than x2

x1 . x2 = x1 much greater than x2



T ransformations

T : S (→ U = transformation from domain S (on)to co-domain or range U

S 0 = kernel space of transformationT

U 0 = image space of transformation T

kerT = kernel (null-space) of transformation T; the subset S0 ⊆ S sent

into 0

imT = image space of transformation T; the subset U 0 ⊆ U of the

range that can be reached by T

Stress, strain

τXY = stress in the XY -plane

Complexity

O(φ(n)) = asympthotic upper bound complexity for some n ≥ nmin

Ω(φ(n)) = asympthotic lower bound complexity for some n ≥ nmin

Θ(φ(n)) = asympthotic exact complexity for some n ≥ nmin

Remarks:

1. When obvious from the context, tilde notations are dropped. F or instance, writingL(s1, s2)
when it obvious that L(s̃1, s̃2) is meant

2. Also, refer to �gure 2�1.

3. When essential or further narrowing or clarifying, the above notations may be headed by

a �k-� pre�x, like in 3-polytope.
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0-�ltration, see �ltration
0-sk eleton, see sk eleton

0-triangulation, see triangulation
¬ operator, see negation

nil-icon, see icon

nil-object, see object

nil-symbol, see symbol

nil-triangulation, see triangulation

α

as a function of t, 77
domain of, 28

e�ect of, 94

expected α-value E[α], 94
lean-to-fat variation, 86, 93

local α-value, 94
negative value of, 28, 101

parameter, 4

relative in�uence of, 94

synthesis of α and w, 93
target α-in terv al, 93

time dependent, 82

varying, 6

α-ball
empty orthogonal, 27

maximum radius radical, 36

minimum radius radical, 36

α-complex, ii, 4

α variation, 85

α-family, 86

αmax, 25, 33

αmin, 33

advan tages, 5

alternate representation, 52

and existing environments, 8, 66

and part-whole description, 143

and spatial occupancy, 27

and the closure criterion, 128

and the contin uit ycriterion, 128

and the interior criterion, 128

and the orientabilit ycriterion, 128

and the rigidity criterion, 128

and α-family, 27

and α-shape, 4, 27
as a numericalmodel, 31, 186

as a representation, 123, 211

as an object description, 123

asymptotic storage complexity, 41

asymptotic time complexity, 41

b yα-�ltration, 27

changing Lebesgue measure, 80

closure of, 148

conversion, 31, 52

conversion into a FEM mesh, 154

dynamic, 147

editing, 206, 208

embeddingin model space, 138

embedding triangulation, 188

enforcement by weight, 120

equivalent class, 138

ev aluation as a model description, 8

ev aluation as a representation, 8

ev aluation of, as a representation, 133

face classi�cation, 33

generating data point set, 6

goodness-of-�t, 52, 71, 110

hole-free, 86, 120, 140

holes, 39

implicit topology, 209

in property space, 118, 165

injection of, 189

keeping the topology invariant, 80

merge with triangulation, 52

merging other object descriptions, 6

model, 124

numerical model, 211

obtained by α-�ltration, 5, 69, 156

promoters and demoters, 28

re-gridding capacity, 183, 192

representation domain, 156

sliver-free, 189



storing material properties, 128

studying di�erent regions, 113

tools for editing, 208

topological features, 31

topological query, see topological query

underlying space, 143, 150

underlying space of, 5, 27

undoing the pros of, 66

unevaluated representation, 138

vacancies in an, 23

violation of, 77, 80

w eighted, 27, 85, 209

w eighted vs. non-weighted, 6
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-ness, 35

and Laguerre distance, 101

and minimum sphere, 104

edge, 23, 104

faces, and dual geometry, 155

non-exposed faces, 155

α-family, 5, 27, 35

α vs. α-rank, 109
α-rank, 35
cardinality, 109

extremes, 148

number of α-complexes, 55

richness, 56

α-�ltration, 5, 27, 31, 35
α-interval, 148

boundaries,86, 110, 119

target, 109

α-rank, see α-family

α-shape, 5
and convex hull, 27

and holes, 149

asymptotic storage complexity, 41

asymptotic time complexity, 41

α-value
criteria for an optimal value of, 5

4-in tersectionmatrix, see matrix
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a-priori knowledge, ii, 2, 47, 48, 54, 209, 215

accuracy, 135

aeolianen vironment, 159

a�ne combination, 58

alluvial environment, 159

alphabet, 142, 143, 156

anti-cline, 146, 176

approach

evolutionary, i

generic geometric, 10

low dimension general dimension, 11

omni-potent modelling, i

select-from-database, 11

stochastic, 12

visualisation, 11

aspect ratio of face, 97

attractor, 74, 210, 221
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icon space, see model icon

model space, see model space
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Australian 4D Geodynamical Model, i
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background
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embedding, 2, 69, 108, 156, 188, 189,

210, 220

eroding material, 190

material, 49

material in�ll, 80
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A of α-balls, 22, 68, 103
B of weight-plus-α-balls, 22, 68, 71, 86,

103

barycentric calculus, 128

bijection, 129

birth-life-death cycle, 3, 157, 192

Boolean model, 20, see model

boundary

-in terior topological relation, 125

description, 127

dividing space, 125

internal,124

of a convex polytope, 125

orientation of the, 127

boundary conditions, 189

BRep, 129

and non-convexity, 143

faceted, 123

bright spot, 161, 171
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canvas, 106, 107

case-based reasoning, 213

cases

approach taken, 160

barchan dune, 183

clinical imaging applications, 159

Comet West, 106, 206

composite point bar, 195

engineering applications, 159

geometric modelling, 159

Gulf of Mexico salt dome, 176

Gulf of Thailand, 160

L8 block, North Sea, 169

L8 instance shape family, 203

numerical modelling, 159

scapula, 110

South Marsh Island salt dome, 176

cause-event-e�ect relation, 18

cavity, 39, 148

cellular complex, 127

cellular decomposition, ii, 24, 123, 129, 137,

140, 186

central moment

storing the, 128

cen tre

Napoleon, 95

of simultude, 95

external, 96

in ternal, 96

radical, 95

chalice, 150

channels, 159

chi-square test, 112

CIE chromaticity diagram, 111

circumcentre, 94

circumference of a sphere, 89

circumscribing sphere, 94

classi�cation

based on seismic, 162

of con�guration of spheres, 87

of Euclidean transforms, 58

of faces, 19, 33

of holes, 39

of named colours, 111

of natural objects, 44

of polyhedral objects, 148

of seismic data, 172

of transformations, 57, 61

of triangulations, 149

clinical analysis, 108

clinoform, 169

closing, 79, 80, 157, 220

cluster, 30, 165, 207

analysis, 117, 210

geometric realisation of, 117

membership, 210

of workstations, 223
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BGR blue-gree-red scale, 111

chromaticity, 111

CIE chromaticity diagram, 111

classi�cation problem, 111

encoding, 108, 111, 206

encoding by name, 111

encoding of seismics, 111

gray scale, 111

intensity, 111

model, 111

named, 206

red-white-blue scale, 111

scale, 111

value, 111

comet

h ydrogen envelope,206

ion tail, 206

kernel of a, 206

nucleus, 206, 207

spectral conten t,206

tails of a, 206

compaction, 77, 82, 157

completeness, 125

complex

conjugate, 87

simplicial, 133

complex numbers

geometricin terpretation of, 87, 217

spatial, 217

complexity

�nite time and storage, 125

storage, 66

time and storage-, 41, 127

computational e�ort, 161, 176, 181, 212, 224

computer representation, 1



con�guration

de�nition, 56

dynamic, 99

of spheres, 99

parameters, 56

conic

double, 96

of weighted points, 96

section, 217

single, 96

conservation laws, 73, 82, 184, 190

constraints, 54, 71, 209

geodynamic, 52

geometric, 221

icon parameter, 133

inter-object, 221

internal and external, 213

internal object, 210

in tra- and inter-object, 124

ph ysical, 168, 206, 212, 221

spatio-temporal vs. spatial, 147

time, 147

topological, 215

volumetric, 221

constructive solid geometry, see CSG

contains relation, see topological relation

control volume �nite di�erence, see �nite dif-

ference

conversion, 211

homeomorphic mapping, 140

loss of information, 139

mapping, 154

removal of holes, 154

space Q , 142

time-to-depth, 161

convex hull, 5, 27, 116, 149, 150, 152, 188

coordinates

Cartesian, 16

cylinder, 16

homogenous, 218

Plücker, 218

spatial, 16

cost function, 47, 212

coverage

A of α-balls, 91
B of weight-plus-α-balls, 90, 91
-by-weight problem, 23, 85, 86

b y Napoleon spheres, 98

degree of, 71

desired, and weight transformation, 119

factor, 71

full, 86, 103, 120

improvement, 71

local, 116, 121

local, and dynamic α, 78
of Voronoi diagram, 71

problem, 20

process, 67, 68, 102, 210

coveredBy relation, see topological relation

covers relation, see topological relation

cracking, 79

creep, 72

cross plot, 18

CSG, 123, 129

-tree, 139

and massive amounts of cells, 143

and singular faces, 143

as an unevaluated representation, 139

curvature, 168, 185

CVFD, see �nite di�erence

D
data

aggregated, 108

classi�ability, 117

clustering, 117

colour encoded observed, 108

commensurability, 54

contrast, 108

contrast enhancement, 109

heterogenous types, 54

marginal quality, 170

observation technique,108

on natural objects, 224

raw, 108

seismic, 159

threshold value, 108

training, 142, 214

voxel, 177, 180

weighting sliced, 106

databases, 11, 224

decision analysis, 215

Decision Support Systems, 11, 215

Delaunay criterion, 26

deltaic structure, 169

deposition, 157



-erosion cycle, 209

and dilation, 79

and eroded material, 79

and morphology, 79

material in�ux, 79

process, 79

description

boundary, 124

object, 123

closure criterion, 125

completeness criterion, 125

continuity criterion, 125

criteria, 125

�niteness criterion, 125

generality criterion, 125

homogenous dimensionality criterion,

125

in terior criterion, 125

orientabilit ycriterion, 125

rigidit y criterion, 125

solidit y criterion, 125

w ell-formedness criterion, 125

part-whole, see part-whole description,

127

volumetric, 124

determinant

of a con�guration of spheres, 88

of a sphere, 87

diapir, 146

dilation, 147, 157, 210

and closing, 79

dilated object, 80

dilator object, 80

dimension
�Cech�Lebesgue covering, 17

general, 10, 16, 124

low general dimension,11

subspace, 18

topological, 17

discriminant analysis, 78, 85, 117

disjoint relation, see topological relation

distance

direction-dependent, 217

Laguerre vs. Euclidean, 20

Laguerre weighted, seeLaguerre distance

skew, 217

w eighted, 20

domain

decomposition, 223

of w, 91
of α, 28, 91
variables, 137, 143

w eight, 28

domain variable, 213

dome, 176

dominance transfer, 103

dual shape, 39

dynamic behaviour, 72, 74

E
E&P-industry, 212

earth architecture, ii, 135

earth catalogue, ii, 52, 142, 146

earth sciences, 1, 108

Economic and Risk Management system, 215

economic exploration, ii

edge

�ipping, 139

editing tools, 208

embedding material, see background

embedding theorem, 17

empirical exploration, i

engineering sciences, i, 1

environment

aeolian, 159

alluvial, 159, 169

�uvial, 159, 169

land-marine coastal, 169

equals relation, see topological relation

erosion, 44, 135, 147, 157, 210, 211

and morphology, 79

and opening, 79

closing on eroded landmarks, 80

deposition and, 209

eroder object, 79

material export, 79

morphological, 75

of a landmark set, 75

process, 74, 79

van vanishing points, 80

erosional channel system, 82

error analysis, 11

evaluation study, 8

even t

�nite model trigger, 74

geological, 72



evolutionary

approach, i

landmark set, 186

map, 128, 135, 147, 157, 210

as an isometric map, 77

de�nition, 75

homeomorphic, 220

maintaining a bijection, 80

norm of a, 75

process model, 211

scenario, 157

expanded kernel modelling framework, 71

experiment

underlying space chalice, 150

exterior

-interior relation, 154

bounded, 40

disjoint, 40

�xed, 40

multiple, 148

of a convex polytope, 125

open bounded, 153

possible topological relations, 154

topological relation among, 154

unbounded, 39

extrusion, 1

F
face

classi�cation, 19

closing an α-exposed, 156
eroded, 147

interior, 34

needle, 97

negative orien tation, 125

positive orientation, 125

regular, 34

singular, 34, 66, 125, 133, 140, 143, 148,

155, 187, 211

singular, and closure, 127

singular, and dimensionality, 127

sliver, 97

with bad aspect ratio, 97

faceted boundary representation, see BRep

faceted BRep, see BRep

facies, 159

factor, 85

factor analysis, 18, 78, 85, 117, 210

fans, 159

faulting, 82

FEM, see �nite element

�ltration

0-, 136
�nite di�erence

cen tral di�erence,187

control volume �nite di�erence, i

using control volumes, 222

�nite element, i, 156, 187

and conservation laws, 73

aspect ratio, 73, 74

computations on α-complexes, 12

convergence, 74

edge-method, 217

face-based method, 222

family, 73

from α-complex faces, 73

grid elements, 12

inaccuracy, 222

mesh generation, 149

node-based method, 222

stability, 74

vector potential, 217

�nite state

model, 74

switching states, 74

�ooding, 44

�uid

�ow, 87

geometry, 151

in pore space, 211

multi-phase �ow, 72

object, 50

phase, 223

pressure, 217

shape, 151

�uvial environment, 159

folium of Descartes, 107

foreground

material, 189

fractals, i, 7

G
general dimension, 10, 16

generality, 125

genus, 39, 148

geological event, ii



geometric clustering, 117

geometric interpretation

of complex numbers, 87

of Napoleon sphere, 98

of weight, 87

geometric realisation

of a clique, 118

of a cluster, 117

of a nerve, 22, 120

of a simplicial icon, 127

geometry

classi�cation, 10

deterministic, 11

dual, 150, 153

dual, and α-exposed faces, 155

dynamic, 10, 74, 209

dynamic, and Lebesgue measure, 77

dynamic, impact on α-complex, 71

explicit description of, 1

generic approach, 10

inducing topological changes, 77

of an ellipse, 217

of ball and sphere, 85

polyhedral, 11

projective, 217

property-ruled, 10, 49, 86, 168

stochastic, 12, 215

topology, 209

variation, 55

variational, 77, 133, 142, 146, 212, 213

variational, and topological variet y, 138

variational, by-product, 142

variational, inadvertent b y-product, 146

void, 156

germ-grain model, 20

graph

and weighted distance, 37

geometric, 37

local-furthest neighbour, see local-furthest

neighbour graph

nearest neighbour, see nearest neighbour

graph

simplicial geometric, 37

gravity, 44

Gulf-South Louisiana Coastal Basin, 146

H
handle, 39, 148

hexahedral

3-cell, 140
cellular decomposition, 140

hole, 50, 133

-to-hole topological relation, 147

-to-shape topological relation, 147

adjacent, 155

and intruding singular faces, 155

as an open set, 153

bisected, 155

changing type, 50

closure of two, 155

hierarchy of, 148

open disk topology, 155

orientationof a, 127

overlap of, 150

removal of, 154

representation of, 156

single, 155

surrounding α-complex, 155

topological characteristics, 51

triangulated, 155

union of, 149

hole-free, 86, 120, 140, 189, 210

homeomorphism, 132, 133

hosting

background, 2, 69

en vironment, 2

inhomogeneous material, 2

human interven tion,71

h ydraulic conductivity, 217

h ydrocarbon trap, 72

h yper-spatial

mapping chain, 129, 134, 143

primitive, 213

representation, 129

h yperplane, 110, 118

h yperspace,18

in tersection, 210

P oisson point process in, 71

projection, 210

visualisation, 18

I�J
icon, 45, 52, 135

nil-, 136, 156
and external objects, 72

augmented space, 157



completeness, 136

derivation, 210

domain, 136

editing, 206

external processes, 72

internal processes, 72

linear variet y, 210

orthogonal collection of, 146

shapes, 209

space, 18

symbolic structure of, 143

topology, 137, 210

validit y, 137

variet y,see variet y

image algebra, 107

image analysis, 109

implementation, 8

industrial design, 1

initial conditions, 189

initial value problem, 74

initial value set, see value set

injection, 129

inside relation, see topological relation

interior

-exterior relation, 154

and self-intersection, 127

as a closed set, 153

disjoint, 40

intersection of, 152

multiple, 153

multiply connected, 148

of a convex polytope, 125

possible topological relations, 154

separated, 187

surrounding bounded exterior, 40

interior face, see face

intersection

self-, 127

inversion, i, 8, 52, 71

iteration, 75

K
kernel modelling framework, 52

knowledge base, 52

knowledge-based modelling, see modelling

L
L8 shape family

a�nely transformed, 203

icon, 203

isotropically transformed, 203

physical constrained, 206

Lagrange polynomials, 108

Laguerre

distance, 20

and centre of simultude, 97

and measure, 20

and metric, 20

and α-exposedness, 101
as a measure, 14

as a metric, 14, 63

mean empirical, 109

minimisation of variance, 109

parametrised by w, 92
statistical independence, 110

target mean value, 110

theoretical minimum variance, 110

translation of the mean, 110

zero, 90

fan, 91

transformations, 219

landmark, 45

accessibility for measurement, 108

anatomic, 54, 133, 142, 214

coordinates, 116, 163

coverageb y anatomic, 137

domain, 135

dormant, 80

eroded, 80

mathematical, 54

pseudo-, 47, 54, 66, 71, 214

spacing, 210

spatio-temporal, 147

spraying, 208

types, 52

vanishing, 80

weighted, 209

landmark set, 16, 19

analysis, 163

anatomic, 47, 133, 213

and value set, 18

cardinality, 177

complement of, 151

condescriptive statistics, 163

con�guration, 56, 117

constraints, and the nil-icon, 136



contours, 54

directional pattern, 211

empty, 156

�ltering o� landmarks, 161

from a digital picture, 206

Helmertized, 45, 136, 142

irregularly spaced, 55

line pattern, 165

mappings of the, 134

morphological erosion of a, 75

noise in the observations, 47

normalisation of merged sets, 65

normalisation of subsets, 65

observed, 47

on a lattice, 54

organisation of the, 55, 81

organised on a lattice, 55

positional information, 46

pre-conditioning, 52

pseudo-, 47

regularly spaced, 55, 108, 151, 163, 209

restrictions of, 16

sliced data, 54

time dependent, 74, 81

transformation, 57, 178

triangularizability, 136

uncertainty, 46

landmarking, 142, 209, 214

lattice, 30, 55, 106

Lebesgue measure, 16

and volumetric description, 124

impact of dynamic geometry, 77

lens, 159

level set, 10

limit set, see set

local-furthest neighbour, 37

local-furthest neighbour distance

analysis of local, 210

empirical distribution Euclidean, 69

empirical distribution Laguerre, 71

local-furthest neighbour graph, 38, 69

empirical Euclidean, 69

role, 165

w eighted empirical, 71

location information, 45

longer-term objectives, i

longer-term perspectives, 13, 212

M
map

bijective, see bijection

homeomorphic, see homeomorphism

hyper-spatial chain, 129

injective, see injection

simplicial, 135, 156

simplicial, and holes, 155

surjective, see surjection

mapping

computer representation, 140

homeomorphic, 210

hyper-spatial chain, 140

instantiation, 210

process, 75

process norm, 75

representation-to-representation, 140

marked point process, 19

marker

imaginary, 91

marker set, 19

marker shape, 19

marker space, 19

mask

adding partial weight sets, 106

AND-mask, 109

based on weight function, 108

canvas, 107

library, 108

logical & =-, 109

standard, 108

masking, 107, 108

mass conservation, 73, 184, 190

mass residue approach, 190

massif, 146, 176

material conservation,80, 82

material sources and sinks, 79

matrix

4-intersection, 153, 154

Hermitian, 87, 91, 218

transformation, 206

measure-of-merit, 47, 52, 71, 212, 213

measuring robot, 108

meets relation, see topological relation

metric property, 58

Minkowski set
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subtraction, 94

sum, 94

Mississippi delta, 176

model

α-complex, 55, 124

2.5D model, 81

3.5D model, 81

4D model, 81

analytic, 74

analytical, 73, 124

backward Euler, 75

Boolean, 20, 71

computer, 124

creep, 72

descriptive, i

dynamic, 18, 71�73, 77

explicit formulation, 75

�nite di�erence, see �nite di�erence

�nite element, see �nite element, 142

�nite state, see �nite state

forward Euler, 75

h yper-spatial,10

implicit formulation, 75

local-furthest Stienen, 121

named colour, 206

nearest Stienen, 121

numerical, 55, 73, 74, 124

predictive, i

Runge-Kutta, 75

sampling, 55, 124

solid object, 1

space, 18, 108

space M , 142

space, augmented, 157

spatio-temporal, 81

Stienen, 86, 103, 120, 210

structural, 82

theoretical, 111

w eighting, 55, 124

modelling

α-complex, applications, 159

and cause-even t-e�ectrelations, 18

approach, 160

by a physical example, 111

cause-event-e�ect relation, 68

compound objects, 3

concurrent subsurface, 212

constrained forward, i, 8

creep, 72

cycle, 52, 71

design, 2

dimensions, 4

dynamic, i, 71, 210

dynamic problem, 52

engineering objects, 1

environment, 43, 47

existing environments, 66

�nding the best method, 160

�nite natural object models, 3

�exibility, 206, 209, 211

�uid �ow, 87

forward, 47, 210

framework, 43, 209, 211

expanded kernel, 71

kernel, 52, 54, 71

knowledge base, 52

knowledge part, 47

knowledge-based part, 71

mappings, 133

representations, 133

free-form, 2, 48, 106

fundamental problems, 47

geological, 212

geometric, 146

holes, 39

h ydrocarbon saturation, 72

h yper-spatial, 10,10, 18, 66, 207, 209

in astrophysics, 1

in biology, 1

in earth sciences, 1

in general dimension, 10

in medicine, 1

instrument, 85

inter-ev en trelation, 68

inversion-based, i, 8, 210

iterations, 52

knowledge-based, i, 47, 212, 213

legacy environments, 8

level of abstraction, 212

limitations of the approach, 174

low dimension hyper-spatial, 18

mechanisms of weight, 99

multi-dimensional, 10

natural object continuum, 3

natural objects, i, 1

non-linear problem, 75



objectiv es, 160

on a customary workstation, 176

orthotropic phenomena, 73

parametric, 146, 213

process, 43

purpose, 209

sedimentary process, 73

shape roughness, 4

spatio-temporal, ii, 10

stochastic, 223

time dependent problem, 66

time-geared cycle, 52

uninterrupted simulation, 183

MoM, see measure-of-merit

mono-cline, 146, 176

morphological

closing, 79

landmarking, 209

opening, 79

operation, 135, 210

process model, 183

mpp, 19

multi-phase

roc k-�uid system, 151

systems in percolation problems, 223

N
Napoleon centre, see centre

Napoleon's theorem, 95, 97

natural object, 1

as a living organism, 3

birth-life-death cycle, 3

building from an example, 47

building from scratch, 47

characteristics, 2

classi�cation, 44

compound, 3

continuum, 3

de�nition, 2

de�nition of a, 44

�niteness, 3

geometry-dominated, 2

model dimension,4

orientation, 44

shape of a, 44

state c hanges, 3

surface texture, 4

natural sciences, i, 1

nearest neighbour, 37

distance, 109

theoretical distribution of the k-th, 69
weighting strategy, 109

nearest neighbour distance

a�nely changing weighted, 77

analysis of local, 210

and the underlying grid, 180

and time dependent α, 78
and weight transformation, 210

distribution of, 109, 113

distribution skewness, 114

empirical distribution Euclidean, 69

empirical distribution Laguerre, 71

globally smallest, 86, 210

individual, 86

local, 86

on a lattice, 55

probability density function, 116

theoretical distribution function, 116

variation, 55

nearest neighbour graph, 37, 69

and clustering, 117

empirical Euclidean, 69

mean edge length, 117

role, 165

weighted empirical, 71

nearest neighbours

4-connecting, 30
needle, 97

negation operator ¬, 150
neighbourhood, 39, 113

neighbourhood analysis, 37, 69

nerve

abstract, 22

and growing α-ball, 23
and α-complex, 23

geometric realisation of a, 22

growing, 23

of ball union, 23

of the weighted Voronoi diagram, 23

nomenclature, 14

non-interrupted iterative computation, 192

non-interrupted time-stepping, 192

North Sea

L8 case, see cases

n ucleus, 20

of a comet, 206



numerical

computation, 209

numericalmodel, see model

O
object

nil-, 156
assembly, 1

boundary orientation, 127

converted, 140

de�nition of a natural, 2

description, 123, 209

w ell-formedness criterion, 128

foreground, 108

genus of an, 39

hole-free, 210

h yper-spatial model, 10

in situ, 2

instantiation, 52

life cycle state, ii

natural, see natural object

physical, 133

region of interest, 109

representation, 129

represented by landmarks, 209

size of a, 45

solid, 66

solid model, 1

strati�ed, 54

template, 47

unevaluated description, 212

object model, 135

aggregation, 124

and its location in space, 125

and its orientation in space, 125

and its position in space, 125

and modelling capability, 132

and morpho-dynamic process, 157

consistency veri�cation, 128

disjunct parts, 125, 143

eroding, 189

family of, 138

from real-live example, 108

handling a dynamic, 77

hole-free, 120, 210

inter-object rules, 146

internal constraints, 143

internal rules, 142

interpretation of singular faces, 168

largest possible, 176

multiple interpretation, 132

orientation in space, 125

role of singular faces, 168

static vs. dynamic, 71

studying di�erent regions, 113

topologically conforming, 156

uncertainty, 174

without an original, 132

objective function, 47

objectives, 8

longer-term, 8

on the long term, i

objects

nil-, 136
adjacent, 156

artifacts, 1

biological, 54

composite, 124

dynamic, 157

embedded natural, 49

engineering, 1

eroding, 209

�uid and gaseous, 50

geodynamic, 73

geometrically coupled, 211

geometricly coupled, 135

h ydrocarbon saturated, 72

icon, 210

living, 1

natural, i, 1, 78, 85, 109, 125, 209, 210,

212, 224

neighbouring, 156

observation of physical, 49

physical, 133, 135, 137, 138, 142

planar-faceted, 148

polyhedral, 148

property-ruled, 208, 210

real world, 124, 135

sedimentary, 79

singular, 136

smooth, 54

subsurface, 85, 209, 224

observation

availability, 8

CT-scan, 1

destructive, 1



imperfect, 2

measure robot, 1

non-destructive, 1

of physical objects, 49

seismic re�ection,1

technique, 16, 49

opening, 79, 157

organ database, 224

orthogonal alphabet, 143

orthogonality, 24, 139, 142, 217

overlaps relation,see topological relation

P
parameter

constraints, 137, 142

manipulating geological, 212

parameter space, 10, 18

parameters

coupled, 10

part-whole description, 1, 124, 127

permeability, 217, 223

perpendicular bisector, 21, 97

phase of seismic signal, 161

physical example, 111

pillow, 176

planned acquisition, 8, 213, 223

pocket, 39, 66, 148, 150

point

conic of two weighted, 96

donor, 104

equal weighted points, 97

ideal, 97

location, 41, 125

receiver, 104

redundant, 24, 136, 137

to event distance, 71

w eighted, 85

w eighted, geometric interpretation, 85

zero-weight, 97

point bar, 159, 162

point pattern, 19

point process

and topological cover, 20

augmented con�guration matrix, 116

Boolean model, 71

clustering example, 111, 113

condescriptive statistics, 112

con�guration matrix, 116

co verage process, 20, 67, 68

degree of clustering, 114, 210

distance-based analysis, 69

empirical, 19, 210

empirical analysis, 71

empirical vs. theoretical parameters, 69

homogeneous, 20

inhomogeneous, 20

in tensit y of the Poisson, 20

isotropic, 20

marked, 19, 67

marked by weight, 102

non-delayed renewal, 68

point-to-even tdistance, 71

P oisson, 20, 66, 210

arrival times, 67

conservation property, 68

empirical density, 69

homogeneity, 68, 112

in h yperspace, 71

in tensit y, 68

null-h ypothesis, 68

spatial, 68

stationarity and isotropy, 68

theoretical density, 69

third central moment, 114

uniform distribution, 68

P oisson null-hypothesis, 112

skewness and distribution symmetry, 114

skewness nearest neighbour distances, 114

stationary, 20

theoretical analysis, 71

vacancies, 69

point set

as an α-family extreme, 148

dynamic, 209

P oisson distribution,20

P oisson point process, 20

P oisson triangulations, 20

P oisson Voronoi diagrams, 20

porosity, 151, 215

power set, 32

ppp, 20

predicate, 133, 137, 143, 213

predictive exploration, i

primitive, i, 1, 47, 52, 209

as a symbol structure, 124

formalisation of instancing, 143



hyper-spatial, 213

instance, 127, 133, 135

instance equivalence class, 142

instance of a nil-icon, 156
instance, and icon variet y, 138

instancing, 146

instancing and variation geometry, 138

instancing, and variational geometry, 143

instantiated, 210

instantiation mapping, 146

object parts, 124

symbolic structure of, 143

principle component analysis, 117

process

compaction, 157

deformation, 146

deposition, 157, 183

deposition and erosion, 192

erosion, 157, 183

geodynamic, 52

internal, 210

model, 192

evolutionary, 211

morphological dune, 183

of a barchan dune, 183

morpho-dynamic, 157

originating, 157

sedimentation, 157

terminating, 157

thinning, 162

transforming, 147, 157

Procrustes distance, 213

product space

ordered, 19

property

-space clustering, 30

clique, 118

clique partitioning, 118

colour encoding of physical, 111

dimensions, ii

dissimilarity matrix, 117

dynamic, 78

dynamic, impact on α-complex, 71

equivalent class, 30

material, 128, 189

matrix, 116

observed, 109

observed physical, 30

physical, 116, 210, 215

physical observed, and weight, 85

relative contribution to the weight, 85

sampled physical, 54

space partitioning, 118

space α-complex, 118

sparse sampling, 54

tensor, 211

value, 210

value interpolation, 208

value set, 54

vector, 116, 211

pro ximity, 6

Q
quanti�er, 143, 213

quaternion, 217

R
radical

α-ball, 23
cen tre,21, 95, 113, 121

computation of, 97

plane, 21

plane and centre of simultude, 97

radiogenic heat, 72

random spatial points, 68

reduced mapping chain, 134, 138

redundant point, 24

region-of-dominance, 19

regridding, 192

regular face, see face

regular rectangular grid, 55, 62

regularisation operation, 158

regularity, 24, 90, 139

relation

symmetric, 152

topological, see topological relation

reliability analysis, 11

removal of holes, 154

renewal theory, 66

representation

α-complex, 138

α-complex vs. BRep and CSG, 143

α-complex-, domain of, 156

abstract, 129

and its domain, 133

BRep-, see BRep



cell decomposition, see cell decomposi-

tion

completeness criterion, 133

completeness of an instance, 137

computer, 125

conversion of, 140

criteria, 132

CSG-, see CSG

domain criterion, 133

domain of an instance, 138

evaluation, 143

evaluation of, 135

evaluation of the instance, 137

evaluation of the α-complex, 133

�nite precision, 140

graphical, 129

h yper-spatial,see hyper-spatial represen-

tation

object, 129

of holes, 156

richness of the, 133

scheme, 129

spatial enumeration, see spatial enumer-

ation

unevaluated, 136, 138

uniqueness criterion, 132

uniqueness of an icon, 137

uniqueness of an instance, 137

uniqueness of an α-complex, 137, 138

uniqueness of sampling, 137

validit y criterion, 133

validit y of an instance, 138

voxel,see voxel representation

representation scheme, 123

ridge, 146, 176

risk analysis, 215

riv er system, 159

anatomy, 193

as h ydrocarbon traps, 196

avulsion, 195

braided, 192

buried meandering, 160

composite point bar, 194

dead channel, 194

disc harge, 192

erodibility of the bed, 192

�ood plane, 162, 168

�ooding, 195

geometry, 192

geomorphic cycles, 195

gravelly, 192

human factors, 192

impermeable clay sheet, 196

lobes, 195

mature, 192

meander, 192

meander curvature, 194

meandering, 73, 169, 192

migrationv elocit y of meanders, 194

mud-�lled channel, 162

neck shute, 194

numerical model, 196

oxbow, 165

oxbow lake, 194

permeable sands, 196

point bar, 194

process model, 168

process models, 192

sand and clay deposition, 162

sand and silt deposition, 162

sandy deposition, 162

sandy �uvial, 192

seasonal cycle, 194

sediment load, 192

sinuosity, 192

terminology, 193

thalweg, 195

tidal area, 195

typical shape, 181

valley , 195

with erosional channels,82

rock

�uid-saturated pores, 151

rock-�uid system, 151

Runge-Kutta scheme, 187

S
salt diapir, 146

salt dome, 146

salt pillow, 146

sample space, see space

sampling

contours, 54

data on natural objects, 224

data points, 133

�ltering remote areas, 109



model, 124

noisy data set, 2, 109

region of interest, 109

resampling, 178, 181

sliced data, 54

sparse, 54

scale

continental spatial, 73

extent of geological, 72

geological time, 73

time resolution, 73

scaling, see transformation

scapula, see cases

scenario, 47, 69, 213

deposition-erosion, 81

embedded processes, 72

evolutionary, 52, 71, 157

geological, 52, 71

geological evolutionary, 79

of the earth architecture, 146

paleological, 52, 73

scroll bar, 159

sediment

Bagnold's transport equation, 184

continuity, 184

load of a river, 192

transport equation, 184

sedimentary facies, 159

sedimentation, 157

seismic

amplitude information, 161

and impedance change, 161

and lithological change, 161

and subsurface features, 161

angular information, 161

attribute

amplitude-related, 161

angular, 161

discriminating capacity, 174

edge detecting, 161

instantaneous, 161

instantaneous phase, 180

instantaneous time dip, 176

re�ection strength, 180

time dip, 180

time dip statistics, 179

trace, 161

cube, 169

data classi�cation, 172

exploration, 160

horizon, 169

human eye perception, 170

interpretation of response, 162

migration e�ects, 179

of salt structures, 179

phase shift, 172

re�ection, 160, 161

sample rate, 169

surveying, 160

target zone, 169

seismic cube, 54

self in tersection,127

separation, 40, 79, 148, 154, 188

set

attractor, 74

closed, 16

complement, 16

empirical, 57

geometric, 57

geometric parameters, 57

invariant, 74

limit, 74

open, 16

overview parameters, 57

parameters, 56

re�ection, 94, 210

regular closed, 158

regular open, 158

regularisation and CSG, 158

regularisation operation, 158

regularised, 125

theoretical, 57

topological relation, see topological rela-

tion

shape, ii

analysis, 45, 216

as a closed set, 154

comparison, 45

de�nition of a, 44

dual, 150, 153

dual, as an open set, 154

family, 45, 48, 135, 210, 215

family of raw, 136, 137

geometrically coupled, 50

geometricly coupled, 150, 153

homologisation, 45



icon, 45

instantiated, 77

layered, 50

location, 147

matching, 46, 210

of a natural object, 2

orientation, 147, 216

oriented, 44

orthogonal family, 135

parameter, 45, 57

parameter relation, 45

parameters, descriptive pow erof, 46

parent and child, 221

primal, 153

property-ruled, 10, 49, 78, 85

reconstruction, 2, 47, 108

reconstruction recipe, 1

reference point, 45

rotation, 46

size issues, 44

space, 45

space P , 142

strati�ed, 50

swap primal and dual, 151

target, 85

templatised, 46, 77

test for slivers, 189

topological features, 54

transformed family, 48

uncertainty, 215

ShapeEditor, 222

shearing, see transformation

simplex, 4

d-, 24
α-exposedness of a regular, 35

determinant, 16

intersection of tw o, 24

orientation, 16

regular, 24

simplicial complex, 133

abstract, 31

degenerate,32

geometric, 31

linear graph, 32

point set, 32

skeleton, 32

star, 32

simulation, 52, 209

singular face, see face

skeleton, 32

0-, 136, 138
slivers, 12, 97, 187, 188, 211, 222

source rock, 72

space

-travel time domain, 161

augmented icon, 157

augmented model, 157

augmented spherical, 219

Cartesian direct product S ⊗ W, 116

coverage by weight, 20

covered by a set, 16

dimension of model, 108

geometric, 116, 209

h yper-,18

icon-, 18

marker, 19

model, 18

domain, 138

non-metric, 20

null-, 149

occupied by holes, 149

of weighted points, 19

parameter, 10, 18, 78, 106

parameter, clustering, 30

penta-spherical, 219

point, 16

P oisson

spatio-temporal, 67

pore, 151, 211, 223

primitive, 156

projection from hyper-spatial, 165

property, 116, 117, 165, 207, 209

property value locations, 16

sample, 16

spatio-temporal, 18

time half-, 68

topological, 16, 17, 108

total void, 150

triangularizable, 27

triangulation of void, 155

unambiguous division of, 125

underlying, 66, 124, 127, 149, 156

void, 39, 71, 80, 147, 149, 150, 220

space �lling problem, 24

spatial

complex coordinates, 217



co ordinates, 16

enumeration, 129

occupancy, 66, 69, 80, 149, 156

uncertainty, see uncertainty

spatial enumeration, ii

spatio-temporalmodelling, 10

spatio-temporalspace, 18

sphere

i-, 91
determinant, 87

equi-distant, 25

oriented, 219

orthogonal, 24

orthogonal intersection points, 25

point, 89

tangential support plane, 25

weight-plus-α, 91
sphere con�guration, 87

determinant, 88

stacked layers, 162

star, 32, 39, 101, 113, 120, 165

Stienen model, see model

stochastic geometry, 12, 19

storage requirements, 138, 212

straight lines, 89

strain, 217

strata, 50, 54

stratigraphy

and earth architecture, ii

stress

critical, 187

normal, 187

shear, 211

wind induced shear, 183, 184

sub-marine canyon, 176, 178, 181

subdivision

bounded, 18

un bounded,18

subsidence, 82

surjection, 129

sweep, 1

sweeping, 1

symbol

nil-, 156
collection of, 124

rules, 129

structures, 124, 142, 143

syntax, 146, 156

rules, 124, 129

system

multi-phase, 50, 51, 72

solid-�uid, 51

T
temporal even t, 18

terminology, 14

tetrahedral

cellular decomposition, 140

linear-elastic element, 187

Thales theorem, 92

tidal channel, 169

time, 147

-to-depth conversion,161

and causality, 11

and reversibilit y,11

as a dimension, ii, 11

coordinate, 81

series, 81

the interpretation of, 11

topology, 18

time series, 55

time-stepping, 192

tolerance mis�t, 108

tomography, 49

topological

change, 209

constraints, 215

�ip, 139

query, 209, 215

relation

Wα =⇒ Wα, 153

α-shape =⇒ convex hull, 152

among exteriors, 154

binary, 152

contains, 152

co veredBy, 152

co vers, 152

disjoint, 152

equals, 152

hole =⇒ convex hull, 154

hole-to-shape, 151

inside, 152

in terior-exterior, 154

meet, 152

overlaps, 152

possible with exteriors, 154



possible with in teriors, 154

space, see space

topological property, 58

topological variet y,see variet y

topology, 12

and weight transformation, 77

changing, 1

classi�cation, 10

discrete, 108

dynamic, 10, 74, 128, 192

dynamic, impact on α-complex, 71

explicit description of, 1

implicit, 12

inadvertent change, 142

invariant, 78

manifold, ii, 12

non-manifold, 12

of a hole, 155

of an icon, 137

of time, 18

variational, 133, 146

total-space inversion, 10

training data set, 142

transfer of dominance, 103

transformation

(an)isotropic scaling, 59

(in)dependent normalisation, 65

a�ne, 58, 59, 135

and directional pattern, 211

and the Lebesgue measure, 58

and weighted distance, 63

and α-complex development, 58

anisotropic scaling, 178

classi�cation, 57, 61

dimension of the kernel, 60

geometric transformation, 57

glide, 60

glide re�ection, 58

global norm, 60

Helmertized norm, 60

homeomorphic, 58

homeomorphism, 58

identity, 58, 63

image space, 60

impact on Lebesgue measure, 60

isometric, 57, 63, 125

isometry, 58

isotropic scaling, 101, 110

kernel, 60

Laguerre, 219

linear, 59

local norm, 60

local weight, 78

matrix, 46, 206

norm of the, 60

normalisation, 64

null space, 60

null-, 59

of landmarks, 90, 178

of weight, 111

of weights, 86, 90

on a mask, 106

projective, 218

property transformation, 57

re�ection, 58

rigid motion, 58

rotation, 58

scaling, 210

shear, 210

spherical, 219

translation, 58

value transformation, 57

w eight scaling, 119

w eight transformation, 57, 62

weight translation, 119

triangle

dual Napoleon, 98

obtuse, 211

triangularizability, 27

triangulation

0-, 136
d-, in d-space, 24
nil-, 136, 156
admitted, 27

and cellular decomposition, 24

and nearest neighbours, 69

and negative α, 28
and simplicial complex, 31

and the completeness criterion, 128

and α-family, 27

and α-�ltration, 27, 69
as a geometric graph, 37

as an α-family extreme, 148

asymptotic storage complexity, 41

asymptotic time complexity, 41

bounded, 18



classes, 149

closed boundary, 149

convex hull bounded, 149

Delaunay, 26, 37

Delaunay criterion, 26

edge �ipping, 27

embedding an α-complex, 188

equivalence class, 136, 138

equivalent, 136, 139

faces of a, 33

family of, 24

local criterion, 27

multiple forms of, 149

nearest vs. furthest site, 28

null-, 16

of a convex polytope, 149

of a hole, 155

of convexpolyhedron, 136

of the convex hull, 152

of void space, 155

orthogonality criterion, 139

P oisson, 20

preferred, 24

regular, 24

regular vs. Delaunay, 26

regularity criterion, 139

trivial, 16, 136

type I vs. type II, 149

underlying space of, 149

vertices of a, 16

weight assignment, 86

with negative weights, 89

zero-weight, 26

tunnel, 39, 66, 148

tw o-phasesystem, 39

U
uncertainty, 215

unevaluated data structure, 139

V
value set, 54, 66

dynamic, 78

initial, 75

interpolation, 108

mapping to weight, 78

normalisation, 117

poor quality, 174

time dependent, 74, 81

variable

domain, 213

variational geometry, see geometry

variety

icon, 133, 137

topological, 15, 133

virtual universe, 13

visual inspection, 71

visualisation, 11

void, 4, 39, 40, 66, 101

void ratio, 71, 151

void space, 39, 71, 80, 147, 149, 155, 220

volumetric description, 124

V oronoi

bounded cell, 116

V oronoicell, 20

V oronoidiagram

and ball union, 22

and radical centre, 97

and the Stienen model, 120

bounded, 18

cell coverage, 120

�rst order, 20

nearest vs. furthest site, 28

nearest-site, 20

point to even t distance, 71

P oisson, 20, 223

sk ew, 217

weighted, 20

voxel representation, 129

W
w ear, 79

weight, 6

a�ne variet y of normalised, 119

and property clusters, 30

and α, 28
as a complex number, 116

as a marker, 19

as a real number, 116

assigning weight to points, 6

based on tensor-properties, 109

based on vector-properties, 109

complementarit y of distance, 109

design tools, 108

dominance, 6

dynamic, 78



e�ect of, 28, 94

e�ect of negative, 101

equal, 6

equal w eighted poin ts, 97

equivalent class, 30

from ph ysicalproperties, 85

function, 106

based on Lagrange polynomials, 108

basic, 218

composed, 218

constrained, 108

relative to, 108

generalised -vector, 216

geometric interpretation, 87

incremental, 94, 108

independence of, 20

inter-c hangeable e�ect distance, 28, 101

mapping from value sets, 78

modelling

mechanisms of, 99

modify the, 71

negative, 6, 87, 101, 104, 209

negative vs positive, 28

normalisation, 117

normalised, 86, 111, 118

omni-directional, 109, 211, 217

painting, 106

prescribed, 218

region-of-dominance, 19

relative contribution matrix, 117

relative contribution of properties, 117

relative contribution properties, 85

relative in�uence of, 94

scalar vs. vectorial, 87

scaling, 119

size- and scale-independent, 117

space coordinates,116

spra ying, 106

Stienen attractor model, 119

substitute distance, 30

the e�ect of, 6

transfer of, 103

transformation, 57, 62, 86, 90, 111, 180,

210, 219

transforming local, 78

translation, 119

variations, 55

vectorial, 122

weight function

based on Lagrange polynomials, 218

based on tensor-productsplines, 218

weight set, 52, 106

and uniqueness of representation, 138

design of a, 85

incremental improvement, 210

initial, 116

normalised, 85, 117, 180, 210

prescribed, 218

re�ection of, 94, 151

weighting

based on physical properties, 116

masking strategy, 107

model, 55, 124

nearest neighbour strategy, 109

omni-directional e�ect of, 211

pointing out problem spots, 112

process, 66

recipe, 85

strategy, 85

tools, 106

weighting strategy

in verse distance-weighted, 172

support model, 172, 174

unstructured, 106

w ell-formedness,125, 156

wells

exploration, 168

white spot, 101








