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INTRODUCTION

In this thesis, the research I performed on the topic of a statically balanced arm support is reported. The
main contribution is presented in two papers. The first is focused on a method for designing statically bal-
anced serial linkages, using zero-free-length springs, without the need for auxiliary links. In this paper design
equations for a statically balanced system are obtained from energy equations, by obeying these equations
balance is ensured. Additionally, a graphical representation of the behavior is made, providing insight in
the underlying principles of balancing serial linkage. The second paper is on designing a statically balanced
mobile arm support based on a spring system obtained with the method described in the first paper. To real-
ize a close-to-body fit new technology is introduced for creating hollow spring structures that fit around the
human body. The resulting system is evaluated in an experiment. In addition to the papers multiple appen-
dices are included in this report. In these appendixes different topics like new principles, statically balancing,
prototypes, experimental results and Matlab code are presented.

v





1
PAPER 1

1.1. CARTESIAN BASED STIFFNESS MATRIX APPROACH AND GRAPHICAL REP-
RESENTATION FOR DESIGNING STATICALLY BALANCED LINKAGES

This paper is focused on designing statically balanced serial linkages and has two main objectives.
The first is to create stiffness matrix method, based on Cartesian coordinates, for designing statically bal-

anced serial linkages, without auxiliary links. This method is created because current methods focused on
this task are not user friendly and obtained design equations are relatively complex. As a result the obtained
solutions found in literature are all in a limited selection of the full solution space. All having fixed world
spring attachments on a vertical line through the fixed world joint point. In the present paper the method
is set up using a different, Cartesian coordinate system. The resulting design equations are ore suitable for
utilizing the whole design space.

The second objective is to provide illustrative examples of solutions in this complete design space. Re-
lations are provided of how and why spring attachments can be placed anywhere in a 2D plane. The found
behavior is visualized.

This paper has been submitted to the journal Mechanism and Machine Theory. A slightly shorter, altered
version is accepted for the IFToMM World Congress 2015 (Chapter F).
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Cartesian based stiffness matrix approach and graphical representation for
designing statically balanced serial linkages
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Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Delft, The Netherlands
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Abstract

A statically balanced system is in equilibrium in every pose, by maintaining a constant potential energy level. In
classical solutions for balancing serial linkages, each DOF is balanced by an independent element (counter-mass or
mono-articular spring). Disadvantages are increased mass and inertia for counter-mass elements, and the need for
auxiliary links for spring solutions. Recent literature presents a method for balancing serial linkages without auxiliary
links; using multi-articular springs. This method obtains constraint equations from the stiffness matrix. Downsides are
different coordinate systems for describing locations and states, and set criteria constraining attachments to fixed lines.
In the presented paper the stiffness matrix approach is implemented using a consistent Cartesian coordinate system.
Goal is to compare the use of this single coordinate system to the use of multiple coordinate systems for this method,
and to obtain an increased insight and a visualization of the relations between different parameters. The Cartesian
coordinates are implemented successfully, resulting in a simpler, more intuitive method for designing statically balanced
serial linkages. Furthermore, obtained parameter relations are visualized in two examples providing knowledge about
how systems parameters can be changed while balance is maintained.

Keywords: Static balance, Zero-free-length spring, Serial linkage, Constant potential energy

1. Introduction

A system which is in equilibrium in every motionless state is called statically balanced. For such systems the
potential energy level remains constant in every pose [1]. This constant energy level greatly reduces operational effort
as only dynamic effects remain to be overcome during motion. Many applications for static balancing exist due to these
benefits [1, 2, 3, 4].

Different techniques exist to statically balance the rotation of a rigid pendulum. A simple option is adding a counter-
mass [1], downside of which is the increased mass and inertia [5]. A second option is connecting a zero-free-length spring
(ZFLS) between the link and fixed world [1]. For a ZFLS the spring force is proportional to its length. Other less
common solutions use a non-circular cam [6] or compliant flexure elements [7]. These solutions are all designed to
balance a single degree of freedom (DOF).

Solutions for balancing a serial linkage with multiple DOFs make use of counter-mass or ZFLSs. In the first case a
counter-mass is added to each link [8, 9], additional auxiliary links allow counter-mass relocation [10]. Inertia increase
becomes a greater problem as added weights of distal counter-masses must be balanced as well. Classical ZFLS solutions
require a parallel beam construction providing a link with fixed orientation at each joint [1, 11, 12]. Each link is balanced
by a single ZFLS that spans the joint of the respective link, a mono-articular spring. The disadvantage of parallel beams
are an increased complexity and added inertia. In these systems each DOF is balanced by an independent balancing
element.

Recent literature presents two methods in which ZFLSs can span multiple joints to balance serial linkages without
parallel beams. The first method is the stiffness matrix approach by Lin et al. [12, 13, 14, 15]. Energy equations are set
up in a general form U = 1

2Q
TKQ, separating states Q and parameters in a stiffness matrix K. Off-diagonal elements

of K contain state dependent energy terms, constraining these terms equal to zero results in a statically balanced system
[13]. The second method is an iterative method developed by Deepak and Ananthasuresh [16]. Balance is ensured link
by link, in steps, starting at the most distal link. At each step, balance of a specific link is acquired by adding up to
two ZFLSs between this link and fixed world. For each link only energy terms of the current and previous step links
affect its constraint equations [16]. In these two methods each DOF is balanced by combined efforts of multiple ZFLSs.

∗Corresponding author. E-mail adress: a.g.dunning@tudelft.nl; Postal address: Mekelweg 2, 2628CD Delft, The Netherlands

Preprint submitted to Mechanism and Machine Theory February 21, 2015



Both methods can create statically balanced serial linkages and are based on an energy approach. Nevertheless
multiple differences exist in ease of implementation and capabilities. The first is that in Lin’s method all constraints are
obtained at once for a chosen spring configuration, whereas in Deepak’s method only a selection of the constraints is
evaluated at once. If no straightforward solution is found, Deepak’s method explains which spring(s) can be added for a
solvable system, Lin’s method does not directly. However, information on which links are unbalanced and thus require
additional springs can be extracted from the stiffness matrix [15]. Another difference is that all springs are connected
to the fixed world in Deepak’s method while in Lin’s method springs can be attached in between any two links, i.e.
additional constraints are provided considering these springs. Finally, Deepak’s method allows planar placement of
spring attachments while in Lin’s method criteria are set up constraining attachments to be located on fixed straight
lines [15].

In the presented work the stiffness matrix approach is selected for calculating balanced linkages as it provides all
constraints at once and allows additional spring placement options. The exact implementation however is altered.
Current literature describes locations on links using polar coordinate systems, while states are described using unit
vectors (xy-components). In the presented work Carthesian (xy-) coordinates are used describing link locations as well
as the states.

Three goals are formulated in the presented paper. The first goal is to implement Cartesian coordinates in the
stiffness matrix approach for balanced serial linkages to investigate its benefits over using a polar coordinate system.
The second goal is to gain more insight in the relations between different parameters of this method in the design space,
for instance it will be investigated if placement of springs outside the vertical straight lines is allowed. The third goal
is to visualize these behavioral relations in two examples.

The structure of this paper is as follows. First, in ’Method’ the Cartesian coordinate stiffness matrix approach is
derived. Next, in ’Application and behavior’ two examples of balanced linkages are presented of which the behavior is
analyzed. Third, in ’Discussion’ the use of Cartesian and polar coordinates are compared. Finishing with the obtained
conclusions concerning the set goals.

2. Method

We propose the use of Cartesian coordinates in the stiffness matrix approach for designing serial statically balanced
linkages. This is in contrast to the polar coordinate system used in current literature on this method [12, 13, 14, 15]. In
the presented paper the location of spring attachments, joints and COMs is described using (local) x- and y- coordinates
on the respective links they are located on. In this section the assumptions are explained first, followed by the full
derivation of the stiffness matrix approach using xy-coordinates.

2.1. Assumptions and limitations

The presented method is set up for planar linkages, the gravitational field acting in this plane has constant magnitude
and direction. The links are connected to each other and/or the fixed world using revolute joints. All springs have
linear ZFLS behavior and the mass of these springs is neglected. Mechanical limits of links/springs colliding with one
another are not taken into account. The fixed world is assumed to be rigid and static.

2.2. Derivation of stiffness matrix

The stiffness matrix approach is derived in five steps. First all coordinate points are described as a function of the
link states and parameter values. The second step is setting up potential energy equations for all spring and mass
components and writing these equations in a generalized form. The third step is to combine the energy equations of
the different components to obtain the total stiffness matrix. The fourth step is obtaining the constraint equations
for balance from the stiffness matrix. The fifth and final step is focused on how to solve the obtained equations. The
equations are set up for an n link system where the fixed world is link 1, as a result the system has n− 1 moving links.

2.2.1. Step 1: Coordinate vectors

The state of link u is described by global unit vector qu (Figure 1a). The fixed world vector q1 is constant, aligned
with the global x-axis. For moving links (u = 2 · · ·n) vector qu is aligned with the local xu-axis. The origin of each
local coordinate system is located at the proximal joint Ju−1. The yu-axis are orientated perpendicular to the respective
xu-axis. A unit vector in this yu direction is obtained by rotating the state vector qu by 90◦ using rotation matrix R.
Combined state vector Q holds the states of all n-links.
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q1 =

[
1
0

]
(1a)

qu =

[
qxu
qyu

]
(1b)

Q =



q1

...
qn


 (1c)

I =

[
1 0
0 1

]
(1d)

R =

[
cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

]
=

[
0 −1
1 0

]
(1e)

B j

qv

A j

J v

1J

2J

3J Jv −1

k j

3q

2q

1q

y
x

g 2m

3m

vm

(a)

JuA j
axj

Lu

qu
Ju −1

ayj

sxu

syu
quR qu y

xu
u

mu

(b)

Figure 1: (a) Schematic representation of a serial linkage in a state defined by unit vectors q. (b) Parameterization of locations on link u in
the Cartesian form.

Global coordinates of all point on the links are described as a linear combination of the state vectors and constant
parameter values. Joint locations are described first. As said, fixed world joint J1 is located in the global origin. The
distal joint Ju of a link u is always located on the local xu-axis at distance Lu from the local origin (Figure 1b). Vector
components of joint locations are set up in equation 2.

J1 =

[
0
0

]
(2a)

Ju = L2Iq2 + L3Iq3 + · · ·+ LuIqu =
u∑

i=2

LiIqi = Ju−1 + LuIqu (2b)

Spring attachment point locations for a spring j between link u to link v are Aj and Bj respectively. These
locations are a linear combination of the proximal joint component Ju−1, the local xu component (axjIqu) and the
local yu component (ayjRqu) (Eq. 3). A schematic representation containing these components is given in figure 1b.

Aj = Ju−1 + (axjI + ayjR) qu (3a)

Bj = Jv−1 + (bxjI + byjR) qv (3b)

Similarly the COM location of link u is set up (Eq. 4).

Su = Ju−1 + (sxuI + syuR)qu (4)

2.2.2. Step 2: Energy equations and generalized form

This step is to write energy equations in the generalized form, separating the states Q and the parameters in the
stiffness matrix K.

U =
1

2
QTKQ (5)

Spring energy is expressed in this form first. The vector describing spring length and orientation for spring j, going
from link u to link v, is Bj −Aj . This is as a function of the states, because the locations of points Bj and Aj are
state dependent as well. The expression for this spring vector is derived in equation 6. An expression is obtained where

3



constants are separated for each state (Eq. 6e). The components C holding these constant parameters are shown in
matrix form (Eq. 7).

Bj −Aj = Jv−1 − Ju−1 − (axjI + ayjR) qu + (bxjI + byjR) qv (6a)

Jv−1 − Ju−1 = Ju + Ju+1 + · · ·+ Jv−1 =
v−1∑

n=u

LnIqn (6b)

Bj −Aj = − (axjI + ayjR) qu +
v−1∑

n=u

LnIqn + (bxjI + byjR) qv (6c)

= ((Lu − axj)I − ayjR)︸ ︷︷ ︸
Cu

qu +

v−1∑

n=u+1

LnI

︸ ︷︷ ︸
Cu+1+···+Cv−1

qn + (bxjI + byjR)︸ ︷︷ ︸
Cv

qv (6d)

=

v∑

n=1

Cnqn (6e)

Cu =

[
Lu − axj ayj
−ayj Lu − axj

]
(7a)

Ci =

[
Li 0
0 Li

]
, for i = u+ 1, · · · , v − 1 (7b)

Cv =

[
bxj −byj
byj bxj

]
(7c)

Ci =

[
0 0
0 0

]
, for :

{
i = 1, · · · , u− 1
i = v + 1, · · · , n (7d)

Knowing the spring length as a function of the states its potential energy can be calculated. The equation is set up
for a ZFLS j with stiffness kj (Eq. 8a) and rewritten in the generalized form (Eq. 8d). In this form the states (Q) are
separated from the parameters in the stiffness matrix of the spring (Ks,j).

Us,j =
1

2
kj(Bj −Aj)

2 (8a)

=
1

2
kj

(
n∑

u=1

Cuqu

)2

(8b)

=
1

2
kj



q1

...
qn




T 

CT

1 C1 · · · CT
1 Cn

...
. . .

...
CT
nC1 · · · CT

nCn






q1

...
qn


 (8c)

=
1

2
QTKs,jQ (8d)

Ks,j = kj



CT

1 C1 · · · CT
1 Cn

...
. . .

...
CT
nC1 · · · CT

nCn


 (8e)

Next the gravitational energy is expressed in the generalized form of equation 5. The height of the masses is
found in the second element of vector Su, containing the global COM y-coordinate of link u. The value for height is
extracted by vector product: height=

[
0 1

]
Su. This product is not jet expressed as in the generalized form because

Su does not contain multiplications of states. By using state q1, which is located on the fixed world, it is known that
(Rq1)T =

[
0 1

]
, describing the gravitational field direction. Therefore the height of a mass is expressed as in the

generalized form by product: height= (Rq1)TSu. Based on this term the energy equations are first written for the
mass of a single link u (Eq. 9) followed by a summed relation containing the masses of all links (Eq. 10). For this form
the constant components Du that fill the stiffness matrix are described (Eq. 11), followed by the generalized form of
the energy equation (Eq. 12).
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Umu
= mug(Rq1)TSu (9a)

Umu
= mugq

T
1 R

TSu (9b)

Umu
= mugq

T
1 R

T [Ju−1 + (sxuI + syuR)qu] (9c)

Umu = mugq
T
1 R

T

[
u−1∑

i=1

(Liqi) + (sxuI + syuR)qu

]
(9d)

Effect of combined mass of all links, for a linkage with n links (and thus n− 1 moving links) is given (Eq. 10).

UΣm =
n∑

u=2

Umu
(10a)

= qT1

n∑

u=2

(
RTmug

[
u−1∑

i=1

(Liqi) + (sxuI + syuR)qu

])
(10b)

= qT1

n∑

u=2



RT

[(
n∑

i=u+1

mi

)
gLuI +mug(sxuI + syuR)

]

︸ ︷︷ ︸
Du

qu




(10c)

The components Du are directly obtained form equation 10c and are rewritten in matrix form (Eq. 11).

Du = RT

[(
n∑

i=u+1

mi

)
gLuI +mug(sxuI + syuR)

]
(11a)

=




mugsyu mugsxu +

(
n∑

i=u+1

mi

)
gLu

−mugsxu −
(

n∑

i=u+1

mi

)
gLu mugsyu




(11b)

The generalized form UΣm is obtained as states and parameters are separated.

UΣm =
1

2
QTKmQ (12a)

Km =




O D2 · · · Dn

DT
2 O · · · O
...

...
. . .

...
DT
n O · · · O


 (12b)

When analyzing a new system it is possible to quickly set up the stiffness matrices without having to go through all
derivations performed in this step. It is advised to directly substitute the component matrices for the springs Cu(Eq.
7a-7d) and the mass components Du (Eq.11). By substituting these component matrices in equation 8e and 12b the
stiffness matrix Ks,j and Km are obtained.

2.2.3. Step 3: Total stiffness matrix

The combined energy Ut, containing all spring and mass terms is obtained by combining the spring and mass stiffness
matrices (Eq. 13).

Ut =
1

2
QTKtQ (13a)

Kt =

(
nsprings∑

i=1

Ks,i

)
+ Km (13b)
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2.2.4. Step 4: Constraint equations

In a balanced system, any state can be changed freely with respect to any other state without changing the overall
potential energy level. For this to be the case, the effective stiffness between any two different states should be equal to
zero. The effective stiffness terms for these relative rotations are found on the off-diagonal part of the stiffness matrix
Kt [14]. As a result, all off-diagonal parts of the Kt matrix are constrained to be equal to zero for balance [13].

The number of constraint equations depends on the size of the Kt matrix, which in turn depends on the number
of links n. The matrices are symmetrical, thus all relations are found in the upper triangular part (Eq. 8e, 12b).
Additionally, all relations in one of these triangular parts occur twice, once in each even and uneven row. Thus only
every other row has to be examined to obtain all relations. Altogether the amount of constraint equations for an n-link
system is equal to n(n− 1) [14].

2.2.5. Step 5: Obtain balance by solving constraint equations

The next step is solving the obtained constraint equations. In general, the minimal amount of variables to be
calculated is equal to the number of equations. For example, for a three link planar system the number of constraint
equations is equal to six and as a result at least six parameters should be left free while solving such a system. The
remaining parameters can be selected to have constant values.

3. Application and behavior

In this section two illustrative examples of balanced linkages are presented. The behavior of the balanced systems
is analyzed. to gain a better understanding of how different parameters can be changed while maintaining the desired
balance. Increased insight in the inner workings of the system will allow for a more efficient design process and a better
overview of possible solutions. Found relations for varying parameters while maintaining balance are provided and
visualized. The system studied in both examples has two moving links (Figure 2a). It is balanced using two different
spring configurations. In example 1 the spring configuration of figure 2b is used, having two bi-articular springs. In
example 2 the configuration of figure 2c is used, having a mono- and bi-articular springs. The steps described in the
methods section provide guidance in both examples.

J 1

J 2

m2
m3

(a)

B 1

B 2

A1

A2

J 1

J 2

k1

k2

m2

m3

(b)

B 1

B 2

A1

A2

J 1

J 2

k1

k2

m2
m3

(c)

Figure 2: (a) Unbalanced linkage. (b) Spring configuration of example 1. (c) Spring configuration of example 2.

3.1. Example 1

Two bi-articular springs are used to balance the system both connecting the fixed world to link 3 (Figure 2b). In
the first step the system locations in figure 2b are expressed in xy-coordinates as in figure 1b. The actual location
vectors (Eq. 2,3,4) are not shown as their creation is not required for continuing in this method, nevertheless they
are useful for instance to plot the system. In the second step the component matrices for the two springs C1 and C2

(Eq. 14a,14b) and the mass terms D (Eq. 14c) are constructed based on equations 7 and 11. By substituting these
component matrices in equations 8e and 12b the spring matrices Ks1,Ks2 and mass stiffness matrix Km are obtained
(Eq. 15). The third step is to construct the total stiffness matrix by combining the spring and mass matrices (Eq. 15).
In the fourth step the constraint equations are obtained from the Kt matrix (Eq. 16). The constraint equations to be
satisfied for balance are the off-diagonal parts of the Kt matrix set equal to zero. Here only terms in odd rows (1 and
3) are considered as the even rows hold exactly the same relations.

C1,1 =

[
−ax1 ay1

−ay1 −ax1

]
; C1,2 =

[
L2 0
0 L2

]
; C1,3 =

[
bx1 −by1

by1 bx1

]
(14a)

C2,1 =

[
−ax2 ay2

−ay2 −ax2

]
; C2,2 =

[
L2 0
0 L2

]
; C2,3 =

[
bx2 −by2

by2 bx2

]
(14b)

D1 =

[
0 0
0 0

]
; D2 =

[
m2gsy2 m3gL2 +m2gsx2

−m3gL2 −m2gsx2 m2gsy2

]
; D3 =

[
m3gsy3 m3gsx3

−m3gsx3 m3gsy3

]
(14c)
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Ksi =
1

2
ki



CT
i,1Ci,1 CT

i,1Ci,2 CT
i,1Ci,3

CT
i,2Ci,2 CT

i,2Ci,3

sym CT
i,3Ci,3


 Km =




O D2 D3

O O
sym O


 Kt = Ks1 + Ks2 + Km (15)

Kt(1, 3) = 0 = − k1ax1L2 − k2ax2L2 +m2gsy2 (16a)

Kt(1, 4) = 0 = − k1ay1L2 − k2ay2L2 +m2gsx2 +m3gL2 (16b)

Kt(1, 5) = 0 = − k1(ax1bx1 + ay1by1)− k2(ax2bx2 + ay2by2) +m3gsy3 (16c)

Kt(1, 6) = 0 = k1(ax1by1 − ay1bx1) + k2(ax2by2 − ay2bx2) +m3gsx3 (16d)

Kt(3, 5) = 0 = k1bx1L2 + k2bx2L2 (16e)

Kt(3, 6) = 0 = − k1by1L2 − k2by2L2 (16f)

In the final step constraints are solved for four different cases, each showing different behavior (Figure 3). Between
these cases some general properties of the system are kept the same, specifically spring stiffness, mass and link length
values. In each case, the constraints are solved for parameters ax1, ay1, ax2, ay2, bx1 and by1, describing spring attachment
locations A1, A2 and B1. Varied between cases are parameters bx2 and by2, describing the location of B2, while keeping
the distance between joint J2 and B2 equal. Furthermore sx2 and sy2 are varied, describing the location of the COM
of link 2, while keeping the distances from joint J1 to the COM the same. Summarized parameter values of balanced
configurations are found in table 3e. Parameters on the first six rows (above the horizontal line) are calculated by
solving the constraints, remaining parameter values (under the line) are chosen inputs.

0.1 [m]

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Case 1 Case 2 Case 3 Case 4 Units
ax1 0 0.1 -0.0114 0.0886 [m]
ay1 0.3 0.2732 0.298 0.2712 [m]
ax2 0 -0.1 -0.0114 -0.1114 [m]
ay2 -0.1 -0.0732 -0.102 -0.0752 [m]
bx1 0.05 0.0433 0.05 0.0433 [m]
by1 0 -0.025 0 -0.025 [m]
bx2 -0.05 -0.0433 -0.05 0.0433 [m]
by2 0 0.025 0 0.025 [m]
k1 147.15 147.15 147.15 147.15 [Nm ]
k2 147.15 147.15 147.15 147.15 [Nm ]
m2 2 2 2 2 [kg]
m3 2 2 2 2 [kg]
L2 0.3 0.3 0.3 0.3 [m]
sx2 0.15 0.15 0.141 0.141 [m]
sy2 0 0 -0.0513 -0.0513 [m]
sx3 0.15 0.15 0.15 0.15 [m]
sy3 0 0 0 0 [m]

(e)

Figure 3: In scale balanced solutions for example 1, the dark and light grey dots near the first joint represent points Z1 and Z2 (described
later on in this example). (e) Parameter values for the different cases.

Case 1 presents the general balanced configuration of this example (Fig. 3a). Here, spring attachment points,
COM locations and joints are aligned on each link. In case 2, spring attachment B2 is rotated by an angle of −30◦

about joint J2 with respect to the aligned orientation (Figure 3b). Thus bx2 = −0.05 cos(−30◦) = −0.0433 and
by2 = −0.05 sin(−30◦) = 0.025 (Table 3e). When solved it is observed that all other attachments follow the applied
rotation (Figure 3b). For case 3, the COM location of link 2 is rotated by an angle of −20◦ around J1 (Figure 3c). Thus
the constraints are solved with sx2 = 0.15 cos(−20◦) = 0.141 and sy2 = 0.15 sin(−20◦) = −0.0513 as inputs (Table 3e).
For this case it is observed that both fixed world spring attachments shift to the left and down. In the final case 4, both
offsets of spring attachment B2 and the COM of link 2 are applied to the system. As expected the solved configuration
shows a combination of the behavior caused by the individual offsets of the previous cases (Figure 3d).

3.2. Behavior Example 1
The lower arm link, suspended to the fixed world by two springs, acts like a virtual ZFLS between its joint J and

point Z2 (Figure 4a-4j). This virtual ZFLS is used to balance the upper arm link to obtain the system of this example
(Figure 4k-4l). Steps taken to obtain these results are visualized (Figure 4) and explained.
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Figure 4: Behavioral analysis

Figure 4a shows a weightless link suspended to the fixed world by two ZFLSs. The link is positioned parallel to
the fixed world spring attachments at constant angle θ, vector v describes its displacement. The force decomposition
(Figure 4e) shows a reaction force equal to the sum of the two spring forces (Fv = 2kv). The moment M = 0 as the
spring forces are equal and have opposite moment arms for any v. In Figure 4b a rotation φ is applied to the link.
In this state the springs have different lengths and thus unequal spring forces act on the link. Both spring forces are
decomposed, each into two components (Figure 4f). The first force component ( 1

2Fv) is dependent only on displacement
v and the other (Fφ) depends solely on rotation φ. Components 1

2Fv are equal to the spring forces in the unrotated case
(Figure 4e-4f). Therefore they contribute to the reaction force (Fv = 2kv) but cause no moment (M = 0) as before.
The angle dependent components (Fφ) act in opposite directions and have opposite moment arms with respect to the
joint. As a result they have no influence on the reaction force but do contribute to moment M (eq. 17). It is key to
observe that the reaction force depends solely on displacement of the link and the moment only on the rotation.

M = 2Fφ · r cos(
φ

2
) = 4kr2 sin(

φ

2
) cos(

φ

2
) = 2kr2 sin(φ) (17)

A mass is added to the link such that it is positioned above the joint when rotation φ is zero (Figure 4c). The force
decomposition shows a reaction force in y-direction with magnitude mg and a moment (M = mgL sinφ) as a function
of φ (Figure 4g). The moment functions of the spring system and the link with mass are both a function of sinφ, acting
in opposite directions around the joint (Figure 4f-4g). When their magnitudes are selected equal (2kr2 = mgL) the two
can compensate for each other (Figure 4d). The force decomposition of the combined system shows this moment free
behavior (Figure 4h). Furthermore the reaction force (Fw = 2kw) is composed of vertical gravity force mg and spring
force Fv and is expressed as a function of displacement vector w (Figure 4h).

At joint J the combined system acts as a ZFLS as the only force experienced at this joint is a constant stiffness (2k)
times a displacement (w). Therefore the system is equivalent to a single ZFLS (Figure 4i,4j). A single (upper arm) link
is balanced using a ZFLS (Figure 4k)[1]. Next, this ZFLS is replaced by the equivalent linkage from figure 4i (Figure
4l). The system of example 1 is obtained. Known techniques for rotating the spring of the single balanced link[1] are
applied to complete the behavioral description (Figure 5).
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Figure 5: Illustrated behavior between the parameters of the linkage of example 1.

The obtained behavior illustrated in figure 5 shows at which orientations springs can be placed on the linkage.
Relations between parameter magnitudes are described next. In general the magnitudes of stiffness and the lengths of
certain moment arms are inversely related. For example, when reducing the stiffness in one of the springs by factor 1

c
the respective distance from J2 to B1 (or B2) is to be increased by factor c to keep the moment behavior on the outer
link equal. Additionally, the changed stiffness value will affect the relative location of Z1 (Fv = 0) with respect to A1

and A2 while obeying A1−Z1

A2−Z1
= k2

k1
. At the same time, the distance from Z1 to Z2 will change as it is a function of the

combined stiffness (k1 + k2). The same is the case for the required position of Z2 which also depends on this stiffness.
Although the relations between parameter magnitudes are understood, it is observed that they are strongly related to
each other. When a single parameter is changed, a lot of the other parameters will be affected to keep the system in
balance.

In the orientation of figure 5 the stiffness values for both springs are positive. Yet it is possible to solve the stiffness
matrix with negative stiffness values. These values occur when one of the two spring attachments of a spring cross a
certain point. In the case of spring 1 this is when either A1 or B1 is located on the opposite side of Z1 or J2 respectively.

3.3. Example 2

Two springs are used to balance the system, one bi-articular ZFLS connecting the fixed world to link 3 and one
mono-articular ZFLS that connects links 2 and 3 (Figure 2c). Constraint equations are set up similar to the first
example, the steps are not shown for this example (steps 1 to 4). Next, these constraints are solved for four different
cases (step 5) (Figure 6), each showing different behavior. Finally, the relations between parameters ensuring a balanced
configuration are explained and illustrated.

Between these cases some general properties of the system remain the same. Specifically spring stiffness, mass
and link length values. In each case the constraints are solved for parameters ax1, bx1, by1, bx2, by2 and k1. Varied
inputs between cases are parameters ax2 and ay2, describing the location of attachment A2. Furthermore sy2 is varied,
describing the location of the COM of link 2. Obtained parameter values of balanced configurations are summarized in
table 6e.

In the first case all spring connections are aligned with the links (Figure 6a). In case 2, the second spring is rotated
about the second joint(Figure 6b). In case 3, the COM of link 2 is relocated (Figure 6c). In the final case 4, the effects
of case 2 and 3 are combined (Figure 6d).

3.4. Behavior in example 2

The four cases in example 2 are all statically balanced as they all fulfill the constraint equations. The unbalanced
three link system is analyzed first in the orientation in which it has minimal gravitational energy (Figure 7a). In this
position link 2 is oriented at angle α with respect to the vertical. Angle α is now determined by setting the moment
MJ1 around J1 to be equal to zero as it should be when in equilibrium (Eq.18). The system shown in figure 7b is equal
to the linkage of figure 7a only with redrawn links that give room for springs to be drawn later on.

MJ1 = 0 = m2sy2 cos(α)−m2sx2 sin(α)−m3L2 sin(α) (18a)

(m2sx2 +m3L2) sin(α) = m2sy2 cos(α) (18b)

sin(α)

cos(α)
= tan(α) =

m2sy2

m2sx2 +m3L2
(18c)

α = tan−1

(
m2sy2

m2sx2 +m3L2

)
(18d)

Next, it is recognized that for balance a zero moment is required in all orientations. As this is already the case for
the original system in the orientation of figure 7b neither of the added springs should apply a moment around any of

9



0.1 [m]

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Case 1 Case 2 Case 3 Case 4 Units
ax1 0 0 -0.025 -0.025 [m]
bx1 0.1125 0.1125 0.1059 0.1059 [m]
by1 0 0 0.0265 0.0265 [m]
bx2 -0.0981 -0.0785 -0.0923 -0.06 [m]
by2 0 -0.0589 -0.0231 -0.0739 [m]
k1 261.6 261.6 261.6 261.6 [Nm ]

k2 600 600 600 600 [Nm ]
ay1 0.1 0.1 0.1 0.1 [m]
ax2 0.15 0.18 0.15 0.18 [m]
ay2 0 -0.09 0 -0.09 [m]
m2 2 2 2 2 [kg]
m3 2 2 2 2 [kg]
L2 0.3 0.3 0.3 0.3 [m]
sx2 0.1 0.1 0.1 0.1 [m]
sy2 0 0 -0.1 -0.1 [m]
sx3 0.15 0.15 0.15 0.15 [m]
sy3 0 0 0 0 [m]

(e)

Figure 6: In scale balanced solutions for example 2. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Parameter values for the different
cases.
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Figure 7: (a) and (b) Unbalanced linkage in equilibrium. (c) Relations between the location of spring attachment points required for a
balanced system.

the joints to keep this moment free condition. Spring 1 is located between the fixed world point A1 and link 3 at point
A3, and thus spawns both joints. As a result, spring connections A1 and B1 should be aligned with both joints J1 and
J2, exactly at the previously determined angle α (Figure 7c). Spring 2 connects A2 on link 2 and B2 on link 3 and
thus spawns only the second joint J2. Therefore, in this orientation with minimal potential the two connection points
of this spring are to be aligned with J2 (Figure 7c).

Furthermore, as α is only dependent on parameters of the original linkage its value is unaffected by adjusting the
other spring. For spring 2 the alignment of attachment A2 depends on both angles α and β with respect to the local
coordinate system of link 2. Attachment B2 is dependent only on angle β with respect to the local coordinates of link
3. Therefore, by changing β spring 2 can be relocated anywhere on a ring shaped disk around J2, as partially visualized
by dotted lines in figure 7c.

The locations of the spring attachments are now described based on a single position of the linkage where the
gravitational energy is at a minimum. This does not directly prove that the system is in balance in any pose as
it is only clear that this one position is in equilibrium. However, the proof that the system can be balanced in any
configuration is already given using the stiffness matrix approach. What the analysis of this single position does provide
is insight in where the attachments can be placed and why they are constrained to lie on certain lines or positions.
Additionally it can be reasoned that the system is capable of being balanced in all orientations as the energy behavior
of all components is sinusoidal with respect to each rotation. These sinusoids have equal periods as these are equivalent
to full rotations of a links, all having a minimum or maximum in the orientation of figure 7. The sinusoidal functions
are either in phase or shifted by half a phase exactly and so can interfere with one another to cancel each other out.

The behavior described so far in this example is based on the orientations in which springs can be placed for the
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selected spring configuration (Figure 7). However some additional interesting observations are made based on parameter
magnitudes.

The first observation is that the location of spring attachment point B1 (Figure 7c) is a unique point depending
solely on parameters of the original linkage, i.e. it is fixed independently of all other spring related parameters. Using
the solve function in MATLAB the constraint equations are solved for parameters bx1 and bx2. These parameters
describe the location of B1, expressed as a function of the other parameters (Eq.19). The obtained equations consist
solely of parameters describing link length, mass or COM location.

bx1 =
L2

2m
2
3sx3 + L2m2m3(sx2sx3 + sy2sy3)

(L2m3 +m2sx2)2 +m2
2s

2
y2

(19a)

by1 =
L2

2m
2
3sy3 + L2m2m3(sx2sy3 − sx3sy2)

(L2m3 +m2sx2)2 +m2
2s

2
y2

(19b)

For the spring attachment A1 an additional constraint is found. It is found that the distance from joint J1 to
this point A1 is inversely related to its spring stiffness k1. This is by solving the constraint equations (Eq.16) for the
parameters ax1 and ay1 which describe the location of A1 (Eq.20a and 20b). Furthermore, the relation for α can again
be extracted from these constraints by looking at the relative magnitudes of ax1 and ay1 (Eq.20c).

ax1 =
m2gsy2

L2

1

k1
(20a)

ay1 =
m2gsx2 +m3gL2

L2

1

k1
(20b)

α = tan−1

(
ax1

ay1

)
= tan−1

(
m2sy2

m2sx2 +m3L2

)
(20c)

For spring 2, an additional constraint is found as well, this is next to angle β which describes the springs orientation.
When all other parameters are fixed, the product of its stiffness k2, distance from J2 to A2 and distance from J2 to
B2 is constant ( k2 · |A2 − J2| · |B2 − J2| = constant ). In other words, the two described lengths and the stiffness of
this spring can be varied freely within these bounds without affecting any other parameter. This relation is affected
by the location of A1 and k1, however it is unpractical to take these into account in the same relation and much more
convenient to fix these parameters before altering either A2, B2 or k2.

4. Discussion

Behavior found in the examples of this paper shows a number of simultaneous rotations of COM locations and/or
spring connection points that can be performed without affecting the balance of the system (Figures 5 and 7). One
could argue to use a polar coordinate system to describe this behavior as it is rotational. However, the centers of
rotation for these simultaneous rotations can either be on the first joint, the second joint or a seemingly arbitrary point
on one of the links. As the location of the center point is inconsistent it cannot be ensured that this point is always
positioned on the origin of the local coordinate system. Furthermore, describing a rotation using polar coordinates
about a point other than the origin is, according to the authors, unnecessarily complicated compared to describing such
a rotation as a sum of vector components in a Cartesian coordinate system. For this reason an xy-coordinate system
is recommended when altering a system having planar offsets. Other benefits of using a Cartesian system is that the
resulting constraint equations will be free of sinusoidal term, and describing coordinates on a link using xy-components
is more intuitive compared to using an angle and magnitude.

The graphical representation of the behavior in example 1 provides a building block for creating complex balanced
linkages. The building block is the linkage provided in figure 4i, which is is equivalent to a ZFLS. Any ZFLS in a
balanced system can be replaced by this building block, resulting in a balanced linkage of higher order. In this manner
complex multi-articulated linkages can be constructed, based solely on this equivalence. Additionally the minimal
number of springs required to balance a n-link linkage can be established. When starting with a single balanced link
(Figure 4k) the ZFLS is replaced to obtain a two link two spring system (Figure 4l), effectively adding one spring and
one link. Replacing a spring can be repeated many times to obtain a n-moving link system balanced by n-ZFLSs.

5. Conclusion

In this work the implementation of the stiffness matrix approach is altered such that states and link locations are
expressed in the same coordinate system. The first goal was to implement Cartesian coordinates and comparing it to
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the use of polar coordinates in the stiffness matrix approach. The Cartesian coordinates were successfully implemented
and in comparison they were found to be more intuitive in use, provide simpler constraint equations and be more
convenient for altering parameters of balanced systems. The second goal was to gain more insight in the relations
between parameters while the third goal was to illustrate these behavioral relations in two examples. These two goals
were achieved simultaneously as in the examples two basic systems (both having two moving links) were analyzed.
Relations were found between orientation, positioning and magnitude of springs and masses. These are described and
illustrated providing a visual overview of the design space. Obtained relations provide knowledge in the possibilities to
vary spring system parameters while maintaining static balance.
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2
PAPER 2

2.1. A CLOSE TO BODY, STATICALLY BALANCED MOBILE ARM SUPPORT BASED

ON A NOVEL SPRING SYSTEM
This second paper is focused on designing a mobile arm support based on a spring system balancing a human
arm for patients of Duchenne muscular dystrophy. Multiple steps are made to make this possible. Consisting
of providing adjustability rules, allowing for balancing an arm with unknown mass. Furthermore, new tech-
niques for slitting up springs, to create hollow spring structures, allowing for spring behavior in otherwise
unreachable locations. The obtained design is evaluated in an experiment.
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Abstract

Muscle weakness can hinder a person to lift his arms. For regaining arm related tasks, no adequate solution exists.
State of the art arm supports do not fit the human in a fulfilling manner and limit the users range of motion. The goal of
this work is to implement a novel spring system design in a mobile arm support, using two bi-articular zero-free-length
springs, to statically balance the arm. Advantages of this system are that no parallelogram linkage is required, a natural
range of motion is allowed and that the location of all spring attachment points are variable. Three sub-goals are set
to achieve the main goal. The first is creating a simple system description. Two simple design equations are set up to
describe balance conditions and adjustment rules are provided. The second sub-goal is to provide new technology to fit
the system around the human body. New techniques are introduced for subdividing springs, allowing for the creation
of 3D hollow spring structures. At low elevation angles a close fit to the body is observed, at higher elevations larger
gaps are present. The final sub-goal is to perform an experimental evaluation on the prototype. Two output forces, at
wrist and elbow, are measured in the four DOF system. At small elevations the desired balancing force is observed, at
larger elevations differences are found. Possible causes are the loss of ZFLS behavior near the lower bound of the spring
linearity region and inconsistent spring attachment locations. Solutions for future designs consist of avoiding the lower
boundary of the linear ZFLS region and creating more consistent spring attachments. The main goal is fulfilled as the
spring system shows great potential for application in an adjustable close-to-body mobile arm support.

Keywords: Mobile arm support, Duchenne muscular dystrophy, Static balance, Zero-free-length spring, Serial linkage

1. Introduction

Duchenne muscular dystrophy (DMD), is a genetic neuromuscular disorder, linked to the x-chromosome [1]. It
occurs in roughly 1 out of every 3500 male births [2]. Patients with this disorder progressively lose muscle strength
and have a life expectancy of 35 years [3]. Around the age of 14 they will lose the ability to walk and have insufficient
strength to lift their arms [3]. This loss obstructs them in performing the most basic tasks of daily living. As a conse-
quence, their quality of life is greatly reduced for over half of their life. Mobility can partially be regained by using a
wheelchair. However, for arm related tasks, no adequate solution exists.

The state of the art of mobile arm supports consist of a variety of robotic and passive supporting solutions [4, 5].
In general, these solutions use a large volume and do not fit the human body in an elegant manner. Furthermore, most
solutions constrain the natural range of motion of the human arm. They provide support, either only in a limited range
of motion, or solely for the upper arm limb [4].

The most promising solutions make use of classical static balancing techniques to balance the arm [6, 7, 8]. In a
statically balanced system, the gravitational force acting on a mass is compensated for, independent of its pose [9, 10].
A simple example of static balance is balancing a mass, using the upward lifting force of a helium balloon. This system
can be moved to different positions and remain motionless, without the need for any external force or energy source.
Most current arm support designs are based on classical balancing solutions for serial linkages, using mono-articular
zero-free-length spring (ZFLS), where the spring force of a ZFLS is proportional to its length [6, 9]. These solutions
require a parallelogram linkage alongside the upper arm, to provide a link with fixed orientation at the elbow joint [9].
Disadvantage of using parallelogram linkages are the restricted planar motion, the increased number of parts and added
mass, inertia and volume of the linkage.



In recent literature, a method for designing statically balanced serial linkages, using multi-articular ZFLSs, was
presented [11, 12]. Obtainable systems have the advantage of not requiring a parallelogram linkage. Therefore, a two-
link system can be used, allowing spatial, out of plane rotations. Thus, these systems have the potential to balance
the human arm in any natural pose. A spring configuration makes use of two ZFLSs to balance a two link system
[13]. Here the first spring is a bi-articular ZFLS, between the fixed world and the lower arm. The second spring is a
mono-articular ZFLS, connecting the upper and lower arm. In recent work this spring configuration was implemented
in a mobile arm support [14]. Using this spring system, the arm is balanced while maintaining the natural range of
motion of the human, a great improvement compared to current solutions. Nonetheless, a downside of this configuration
is that the lower arm attachment point, for the spring connected to the fixed world, must be located on the combined
COM of the arm limbs [15]. This un-adjustable point is located at an approximate distance of 0.1[m] from the elbow
joint, in line with the arm. A shorter distance would allow for a closer fit around the human body.

A second new spring configuration, without auxiliary links, is examined in the present paper. This system is ob-
tained using the same methods [11, 15]. It uses two bi-articular ZFLSs, both between the fixed world and the lower arm
(Figure 1a). This configuration provides 4 degrees of freedom (DOFs) and allows for the natural range of motion of
the human arm. Furthermore, all spring attachment point locations are adjustable, potentially allowing for a better fit
to the human arm. Nevertheless, these attachment point locations can not be selected independent of each other. Spe-
cific relations between these locations and other parameters must be fulfilled for the system to be statically balanced [15].

As the state of the art mobile arm supports do not fit the human arm in a natural and inconspicuous manner,
it is proposed to use the new spring system in a mobile arm support. The main goal of the presented paper is to
implement this new spring configuration in a mobile arm support. Three sub-goals are set up to reach this goal. The
first sub-goal is to describe the spring system in a novel way, providing adjustment rules required for balancing a system
with unknown mass. The second is to provide new technology that makes it possible to fit the spring system around
the human body. The final sub-goal is to perform an experimental evaluation of the created prototype.

In the method section of this paper, the system is first parameterized such that transparent design equations are
obtained. These equations describe the conditions for static balance and contain rules for adjusting the spring system.
Next, the springs are examined and techniques for subdividing springs are described. These techniques are used to
create hollow spring structures fitting around the human arm. The experimental evaluation is elaborated and the
findings are presented in the results section. The obtained results are discussed and the spring system is evaluated and
compared to previous work. Finally, the overall conclusions are drawn.

2. Methods

2.1. Spring system

In the proposed spring system, two links are balanced using two ZFLSs. Both connect the lower arm link to the
fixed world (Figure 1a). To ensure static balance, design equations are set up to be fulfilled. In current literature,
on statically balancing serial linkages without auxiliary links, a general parameterization is used [11, 15]. The design
equations in this general form are difficult to solve and interpret. In the present paper, the system is parameterized
such that these equations can be written in an elegant form, providing insight in behavioral relations in the system. The
used parameters for link and spring parameters are shown in figures 1a and 1b respectively. The corresponding design
equations for static balance are given in equation 1. Proof that these equations describe all static balanced solutions
and reasoning for defining the parameters as such, are elaborated hereafter. A comparison to the parameterization in
literature is provided in the Discussion section.

m1gs1 +m2gL = kdL (1a)

m2gs2 = kbc(1 − f)f (1b)

Alongside parameters describing magnitudes for length, mass and stiffness, factor f is found in the design equations
(Eq. 1). This factor describes the ratio between the spring stiffness of the upper and lower springs (Eq. 2).

f =
k1

k1 + k2
=
k1
k

= 1 − k2
k

(2)

For a balanced system, this factor f is found between multiple system dimensions, other than this ratio between
spring stiffness. To show where and why this factor is found, a force decomposition of the lower arm is set up (Figure
2a). Here the top and bottom spring forces are decomposed into two components each. The first being dependent solely
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Figure 1: (a) Link parameters. (b) Spring parameters

on the elbow joint location, the second only on the lower arm orientation (Figure 2a). Therefore, the effect of spring
force on the lower and upper arm can be examined separately.
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Figure 2: (a) Lower arm force decomposition. (b) Representation of effect springs on upper arm. (c) Decomposition of forces dependent on
upper arm orientation. (d) Representation of effect springs on lower arm. (e) Decomposition of forces dependent on lower arm orientation.

The effect of the springs on the lower arm is depicted in figure 2d, its force decomposition is shown in figure 2e.
For static balance, the resultant force at the elbow joint must be independent of the lower arm orientation. This is
only the case when the force components aligned with the link, F‖1 and F‖2, have an equal magnitude and thus cancel
each other out. These forces are a function of spring stiffness and the respective distance from joint to attachment (Eq.
3). It is found that these forces are equal only when the factor f is used to describe the ratio in distance b (Eq. 3c).
Therefore b is parameterized using ratio f such that this requirement for balance is fulfilled consistently (Figure 1b).
The moment around the elbow, created by vertical force components Fy1 and Fy2, balances the weight of the lower
arm.

F‖1 = F‖2 (3a)

k1b1 = k2b2 (3b)

fk(1 − f)b = (1 − f)kfb (3c)

The force acting on the upper arm depends on the parallel force components of both springs (Figure 2a). Their
magnitudes depend on the location of the elbow joint. The force is equal to zero when the elbow is located at distance
d above the shoulder joint. The location of point d is determined by factor f , with respect to the distance between
the fixed world attachment c (Figure 1b). When the elbow joint is moved from this force free point it behaves like a
ZFLS with combined stiffness k. The effect of this virtual ZFLS on the upper arm is illustrated in figure 2b, the force
decomposition is shown in figure 2c. The (purple) ZFLS, with stiffness k, can ensure static balance by providing a
constant upward force (Fy3) at the elbow (Figure 2c).

The design equations (Eq. 1) each describe the balance relation for a different link. Upper arm balance is ensured by
the first equation 1a, it only contains parameters affecting the upper arm (Figure 2b). Lower arm balance is described
by the second equation 1b, it only holds parameters affecting the lower link (Figure 2d). In addition, the equations are
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written such that the left sides contain the effects of mass and the right sides the effect of the springs. Therefore, rules
for adjusting parameters to balance a different mass, either of the upper or the lower arm, are directly described in
these design equations (Eq. 1). Thus increasing one of the spring parameters, on the right side (k, b, c, d), will result
in an increase in the upward balancing force acting on one (or both) of the links, in a linear manner (Eq. 1).

These adjustment rules can be used to balance a system of which the exact mass is unknown, like a human arm.
For an arbitrary arm, it is assumed the arm dimensions are known and two ZFLSs are used, having known spring
stiffness values. Thus arm parameters L, s1, and s2 and spring parameters k and f are known constants. The springs
are attached to the link, as in figure 1b, parameters are selected based on an estimate for the arm mass. However, the
resulting system will, most likely, be unbalanced. For example, it is assumed the upper arm link is underbalanced and
the lower arm link is overbalanced. To balance the upper arm a higher lifting force on this limb is required. Follow-
ing equation 1a, parameter d must be increased until this link is balanced. For lower arm balance a lesser lifting force
is required. Following equation 1b, either the magnitude of b, c or both can be reduced until a balanced state is obtained.

The simultaneous rotation α, of the spring attachment points, can be added to the system. This does not affect
the 2D in-plane balance (Figure 3). For the fixed world attachments, the point of rotation is the (purple) point at
a distance d above the shoulder joint. The lower arm attachments rotate about the elbow joint. Distances between
attachments, b and c, as well as factor f still apply and follow the same design equations for static balance (Eq. 1).
For 3D balance, angle α must be equal to zero [15]. At this angle, the system has a symmetry around the vertical axis
through the shoulder joint. Therefore, it can rotate freely around this axis without changing spring length or COM
height. Additionally, at α = 0, the lower arm is balanced in every 3D pose. As at this angle, the system representing
the lower arm behavior (Figure 2d), shows the same symmetry around the vertical axis. For any other α only motions
in a single plane are balanced perfectly and the system has a tendency to fall out of this plane. In the present paper a
system with α = 0 is used to obtain the desired 3D static balance.

α

α

Figure 3: Rotation α does not affect 2D static balance behavior. 3D balance is afected by this rotation.

2.2. Springs

The springs used in the chosen spring-configuration have to be ZFLSs, thus having a reaction force proportional
to the spring length. The springs used in this paper are elastic bands which approximate this desired behavior in a
large deflection range. The material of these bands is synthetic natural rubber, also known as polyisoprene, the bands
have an unloaded length of 88 [mm] (half of the perimeter length) and a cross sectional area of 26 [mm2] (Figure 4a).
Approximate ZFLS behavior is observed in the force deflection behavior, subsequent deflection cycles of the same spring
are shown (Figure 4b). The ZFLS behavior is found in the elongation range within spring lengths of 150% upto 350%.
Creep affects the force deflection behavior mainly in the first few elongations of these springs, the steady state behavior
is observed after these effects took place. Consistent steady state behavior is observed for pre-strained springs for a
duration of over a week.

2.3. Subdividing springs

ZFLSs can be subdivided such that a virtual ZFLS is created [9]. In this manner ZFLS behavior can be obtained
in otherwise unreachable locations. A v-shape orientation of two ZFLSs, act as a single virtual ZFLS with the summed
stiffness value (Figure 5a)[9, 16]. The location of the virtual attachment depends on the ratio in stiffness between the
split up springs, represented by factor a (Figure 5a). As there is a point where all springs meet, the rigid link in this
system can be in any orientation without affecting the ZFLS behavior of the virtual spring. A novel alternative way
of subdividing springs is connecting two ZFLSs to two links (Figure 5b). When the two links are kept parallel to each
other, a virtual ZFLS is created. The virtual attachment points are located in between the original attachments, at
a location following ratio a between the spring stiffness values (Figure 5b). A rotation, between the two links, will
introduce a moment in addition to the ZFLS behavior.
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Figure 4: (a) Rubber bands with approximate ZFLS behavior. (b) Force deflection curve of rubber band. Subsequent deflection cycles are
labeled 1 to 5.

ak 1−a)k

aL

k
(

1−a)L(

(a)

al1−a)l(

aL1−a)L(

ak 1−a)kk (

(b)

k 2k k

2k

k k

(c)

2k

kk

2k

k k

(d)

4k

k k

k k

(e)

Figure 5: Subdivision schemes for ZFLSs, for creating equivalent virtual springs. (a) v-shaped configuration. (b) Parallel configuration. (c)
Serial placements of two virtual springs, total stiffness value is k. (d) Serial x-shaped configuration, total stiffness value is k. (e) Parallel
placement of two v-shaped configurations, summed stiffness value.

The virtual springs can be combined just like regular springs, they can be placed in series or in parallel to other
(virtual) ZFLSs. Web like spring compositions can be created, acting as if a single ZFLS is used. The serial composi-
tion of v-shaped and parallel virtual springs (Figures 5a and 5b) is shown in figure 5c. ZFLS behavior is still present.
Furthermore, the space directly in-between the virtual attachments becomes free. A second serial configuration, using
two v-shaped virtual springs, is creating an x-shaped configuration (Figure 5d). Space is created near both virtual
attachments. The orientations of the top and bottom links are free. A parallel combination is shown in figure 5e, here
four springs act as a single virtual spring.

Subdividing ZFLSs is now extended to 3D. First, a cross section of a 2D spring subdividing scheme, perpendicular
to the spring elongation direction, is shown in figure 6a. This new spring pair can be considered to be in a certain plane.
This plane can be rotated around the line in which the original spring acts, while maintaining the original behavior. A
3D spring system is obtained by subdividing both spring in the new pair once more, each in a rotated plane (Figure
6b). A 3D subdivided spring system is obtained acting as the single original ZFLS. A hollow ZFLS is created where
physical springs are located around the working line compared to all springs being directly on this line (Figure 6c).
Such hollow springs allow for close to body spring systems.

(a) (b) (c)

Figure 6: (a-c) Cross-section of 3D split up schemes, the blue dot represents the original spring, the two red dots and the four cyan dots are
equivalent to orininal blue spring, stiffness is equivalent to surface area of dots.

2.4. Design around human body

The spring system (Figure 1) is now fitted on the human arm (Figure 7a). The top spring attachments are located
above the shoulder joint and on the lower arm, in-between the elbow and wrist. The bottom spring is located under-
neath the shoulder joint, going to the lower arm at a location behind the elbow in line with this limb. In this set up,
both springs will intersect the arm in many poses. Previously described techniques for splitting up springs are applied
on this system, in order to prevent these conflicts and greatly increase the amount of allowable arm poses.
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The top spring is examined first. How it intersects the human arm is examined in the pose of figure 7a. This pose
represents an ’extreme’ case for wheelchair bound applications, moving the arm back or down will result in hitting
either the arm-support or backrest. Section A (Figure 7a) is the arm cross section in which the top spring acts. The
cross section is illustrated in figure 7b. The green surfaces represent the upper and lower arm sections, the blue crosses
are the desired spring attachment point locations. When a spring is placed directly in-between these points, both the
upper and lower arm are clearly intersected by this spring (Figure 7c). The conflict at the lower arm can be resolved
by using a v-shaped spring configuration, placing attachments on both sides of the lower arm, separated by a circular
link fitted around the surface of the lower arm (Figure 7d). Nevertheless the upper arm is still intersected. A serial
v-shape and parallel springs resolves this issue (Figure 7e). Here, an additional spatial circular arc is used to separate
the springs at shoulder height. This arc connects the springs on both sides of the arm and runs in front of it, effectively
creating a hollow spring structure. Additional spring split-up steps are added to further distribute the spring material,
reducing the stiffness of individual elements (Figure 7f). Up to a final extend where a single thin sheath of spring
material is used (Figure 7g). The embodiment of such a hollow spring structure is shown in figure 7h. The circular arc
separating the springs is shown as well (Figure 8).

A

A

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7: (a) Definition of section A. (b-g) Subdivision schemes in section A. The two surfaces represent the cross sections of the human
upper and lower arm. (h) Top spring embodiment.

Figure 8: Circular arc, for spring separation.

The lower spring is fitted around the human next. It connects the fixed world, underneath the shoulder, to the lower
arm behind the elbow. The conflicts experienced by this spring are more difficult to capture in a single image. The
different problem areas will be discussed separately. The (virtual) attachment on lower arm is located in the central line
of the arm behind the elbow. When the lower arm is fully extended this virtual point is located inside the upper arm.
To avoid this intersection the spring is separated to be on both sides of the arm. Once more, a circular link around
the arm connects these points. The second critical area is at the fixed world attachment. Here the spring attachment
should be located directly underneath the shoulder joint, directly in the users arm pit. A physical component at this
exact point is undesirable, as it would inhibit the upper arm to be positioned vertically besides the body. Instead, a
virtual spring is realized at this point, by splitting up this attachment to be on the chest (Q) and behind the shoulder
(P ) (Figures 9a, 9b and 9c). Thus both attachments of the lower spring are split up. Between these points an x-shaped
spring system is used (Figure 9d), such a system provides a point around which the spring can rotate,at the center of
the x, the location of this point (h) can be varied (Figure 9d).

An adjustable mobile arm support is obtained by combining the adjustment rules and the added variability of
splitting up springs. A prototype based on the spring system of figure 1 is build, containing the described top and
bottom springs (Figures 7e and 9d). The springs are suspended on a rigid linkage that runs alongside the body. This
linkage has a pin joint aligned with the elbow and spherical joint behavior at the shoulder, with a virtual point of
rotation aligned with the human shoulder joint. These joints allow for natural, three dimensional motions and provide
the system with four degrees of freedom (3 at the shoulder, 1 at the elbow) [14]. The three fixed world spring attachments
are fixated to a rigid frame. Pictures of the complete system in four different poses are provided (Figure 10).
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Figure 9: (a-c) Different views of splitting up the bottom fixed world spring attachment point for better fit on the human. (d) x-shaped
spring configuration, with split up fixed world attachments (top) and lower arm attachments (bottom).

(a) (b) (c) (d)

Figure 10: (a-d) Spring system and supporting structure fitted around the human arm, positioned in multiple poses.

2.5. Experimental evaluation

An experimental evaluation is set up to assess the balancing quality of the prototype. A model is made for the set
up, having a mass at the elbow (m1) and wrist (m2) (Figure 11a). The parameters of this model are listed in table
1. The values for masses m1 and m2 are calculated based on the other parameters, obeying the design equations (Eq. 1).

Parameter Value Unit

f 2/3 -
b 0.08 [m]
c 0.15 [m]
d 0.04 [m]
k 480 [N/m]
L1 0.287 [m]
s1 0.287 [m]
s2 0.127 [m]
g 9.81 [m/s2]

m1 1.03 [kg]
m2 0.93 [kg]

Table 1: Parameters of the experimental
setup.

State Description Angle Description specific state value

ϕ1 Flexion Angle 45◦ Partially Extended elbow.
90◦ Right angle elbow.
120◦ Flexed elbow.

ϕ2 Orientation of 0◦ Type A. Arm in vertical plane.
Flexion Plane 60◦ Type B. Arm in front of chest.

ϕ3 Elevation Angle 30◦ Lowest elevation upper arm.
50◦

70◦

90◦ Horizontal upper arm.
110◦ Highest elevation upper arm.

ϕ4 Orientation of 45◦ Abducted plane.
Elevation Plane 90◦ Forward plane.

Table 2: States at which measurements are performed.

The spring system statically balances the masses of the two limbs (Figure 11a). For the experiment the masses
are removed, such that a system providing constant upward force remains. These upward forces are measured. The
experimental setup uses a rigid structure to support the spring system (Figure 11c-11e). The upward force component
is reduced by the weight of this structure. For the lower arm, the effect of this weight is insignificant. The mass of the
lower arm structure is relatively low and its COM is located near the elbow joint. Thus, the force acting at the wrist
is not affected significantly. The weight of the upper arm structure does affect the force output. The combined mass
of the structure links, including attachment required for the measurement, is ms = 0.8[kg] and the combined COM
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is located on the upper arm, at distance ss = 0.23[m] from the shoulder joint. Thus the upwards force which can be
measured on the upper arm is reduced due to mass ms.

The resulting system provides two upward output forces, one acting at the elbow Fel, the other force acts at the
wrist Fwr (Figure 11b). Force Fwr is affected only by the weight of m2 (Eq.4a). The force acting at the elbow (Fel) is
affected by the weight of m1 and the structure ms (Eq.4b). The springs in the setup are split up, as described earlier
(Figures 11c-11e). The fixed world attachments and the shoulder joint hinge point are connected to each other by a
rigid frame construction. Furthermore, all forces are measured in the central axis of the arm construction. To this end,
rods are added between the device and the attachment points of the force scales.

m1

m2

(a)

ms
Fel

Fwr

(b)

spring attachments
fixed world

top spring

bottom spring

(c)

accelerometer

structure
rigid

(d)

force scales

spring attachments
lower arm

(e)

Figure 11: (a) Balanced model of experimental setup, mass m1 is modeled to be at the elbow, mass m2 is located at the wrist. (b) Masses
m1 and m2 are removed from the system, what remains is structure mass ms and two upward forces acting at the elbow and wrist (Fel and
Fwr respectively). (c-e) Pictures of the experimental setup. Important components are indicated.

Fwr = m2g = 10.1[N ] (4a)

Fel = m1g −msg
ss
L1

= 2.83[N ] (4b)

Measurements are performed for different system states. The state of the system is defined by four DOFs, as de-
scribed in literature [17]. It defines a flexion angle (ϕ1), an elevation angle (ϕ3) and the orientation of the flexion and
elevation planes (ϕ2 and ϕ4 respectively)(Figure 12a). Measurements are performed for all possible combinations of
states listed in table 2.

The theoretical force output of the system is known (Figure 11b). The experiment is set up to test the actual force
output of the system, in multiple arm orientations. The difficulty, of measuring the studied system, is that there are
four DOFs and two output forces. Because of this complexity, it is crucial to set up an experiment for which it is
clear what the obtained measurements imply. Actions taken, to ensure clear measurements, consist of avoiding friction
effects and measuring all forces in vertical direction.

For the used structure the friction in the elbow joint is found to be high. The effect of this friction component on
the measured output are of the same order of magnitude as the desired output forces. As the goal is to measure the
effect of the spring system, the experiment is designed to avoid the effects of the elbow friction component. This is
obtained by mechanically constraining the elbow joint at a fixed angle (ϕ1) during the measurements. Other states
(ϕ2, ϕ3 and ϕ4) are manually maneuvered to have specific values. The angles of these three states are measured by
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using an accelerometer, to determine its orientation with respect to the gravitational acceleration field. This sensor is
fixated to the upper arm (figure 12a), and the angles are positioned with 2◦ accuracy.

Two types of experiments are performed (Type A and B). The main difference is that for type A, a single vertical
force is used to hold the system in place, while for type B, a second vertical force is required to determine all states.
During a type A measurement, a single downwards force (FA) is measured at the elbow joint (Figure 12b). Altering
the location of the working line of this force, allows alterations of states ϕ3 and ϕ4. Remaining state ϕ2 is left free,
it will orient itself in its preferred upwards position, at ϕ2 = 0◦. For the type B measurement, an additional force is
applied at the wrist. This force allows for altering state ϕ2 to different values (Figure 12c).
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Figure 12: (a) Definition of state angles, the linkage represents the right human arm. Points S, E and W represent the shoulder, elbow and
wrist respectively. (b) Forces acting during a type A measurement (ϕ2 = 0◦). (c) Forces acting during a type B measurement (ϕ2 = 60◦).

For type A, the ideal force measured at the elbow FA is not constant, it is a function of the system states. This is
because the ratio between moment arms, from shoulder to elbow and shoulder to wrist, is not constant either (Figure
12b). Therefore, the effect of the wrist force on the measured output varies for different arm poses. Equation 5a
describes the ideal force, measured at the elbow, for a type A measurement. For a type B measurement, both ideal
case forces (FB1 and FB2) are constant (Eq. 5). Both forces directly counteract one of the two upward system forces
(Figure 12c).

FA = Fel + Fwr

(
L1 sin(ϕ3) + s2 sin(ϕ1 + ϕ3)

L1 sin(ϕ3)

)
(5a)

FB1 = Fel (5b)

FB2 = Fwr (5c)

During a measurement states ϕ1, ϕ2 and ϕ4 are kept constant while state ϕ3, describing the elevation angle, is
varied. Each measurement begins with an upwards arm position ϕ3 = 110◦, going in steps of −20◦, to the downwards
position ϕ3 = 30◦ and then back up again. This set is repeated twice, each measurement consists of four parts (D1, U1,
D2, U2). At each step, the downwards force component(s) are measured using spring scales (Pesola, range: 0 − 25[N ],
resolution: 0.5[N ]).

3. Measurement results

Results are shown for flexion angle ϕ1 = 90◦ (Figure 13), for all variations of parameters ϕ2, ϕ3 and ϕ4 as listed in
table 2. Other results, for different flexion angles, are not shown, as they illustrate similar behavior. In these graphs
the dotted line represents the ideal case measurement, obtained when the system behavior is ideal. For the type A
measurements (Figures 13a and 13b) this ideal line follows equation 5a. For the type B measurements (Figures 13c and
13d), the ideal lines have a constant value (Eq. 5b and 5c).
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Figure 13: Measurement results, each set consists of sequential downwards (D1), upwards (U1), downwards (D2) and upwards (U2) mea-
surement. State values kept constant during a specific measurement are stated above each graph. (a-b) Type A measurements. (c-d) Type
B measurements.

4. Discussion

4.1. Design equations

In literature on designing static balanced serial linkages, without auxiliary links, predefined parameterization is
used. General parameters are implemented independent of the selected amount of links and spring configuration. The
general parameters either describe link locations using polar coordinates and Cartesian coordinates for states [11]. Or
by using Cartesian coordinates to describe locations as well as states [15]. These methods are extremely useful for
creating new spring configurations, consisting of any amounts of links and springs. However, when a specific spring
system is selected, custom parameters are recommended. Whit custom parameters, less and simpler design equations
are obtained, providing more understanding of the described system. For example, for the spring system of the present
work (Figure 1a), parameterizations from literature require six equations, on average containing 15 terms each [11].
While present parameters (Figure 1), only require two equations with an average of eight terms per equation (Eq.
1). Moreover, the effect of springs on different links is described in separate equations, providing useful adjustment
rules. For creating custom parameters for larger linkages, it is advised to use factors between spring stiffness values as
parameters and to describe virtual spring attachment locations, as in the present work.

4.2. Fit around human body

The fit of the spring system, around the human body, is evaluated for the prototype. In poses with low elevation
angles a good fit is observed for both springs. The benefits of the 3D hollow spring structure become clear, as the spring
arc of the top spring fits well around the upper arm in these poses (Figure 10b). For higher elevation angles larger
gaps between the springs and the arm are observed (Figure 10d). As the upper arm and the spring are oriented as a
parallelogram. Furthermore, at a pose with a high elevation and a large angle for the orientation of the flexion plane,
the arc of the top spring is no longer aligned with the arm surface (Figure 10c). The reason is that this arc always has
a parallel orientation with respect to the lower arm attachments of the top spring. In such a pose, the tip of the spring
arc can touch the users arm and the spring system is oriented relatively far from the human body.

4.3. Measurements

The measurement results are analyzed. In some poses the balancing force approximates the ideal value. Others
regions show an offset to this desired force. Possible sources of these errors are explained. Improvement are proposed
for reducing these errors.

For type A measurements (Figures 13a and 13b), force FA matches the ideal balancing force quite well at small
elevation angles (ϕ3 ≤ 70◦). For larger elevation angles (ϕ3 ≥ 90◦), measured force FA is clearly smaller than ideal, in
all measurements. At these higher elevation, the top spring reaches its shortest lengths. Approximately down to 160%
of the original unloaded spring length, near the boundary of the linearity region (Figure 4b). Furthermore, at these
small elongations the output spring force is relatively low. Therefore, absolute errors in spring force have a relatively
high impact on its force output. Altogether, this reduced force in the top spring decreases the upwards moment acting
on the linkage, resulting in a lower upwards force measurement. To quantify this effect, the found absolute errors at
ϕ3 = 110◦ is examined. The difference of about 5[N ], between the ideal and measured force in this pose, corresponds
to a force reduction in the top spring of approximately 20% of the ideal spring force. All in all, reduced force in the
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top spring is a plausible cause for errors in this high elevation region of the measurements.

To analyze type B measurements, the design equations are used for identifying the source of errors. This is pos-
sible because the two measured upward forces (FB1 and FB2) represent the upward force components, acting on the
upper and lower arm limbs respectively. The design equations describe these same upwards components (left side
of equations), as a function of spring parameters (right side of equations). Equation 1a describes the upper arm bal-
ance and can be linked to force FB1, while equation 1b describes lower arm balance and is linked to measured force FB2.

Force FB2, acting at the wrist, is consistently measured near its ideal value, for all type B measurements (Figures
13c and 13d). Therefore, it is reasoned that spring parameters b, c and k do not significantly change for the type B
measurements, as their product remains constant (Eq. 1b).

Measured force FB1, acting on the upper arm, does deviate from the ideal value. In general, a relation is found
between this elbow force and the elevation angle. At small elevation angles (ϕ3 ≤ 50◦), a larger force than ideal is
measured, at larger elevation angles (ϕ3 ≥ 90◦), a smaller force is measured. Spring parameters affecting this force are
d and k (Eq. 1a). Spring stiffness k is found to be relatively consistent (Figure 4b). Therefore, variations of parameter
d are likely to contribute to the error in force FB1. A possible source is found in the fixed world attachment of the top
spring. Here, springs go around a cylinder shaped axis and are bound together by wrapping a piece of rubber around
them, creating a knot. The effective location, from which the ZFLS behavior starts, changes for different orientations
of the spring (Figure 14). For a small elevation angle (Figure 14a), the effective attachment point is found to be higher
up, compared to larger elevation angles (Figure 14b). Height differences of approximately 0.012[m] are observed, for the
effective location of the attachment. Other attachment points, have a different construction and do not shift as much.
The height difference of the top attachment affects parameter d. The location described by d is located in between the
top and bottom attachments, at factor f of the distance between these points (Figure 1b). Therefore, the resulting
change in d is scaled by this same factor and is equal to 0.008[m]. The resulting error in force FB1 is the product of
this height error and k (Eq. 1a). Between the lowest and highest measured elevations, this corresponds to an error in
force of 3.8[N ]. This force is in the same order of magnitude as observed in the measurements (Figures 13c and 13d).

(a) (b)

Figure 14: Representation of varying location of fixed world attachment point of the top spring, dependent on the orientation of this spring.
The green line represents the working line of the spring.

Finally, a difference is observed in the behavior of force FB1, between variations in parameter ϕ4, i.e. the difference
between Figures 13c and 13d. When ϕ4 is varied, the whole spring system rotates around the vertical axis. During this
rotation, the height of the arm limbs and the effective length of the virtual springs remains the same. Nevertheless,
there is a difference. Because, the fixed world attachment of the lower spring is split up to be in two locations (Figure
10). The orientation, with respect to these two locations, changes. When comparing the measurements, it is observed
that, at low elevations (ϕ3 ≤ 50◦), force FB1 is larger for ϕ4 = 90◦ than for ϕ4 = 45◦ (Figures 13c and 13d). As this
bottom spring contains the only difference, a possible cause is found here. For ϕ4 = 90◦, at low elevations, the center
knot location of this x-shaped spring is located close to the fixed world spring attachment on the chest. Part of the
spring, from the center knot to this attachment, is too short to be in the linearity region in some poses. At the pose
with lowest elevation (ϕ3 = 30◦ and ϕ4 = 90◦), a force reduction of 50% in this part of the spring, corresponds to the
observed increase in FB1 of about 2.5[N ]. A hint of the same behavior is found in the type A measurements as well.
At low elevation angles, the measured force at ϕ4 = 90◦ is slightly larger compared to the forces at ϕ4 = 45◦.

Different regions in the measurements are evaluated. The most likely cause of errors are provided for specific regions.
By solving the causes of these errors, the balancing quality of the whole system can improve. A general improvement is
to avoid the boundaries of the ZFLS linearity regions of the springs even more. Especially small elongations should be
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avoided, as absolute force errors have a relatively high impact here. Improvements focused on the created prototype,
consist of improving the spring attachment points to have more consistent locations. Furthermore, the measurements
are now performed with fixed elbow joint (Type A measurements), because the friction in the elbow joint is large. This
friction is to be reduced.

5. Conclusions

The main goal of this work is to implement a novel spring system, using two bi-articular ZFLSs, in a mobile arm
support. Advantages of this spring system are that no parallelogram linkage is required and that all spring attachment
locations are variable. Three sub-goals are set to achieve the main goal. The first, creating a simple description of
the system, is realized. Conditions for static balance are described in two simple design equations, which are based
on a graphical representation of the behavior. Adjustment rules are defined, for altering the balancing forces acting
on the upper and lower arm limbs. These rules create the possibility to balance a system having unknown mass. The
second sub-goal, providing technology to fit the system around the human, is fulfilled. A novel technique of subdividing
ZFLSs is provided. 3D hollow spring structures are created based on combinations of subdivided spring elements. The
resulting spring system closely fits the human body. At small elevation angles a nice fit is observed, at larger elevations
a small gap appears. The final sub-goal, performing an experimental evaluation, is realized. Two output forces are
measured, at the wrist and elbow, in a four DOF system. At smaller elevations the desired balancing force is observed.
In poses with larger elevations differences are found. Possible causes consist of the loss of ZFLS behavior near the
lower boundary of the spring linearity region and inconsistencies in spring attachment point locations. Solutions for
improving the balancing quality consist of avoiding the lower boundary of the linear ZFLS region and creating spring
attachments having more consistent locations. Finally, the main goal is fulfilled as the spring system shows great
potential for application in an adjustable close-to-body mobile arm support.
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A
NEW PRINCIPLES

A.1. CONSTANT FORCE GENERATOR
Principle: Combine positive and negative stiffness spring to obtain constant force generator. This is the
working principle of all ZFLS based static balanced systems.

Two springs are connected (Figure A.1). The green spring has a positive spring stiffness k. The red spring
has a negative spring stiffness −k, of equal magnitudewith opposite sign. Both springs are zero free length
springs.

h
k

-k
Fy

Fx

b

h

b

F=kh

Figure A.1: Spring placement for a single balanced link.

The resulting forces acting on the blue dot in x and y components are:

Fx = b ·k −b ·k = 0 (A.1)

Fy = (h + y)k − y ·k = h ·k = constant (A.2)

A planar or spacial constant force generator is obtained. The only force acting on this blue dot is constant
force Fy , it acts in line with the dotted line. This dotted line can be positioned in any orientation, in this
manner the direction in which the constant force acts can be altered. Figure A.1 represents the underlying
working principle of all statically balanced mechanism based on ZFLSs.
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A.2. NEGATIVE STIFFNESS
Principle: Negative stiffness behavior is obtained by removing the positive stiffness component from a
balanced linkage.

The obtained negative stiffness behavior is linear and acts as a ZFLS, between former attachment points
of the removed spring. Thus, at a length of zero zero force acts on the springs output, from this point the
spring will push outwards with an increasing force for increased elongations. Three examples of obtainable
negative stiffness mechanisms are shown.

The advantages of obtainable systems are:
+ Perfectly linear negative stiffness ZFLS behavior.
+ Large displacement range with negative stiffness behavior obtainable.
+ Potential for high stiffness values.

Example 1:
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Figure A.2: (a-b) Matlab simulation of behavior. (c-d) Parameterized linkage, for determining magnitude of negative stiffness value and
working range. At the dotted lines the system is oriented in a singular position.

Equations describing the magnitude of this negative stiffness value is provides:

0 =

Es,i n︷ ︸︸ ︷
1

2
ks (a +b)2 − 1

2
ks (a −b)2+

Ex,out︷ ︸︸ ︷
1

2
kx (L1 +L2)2 − 1

2
kx (L1 −L2)2 (A.3)

kx = − (a +b)2 − (a −b)2

(L1 +L2)2 − (L1 −L2)2 ks (A.4)

kx = − ab

L1L2
ks (A.5)
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Example 2:
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Figure A.3: [Left] Original balanced linkage. [Right] Negative stiffness linkage, obtained by removing a positive stiffness ZFLS.

Example 3:
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Figure A.4: [Left] Balanced linkage [Right] Negative stiffness linkage (Zero Length and linear).

kneg ati ve =−kposi t i ve =−mg L

ab
(A.6)

As a simple pendulum can be balanced using a +k ZFLS, it acts as a -k ZFLS between two possible attach-
ment points. In other words, a pendulum can be examined in a line between a point on the fixed world and a
point on the link, the force working in this line acts like a negative stiffness ZFLS between the two points.
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A.3. LINKAGE ACTING AS A ZFLS
Principle: A balanced link, suspended to the fixed world by two ZFLSs, can act as a virtual ZFLS between a
points on the link and a point on the fixed world.

A visualization is proveded of how a linkage with mass m, suspended by two ZFLS with stiffness k, acts
like a virtual ZFLS with stiffness 2k (Figure A.5). The virtual ZFLS acts between the orange and purple points
shown in figure A.5g. The orange point is positioned vertically below the center of the two fixed world spring
attachments. This is due to the weight of the link, pulling this equilibrium position downwards.
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A.4. CONSTRUCTING BALANCED SERIAL LINKAGE USING VIRTUAL ZFLS
Principle: Any ZFLS in a balanced linkage can be replaced by the virtual ZFLS linkage. Resulting in a higher
order balanced system.

The ZFLS, in a clasical static balance solution of a single link, can be replaced by the virtual ZFLS. What
is obtained in a statically balanced two link system without parallel beams (Figure A.6). This step can be
repeated multiple times, any ZFLS can be replaced by 2 ZFLSs and a link, to create balance linkages consisting
of many links.

(a)

Figure A.6
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A.5. FLOATING MECHANISMS
Principle: A floating multi-link system can be obtained by replacing a ZFLS, by the equivalent linkage, in
a single link floating system.

A floating linkage is obtained when a single link is suspended by two ZFLS connected to the fixed world
(Figure A.7a) [1]. As shown in the present work, this same linkage acts as a virtual ZFLS when moving the hinge
point from the equilibrium position (Figure A.7b). Therefore this system can be used as a building block for
replacing ZFLSs. The spring with stiffness k3 (Figure A.7c) is replaced by the equivalent building block linkage
(Figure A.7b). A serial linkage with a floating hinge point is obtained (Figure A.7d). Hence this two link linkage
is suspended to the fixed world by three ZFLSs only, the joint floats freely. The major advantage of this system
is that no mechanical shoulder joint is required.
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Figure A.7
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A.5.1. FLOATING POINT LINKAGE FITTING AROUND ARM.
Five steps of obtaining the desired linkage are illustrated and a short explanation is added. The matlab code
used to generate these steps is proveded in Apendix G.6. The parameter values used are provided in this code.

STEP 1: Initial moment balanced linkage, no floating point (Figure A.8a).
STEP 2: Moment balanced linkage + Force free point by adding 2 springs. One spring compensates vertical
component other spring compensates force in line with upper arm link (Figure A.8b).
STEP 3: Split up spring in line with upper arm into two others (Figure A.8c).
STEP 4: Replace spring 4 and 5 by new spring 4 (Figure A.8d).
STEP 5: Variate values, points A2 on A3 (Figure A.8e).
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A.6. SUBDIVIDING SPRING
Principle: A ZFLS can be subdivided into multiple other ZFLSs such that the combined behavior remains
equal. Possible applications are the creation of hollow spring structures.

ZFLSs can be subdivided such that a virtual ZFLS is created. In this manner ZFLS behavior can be ob-
tained in otherwise unreachable locations. A v-shape orientation of two ZFLSs (red), act as a single virtual
ZFLS (blue) with the summed stiffness value (Figure A.9a)[1, 2]. The location of the virtual attachment de-
pends on the ratio in stiffness between the split up springs, represented by factor a (Figure A.9a). As there is a
point where all springs meet, the rigid link in this system can be in any orientation without affecting the ZFLS
behavior of the virtual spring. A second novel way of subdividing springs is connecting two ZFLSs to two
links (Figure A.9b). When the two links are kept parallel to each other, a virtual ZFLS is created. The virtual at-
tachment points are located in between the original attachments, at a location following ratio a between the
spring stiffness values (Figure A.9b). A rotation, between the two links, will introduce a moment in addition
to the ZFLS behavior.
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Figure A.9: Subdivision schemes for ZFLSs, for creating equivalent virtual springs. (a) v-shaped configuration. (b) Parallel configuration.
(c) Serial placements of two virtual springs, total stiffness value is k. (d) Serial x-shaped configuration, total stiffness value is k. (e) Parallel
placement of two v-shaped configurations, summed stiffness value.

The virtual springs can be combined just like regular springs, they can be placed in series or in parallel
to other (virtual) ZFLSs. Web like spring compositions can be created, acting as if a single ZFLS is used. The
serial composition of v-shaped and parallel virtual springs (Figures A.9a and A.9b) is shown in figure A.9c.
ZFLS behavior is still present. Furthermore, the space directly in-between the virtual attachments becomes
free. A second serial configuration, using two v-shaped virtual springs, is creating a x-shaped configuration
(Figure A.9d). Here space is created near both virtual attachments. The orientations of the top and bottom
links are free. A parallel combination is shown in figure A.9e, here four springs act as a single virtual spring.

The described subdivision schemes work in 3D as well. A slice of a spring subdivision scheme, perpendic-
ular to the spring elongation direction, is shown in figure A.10a. The blue dot represents the original spring,
the red dots represent the equivalent springs and have equal surface area. Each of the red dots can be subdi-
vided in a similar manner, into the cyan dots, resulting in a spatial configuration (Figure A.10b). The spring
represented by the four cyan dots are equivalent to the original blue dot spring. A hollow ZFLS is created
where physical springs are located around the working line compared to all springs being directly on this line
(Figure A.10c). Such hollow springs allow for close to body spring systems.

(a) (b) (c)

Figure A.10: (a-c) Cross-section of 3D subdivision schemes, the blue dot represents the original spring, the two red dots and the four
cyan dots are equivalent to original blue spring, stiffness is equivalent to surface area of dots.

Note that the use of ZFLSs is essential. For non-ZFLSs subdivision schemes will have regions where the
behavior differs from a spring with linear stiffness.
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Pictures of subdivided springs are provided:

(a) (b) (c)

Figure A.11

(a)

(b)

Figure A.12
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A.7. DIFFERENT BEHAVIOR FROM DIFFERENT STATE PARAMETERS
Principle: The use of a system in line with a different state paramiterization has a major effect on the out-
put behavior which can be obtained. From a single simple linkage, sinusoidal Moment-rotation behavior,
constant force behavior or positive/negative ZFLS behavior can be obtained.

The energy equations for an equal system is compared for different parameterizations (Figure A.13a).
Either φ, d or c1 is used to describe the state of the system. The system is examined for equal linkage param-
eters:

a1 = a2 = b1 = b2 = 1

k1 = k2 = 1

2

It is clear that depending on the choice of the generalized coordinate the Energy-deflection behavior can
be sinusoidal, linear or 2nd degree quadratic. This is for the coordinates respectively:
ϕ: Rotation between links.
d : Displacement of link A in direction of link B.
c1: Linear displacement of a point on link A with respect to point on link B (Spring Length).
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Figure A.13: [Top] Schematics of linkage. [Bottom] Energy graphs as a function of different generalized coordinates ϕ, d [3] and c1
(marked by green dots).

The derivative of these energy functions with respect to the different generalized coordinates will result
in moment (for ϕ) and force functions (for d and c1).

When only one of the two springs is used, a mechanism with an output force is obtained:
ϕ: The moment between the two links, as a function of ϕ, will be sinusoidal.
d : A constant force is felt at the tip of the b link, in the direction of d . This is when the bottom A link is con-
strained to the fixed world.
c1: Force behavior with a constant stiffness is obtained as a function of c1, this can either be of positive or
negative stiffness. The force acts between two points one on each link.

On this basic linkage a wide range of force deflection behavior can be obtained by selecting a different
state parameterization as input.



B
STATIC BALANCING

B.1. STATIC BALANCE PRINCIPLE
Static balancing is the act of creating an equilibrium orientation independent of the system state. For exam-
ple, for statically balancing a mass, located in a gravitational field, a constant upwards force is required to
counteract the gravitational force. A simple solution is using a helium balloon to compensate for this down-
ward force (Figure B.1). This balloon can be moved to any location and remain in equilibrium.

Figure B.1
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B.2. STATIC BALANCE OF SINGLE LINK
Many solutions exist for statically balancing a single pendulum (Figure B.2a).

Possible solutions are:
(Figure B.2b) Regural spring (Non ZFLS) in combination with non-linear transmission [4].
(Figure B.2c) Compliant flexure element [5].
(Figure B.2d) Counter mass [1].
(Figure B.2e) ZFLS [1].

Except for the counter mass solution (Figure B.2d), all balancing solutions require a fixed world attach-
ment point. This point is located at a set orientation with respect to the joint of the link. Nevertheless, the
downside of this counter mass is the relatively large increase of system inertial and mass [6]. Furthermore, a
link extending to the opposite side of the original COM at the opposite side of the joint has to be added.

α
g

(a)

α

(b)

α

(c)

α

(d)

α

(e)

Figure B.2
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B.3. STATIC BALANCE OF SERIAL 2 LINK SYSTEM
The system to be balanced is a planar two link system and has two DOFs (Figure B.3).

α
β

Figure B.3

B.3.1. CLASSICAL SOLUTIONS:
Classical solutions are based either on counter masses [7–9], or ZFLSs + parallel beams [1, 10, 11]. The down-
side of the counter mass solution becomes even greater here, as the lower arm counter mass is to be balanced
by the upper arm counter mass as well [6]. The parallel beam construction of the spring based solution pro-
vides a fixed orientation with respect to the elbow joint. This is required for a single mono-articulate ZFLS to
be able to balance the lower arm. Other solutions requiring such a fixed orientation can be used to balanced
this linkage as well, as they can substitute the ZFLS in the parallel beam construction. Disadvantage of this
parallel beam structure is the increased complexity and number of components and inertia and the inability
to rotate the linkage out-of-plane.

α
β

(a)

α

β

(b)

Figure B.4

B.3.2. NEW SOLUTIONS, USING MULTI-ARTICULAR SPRINGS:
Recent literature presents new possibilities of balancing a serial linkage using multi-articulate ZFLS, without
the need for a parallel beam construction [12]. The two solutions for balancing two links using two ZFLSs are
shown (Figure B.5). The linkages are both examined as an example in Paper 1 of this report (Chapter 1).

In essence the linkage shown in figure B.5a can be seen as a combined positive and negative stiffness
(Section A.1). Here the negative stiffness part is shown in figure A.2. The negative and positive springs come
together at point C (Figure B.5a). As the upward force component acts exactly at this point the combined
COM of the linkage must be located at this point as well for. Therefore, the location of point C is fixed on a
location depending solely on the link mass and dimensions.

The balancing principle of the second linkage is explained in section A.4 and in more detail in paper 2
(Figure B.5b). For this linkage the location of all spring attachments is free. Nevertheless, there are relations
between the locations of the attachment points that need to be fulfilled for balance.

α
β

C

(a) (b)

Figure B.5
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B.4. ENERGY
Another way of examining static balance is by examining the energy components. For example, when for the
spring configuration of B.5a. The summed energy components for the mass of the two links and the energy
in the two springs must be constant for all states. The sum of the three energy plots is constant (Figures B.6
B.7).

B.4.1. POTENTIAL ENERGY SERIAL LINKS MASS
The potential energy in upper and lower arm as a function of the arm state is shown B.6.
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Figure B.6: [Left] System of arm. [Right] Potential mass energy against arm angles.

B.4.2. POTENTIAL ENERGY SERIAL LINKS SPRINGS
The energy components for the two springs are shown as well (Figure B.7).
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Figure B.7: [Left] Lin’s system. [Right] Potential spring energy of the 2 springs against arm angles.
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B.5. FORCES ACTING ON FIXED WORLD (SHOULDER)

The force balance at the (fixed) shoulder body is drawn in figure B.8. What remains at the shoulder is:

• Fm: Constant gravity force in y-direction.

• Ms: Varying rotational moment depending on state of arm. (Fmass * ∆x com) (Figure B.9)

These forces are illustrated for a specific spring system. However these forces are always the same for any
spring balanced system. This is because upwards forces required to lift the are equal for any spring system.
The same goes for the moment arms at which these forces act.
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Figure B.8: [Left] Lin’s system in analyzed position. [Right] Forces acting on shoulder bar.
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B.6. BALANCED CONFIGURATION WITH 3 LINKS AND 3 SPRINGS.
Statically balanced 3 link system, using 3 springs.
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−0.15
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−0.05
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0.15

C1

A3

AA4

A4

D1

DD1

aa4 = 0.06

a4 =−0.07

dd1 = 0.14

d1 =−0.03

a3 =−0.0662

c1 = 0.0066

k13 = 2430

k14 = 247.3109

kk14 = 288.5294

Many parameters are calculated using the constraints, they are sensitive to change. In this case 4 parameters
can be selected freely (I chose D1,A4,DD1,AA4) the other parameters are calculated (C1,A3,K13,K14,KK14).
Only 5 parameters are calculated using the 6 constraints. This is possible because all spring connected to the
lower arm (link 4) are connected to the fixed world (link 1). Therefore links 2 to 4 and 3 to 4 are spawned by
the same two spring (k14 and kk14) resulting in two of the constraints having the same relation.
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PROTOTYPES

C.1. SMALL SCALE PROTOTYPE
A small scale prototype is constructed to demonstrate the balancing quality of the selected spring configura-
tion. The prototype makes use of spring steel coil springs. These springs are no ZFLSs. Known techniques for
creating ZFLS behavior using a wire and pulley are used [1].

(a) (b)

Figure C.1
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C.2. FINAL PROTOTYPE

The final prototype consisted the spring system suspended on a rigid frame having 4 DOF (3 at the shoulder,
1 at the elbow). Pictures of the prototype are provided.

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

(k) (l) (m) (n)

Figure C.2
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C.3. EXPERIMENTAL SETUP
Pictures for the experimental set up are shown here.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure C.3





D
EXPERIMENTAL RESULTS

D.1. MEASUREMENTS PAPER 2: EXPERIMENTAL DATA
The measurement results of all tests are listed in tables (Figures D.1-D.3). Graphs of the data listed in these
tables are made. The six graphs have the same respective positions as the tables. The dotted line in the graphs
represents the ideal value for the measurements. The x-data in the graphs describe the elevation angle in
degrees. The y-data represent the measured vertical force in Newtons.

The states used in these tables are different from the states described in paper 2. A description of what
they represent is provided:
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Figure D.1: Measurements at flexion of α= 90◦.

Figure D.2: (Measurements at flexion of α= 135◦.



D.1. MEASUREMENTS PAPER 2: EXPERIMENTAL DATA 51

Figure D.3: Measurements at flexion of α= 60◦.
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D.2. ELBOW JOINT FRICTION MEASUREMENT
Measurements of friction component in elbow joint of experimental setup. At fixed elevation angles the effect
of friction on the elbow joint is examined. A single vertical force is measured at the wrist. During each down-
ward motion a significantly higher force is required to initiate movement, compared to the upwards motions.
Problems with this friction component should be overcome in future prototypes.

Figure D.4: Measurements at flexion of α= 60◦.
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STIFFNESS MATRIX APPROACH

E.1. STIFFNESS MATRIX APPROACH USING POLAR COORDINATES

The stiffness matrix approach is explained here using a polar coordinate system as in current literature. This
is in contrast to the new method of using Cartesian coordinates as in paper 1.

In this method a 2D linkage consisting of rigid links, pin joints, masses and zero free length springs is stat-
ically balanced. This balance is obtained by having the total potential energy of the linkage to be independent
of its orientation.

The method can be described in five steps. The first step is to express all coordinates of joints, spring
attachment points and center of mass locations as a function of the states and parameters. The second step
is to set up potential energy equations for the different components in the linkage (springs and masses). The
third step is to rewrite these equations in a generalized form, separating the variable states from the system
parameters. The fourth step is to obtain constraint equations that allow balance when met. These are found
from within the generalized form of the energy equation. The fifth and final step is to adjust the parameters
such that the constraints are met, resulting in a balanced system.

Step 1: Coordinates
In the current papers on the stiffness matrix approach by Lin et al. [11–13] and Lee et al. [14] multiple dif-
ferent coordinate systems are used. All of which are based on polar coordinates. To explain the approach, a
coordinate system similar to one of these systems is used [12].

The orientation of a single link u is described using a state unit vector qu = [
qux quy

]T
pointing from

the proximal joint (Ju−1) to the distal joint (Ju)[Figure E.2]. This is the case for each link. The combined state
vector Q consists of the unit vectors of all n links. The first state vector q1 is attached to the fixed world and is
therefore constant. It points upwards, parallel to, but with opposite direction as the gravitational vector. The
other state vectors (q2, · · ·q,n) are unit vectors that have variable directions.

Q =

q1
...

qn

 (E.1)

q1 =
[

0
1

]
(E.2)

The global coordinates of joints [Ju], spring attachment points [A j , B j ] and center of mass locations [Su]
are described as a function of these states. Thus as a function of magnitudes, angles and the state vectors.
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54 E. STIFFNESS MATRIX APPROACH

The parameter values of the linkage that are similar to Lin [13] are:

a j = Magnitude from link origin to proximal attachment of spring j .

α j = Angle between unit vector and vector from origin to proximal attachment of spring j .

b j = Magnitude from link origin to distal attachment of spring j .

β j = Angle between unit vector and vector from origin to distal attachment of spring j .

sv = Magnitude from link origin to center of mass of link v .

σv = Angle between unit vector and vector from origin to enter of mass of link v .

rv = Magnitude from proximal joint to distal joint on link v .

k j = Spring stiffness of spring j .

mv = Mass of link v .

α j

σuA j
a j

Lu
su

qu

Ju

Ju −1

B j

qv

A j

J v

1J

2J

3J Jv −1

k j

3q

2q

1q

y
x

g 2m

3m

vm

Figure E.1: ()

A schematic illustration of the states and parameters is shown in Figure ??.
Now the coordinates of all points are expressed using the parameters and states.

Joints:

Ju =
u∑

i=1
Li qi = Ju−1 +Lu qu (E.3)

Spring attachments for a spring j . Going from A j , on link u, to B j , on link v :

A j = Ju−1 +a j R(α j )qu (E.4)

B j = Jv−1 +b j R(β j )qv (E.5)

COM location on link u:

Su = Ju−1 + su R(σu)qu (E.6)

Step 2 and 3: Energy equations and generalized form
The goal is to write the energy equations in the following generalized form:

U = 1

2
QT KQ (E.7)

Spring:
The vector B j − A j is the vector representing the orientation of spring j . Knowing this orientation the length
of, and therefore the energy in, the spring are known as well. This is as a function of the states.
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Vector of components spring j , from proximal link u to distal link v :

B j − A j = Jv−1 − Ju−1 −a j R(α j )qu +b j R(β j )qv (E.8)

Jv−1 − Ju−1 = Ju + Ju+1 +·· ·+ Jv−1 =
v−1∑
i=u

Ji =
v−1∑
i=u

Li I qi (E.9)

B j − A j =
v−1∑
i=u

Li I qi −a j R(α j )qu +b j R(β j )qv (E.10)

B j − A j = (Lu I −a j R(α j ))︸ ︷︷ ︸
Cu

qu +
v−1∑

i=u+1
Li I︸ ︷︷ ︸

Cu+1+···+Cv−1

qi +b j R(β j )︸ ︷︷ ︸
Cv

qv =
v∑

i=u
Ci qi (E.11)

Potential energy in zero length spring j :

Us, j = 1

2
k j L2

s, j =
1

2
k j (B j − A j )2 (E.12)

Generalized form Us :

(B j − A j )2 =
v∑

i=u

v∑
i i=i

q T
i C T

i Ci i qi i (E.13)

=

qu
...

qv


T C T

u Cu · · · C T
u Cv

. . .
...

O C T
v Cv


qu

...
qv

 (E.14)

Us, j = 1

2
k j

qu
...

qv


T C T

u Cu · · · C T
u Cv

. . .
...

O C T
v Cv


qu

...
qv

 (E.15)

= 1

2


q1

qu
...

qv

qn



T

k j


O · · · O

C T
u Cu · · · C T

u Cv

. . .
...

...
C T

v Cv

O O


︸ ︷︷ ︸

Ks, j


q1

qu
...

qv

qn

 (E.16)

symetrical as in Lin necessary to get an actual stiffness matrix???? or alternatively having all information
in top right diagonal part.

Mass:
The potential height energy of the different mass terms of the links is to be expressed in the same generalized
form as well. In the equation of potential energy (U = mg h) the terms m and g are known constants. The

height term h is expressed as a function of q1 = [
0 1

]T
and COM location S = [

sx sy
]T

. The product of
these terms is equal to the y-component of point S and thus to the height:

h = q T
1 S = [

1 0
][

sx

sy

]
= sy (E.17)

Effect of the mass of link u on potential energy:

Umu = mu g q T
1 Su (E.18)

Umu = mu g q T
1

(
Ju−1 + su R(σu)qu

)
(E.19)

Umu = mu g q T
1

(
u−1∑
i=1

Li qi + su R(σu)qu

)
(E.20)
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Effect of combined mass of all links, for a linkage with n links (and thus n −1 free links):

UΣm =
n∑

u=2
Umu (E.21)

= q T
1

n∑
u=2

(
mu g q T

1

[
u−1∑
i=1

Li qi + su R(σu)qu

])
(E.22)

= q T
1

n∑
u=2


[(

n∑
i=u+1

mi

)
g Lu I +mu g su R(σu)

]
︸ ︷︷ ︸

Du

qu

 (E.23)

Generalized form Um :

UΣm = QT


O D2 · · · Dn

O · · · O
. . .

...
O O


︸ ︷︷ ︸

Km

Q (E.24)

Combined energy equation

U = 1

2
QT KQ (E.25)

K =
(

nspr i ng s∑
i=1

Ks,i

)
+Km (E.26)

Step 4: Obtain constraint equations
Off-diagonal parts of K matrix are constraint equations. As these terms in the K matrix each are a measure
of how the potential energy changes as a result of a relative rotation between two links. i.e.: K(2,3) indicates
the stiffness of rotating link 2 relative to link 3. For a balanced system this stiffness is to be 0. This is the only
stiffness for which a displacement does not cause a change in potential energy.

Step 5: Obtain balance by solving constraint equations
Solve equations for parameters. A number of parameter values can be selected freely. Others are solved for.
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E.2. EXAMPLE CARTESIAN STIFFNESS MATRIX APPROACH

q1

q2
bx

byB

q3

A

ax

ay

J2

J1

L2

qn

Rqn

Figure E.2: [Left] Schematics of linkage with point A on link 1 (fixed world) and point B on link 3. [Right] q vector and 90◦ rotated vector.

I =
[

1 0
0 1

]
(E.27)

R =
[

0 −1
1 0

]
(E.28)

qn =
[

qnx

qny

]
(E.29)

A = ax I q1 +ay R q1 =
[

ax −ay

ay ax

]
q1 (E.30)

J2 = L2I q2 =
[

L2 0
0 L2

]
q2 (E.31)

B = J2 +bx I q3 +by R q3 =
[

L2 0
0 L2

]
q2 +

[
bx −by

by bx

]
q3 (E.32)

Lspr i ng = B − A =−
[

ax −ay

ay ax

]
︸ ︷︷ ︸

C1

q1 +
[

L2 0
0 L2

]
︸ ︷︷ ︸

C2

q2 +
[

bx −by

by bx

]
︸ ︷︷ ︸

C3

q3 (E.33)

= C1q1 +C2q2 +C3q3 (E.34)

L2
spr i ng = (

C1q1 +C2q2 +C3q3
)2 (E.35)

= q T
1 C T

1 C1q1 +q T
1 C T

1 C2q2 +q T
1 C T

1 C3q3 + ... (E.36)

q T
2 C T

2 C2q2 +q T
2 C T

2 C3q3 +q T
3 C T

3 C3q3 (E.37)

=
q1

q2

q3

T C T
1 C1 C T

1 C2 C T
1 C3

0 C T
2 C2 C T

2 C3

0 0 C T
3 C3

q1

q2

q3

 (E.38)

=
q1

q2

q3

T D11 D12 D13

0 D22 D23

0 0 D33


︸ ︷︷ ︸

D

q1

q2

q3

 (E.39)
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D11 = C T
1 C1 =

[−ax −ay

ay −ax

][−ax ay

−ay −ax

]
=

[
a2

x +a2
y 0

0 a2
x +a2

y

]
(E.40)

D12 = C T
1 C2 =

[−ax −ay

ay −ax

][
L2 0
0 L2

]
=

[−ax L2 −ay L2

ay L2 −ax L2

]
(E.41)

D13 = C T
1 C3 =

[−ax −ay

ay −ax

][
bx −by

by bx

]
=

[−ax bx −ay by ax by −ay bx

ax by −ay bx −ax bx −ay by

]
(E.42)

D22 = C T
2 C2 =

[
L2 0
0 L2

][
L2 0
0 L2

]
=

[
L2

2 0
0 L2

2

]
(E.43)

D23 = C T
2 C3 =

[
L2 0
0 L2

][
bx −by

by bx

]
=

[
bx L2 −by L2

by L2 bx L2

]
(E.44)

D33 = C T
3 C3 =

[
bx by

−by bx

][
bx −by

by bx

]
=

[
b2

x +b2
y 0

0 b2
x +b2

y

]
(E.45)

D =



[
a2

x +a2
y 0

0 a2
x +a2

y

] [−ax L2 −ay L2

ay L2 −ax L2

] [−ax bx −ay by ax by −ay bx

ax by −ay bx −ax bx −ay by

]
0

[
L2

2 0
0 L2

2

] [
bx L2 −by L2

by L2 bx L2

]
0 0

[
b2

x +b2
y 0

0 b2
x +b2

y

]

 (E.46)

Uspr i ng = 1

2
kQT DQ (E.47)

E.2.1. GENERAL FORM
For a spring k from link i to link j (proximal to distal, i < j ), the D matrix can be expressed as:

Ak = Ji−1 +axk I qi +ayk R qi (E.48)

= Ji−1 +
(
axk I +ayk R

)
qi (E.49)

Bk = J j−1 +bxk I q j +byk R q j (E.50)

= J j−1 +
(
bxk I +byk R

)
q j (E.51)

Bk − Ak = J j−1 − Ji−1 −
(
axk I +ayk R

)
qi +

(
bxk I +byk R

)
q j (E.52)

J j−1 − Ji−1 = Ji + Ji+1 +·· ·+ J j−1 =
j−1∑
n=i

Ln I qn (E.53)

Bk − Ak = −(
axk I +ayk R

)
qi +

j−1∑
n=i

Ln I qn + (
bxk I +byk R

)
q j (E.54)

Bk − Ak = (
(Li −axk )I −ayk R

)︸ ︷︷ ︸
Ci

qi +
j−1∑

n=i+1
Ln I︸ ︷︷ ︸

Ci+1+···+C j−1

qn + (
bxk I +byk R

)︸ ︷︷ ︸
C j

q j (E.55)

=
j∑

n=1
Cn qn (E.56)

(Bk − Ak )2 =
j∑

n=i

j∑
m=n

q T
n C T

n Cm qm (E.57)

=

qi
...

q j


T 

C T
i Ci · · · C T

i C j

. . .
...

O C T
j C j


qi

...
q j

 (E.58)

Uk = 1

2
kk (Bk − Ak )2 (E.59)
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F.1. PARAMETER ANALYSIS FOR THE DEIGN OF STATICALLY BALANCED SERIAL

LINKAGES USING A STIFFNESS MATRIX APPROACH WITH CARTESIAN CO-
ORDINATES

This paper contains almost the same contents as paper 1: ’Cartesian based stiffness matrix approach and
graphical representation for designing statically balanced linkages’ (Chapter 1). It is submitted to and ac-
cepted by the 14th IFToMM World Congress in October 2015.
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Parameter analysis for the design of statically balanced serial linkages
using a stiffness matrix approach with Cartesian coordinates
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Abstract—A statically balanced system is in equilibrium
in every pose. In classical balancing solutions for serial
linkages, each DOF is balanced by an independent element
(counter-mass or mono-articular spring). Disadvantages
are increased mass and inertia for counter-mass, and aux-
iliary links for spring solutions. Recent literature presents
a method for balancing serial linkages without auxiliary
links; using multi-articular springs. This method obtains
constraint equations from the stiffness matrix. Downsides
are different coordinate systems for describing locations
and states, and set criteria constraining attachments to
fixed lines. In the presented paper this stiffness matrix ap-
proach is implemented using a consistent Cartesian system.
Goal is comparing the use of this single coordinate system
to the use of multiple, and obtaining increased insight in
and providing a visualization of parameter relations. The
Cartesian coordinates are implemented, providing a sim-
ple, intuitive method for designing statically balanced se-
rial linkages. Obtained parameter relations are visualized
in an example.

Keywords: Static balance, Zero-free-length spring, Serial linkage

I. Introduction
A system which is in equilibrium in every motionless

state is called statically balanced. For such systems the
potential energy level remains constant in every pose [1].
This constant energy level greatly reduces operational ef-
fort as only dynamic effects remain to be overcome during
motion. Many applications for static balancing exist due to
these benefits [1], [2], [3], [4].

Different techniques exist to statically balance the ro-
tation of a rigid pendulum. A simple option is adding a
counter-mass [1], downside of which is the increased mass
and inertia [5]. A second option is connecting a zero-free-
length spring (ZFLS) between the link and fixed world [1].
For a ZFLS the spring force is proportional to its length.
Other less common solutions use a non-circular cam [6] or
compliant flexure elements [7]. These solutions are all de-
signed to balance a single degree of freedom (DOF).

Solutions for balancing a serial linkage with multiple
DOF make use of counter-mass or ZFLSs. In the first case a

∗M.P.Lustig@student.tudelft.nl
†A.G.Dunning@tudelft.nl
‡J.L.Herder@tudelft.nl

counter-mass is added to each link [8], [9], additional aux-
iliary links allow counter-mass relocation [10]. Inertia in-
crease becomes a greater problem as added weights of distal
counter-masses must be balanced as well. Classical ZFLS
solutions require a parallel beam construction providing a
link with fixed orientation at each joint [1], [11], [12]. Each
link is balanced by a single ZFLS that spans the joint of the
respective link, a mono-articular spring. The disadvantage
of parallel beams are an increased complexity and added
inertia. In these systems each DOF is balanced by an inde-
pendent balancing element.

Recent literature presents two methods in which ZFLSs
can span multiple joints to balance serial linkages without
parallel beams. The first method is the stiffness matrix ap-
proach by Lin et al. [12], [13], [14], [15]. Energy equa-
tions are set up in a general form U = 1

2Q
TKQ, sep-

arating states Q and parameters in a stiffness matrix K.
Off-diagonal elements of K contain state dependent energy
terms, constraining these terms equal to zero results in a
statically balanced system [13]. The second method is an
iterative method developed by Deepak and Ananthasuresh
[16]. Balance is ensured link by link, in steps, starting at the
most distal link. At each step, balance of a specific link is
acquired by adding up to two ZFLSs between this link and
fixed world. For each link only energy terms of the current
and previous step links affect its constraint equations [16].
In these two methods each DOF is balanced by combined
efforts of multiple ZFLSs.

Both methods can create statically balanced serial link-
ages and are based on an energy approach. Nevertheless
multiple differences exist in ease of implementation and ca-
pabilities. The first is that in Lin’s method all constraints are
obtained at once for a chosen spring configuration, whereas
in Deepak’s method only a selection of the constraints is
evaluated at once. If no straightforward solution is found,
Deepak’s method explains which spring(s) can be added for
a solvable system, Lin’s method does not directly. How-
ever, information on which links are unbalanced and thus
require additional springs can be extracted from the stiff-
ness matrix [15]. Another difference is that all springs are
connected to the fixed world in Deepak’s method while
in Lin’s method springs can be attached in between any
two links, i.e. additional constraints are provided consid-
ering these springs. Finally, Deepak’s method allows pla-
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nar placement of spring attachments while in Lin’s method
criteria are set up constraining attachments to be located on
fixed straight lines [15].

In the presented work the stiffness matrix approach is se-
lected for calculating balanced linkages as it provides all
constraints at once and allows additional spring placement
options. The exact implementation however is altered. Cur-
rent literature describes locations on links using polar coor-
dinate systems, while states are described using unit vectors
(xy-components). In the presented work Carthesian (xy-)
coordinates are used describing link locations as well as the
states.

Three goals are formulated in the presented paper. The
first goal is to implement Cartesian coordinates in the stiff-
ness matrix approach for balanced serial linkages to investi-
gate its benefits over the combined use of polar coordinates
for locations and xy-coordinates for states. The second goal
is to gain more insight in the relations between different pa-
rameters of this method in the design space, for instance it
will be investigated if placement of springs outside the ver-
tical straight lines is allowed. The third goal is to visualize
these behavioral relations in an example.

The structure of this paper is as follows. First, in
’Method’ the Cartesian coordinate stiffness matrix ap-
proach is derived. Next, in ’Application and behavior’ the
example of a balanced linkages is presented of which the
behavior is analyzed. Third, in ’Discussion’ the use of
Cartesian and polar coordinates are compared. Finishing
with the obtained conclusions concerning the set goals.

II. Method
We propose the consistent use of Cartesian coordinates in

the stiffness matrix approach for designing serial statically
balanced linkages. This is in contrast to the use of polar co-
ordinates for locations and Cartesian coordinates for states,
as used in current literature on this method [12], [13], [14],
[15]. In the presented paper the location of spring attach-
ments, joints and COMs is described using (local) x- and
y- coordinates on the respective links they are located on.
In this section the assumptions are explained first, followed
by the full derivation of the stiffness matrix approach using
xy-coordinates.

A. Assumptions and limitations
The presented method is set up for planar linkages, the

gravitational field acting in this plane has constant magni-
tude and direction. The links are connected to each other
and/or the fixed world using revolute joints. All springs
have linear ZFLS behavior and the mass of these springs is
neglected. Mechanical limits of links/springs colliding with
one another are not taken into account. The fixed world is
assumed to be rigid and static.

B. Derivation of stiffness matrix
The stiffness matrix approach is derived in five steps.

First all coordinate points are described as a function of the

link states and parameter values. The second step is setting
up potential energy equations for all spring and mass com-
ponents and writing these equations in a generalized form.
The third step is to combine the energy equations of the dif-
ferent components to obtain the total stiffness matrix. The
fourth step is obtaining the constraint equations for balance
from the stiffness matrix. The fifth and final step is focused
on how to solve the obtained equations. The equations are
set up for an n link system where the fixed world is link 1,
as a result the system has n− 1 moving links.

B.1 Step 1: Coordinate vectors
The state of link u is described by global unit vector qu

(Figure 1a). The fixed world vector q1 is constant, aligned
with the global x-axis. For moving links (u = 2 · · ·n)
vector qu is aligned with the local xu-axis. The origin of
each local coordinate system is located at the proximal joint
Ju−1. The yu-axis are orientated perpendicular to the re-
spective xu-axis. A unit vector in this yu direction is ob-
tained by rotating the state vector qu by 90◦ using rotation
matrix R. Combined state vector Q holds the states of all
n-links.

q1 =

[
1
0

]
(1a)

qu =

[
qxu
qyu

]
(1b)

Q =



q1

...
qn


 (1c)

I =

[
1 0
0 1

]
(1d)

R =

[
cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

]
=

[
0 −1
1 0

]
(1e)

Global coordinates of all point on the links are described
as a linear combination of the state vectors and constant
parameter values. Joint locations are described first. As
said, fixed world joint J1 is located in the global origin.
The distal joint Ju of a link u is always located on the local
xu-axis at distance Lu from the local origin (Figure 1b).
Vector components of joint locations are set up in equation
2.

J1 =

[
0
0

]
(2a)

Ju = L2Iq2 + L3Iq3 + · · ·+ LuIqu (2b)

=
u∑

i=2

LiIqi = Ju−1 + LuIqu

Spring attachment point locations for a spring j between
link u to link v are Aj and Bj respectively. These locations
are a linear combination of the proximal joint component

2
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Fig. 1: (a) Schematic representation of a serial linkage in a state defined by
unit vectors q. (b) Parameterization of locations on link u in the Cartesian
form.

Ju−1, the local xu component (axjIqu) and the local yu
component (ayjRqu) (Eq. 3). A schematic representation
containing these components is given in figure 1b.

Aj = Ju−1 + (axjI + ayjR) qu (3a)
Bj = Jv−1 + (bxjI + byjR) qv (3b)

Similarly the COM location of link u is set up (Eq. 4).

Su = Ju−1 + (sxuI + syuR)qu (4)

B.2 Step 2: Energy equations and generalized form

This step is to write energy equations in the generalized
form, separating the states Q and the parameters in the stiff-
ness matrix K.

U =
1

2
QTKQ (5)

Spring energy is expressed in this form first. The vector
describing spring length and orientation for spring j, going
from link u to link v, is Bj−Aj . This is as a function of the
states, because the locations of points Bj and Aj are state
dependent as well. The expression for this spring vector
is derived in equation 6. An expression is obtained where
constants are separated for each state (Eq. 6e). The com-
ponents C holding these constant parameters are shown in
matrix form (Eq. 7).

Bj −Aj =Jv−1 − Ju−1 − (axjI + ayjR) qu (6a)
+ (bxjI + byjR) qv

Jv−1 − Ju−1 =Ju + Ju+1 + · · ·+ Jv−1 (6b)

=
v−1∑

n=u

LnIqn

Bj −Aj =− (axjI + ayjR) qu (6c)

+
v−1∑

n=u

LnIqn + (bxjI + byjR) qv

Bj −Aj =((Lu − axj)I − ayjR)︸ ︷︷ ︸
Cu

qu (6d)

+
v−1∑

n=u+1

LnI

︸ ︷︷ ︸
Cu+1+···+Cv−1

qn + (bxjI + byjR)︸ ︷︷ ︸
Cv

qv

Bj −Aj =

v∑

n=1

Cnqn (6e)

Cu =

[
Lu − axj ayj
−ayj Lu − axj

]
(7a)

Ci =

[
Li 0
0 Li

]
, for i = u+ 1, · · · , v − 1 (7b)

Cv =

[
bxj −byj
byj bxj

]
(7c)

Ci =

[
0 0
0 0

]
, for :

{
i = 1, · · · , u− 1
i = v + 1, · · · , n (7d)

Knowing the spring length, as a function of the states, its
potential energy can be calculated. The equation is set up
for a ZFLS j with stiffness kj (Eq. 8a) and rewritten in the
generalized form (Eq. 8d). In this form the states (Q) are
separated from the parameters in the stiffness matrix of the
spring (Ks,j).

3
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Us,j =
1

2
kj(Bj −Aj)

2 (8a)

=
1

2
kj

(
n∑

u=1

Cuqu

)2

(8b)

=
1

2
kj



q1

...
qn




T 

CT

1 C1 · · · CT
1 Cn

...
. . .

...
CT

nC1 · · · CT
nCn






q1

...
qn


 (8c)

=
1

2
QTKs,jQ (8d)

Ks,j = kj



CT

1 C1 · · · CT
1 Cn

...
. . .

...
CT

nC1 · · · CT
nCn


 (8e)

Next the gravitational energy is expressed in the general-
ized form of equation 5. The height of the masses is found
in the second element of vector Su, containing the global
COM y-coordinate of link u. The value for height is ex-
tracted by vector product: height=

[
0 1

]
Su. This prod-

uct is not jet expressed as in the generalized form because
Su does not contain multiplications of states. By using
state q1, which is located on the fixed world, it is known
that (Rq1)

T =
[
0 1

]
, describing the gravitational field

direction. Therefore the height of a mass is expressed as
in the generalized form by product: height= (Rq1)

TSu.
Based on this term the energy equations are first written for
the mass of a single link u (Eq. 9) followed by a summed
relation containing the masses of all links (Eq. 10). For
this form the constant components Du that fill the stiffness
matrix are described (Eq. 11), followed by the generalized
form of the energy equation (Eq. 12).

Umu
= mug(Rq1)

TSu (9a)

= mugq
T
1 R

TSu (9b)

= mugq
T
1 R

T [Ju−1 + (sxuI + syuR)qu] (9c)

=mugq
T
1 R

T

[
u−1∑

i=1

(Liqi) + (sxuI + syuR)qu

]
(9d)

Effect of combined mass of all links, for a linkage with
n links (and thus n− 1 moving links) is given (Eq. 10).

UΣm =
n∑

u=2

Umu
(10a)

= qT
1

n∑

u=2

(
RTmug

[
u−1∑

i=1

(Liqi) + (sxuI + syuR)qu

])

(10b)

= qT
1

∑n
u=2


RT

[(∑n
i=u+1mi

)
gLuI +mug(sxuI + syuR)

]
︸ ︷︷ ︸

Du

qu




(10c)

Du = RT

[(
n∑

i=u+1

mi

)
gLuI +mug(sxuI + syuR)

]

(11a)

=




mugsyu mugsxu +

(
n∑

i=u+1

mi

)
gLu

−mugsxu −
(

n∑

i=u+1

mi

)
gLu mugsyu




(11b)

The generalized form UΣm is obtained as states and pa-
rameters are separated.

UΣm =
1

2
QTKmQ (12a)

Km =




O D2 · · · Dn

DT
2 O · · · O

...
...

. . .
...

DT
n O · · · O


 (12b)

When analyzing a new system it is possible to quickly set
up the stiffness matrices without having to go through all
derivations performed in this step. It is advised to directly
substitute the component matrices for the springs Cu(Eq.
7a-7d) and the mass components Du (Eq.11). By substi-
tuting these component matrices in equation 8e and 12b the
stiffness matrix Ks,j and Km are obtained.

B.3 Step 3: Total stiffness matrix
The combined energy Ut, containing all spring and mass

terms is obtained by combining the spring and mass stiff-
ness matrices (Eq. 13).

Ut =
1

2
QTKtQ (13a)

Kt =

(
nsprings∑

i=1

Ks,i

)
+Km (13b)

4
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B.4 Step 4: Constraint equations
In a balanced system, any state can be changed freely

with respect to any other state without changing the overall
potential energy level. For this to be the case, the effective
stiffness between any two different states should be equal
to zero. These represent all state dependent energy terms.
The effective stiffness terms for these relative rotations are
found on the off-diagonal part of the stiffness matrix Kt

[14]. As a result, all off-diagonal parts of the Kt matrix are
constrained to be equal to zero for balance [13].

The number of constraint equations depends on the size
of the Kt matrix, which in turn depends on the number of
links n. The matrices are symmetrical, thus all relations
are found in the upper triangular part (Eq. 8e, 12b). Addi-
tionally, all relations in one of these triangular parts occur
twice, once in each even and uneven row. Thus only every
other row has to be examined to obtain all relations. Al-
together the amount of constraint equations for an n-link
system is equal to n(n− 1) [14].

B.5 Step 5: Obtain balance by solving constraint equa-
tions

The next step is solving the obtained constraint equa-
tions. In general, the minimal amount of variables to be
calculated is equal to the number of equations. For exam-
ple, for a three link planar system the number of constraint
equations is equal to six and as a result at least six param-
eters should be left free while solving such a system. The
remaining parameters can be selected to have constant val-
ues.

III. Application and behavior
In this section an illustrative example of a balanced link-

age is presented. The behavior of the balanced system is
analyzed to gain a better understanding of how different
parameters can be changed while maintaining the desired
balance. Increased insight in the inner workings of the sys-
tem will allow for a more efficient design process and a
better overview of possible solutions. Found relations for
varying parameters while maintaining balance are provided
and visualized. The system studied has two moving links
(Figure 2a) and is positioned in a gravitational field acting
in the y−direction with g = 9.81m/s2.

J 1

J 2

m2
m3

(a)

B 1

B 2

A1

A2

J 1

J 2

k1

k2

m2
m3

(b)

Fig. 2: (a) Unbalanced linkage. (b) Spring configuration of example 1. (c)
Spring configuration of example 2.

A. Example
Two springs are used to balance the system, one bi-

articular ZFLS connecting the fixed world to link 3 and one

mono-articular ZFLS that connects links 2 and 3 (Figure
2b). In the first step the system locations in figure 2b are
expressed in xy-coordinates as in figure 1b. The actual lo-
cation vectors (Eq. 2,3,4) are not shown as their creation
is not required for continuing in this method, nevertheless
they are useful for instance to plot the system. In the sec-
ond step the component matrices for the two springs C1

and C2 (Eq. 14) and the mass terms D (Eq. 15) are con-
structed based on equations 7 and 11. By substituting these
component matrices in equations 8e and 12b the spring ma-
trices Ks1,Ks2 and mass stiffness matrix Km are obtained
(Eq. 16a,16b). The third step is to construct the total stiff-
ness matrix by combining the spring and mass matrices (Eq.
16c). In the fourth step the constraint equations are obtained
from the Kt matrix (Eq. 17). The constraint equations to
be satisfied for balance are the off-diagonal parts of the Kt

matrix set equal to zero. Here only terms in odd rows (1
and 3) are considered as the even rows contain the same
relations.

C1,1 =

[
−ax1 ay1

−ay1 −ax1

]
C2,1 =

[
0 0
0 0

]

C1,2 =

[
L2 0
0 L2

]
C2,2 =

[
L2 − ax2 ay2

−ay2 L2 − ax2

]

C1,3 =

[
bx1 −by1

by1 bx1

]
C2,3 =

[
bx2 −by2

by2 bx2

]
(14)

D1 =

[
0 0
0 0

]

D2 =

[
m2gsy2 m3gL2 +m2gsx2

−m3gL2 −m2gsx2 m2gsy2

]

D3 =

[
m3gsy3 m3gsx3

−m3gsx3 m3gsy3

]
(15)

Ksi =
1

2
ki



CT

i,1Ci,1 CT
i,1Ci,2 CT

i,1Ci,3

CT
i,2Ci,2 CT

i,2Ci,3

sym CT
i,3Ci,3


 (16a)

Km =




O D2 D3

O O
sym O


 (16b)

Kt = Ks1 +Ks2 +Km (16c)

Kt(1, 3) = 0 =− k1ax1L2 +m2gsy2 (17)
Kt(1, 4) = 0 =− k1ay1L2 +m2gsx2 +m3gL2

Kt(1, 5) = 0 =− k1(ax1bx1 + ay1by1) +m3gsy3

Kt(1, 6) = 0 =k1(ax1by1 − ay1bx1) +m3gsx3

Kt(3, 5) = 0 =k1bx1L2 − k2(ay2by2 − bx2(L2 − ax2))

Kt(3, 6) = 0 =− k1by1L2 − k2(ay2bx2 + by2(L2 − ax2))

5
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In the final step the constraint equations are solved for
four different cases, each showing different behavior (Fig-
ure 3). Between these cases some general properties of the
system remain the same. Specifically spring stiffness, mass
and link length values. In each case the constraints are
solved for parameters ax1, bx1, by1, bx2, by2 and k1. Var-
ied inputs between cases are parameters ax2 and ay2, de-
scribing the location of attachment A2. Furthermore sy2

is varied, describing the location of the COM of link 2.
Obtained parameter values of balanced configurations are
summarized in table 3e. Parameters on the first six rows
(above the horizontal line) are calculated by solving the
constraints, remaining parameter values (under the line) are
chosen inputs.

In the first case all spring connections are aligned with
the links (Figure 3a). In case 2, attachmentA2 of the second
spring is rotated about the joint J2, as a result attachment
B2 rotates with the same angle about J2 as well (Figure
3b). In case 3, the COM of link 2 is relocated. Resulting
in simultaneous rotations of attachments B1 and B2 (Fig-
ure 3c). In the final case 4, both offsets of A2, as in case
2, and sy2, as in case 3, are combined. The solved config-
uration shows a combination of the behavior caused by the
individual offsets of the previous cases (Figure 3d).

0.1 [m]

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Case 1 Case 2 Case 3 Case 4 Units
ax1 0 0 -0.025 -0.025 [m]
bx1 0.1125 0.1125 0.1059 0.1059 [m]
by1 0 0 0.0265 0.0265 [m]
bx2 -0.0981 -0.0785 -0.0923 -0.06 [m]
by2 0 -0.0589 -0.0231 -0.0739 [m]
k1 261.6 261.6 261.6 261.6 [Nm ]

k2 600 600 600 600 [Nm ]
ay1 0.1 0.1 0.1 0.1 [m]
ax2 0.15 0.18 0.15 0.18 [m]
ay2 0 -0.09 0 -0.09 [m]
m2 2 2 2 2 [kg]
m3 2 2 2 2 [kg]
L2 0.3 0.3 0.3 0.3 [m]
sx2 0.1 0.1 0.1 0.1 [m]
sy2 0 0 -0.1 -0.1 [m]
sx3 0.15 0.15 0.15 0.15 [m]
sy3 0 0 0 0 [m]

(e)

Fig. 3: In scale balanced solutions for example 2. (a) Case 1. (b) Case 2.
(c) Case 3. (d) Case 4. (e) Parameter values for the different cases.

B. Behavior in example
The four cases in example 2 are all statically balanced

as they all fulfill the constraint equations. The unbalanced
three link system is analyzed first in the orientation in which
it has minimal gravitational energy (Figure 4a). In this po-
sition link 2 is oriented at angle α with respect to the verti-
cal. Angle α is now determined by setting the momentMJ1

around J1 to be equal to zero as it should be when in equi-
librium (Eq.18). The system shown in figure 4b is equal to
the linkage of figure 4a only with redrawn links that give
room for springs to be drawn later on.

MJ1 = 0 = m2sy2 cos(α)−m2sx2 sin(α)−m3L2 sin(α)

(18a)

(m2sx2 +m3L2) sin(α) = m2sy2 cos(α) (18b)

sin(α)

cos(α)
= tan(α) =

m2sy2

m2sx2 +m3L2
(18c)

α = tan−1

(
m2sy2

m2sx2 +m3L2

)
(18d)

J 2

J 1

m2

m3

α

sx
sy L 2

2
2

(a)

J 2

J 1

m2

m3

α

(b)

J 2

J 1

A1

A2

B 1
B 2

m2

m3
β

α

α

(c)

Fig. 4: (a) and (b) Unbalanced linkage in equilibrium. (c) Relations be-
tween the location of spring attachment points required for a balanced sys-
tem.

Next, it is recognized that for balance a zero moment is
required in all orientations. As this is already the case for
the original system in the orientation of figure 4b neither
of the added springs should apply a moment around any
of the joints to keep this moment free condition. Spring 1
is located between the fixed world point A1 and link 3 at
point A3, and thus spawns both joints. As a result, spring
connections A1 and B1 should be aligned with both joints
J1 and J2, exactly at the previously determined angle α
(Figure 4c). Spring 2 connects A2 on link 2 and B2 on link
3 and thus spawns only the second joint J2. Therefore, in
this orientation with minimal potential the two connection
points of this spring are to be aligned with J2 (Figure 4c).

Furthermore, as α is only dependent on parameters of
the original linkage its value is unaffected by adjusting the
other spring. For spring 2 the alignment of attachment A2

6
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depends on both angles α and β with respect to the local co-
ordinate system of link 2. AttachmentB2 is dependent only
on angle β with respect to the local coordinates of links 3.
Therefore, by changing β spring 2 can be relocated any-
where on a ring shaped disk around J2, as partially visual-
ized by dotted lines in figure 4c.

The locations of the spring attachments are now de-
scribed based on a single position of the linkage where the
gravitational energy is at a minimum. This does not directly
prove that the system is in balance in any pose as it is only
clear that this one position is in equilibrium. However, the
proof that the system can be balanced in any configuration
is already given using the stiffness matrix approach. What
the analysis of this single position does provide is insight in
where the attachments can be placed and why they are con-
strained to lie on certain lines or positions. Additionally it
can be reasoned that the system is capable of being balanced
in all orientations as the energy behavior of all components
is sinusoidal with respect to each rotation. These sinusoids
have equal periods as these are equivalent to full rotations
of a links, all having a minimum or maximum in the ori-
entation of figure 4. The sinusoidal functions are either in
phase or shifted by half a phase exactly and so can interfere
with one another to cancel each other out.

The behavior described so far in this example is based on
the orientations in which springs can be placed for the se-
lected spring configuration (Figure 4). However some addi-
tional interesting observations are made based on parameter
magnitudes.

The first observation is that the location of spring at-
tachment point B1 (Figure 4c) is a unique point depending
solely on parameters of the original linkage, i.e. it is fixed
independently of all other spring related parameters. Using
the solve function in MATLAB the constraint equations
are solved for parameters bx1 and bx2. These parameters
describe the location of B1, expressed as a function of the
other parameters (Eq.19). The obtained equations consist
solely of parameters describing link length, mass or COM
location.

bx1 =
L2

2m
2
3sx3 + L2m2m3(sx2sx3 + sy2sy3)

(L2m3 +m2sx2)2 +m2
2s

2
y2

(19a)

by1 =
L2

2m
2
3sy3 + L2m2m3(sx2sy3 − sx3sy2)

(L2m3 +m2sx2)2 +m2
2s

2
y2

(19b)

For the spring attachment A1 an additional constraint is
found. It is found that the distance from joint J1 to this
point A1 is inversely related to its spring stiffness k1. This
is by solving the constraint equations (Eq.17) for the pa-
rameters ax1 and ay1 which describe the location of A1

(Eq.20a and 20b). Furthermore, the relation for α can again
be extracted from these constraints by looking at the rela-
tive magnitudes of ax1 and ay1 (Eq.20c).

ax1 =
m2gsy2

L2

1

k1
(20a)

ay1 =
m2gsx2 +m3gL2

L2

1

k1
(20b)

α =tan−1

(
ax1

ay1

)
= tan−1

(
m2sy2

m2sx2 +m3L2

)
(20c)

For spring 2, an additional constraint is found as well,
this is next to angle β which describes the springs orienta-
tion. When all other parameters are fixed, the product of its
stiffness k2, distance from J2 toA2 and distance from J2 to
B2 is constant ( k2 · |A2 − J2| · |B2 − J2| = constant ). In
other words, the two described lengths and the stiffness of
this spring can be varied freely within these bounds without
affecting any other parameter. This magnitude of the ’con-
stant’ value in this relation is affected by the location of A1

and k1, however it is unpractical to take these into account
in the same relation and much more convenient to fix these
parameters before altering either A2, B2 or k2.

IV. Discussion
Constraint equations in polar form, for the system stud-

ied in the presented example, are set up in the work of
Lin et al.[13]. In this form link locations are defined by
a magnitude and an angle, representing the same relations
as in equation 17. Behavior found in the presented example
shows a number of simultaneous rotations of COM loca-
tions and/or spring connection points that can be performed
without affecting the balance of the system (Figure 4). One
could argue to use a polar coordinate system to describe this
behavior as it is rotational. However, the centers of rotation
for these simultaneous rotations can either be on the first
joint, the second joint or a seemingly arbitrary point on one
of the links. As the location of the center point is inconsis-
tent it cannot be ensured that this point is always positioned
on the origin of the local coordinate system from which the
polar coordinates are defined. Furthermore, describing a ro-
tation using polar coordinates about a point other than the
origin is, according to the authors, unnecessarily compli-
cated compared to describing such a rotation as a sum of
vector components in a Cartesian coordinate system. For
this reason an xy-coordinate system is recommended when
altering a system having planar offsets. Other benefits of
using a Cartesian system are that the resulting constraint
equations will be free of sinusoidal term, and describing co-
ordinates on a link using xy-components is more intuitive
compared to using an angle and magnitude.

V. Conclusion
In this work the implementation of the stiffness matrix

approach is altered such that states and link locations are
expressed in the same coordinate system. The first goal was
to implement Cartesian coordinates and comparing it to the
use of polar coordinates in the stiffness matrix approach.

7
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The Cartesian coordinates were successfully implemented
and in comparison they were found to be more intuitive in
use, provide simpler constraint equations and be more con-
venient for altering parameters of balanced systems. The
second goal was to gain more insight in the relations be-
tween parameters while the third goal was to illustrate these
behavioral relations in two examples. These two goals were
achieved simultaneously as in the example a basic system
(having two moving links) was analyzed. Relations were
found between orientation, positioning and magnitude of
springs and masses. These are described and illustrated pro-
viding a visual overview of the design space. Obtained re-
lations provide knowledge in the possibilities to vary spring
system parameters while maintaining static balance.
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G
MATLAB CODE

G.1. RUNFILE
This script creates design equations for a selected spring configuration and solves it for provided parameters.
The result is plotted.

1 %% 2014-07-29 Maarten Lustig
2 % Solve constraint equations for multiple linkages, in xy coordinates
3 %%
4 %% %%%%%%%%%%%%%%%%%%%%%%%%% 2 links 2 springs fixed world %%%%%%%%%%%%%%%%%%%%%%%%%%%
5 clearvars -except L8 %except a symbolic parameter, prevents symbolic toolbox to ...

restart every run
6 % clear all
7 clc
8

9 springs = [1,3;1,3]; % select spring configuration. Add spring between links for ...
example: 1,4;

10 Methode_xy_fun
11 % Constant parameters
12 m2 = 2; m3 = 2;
13 L2 = 0.3; L3 = 0.3;
14 sx2 = double(L2/2); sx3 = double(L3/2);
15 sy2 = 0; sy3 = 0;
16 g=9.81;
17 %
18 ay1 = 0.09
19 ay2= -0.06
20 ax1 = 0
21 ax2 = 0
22

23 % bx1 = 0.03
24 bx2 = -0.04
25 by1 = 0
26 by2 = 0
27

28

29 % k1 = 245.2500
30 % k2 = 245.2500
31

32

33 Methode_xy_evalsubs
34

35 plot_links_xy
36

37 eval(subs(Kt))

69
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G.2. METHODE_XY_FUN.M
In this script the stiffness matrix is created for the input spring configuration. From this stiffness matrix
design equations are extracted.

1 %% 2014-07-18 Maarten Lustig
2 % Make constraint equations for n-link system in xy coordinates
3 %%
4 % clear all;clc
5 % clearvars ¬except L8 %except a symbolic parameter, prevents symbolic toolbox to ...

restart every run
6 clc
7 %% %%%%%%%%%%%%%%%%%%%%%%%%% INPUT %%%%%%%%%%%%%%%%%%%%%%%%%%%
8 % springs = [1,2;2,3;1,4;1,4];%[0,1;0,2;0,2]; %0,4; 0,5;0,5];
9 % springs = [1,2;2,3;1,4;1,4];

10

11 n_links = max(max(springs)); %including fixed world link
12 n_springs = length(springs(:,1));
13

14 %% %%%%%%%%%%%%%%%%%%%%%%%%% VARIABLES %%%%%%%%%%%%%%%%%%%%%%%%%%%
15 syms L1 L2 L3 L4 L5 L6 L7 L8 % link lenght
16 syms ax1 ax2 ax3 ax4 ax5 ax6 ax7 ax8 % spring attachment proximal
17 syms ay1 ay2 ay3 ay4 ay5 ay6 ay7 ay8
18 syms bx1 bx2 bx3 bx4 bx5 bx6 bx7 bx8 % spring attachment distal
19 syms by1 by2 by3 by4 by5 by6 by7 by8
20 syms sx1 sx2 sx3 sx4 sx5 sx6 sx7 sx8 % distance joint to centre of mass
21 syms sy1 sy2 sy3 sy4 sy5 sy6 sy7 sy8
22 syms k1 k2 k3 k4 k5 k6 k7 k8 % spring constants
23 syms m1 m2 m3 m4 m5 m6 m7 m8 % mass of links
24 syms g % gravitational constant
25

26 %% %%%%%%%%%%%%%%%%%%%%%%%%% CONSTANTS %%%%%%%%%%%%%%%%%%%%%%%%%%%
27 %Identity matrix
28 I = [1,0;0,1];
29 % Rotation matrix 90 degrees
30 R = [0,-1;1,0];
31

32 %% %%%%%%%%%%%%%%%%%%%%%%%%% K-matrix springs %%%%%%%%%%%%%%%%%%%%%%%%%%%
33 % For all springs
34 clear Cuv K
35 for j=1:n_springs
36 clear Cuv
37 u=springs(j,1);
38 v=springs(j,2);
39 n=n_links;
40 %% Make C components for spring
41 % Cu: proximal spring attatchment
42 if u == 1
43 Cuv(:,:,u) = - eval(['ax' num2str(j)])*I - eval(['ay' num2str(j)])*R;
44 else
45 Cuv(:,:,u) = (eval(['L' num2str(u)]) - eval(['ax' num2str(j)]))*I - ...

eval(['ay' num2str(j)])*R;
46 end
47

48 % Cu+1 Cv-1: links inbetween proximal and distal attatchment links
49 for u = u+1:v-1
50 Cuv(:,:,u) = eval(['L' num2str(u)])*I;
51 end
52

53 %Cv: Distal spring attatchment
54 Cuv(:,:,v) = ( eval(['bx' num2str(j)])*I + eval(['by' num2str(j)])*R );
55

56 %C>v: Add zeros to make size of K consistent
57 if n>v
58 for u = v+1:n
59 Cuv(:,:,u) = [0 0;0 0];
60 end
61 end
62

63 % Fill Ks-matrix
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64 for i_row = 1:n_links
65 for i_col = i_row:1:n_links
66 Ks(2*i_row-1:2*i_row,2*i_col-1:2*i_col,j) = ...

Cuv(:,:,i_row).'*Cuv(:,:,i_col) * eval(['k' num2str(j)]);
67 end
68 end
69 Cuv
70 end
71 Ks
72

73 %% %%%%%%%%%%%%%%%%%%%%%%%%% K-matrix mass %%%%%%%%%%%%%%%%%%%%%%%%%%%
74 clear Du
75 for u = 2:n_links
76 clear m_temp m_sum
77

78 % Sum of all mass terms distal of joint Jn
79 if u == n_links
80 m_temp = 0;
81 else
82 for i = u+1:n_links
83 m_temp(i) = eval(['m' num2str(i)]);
84 end
85 end
86 m_sum = sum(m_temp);
87

88 %% D components
89 Du(:,:,u) = R'*(m_sum * g * eval(['L' num2str(u)]) * I + eval(['m' num2str(u)]) * ...

g * ( eval(['sx' num2str(u)]) * I + eval(['sy' num2str(u)]) * R));
90

91 end
92

93 % Fill Km-matrix
94 for i_col = 1:u
95 Km(1:2,2*i_col-1:2*i_col) = Du(:,:,i_col);
96 end
97 Km(2*n,2*n)= 0;
98 Km
99

100 %% %%%%%%%%%%%%%%%%%%%%%%%%% K-matrix total %%%%%%%%%%%%%%%%%%%%%%%%%%%
101

102 % Kt = sum of all Ks matrices and Km matrix
103 Kt = Km;
104 for i = 1 : n_springs
105 Kt = Kt + Ks(:,:,i);
106 end
107 Kt
108

109 %% %%%%%%%%%%%%%%%%%%%%%%%%% Constraint equations %%%%%%%%%%%%%%%%%%%%%%%%%%%
110 % Non diagonal parts of Kt-matrix (only uneven rows)
111 CS = 0;
112 for i = 1:2:n_links*2-3
113 CS = [CS; Kt(i,i+2:n_links*2).'];
114 end
115

116 CS = CS(find(CS 6=0))
117

118

119 %% %%%%%%%%%%%%%%%%%%%%%%%%% Constant parameter values %%%%%%%%%%%%%%%%%%%%%%%%%%%
120

121 % if exist('defign_m_L','var')
122 % else
123 % % lengths of links
124 % L1 = 0.3; L2 = 0.3; L3 = 0.3; L4 = 0.3; L5 = 0.3;
125 %
126 % % mass
127 % m1 = 2; m2 = 2; m3 = 2; m4 = 2; m5 = 2;
128 %
129 % % gravity constant
130 % g = 9.81;
131 %
132 % % % distance from centre of mass to proximal joint
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133 % % sx2 = double(L2/2);
134 % sx2 = double(2/2); sx3 = double(L3/2); sx4 = double(L4/2); sx5 = double(L5/2);
135 % % sy2 = 0;
136 % sy2 = 0; sy3 = 0; sy4 = 0; sy5 = 0;
137 % end
138 %% Substitute constants
139 CSs = subs(CS)
140 variables = symvar(CSs)
141

142 %% %%%%%%%%%%%%%%%%%%%%%%%%% Solve constraints for parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%
143

144 % y1 = solve(CSs==zeros(length(CSs),1))%,'k1,k2')
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G.3. METHODE_XY_EVALSUBS.M
In this script the design equations are solved for provided input. Depending on the input different parameters
can be the variable solved for.

1 %% SOLVE DESIGN EQUATIONS %%
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3

4 CSs0 = subs(CSs)
5 CSs0 = CSs0(find(CSs0 6=0))
6

7 % CSs0 = [CSs0(1);CSs0(4)]
8 % assume(k1 ≥ 0)
9 y1 = solve(CSs0==zeros(length(CSs0),1))

10

11 % ax2 =eval( y1)
12

13 vars0 = subs(fieldnames(y1)).'
14

15

16 %% k
17 if ismember([k1],vars0)==1; k1 = eval(subs(y1.k1(1)))
18 end
19 if ismember([k2],vars0)==1; k2 = eval(subs(y1.k2(1)))
20 end
21 if ismember([k3],vars0)==1; k3 = eval(subs(y1.k3(1)))
22 end
23 if ismember([k4],vars0)==1; k4 = eval(subs(y1.k4(1)))
24 end
25

26 %% ax
27 if ismember([ax1],vars0)==1; ax1 = eval(subs(y1.ax1(1)))
28 end
29 if ismember([ax2],vars0)==1; ax2 = eval(subs(y1.ax2(1)))
30 end
31 if ismember([ax3],vars0)==1; ax3 = eval(subs(y1.ax3(1)))
32 end
33 if ismember([ax4],vars0)==1; ax4 = eval(subs(y1.ax4(1)))
34 end
35

36 %% ay
37 if ismember([ay1],vars0)==1; ay1 = eval(subs(y1.ay1(1)))
38 end
39 if ismember([ay2],vars0)==1; ay2 = eval(subs(y1.ay2(1)))
40 end
41 if ismember([ay3],vars0)==1; ay3 = eval(subs(y1.ay3(1)))
42 end
43 if ismember([ay4],vars0)==1; ay4 = eval(subs(y1.ay4(1)))
44 end
45

46 %% bx
47 if ismember([bx1],vars0)==1; bx1 = eval(subs(y1.bx1(1)))
48 end
49 if ismember([bx2],vars0)==1; bx2 = eval(subs(y1.bx2(1)))
50 end
51 if ismember([bx3],vars0)==1; bx3 = eval(subs(y1.bx3(1)))
52 end
53 if ismember([bx4],vars0)==1; bx4 = eval(subs(y1.bx4(1)))
54 end
55

56 %% by
57 if ismember([by1],vars0)==1; by1 = eval(subs(y1.by1(1)))
58 end
59 if ismember([by2],vars0)==1; by2 = eval(subs(y1.by2(1)))
60 end
61 if ismember([by3],vars0)==1; by3 = eval(subs(y1.by3(1)))
62 end
63 if ismember([by4],vars0)==1; by4 = eval(subs(y1.by4(1)))
64 end
65
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66 %% L
67 if ismember([L2],vars0)==1; L2 = eval(subs(y1.L2(1)))
68 end
69 if ismember([L3],vars0)==1; L3 = eval(subs(y1.L3(1)))
70 end
71 if ismember([L4],vars0)==1; L4 = eval(subs(y1.L4(1)))
72 end
73 if ismember([L5],vars0)==1; L5 = eval(subs(y1.L5(1)))
74 end
75

76 %% sx
77 if ismember([sx2],vars0)==1; sx2 = eval(subs(y1.sx2(1)))
78 end
79 if ismember([sx3],vars0)==1; sx3 = eval(subs(y1.sx3(1)))
80 end
81 if ismember([sx4],vars0)==1; sx4 = eval(subs(y1.sx4(1)))
82 end
83 if ismember([sx5],vars0)==1; sx5 = eval(subs(y1.sx5(1)))
84 end
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G.4. PLOT_LINKS_XY.M
The obtained balanced system is plotted in this script. Plots can be made for systems with any amount of
links, in any selected spring configuration and for different set of parameter values.

1 %% 2014-07-21 Maarten Lustig
2 %Plot n-link system in xy coordinates
3 %% %%%%%%%%%%%%%%%%%%%%%%%%% Plot line colors %%%%%%%%%%%%%%%%%%%%%%%%%%%
4 ccl=lines(7);
5 cch=hsv(12);
6 cc=[ccl;cch(2:end,:)]; %colors eerst alle line colors dan hsv
7 clear ccl cch
8 %% %%%%%%%%%%%%%%%%%%%%%%%%% State vectors %%%%%%%%%%%%%%%%%%%%%%%%%%%
9 clear qn

10

11 %phi = [180 110 200 180 0]/180*pi;
12 phi = [180 30 120 180 0]/180*pi;
13

14

15 qn(:,1)= [1;0];
16 for i = 2 : n_links
17 %states
18 qn(:,i) = [sin(phi(i)); -cos(phi(i))];
19 end
20

21 %% %%%%%%%%%%%%%%%%%%%%%%%%% Coordinate vectors %%%%%%%%%%%%%%%%%%%%%%%%%%%
22 clear Sn Jn An Bn
23

24 % Joint coordinates
25 Jn = [0;0];
26 for i = 2:n_links
27 Jn(:,i) = Jn(:,i-1) + eval(['L' num2str(i)]) * qn(:,i);
28 end
29

30 % Spring attatchment coordinates A and B
31 for i = 1 : n_springs
32 spring_i = springs(i,:);
33 %Proximal attatchment A
34 if spring_i(1)==1
35 An(:,i) = [0;0] + (eval(['ax' num2str(i)])*I + eval(['ay' num2str(i)])*R)* ...

qn(:,spring_i(1));
36 else
37 An(:,i) = Jn(:,spring_i(1)-1) + (eval(['ax' num2str(i)])*I + eval(['ay' ...

num2str(i)])*R)* qn(:,spring_i(1));
38 end
39 %Distal attatchment B
40 Bn(:,i) = Jn(:,spring_i(2)-1) + (eval(['bx' num2str(i)])*I + eval(['by' ...

num2str(i)])*R)* qn(:,spring_i(2));
41 end
42

43 % COM location coordinates S
44 for i = 2 : n_links
45 Sn(:,i) = Jn(:,i-1) + (eval(['sx' num2str(i)])*I + eval(['sy' num2str(i)])*R)* ...

qn(:,i);
46 end
47

48 %% %%%%%%%%%%%%%%%%%%%%%%%%% Plot scematics %%%%%%%%%%%%%%%%%%%%%%%%%%%
49

50 %Figure 1: links and springs
51 figure(99);
52

53 clf
54 hold on
55 axis equal
56

57 %links
58 for i = 1:n_links-1
59

60 if i ==1; i_cc = 4;
61 else i_cc = 1;
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62 end
63

64 plot(Jn(1,[i i+1]), Jn(2,[i i+1]),'color',cc(i_cc,:),'linewidth',2)%130)
65 end
66

67 %spring attatchment to COM
68 for i = 1:n_springs
69 if eval(['k' num2str(i)]) 6=0 && springs(i,2) >2
70 plot([Sn(1,springs(i,2)), Bn(1,i)],[Sn(2,springs(i,2)), ...

Bn(2,i)],'color',cc(1,:),'linewidth',2);end
71 end
72

73 for i = 1:n_springs
74 if springs(i,1) ≥2
75 plot([Sn(1,springs(i,1)), An(1,i)],[Sn(2,springs(i,1)), ...

An(2,i)],'color',cc(4,:),'linewidth',2);
76 end
77 if springs(i,2) ==2
78 plot([Sn(1,springs(i,2)), Bn(1,i)],[Sn(2,springs(i,2)), ...

Bn(2,i)],'color',cc(4,:),'linewidth',2);
79 end
80 end
81

82 %springs
83 % for i = 1:1
84 % if eval(['k' num2str(i)]) 6=0
85 % plot([An(1,i), Bn(1,i)],[An(2,i), Bn(2,i)],'color',cc(4,:),'linewidth',2);end
86 % end
87 for i = 1:n_springs
88 if eval(['k' num2str(i)]) 6=0
89 plot([An(1,i), Bn(1,i)],[An(2,i), Bn(2,i)],'color',cc(2,:),'linewidth',2);end
90 end
91

92 % hinges
93 for i = 1:n_links-1
94 plot(Jn(1,i), Jn(2,i),'ok','linewidth',4)
95 % plot(J2(1),J2(2),'ok','linewidth',4)
96 end
97

98 % spring attatchments
99 for i = 1:n_springs

100 plot(An(1,i), An(2,i),'+g','linewidth',1)
101 end
102

103

104 % %spring attatchment to Jv-1
105 % for i = 1:n_springs
106 % if eval(['k' num2str(i)]) 6=0
107 % plot([Jn(1,springs(i,2)-1), Bn(1,i)],[Jn(2,springs(i,2)-1), ...

Bn(2,i)],'color',cc(1,:),'linewidth',2);end
108 % end
109 %
110

111 %COM
112 for i =2:n_links
113 plot(Sn(1,i), Sn(2,i),'+m','linewidth',1)
114

115 end
116

117 % text
118 for i = 1:n_springs
119 text(An(1,i),An(2,i),['A' num2str(i)], 'VerticalAlignment','bottom', ...

'HorizontalAlignment','right')
120 text(Bn(1,i),Bn(2,i),['B' num2str(i)], 'VerticalAlignment','top', ...

'HorizontalAlignment','left')
121 end
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G.5. DESIGN EQUATIONS IN PARAMETERS OF PAPER 2
Using this script the design equations are rewritten to be in the form of paper 2.

1 %% NEW PARAMETERS
2 clearvars -except L8 %except a symbolic parameter, prevents symbolic toolbox to ...

restart every run
3 % clear all
4 clc
5

6 springs = [1,3;1,3];
7 Methode_xy_fun;
8 clc
9 CSc = eval(subs(CS,{ax1,ax2,by1,by2,sy2,sy3},[0,0,0,0,0,0]));

10 CSc = CSc(find(CSc 6=0))
11

12 syms b1 b2 c1 c2 b c d k s2 s3
13 CSd = eval(subs(CSc,{ay1,ay2,sx2,sx3,bx1,bx2},[d+c1,d-c2,s2,s3,b1,b2]))
14 CSe = ...

eval(subs(CSd,{c1,c2,b1,b2},[c*k2/(k1+k2),c*k1/(k1+k2),b*k2/(k1+k2),-b*k1/(k1+k2)]))
15

16 CSd = simplify(simple(CSe))
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G.6. STEP BY STEP FLOATING JOINT LINKAGE

This script shows step by step spring split up possibilities to obtain a floating point joint mechanism.

1 %% %%%%%%%%%%%%%%%%%%%%%%%%% STEP 1: Moment balanced linkage %%%%%%%%%%%%%%%%%%%%%%%%%%%
2 clearvars -except L8 %except a symbolic parameter, prevents symbolic toolbox to restart
3 % make constraint equations
4 springs = [1,3;1,3];
5 Methode_xy_fun
6

7 % Constant parameters
8 m2 = 2; m3 = 2;
9 L2 = 0.3; L3 = 0.3;

10 sx2 = double(L2/2); sx3 = double(L3/2);
11 sy2 = 0; sy3 = 0;
12 g=9.81;
13

14 % Variabel S2
15 r = sx2
16

17 % angle beta
18 beta =0/180*pi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19

20 Rot_beta = [cos(beta), -sin(beta);sin(beta), cos(beta)]
21

22 S2new = Rot_beta*[r;0]
23 sx2 = S2new(1)
24 sy2 = S2new(2)
25

26 % angle alpha
27 alpha = 0/180*pi; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 Rot = [cos(alpha), -sin(alpha);sin(alpha), cos(alpha)];
29 B1 = Rot*[0.05;0] % point B1 rotated with angle alpha
30

31 % parameters
32 ax1 = 0
33 ay1 = 0.08
34 ax2 = 0
35 % ay2 = -0.1
36

37 bx1 = 0.04%B1(1)
38 by1 = 0%B1(2)%0.0
39

40 bx2 = -0.03%-bx1
41 by2 = 0%-by1
42

43 %%%
44 Methode_xy_evalsubs
45 % plots
46 plot_links_xy
47

48 %plot Z1 and Z2
49 A1 = [ax1;ay1]
50 A2 = [ax2;ay2]
51 A3 = [ax3;ay3]
52 A4 = [ax4;ay4]
53

54 Z1 = (A1*k1+A2*k2)/(k1+k2)
55 Z2 = Z1 - [0;m3*g/(k1+k2)] % Z2(2)*(k1+k2) = 9.81 N !!!!!!!!!!!!!!!!!!!!!
56

57 plot(Z1(1), Z1(2),'og','linewidth',3)
58 plot(Z2(1), Z2(2),'or','linewidth',3)
59

60 %% %%%%%%%%%%%%%%%%%%%%%%%%% STEP 2: Moment balanced linkage + Force free point by ...
adding 2 spring %%%%%%%%%%%%%%%%%%%%%%%%%%%

61 clearvars -except L8 %except a symbolic parameter, prevents symbolic toolbox to restart
62 % make constraint equations
63 springs = [1,3;1,3;1,2;1,2];
64 Methode_xy_fun
65
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66 % Constant parameters
67 m2 = 2; m3 = 2;
68 L2 = 0.3; L3 = 0.3;
69 sx2 = double(L2/2); sx3 = double(L3/2);
70 sy2 = 0; sy3 = 0;
71 g=9.81;
72

73 % Variabel S2
74 r = sx2
75

76 % angle beta
77 beta =0/180*pi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
78

79 Rot_beta = [cos(beta), -sin(beta);sin(beta), cos(beta)]
80

81 S2new = Rot_beta*[r;0]
82 sx2 = S2new(1)
83 sy2 = S2new(2)
84

85 % angle alpha
86 alpha = 0/180*pi; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87 Rot = [cos(alpha), -sin(alpha);sin(alpha), cos(alpha)];
88 B1 = Rot*[0.05;0] % point B1 rotated with angle alpha
89

90 % parameters
91 ax1 = 0
92 ay1 = 0.08
93 ax2 = 0
94 % ay2 = -0.1
95

96 bx1 = 0.04%B1(1)
97 by1 = 0%B1(2)%0.0
98

99 bx2 = -0.03%-bx1
100 by2 = 0%-by1
101

102 % k1 = 147.15
103 % k2 = 147.15
104

105 %%% New springs
106 % spring 3
107 k3 = k1 +k2
108

109 ax3 = 0
110 ay3 = 0
111 bx3 = -0.3
112 by3 = 0
113

114 % spring 4
115

116 ax4 = 0
117 ay4 = 0.08
118 bx4 = 0
119 by4 = 0
120

121 k4 = (m2 * g * (L2-sx2)/L2)/ay4
122

123

124 %%%
125 Methode_xy_evalsubs
126 k3 = eval(subs(k3))
127 % plots
128 plot_links_xy
129

130 %plot Z1 and Z2
131 A1 = [ax1;ay1]
132 A2 = [ax2;ay2]
133 A3 = [ax3;ay3]
134 A4 = [ax4;ay4]
135

136
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137 Z3 = (A1*k1+A2*k2+A3*k3+A4*k4-[0;(m2+m3)*g])/(k1+k2+k3+k4)
138 Z4 = (A1*k1+A2*k2+A3*k3+A4*k4)/(k1+k2+k3+k4)
139

140 plot(Z3(1), Z3(2),'oc','linewidth',3)
141 plot(Z4(1), Z4(2),'oy','linewidth',3)
142

143

144 %% %%%%%%%%%%%%%%%%%%%%%%%%% STEP 3: Replace spring 3 by 2 other springs ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%

145 clearvars -except L8 %except a symbolic parameter, prevents symbolic toolbox to restart
146 % make constraint equations
147 springs = [1,3;1,3;1,2;1,2;1,2];
148 Methode_xy_fun
149

150

151 % Constant parameters
152 m2 = 2; m3 = 2;
153 L2 = 0.3; L3 = 0.3;
154 sx2 = double(L2/2); sx3 = double(L3/2);
155 sy2 = 0; sy3 = 0;
156 g=9.81;
157

158 % Variabel S2
159 r = sx2
160

161 % angle beta
162 beta =0/180*pi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
163

164 Rot_beta = [cos(beta), -sin(beta);sin(beta), cos(beta)]
165

166 S2new = Rot_beta*[r;0]
167 sx2 = S2new(1)
168 sy2 = S2new(2)
169

170 % angle alpha
171 alpha = 0/180*pi; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
172 Rot = [cos(alpha), -sin(alpha);sin(alpha), cos(alpha)];
173 B1 = Rot*[0.05;0] % point B1 rotated with angle alpha
174

175 % parameters
176 ax1 = 0
177 ay1 = 0.08
178 ax2 = 0
179 % ay2 = -0.1
180

181 bx1 = 0.04%B1(1)
182 by1 = 0%B1(2)%0.0
183

184 bx2 = -0.03%-bx1
185 by2 = 0%-by1
186

187 % k1 = 147.15
188 % k2 = 147.15
189

190

191 %%% New springs
192 % former spring 3, now split in new spring 3 and 5
193

194 ax3 = 0
195 ay3 = -0.08
196 bx3 = -0.15
197 by3 = 0
198

199 ax5 = 0
200 ay5 = -ay3
201 bx5 = -0.15
202 by5 = 0
203

204 k3 = (k1 +k2)*-L2/(2*bx3) % factor 1/2 as form 1 to 2 springs, factor -L2/bx3 ...
because changed bx2

205 k5 = (k1 +k2)*-L2/(2*bx3)
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206

207

208 % spring 4
209

210 ax4 = 0
211 ay4 = 0.08
212 bx4 = 0
213 by4 = 0
214

215 k4 = (m2 * g * (L2-sx2)/L2)/ay4
216

217

218 %%%
219 Methode_xy_evalsubs
220 k3 = eval(subs(k3))
221 k5 = eval(subs(k5))
222

223

224

225 % plots
226 plot_links_xy
227

228 %plot Z1 and Z2
229 A1 = [ax1;ay1]
230 A2 = [ax2;ay2]
231 A3 = [ax3;ay3]
232 A4 = [ax4;ay4]
233 A5 = [ax5;ay5]
234

235

236 Z3 = (A1*k1+A2*k2+A3*k3+A4*k4+A5*k5-[0;(m2+m3)*g])/(k1+k2+k3+k4+k5)
237 Z4 = (A1*k1+A2*k2+A3*k3+A4*k4+A5*k5)/(k1+k2+k3+k4+k5)
238

239 plot(Z3(1), Z3(2),'oc','linewidth',3)
240 plot(Z4(1), Z4(2),'oy','linewidth',3)
241

242

243

244 %% %%%%%%%%%%%%%%%%%%%%%%%%% STEP 4: Replace spring 4 and 5 by new spring 4 ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%

245 clearvars -except L8 %except a symbolic parameter, prevents symbolic toolbox to restart
246 % make constraint equations
247 springs = [1,3;1,3;1,2;1,2];
248 Methode_xy_fun
249

250 % Constant parameters
251 m2 = 2; m3 = 2;
252 L2 = 0.3; L3 = 0.3;
253 sx2 = double(L2/2); sx3 = double(L3/2);
254 sy2 = 0; sy3 = 0;
255 g=9.81;
256

257 % Variabel S2
258 r = sx2
259

260 % angle beta
261 beta =0/180*pi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
262

263 Rot_beta = [cos(beta), -sin(beta);sin(beta), cos(beta)]
264

265 S2new = Rot_beta*[r;0]
266 sx2 = S2new(1)
267 sy2 = S2new(2)
268

269 % angle alpha
270 alpha = 0/180*pi; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
271 Rot = [cos(alpha), -sin(alpha);sin(alpha), cos(alpha)];
272 B1 = Rot*[0.05;0] % point B1 rotated with angle alpha
273

274 % parameters
275 ax1 = 0
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276 ay1 = 0.08
277 ax2 = 0
278 % ay2 = -0.1
279

280 bx1 = 0.04%B1(1)
281 by1 = 0%B1(2)%0.0
282

283 bx2 = -0.03%-bx1
284 by2 = 0%-by1
285

286 % k1 = 147.15
287 % k2 = 147.15
288

289

290 %%% New springs
291 % former spring 3, now split in new spring 3 and 5
292

293 ax3 = 0
294 ay3 = -0.08
295 bx3 = -0.15
296 by3 = 0
297

298 % ax5 = 0
299 % ay5 = -ay3
300 % bx5 = -0.15
301 % by5 = 0
302 %
303 k3 = (k1 +k2)*-L2/(2*bx3) % factor 1/2 as form 1 to 2 springs, factor -L2/bx3 ...

because changed bx2
304 % k5 = (k1 +k2)*-L2/(2*bx3)
305

306

307 % spring 4
308

309 ax4 = 0
310 ay4_old = 0.08
311 ay4 = 0.08
312 % bx4 = 0
313 by4 = 0
314

315 k4_old = (m2 * g * (L2-sx2)/L2)/ay4_old
316

317 k4 = k4_old + k3
318 bx4 = k3/(k3+k4_old)*bx3
319 % by4 = 0
320 % ax4=0
321 % ay4 = 0.08
322

323 %%%
324 Methode_xy_evalsubs
325 k3 = eval(subs(k3))
326 k4 = eval(subs(k4))
327 bx4 = eval(subs(bx4))
328

329

330

331 % plots
332 plot_links_xy
333

334 %plot Z1 and Z2
335 A1 = [ax1;ay1]
336 A2 = [ax2;ay2]
337 A3 = [ax3;ay3]
338 A4 = [ax4;ay4]
339

340

341 Z3 = (A1*k1+A2*k2+A3*k3+A4*k4-[0;(m2+m3)*g])/(k1+k2+k3+k4)
342 Z4 = (A1*k1+A2*k2+A3*k3+A4*k4)/(k1+k2+k3+k4)
343

344 plot(Z3(1), Z3(2),'oc','linewidth',3)
345 plot(Z4(1), Z4(2),'oy','linewidth',3)
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346

347 %% %%%%%%%%%%%%%%%%%%%%%%%%% STEP 5: Variate values %%%%%%%%%%%%%%%%%%%%%%%%%%%
348 clearvars -except L8 %except a symbolic parameter, prevents symbolic toolbox to restart
349 % make constraint equations
350 springs = [1,3;1,3;1,2;1,2];
351 Methode_xy_fun
352

353 % Constant parameters
354 m2 = 2.15; m3 = 1.87;
355 L2 = 0.32; L3 = 0.29;
356 sx2 = 0.144; sx3 = 0.1864;%double(L3/2);
357 sy2 = 0; sy3 = 0;
358 g=9.81;
359

360 % Variabel S2
361 r = sx2
362

363 % angle beta
364 beta =0/180*pi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
365

366 Rot_beta = [cos(beta), -sin(beta);sin(beta), cos(beta)]
367

368 S2new = Rot_beta*[r;0]
369 sx2 = S2new(1)
370 sy2 = S2new(2)
371

372 % angle alpha
373 alpha = 0/180*pi; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
374 Rot = [cos(alpha), -sin(alpha);sin(alpha), cos(alpha)];
375 B1 = Rot*[0.05;0] % point B1 rotated with angle alpha
376

377 % parameters
378 ax1 = 0
379 ay1 = 0.08
380 ax2 = 0
381 ay2 = -0.08
382

383 % bx1 = 0.03%B1(1)
384 by1 = 0%B1(2)%0.0
385

386 bx2 = -0.03%-bx1
387 by2 = 0%-by1
388

389 % k1 = 147.15
390 % k2 = 147.15
391

392

393 %%% New springs
394 % former spring 3, now split in new spring 3 and 5
395

396 ax3 = 0
397 ay3 = -0.08
398 bx3 = -0.08
399 by3 = 0
400

401 % ax5 = 0
402 % ay5 = -ay3
403 % bx5 = -0.15
404 % by5 = 0
405 %
406 k3 = (k1 +k2)*-L2/(2*bx3) % factor 1/2 as form 1 to 2 springs, factor -L2/bx3 ...

because changed bx2
407 % k5 = (k1 +k2)*-L2/(2*bx3)
408

409

410 % spring 4
411

412 ax4 = 0
413 ay4_old = 0.08
414 ay4 = 0.08
415 % bx4 = 0
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416 by4 = 0
417

418 k4_old = (m2 * g * (L2-sx2)/L2)/ay4_old
419

420 k4 = k4_old + k3
421 bx4 = k3/(k3+k4_old)*bx3
422 % by4 = 0
423 % ax4=0
424 % ay4 = 0.08
425

426 %%%
427 Methode_xy_evalsubs
428 k3 = eval(subs(k3))
429 k4 = eval(subs(k4))
430 bx4 = eval(subs(bx4))
431

432

433

434 % plots
435 plot_links_xy
436

437 %plot Z1 and Z2
438 A1 = [ax1;ay1]
439 A2 = [ax2;ay2]
440 A3 = [ax3;ay3]
441 A4 = [ax4;ay4]
442

443

444 % Z1 = (A1*k1+A2*k2)/(k1+k2)
445 % Z2 = Z1 - [0;m3*g/(k1+k2)]
446 Z3 = (A1*k1+A2*k2+A3*k3+A4*k4-[0;(m2+m3)*g])/(k1+k2+k3+k4)
447 Z4 = (A1*k1+A2*k2+A3*k3+A4*k4)/(k1+k2+k3+k4)
448 % plot(Z1(1), Z1(2),'og','linewidth',3)
449 % plot(Z2(1), Z2(2),'or','linewidth',3)
450

451 plot(Z3(1), Z3(2),'oc','linewidth',3)
452 plot(Z4(1), Z4(2),'oy','linewidth',3)
453

454

455 [k1,k2,k3,k4]
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