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Abstract

We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is
ased on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric
pace. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in
hich extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve

he numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point
ntegration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method
nd reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of
LIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we
imulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new
pproach.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Isogeometric analysis; Meshless methods; Extreme deformations; Mesh distortion; Extrusion; Additive manufacturing

1. Introduction

Isogeometric analysis (IGA) is a generalization of finite element analysis (FEA) which adopts basis functions
rom the geometry representation in Computer Aided Design (CAD) instead of the standard C0-continuous piecewise

polynomials. The first isogeometric techniques were proposed by Hughes et al. [1] with the aim to naturally bridge
the gap between CAD and analysis. Since then and beyond the original goal, isogeometric basis functions proved
to lead to many advantages for the analysis itself, most notably in relation to their higher and tailorable continuity.

One of the favorable features of IGA is a reduced sensitivity to mesh distortion compared to FEA [2].
Nevertheless, beyond a certain deformation limit, standard (Lagrangian) IGA techniques also suffer from mesh
distortion. This issue is common to all mesh-based methods and manifests itself with decreasing result accuracy
and final loss of solvability under increasing material deformation.

A common technique to overcome mesh distortion in FEA is remeshing. In such approaches, before critical
entanglement occurs, the original mesh is replaced by a new one and the needed information is mapped from the
old to the new mesh. Remeshing strategies are computationally expensive and known to accumulate errors whose
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prediction and control is yet another challenge [3]. What additionally hinders remeshing from extensive application
in IGA is its methodical complexity [4]. Nonetheless, research on isogeometric remeshing techniques is currently
ongoing, see e.g. [5].

Another alternative to handle extreme deformations in a Lagrangian context are meshless methods, which
void mesh distortion by giving up the mesh altogether [6,7]. In these methods, the basis functions are computed
ecurrently from scattered nodal points such that distortion is avoided, and thus follow material deformations in a
oosened sense. Note that the Lagrangian character of the evaluation points as well as of the governing equations
s preserved, so that many meshless methods may still be considered Lagrangian techniques. Unfortunately, the
sogeometric goal of a unification of CAD and analysis is not compatible with the meshless approach. Moreover,

eshless methods are frequently less efficient than their mesh-based competitors [8,9] and suffer from well-known
nstabilities [10,11]. Moreover, for the case of incompressible material behavior which is relevant in this paper, the
onstruction of mixed discretizations to avoid locking is not trivial [12]. The efficiency and stability of mesh-based
omputations and the flexibility of meshless methods have motivated some hybrid approaches, aiming to benefit
rom the complementing advantages of both settings, see e.g. [13–17].

A third prominent way to handle extreme deformations is the change from the Lagrangian to the Eulerian
iewpoint, which has been widely adopted also within the isogeometric paradigm for fluid mechanics applica-
ions [18–22]. However, these approaches typical of computational fluid dynamics (CFD) are not optimal for
roblems involving solid material behavior such as viscoelasticity or plasticity, which are the focus in this paper.
oreover, Eulerian formulations typically come along with increased numerical complexity since a stabilization of

he advective terms as well as a special treatment of moving boundaries are required, see e.g. [18].
In this paper, we propose a hybrid method that adopts meshless concepts to generalize mesh-based IGA. We

enote our method as floating IGA (FLIGA) and specifically design it for mechanics problems where it is possible
o identify a single (possibly curved) direction of predominant deformation, which we call characteristic direction.

Moderate deformations may still occur perpendicular to this direction. The proposed method is based on the idea
of introducing meshless behavior in IGA only as far as the isogeometric concept is preserved, but to such an
extent that mesh distortion is overcome. We realize this by breaking the Lagrangian character of isogeometric
basis functions and preventing their distortion along the characteristic direction. Yet, the Lagrangian character of
governing equations and quadrature points is preserved.

The behavior of FLIGA basis functions is qualitatively illustrated in Fig. 1, which refers to the Taylor–Couette
flow with the internal boundary fixed and the external one rotating counterclockwise. Here the characteristic direction
of deformation is the circumferential one. Through the floating procedure, the two illustrated basis functions are
prevented from undergoing extreme shear deformations. Fig. 2 shows schematically how this behavior is achieved.
We start from a classical IGA discretization where one of the straight axes of the rectangular parametric domain
(the horizontal one in the figure) is mapped to the characteristic (circumferential) direction in the physical space.
We modify the classical tensor-product structure of multivariate B-Spline bases in the parametric domain, in that
we grant each basis function the ability to float along the characteristic direction independently from its neighbors
in the normal direction. This floating is carried out depending on the deformation and allows to significantly reduce
the basis function distortion after finally mapping the parametric domain to physical space. Note that this comes
along with a loosening of the classical mesh notion, as the element boundaries perpendicular to the characteristic
direction are no longer in place, whereas those along the characteristic direction are kept.

Our development of FLIGA is motivated by the simulation of extrusion-based additive manufacturing (AM)
technologies, including e.g. Fused Deposition Modeling (FDM) and bioprinting, which most often involve polymeric
materials. In such processes extreme deformations occur along the extrusion direction (Fig. 3). The investigations
conducted so far made use of remeshing, meshless methods, or CFD techniques. E.g., Reinold et al. [23] investigated
the formation of layer geometries and the layer interaction within large-scale extrusion by the Particle Finite Element
Method, a remeshing technique based on FEA. Smoothed Particle Hydrodynamics was adopted in Ouyang et al.
[24] to study FDM of a fiber-reinforced polymer, with special attention to the alignment of fibers in the viscous
melt. Comminal et al. [25] employed CFD simulations to predict viscous strand deposition flow for small-scale
AM.

We believe that FLIGA bears great potential for simulation of extrusion-based AM. Due to the Lagrangian
character of FLIGA, we easily treat the viscoelastic behavior of polymers without the need to stabilize advective

terms. The meshing efforts are minimized, as the geometry of the nozzle may be obtained seamlessly from its

2
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Fig. 1. Comparison of basis function evolution for IGA and FLIGA in the Taylor–Couette flow problem. In IGA, basis functions strictly
follow the deformation of the material leading to severe distortion. In FLIGA, we can determine a characteristic direction, where basis
functions follow the deformation only in an average sense.

Fig. 2. Evolution of the support of two different basis functions (colored in yellow and red) in the parametric and physical domains for
IGA and FLIGA in the Taylor–Couette flow problem.
3
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Fig. 3. Schematic basis function evolution for FLIGA in the example of frictional extrusion.

AD representation. The contact between nozzle and polymer melt is treated robustly due to the smoothness of the
asis functions, see [26]. Most importantly, despite the extreme deformations, FLIGA does not suffer from mesh
istortion avoiding the drawbacks of remeshing. Free surfaces that form behind the nozzle exit are naturally handled
ithout additional efforts to track boundaries. Incompressible material behavior can be treated by well-established
ixed approximation techniques from mesh-based IGA and no stabilization is required. Finally, by staying within

he solid mechanics setting we are ideally prepared to study, e.g. the evolution of the polymer melt behavior and
roperties upon cooling, residual stresses and final part properties.

The outline of the paper is as follows: In Section 2 we review our continuum model and its discretization with
GA, which are the basis for the introduction of FLIGA in Section 3. Numerical examples are provided in Section 4
nd conclusions drawn in Section 5.

. Continuum model and isogeometric analysis

In this section, we briefly recall the fundamental equations of solid mechanics for incompressible materials and
eview their isogeometric discretization. The formulation is based on velocities rather than on displacements, as it is
ustomary in the literature on viscous flow. For simplicity, in this paper we limit ourselves to the two-dimensional
ase, however the extension to three dimensions is conceptually straightforward.

.1. Continuum equations

The basis for our discretization is the Principle of Virtual Power∫
Ω

σ : δ D dΩ =
∫

∂ΩN

hN · δv dΓ , (1)

here for simplicity we neglect inertia and body force contributions. Here, σ denotes the Cauchy stress, D is the
train rate tensor related to the velocity v by

D =
1
2

(
∇xv +∇

T
x v
)
, (2)

nd δ D and δv are respectively the virtual strain rate and the virtual velocity, also related by

δ D =
1
2

(
∇xδv +∇

T
x δv

)
. (3)

e are using the notation (∇x(•))i j = ∂(•)i/∂x j to denote the spatial gradient of a first-order tensor (•), and x ∈ Ω

s the coordinate of a material point in the current (deformed) configuration. The boundary of the spatial domain

4
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Ω , ∂Ω , consists of two subsets ∂ΩD and ∂ΩN , with ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. On the Dirichlet
oundary the velocity is prescribed

v = vD ∀ x ∈ ∂ΩD, (4)

hereas the external surface force vector hN acts on the Neumann boundary

σ · n = hN ∀ x ∈ ∂ΩN , (5)

here n is the outward normal unit vector at each point of the boundary.
Without loss of generality, we decompose the Cauchy stress σ in a volumetric and a deviatoric contribution:

σ = −pI+ τ , (6)

here p is the pressure, I the second-order identity tensor and τ the deviatoric part of the Cauchy stress. We give
ore details on the constitutive relationships later, when applying the Principle of Virtual Power to specific materials
ith viscous and viscoelastic behavior.
In addition to the Principle of Virtual Power, we require incompressibility of the velocity field, i.e.

∇x · v = 0 ∀ x ∈ Ω , (7)

hich we recast in weak form as∫
Ω

(∇x · v) δp dΩ = 0, (8)

here δp is a virtual scalar pressure field.
In problems where we do not impose any Neumann boundary conditions, i.e. ∂ΩD = ∂Ω , the pressure is not

niquely determined, but allows for an arbitrary constant offset. In such cases, we achieve a unique pressure solution
y enriching the problem with a Dirichlet pressure prescription pD at a suitable part of the boundary ∂ΩD,p ∈ ∂Ω ,
.e.

p = pD ∀ x ∈ ∂ΩD,p. (9)

Note that all the fields involved in the previous equations undergo spatial and temporal variation, which we have
ot explicitly written for notational simplicity. We can obtain the transient evolution of a material particle x p by
eans of

x p
(
x0

p, t
)
= x0

p +

∫ t

0
v p
(
x p(x0

p, τ ), τ
)

dτ , (10)

here x0
p denotes the initial particle position at time t = 0.

.2. B-Splines

In this section, we summarize the construction of isogeometric basis functions, which are needed for the
ubsequent isogeometric discretization. Here we limit ourselves to B-Splines, however, in the past years, other
unction types from the CAD community have been employed in the context of IGA, e.g. NURBS, T-Splines, and
few more [1,27].
Given the integers r ≥ 0 and I ≥ r + 1, we define a knot vector as

Ξ = {ξ1, ξ2, . . . , ξi , . . . , ξI+r+1 | ξi ∈ R} . (11)

ere we assume repetition of the first r + 1 and last r + 1 knots and monotonic increase for the entire knot vector,
.e. ξ1 = ξr+1 and ξI+1 = ξI+r+1, while ξi ≤ ξi+1. Note that we will assume the same for all other knot vectors
ntroduced later, also beyond this section.

Let us now span a parametric domain Ω̂ξ = [ξ1, ξI+r+1] over coordinate ξ . A univariate (denoted for brevity as

D) B-Spline basis
{

N̂i,r (ξ)
}I

i=1
on Ω̂ξ with polynomial order r can be constructed by the Cox–de Boor recursion

ormula

r = 0 : N̂i,0 (ξ) =

{
1 for ξi ≤ ξ < ξi+1
0 otherwise ,

r ≥ 1 : N̂i,r (ξ) =
ξ − ξi N̂i,r−1 (ξ)+

ξi+r+1 − ξ
N̂i+1,r−1 (ξ) ,

(12)
ξi+r − ξi ξi+r+1 − ξi+1

5
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Fig. 4. Construction of classical bivariate tensor-product B-Splines.

where ξi ∈ Ξ . It holds N̂i,r−1 = 0, if ξi = ξi+r ; as well as 0
0 = 0. For more concise notation, from now on we will

omit the polynomial order index r when referring to B-Spline bases or their individual functions.

In classical IGA, a bivariate (also denoted for brevity as 2D) B-Spline basis
{

B̂i j (ξ)
}I,J

i=1, j=1
is constructed by

eans of a tensor-product structure

B̂i j (ξ, η) = N̂i (ξ) M̂ j (η) , (13)

n which M̂ j ∈

{
M̂ j (η)

}J

j=1
are again 1D B-Spline basis functions of polynomial order r (assuming equal-order

iscretization in both parametric directions), however, defined on Ω̂η = [η1, ηJ+r+1] and associated with knot vector
=
{
η1, η2, . . . , η j , . . . , ηJ+r+1 | η j ∈ R

}
. Hence, the 2D B-Spline basis consists of I · J basis functions that span

he parametric domain Ω̂ = Ω̂ξ × Ω̂η.
For the representation of B-Spline freeform surfaces we employ a linear combination Fn

: Ω̂ → Ωn , mapping
he static rectangular parametric domain to the current physical domain, i.e.

x = Fn (ξ) =
∑

i

∑
j

cn
i j B̂i j (ξ) . (14)

he 2D basis can thus be expressed in terms of physical (current) coordinates as

Bn
i j (x) = B̂i j

(
Fn−1

(x)
)

. (15)

he linear combination coefficients cn
i j in (14) are the (current) coordinates of the so-called control points and are

ubject to transient evolution, whereas the B-Spline basis in terms of parametric coordinates does not change over
ime. We use the Jacobian Jn to associate parametric and physical derivatives, i.e.

Jn (ξ) = ∇ξ x = ∇ξFn
=

∑
i

∑
j

cn
i j∇

T
ξ B̂i j (ξ) . (16)

or convenience, we summarize the indices i, j in the single running index b, which is uniquely associated to them
hrough

b = ( j − 1) · I + i. (17)

We summarize the above concepts graphically in Fig. 4. The extension to the construction of trivariate B-Spline
ases and freeform volumes can be found in Cottrell et al. [28].

.3. Discrete equations

With the B-Spline basis functions at hand, we can now replace the continuum model of Section 2.1 by a discrete
ormulation, limiting ourselves to the search for approximate solutions. In the literature, discretized quantities are
ometimes denoted with a superscript h. However, we drop such an index as computational quantities are from

ow on always related to the discrete approximate model, unless specified otherwise. We introduce the following

6
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isogeometric field approximations for velocity vn , pressure pn , virtual velocity δvn and virtual pressure δpn:

vn (x) =

B∑
b=1

dn
b Bn

b (x) , δvn (x) =

B∑
b=1

δdn
b Bn

b (x) ,

pn (x) =

A∑
a=1

qn
a An

a (x) , δpn (x) =

A∑
a=1

δqn
a An

a (x) .

(18)

Thus, our bases comprise B B-Spline basis functions Bn
b (x) for the velocity approximation and A B-Spline basis

functions An
a (x) for the pressure approximation, and dn

b and qn
a are the control point velocities and pressures,

respectively. The virtual quantities are interpreted accordingly. We also discretize in time, which is indicated by the
superscript n referring to the discrete time step tn .

With these approximations, we can write the discrete form of the Principle of Virtual Power as∫
Ωn

(
−pn
· I+ τ n)

: δ Dn dΩn
= 0. (19)

Here, we incorporated the volumetric–deviatoric split of the Cauchy stress and assumed hN = 0. Further, τ n

denotes the discretized deviatoric Cauchy stress. We obtain the discretized version of the kinematics by replacing
the continuous velocity fields in (3) with the respective ansatzes from (18).

The incompressibility equation in discrete form reads∫
Ωn

(
∇x · v

n) δpn dΩn
= 0. (20)

If we rewrite (19) by inserting the ansatz for the discretized virtual strain rate and exploiting the assumption of
ymmetry for the deviatoric stress tensor, for each control point index b we obtain a global residual vector Sn

b that
has to vanish, i.e.

Sn
b =

∫
Ωn

(
−pn
· I+ τ n)

∇x Bn
b dΩn

= 0 ∀ b = 1, . . . , B. (21)

rom the weak form of the incompressibility condition we obtain another global residual vector, which again must
anish for each control point index a, i.e.

Qn
a =

∫
Ωn

(
∇x · v

n) An
a dΩn

= 0 ∀ a = 1, . . . , A. (22)

he expressions (21) and (22) represent a global, potentially non-linear system of equations. In order for the system
o be solvable we need to incorporate the discretized Dirichlet boundary conditions, which we briefly discuss in
ection 2.4. The non-linear system is commonly solved with the Newton–Raphson strategy, see Appendix A for
ore details, and the solution delivers the current control point velocity and pressure unknowns dn

b and qn
a . Along

ith the basis functions, these yield the approximate velocity and pressure fields according to (18).

.4. Remarks

• Assuming incompressible material behavior, we have introduced a mixed discretization scheme. It is well
known that the discretization spaces for the velocity and pressure fields must be chosen appropriately to ensure
stability. In this paper, we adopt the subdivision approach proposed in Rüberg and Cirak [29], where the B-
Spline bases for the two fields are constructed in an efficient manner from equal polynomial order but different
element subdivision, namely, in 2D one pressure element in the parametric space is split into 2 × 2 velocity
elements.
• Integrals of a generic function f over the physical domain at time step tn can be numerically approximated

as ∫
Ωn

f (x) dΩn
≈

Q∑
q=1

W n
q · f

(
xn

q

)
. (23)

In IGA, the Q quadrature points xn
q and quadrature weights W n

q are often chosen as Gauss quadrature, although

much more efficient alternatives are available [30,31].

7
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• In IGA, incorporation of (possibly inhomogeneous) Dirichlet boundary conditions in the discrete global
equation system is a straightforward task due to the weak Kronecker-delta property of the basis functions, and
is performed by imposing suitable control point values on boundary control points. More details on boundary
conditions in IGA are given in Cottrell et al. [28].
• For the evolution of the physical domain in time, the control point velocities are integrated to displacements

and added to previous control point positions, e.g. using the forward Euler scheme

cn+1
i j = cn

i j +∆cn
i j = cn

i j + dn
i j ·∆t. (24)

Computing the basis functions at the next time step from the same bivariate B-Spline basis (which stays
identical in the parametric space) but using updated control point positions attributes a material point character
to all parametric points, i.e. a point in the parametric space is always associated to the same physical particle
of moving material, which is favorable for the formulation of material time derivatives as well as for accurate
integration. On the other hand, in presence of very large deformations, a severe distortion of the mapping
between parametric and physical space occurs, and IGA basis functions in the physical domain may no longer
be suitable for the analysis. This is qualitatively demonstrated in the upper branch of Fig. 1. In such cases,
techniques to control distortion of the basis functions become necessary.

. Basics of FLIGA

In this section, we introduce FLIGA as a new technique for controlling distortion of isogeometric B-Spline basis
unctions. FLIGA allows for the extension of isogeometric concepts to extreme deformation analysis. The previously
eviewed fundamentals of classical Lagrangian IGA are all maintained, except for those concerning B-Spline basis
unction design and numerical Gauss quadrature. These are both modified in this section.

.1. Introduction of floating B-Splines

We start the introduction of FLIGA by proposing an alternative for the construction of 2D B-Spline bases, as
isualized in Fig. 5. The core idea is a generalization of the classical tensor-product structure from IGA. We denote
his generalization as floating tensor-product structure. On the parametric domain, we associate each 1D B-Spline

asis function M̂ j ∈

{
M̂ j (η)

}J

j=1
with its own 1D B-Spline basis, such that instead of (13) we write

B̂n
i j (ξ, η) = N̂ n

i j (ξ) M̂ j (η) . (25)

n this floating tensor-product structure, ξ is the characteristic direction and η is the normal direction. In the
hysical space, the characteristic direction is mapped to the (possibly curved) direction along which deformations
re expected to be severe, whereas the deformations along the normal direction are assumed to be moderate. We

enote as
{

N̂ n
i j (ξ)

}I

i=1
the characteristic B-Spline bases, of which we count a total number of J . Similarly, the

ingle basis
{

M̂ j (η)
}J

j=1
is termed normal B-Spline basis. Note that the characteristic B-Spline bases in parametric

oordinates are no longer the same throughout the analysis as in IGA, but evolve with proceeding time step n. This

ttribute extends to the 2D B-Spline basis
{

B̂n
i j (ξ)

}I,J

i=1, j=1
.

We derive the characteristic B-Spline bases from a static (i.e. unchanged throughout the analysis) 1D parent

-Spline basis
{

Ñi

(
ξ̃
)}I

i=1
of order r on Ω̃ =

[
ξ̃1, ξ̃I+r+1

]
built by the recursive formula (12) with parent knot

ector

Ξ̃ =
{
ξ̃1, ξ̃2, . . . , ξ̃i , . . . , ξ̃I+r+1 | ξ̃i ∈ R

}
. (26)

he term parent refers to the descendance of all characteristic bases from this basis. With the parent basis at hand,
e introduce a set of J linear mappings Gn

j : Ω̃ → Ω̂n
ξ , with Ω̂n

ξ = [an, bn], such that

ξ = Gn
j

(
ξ̃
)
=

∑
hn

i j Ñi

(
ξ̃
)

. (27)

i

8
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Fig. 5. Schematic overview of bivariate B-Spline basis construction in FLIGA.

We introduce the term floating maps for these Gn
j in order to distinguish them from the later introduced geometric

apping to physical space. It is these floating maps that grant a floating character to the characteristic basis functions
y translating the parent basis into the characteristic basis functions

N̂ n
i j (ξ) = Ñi

(
Gn−1

j (ξ)
)

. (28)

s the arrangement of the linear combination coefficients hn
i j allows to control this floating, we refer to these as

oating regulation points. Due to weak Kronecker-delta property of the parent basis at its boundaries, the span of
ˆ n

ξ requires ∀ j : hn
1 j = an and hn

I j = bn . The scalar Jacobians of the floating maps are important quantities and
ead

J n
j

(
ξ̃
)
=

∑
i

hn
i j∇ξ̃ Ñi

(
ξ̃
)

. (29)

inally, the characteristic bases are combined by means of (25) with the normal basis, see also Fig. 5.
The procedure described above yields the 2D B-Spline basis supported on Ω̂n

= Ω̂n
ξ × Ω̂η. Then, as in classical

IGA, we use a geometric mapping Fn
: Ω̂n

→ Ωn according to (14) in order to obtain bivariate B-Spline bases
efined in the physical space, see (15).

The above procedure leads to the capability of basis functions corresponding to different normal parametric
oordinates to evolve independently from each other along the characteristic direction. This feature underlies
he terminology of floating isogeometric analysis and proves crucial for the treatment of extreme deformations
ssociated to the characteristic direction. Through the introduction of the floating regulation points, the degrees of
reedom for basis function construction are significantly increased, however, as will be shown shortly, at a limited
omputational cost. Let us assume having a parent and normal knot vector at hand. From the enriched basis function
pace that we obtain by introducing the additional mapping (27), we choose for the analysis the basis functions
hat are ideally suited in terms of distortion, while efficient to obtain. This leads to the updating schemes for the
oating regulation points and the control points, which are given in Section 3.2.

Unlike in standard IGA, in FLIGA we do not let the basis functions in physical space follow the deformation
ully, but only as far as a sufficiently undistorted shape is preserved. Unlike in remeshing techniques, the evolution
f the basis functions in FLIGA is incremental throughout the simulation. Conceptually, we lie in between and the
ecognition of the material deformation from basis function deformation is possible by averaging the movement of
ll basis functions.

The FLIGA strategy we have described is reminiscent of core strategies in meshless methods, which also

ncrementally evolve basis functions while relaxing constraints from a rigid and Lagrangian element division. In

9
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FLIGA we loosen mesh division in the characteristic direction, however we preserve a generalization of the classical
mesh, where elemental subdivision persists at the level of single basis functions. Thus, FLIGA can be viewed as
a generalization of IGA to the floating tensor-product structure that we obtain by incorporating some aspects of
meshless behavior.

3.2. Floating regulation point updates

The proper choice of update rules for the position of control points and floating regulation points is essential for
he success of FLIGA, as this combination offers control over the distortion of the basis functions in the physical
pace along the characteristic direction. By keeping for the control points, cn

i j , the deformation-dependent update
(24) from classical IGA, the task reduces to finding an updating scheme for the floating regulation points, hn

i j , such
that distortion of basis functions is minimized. The update can be expressed as

hn+1
i j = hn

i j +∆hn
i j , (30)

and we need to determine ∆hn
i j . Let us introduce a time-invariant level function L which associates a desired

parametric coordinate in the characteristic direction ξ to each generalized physical coordinate χ ∈ Sn
(

cn
i j

)
, where

S denotes the polygonal area spanned by the control net
{

cn
i j

}I,J

i=1, j=1
, i.e.

ξ = L (χ) . (31)

ote that L cannot be chosen as the ξ -component of the inverse mapping Fn−1
, since it has to be defined also for

= cn
i j /∈ Ωn . In the choice of L we have some freedom, provided it is sufficiently regular in space and it has no

ocal minima or maxima on all Sn .
Due to the association of floating regulation points and control points, an ideal update is

dξ = ∇χL(χ ) · dχ → ∆h̄n
i j = ∇χL(cn

i j ) ·∆cn
i j = ∇χL(cn

i j ) · d
n
i j ·∆t. (32)

owever, this in general would not preserve the rectangular structure of the parametric domain, as for j = 1, . . . , J
ifferent updates would be introduced on hn

1 j (and also on hn
I j ). To correct this, we introduce a blending function

n (ξ) taking the value γ n
= 0 at the boundaries ξ = an and ξ = bn , where we do not apply the update (32), but

ne that preserves the rectangular geometry of Ω̂ . A transition is defined towards the region gn
1 < ξ < gn

2 in which
plateau is reached, γ n

= 1. We typically choose an < gn
1 ≪ bn and an

≪ gn
2 < bn to obtain a reasonably large

lateau in which updates are then fully addressed by (32). For 0 < γ n < 1 a transitional treatment is applied.
Let us now apply L and γ n in order to obtain the incremental update of a floating regulation point hn

i j
orresponding to the physical control point cn

i j as

∆hn
i j = γ n (hn

i j

)
·∆h̄n

i j +
(
1− γ n (hn

i j

))
·∆h̄n

(I∗)(J/2). (33)

he uniform update at the boundaries ξ = an and ξ = bn is thus achieved by employing for all j = 1, . . . , J the
pdate (32) for the respective central boundary control point ( j = J/2, rounded if required). To distinguish the
oundaries ξ = an and ξ = bn , we choose in (33) I ∗ = 1 for i < I/2 and I ∗ = I for i > I/2. Note that the
ransition of the blending function between boundary and central regions in the characteristic direction ensures a
roper distribution of the floating regulation points.

In the initial state, the floating regulation points h0
i j are chosen at the Greville abscissae [32] of the parent knot

ector, such that ∀ j : ξ = G0
j

(
ξ̃
)
= ξ̃ . As a result, the floating mesh of the initial time step n = 0 conforms to

B-Spline mesh with classical element division. This ensures the compatibility of FLIGA with the isogeometric
oncept of using CAD geometry representations further for analysis.

We illustrate the idea of the level function on the example of extrusion in Fig. 6, where the physical domain
n is colored in blue. Obviously, a suitable mapping of the parametric space to Ωn would associate the dashed

ines in the figure to a constant ξ each, with ξ increasing from one dashed line to the next. Accordingly, we design
to take constant values along these levels and evolve monotonically along the characteristic extrusion direction

yellow). An update of the floating regulation points based on such L preserves the constancy of ξ along the desired
evels throughout simulation. We also depict the resulting behavior for two basis function candidates aligned to both
10
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Fig. 6. Levels defined by a suitable level function for extrusion simulation.

the characteristic direction and the levels of L. Note that the lack of regularity of the level function at the point
videnced with the black dot is unproblematic, as this point is never inside Ωn . Nonetheless, a certain distance

between this or similar points and the physical domain is required.

3.3. Basis function evaluation and connectivities

Let us now consider the location of a parametric point at time step tn , ξ n
q =

(
ξ n

q , ηn
q

)T , and aim at computing
he basis functions, their physical derivatives and the control point connectivity.

We begin by identifying the normal connectivities J n
q =

{
j ∈ {1, . . . , J } : M̂ j (ηn

q ) ̸= 0
}

associated to ξ n
q . Due

o the classical 1D B-Spline basis character of the normal basis, this task can be performed just like in IGA. As the
onsidered parametric point might in general pass element boundaries in normal direction during the simulation,
hese connectivities must be obtained for the current time step.

Then, for each j ∈ J n
q , the corresponding parent coordinate

ξ̃ n
q j = Gn−1

j

(
ξ n

q

)
, (34)

s computed by means of Newton–Raphson schemes, see Appendix B for details.
Given the different parent coordinates ξ̃ n

q j and the unique normal coordinate ηn
q , we can compute the parametric

asis function values at ξ n
q as

B̂n
i j (ξ

n
q ) = N̂ n

i j (ξ
n
q ) · M̂ j (ηn

q ) = Ñi (ξ̃ n
q j ) · M̂ j (ηn

q ), (35)

hile the scalar Jacobians (29) yield the parametric derivatives

∇ξ B̂n
i j (ξ

n
q ) =

(
∇ξ N̂ n

i j (ξ
n
q ) · M̂ j (ηn

q )
N̂ n

i j (ξ
n
q ) · ∇η M̂ j (ηn

q )

)

=

⎛⎝J n
j

(
ξ̃ n

q j

)−1
· ∇ξ̃ Ñi

(
ξ̃ n

q j

)
· M̂ j (ηn

q )

Ñi (ξ̃ n
q j ) · ∇η M̂ j

(
ηn

q

)
⎞⎠ .

(36)

he mapping of the evaluated B-Spline basis functions to the physical point xn
q = Fn

(
ξ n

q

)
does not alter the basis

unction value

Bn
i j (xn

q ) = B̂n
i j (ξ

n
q ), (37)

ut controls the physical gradients via the Jacobian (16), i.e.

∇x Bn
i j

(
xn

q

)
= Jn (ξ n

q

)−T
∇ξ B̂n

i j (ξ
n
q ). (38)

For assembling the contribution of the evaluation point into the global system of equations, its global control
oint connectivities are required. We complement the normal connectivities J n

q by the J sets of characteristic

onnectivities In
=

{
i ∈ {1, . . . , I } : Ñ (ξ̃ n ) ̸= 0

}
, obtained again as in IGA. The global connectivities of the
q j i q j

11
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FLIGA B-Spline basis are then defined as

Bn
q =

{
b ∈ {1, . . . , I · J } : B̂i j (ξ n

q ) ̸= 0
}
=
{
b = ( j − 1) · I + i

⏐⏐ i ∈ In
q j , j ∈ J n

q

}
. (39)

Profiting from the parametric substructure, this control point search procedure is significantly simpler than nodal
search algorithms of classical meshless methods.

3.4. Basis function properties

As follows, we list and discuss the most important properties of FLIGA B-Splines in order to assess their
suitability for analysis:

• Continuity: Basis function continuity follows the same rules as for classical tensor-product B-Splines. However,
in FLIGA, the lower-continuity locations of the univariate B-Splines are not all aligned in the normal
parametric direction as in IGA, see Appendix C for an exemplary illustration.
• Support: The number of supported basis functions at an arbitrary evaluation point is constant over the entire

domain and is the same as in IGA - e.g. for splines of order r in both parametric directions, this number is
(r + 1)2.
• Partition of unity: The proof can be found in Appendix D.
• First-order consistency: It is demonstrated with a simple patch test in Section 4.2.
• Weak Kronecker-delta property: The proof can be found in Appendix E.
• Boundary preservation: Physical boundaries are preserved while basis functions are floating; see Appendix F

for a proof.

The above list shows that FLIGA B-Splines preserve many attributes of classical tensor-product B-Splines that
are favorable for analysis. For instance, a minimum order of global continuity can be prescribed by the choice of
the polynomial B-Spline degree. Continuity can thus be adapted to the problem at hand. The fact that the number of
supported basis functions at an evaluation point is constant over the entire domain and known a priori is convenient
for the implementation, as there is no need to adaptively tune parameters to adjust the overlap of the basis functions
during the simulation (as sometimes necessary in meshless methods). In FLIGA, such overlap is straightforward to
identify on the parametric domain, hence the search for connectivities can be carried out with lower effort than in
meshless methods. Mixed discretization pairs can be easily obtained by adjusting the polynomial orders for velocity
and pressure (e.g. as Taylor–Hood pair) or by properly subdividing parent and normal domain (as mentioned earlier,
we apply the latter strategy in this work, see Section 3.5). FLIGA B-Splines always exactly cover the analysis
domain, allowing for the natural treatment of moving boundaries as in Lagrangian IGA. Boundaries are precisely
defined in FLIGA and can be consistently refined with strategies from IGA. The imposition of essential boundary
conditions is straightforward due to the weak Kronecker-delta property. First-order consistency is naturally satisfied,
whereas it is not present in many meshless techniques. In fact, the lack of (weak) Kronecker-delta property and
first-order consistency is believed to be related to most numerical issues encountered in the meshless context [33].

However, FLIGA also has limitations, most importantly, the restriction that mesh distortion can only be overcome
in one parametric direction. The fact that the parametric domain must have rectangular geometry is a limitation
inherited from IGA that can be partially solved by the extension to multi-patch geometries — however the freedom
of meshless methods in dealing with complex topologies and/or topological changes cannot be achieved. Also,
refinement is affected by the anisotropic nature of basis function construction and thus is non-local in the normal
direction. Finally, exact quadrature of FLIGA B-Splines is also challenging, see Section 3.6.

3.5. Mixed subdivision technique

Since our intention is to apply FLIGA to the study of incompressible materials (the polymer melt in extrusion-
based AM), we need mixed-field approximations to avoid volumetric locking. Thus, we employ the previously
introduced design principles to obtain a pair of FLIGA B-Spline bases: one for geometry and velocity (as per the
isoparametric concept), and the other one for pressure approximation.

For the choice of the velocity and pressure bases, we propose an adaption of the mixed subdivision strategy
from classical IGA [29] to FLIGA, see the illustration in Fig. 7. We construct the 2D pressure approximation from
12



H.C. Hille, S. Kumar and L. De Lorenzis Computer Methods in Applied Mechanics and Engineering 392 (2022) 114684

s
p

c

G
p
o

s

Fig. 7. Schematic overview of the mixed subdivision technique in FLIGA.

coarser parent and normal bases,
{

Ṽk

}K

k=1
and

{
Ûk

}L

l=1
, respectively, than the equivalents for velocity,

{
Ñi

}I

i=1
and{

M̂ j

}J

j=1
. In our computations, locking is successfully suppressed if one pressure parent knot span comprises two

equal-sized parent knot spans for velocity and the same holds for the normal bases. Based on these observations,
we propose the use of an equal parent domain Ω̃ for velocity and pressure.

Then, we introduce one set of floating regulation points hn
i j for design of the velocity basis, as well as another

et sn
kl for design of the pressure basis. The corresponding floating maps Gn

j and Hn
l are unique to the velocity or

ressure basis, respectively.
Unlike the floating maps, the physical mapping is universal and determined by the velocity basis and the physical

ontrol points cn
i j . Thus, the velocity and pressure bases must be constructed on the same parametric domain Ω̂n .

Note that, despite the coarser division, the physical boundaries of the pressure basis coincide with those of the
velocity basis.

We can now apply the update procedure of Section 3.2 to the control points cn
i j and velocity floating regulation

points hn
i j and introduce another update strategy for aligning the choice of sn

kl in a subsequent step by enforcing ∀l

ξml =
∑

k

Ṽk

(
ξ̃m

)
· sn

kl =
∑

i

Ñi

(
ξ̃m

)
· hn

i j = ξmj , j = 1+ round
(

l − 1
L − 1

(J − 1)
)

. (40)

The ξ̃m with m = 1, . . . , K can be considered as collocation points in the parent domain, which we choose as
reville abscissae. In this way, we determine all sn

kl such that the parent collocation points are mapped to the same
arametric characteristic points ξml as the floating maps for velocity would do. To this end, due to the subdivision
f the normal basis functions, the indices l and j must be associated, here for simplicity by an average scaling on

the index numbers. The s0
kl in the initial step may already be derived by the collocation scheme given above and

atisfy similarly to the velocity floating maps ∀l : ξ = H0
(
ξ̃
)
= ξ̃ .
l

13
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3.6. Material point integration

As mentioned earlier, a parametric point (e.g. a Gauss point) in IGA is always associated to the same material
oint during its movement through time and physical space. In FLIGA, one natural consequence of breaking the
agrangian character of the physical mapping is that one physical material point occupies different positions in the
arametric and in the parent space during the course of the analysis. Thus, we cannot preserve both material and
auss point character at the same time.
In FLIGA, we employ the material point integration strategy, which is well known from meshless methods, see

.g. Kumar et al. [11,34]. This technique attributes to the quadrature points a Lagrangian particle character in the
ense of (10). In the following, we elaborate on the derivation of these points and their quadrature weights, defining
ntegration by (23).

At the initial time step n = 0, we construct a standard Gauss integration scheme for the velocity mesh, which
orresponds to a classical IGA mesh at this stage. This provides parametric material points ξ 0

q and parametric
weights Ŵ 0

q , which are well suited for quadrature at this time step. We map these to the physical domain, obtaining

x0
q = F0 (ξ 0

q

)
,

W 0
q = Ŵ 0

q · det
(

J0 (ξ 0
q

))
.

(41)

We then evolve this quadrature set in the physical space during the analysis, following the deformation of the
material:

xn+1
q = xn

q + vn (xn
q

)
·∆t,

W n+1
q = W n

q · det
(
I+∇xv

n (xn
q

)
·∆t

)
.

(42)

In order to obtain the parametric material point positions at which the basis functions have to be evaluated according
to Section 3.3, we have to map the physical positions back to the parametric space, i.e.

ξ n
q = Fn−1 (

xn
q

)
. (43)

This is accomplished by a Newton–Raphson scheme described in Appendix G.
Note that material point integration may result in excessive and/or highly irregular spacings between material

points when deformations are too complex. Such phenomena also affect material point methods [35], and remedies
from such methods may be adapted to FLIGA in future work. In any case, for the purpose of the present investigation
even standard material point integration appears well suited. This is because, when a characteristic direction
dominates the deformation as assumed in this work, the particle distribution typically stays relatively regular. Finally,
material point integration in FLIGA clearly profits from the similarly deformation-dependent update of control
points, which ensures a compatible alignment of material points with control points throughout the simulation.

The absence of advective terms makes material point integration particularly attractive for viscoelastic, inertial
or non-isothermal flow, which otherwise would often require stabilization. Material derivatives from the continuous
model are naturally discretized by

D
Dt

(•)q

⏐⏐⏐⏐
t=tn−1

≈
(•)n

q − (•)n−1
q

∆t
, (44)

here (•)q and (•)n
q are the respective continuous and discrete quantity carried by the material point xq .

.7. Code structure

We conclude the introduction of FLIGA by brief remarks on a potential code structure, see Algorithm 1.
The initial step of the analysis procedure is the collection of relevant data, i.e. parameters specifying material

roperties, loading conditions and numerical parameters. Afterwards, parent and normal knot vectors are set up
ccording to the desired element subdivision, and the Greville point set ξ̃m for the later updates (40) of the pressure
oating regulation points is created. The definition of the polynomial order, of the initial floating regulation points

or velocity as well as of the initial control points completes the geometry preparation for the first time step. Also,

14
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Algorithm 1: Analysis procedure
Input: Problem data

1 Procedure: Floating isogeometric analysis
2 define: knot vectors; Greville points ξ̃m ; polynomial order: r ; initial configuration: h0

i j , c0
i j , x0

q , W 0
q

3 provide tools for velocity floating regulation point update: ∇χL, γ n

4 for time step n = 0, 1, . . . do
5 compute floating regulation points for pressure: sn

kl
6 compute parametric material points: ξ n

q

7 compute basis functions and connectivities at each material point: An
a , Bn

b , ∇x An
a , ∇x Bn

b , An , Bn

8 update definition of boundary conditions
9 for Newton-Raphson step r = 0, 1, . . . do

10 for material point index q = 0, 1, . . . , Q do
11 assemble material point contribution to residual vector: Rn,r

+= Rn,r
q

12 apply Dirichlet boundary conditions on Rn,r

13 if ∥Rn,r
∥ < tol then

14 time step solution: un
← un,r

15 leave Newton-Raphson loop
16 for material point index q = 0, 1, . . . , Q do
17 assemble material point contribution to tangent stiffness matrix: K n,r

+= K n,r
q

18 apply Dirichlet boundary conditions on K n,r

19 update solution guess by solving Newton-Raphson step: un,r+1
= un,r

− (K n,r )
−1 Rn,r

20 update: cn+1
i j , hn+1

i j , xn+1
q , W n+1

q , internal variables

Output: Approximate fields: vn, pn

we distribute material points as Gaussian quadrature points of this initial classical IGA mesh. Lastly, we design
a suitable level function and blending function, which will be required for the later updates (33) of the velocity
floating regulation points. Note that the design of level and blending function is not automatic, but requires some
knowledge on the expected deformations.

Having specified the problem setup, a time step loop is started. Floating regulations points for pressure are
omputed from those for velocity (40). Parametric material points are obtained by mapping back current physical
ositions of the material points (43). This provides the information to compute for each material point the values of
he supported basis functions and the control point connectivity (Section 3.3). The treatment of Dirichlet boundary
onditions is identical as in IGA (Section 2.4).

For solving the global system of discrete equations (Section 2.3), we apply a Newton–Raphson procedure
Appendix A) and therefore introduce a nested iteration loop. Within this loop, we first compute the residual vector
or a current guess of the unknowns. Other than in IGA, we do not assemble quadrature point contributions to
ntermediate element vectors. Instead, assembly occurs directly into the global system. To this end, we do not
terate over elements, but once over all material points. Contributions are computed for the global system (21) and
22), where we approximate integrals by (23) and apply material point integration (Section 3.6). Dirichlet boundary
onditions are now incorporated to the global residual vector.

Next, the residual norm is computed. If this norm lies below a prescribed tolerance, the Newton–Raphson
rocedure is considered converged. Otherwise, we assemble all material point contributions to the tangent stiffness
atrix in similar manner as previously done for the residual vector. Dirichlet boundary conditions are applied.
inally, the guess of the unknowns is improved and the next Newton–Raphson iteration initiated. This process
epeats until the residual tolerance is met.

Upon convergence, the current time step is finalized by updating the locations of control points (24), velocity
oating regulations points (33), and material points, as well as the material point weights (42) and possibly the

nternal variables from the constitutive laws (see Section 4.1). This step requires the evaluation of the level function

nd current blending function.
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Finally, the next time step is initiated and the procedure is repeated.

. Numerical examples

In this section, we provide insight into the numerical accuracy and stability of FLIGA using three numerical
xamples: patch test, Taylor–Couette flow, and polymer extrusion. Preliminarily, we specify two constitutive models
o be adopted in the examples. We conclude the section with some considerations on the computational cost.

.1. Constitutive models

In the numerical examples, we will use two material models, namely, the Newtonian fluid and the viscoelastic
ldroyd-B fluid, which are briefly described as follows. For details on their theoretical background we refer

o Phan-Thien [36]. In the Newtonian fluid model, τ = τ s is linearly related to the strain rate tensor

τ s = 2ηs D, (45)

here ηs denotes the Newtonian (or solvent) viscosity. The viscoelastic Oldroyd-B model is more complex and
ccounts for viscous and elastic components. Even under large deformations, it appears well suited for representing
aterial behavior in certain polymer deformation problems. In this model, τ = τ Old B is split into two contributions:

τ Old B = τ s + π . (46)

hile τ s can immediately be adopted from the solvent Newtonian fluid model, π accounts for a polymeric
ontribution and is given in terms of the differential equation in time

D
Dt

π = 2ηpλ
−1 D − λ−1π +∇xv · π + π · ∇T

x v. (47)

ere, λ is the relaxation modulus and ηp is the polymeric viscosity. We require an initial condition π (t = 0) = π0

to complete the problem statement.
Let us now seek the discretized versions of the deviatoric stresses defined above. From now on, we will remain

in the discretized setting. In the case of the Newtonian fluid, the task is trivial. Here suffices a replacement of the
continuous strain rate in (45) by the discretized strain rate Dn . This yields the discretized solvent deviatoric stress
τ n

s . For the Oldroyd-B model, we further require the discretized polymeric deviatoric stress πn . Using (44) for
material point integration, we discretize (47) obtaining πn at material point xq as

πn
q = πn−1

q +
∆t
λ

[
2ηp Dn−1

q − πn−1
q

]
+∆t

[
∇xv

n−1
q · πn−1

q + πn−1
q · ∇

T
x vn−1

q

]
. (48)

These computations do not require unknown information from the current time step, yielding an explicit time
integration. History information from the previous step is available and stored as internal variable at the material
point. The total deviatoric Oldroyd-B stress τ n

Old B is finally the sum of discrete solvent and discrete polymeric stress
contribution.

For setting up the tangent stiffness matrix, the linearizations of the deviatoric Cauchy stresses τ n
s and τ n

Old B
w.r.t. the current control point velocities are required, see Appendix H. Assembling all information, we give a
compact description of the global tangent stiffness matrix for implementation purposes in Appendix I. The governing
equations are linear in control point velocity and pressure. However, the final system may still lose its linearity after
application of nonlinear boundary conditions.

Alternative to the explicit time integration scheme proposed here, one could also apply an implicit analog. Being
unconditionally stable, such an implicit formulation would lower the restrictions on the time step size. However,
this introduces non-linearity in the governing equations and requires a more demanding linearization.

4.2. Patch test

We begin our numerical investigations by a patch test in order to assess first-order consistency. For simplicity,

we adopt dimensionless units. A square domain of Newtonian fluid (ηs = 50) is subject to the boundary conditions
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Fig. 8. Patch test problem for FLIGA.

Table 1
Logarithmic relative L2 errors of velocities in the patch test.

Polynomial order r=1 r=2 r=3

No. of quadrature points ≈1e2 →∞ ≈1e2 ≈1e6 ≈1e2 ≈1e6

IGA
x direction −16.28 −15.67 −14.80 −15.73 −14.47
y direction −16.02 −15.85 −13.69 −15.63 −14.26

FLIGA
x direction (characteristic) −1.93

lin. convergence
−2.46 −10.76 −2.88 −11.73

y direction (normal) −2.86 −3.78 −12.18 −3.94 −12.19

illustrated in Fig. 8, with v0 = 1. We solve (21), where we set the pressure to zero and thus do not need the
incompressibility constraint (22). The analytical velocity solutions are given by the monomials(

vx

vy

)
=

(
x
y

)
. (49)

We construct FLIGA discretizations where the characteristic direction is associated to the x-axis. We distribute
arbitrary 5 × 5 floating regulation points on Ω̂ξ and associate an equivalent number of 5 × 5 control points.
The control points are likewise positioned arbitrarily, where their irregular distribution is the same for all studied
polynomial orders. According to the constant control point number, we derive for each of these polynomial orders
equal-sized element divisions for parent and normal domain. Quadrature is carried out by material point integration
with either a moderate or an overkill number of points. It is not possible to define a classical Gauss point set for
the floating meshes, however, we choose for the material points only those positions that are Gauss points of at
least one supported basis function. For comparison, we also test classical IGA with Gauss integration, for which
the floating regulation points are all equidistantly aligned in order not to introduce a floating of basis functions.

Results of the patch test are given in Table 1 and show the logarithm of the L2 norm of the relative error for the
approximate velocity solutions. Classical IGA passes the test for all polynomial orders r , all quadrature sets and both
velocity components. On the other hand, we find FLIGA to fulfill the patch test only when overkill integration is
applied. This indicates that FLIGA B-Splines fulfill first-order consistency up to the error induced by the numerical
quadrature.

For overkill integration of linear FLIGA B-Splines we do not provide specific values but the observation that the
L2 norm of the relative error converges towards zero with errors being O(Q−1) in the point number Q. For instance,{
102, 103, 104, . . .

}
quadrature points yield logarithmic errors of approximately {−2,−3,−4, . . .}. We checked this

behavior up to errors of −8.5, a further increase of quadrature points being exceedingly expensive.

4.3. Taylor–Couette flow: general remarks

We now consider the benchmark problem of inertialess Taylor–Couette flow, see the setup in Fig. 9. We study
the flow behavior of a fluid comprised between two concentric cylinders, with inner and outer radii RI and RO ,
respectively, see Table 2. We let the outer cylinder rotate clockwise with an angular velocity ΩO , whereas the inner

cylinder is clamped. Assuming an infinite length in the out-of-plane direction, we employ a two-dimensional model
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Fig. 9. Taylor–Couette problem.

Table 2
Parameters for the Taylor–Couette setup.

Parameter Notation Value

Inner radius RI ≈100 mm
Outer radius RO ≈200 mm
Angular velocity ΩO 7.5 s−1

where velocities in the out-of-plane direction vanish. Each fluid particle is then characterized by an in-plane velocity
vector and a pressure which depend only on its radial position. We assume the material to have either Newtonian or
Oldroyd-B constitutive behavior. For these two material models, a stability analysis of the continuous Taylor–Couette
model predicts instabilities in some ranges of problem parameters, see Bai [37] and references therein. Here we
choose the parameters such that stability is preserved.

We choose a characteristic parent domain Ω̃ = [0, 10] and a parametric domain Ω̂n
= Ω̂ = [0, 10] × [0, 2].

The specific nature of Taylor–Couette flow requires the application of periodic boundary conditions to the parent
domain. These act in characteristic direction and the modeling details are provided in Appendix J. At the initial
time step, the boundary control points are distributed point symmetrically between inner radius RC P

I = 100 mm
and outer radius RC P

O = 200 mm. Different refinements are studied.
As level function we employ

L(x) = −10 ·
ϕ

2π
= −

10
2π

arctan (y/x), ∇xL(x) =
10
2π

⎛⎜⎝
y

x2 + y2

−
x

x2 + y2

⎞⎟⎠ . (50)

This choice associates points along each radial line in the physical space to the same parametric level. A blending
to ensure a rectangular parametric domain structure is not required due to the applied periodic boundary condition,
hence γ n (ξ) = 1.

The imposition of boundary conditions is carried out first on all outer boundary control points of pressure and
velocity, with index sets Aouter and Bouter , respectively. Dirichlet boundary conditions are homogeneous for pressure,
i.e. qn

a = 0 Pa ∀ a ∈ Aouter , and inhomogeneous for velocity

dn
b =

(
dn

xb
dn

yb

)
= ΩO

(
cn

yb
−cn

xb

)
∀ b ∈ Bouter . (51)

nner boundary velocity control points with index set Binner are subjected only to homogeneous Dirichlet boundary
onditions on velocity, dn

b = 0 mm/s ∀ b ∈ Binner .
The accuracy is quantified with the logarithm of the L2 norm of the relative error in velocity and pressure with

espect to the analytical reference solution. Computation of the reference results requires evaluation of the current
18
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Fig. 10. Error over deformation in the Newtonian Taylor–Couette benchmark for polynomial degrees r = 1, 2, 3.

adii RI and RO . We evaluate these quantities at each time step from the current mesh boundary, as the radius of the
uter boundary increases slightly during the simulation due to the incremental time stepping procedure. This effect
s not due to FLIGA but to time integration and hence we compensate for it in our post-processing by recomputing
he reference solution.

.4. Taylor–Couette flow: Newtonian fluid

For this constitutive model, we adopt a solvent viscosity ηs = 50 Pa s. Bai [37] provides the following analytical
olution for the horizontal velocity profile

vNewt,x (r, ϕ) = sin(ϕ)
(

αr +
β

r

)
, (52)

n which

α =
ΩO R2

O − ΩI R2
I

R2
O − R2

I
, (53)

β =
(ΩI − ΩO) R2

I R2
O

R2
O − R2

I
. (54)

n our non-inertial Newtonian case, we do not expect pressure variations to occur and thus obtain for boundary
ondition pNewt (RO ) = 0 Pa

pNewt (r ) = 0 Pa. (55)

e adopt ∆t = 5.0e− 5s, however the time step does not have a significant influence on the results for the present
etup.

As follows, we illustrate the numerical results obtained using FLIGA as well as classical IGA (Section 2) for
eference. We first evaluate the L2 norm of the relative error as a function of the deformation. We investigate linear,
uadratic and cubic polynomial B-Spline orders, i.e. r = 1, 2, 3, where the initial mesh consists of 18 × 6 pressure
nd 36 × 12 velocity elements. We initialize both IGA and FLIGA mesh with Gauss integration using (r+1)×(r+1)
oints.

The results are reported in Fig. 10. It can be seen that the accuracy of IGA deteriorates at relatively small
eformations, which is expected due to distortion of the classical mesh. Instead, with FLIGA the error stays nearly
onstant throughout the floating of the mesh for a remarkably large range of deformations. As the polynomial
rder r increases, the accuracy of the results improves, however the computational cost also increases. The lack of
moothness is probably the reason for the lower accuracy obtained with linear basis functions (r = 1) in combination

ith material point integration (note that quadrature points have to pass discontinuities in FLIGA). At present, the
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Fig. 11. Error plateau over spatial refinement in the Newtonian Taylor–Couette benchmark.

exact reason for the observed divergence after 5 − 6 rotations (r = 2, 3) is unclear. We suspect it to be related to
loss of quadrature accuracy and are going to investigate and improve this aspect further in the future.

The formation of an error plateau allows for an easy evaluation of convergence properties under mesh refinement.
Fig. 11 illustrates the L2 norm of the relative velocity error plateau for polynomial orders r = 2, 3 over spatial
refinement. These results agree well with what is expected from classical IGA, as the floating mesh initially conforms
with such a discretization, the convergence rate being close to r + 1.

4.5. Taylor–Couette flow: Oldroyd-B fluid

For the viscoelastic Taylor–Couette problem with the Oldroyd-B constitutive model, we choose a polymeric and
a solvent viscosity of ηp = 150 Pa s and ηs = 50 Pa s, respectively. The initial condition for the polymeric stress
reads π0

= 0 Pa and the relaxation time is chosen as λ = 0.1 s. Hence, we obtain a Weissenberg number of

Wi = λ · γ̇ = λ ·
ΩO RO

RO − RI
≈ 1.5, (56)

characterizing the ratio of elastic to viscous forces in our benchmark flow. It is well known that most standard
numerical schemes are only applicable to viscoelastic simulations up to Wi ≈ 1 [38]. Here, we maximize the
elastic component by entering this regime, but do not investigate a further increase which is generally critical in
the absence of stabilization.

As before, we compare FLIGA and IGA results with the analytical reference solution using the L2 norm of
the relative error. Note that in the viscoelastic case we have a transient stress response, which starts from the
initial polymeric stress condition and approaches a steady state. We investigate only the steady state and use
the reference solution in Bai [37]. The analytical steady state velocity field equals that of the Newtonian case,
vOld B,x (r, φ) = vNewt,x (r, φ). However, for the pressure boundary condition pOld B(RO ) = 0 Pa, we now expect a
different pressure profile at steady state

pOld B(r ) = 2β2λπ ·

(
1
r4 −

1
R4

O

)
, (57)

ith β given by (54).
Once again we evaluate the L2 norm of the relative error as a function of the deformation, where we now decrease

he time increment to ∆t = 1.0e − 5s for r = 1, 2, and ∆t = 5.0e − 6s for r = 3 due to the transient character
f the problem. We adopt again 18 × 6 pressure and 36 × 12 velocity elements for the initial mesh and initialize

aterial point integration on this mesh by distributing (r + 1)× (r + 1) Gauss points per element.
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Fig. 12. Error over deformation in the viscoelastic Taylor–Couette benchmark for polynomial degrees r = 1, 2, 3.

Fig. 13. Approximate horizontal velocity and pressure fields after N = 2 rotations of the outer cylinder.

Fig. 12 shows at the top the error versus deformation for the horizontal velocity component. The error norm starts
t a low level which corresponds to the Newtonian result since viscoelastic behavior is not yet active. As elastic
ontributions come into play, the accuracy slightly decreases and the error reaches a plateau at steady state. The
ffect of the polynomial degree on the accuracy agrees well with the previous observations in the Newtonian case.
urprisingly, for r = 2, 3 the extent of stable deformation is even significantly larger than in the Newtonian case.
t the bottom, Fig. 12 displays the error versus deformation for the pressure field. As the analytical pressure given
y (57) is valid only at steady state, the error is large in the initial state where, correctly, the numerical pressure
s zero. Afterwards, again a plateau in the error is reached at steady state. Similar observations as for the velocity
rror hold in this case.

The approximate velocity and pressure fields for r = 3 after N = 2 rotations of the outer cylinder are shown in
ig. 13. Both fields are free from oscillations, which is an indication of the absence of locking effects.

We conduct another mesh refinement study for r = 2, 3, see Fig. 14. The parameters are the same as before, but

he time step is adjusted for fine floating meshes to guarantee that the error is controlled by the spatial discretization.
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e

Fig. 14. Error plateau for the steady state of pressure and velocity over spatial refinement in the Oldroyd-B Taylor–Couette benchmark.

Fig. 15. Schematic extrusion setup.

We obtain for both velocity and pressure a convergence rate that even exceeds the expected order of r + 1 and r ,
respectively.

4.6. Extrusion-based AM

In this third numerical example, we demonstrate the suitability of FLIGA for the simulation of polymer extrusion
processes in AM, which was our original motivation for FLIGA. The problem setup consists of an extrusion nozzle,
that is initially filled with material, see Fig. 15 for details. The contact between material and nozzle walls is described
by a node-to-surface frictional contact formulation (Coulomb friction), where the contact constraints are enforced
with the penalty method. To facilitate the employment of a plug flow boundary condition driving the extrusion, the
friction factor fades in from no wall friction at the upper domain area (s0) to a plateau. This is modeled by two

qual-sized sections of parabolic increase, see again the figure for more details. Note that we keep all measures
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describing the nozzle constant throughout the simulation except the transition area for wall friction, sn
P , which is

determined by the current coordinate level of the top boundary. Values for wall penalty factor, plateau friction
coefficient as well as the other parameters are given in Table 3.

Additionally, we impose on the two top control point rows (i = 1, 2) the condition

dn
x(i)( j) = dn−1

x(α)( j), (58)

with α = 11, which has a stabilizing effect on the horizontal deformation in the top region and only negligibly
affects the overall simulation result.

We employ the Oldroyd-B viscoelastic model with initial condition for the polymeric stress π0
= 0 Pa. Once the

extrudate reaches below a threshold vertical coordinate, it attaches irreversibly to a substrate modeled by Dirichlet
boundary conditions. The substrate level is adapted so as to avoid a singularity in the physical mapping at points
associated to the corners of the parametric domain (see Fig. 15). As inertia forces are absent from the model, instead
of moving the nozzle, we can impose the printing movement on the substrate [25].

A time step of ∆t = 2.0e−5s is selected. Spatial discretization starts with the definition of the polynomial order
= 2 for both velocity and pressure. In the initial configuration of a classical mesh, we employ 4 pressure and 8

velocity elements per cross-section and use a large number of elements in extrusion direction (480 for pressure and
960 for velocity). The parent and initial parametric domain read Ω̃ = [0, 9] and Ω̂0

= [0, 9]× [−1, 1], respectively.
e choose material point integration with 8 × 3 Gauss points per parametric element in the initial configuration.
We employ the following blending function

γ (ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ξ = an

lin. ramp an < ξ ≤ an
+ 2d

1 an
+ 2d < ξ ≤ bn

− 2d
lin. ramp bn

− 2d < ξ ≤ bn
− d

0 bn
− d < ξ

, (59)

ith d = 1.0 mm. The level function is chosen such that

before attachment : ∇xL(x) =

{(
0
−1

)

once attached : ∇xL(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0
−1

)
PRy ≤ y(

ry/
√

r · r
−rx/
√

r · r

)
y < PRy, PRx ≤ x(

−1
0

)
y < PRy, x < PRx

,

(60)

where r = x− P R , with P R =

(
−

dN

2
− eN − 0.1 , ls + eN + 0.1

)T

for the coordinate system defined in Fig. 15.

his choice defines a level function as qualitatively illustrated in Fig. 6.
Fig. 16 shows the obtained solution fields prior to deformation and during extrusion at time T ≈ 0.4s. The upper

art of the figure shows the vertical velocity field. At a given horizontal level in the deformed state, the absolute
elocity at the nozzle walls is always observed to be lower than at the center of the nozzle, which is due to wall
riction. The significant increase of vertical velocity along the nozzle contraction is due to the incompressibility
onstraint. Also, we observe viscoelastic swelling after the polymer leaves the confinement of the nozzle. In the
ottom part of the figure, the pressure field is shown. This is free from oscillations, indicating the absence of locking.
urther, the pressure in the deformed state decreases along the contraction zone and finally becomes close to zero
t the nozzle exit. This behavior is consistent with observations in the AM literature, see e.g. [39].

The position of a selection of white dots aligned horizontally at the initial time step is tracked graphically
o qualitatively illustrate the extreme deformations occurring during extrusion, which are successfully handled by

LIGA.
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Table 3
Parameters for the extrusion setup.

Parameter Notation Value

Inlet area s0 0.25 mm
Parabolic friction area at t = 0 s0

P 5.15 mm
Straight section sN 1.1 mm
Contraction area cN 2.0 mm
Nozzle tip tN 0.8 mm
Substrate distance lS 0.525 mm
Inlet diameter DN 2.0 mm
Outlet diameter dN 0.5 mm
Convergent radius RN 2.5 mm
Divergent radius rN 1.2 mm
Nozzle exit radius eN 0.3 mm
Inlet velocity vN 10.0 mm/s
Substrate speed vS 38.0 mm/s
Wall penalty factor k 1.0e8
Plateau friction coefficient µ 0.075
Relaxation time λ 0.04 s
Polymeric viscosity ηp 1.5 kPa · s
Solvent viscosity ηs 0.05 kPa · s

4.7. Computational cost

We conclude this section with some brief considerations on the computational cost of FLIGA in comparison
ith existing techniques. A comparison with IGA may make little practical sense, since IGA simply cannot handle

he extreme deformations that become possible with FLIGA; on the other hand, such comparison may still provide
useful term of reference for IGA researchers. While a rigorous and fair cost comparison would require code

ptimization for both and is deemed out of scope for the present investigation, we generally observe that the
omputational cost of FLIGA is of the same order of magnitude but higher than that of IGA, which can be attributed
ainly to the following additional tasks in FLIGA:

• determination of parametric material point positions,
• recomputation of basis functions and derivatives,
• recomputation of floating regulation points for velocity and pressure.

he condition number of the final global linear system may also be larger in FLIGA. In our experience with a
on-optimized code for the Newtonian Taylor–Couette flow with r = 2, the simulation of the first rotation with

FLIGA costs slightly less than twice the same simulation with IGA. The cost overhead becomes less significant as
the polynomial order increases.

A perhaps more significant cost comparison would involve, rather than IGA, the CFD computational technologies
which are currently able to tackle problems with extreme deformations. We have not performed any of such
comparisons for the time being.

5. Conclusions

We propose Floating Isogeometric Analysis (FLIGA) as a novel extension of classical IGA. FLIGA enables the
solution of problems featuring extreme deformations which occur predominantly along one characteristic axis. The
basic idea is a modification of the classical tensor-product structure of B-Spline basis functions, such that multiple
B-Spline chains in the characteristic direction are able to independently float against each other in the parametric
domain. Following this strategy, distortion introduced by the physical mapping is overcome without the need for
classical remeshing. FLIGA enjoys several benefits of isogeometric and meshless modeling: (i) the initial geometry
representation is a classical IGA B-Spline mesh preserving the isogeometric principle, (ii) several properties of
B-Splines favorable for analysis are preserved e.g. partition of unity, weak Kronecker-delta property and first-order

consistency, (iii) moving domain boundaries are naturally dealt with, (iv) mesh distortion is overcome, (v) we
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Fig. 16. Extrusion simulation with FLIGA. The white dots highlight material points which were horizontally aligned at the initial step.

can easily construct mixed approximation spaces to avoid locking due to e.g. incompressibility, (vi) there is no
need to stabilize advective terms due to the Lagrangian quadrature point character. The effectiveness and accuracy
of FLIGA were demonstrated and quantified with the benchmark problem of Taylor–Couette flow with Newtonian
and viscoelastic Oldroyd-B material models. Accurate results were obtained up to extreme deformation levels while
keeping the spatial convergence rate expected for IGA. Finally, FLIGA was applied to the viscoelastic simulation
of extrusion-based additive manufacturing, showing stable and qualitatively accurate results.
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Appendix A. Newton–Raphson scheme for solving the governing system of equations

To compactly formulate the global Newton–Raphson scheme, we summarize at the current time step all unknowns
in a single vector u and all residual components in a single vector R. We introduce K as tangent stiffness matrix,
i.e. the linearization of the residual vector w.r.t. to the unknowns. For brevity, we omit here the time step index n.
25
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With

u =
[

qa

dbi

]
, R =

[
Qa

Sbi

]
, K =

∂ R
∂u
=

⎡⎢⎢⎣
∂ Qa

∂qα

∂ Qa

∂dβk
∂Sbi

∂qα

∂Sbi

∂dβk

⎤⎥⎥⎦ , (A.1)

the contributions to the tangent stiffness matrix read as follows:
∂ Qa

∂qα

= 0,
∂ Qa

∂dβk
=

∫
Ω

∂ Bβ

∂xk
Aa dΩ , (A.2)

∂Sbi

∂qα

=

∫
Ω

(
−Aαδi j +

∂τi j

∂qα

)
∂ Bb

∂x j
dΩ ,

∂Sbi

∂dβk
=

∫
Ω

∂τi j

∂dβk

∂ Bb

∂x j
dΩ . (A.3)

The linearization of the deviatoric stress is given in Appendix H.
The Newton–Raphson scheme solves the nonlinear vector equation

R (u) = 0, (A.4)

by the iterative formula

u(r+1)
= u(r )

− K−1 R
(
u(r )) . (A.5)

Starting from the initial guess u(0) (that can be obtained from the previous time step) we repeat application of this
formula until ∥R

(
u(r∗)

)
∥ < tol and thus identify u← u(r∗). We choose tol = 1.0e − 9.

Appendix B. Newton–Raphson scheme for the determination of the parent quadrature point position

In order to determine ξ̃q j (time step index n omitted) as defined by Eq. (34), we introduce the nonlinear scalar
equation

R j

(
ξ̃
)
= G j

(
ξ̃
)
− ξq , (B.1)

based on Eq. (27) with the unknown parent coordinate being the root ξ̃q j : R j

(
ξ̃q j

)
= 0. Given the parametric

quadrature point coordinate ξq and J j as the Jacobian of G j Eq. (29), we now apply the Newton–Raphson scheme

ξ̃
(r+1)
q j = ξ̃

(r )
q j − J j

(
ξ̃

(r )
q j

)−1
R j

(
ξ̃

(r )
q j

)
, (B.2)

by starting from the initial guess ξ̃
(0)
q j (obtained from the previous time step) until at iteration r∗ : ∥R j

(
ξ̃

(r∗)
q j

)
∥ <

tol ≈ 1e− 10. Finally, we obtain ξ̃q j ← ξ̃
(r∗)
q j .

Note that an initial guess might not be available when a material point has just crossed an element boundary in
normal direction. In this case, we can solve Eq. (B.1) once by the bisection method and then apply the proposed
Newton scheme again for the subsequent time steps.

Appendix C. Continuity

Basis function continuity in FLIGA is exemplarily illustrated on the parametric domain for the arbitrary floating
of an IGA mesh with r = 2 and 3 × 3 elements in Fig. C.17. For both IGA and FLIGA, the continuity of B-Spline
approximations along the depicted colored lines is Cr−1, assuming equal polynomial order of parent and normal
bases and no repetition of inner knots in the respective knot vectors. In the interior blue areas continuity is C∞. It
is observed that less discontinuity lines of the single B-Splines are aligned in the case of FLIGA.

Appendix D. Partition of unity

We show as follows that FLIGA B-Splines satisfy partition of unity at any point xq ∈ Ω , i.e.∑
i

∑
j

Bi j
(
xq
)
= 1. (D.1)
For brevity, we omit the time step index n.
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Fig. C.17. Schematic visualization of parametric lines with limited continuity of B-Spline approximations by IGA and FLIGA.

Proof. Let us reformulate the condition employing (37) and (35):

1 =
∑

i

∑
j

Ñi

(
ξ̃q j

)
M̂ j

(
ηq
)
. (D.2)

The latter requirement can also be expressed as

1 =
∑

j

(
M̂ j

(
ηq
)∑

i

Ñi

(
ξ̃q j

))
. (D.3)

Note that, since ξ̃q j is invariant w.r.t. i and since the parent and normal bases fulfill partition of unity [40], it holds∑
i

Ñi

(
ξ̃q j

)
= 1 , j = const,∑

j

M̂ j
(
ηq
)
= 1.

(D.4)

This finally leads to

1 =
∑

j

(
M̂ j

(
ηq
)∑

i

Ñi

(
ξ̃q j

))
=

∑
j

(
M̂ j

(
ηq
)
· 1
)
= 1, (D.5)

roving partition of unity for FLIGA B-Spline bases.

ppendix E. Weak Kronecker-delta property

FLIGA B-Spline bases constructed on the analysis domain Ω possess another important feature, namely weak
ronecker-delta property

Bi j
(
xq
)
= 0 ∀ xq ∈ ∂Ω , (i, j) /∈ Bbound , (E.1)

here Bbound denotes the set of basis function index tuples associated to boundary control points and where again
e drop index n.

roof. Let us apply (37) and (35) such that proving

Ñi

(
ξ̃q j

)
M̂ j

(
ηq
)
= 0 ∀ ξ q ∈ ∂Ω , (i, j) /∈ Bbound , (E.2)

s equivalent to prove (E.1). The (floating) tensor-product structure allows index-based determination of interior
ontrol points by
(i, j) /∈ Bbound ⇔ (i ̸= 1) ∧ (i ̸= I ) ∧ ( j ̸= 1) ∧ ( j ̸= J ), (E.3)
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which is similar to classical IGA. Further, due to the rectangular structure of the parametric domain, we can
guarantee

ξ q ∈ ∂Ω ⇔ (ξq = a) ∨ (ξq = b) ∨ (ηq = η1) ∨ (ηq = ηJ+r+1) , while

(ξq = a)⇔ (ξ̃q j = ξ̃1 ∀ j = 1, . . . , J )

(ξq = b)⇔ (ξ̃q j = ξ̃I+r+1 ∀ j = 1, . . . , J ).

(E.4)

valuation of (E.2) can now be carried out separately for the four possible cases represented in (E.4). Let us
ssume that we are in the first case, i.e. ξq = a or ξ̃q j = ξ̃1 ∀ j = 1, . . . , J while due to (E.3) i ̸= 1. This implies an
ssessment of weak Kronecker-delta property for the parent basis, which is a classical 1D B-Spline basis. Fulfillment
as shown in [40]. Satisfying i ̸= 1, we thus obtain Ñi

(
ξ̃q j

)
= Ñi

(
ξ̃1

)
= 0 resulting in B̂i j

(
ξ q
)
= 0 for the case

t hand, see (E.2). With this argumentation, we demonstrated weak Kronecker-delta property of FLIGA bases at
he left parametric domain boundary ξ = a.

The other three cases of (E.4) correspond to the remaining three edges and can be handled similarly. As each
ase satisfies (E.2) (condition (E.3) fulfilled) there is no option left for which the weak Kronecker-delta property
ould be violated. Hence, all four parametric edges exhibit the weak Kronecker-delta property. Indeed, this property
an be recognized from Fig. 5 to follow from the weak Kronecker-delta property of the characteristic and normal
ases.

ppendix F. Boundary preservation

Another advantageous feature of FLIGA B-Spline bases is the independence of ∂Ω from the floating regulation
oints hi j (time step index n skipped). That is, the physical boundary is not altered by the floating of characteristic
asis functions, but only by the mechanical evolution of the problem.

roof. To prove this, let us consider a point ξ̃ ∗q1 ∈ Ω̃ , where index ∗ indicates that this point is fixed in the parent
omain. Note that this parent point is associated only to the floating map j = 1. Let us now map this point to the
arametric domain:

ξq = G1

(
ξ̃ ∗q1

)
=

∑
i

hi1 Ñi

(
ξ̃ ∗q1

)
. (F.1)

bviously, ξq depends on the floating regulation points. However, let us further consider the physical mapping of
he parametric point ξ q =

(
ξq , η1

)T , where we associate our previously determined ξq to the bottom boundary
= η1. With partition of unity and weak Kronecker-delta property of the normal basis, as well as (14), (35), (28)

nd (F.1), we have all required information to compute the associated point xq on the physical boundary:

xq =
∑

i

∑
j

ci j B̂i j
(
ξ q
)
=

∑
i

∑
j

ci j N̂i j (ξq )M̂ j (η1) =
∑

i

ci1 N̂i1(ξq )

=

∑
i

ci1 Ñi
(
G−1

1

(
ξq
))
=

∑
i

ci1 Ñi

(
ξ̃ ∗q1

)
. (F.2)

nlike the characteristic ξq , the physical xq proves not to be dependent on hi j . Recall that ξ̃ ∗q1 is prescribed constant

nd therefore Ñi

(
ξ̃ ∗q1

)
remains constant as well. Following this demonstration for each ξ̃ ∗q1 ∈ Ω̃ while η = η1, the

elated xq cover the entire physical boundary associated to the bottom edge of the parametric domain. Dependency
s only w.r.t. ci j , hence, the physical shape is preserved under variation of hi j . The same argumentation is valid for
he upper edge of the parametric domain η = ηJ+r+1.

Due to the weak Kronecker-delta property, the physical maps of the left and right edges of the parametric domain

ξ = a and ξ = b) are fully determined by ci j (with i = 1 and i = I , respectively) and the normal basis
{

M̂ j

}J

j=1
.

he physical shape of these edges is naturally preserved under floating, due to the normal basis remaining static

nder variation of hi j .

28
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i

Appendix G. Newton–Raphson scheme for the determination of the parametric material point position

Here, we focus on how to map back a physical point x p to parametric space with geometry mapping F as given
n (14). For simplicity we omit superscript n obtaining

ξ q = F−1 (xq
)
. (G.1)

Analogous to the 1D case in (B.1), we apply a Newton–Raphson scheme on the nonlinear vector equation

R (ξ) = F (ξ)− xq , (G.2)

for which we seek the root ξ q such that R
(
ξ q
)
= 0. Therefore, the linearization of F w.r.t. ξ is needed, which is

known as Jacobian J by (16).
Starting from an initial guess ξ (r=0)

q (obtained from the previous time step), we apply

ξ (r+1)
q = ξ (r )

q − J
(
ξ (r )

q

)−1 R
(
ξ (r )

q

)
, (G.3)

until ∥R
(
ξ (r∗)

q

)
∥ < tol. We choose the same tolerance as for the determination of parent quadrature point positions

(tol = 1e− 10) and then set ξ q ← ξ (r∗)
q .

At each step r of this scheme, we need to provide B̂i j
(
ξ (r )

q

)
and its gradient ∇ξ B̂i j

(
ξ (r )

q

)
where ξ (r )

q = (ξ (r )
q , η(r )

q )T

is given, therefore we follow the basis function evaluation strategy proposed in Section 3.3.

Appendix H. Deviatoric Cauchy stress linearizations

∂τs,i j

∂qα

=
∂τOld B,i j

∂qα

= 0,
∂τs,i j

∂dβk
=

∂τOld B,i j

∂dβk
= ηs

(
∂ Bβ

∂x j
δik +

∂ Bβ

∂xi
δ jk

)
. (H.1)

Appendix I. Tangent stiffness matrix for implementation

The final tangent stiffness matrix according to (A.1) can be implemented as:

∂ Qa

∂qα

= 0,
∂ Qa

∂dβk
=

∑
q

Wq ·

(
∂ Bβ

∂xk
· Aa

)⏐⏐⏐⏐
x=xq

, (I.1)

∂Sbi

∂qα

= −

∑
q

Wq ·

(
∂ Bb

∂xi
· Aα

)⏐⏐⏐⏐
x=xq

,
∂Sbi

∂dβk
= ηs

∑
q

Wq ·

⎡⎣⎛⎝∑
j

∂ Bβ

∂x j

∂ Bb

∂x j

⎞⎠ δik +
∂ Bβ

∂xi

∂ Bb

∂xk

⎤⎦⏐⏐⏐⏐⏐⏐
x=xq

.

(I.2)

Appendix J. Periodic bases

For certain problems, periodic boundary conditions in the characteristic direction are required. The parent B-
Spline basis of order r is therefore constructed on a closed 1D parent domain Ω̃ and whenever evaluated, its
characteristic connectivities In

q j =

{
i ∈ {1, . . . , I } : Ñi (ξ̃ n

q j ) ̸= 0
}

are derived accordingly. Construction of this basis
occurs such that Cr−1 continuity is preserved, see Fig. J.18.

Assume we have such a periodic parent basis
{

Ñi

(
ξ̃
)}I

i=1
and ascending positions of the floating regulation

points hn
i j ∈ [an, bn] for given j . (Due to the floating regulation point updates, hn

i j /∈ [an, bn] is possible and then
we shift hn

i j by a multiple of bn
−an so as to enter this interval.) It is important to note that if we evaluate the floating

regulation points hn,q
i j as connected to a parent quadrature point ξ̃ n

q j , we cannot set hn,q
i j = hn

i j as this would cause

severe spatial jumps of these points at the periodic boundary. Instead we choose hn,q
i j ∈

{
hn

i j + λ
n,q
i j · (b

n
− an)

}
with λ

n,q
i j ∈ {−1, 0, 1} such that

n,q n,q n n
0 < h(i+1) j − hi j < b − a , (J.1)
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Fig. J.18. Schematic overview of 1D periodic B-Spline basis construction.

while

an
≤ Gn

j

(
ξ̃ n

q j

)
< bn. (J.2)

We then follow the previously introduced B-Splines evaluation concepts for FLIGA.
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