TU Delft

In-IDE code generation models - a literature review

Varzaru Rebeca'

Supervisor(s): Fenia Aivaloglou', Xiaoling Zhang!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 24, 2023

Name of the student: Rebeca Varzaru
Final project course: CSE3000 Research Project
Thesis committee: Fenia Aivaloglou, Xiaoling Zhang, Tom Viering

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Code generation is becoming one of the most
important tools in an Integrated Development
Environment (IDE) for programmers, be they
novices or experts. It allows them to produce code
faster, avoid typos and other mistakes, be more
efficient and easily turn ideas into code. As such,
there are many in-IDE code generation models
to choose from, each with their own promises,
functionalities and implementation techniques.
This report presents the results of a literature
survey into the code generation models that have
been integrated into programming environments
and serves as an overview and analysis of them.
The results of this paper provide a set of guidelines
for code generation that have been summarized
from the selected literature.

1 Introduction

1.1 Background

Code generation is a broad topic that includes everything
from the most simple next-token prediction to state of the
art Al-driven models that are capable of solving complex
problems by themselves. In the scope of this research
(and in the Research Questions), code generation is used
as an umbrella term, which includes both the feature of
code completion and the more restricted subject of code
generation as creating source code out of some sort of natural
description. For clarity, in this paper we will make the
distinction between code generation and code completion as
separate features included under this umbrella term.

Code completion refers to the function of offering next token
suggestions, often ordered alphabetically or by frequency of
use, based on the already existing code. This is an essential
feature that is nowadays offered by every major Integrated
Development Environment (IDE) and is considered by many
to be the most important one [13]. For the Eclipse IDE for
example, it was found that all developers use the in-IDE code
completion feature [11]. The reason behind this is that code
completion offers numerous advantages, such as increasing
the speed of coding and helping programmers avoid typos
[2], improving productivity and helping to explore APIs
[13], while also ”decreasing the typing effort and saving
keystrokes™ [6].

Code generation refers to taking a high-level concept and
turning it into source code. For example, various code
generation models [3; 21; 23] use natural language as input,
which is one of the most widely used ways of representing
said concepts. One of the main struggles of programmers,
novices and experts alike, is knowing what needs to be done
next in a program, but not knowing how to express that idea
into code [21]. Thus, being able to express a concept, such
as “merge these two lists” or “center this div’’” and to have the
corresponding code returned, saves programmers a lot of time
and effort.

1.2 Motivation

There are many approaches to code generation and numerous
models available, such as GitHub Copilot or OpenAl Codex.
There is also extensive research available on new, emerging
approaches that aim to solve certain existing problems or
improve the current standards [2; 5; 6; 16; 13; 19].

That being said, there is still no overview of all these models
in one place. By filling this gap, we hope this will make
it easier for future researchers to assess the existing code
generation models, tools and standards. To that extent, this
research analyzes all these different code generation models
and proposes a summarized set of guidelines that follow from
the reviewed papers. We hope this will create opportunities
for future comprehensive investigations in this area, as well as
serve as an overview of best practices for future development
on the matter.

1.3 Research Questions

The main question that is being answered in this research
is: How have code generation models been integrated into
coding environments? In order to guide the research process,
several intermediate sub-questions have been formulated:

* RQ1: What code generation models have been
integrated into which coding environments?

* RQ2: What techniques have been used for these code
generation models?

« RQ3: What indicators are used to evaluate code
generation models?

* RQ4: What aspects should be considered when
designing in-IDE code generation models?

1.4 Structure

The rest of this paper is organized in the following
way. Section 2 discusses the methodology, including 2.1
Identifying relevant work and assessing the quality of studies,
and 2.2 Summarizing the evidence and interpreting the
findings. Section 3 presents the results and answers each
individual sub-question. Section 4 presents a discussion
following the results and includes 4.1 Limitations, 4.2
Responsible Research and 4.3 Threats to validity. Finally,
Section 5 deals with the conclusion.

2 Methodology

This review is set-up as a systematic literature review,
which Snyder defines as a “research method and process
for identifying and critically appraising relevant research, as
well as for collecting and analyzing data from said research”
[15]. This method was chosen because it is a rigorous way
to select the most important works that are to be included
in this review. The steps taken, outlined by Khan et al.
[7] are the following: (1) formulating the research question,
(2) identifying relevant work, (3) assessing the quality of
studies, (4) summarizing the evidence and (5) interpreting the
findings. Step (1) was outlined in Section 1.3.

Code generation models \ Coding environments

the existing research, as well as terminology, the following

code generat* cod* environment
code model*
generate code IDE
code generat* model*

programming environment

Table 1: Search table

2.1 Identifying relevant work and assessing the
quality of studies

The relevant literature has been retrieved using the following
databases:

* Google Scholar
* Scopus
* Web of Science
The selection of the final papers was done in three steps:
1. Defining the search query
2. Retrieving the papers
3. Eligibility check

Defining the search query

An initial search query was formulated starting from the
main research question ”"How have code generation models
been integrated into coding environments?”, by identifying
the main two concepts, namely code generation models
and coding environments, with a secondary term being the
verb “integrate”. These concepts were then used to create
search Table 1, from which the following search queries were
developed:

1. ("code generat*” OR ”code model*” OR “generate
code” OR ”code generat* model*”) AND (“cod*
environment”’ OR “integrated development
environment” OR ”IDE” OR ”web programming
environment” OR “programming environment”)

2. ("code generat*” OR ”code model*” OR “generate
code” OR ”code generat* model*”) AND (’cod*
environment” OR “integrated development
environment” OR 7IDE” OR ”web programming
environment” OR “programming environment”) AND
“integrat®”

Search query 1 was used on each of the aforementioned
databases, followed by search 2 to identify any papers that
might have been missed, and the first page of results was
considered for each of them (search date 28/04/2023), subject
to the following exclusion criteria:

» The paper is not written in English

* The paper is a duplicate or an older version of another
selected paper.

By reading the abstracts of the selected papers and analyzing
their usefulness in answering this specific research question,
the results were deemed insufficient, so the papers were used
to find other relevant terms to use in the search query for
more accurate results. After becoming more acquainted with

integrated development environment

web programming environment

updated search query was created:

e ("Large Language Models” OR “code generat*”
OR "LLM” OR ”code completion”) AND (”Coding
Environment” OR “ide” OR “Integrated Development
Environment” OR “’programming environment”)

Retrieving the papers

This search query was used on the platforms mentioned in
the previous section (search date 11/05/2023). The results
were restricted to the past 5 years, but due to the time
constraints of the project, not all results could be included.
As such, only the first page of results was retrieved from each
one. After applying the same exclusion criteria as before,
the 42 remaining papers were organised using a reference
management software.

It was noticed that none of them were published in the current
year (2023), so the bias of automatically sorting results by
relevance was considered. After performing the same search,
but sorting the results by the most recently published, several
highly relevant papers were discovered that did not appear
on the first page of results before. So, to account for this
relevance bias and ensure that the most recent developments
are considered for this paper, we decided to add an extra
round of searching with the results restricted to the year 2023.
These papers were retrieved following the same exclusion
criteria as before and then went through the eligibility check
with the other 42 papers, now making a total of 54.

Eligibility check

The last step in selecting the final papers is filtering the
already retrieved papers. To that extent, we will use the
following inclusion and exclusion criteria:

Exclusion criteria:

1. The paper is not peer-reviewed
2. The full text of the paper is not available
Inclusion criteria:

1. Code generation must be the main focus of the paper
- papers in which code generation is simply used as a
tool to aid in the study of another concept will not be
included

2. The subject must be approached from a computer
science point of view - papers that use code generation
but are focused on other fields of study will be excluded

3. The paper must consider said code generation model
in the context of a programming environment - papers
where code generation is used for UML for example will
be discarded

The eligibility check was done in two iterations. First by
reading just the abstracts of all the papers, the second by
viewing the full text, each time applying the aforementioned
inclusion and exclusion criteria. The remaining papers will
be used in the literature review. The whole process is
summarized in Figure 1.

Identification of studies via databases and registers

]

Records identified from
databases:

Google Duplicate and non-English
Scholar(n=20) *| records removed hefore
Scopus(n=23) screening(n=24)

Identification

Web of
Science(n=25)

!

[

]

Records excluded in first filtering

Records screened [——| phase (abstracts)

(n=54) (n=27)
o
c
=
:
w

¥
Records assessed for eligibility >
(n=27) .
Records excluded in second
— filtering phase (full body) (n=8)

Records included in review
(n=19)

Figure 1: PRISMA flow diagram

2.2 Summarizing the evidence and interpreting
the findings

The 19 eligible papers were imported into Atlas.ti, where the
information extraction and data analysis were conducted. We
started reading the papers, starting with the most recent ones,
and applying codes in a bottom-up approach, by identifying
relevant and recurring concepts as the papers were reviewed
and tagging fragments of the papers accordingly.

To ensure consistency and completeness, the coding was done
in two iterations. The purpose of the first iteration was
to familiarize ourselves with the concepts and terminology
used and compose a comprehensive list of codes, for all
research sub-questions in parallel. The second one aimed
to ensure that all codes were appropriately tagged in the
included literature, while also serving as a chance to deepen
the researcher’s understanding of the concepts at hand.

More concretely, for the first sub-question all mentions of
specific in-IDE code generation models were tagged and then
reviewed for inclusion. For the second sub-question, we
tagged all sections explaining the underlying code generation
techniques, with sub-codes such as “transformer”, “natural
language”, “deep learning”, etc. to highlight explanations
of the more recurring methods. In order to answer the
third sub-question, we directed our attention towards the
evaluation sections of the reviewed papers, tagging all
indicators used by the researchers. Finally, for the fourth
sub-question we highlighted all the best practices and
guidelines that often accompany either the discussion section
or the user feedback of an experiment.

In the end, all the information was aggregated according to
the tagged concepts, and then reviewed and incorporated in

Model IDE
IntelliCode [16] Visual Studio Code

NL2CODE [21] Python PyCharm

IntelliSense [16] Visual Studio Code

Codota [16] Intelli] IDEA

TabNine [16] IntelliJ] IDEA, Visual Studio
Code, etc.

AiXcoder [24] IntelliJ] IDEA, CLion, GoLand,
PyCharm, WebStorm, Visual

Studio Code, Eclipse

Kite [24]

HISyn [23]
OpenAl Codex [1]
DeepMind
AlphaCode [1]
Amazon
CodeWhisperer
[1]

GitHub Copilot [1]

Visual Studio Code

JetBrains, Visual Studio Code

JetBrains, Visual Studio Code,
NeoVim

Table 2: Code generation models and IDEs

the results section.

3 Results
3.1 RQ1: Code generation models and their IDEs

For conciseness, the complete results of research question 1
are presented in Table 2, with the first column containing the
name of the model and the second column denoting the IDE
where it has been integrated (where applicable).

A total of 11 models were considered in the reviewed
literature. As for the IDEs they were integrated into, most of
them use some combination of two of the most popular ones:
Visual Studio Code and JetBrains (which includes IntelliJ
IDEA and PyCharm).

3.2 RQ2: Techniques behind the models

In this subsection we will answer research question 2 by
discussing the methods behind these code generation models
established in RQI. Although Table 2 contains all code
generation tools mentioned in the selected literature, we will
focus in this part on the ones that were the main subjects of
the papers.

As a short overview, we notice a general preferences towards
machine learning driven tools, with many of them using
transformer models, such as the Generative Pre-trained
Transformer 2 and 3 (GPT-2 and GPT-3). Other approaches
include modeling information in the form of graphs or
abstract syntax trees [8].

To begin with, IntelliCode [16] is a multilingual code
completion tool based on a transformer model, defined in this
paper as “a family of neural networks designed to process
ordered sequential data”. The transformer model used in this
work is GPT-C, which is based on GPT-2, "an auto-regressive
pre-trained model consisting of a decoder-only transformer

stack and one or more output layers”. This is applied on
”source code understanding”, which they describe as a
more constrained and rule-based form of Natural Language
Understanding (NLU), in order to generate source code.
NL2Code [21] is a hybrid code generation and retrieval tool
that uses Natural Language (NL) queries. The underlying
code generation system uses a tree-based semantic parsing
model, while the code retrieval is done using a wrapped
search engine (in this case, Bing). The semantic parsing
model used is the one by Xu et al. [20], which is an improved
version of the one by Yin et al.[22], which uses a tree-based
neural network to encode natural language and produce
corresponding source code.

Another tool that is able to generate code from NL requests
is HISyn [23]. This work aims to eliminate the need for
large sets of labeled training examples in the learning phase,
instead using a human inspired learning approach based on
NLU. It is able to combine the information available about
the APIs with its understanding of the NL user query to
produce syntactically correct code, and as such requires no
training data. The HISyn framework consists of three parts:
a Domain Knowledge Constructor, a Front-End that turns the
NL query into a dependency graph and a Back-End that uses
grammar-graph-based translation on the previous results in
order to generate source code.

In this analysis of machine learning based automatic code
generation [24], three tools are described: AiXcoder, Kite and
Intellij IDEA (the code completion tool in the IDE with the
same name). Only two of them are integrated into IDEs, with
Kite, a GPT-2 based code completion tool [8], functioning
as a desktop application. AiXcoder is a deep-learning
model capable of learning from a programmer’s actions and
defining patterns to improve its predictions. Intellij IDEA
provides numerous ways of code completion, each of them
with different underlying algorithms.

Another study of Al-driven code generation tools [1],
analyses OpenAl Codex, DeepMind AlphaCode and
Amazon CodeWhisperer. Codex is a descendant of the
advanced Large Language Model (LLM) GPT-3 and it is
capable of generating, explaining and translating code in
multiple programming languages based on NL queries. It
is also the model that powers GitHub Copilot. Both Codex
and Alpha-Code use a transformer-based model and the
two are quite similar over-all, with the latter being trained
on more complex problems and, as such, in this study it is
claimed that it is more equipped to handle them. Lastly,
CodeWhisperer is also a similar tool, with the difference that
it learns from the programmer’s previous code and various
comments in order to improve its predictions

3.3 RQ3: Indicators for evaluation

In this subsection we will answer research question 3 by
presenting the indicators that have been used in the selected
literature to evaluate the code generation models in question.
Table 3 serves as a quick overview.

In this study of IntelliCode [16], one of the metrics used for
evaluating the language model is perplexity, defined as

PPL = exp(— Y {(P(x;)logP(x;))), Vi € 0...T,

Indicator Ref | Description
Perplexity [16]| How much the model is
’surprised” by new data
ROUGE [16]] String similarity between
suggestions and target code
Levenshtein [16]| How many edits does it take
similarity to transform suggestion into
target code
Surfacing Rate (SR) | [16]| Total number of completions
displayed / number of times
a completion could be
shown
Click-Through-Rate | [16] | Accepted completions / total
(CTR) completions
BLEU accuracy | [21; | Token-level overlap
score 4] between suggestion and
reference solution
Accuracy [10; | Fraction of times the correct
9; code is suggested first
17]
Precision [13;] Accuracy of positive
4] | predictions
Recall [13; | Completeness of positive
4] | predictions
F-measure [13; | Harmonic mean of recall
4] | and precision
Top-k accuracy [5, | How often the correct
18; | solution appears in the first
6] | k recommendations
Mean reciprocal rank | [5; | Overall rank of the result
(MRR) 18;
6]
Soundness [14]| Syntactical correctness of
suggestions
Completeness [14] | Ts the suggestion correct and
complete enough to provide
the desired code snippet
Performance [14; | How fast are the suggestions
171 | generated

Table 3: Indicators used to evaluate code generation models

where x; is the truth label and P(x;) is the model output.
Thus, it is aimed for lower perplexity, as the lower the
perplexity is, the higher the probabilities assigned to the
true tokens. The researchers then go on to measure offline
performance by using the Recall-Oriented Understudy for
Gisting Evaluation (ROUGE) and the Levenshtein similarity.
For their online evaluation they collected anonymous
usage data and measured the surfacing rate (SR) and the
click-through-rate (CTR). They define SR as “the total
number of completions displayed divided by the total number
of times a completion could potentially be shown, which is
after every character typed into a code document when the
extension is active” and the CTR as the fraction of accepted
completions over the total number of completions displayed”.
The evaluation of NL2Code [21] is done using the accuracy,
calculated with the BLEU score, which measures the
similarity between the generated code and a reference
implementation. On the other hand, in [10; 9], the accuracy
is computed as the fraction of times when the correct code
appears first in their list of suggestions. Also focusing on
the order of the suggestions in a code completion model, this
study [24], uses the average number of keys it takes to get to
the desired piece of code in the suggestion box as an indicator
for their model. Another metric used in the same paper is
the length of the suggestion list, as it is argued that a larger
variety of code completion suggestions offers programmers
more flexibility and a higher chance of finding what they
need.

In another study [13], the metrics of
.. _ Recommendationsmadenrelevant
preczswn(P) - Recommendations,qde
_ Recommendationsadenrelevant
Tecall(R) - Recommendationsyelevant

__ 2xPx
and F' — measure = PR

are claimed to be most used for evaluating a neural network
model. We see the same metrics used in combination with
the BLEU score in another study [4] In multiple papers [5;
18; 6] the top-k accuracy and mean reciprocal rank (MRR)
are used as evaluation metrics. In this paper [14], the
metrics used for evaluation are soundness - are the code
suggestions semantically correct as to not introduce new
errors, completeness - is there a suggested option that is
correct and complete enough to provide at least the beginning
of the desired code snippet and performance - how long does
it take for the model to provide the suggestions.

For this neural code completion tool [17], the aspects of
accuracy, model size and suggestion speed are used in the
evaluation.

3.4 RQ4: Aspects to be considered

Here we will answer research question 4 by presenting
the aspects that should be considered when designing an
in-IDE code generation model, as suggested by the reviewed
literature. We will then propose a set of summarized
guidelines for this purpose.

In their work of improving code completion tools [2], when
considering their constraints, Bibaev et al. consider the
concepts of speed, reliability and available resources. Other
aspects mentioned that are worth taking into account are
whether internet access in required for the tool to function

and data sensitivity and collection. Data privacy is especially
important in the cases where the model learns from real users’
behaviour.

In the context of discussing the benefits of deep learning
models, this study [12] defines four essential characteristics
of code generation. These are “automatic feature extraction
and generation, capturing the sequential properties, end to
end learning and generalizability of code segments”. It
is claimed that any model must make a trade-off of these
characteristics.

In their exploration of prompt programming, Fiannaca et al.
[3] had domain experts evaluate their prototype and give
feedback. Of the most notable desired features are automatic
support, error handling and automatic help in constructing
better prompts.

In the user evaluation of their code generation plugin, these
researchers [21] had programmers with different backgrounds
solve a set of exercises using their model and then collected
their feedback. They first found, by having an expert analyze
their solutions and plugin usage, that most of the queries
were not specific enough and that the generated code directly
improves with the quality of the search query. In the user
feedback, several participants express the need for some
sort of documentation or explanation for the provided code
suggestions, while many said they expected the plugin to
be “smarter” and understand bits of information from the
context. One last user suggestion was to make the plugin
interactive so the model can request extra information when
the user does not know to offer it.

Also mentioned in RQ3, but worth noting here are the
aspects of soundness and completeness. One last study [17]
also ponders on the use of resources, arguing about their
tool’s accessibility to people without internet or the latest
technology.

As such, we propose the following set of summarized
guidelines for designing in-IDE code generation tools:

 Code generation should be fast [2; 17].
* All suggestions should be sound and complete [14].

* The generated code should be explainable and provide
documentation [3; 21].

* The suggested code segments should be generalizable
[12].

* Code generation tools should provide automatic help
and guidance for the user and be able to recover from
errors [3; 211.

* The tools should be available with as little constraints as
possible, such as internet access or high-end technology
[17; 2].

4 Discussion

After reviewing the numerous models presented in the
selected literature, we observed a growing development of
Al-driven tools for turning concept into code, which appears
to be the emerging trend in the most recent years. Several
problems have been identified and, as such, improvements
have been proposed in the studied papers. One of the greatest

challenges in the use of these tools right now is teaching users
how to compose natural language prompts in lack of a strict
grammar [3]. In the same context, other struggles that were
pointed out in the research were the need for a large set of
labelled training data [23] and the need for code generation
and code completion tools to learn and gather information
from the context [10].

Although code completion has been a crucial IDE feature
for quite some time now, new points of improvement in the
field are still being researched. For example, Pelsmaeker et
al. [14] claim that code completion models are often “either
too generic or too specific” for multiple language support.
Another thing that could be improved is the ordering of the
suggestions, with the most relevant ones on top so the users
do not have to scroll through an alphabetically order list [18;
6l.

Considering this, we expect the next step in improving
code generation and making it accessible to people with
all different backgrounds and knowledge levels, to be in
enhancing the way the user interacts with the model. This
entails work both on the programming part, but also on the
human users’ part. On one hand, code generation tools
should aim to be interactive, tolerant to errors and display
conversational memory, while also providing explanations
and reasoning for their suggestions. Even with all these
characteristics, if we expect such tools to be capable of
everyday use by people who are not in the computer science
field, it is crucial we teach them how to interact with them.
Things like how to construct a proper query, what key words
to use and how much context to provide make a significant
difference in the quality of the suggestions, but are not
available knowledge to everyone.

When looking at the underlying code generation techniques,
we see that machine learning based code generation is the
most prominent approach. More specifically, many of the
models we considered in this review rely of some variant
of the GPT model, which has become even more popular
recently, with the apparition of ChatGPT. One disadvantage
of models like these is that they require significant amounts
of training data, which motivates the emerging research [23]
on other ways of learning that avoid this.

4.1 Limitations

As discussed in the methodology, due to a large number
of available papers over a very large period of time, we
decided to limit our search to only the last 5 years, so
works dated before 2019 were excluded from this literature
review. Another limitation is the fact that, due to time
constraints, only a limited number of papers (19) could be
reviewed in the course of this research. To that extent, the
code generation models, evaluation techniques and general
guidelines considered in this research are only the ones
presented in the selected literature and are not a complete
representation of all the available options. Furthermore, due
to the nature of this project, the whole search and analysis
were conducted by a single person. This is a limitation in and
of itself when compared to a collaboration that can assure
higher levels of objectiveness, coverage of the literature and
quality control.

4.2 Responsible Research

Since this research does not deal with any humans or
experiments, the types of bias that can arise are limited.
In the context of a literature review, bias can arise mainly
in the selection of the included papers, in the form of
selection bias, in the case when the researcher purposely
selects literature that supports their hypothesis, and excludes
papers that contradict it. To make sure the selection process is
as unbiased as possible, it follows strict steps with predefined
inclusion and exclusion criteria and all results that fulfilled
all the required characteristics were included in the study.
Another possible type of bias that the researcher does not
have control over is publication bias, that refers to the
tendency to only publish those papers that present positive
results. This literature review only considers works that have
been published and peer-reviewed, so it could be subject to
this bias, but at the same time it can be argued that only the
code generation models that have been successful are relevant
for analyzing their desired characteristics and synthesizing a
set of guidelines, which is the main purpose of this research.
In order to assure the reproducibility and transparency of the
used method, all steps were systematically recorded in the
the methodology section. This includes the search query
that was used, the databases that were sampled, the dates
when the searches were performed and all the inclusion and
exclusion criteria used in the filtering process. As such, with
the provided information, anyone can reproduce the steps that
yielded the 19 papers included in the study.

4.3 Threats to validity

We used the following study [25] as a guide to the different
types of threats to validity encountered in a systematic
literature review and reflected on how they were handled in
this research. We will mention here only the applicable ones.
In the planning phase, two possible threats to validity are
having incomprehensive venues or databases and restricted
time span. As it was mentioned before, due to time
constraints, only a limited number of papers could be feasibly
reviewed in the given time, so 3 representative databases
were selected, excluding as such possible new results that
would have been discovered if more databases could have
been covered. A possible culture bias could be considered
the fact that only papers in English were considered, due to
the linguistical abilities of the researchers. In the conducting
phase, a possible threat to validity that has been explained in
the previous section is publication bias.

5 Conclusion

In this work we have analyzed the subject of in-IDE code
generation models, identifying a set of example tools and
presenting the techniques behind them and the indicators
used in evaluating them. Furthermore, we have presented
the aspects that should be considered when designing in-IDE
code generation models and proposed a set of summarized
guidelines from the reviewed literature for this purpose.
Lastly, we have highlighted some of the issues with the
current methods and the proposed improvements in emerging
research.

As far as future research goes, we would like to see a
larger-scale version of this study, without the time constraints,
so that a greater selection of papers can be included and a
more comprehensive list of code generation models can be
studied. Furthermore, another opportunity for future work
would be to develop a new code generation tool following the
guidelines presented in this research.

References

[1]

Brett A. Becker, Paul Denny, James Finnie-Ansley,
Andrew Luxton-Reilly, James Prather, and
Eddie Antonio Santos. Programming is hard-or at
least it used to be: Educational opportunities and
challenges of ai code generation. In Proceedings of the
54th ACM Technical Symposium on Computer Science
Education V. 1, pages 500-506, 2023.

Vitaliy Bibaev, Alexey Kalina, Vadim Lomshakov,
Yaroslav Golubev, Alexander Bezzubov, Nikita
Povarov, and Timofey Bryksin. All you need is
logs: improving code completion by learning from
anonymous ide usage logs. In Proceedings of the
30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering. ACM, 2022.

Alexander J. Fiannaca, Chinmay Kulkarni, Carrie J.
Cai, and Michael Terry. Programming without a
programming language: Challenges and opportunities
for designing developer tools for prompt programming.
In Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems, pages 1-7,
2023.

H. Hu, Q. Chen, and Z. Liu.
supervised code embeddings.
in Computer and Information

CCIS:388-396, 2019.

Yasir Hussain, Zhiqiu Huang, Yu Zhou, and Senzhang
Wang. Deepvs: an efficient and generic approach
for source code modelling usage. ELECTRONICS
LETTERS, 56(12):604-606, 2020.

Maliheh Izadi, Roberta Gismondi, and Georgios
Gousios. Codefill. In Proceedings of the 44th
International Conference on Software Engineering.
ACM, 2022.

Khalid S Khan, Regina Kunz, Jos Kleijnen, and Gerd
Antes. Five steps to conducting a systematic review.
Journal of the royal society of medicine, 96(3):118-121,
2003.

K. T.Le, G. Rashidi, and A. Andrzejak. A methodology
for refined evaluation of neural code completion

approaches. Data Mining and Knowledge Discovery,
37(1):167-204, 2023.

Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi
Jin. A unified multi-task learning model for ast-level
and token-level code completion. Empirical Software
Engineering, 27(4), 2022.

Code generation from
Communications
Science, 1142

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin.
Multi-task learning based pre-trained language model
for code completion. In Proceedings of the 35th
IEEE/ACM International Conference on Automated
Software Engineering. ACM, 2020.

Gail Murphy, Mik Kersten, and Leah Findlater. How are
java software developers using the eclipse ide? I[EEE
Software, 23:76-83, 07 2006.

A.R. M. Nizzad and Samantha Thelijjagoda. Designing
of a voice-based programming ide for source code
generation: A machine learning approach. In
2022 International Research Conference on Smart
Computing and Systems Engineering (SCSE), volume 5,
pages 14-21, 2022.

Hayatou Oumarou and Ousmanou Dahirou. A novel
code completion strategy. International Journal
of Advanced Computer Science and Applications,
13(5):866-871, 2022.

Daniel A. A. Pelsmaeker, Hendrik van Antwerpen,
Casper Bach Poulsen, and Eelco Visser.
Language-parametric static semantic code completion.
Proceedings of the ACM on Programming Languages,
6(0O0OPSLA1):1-30, 2022.

Hannah Snyder. Literature review as a research
methodology: An overview and guidelines. Journal of
Business Research, 104:333-339, nov 2019.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. Intellicode compose: Code
generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, page
1433-1443, New York, NY, USA, 2020. Association for
Computing Machinery.

Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi,
Maik Riechert, Juliana Vicente Franco, and Miltiadis
Allamanis. Fast and memory-efficient neural code
completion. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR).
IEEE, 2021.

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and
Neel Sundaresan. Pythia: Ai-assisted code completion
system. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining. ACM, 2019.

Z. Wang, F. Liu, Y. Hao, and Z. Jin. Adacomplete:
improve dl-based code completion method’s domain
adaptability. Automated Software Engineering, 30(1),
2023.

F. F. Xu, Z. Jiang, P. Yin, B. Vasilescu, and
G. Neubig. Incorporating external knowledge through
pre-training for natural language to code generation. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pages 6045-6052, 2020.

[21]

[22]

(23]

[24]

[25]

F. E Xu, B. Vasilescu, and G. Neubig. In-ide
code generation from natural language: Promise and
challenges. ACM Transactions on Software Engineering
and Methodology, 31(2), 2022.

P. Yin and G. Neubig. A syntactic neural model for
general-purpose code generation. In ACL 2017 - 55th
Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference (Long
Papers), volume 1, pages 440-450, 2017.

Mitchell Young, Zifan Nan, and Xipeng Shen.
Ide augmented with human-learning inspired natural
language programming. In 2022 IEEE/ACM 44th
International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages
110-114, 2022.

Xiaojiang Zhang, Ying Jiang, and Zhijun Wang.
Analysis of automatic code generation tools based
on machine learning. In 2019 IEEE International
Conference on Computer Science and Educational
Informatization (CSEI), pages 263-270, 2019.

Xin Zhou, Yuqin Jin, He Zhang, Shanshan Li, and Xin
Huang. A map of threats to validity of systematic
literature reviews in software engineering. In 2016
23rd Asia-Pacific Software Engineering Conference
(APSEC), pages 153-160, 2016.

	Introduction
	Background
	Motivation
	Research Questions
	Structure

	Methodology
	Identifying relevant work and assessing the quality of studies
	Defining the search query
	Retrieving the papers
	Eligibility check

	Summarizing the evidence and interpreting the findings

	Results
	RQ1: Code generation models and their IDEs
	RQ2: Techniques behind the models
	RQ3: Indicators for evaluation
	RQ4: Aspects to be considered

	Discussion
	Limitations
	Responsible Research
	Threats to validity

	Conclusion

