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Abstract: During metastasis of cancer, cell migration plays a crucial role, which is normally
accompanied by morphological evolution. To simulate cell deformation, we develop a phe-
nomenological, computational model involving deformation of a cell as well as its nucleus.
The migration of a single cell is orchestrated by a generic signal (e.g. a chemokine or a stiff-
ness stimulus), the microvascular flow and stochastic processes, which are dealt with by us-
ing Green’s Fundamental solutions, Poisseuille flow and a vector Wiener process, respectively.
Moreover, due to the uncertainties in the input variables, Monte Carlo simulations are car-
ried out to evaluate the correlations between various parameters and quantitatively predict the
likelihood of vessel transmigration of one cell during cancer metastasis.

1. INTRODUCTION

Cell migration takes place in many biomedical processes, which can be classified mainly
into amoeboid movement and mesenchymal movement. Driven by external signals such as
chemotaxis, durotaxis or tensotaxis, cell dissemination is crucially necessary to closing a wound
opening for instance; conversely, it is detrimental during cancer metastasis. Therefore, the
research on cell migration may provide a breakthrough for the pathology of many diseases.

Despite the fact that scientific research and medical technology have made significant progress
on cancer inhibition and treatment during the past several decades, the global mortality rate
caused by cancer has been rising along with emerging characters, i.e. disease diversity, com-
plexity, and proneness of young patients. Thus, the input from various fields definitely needs to
be enhanced. Mathematical modeling is capable of reproducing the situations that are beyond
the scope of experiments. With proper validation and evaluation, mathematical models are able
to provide avenues to understand cancer disease.

Cancer cells migrate typically attracted by chemokines [1] or the stiffness of substrate /ex-
tracellular matrix (ECM) [2]. However, due to the high inefficiency of cancer dissemination,
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only less than 0.02% of the cells can form colonies at distant sites successfully [3, 4]. In spite
of this inefficiency, cancer metastasis still causes around 90% of the deaths as a result of cancer
mortality [5, 6]. Metastasis is a multi-step cascade. Generally, the cascade of a metastatic cell
can be summarized by the following consecutive steps, 1) detachment of the primary tumor; 2)
local invasion and intravasation; 3) survive transit in the blood /lymphatic vessels; 4) extrava-
sation and colonization [7, 8]. To make the problem tractable, we aim at modeling the steps
of intravasation and extravasation of a metastatic cell using a simplified formalism for cancer
spread.

During cancer invasion, cells normally undergo transitions between two states of mesenchy-
mal motion and amoeboid motion, respectively, involving degradation of the surrounding sub-
strate /ECM by secreting proteinases MMP’s [9, 10] and squeezing through preexisting sub-
cell-size openings accompanied by the deformation of a cell and its nucleus [11]. In these two
mechanisms, we solely consider the latter where a single cell migrates and deforms during can-
cer invasion with an independence of MMP’s. Based on this scenario, a computational model
is developed that also shows the interactions between the cell membrane and the nucleus sur-
face during deformation. Furthermore, three unknown parameters are quantitatively analyzed
by Monte Carlo simulations, which provides insight into the correlation between the metastatic
rate and various input parameters. It is probably difficult to obtain these correlations from ex-
perimental (in-vitro and in-vivo) studies.

2. MATHEMATICAL MODEL

To mimic the cell cytoskeleton and the interaction between cell and its nucleus, a single cell
is treated as a collection of parallel 30 nodal points on the cell membrane and nucleus surface,
respectively. The corresponding parallel points are connected such that nucleus can move in
coordination with cell cytoskeleton. The migration of each nodal point i on the cell membrane
is considered as a result of the attraction from a chemokine /stiffness signal and a mechanical
stimulus. The position of a nodal xi(t) is determined by

dxi(t) = β∇c(t,xi(t))dt+ α (xn
i (t) +B(φ)x̂i − xi(t)) dt+ uz(ri)dt+ η1dW(t). (1)

The first term in Equation 1 takes care the chemokine or stiffness attraction, where we use
Green’s Fundamental solutions to deal with an imaginary point source. Here, β and c represent
a nodal point’s response to external signals and the intensity of the signal, respectively. Taking
the cell cytoskeletal dynamics into account, the second term is used to model the interaction
between cell and nucleus, where α stands for cell deformation relaxation and B(φ) is a two
dimensional rotation matrix. Within a small blood vessel, flow of blood is modelled by means of
Poisseuille flow with the velocity uz(ri). Moreover, due to the random nature of cell movement,
dW simulates random local deformation, which is a vector Wiener process with independent
samples from a normal distribution. Analogously, the stochastic differential equation of motion
for a nodal on the surface of nucleus is given by

dxn
i (t) = αn (xc(t) +B(φ)x̂n

i − xn
i (t)) dt− α (xn

i (t) +B(φ)x̂i − xi(t)) dt+ η2dW(t), (2)

where αn denotes the deformation relaxation of the nucleus, and thereby the migration of a
nodal point on nucleus surface is restricted by the cell mass center (the first term in Equation 2)
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and the outer boundary (the second term in Equation 2). For more information, we refer to our
other two works [12, 13].

With respect to our above-mentioned two previous studies, we have incorporated a steady
blood fluid flow. Since we are assuming a slow flow in the capillary-sized vessel, it is natural to
consider a laminar flow. Note that we only consider a component in the axial direction of the
blood flow velocity to simplify the phenomenon. Considering the pressure-induced Poisseuille
flow, the solution reads as

uz(r) = −∂p
∂z
· R

2
t

4µ
· (1− r2

R2
t

), in Ωb, (3)

where, p, µ and Rt denote the pressure, viscosity of fluid and half width of the blood vessel.
Within the vasculature domain Ωb, the distance between one nodal point and vessel boundary r
decides the axial velocity of the nodal point, which gives a parabolic profile. This straightfor-
ward phenomenological treatment of the blood flow can also be found in [14]. We note that the
current formalism is two-dimensional and that real world situations are three-dimensional. In a
three-dimensional setting a cell is able to migrate around a venule and hence it is able to reach a
location behind a small blood vessel without having to be transported through a vessel. The cur-
rent simulation should be considered as phenomenological in the sense that the current model
provides a formalism that can be used to use the following chain: (1) transmigration of (cancer)
cells through a vessel, (2) transport through the small blood vessel to a remote location, and (3)
the subsequent transmigration through a vessel wall, triggered by an external signal, to exit the
blood vessel. Finally, the cell can possibly colonize through possible successful proliferation in
its environment. This is one of the scenarios in which a cancer can spread from one tumor to
different locations in the body of an organism.

3. RESULTS

There are preexisting pores and fiber-like tracks in the substrate /ECM, and thereby cells are
able to penetrate through them without destroying their surroundings [15]. Based on available
literature, parameters have been chosen listed in Table 1 and more input values with correspond-
ing sources are provided in [13].

We model the intravasation of a metastatic cell through a preexisting pore in endothelium,
where the exact underlying mechanism is still poorly understood. Some studies suggest that
cell intravasation is regulated by tumor-stromal cell interactions [16], biochemical factors (like
tumor necrosis factor alpha TNF-α) or other cell-cell communications [17]. Therefore, we
assume that a cancer cell is attracted to translocate into the bloodstream by a biochemical signal
(see Figure 1 (a) and (b)). Due to the flow of microfluid in the vessel, the migrating cell is
advected at a velocity whenever subject to the flow. Note that there is no slip on the vessel
wall, hence the blood velocity is zero on the vessel boundaries. To visualize the blood flow,
some imaginary particles indicated in red color have been plotted in Figure 1, which have no
influence on the migrating cell. Subsequently, the cell is capable of moving towards the emitting
source (chemokine or stiffness) to complete the extravasation in Figure 1 (d). Once the source
is engulfed, the cancer cell is no longer mechanically deformed and hence the cell (and also its
nucleus) returns to its equilibrium circular shapes which has been described in more detail in
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(a) (b)

(c) (d)

(e) (f)
Figure 1. Consecutive snapshots of one cell during intravasation and extravasation of a blood or lym-
phatic vessel in a 2D simulation. The migrating cell, nucleus and the vessel are visualized by red, green

and grey colors, respectively. A blue asterisk denotes any type of sources.
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Table 1. Parameter values
Constant Notation Value Unit
Radius of a cell R 12.5 µm
Radius of a nucleus Rc 6.25 µm
Half width of the vessel Rt 14 µm
Cell deformation relaxation rate α 250 min−1

Nucleus deformation relaxation rate αn 2500 min−1

Mobility of points on cell membrane β 60 min−1

Pressure difference dp 1 kPa/100 µm
Viscosity µ 0.1 Pa · s
Time step in 2D ∆t 0.0001 min

[13]. As a conclusion, our model phenomenologically shows that the circular shapes of the cell
and its nucleus interactively evolve according to the stiff barrier during the cell metastasis.

To draw any quantitative conclusions from the model, Monte Carlo simulations have been
carried out to evaluate the uncertainties among the input variables on the vessel transit time of
one cell during cancer metastasis τ . The input parameters are the radius of a cancer cell R, the
radius of microvessel Rt and the cell deformation relaxation rate α. According to experimental
results, the MMP-independent cell migration arrests if the pore size is below 10% of the nuclear
cross section [10]. Since we choose the radius of the nucleus, Rc, to be half of the radius of cell
R in our model, we investigate the cell transit time by sampling on the R value (which is the
equilibrium radius of the cell) such that intravasation fails if the cell is too big. By equation 3, it
is clear that the velocity of blood is influenced significantly by the vessel radius Rt, and thereby
we evaluate the impacts of Rt on the cell transit time τ . Furthermore, the cell deformation
relaxation parameter α is sampled to show the relation between the cell deformation relaxation
and the cell transit time. We sample each parameter from a normal distribution with 5000
simulations (see Table 2) such that the Monte Carlo error is sufficiently small. Based on our
simulation results, the cell stucks out of the blood vessels (like Figure 1 (b)) during a relatively
long time. Therefore, we assume that the cell fails to reach the other part of the body through
the vessel if the transit time satisfies τ > 5 min. By analyzing the output data, there are 1496
out of 5000 failures, and thereby the success rate of cell transit during cancer metastasis is
70.08% in our simulations. In Figure 2, we present two diagrams: (a) is a histogram of 3504
successful samples showing the distribution of the cell transit time τ and (b) is the corresponding
cumulative probability distribution function (CDF), where the x-axis denotes the cell transit
time τ and the y-axis, represents the frequency of occurrence and the probability Pn (t ≤ τ )
given that cell penetrates to the other part of the body. In fact, Figure 2 (b) shows Pn (t ≤ τ
| cell has penetrated). It is a conditional probability, given by Pn (t ≤ τ | cell has penetrated)
= Pn (t ≤ τ ∩ cell has penetrated) / Pn (cell has penetrated). Since we have that Pn (t ≤ τ
∩ cell has penetrated) = Pn (t ≤ τ ), (because Pn (t ≤ τ ∩ cell has not penetrated) = 0), we
have Pn (t ≤ τ ) = Pn (t ≤ τ | cell has penetrated) * Pn (cell has penetrated), where Pn (cell
has penetrated) ≈ 0.70. Furthermore, the slope of the CDF curve in Figure 2 (b) represents the
probability density and thereby any probability Pn can be integrated within an time interval.
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On the other hand, it is also possible to estimate the time at which for instance 95% of the
successfully metastasizing cells have reached the other side of the vessel within a time of 4 min.
To compute the likelihood that the cell penetrates within a certain time, one has to multiply the
conditional probability from Figure 2 (b) by the probability of successful penetration, which is
about 0.70.

Table 2. Sample values

- R Rt α
Value N ∼ (12.5, 52) N ∼ (16, 52) N ∼ (250, 502)
Unit µm µm min−1

(a) (b)
Figure 2. The histogram (a) and CDF plot (b) of the vessel transit time of one cell during

intravasation and extravasation.

Regarding the correlations between the cell transit time τ and three variables R, Rt and α,
Figure 3 shows the scatter plots with corresponding correlation coefficient. Note that there is
a significantly positive linear correlation between the cell transit time τ and cell radius R with
correlation coefficient r equals to 0.79. This result is consistent with a biological experiment
that the migrating cancer cells with relatively big radius fail to penetrate a blood or lymph vessel
[10]. Conversely, the radius of vessel Rt shows a negative linear correlation with the cell transit
time τ in Figure 3 (c). As Rt increases, the flow velocity increases slightly which probably
accelerates the cell metastasis resulting in a shorter time τ . Moreover, the cell deformation
relaxation rate α shows no significant correlation with the cell transit time τ in current scenario.

4. DISCUSSION AND CONCLUSIONS

We developed a phenomenological model for chemico-mechanically induced cell and nu-
cleus deformation during cancer spread in 2D and we combined the model with Monte Carlo
simulations. Taking a generic signal into account, the emitting source has been incorporated
such that it allows a simple treatment using Green’s Fundamental solutions. Next to the signal,
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(a) (b) (c)
Figure 3. Scatter plots to show the dependence of the cell transit time τ on (a) the radius of cell R, (b)

cell deformation relaxation rate α, and (c) the radius of vessel Rt.

the interaction between the cell membrane and its nucleus proceeds via the deformation relax-
ation of the cell’s cytoskeleton, which is dealt with using a collection of springs. In contrast to
our previous works, a steady blood flow is taken into account using Poisseuille flow, where the
bloodstream is treated as an incompressible fluid. To determine the positions of one cell and its
nucleus, we use an IMplicit–EXplicit (IMEX) time-integration method to update the positions
such that the linear parts are treated using an Euler backward scheme, whereas the nonlinear
parts are treated in a forward Euler method. As we expected, the migrating cell and nucleus
are able to deform extensively in the confined spaces. Our model is likely to benefit the further
understanding of cancer spread mechanisms and thereby the model is likely to be helpful for
preventing the deterioration of early cancer lesions.

Most parameters are taken from literature, due to the variations of parameters, the quantifi-
cation of the propagation of uncertainty in the data is crucially important. To this extent, we
carry out Monte Carlo simulations to estimate likelihoods of vessel transmigration of a single
cell during cancer metastasis. In our simulation, the likelihood of a cancer cell transmigration is
70.08%. To metastasize successfully through constrained openings without ECM degradation,
the sizes of the migrating cell and its nucleus are dominating comparing with other two input
parameters. Furthermore, the speed of the microfluid negatively affects the cell’s transmigrating
time, and hence positively the cell’s penetration rate.

As far as we know, our model is the first description considering the interactive deformation
between a cell and its nucleus during cancer metastasis. The full model is presented in more
detail in [13]. For the current conference proceedings we extended the model in [13] with
the laminar flow of blood through a small blood vessel. Although the current formalism is very
elementary in the incorporation of the migratory path of cancer cells through the blood stream, it
does provide a first incentive to include realistic complex migration of cancer cells in the wake
of metastasis. Our model is expected to predict the microenvironmental behavior of the cell
and nucleus and to complement biological experiments as well as clinical trials for researching
cancer metastasis inhibition and new drug developments.
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