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Abstract

Multi-label classification has gained a lot of at-
traction in the field of computer vision over the
past couple of years. Here, each instance belongs
to multiple class labels simultaneously. There are
numerous methods for Multi-label classification,
however all of them make the assumption that ei-
ther the training images are completely labelled
or that label correlations are given. Since Active
Learning is frequently used when not much data is
available, it could be used to determine the missing
labels by querying an oracle. This paper proposes
a novel solution that combines the current state-
of-the-art for Multi-label classification with Active
Learning to infer the missing labels. This is done
with sampling strategies that try to select the most
informative sample from the dataset by exploring
the amount of missing labels. With these strate-
gies, we try to minimize the relabeling cost for all
samples, while maximizing the information gained.
The chosen method called Hard sampling with en-
tropy then looks to select those samples that both
the model and we find informative. The chosen
measure along with the other measure are then ex-
plored and evaluated on a subset of the MSCOCO
dataset on 20%, 40% and 60% noise. Hard sam-
pling with entropy then outperforms the state-of-
the-art by more then 30%, as well as the baseline
sampling method by 2% for 60% noise.

1 Introduction

Most real-world images cannot just be labeled by one label,
but with multiple labels. Here, an emerging extension of
multi-class classification, Multi-label learning (MLL), tries
to categorise an instance into multiple relevant labels, as
opposed to the usual one class. For this reason Multi-Label
learning and its variants are closer to actual real-world
applications. In MLL, classification models are trained
to predict these labels with high accuracy [1]. However
acquiring a fully labeled dataset for a Multi-labeled scenario
is a very expensive and time-consuming task.

The main problem this paper will seek to tackle are

missing or partial labels [3]. An example of this can be
found in Figure 1. This might not sound like a big problem,
however as can be seen in Figure 2, the impact of noise is
quite substantial. Missing labels occur more often than one
would think, this could happen when the labels are collected
via crowd-sourcing to reduce the labeling cost and effort.
Furthermore, some applications train on incomplete label
sets, and predicting the unavailable labels is preferred to
reduce the annotation cost. A way to infer those missing
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Figure 1: An illustration of Multi-label Learning with missing labels. On the left are all
the correct labels for the image, on the right you can see that some labels are missing

labels would be with a method called Active Learning or
AL [2]. This is a special case of machine learning in which
a learning algorithm can make use of an oracle (or in the
form of a human expert) to label new data points with the
desired labels. To reduce the cost and effort that goes into
labeling, Active Learning methods have been widely used in
this field [6, 14-16].

Active Learning is therefore used to increase the accuracy
of the model while keeping the labeling cost and effort to a
minimum. By selecting the most informative samples from
our dataset with partial labels, we can reduce the amount of
queries to our oracle while increasing the performance of our
model as much as possible.

The problem with some of the current studies [14-16].
On Multi-label active learning is that they ignore a crucial
fact: Not all labels are available [4]. This then gives us the
the following research question: How can one determine the
missing labels using Active Learning?

This paper therefore proposes to use the current state-
of-the-art [7] as a Multi-label classifier and evaluate new
informativeness measures which will try to exploit the ratio
of missing to given labels. A comparison between these new
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Figure 2: In this graph, the performance of the current state-of-the-art on various
degrees of noise is shown. It is clear that missing labels have a significant impact on
the performance of MLC.

informativeness measures to Random Sampling will be will
be made on the MSCOCO [9] dataset, as this is another com-
monly used measure. Both the newly introduced measures
as well some existing ones will be further elaborated upon in
the following sections.

In the next section, we go into other related works. In
section 3, we first formally introduce the main topics of
this paper, after which we discuss the algorithm and the
and present the new informativeness measures. Section 4
will first describe the setup in which experiments will be
performed and then evaluate the methods described in section
3 as well as provide a comparison between the proposed
approach and the baseline asymmetric loss model on varying
amounts of noise. Reproducibility and ethical aspects of
this research will be talked about in section 5. Finally we
conclude this paper and and talk about future work in section
6.

2 Related Work

In this section we categorize other, related works into
three main categories, Multi-label learning, Active learn-
ing and missing labels in MLL. Each of these categories
briefly introduces relevant works and their proposed methods.

Multi-label learning Y Yu. et al. [13] perform Multi-
label classification by exploiting label correlations. They
introduced two novel MLC algorithms based on the vari-
able precision neighborhood rough sets, called Multi-label
classification using rough sets (MLRS) and MLRS us-
ing local correlation (MLRS-LC). These two algorithms
consider two important factors that affect the accuracy
of prediction, namely the existing uncertainty within the
mapping between the feature space, and the label correlation.
While Y. Xing et al. [20] introduces an approach called
Multi-label Co-Training (MLCT). Their method addresses
the class-imbalance challenge by leveraging the information
concerning pairwise co-occurrence of labels. MLCT selects
samples using a predictive reliability measure, and the
labels of the chosen samples are communicated among the
co-training classifiers by applying label-wise filtering.

Active learning Some of the existing works for AL in-
clude the method proposed by Hsu, W. N. and Lin, H. T. [2].
Here they design a learning algorithm that connects the well-
known multi-armed bandit problem with AL. They suggest
that it is possible to dynamically estimate the performance
of different strategies by giving a appropriate choice for the
multi-armed bandit learner. In the paper by Z. Zha et al. [12]
they propose a novel active learning approach based on the
optimum experimental design criteria in statistics. Their
approach exploits the local structure of the sample as well
as the samples density, relevance and diversity information.
All the while making use of both labelled and unlabelled data.

Missing labels in Multi-label learning A variety of
solutions already exist for the missing label problem. K.
Ibrahim et al. [4], proposes accounting for the confidence in
the missing labels by modifying the loss function. This can
be done by adding weighting factors to binary cross entropy
loss. This confidence-based weight per sample is applied for
each of the negative and positive labels independently.

Two novel MLL strategies are proposed by S. Huang et
al. [5], which use Active Learning to infer missing labels:
a label cardinality inconsistency strategy and a max-margin
prediction uncertainty strategy. These exploit the relative
Multi-label classification margin structure on each unlabeled
instance and the statistical label cardinality information,
respectively, to measure the unified informativeness of
unlabeled instances. Moreover, they investigate an adaptive
integration framework of these two strategies by applying
a novel approximate generalization error to measure the
unified informativeness of unlabeled instances. The problem
with these solutions is that they ignore correlations the labels
might have.

T. Durand et al. [3] uses an iterative strategy based on
Curriculum Learning to predict some missing labels. A
scalable Generative Model for MLL with missing labels
is proposed by V. Jain et al. [10]. The framework used
couples an exposure model to account for whether the label
is actually missing, together with a latent factor model for
the binary label matrix. In this paper a AL solution to infer
the missing labels is preferred however.

The approach by J. Wu et al. [6] is based on problem
transformation, and makes use of conditional label depen-
dence [17] to explore label correlations on the weak label
problem. It uses this to construct a unified sampling strategy
to evaluate the informativeness of each example-label pair
and determine which unknown label needs to be acquired
from oracle.

With this paper we seek to improve the current state-
of-the-art rather come up with alternative solution. We
will do this by combining the Asymmetric Loss [7] with
Active Learning and using novel measures on which to select
samples.



3 Methodology

This section is structured as follows, first Multi-label classifi-
cation will be introduced after which the chosen classifier will
be discussed. In the subsequent subsection the Active Learn-
ing and the informativeness measures will be introduced and
elaborated on. Finally the algorithm will be explained it its
entirety in the last sub-section. In the following sections 2 as-
sumptions are made: First, we assume that for a given dataset,
it is known how many unique labels are in the dataset and how
many labels are missing per sample. Second, when a sample
is presented to the oracle, the oracle fully labels this sample
with all the correct labels.

3.1 Multi-label classification

Mutli-class classification is formally defined as follows:
Assume that a sample x of size S represents an image of
S pixels, Y = wyi1,¥2,...,yr represents a Multi-label set
that contains L distinct labels. Given a labeled training set
{T = (x;,Y;)|1 <i < n} where n is the number of samples,
x € XS andY; € Y, MLC is used to learn a Multi-label
classifiermz :— Y.

The state-of-the-art for MLC 1is described in [7], and
was used to design the classifier. Here we use the loss
function introduced by [7], which modifies the Binary
Cross Entropy by adding Asymmetric Focusing (1) and
Asymmetric Probability Shifting (2).

Asymmetric Focusing separates the focusing levels of the
positive and negative samples, this is done by introducing a
positive and a negative focusing parameter v, ~~ respec-
tively. With these parameters the contribution of positive and
negative samples can be better controlled, and despite their
infrequency help the network learn meaningful features from
positive samples. Asymmetric Probability Shifting fully
discards negative samples with very low probability, i.e., it
performs hard thresholding of very easy negative samples,
shifted probability p,, is defined in (2). Let’s define the
shifted probability, pm, as:

Ly =(1-p)*log(p) 0
L_ =p’ log(1—p)
DPm = mal"(p —m, O) 2)

Combined we obtain the following for the Asymmetric Loss
Function:

{L+ = (1 —p)7+ log(p) 3)

L= (pm)" log(1 = pm)

This loss function (3) is then combined with the medium
TResNet [18] model that was pre-trained on the ImageNet
dataset [19] and will then be used as our classifier.

3.2 Active Learning

Before elaborating on the measures, we distinguish as well
as introduce 2 types of sampling strategies, instance based
and example-label pair based. The instance based sampling
strategy selects a data sample from the dataset based on
the informativeness of the data sample as a whole. While

the example-label pair strategies take each example-label
pair and measure their informativeness. Using an intelligent
sampling strategy is therefore key to reducing the labeling
cost to the greatest extent possible. The samples are added in
batches, and after every batch is added the model is re-trained
and validated on the same test set.

The methods proposed by this paper will be introduced
below. Using our first assumption, we can then derive the
amount of known labels (labels that are given/not missing)
and unknown labels (missing labels). The informativeness of
a sample based is then on the ratio between these amounts.
The proposed methods seek to exploit the fact that the total
number of classes and the amount of given are known. Using
this we can determine the amount of missing labels per
sample. We then define the following, let U be the set of
all the unlabelled/noisy instances, let 1y known aNd Ngnown
respectively be the number of missing labels and given labels
forasetn, withn € U.

1. Medium Sampling: Select sample where the ratio be-
tween, unknown to known labels is the closest to 1 (See
E.q. 4). With this we label the most "medium” samples,
meaning choose samples where we can obtain a good
amount of information from the chosen sample without
having to relabel a lot of labels per sample.

zt = argminueU|M —1] 4)
|uknown|

2. Hard Sampling: Select sample where the ratio between,
unknown to known labels is the highest (See E.q. 5).
These are the Hardest samples as since very little is
known about them. In this case every sample added
gives as much information as possible.

¥ = argmaacueyM (5)
|Uknoum|

3. Hard and Medium: Sample the first 10% to be Hard sam-
pling and the remainder with Medium. With this mea-
sure it is expected that it will not outperform the Hard
Sampling when it comes to accuracy increase, but the
ratio of samples labelled per percentage increase might
be lower. A thorough evaluation of various splits will be
presented in the Hard + Medium sampling section of the
appendix.

4. Uncertainty: Otherwise known as entropy (3), where
p; is simply the frequentist probability of an label i in
our data, this computed for all L labels in our dataset.
Entropy is a measure of uncertainty or disorder, it rep-
resents the uncertainty of a classifier when classifying
a sample. It is crucial to incorporate this measure as
we can use this to see with which samples the classifier
struggles the most with. The higher this value the more
classifier can learn by having the true labels of the sam-
ple. Then for z; € X:

L

u(z;) = Z —pilnp; (6)

i=1



All the measures mentioned above will be combined with the
entropy. This is to combine both what we deem informative
as well as to see what the model finds informative.

3.3 Full Algorithm

The full algorithm then looks as follows, first we start by split-
ting our dataset. A clean set of around 10% of the dataset
where all the all the labels are known, A test set of 10% or
more, and an unlabelled set where some of the labels are
missing. A classifier will then be trained on the clean set,
after which it will be tested on the test set. After training and
testing, a certain number of samples are selected from the un-
labelled set, using one of the measures, fully labelled by the
oracle and added into the clean set. We then repeat this until
some stopping criterion has been achieved. Pseudocode for
the algorithm can be found below in Algorithm 1. Imple-
mentation for the measures were not included as they a very
straightforward.

Algorithm 1: ALASL

Input : Pretrained model M, Clean test set S;cs¢,
Clean train set Sipqin, NOISY S€t Spoises
Measure_nr m, Oracle O Number of
Iterations n Samples per Iteration ¢

Output: mAP per iteration and Cost for all samples
relabelled

1 Initialize i and / to O
2 Initialize maps to a List of size n
3 while : < n do

4 train M on S¢yqin
5 maps|i] = validate M on Syest
6 if m uses entropy then
7 \ e = get entropy from validating M on S,0se
8 end
9 c=0
10 while ¢ < t do
1 x = pick sample from ;s With or without e
12 p—1 =nr. missing labels in x
13 c=c+1
14 =1+ P—1
15 Add relabel x and add it to Sy,qin
16 Remove x from $,,0ise
17 end
18 i=i+ 1
19 end

4 Evaluation

To determine which out of the previously discussed measures
is optimal, thorough evaluation needs to be performed. This
section will start with brief explanation on some of the deci-
sions made followed by describing the setup in which these
measures were tested. The results will then be presented and
briefly discussed in the Results section. While a more thor-
ough examination of the results will be performed in the Dis-
cussion section.

4.1 Design choices and label noise

First the dataset, the results were obtained by training and
testing on a subset of the entire MSCOCO [9] dataset,
namely the val2017 dataset with 5000 images. A subset of
the dataset was chosen due to size and cost of training on
the full MSCOCO, given the current hardware constraints.
It is very clear that there exist a very significant imbalance
between the occurrences of the labels in MSCOCO as can be
seen in [9], to counteract this, the measures below only use
example based sampling. This is done so that the occurrence
of a labels will be independent form the samples selected.
Some of the hyper-parameters were scaled down from the
ones used in the original ASL code, to reduce the computing
time of the algorithm. The changed hyper-parameters
include, a batch size of 16 and image size of 224x224.

After obtaining the dataset, noise needs to be injected
into the samples to simulate the missing labels. Since clean
train and test sets are needed, this noise was only injected in
the unlabelled set. This was done by way of collecting all
the labels and replacing some percentage of the labels by -1.
Since the noise was applied on the all samples the spread is
not uniform, meaning some labels have more missing labels,
while other may have little to no noise. Various degrees of
noise were injected into the dataset, 20%, 40% and 60%. By
this we mean that 20% of the labels are missing, not 20% of
the samples have some missing labels.

Regarding sampling, we evaluate each measure on a
budget of 500 samples added in 10 iterations of 50 samples.
The decision to opt for adding the samples in batches instead
of one batch, was made to better observe the growth of the
classifier as more samples were introduced. There is no
need to add all samples in the unlabelled set as we are only
looking to add the ones that give us the most information.

Before adding a sample the total cost needs to be in-
cremented by the cost of relabelling this sample. This cost is
then defined as the amount of labels that need to be relabelled
by the oracle. Relabelled labels was chosen instead of
samples to clearly differentiate between the cost of picking
different samples. Otherwise the cost to relabel a sample
with only 1 missing label is equal to the cost of relabelling
one with 40 missing labels.

The measures will be compared on 20%, 40% and 60%
label noise using the following 3 heuristics:

* Highest mAP (mean Average Precision), meaning the

measure with which we obtain the highest mAP after
adding all the samples.

* Highest I, where [ is defined as the percentage increase
per label added (See E.q. 7). Where a,, ; and ¢, ; are the
mAP and cost of measure x at iteration ¢ respectively.

Ay, - acc,
I(z) = 712_ - 0 (7)

* Highest mAP at cost equal to the cost of Random Sam-
pling in iteration 10. With this heuristic we aim to look



at the performance of the different measures at a fixed
cost. The cost of Random Sampling at iteration 10 was
chosen, since it is our baseline, and its reaches it high-
est mAP at that iteration. We want to look at how other
measure perform against it when the cost is equal.

40% noise

Finally, the final mAP of each iteration is the average of the of
the accuracies on the test set in that iteration. Since the code
for training and validation were adapted from Asymmetric
Loss paper, every epoch after training, the model is validated
on test set. To then obtain the final mAP, the mean of the
accuracy on the validation set is computed.

4.2 Setup

The setup would then be the following: Train the pre-trained
classifier with ASL on the clean dataset for 20 epochs and se-
lect 50 new samples with the current informativeness measure
from the unlabelled set for relabelling. After relabelling the
noisy samples, add them to the clean set, count the amount
of labels that were relabelled for the cost and repeat for 10
iterations.
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4.3 Results

Here the performance as well as the cost of each of the
measures will be shown to 20%, 40% and 60% noise.
Besides the measures mentioned in 3, one additional measure
is displayed, Random sampling. This method picks one
random samples out of the unlabelled set for relabeling. This
will be used as a baseline to compare the other measures with.

Although not included in the graphs below, the initial
mAP for the classifier without any labels added is approx-
imately 28. This was excluded to make the graphs more
readable, as it should be equal among all measures. At 60%
noise, some measures had a cost lower than that of Random
sampling in their final iteration. Therefore the lowest cost
(Medium sampling with a cost of 21000) was used to perform
the comparison.

20% noise

The results in Figure 3 show that although Hard + Medium
Sampling has the highest mAP both in graph 3a as well as in
3c, the % increase per label is very low, the opposite is true
for Random sampling. Hard Sampling with entropy however,
performs quite well on all 3 measures.
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Figure 3: The evaluation of the measures on 20% noise (a) The mAP per 50 added samples on 20% label noise for all informativeness measures (b) The performances of the
measures on 20% noise with labeling cost of approximately 8000 (c) The increase per label of all measures on 20% noise
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Figure 4: The evaluation of the measures on 40% noise (a) The mAP per 50 added samples on 40% label noise for all informativeness measures (b) The performances of the
measures on 40% noise with labeling cost of approximately 8000 (c) The increase per label of all measures on 40% noise
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Figure 5: The evaluation of the measures on 60% noise (a) The mAP per 50 added samples on 60% label noise for all informativeness measures (b) The performances of the
measures on 60% noise with labeling cost of approximately 21000 (c) The increase per label of all measures on 60% noise
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Figure 6: (a) Evaluation of the measures based on their performance after various amounts of labels were cleaned, evaluated with 40% noise. (b) A comparison of the proposed
sampling strategy Hard sampling with entropy against the current state-of-the-art, Asymmetric Loss on various degrees of noise.

40% noise

The same applies for 40% noise, as can be seen in Figure 4.
Random sampling still has the highest increase per label, but
Hard Sampling with entropy has very similar increase but,
higher overall mAP and better mAP at a fixed cost

60% noise

In Figure 5 the results vary slightly, Hard sampling has the
highest mAP after all samples are added. While the % in-
crease per label is highest for Medium Sampling and Hard +
Medium sampling has the best mAP at a fixed cost. Even
tough Hard Sampling with entropy does not surpass every
other measures, it still performs quite well.

It is worth noting that the Random Sampling has slowly been
performing worse across all measures as the % noise in-
creases.

4.4 Discussion

As is visible on the graphs in the previous section, no single
measure clearly outperforms the others. Although there is
no clear best, we do however want to highlight the measure
that combines Hard Sampling with entropy. This measure
consistently performs well across all degrees of noise not
just when it comes to mAP but regarding cost as well. This

is especially visible in Figure 6a, were the measures are
compared after various amount of labels were cleaned and
added. In Figure 6b, it is clear by how much the proposed
method helps improve the performance of the Asymmetric
Loss on a dataset with missing labels.

Despite the fact that the best overall performance will
be achieved using Hard Sampling with entropy, there might
be scenarios where one might want to have the lowest
possible relabelling cost. In which case Random Sampling
might be better suited for a dataset with noise percentage
lower than 50%, above that Medium sampling has the lower
cost. Conversely if one wants to obtain the highest possible
mAP, a measure using Hard Sampling might be preferred.
Important to note, when a few samples are added there is still
a notable difference in mAP. However once enough samples
are added all measures will eventually converge to the same
value, despite there being a difference in cost.

5 Ethics and Reproducibility

In this section, we elaborate any ethical aspects this paper
might have as well as discuss the reproducibility of the
experiments performed by this paper. Due to the lack of in-



teraction between a human and a computer any or collection
of data, any privacy issues were deemed not relevant. This
section will therefore only the discuss the reproducibility of
the experiments.

Reproducing the method proposed by this paper should
be quite straightforward. The algorithm itself is clearly ex-
plained, and in addition pseudo-code is given for it. Despite
the fact that no pseudo-code was given for the measures,
they are clearly formulated in addition to being simple to
implement. The dataset used is explicitly mentioned and
publicly available. Although the manner in which noise is
injected is also clearly explained, the exact noise might vary,
as the noise was injected randomly.

Finally, any choice of hyper-parameters was clearly men-
tioned and described. The exact results might not able to be
achieved, this however natural, since the mAP might vary
from run to run.

6 Conclusion and Future work

This paper proposed a novel way to perform Active Learning
for missing labels in a multi-label classification setting, i.e.,
the current state-of-the-art was combined with informative-
ness measures that exploit the ratio of the missing labels
while taking the uncertainty of the model into account. By
combining the Asymmetric Loss model with Active Learning
and using Hard Sampling with entropy to select samples, we
can increase the mAP of ASL by 10%, 20% and 30% for
20%, 40% and 60% respectively, without incurring a high
relabelling cost. Our experimental results in section 4.3 show
that this measure also outperforms another commonly used
sampling strategy as well as improve ASL.

In the future some additional issues can be explored:

* To reduce the relabeling costs even further, methods to
propagate the sample to an automatic labeller should be
investigated. This way, the oracle is only queried if the
algorithm cannot determine the label on its own. One
such a labeling methods is described in [6].

* Since this paper only handled a subset of the entire
MSCOCO dataset due to hardware restrictions, it should
be evaluated on the entire dataset as well as other
datasets.

* Alternatively, additional sampling measures could be ex-
plored, with higher performance than the methods de-
scribed by this paper.
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A Hard + Medium sampling

In this section we evaluate various splits for Hard + Medium
sampling to determine which split is optimal. We compare
the splits by their final mAPs as well as increase per label.
Even tough there is no significant difference in the mAP of
the different splits (see Figure 7a), in Figure 7b it is visible
that the in 10/90 splits the increase in mAP highest making it
the preferred split.

Hard + Medium split comparison
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Figure 7: The evaluation of various splits for Hard + Medium Sampling (a) A the mAP
for various splits on 40% noise (b) The increase per label for the various splits on 40%
noise
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