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SUMMARY

Modern computational and experimental techniques can represent the detailed dynam-
ics of complex systems using large numbers of degrees of freedom. To facilitate human
interpretation or the optimal design of control systems, however, reduced-order models
(ROMs) are required. Conventional reduced-order modeling techniques, such as those
based on proper orthogonal decomposition (POD), balanced proper orthogonal decom-
position (BPOD), and dynamic mode decomposition (DMD), are purely data-driven.
That is, the governing equations are not taken into account when determining the so-
lution basis of the ROM. The resulting ROMs are thus sub-optimal, particularly when
low numbers of degrees of freedom are used. Bui-Thanh et al. addressed this problem
by determining ROM solution bases using a goal-oriented optimization procedure that
seeks to minimize the error between the full and reduced-order goal functionals with
the reduced-order model as a constraint. However, several issues limit the application of
this approach. First, it requires explicit input matrices with the dimension of the refer-
ence data that result from spatially discretizing the governing equations. In addition, its
derivation is restricted to linear governing equations and goal functionals. To overcome
these limitations, our research group has proposed an alternative, a semi-continuous
formulation (SCF), in which the ROM constraint and the optimization process are de-
fined in a continuous setting. In this thesis, the mathematical framework of the SCF is
illustrated, as is the algorithm used to solve the optimization problem.

The SCF is first demonstrated using the one-dimensional linear advection-diffusion
equation. We then apply the SCF to one-dimensional Burgers equation to clarify the
treatment of nonlinear governing equations. In these two applications, we investigate
various goal functionals including linear and nonlinear functions. The results have shown
that substantial improvements in absolute accuracy over the conventional POD ROM are
achieved. We also demonstrate that it is possible to have multiple extrema in the opti-
mization problem and discuss how the resulting ambiguities can be avoided. Finally,
we demonstrate that when applying the SCF to a partial differential equation that only
approximates the dynamics of the reference dataset, the beneficial effect of the model
constraint in determining an optimal projection basis is large.

For applications of the SCF to two-dimensional problems, we consider the Stokes
equations. In this application, we use a vector-valued projection basis where the pro-
jection basis functions for each variable (the velocity and pressure) are taken together as
a single vector. The results clearly demonstrate the viability of the SCF in determining
an optimal projection basis for a specific goal functional in multi-dimensional multi-
variable problems.
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SAMENVATTING

Moderne rekenkundige en experimentele methodes kunnen, door gebruik te maken van
een groot aantal vrijheidsgraden, een gedetailleerde representatie geven van de dyna-
mica van complexe systemen. Echter, om menselijke interpretatie of optimaal ontwerp
van een controle systeem te bevorderen, zijn modellen met een gereduceerde orde (ROMs)
noodzakelijk. Conventionele methodes voor het construeren van een gereduceerd orde
model, zoals methodes gebaseerd op een passend loodrechte decompositie (POD), een
gebalanceerde, passend loodrechte decompositie (BPOD) of een dynamische modus de-
compositie (DMD), zijn puur gebaseerd op verkregen data. Dit betekent dat de beschrij-
vende vergelijkingen niet in acht worden genomen bij het bepalen van basis oplossingen
van de ROM. De resulterende ROM is dus sub-optimaal, vooral wanneer slechts een laag
aantal vrijheidsgraden wordt toegestaan. Bui-Thanh et al. hebben dit nadeel aangepakt
door de basis oplossingen te bepalen met behulp van een doelgerichte optimalisatie pro-
cedure, die het verschil in de doelfunctie van het volledige en gereduceerde model mi-
nimaliseert, waarbij het gereduceerde orde model als restrictie geldt. Echter, een aantal
zaken beperkt nog de toepassing van deze methode. Om te beginnen heeft deze me-
thode een expliciete input matrix nodig met een dimensie zo groot als de referentie data
die volgt uit de ruimtelijke discretisatie van de beschrijvende vergelijkingen. Verder is
de afleiding van de methode slechts geldig voor lineaire beschrijvende vergelijkingen en
doelfuncties. Om deze beperkingen het hoofd te bieden stelt onze onderzoeksgroep een
alternatieve, semi-continue formulering (SCF) voor, welke de restrictie van de ROM en
de optimalisatie opstelt in een continue formulering. In dit proefschrift wordt zowel het
mathematische kader van de SCF geschetst, als het algoritme toegelicht om het optima-
lisatie probleem op te lossen.

De SCF wordt eerst gedemonstreerd op een één-dimensionale, lineaire, advectie-
diffusie vergelijking. Om de behandeling van niet-lineaire beschrijvende vergelijking toe
te lichten wordt de SCF vervolgens op een één-dimensionale Burgers vergelijking toe-
gepast. Bij deze twee toepassingen worden verscheidene doelfuncties, zowel lineaire als
niet-lineaire varianten, onderzocht. De resultaten tonen aan dat aanzienlijke verbete-
ring in absolute nauwkeurigheid wordt verkregen in vergelijk met conventionele POD
ROM. Tevens wordt getoond dat in de optimalisatie meerdere extremen mogelijk zijn en
wordt beargumenteerd op welke manier deze ambivalenties kunnen worden vermeden.
Tot slot wordt gedemonstreerd dat de SCF, bij toepassing met een partieel differentiaal
vergelijking die de dynamica dan de referentie dataset slechts benadert, het gebruik van
het model als restrictie een groot voordeel oplevert bij het bepalen van de optimale, ge-
projecteerde basis.

Als toepassing van SCF op een twee-dimensionaal probleem is gekozen voor de Sto-
kes vergelijkingen. In deze toepassing wordt een vector-waarde projectie basis gebruikt,
waarbij de basis functies van de projectie voor elke variabele (snelheid en druk) worden
samengevoegd tot één enkele vector. De toepasbaarheid van SCF voor het bepalen van
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de optimale projectie basis voor een specifieke doelfunctie in een multi-dimensionaal
probleem wordt overtuigend ondersteund door de resultaten.
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1
INTRODUCTION

Everything should be made as simple as possible, but not simpler.

A. Einstein
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2 1. INTRODUCTION

1.1. BACKGROUND
Many physical systems encountered in science and engineering can be described by par-
tial differential equations. The development of discretization methods for partial differ-
ential equations, combined with advances in computer hardware, have made the sim-
ulation of nonlinear physical behaviors in three space dimensions relatively common-
place. Problems with millions of numbers of degrees of freedom can be routinely simu-
lated, thereby allowing researchers to study very complex phenomena.

However, in general, the numerical simulation of partial differential equations is in-
sufficient in itself, due to the following two aspects:

1. While numerical simulation can provide high-fidelity data (i.e. detailed time his-
tories of refined discretized solutions), researchers may not necessarily obtain an
increased level of understanding concerning the physics essential to a given phe-
nomenon from this data. As is true of experiment, careful analysis of the data is
required to develop simpler models that can be used to predict the key character-
istics of system behavior. This process can be hampered by the enormous size of
the data.

2. The increasing need for improved accuracy requires the inclusion of more detail
in the modeling stage, leading inevitably to larger-scale, more complex partial dif-
ferential equations of systems. In some problems, such as design optimization or
uncertainty quantification, we need to simulate many different possible realiza-
tions. Performing multiple simulations in such large-scale settings often leads to
unmanageably large demands on computational resources. Thus, there is a fun-
damental gap between the analysis fidelity available to simulate an individual case
and that practical for multi-disciplinary analysis.

Both of these aspects have motivated the development of low-order models of com-
plex systems that can serve as the basis for additional analysis. A low-order model is a
characterization of the physical processes of the original system, such that the essential
behaviors of the system are captured with a relatively small number of degrees of free-
dom. Reduced-Order Models (ROMs) are low-order models derived from an appropri-
ate projection of the original full system to a much smaller basis set consisting of basis
functions that can encapsulate most, if not all, of the system’s fundamental dynamics.
Therefore, by constructing ROMs, we can

• Provide the means by which system dynamics can be readily interpreted.

• Provide quantitative accurate descriptions of the dynamics of systems at a com-
putational cost much lower than the original numerical model.

The accuracy of a reduced-order model typically depends on the number of retained
degrees of freedom and the convergence properties of the ROM. In general, reductions
in computational cost needed of the ROM must be traded off with potential losses in
accuracy and model robustness.

A number of reduced-order modeling techniques are reviewed here (see also [1–7]).
The most popular reduced-order modeling technique is proper orthogonal decomposi-
tion (POD). It was introduced independently by several scientists [8], including Karhunen,
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Loéve, Kosambi, Obukhov and Pougachev. The POD is also known as Karhunen-Loève
decomposition (KLD), principal component analysis (PCA), and singular value decom-
position (SVD). For a detail discussion about the equivalence of the POD, KLD, PCA, and
SVD, see references [9, 10]. For the connection between POD and SVD, see the reference
[11]. The POD yields an orthogonal basis for a known ensemble of experimental data or
numerical solutions that are referred to as the reference data. The orthogonal basis is
optimal in the sense that it maximizes the projection of the ensemble onto the basis, in
other words, the error introduced by projecting the ensemble onto a subspace spanned
by the truncated set of POD basis functions is minimized in a least-squares sense. This
optimality makes POD very attractive and effective when performing data analysis and
compression.

The POD has successfully been applied in various fields. In fluid mechanics, the POD
was first introduced in the context of turbulence by Lumley [12] in 1967 as an objective
definition of coherent structures. In the same year, Backewell and Lumley [13] applied
the POD to the analysis of turbulent flow data obtained from experiments. Since then,
the POD has been widely employed to characterize coherent structures of wall-bounded
flows and free shear flows using experimental data and detailed numerical solutions [14–
22]. For early applications of the POD in other disciplines, including random variables,
image processing, signal analysis, data compression, process identification and control
(see the textbook [23] written by Berkooz et al.).

Combined with a projection framework, the POD provides a method for the genera-
tion of low-dimensional models of complex dynamic systems. Reduced-order modeling
by POD is based on projecting the governing partial differential equations onto a sub-
space spanned by the POD basis functions (using e.g. Galerkin projection) yielding to
low-dimensional sets of ordinary differential equations. The models resulting from this
process will be referred to here as the proper orthogonal decomposition reduced-order
models (POD ROMs). In fluid dynamics, Aubry et al. [24] studied the near-wall evolution
of the flow within a turbulent boundary layer using the POD ROM, where the neglected
POD basis functions were modeled using a Smagoringsky-type sub-grid-scale model.
Their POD ROM exhibited intermittent features reminiscent of those found in experi-
mental flows. References [8, 23, 25] provide reviews of similar POD ROMs for turbulence.
A tutorial on using the proper orthogonal decomposition to construct low-dimensional
models for turbulent flows is given by Smith et al. [26], where the key steps of the analy-
sis are explicitly described. A detailed illustration of how the POD is employed to de-
rive ROMs for fluid flows through Galerkin projection can be found in the reference
[27]. As the POD ROM allows for efficient approximate simulations of high-dimensional
dynamic systems, it provides a computationally tractable method for optimization and
control problems, e.g. see [28–36]. For applications of POD in other fields, for example,
structural dynamics, fluid-structure interaction and aeroelastic systems, the interested
reader is referred to [37–39].

In the last decades, scientists have developed alternatives to POD ROM, which have
advantages in some aspects. One of these is balanced proper orthogonal decomposi-
tion (BPOD), introduced in 2005 by Rowley [40]. The BPOD is a modal decomposition
technique that extracts two sets of modes for specified inputs and outputs, and forms
a combination between balanced truncation and POD. Balanced truncation is a well-
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known method in the control theory community. It was introduced by Moore [41] for
model reduction of linear input-output systems, and Lall et al. [42, 43] who extended it
to nonlinear systems. Most notably, balanced truncation has error bounds that are close
to the lowest error possible from any reduced-order model. However, balanced trunca-
tion becomes computationally intractable for very large dimensional systems. This is
why BPOD comes in. BPOD uses an output projection to reduce the number of neces-
sary adjoint simulations, which results in a computationally feasible approximation to
balanced truncation. BPOD has been successfully applied to various problems, e.g., see
[44–49].

Another alternative is dynamic mode decomposition (DMD) that was first introduced
to fluids community by Schmid and Sesterhenn [50] in 2008, subsequently followed up
with a journal paper by Schmid [51] which presented a detailed description. DMD is a
decomposition technique that is able to extract dynamic information from flow fields
without relying on the availability of a model equation. It is instead based on time-
resolved experimental or numerical data. This technique is essentially similar to Koop-
man analysis of nonlinear dynamical systems promoted by Mezić [52], as explained in
Rowley et al. [53] (also see the reference [54]). Compared to POD, which seeks basis func-
tions ranked in terms of energy content, DMD computes a set of modes each of which
is associated with a fixed oscillation frequency and decay/growth rate that are defined
by their corresponding eigenvalues. DMD modes represent spatial-temporal dominant
structures within the reference data and the eigenvalues contain information about sta-
bility of their corresponding eigenfunctions. In contrast, the POD basis functions do not
contain temporal evolution of the underlying process and the eigenvalues obtained by
POD represent the energy content of the corresponding eigenfunctions. Since its incep-
tion in 2008, DMD has quickly gained popularity in fluids community and many variants
of the DMD algorithm have been developed, including optimized DMD [55], and opti-
mal mode decomposition [56], extended DMD [57]. The DMD and its variants are most
often used to analyze flow fields using data from experiments or numerical simulations
[51, 54, 58–64]. Recently, the use of DMD for control and construction of a reduced-order
model has been studied by Proctor et al. [65, 66] and Annoni et al. [67, 68].

When it comes to constructing a reduced-order model, the POD, BPOD and DMD
are all entirely data-driven. This means that the governing equations are not introduced
until the generation of a reduced-order model, so after the basis functions (modes) have
already been determined. The POD does not require any a priori knowledge of the un-
derlying dynamics, that is, the POD is completely data dependent and does not take into
account the governing equations in the POD process. This is inconsequential when ap-
plying the POD to data analysis and compression since only the dominant structures of
the reference data need to be captured by the POD basis functions. However, when a
reduced-order model is generated by projecting the governing equations onto the sub-
space spanned by the POD basis functions, we can’t guarantee that the optimality of the
POD basis functions still holds (i.e. whether the solution of POD ROM is a good ap-
proximation of the reference data). In addition, although the truncated set of POD basis
functions can represent the most energetic processes within the reference data, these
might not be the processes of interest. This can be the case, for example, when consider-
ing problems in acoustics, where the perturbation of interest are much smaller in energy
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than the main flow. Moreover, the POD basis does not account for outputs of the sys-
tem, although this can be improved upon using the BPOD method which uses adjoint
information. Because no information regarding the governing equations is considered
in the POD process, the POD basis functions do not properly reflect the fact that the data
snapshots used are associated with different parametric instances of a dynamic system.

As an alternative to the data-driven based methods, in 2007, Bui-Thanh et al. pro-
posed a goal-oriented model-constrained optimization method for identification of the
basis functions [69]. In this method, the set of basis functions is optimized for a specific
output functional of interest with a reduced-order model for the governing equations as
an explicit constraint. Since the reduced-order model used as constraints is in discrete
form, we refer to it as the fully-discrete formulation (FDF). It brings additional knowledge
of the reduced-order governing equations into the determination of the basis functions.
The ROM which is built through these optimal basis functions then should in principle
have a better quality than that built through basis functions which are obtained from the
data-driven methods. The results in [69] have shown that the FDF provides significant
advantages over the POD.

1.2. DATA-DRIVEN REDUCED-ORDER MODELING TECHNIQUES
In this section, we will focus on the mathematical formulations of ROMs based on the
proper orthogonal decomposition, balanced proper orthogonal decomposition, and dy-
namic mode decomposition.

1.2.1. PROPER ORTHOGONAL DECOMPOSITION

The proper orthogonal decomposition is a procedure for extracting an orthogonal basis
of spatial functions from an ensemble of reference data obtained from experiments or
high-dimension numerical simulations. The elements of the orthogonal basis set are re-
ferred to by many names [23], including empirical eigenfunctions, empirical basis func-
tions, empirical orthogonal functions, or simply, modes. We will refer to them as POD
modes. The most attractive feature of the POD is its optimality: it provides the most
efficient way to interpolate the dominant components of a high-dimensional reference
dataset using only a limited number of modes, as is described below.

The fundamental idea is straightforward. Suppose that we have an ensemble {un}
of reference data, where un represents the reference data at t = tn , i.e. un = u(x, tn).
We seek an orthogonal basis {φ j (x)} for the Hilbert space L2(x) which is optimal for the
reference dataset in the sense that a finite series in the separated-variables form

unM(x, t ) =
nM∑
j=1

α j (t )φ j (x) (1.1)

approximates the ensemble better than representations of the same dimensions in terms
of any other bases. The ensemble may contain scalar-valued or vector-valued data u(x, t ).
For simplicity, we consider an ensemble of scalar-valued, real-valued data u(x, t ) in the
following, i.e. u(x, t ) ∈R.

In mathematical terms, a normalized basis function φ is optimal if the averaged pro-
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jection of u onto φ is maximized, that is, we seek a set of functions φ such that

〈|(u,φ)|2〉
‖φ‖2 (1.2)

is maximized. Here (·, ·) and ‖·‖ denote an appropriate inner product and norm for the
space L2(x) of square integrable functions, e.g.,

(u, φ) =
∫

x
uφd x and ‖φ‖2 = (φ, φ) =

∫
x
φφd x. (1.3)

In (1.2), 〈·〉 denotes the ensemble average. Solution of the maximization problem (1.2)
would yield only the best approximation by a single normalized function, but the other
critical points of this problem are also physically significant, for they correspond to a set
of functions which are taken together to provide the desired basis.

Thus, we now have a problem

argφmax〈|(u, φ)|2〉 , subject to ‖φ‖2 = 1. (1.4)

Note that the problem (1.4) is a constrained optimization problem that can be solved by
considering first-order optimality conditions. The optimality conditions can be derived
through the Lagrangian functional, which is defined as

L (φ) = 〈|(u,φ)|2〉+λ(1−‖φ‖2), (1.5)

where λ is the Lagrange multiplier and enforces the orthonormal constraint for φ. The
optimality condition is defined by requiring that the first derivative of the Lagrangian
functional vanishes for all variations φ+δψ ∈ L2(x) and δ ∈R, that is,

d

dδ
L (φ+δψ)|δ=0 =

d

dδ

[〈|(u,φ+δψ)|2〉−λ(φ+δψ,φ+δψ)
]∣∣
δ=0

= 2
[〈(u,φ)(ψ,u)〉−λ(φ,ψ)

]
= 0.

(1.6)

The expression in the brackets can be written as

〈
∫

x
u(x)φ(x)d x

∫
x′

u(x ′)ψ(x ′)d x ′〉−λ
∫

x
φ(x)ψ(x)d x

=〈
∫

x

[∫
x′

u(x)u(x ′)φ(x ′)d x ′
]
φ(x)d x〉−λ

∫
x
φ(x)ψ(x)d x

=
∫

x

[∫
x′
〈u(x)u(x ′)〉φ(x ′)d x ′−λφ(x)

]
ψ(x)d x,

where we have brought the average “inside” using the commutativity of the ensemble
average (〈·〉) and the space integral (

∫ · d x) and rearranged the integrals. Sinceψ(x) is an
arbitrary function, the necessary optimality condition reduces to∫

x′
〈u(x)u(x ′)〉φ(x ′)d x ′ =λφ(x). (1.7)
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This is a Fredholm integral equation whose kernel is the two-point space correlation
tensor averaged over the data ensemble and is defined as

R(x, x ′) def==== 〈u(x)u(x ′)〉 . (1.8)

Thus, the optimal basis of POD modes is given by the set of eigenfunctions {φ j } of the
integral equation (1.7) [23, 70]. Each new eigenfunction φ j is sought as the solution of
the maximization problem (1.2) subject to the constraint of being orthogonal to all pre-
viously found eigenfunctions. Furthermore, the eigenvalues represent the energy con-
tent of the corresponding modes, then the eigenvalues are ordered so that λ j ≥ λ j+1

with j = 1, 2, · · · . Thus, using the subspace spanned by the first nM POD modes (φ1,
φ2, · · · , φnM), the representation (1.1) is the best approximation of the reference data
with respect to other linear representations (e.g. Fourier series). In practice, to solve the
eigenvalue problem (1.7), there are two different methods: the direct method and the
snapshot POD, both of which are described in Appendix A.

1.2.2. BALANCED PROPER ORTHOGONAL DECOMPOSITION
The balanced proper orthogonal decomposition is an approximation of balanced trun-
cation that balances the properties of controllability and observability: the most con-
trollable states correspond to those that are most easily excited by the inputs, and the
most observable states correspond to those that excite large future outputs. Balancing
includes determining a coordinate system in which the most controllable directions in
state space are also the most observable directions. One then truncates the least con-
trollable/observable states. We first introduce the main ideas behind the balanced trun-
cation below, and then proceed to describe the BPOD.

BALANCED TRUNCATION

Balanced truncation is a model reduction method used for stable linear input-output
systems in the following form

ẋ = Ax +Bu,

y =C x,
(1.9)

where u(t ) ∈ Rp is a vector containing p external inputs, y(t ) ∈ Rq is a vector of outputs,
and x(t ) ∈Rn is the state vector, and the matrices A ∈Rn×n , B ∈Rn×p , C ∈Rq×n (although
generally u, y , x, A, B , and C can be complex as well).

Starting from defining controllability and observability Gramians, they are symmet-
ric positive semidefinite matrices defined by

Wc =
∫ ∞

0
e At BB∗e A∗t d t ,

Wo =
∫ ∞

0
e A∗t C∗Ce At d t .

(1.10)

The matrices Wc and Wo describe the controllable and observable subspaces of the sys-
tem (1.9). The controllable subspace is the set of states which can be obtained with zero
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initial state (i.e. x(0) = 0) and a specific input u(t ), while the observable subspace con-
sists of those states which as initial conditions could produce a nonzero output y(t ) with
no external input. The dominant eigenvectors (those correspond to the largest eigenval-
ues) of Wc and Wo describe the most controllable and observable states in the system
[71], respectively. Normally the controllability and observability Gramians are evaluated
by solving the Lyapunov equations [72]

AWc +Wc A∗+BB∗ = 0,

A∗Wo +Wo A+C∗C = 0.
(1.11)

Here A∗, B∗, and C∗ are Hermitian matrices of A, B , and C (for real matrices the Hermi-
tian is equivalent to the transpose), respectively.

The Gramians depend on the coordinate system. When using a change of state coor-
dinates x = Tz, they transform as:{

Wc 7→ T −1Wc (T −1)∗,

Wo 7→ T ∗WoT.

To obtain a balanced realization of the linear system (1.9), the state transformational co-
ordinate T is chosen so that the transformed controllability and observability Gramians
are equal and diagonal, that is,

T −1Wc (T −1)∗ = T ∗WoT =Σ= diag(σ1, · · · ,σn), (1.12)

where σ1 ≥ ·· · ≥ σn ≥ 0. Hence, the balancing transformation T can be found by com-
puting the eigenvectors of the product WcWo , i.e.

WcWoT =Σ2T. (1.13)

The eigenvectors of WcWo correspond to states through which the input is transmitted
to the output. The diagonal elements {σ j }n

j=1 in (1.12) are known as the Hanker singular

values of the system. The Hanker singular values indicate the importance of the corre-
sponding state for transmitting input to output and are independent of the particular
state coordinate system T . In the balanced truncation, only those states which corre-
spond to the largest Hanker singular values, in other words which have more effect on
the input-output behavior, are retained.

With the balancing transformation T defined, the reduced-order model for the linear
system (1.9) is formulated as

ẋr = T −1 AT xr +T −1Bu,

yr =C T xr ,
(1.14)

where xr ∈Rnr is the reduced-order state vectors and nr << n is the number of retained
states. An error criterion for model reduction is derived [73], in which the Hankel singu-
lar values of the neglected states give an error bound on the output. The error bound is
given by

‖y − yr ‖ ≤ 2
n∑

i=nr +1
σ2

i ‖u‖, (1.15)

where ‖·‖ denotes the L2 norm.
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BALANCED PROPER ORTHOGONAL DECOMPOSITION

The computation of Wc and Wo by solving the Lyapunov equations is not possible for
very large systems, as the Gramians are n ×n matrices that are not sparse. BPOD pro-
vides an approximation to balanced truncation using an algorithm that is computation-
ally tractable for high-dimensional systems. It is based on defining the empirical observ-
ability and observability Gramians, which approximate Wc and Wo from the Lyapunov
equations using data from numerical simulations (the empirical observability and ob-
servability Gramians are used by Lall et al. [42, 43] to extend balanced truncation to
nonlinear systems). Then the balancing transformation is computed using an SVD.

To compute the empirical controllability Gramian Wc for a system with p inputs, we
first calculate solutions of

d

d t
xi (t ) = Axi (t ),

xi (0) = bi ,
(1.16)

where i = 1, 2, · · · , p and bi is the i th column of the matrix B in equation (1.9). Then the
empirical controllability Gramian is given by

Wc =
∫ ∞

0

(
x1(t )x∗

1 (t )+·· ·+xp (t )x∗
p (t )

)
d t . (1.17)

In practice, the snapshots of the vector xi (t ) from numerical simulations are usually
given at discrete times t1, · · · , tm , and we form a matrix X in the following form

X = [
x1(t1)

p
ω1, · · · , x1(tm)

p
ωm , · · · , xp (t1)

p
ω1, · · · , xp (tm)

p
ωm

]
, (1.18)

where ω j are quadrature coefficients, and thus the empirical controllability Gramian is
rewriten as

Wc = X X ∗. (1.19)

To make the calculation of the empirical observability Gramian tractable when the
number of outputs is very large, the BPOD uses an output projection method, in which
the output is projected onto an appropriate subspace in such a way that the new input-
output system is the same order as the original system but with a much smaller di-
mensional output. That is, instead of the system (1.9) used for the balanced truncation
method, BPOD considers a new related system

ẋ = Ax +Bu,

y = Pr C x,
(1.20)

where Pr is an orthogonal projection with rank r (for the determination of r , the in-
terested reader is referred to [40]). This projection allows us to compute the empirical
observability Gramian using only r simulations of the adjoint system

d

d t
z(t ) = A∗z(t ),

z(0) =C∗Φr ,
(1.21)



1

10 1. INTRODUCTION

whereΦr is a q × r matrix withΦ∗
r Φr = Ir . Furthermore, the matrixΦr can be chosen as

a matrix that consists of the first r POD modes of the dataset
{
C x1(t ), · · · ,C xp (t )

}
. Using

solutions of the adjoint system z(t ) at discrete times, we form a data matrix Z as in (1.18),
and calculate the empirical observability Gramian by

Wo = Z Z∗. (1.22)

Once the matrices X and Z are determined, the balancing transformation is com-
puted by forming the SVD of the matrix Z∗X , i.e.

Z∗X =UΣV ∗

= [U1 U2]

[
Σ1 0
0 0

][
V ∗

1
V ∗

2

]
=U1Σ1V ∗

1 , (1.23)

where Σ1 ∈ Rr×r is invertible, r is the rank of the matrix Z∗X , and U∗
1 U1 = V ∗

1 V1 = Ir .
Denote the matrices T1 ∈ Rn×r and S1 ∈ Rr×n as

T1 = X V1Σ
−1/2
1 , S1 =Σ−1/2

1 U∗
1 Z∗. (1.24)

If r = n, then the matrix Σ1 contains the Hankel singular values, T1 determines the bal-
ancing transformation, and S1 is its inverse. If r < n, then the columns of T1 form the
first r columns of the balancing transformation, and the rows of S1 form the first r rows
of the inverse transformation. Finally, the BPOD ROM of order r for the linear system
(1.9) is written as

ẋr = S1 AT1xr +S1Bu,

yr =C T1xr .
(1.25)

1.2.3. DYNAMIC MODE DECOMPOSITION
In this section, we describe the dynamic mode decomposition technique for extracting
dynamical features from experimental or numerical flow field data. It is assumed that
the data is presented in the form of a snapshot sequence, given by a matrix V N

i that is
defined as

V N
1 = [v1, v2, · · · , vN ], (1.26)

where vi ∈ RNg is the i th snapshot of the flow field. In (1.26), the subscript 1 and super-
script N denote the first and last columns of the matrix V N

1 ∈RNg ×N , respectively. These
snapshots are assumed to be separated by a constant sampling time ∆t . It is assumed
that a linear mapping D connects the flow field vi at time t = ti to vi+1 at the next time
step, that is,

vi+1 = Dvi , (1.27)

and that this mapping remains approximately the same over the full sampling interval.
Hence, we can formulate the snapshot sequence as a Krylov sequence, i.e.

V N
1 = [

v1, Dv1, D2v1, · · · , DN−1v1
]
.
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The goal of the DMD is to determine the eigenvalues and eigenvectors of D based on the
snapshot sequence V N

1 . The eigenvalues and eigenvectors of D are referred to the DMD
eigenvalues and DMD modes, respectively.

As the number of snapshots increases, we can assume that the N th snapshot vN is
described as a linear combination of the previous and linearly independent snapshots
vi , i = 1, · · · , N −1, that is,

vN =
N−1∑
i=1

ci vi + r =V N−1
1 c + r , (1.28)

where c = [c1, c2, · · · , cN−1]T is a vector of unknown coefficients and r is the residual
vector. By following Ruhe [74], the flow field can be written as

D[v1, v2, · · · , vN−1] = [v2, v3, · · · , vN ] = [v2, v3, · · · , V N−1
1 c]+ r eT

N−1, (1.29)

or in a matrix form
DV N−1

1 =V N
2 =V N−1

1 S + r eT
N−1, (1.30)

where eN−1 = [0, 0, · · · , 1]T ∈RN−1, and S is the companion matrix

S =


0 0 · · · 0 c1

1 0 · · · 0 c2

0 1 · · · 0 c3
...

...
. . .

...
...

0 0 · · · 1 cN−1

 . (1.31)

The unknown matrix S is determined by solving a least-squares problem

S = arg min
S

‖V N
2 −V N−1

1 S‖, (1.32)

which minimizes the residual r . In general, we use the QR decomposition of V N−1
1 =QR

to solve this least squares problem (1.32). The vector c then is given by

c = R−1QT vN . (1.33)

Once S has been determined, its eigenvalues and eigenvectors can be computed. The
eigenvalues of S are approximations of the eigenvalues of D . Furthermore, if ψ j is an
eigenvector of S, then (U N−1

1 ψ j ) is an approximate eigenvector of D .
The implementation of the above decomposition based on the companion matrix S

can yield an ill-conditioned algorithm that is often not capable of extracting more than
the first or first two dominant dynamic modes. Thus, in practice, the SVD-based ap-
proach presented in [51], also named as Standard DMD by Tu et al. [75], is used to com-
pute the DMD eigenvalues and DMD modes. The algorithm proceeds as follows:

1. Split the sequence of snapshots V N
1 into two sequences

V N−1
1 = (

v1, v2, · · · , vN−1
)
, V N

2 = (
v2, v3, · · · , vN

)
. (1.34)
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2. Perform the singular value decomposition of V N−1
1

V N−1
1 =UΣW T , (1.35)

where the left singular vectors U are recognized as POD modes of the data se-
quence V N−1

1 .

3. Define the matrix S̃, which amounts to a projection of the linear operator D onto
a POD basis

D =V N
2

(
V N−1

1

)−1 =V N
2 WΣ−1U T

=⇒S̃ =U T DU =U T V N
2 WΣ−1. (1.36)

4. Compute the eigenvalues and eigenvectors of S̃

S̃ψ=λψ. (1.37)

5. Define the DMD eigenvalues as the nonzero eigenvalues of S̃, and the DMD mode
corresponding to λi by

φi =Uψi . (1.38)

Note that the DMD eigenvalues produce stability information about DMD modes
when mapped onto the complex plane as defined in [64]

µi = log(λi )

∆t
. (1.39)

Here the real and imaginary components of µi represent the growth/decay rate and fre-
quency of the corresponding DMD mode, respectively.

1.3. FULLY-DISCRETE FORMULATION
The FDF provides a general framework for identifying bases that optimally represent an
output functional of interest. To obtain optimal bases, Bui-Thanh et al. considered a
goal-oriented, model-constrained optimization problem that seeks to minimize the er-
ror between the full-space output functional and reduced-order output functional over
a time interval (0, t f ), subject to satisfying a ROM for the linear-time invariant (LTI) sys-
tem.

1.3.1. REDUCED ORDER MODEL FOR THE LINEAR TIME INVARIANT SYSTEM
Considering the LTI system

Mu̇ +K u = F (1.40)

g =Cu (1.41)

with the initial condition
u(0) = u0 (1.42)
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where u(t ) is the system state, u̇(t ) is the derivative of u(t ) with respect to time, and the
vector u0 contains the specified initial state. Generally, we are interested in systems of
the form(1.40) that result from discretizing partial differential equations in space. The
matrices M ∈ RN×N and K ∈ RN×N are dependent on the chosen spatial discretization
method. N is the dimension of the system in space, while the vector F ∈ RN defines the
input to the system. The matrix C ∈ RQ×N defines the Q outputs of interest, which are
contained in the output functional (g ). g is referred to the goal functional.

To construct a reduced-order model for the LTI system, it is assumed that the state
u(t ) is represented as a linear combination of nM projection basis functions (Φ), i.e.

û =Φα, (1.43)

where û is the reduced order approximation of the state u(t ) (nM ¿ N ) and α is the
state variable. The matrixΦ ∈RN×nM contains as columns the projection basis functions
φ j , i.e., Φ = [φ1, φ2, · · · , φnM], and α(t ) ∈ RnM is a vector containing the corresponding
modal amplitudes as a function of time. Inserting (1.43) into (1.40)-(1.42) and projecting
them onto reduced space by pre-multiplying with ΦT yields the reduced-order model
for the LTI system (1.40)-(1.42) with state variables α(t ) and goal functional ĝ

M̂α̇+ K̂α= F̂ (1.44)

ĝ = Ĉα (1.45)

M̂α0 =ΦT Mu0 (1.46)

where M̂ = ΦT MΦ ∈ RnM×nM, K̂ = ΦT KΦ ∈ RnM×nM, F̂ = ΦT F ∈ RnM, Ĉ = CΦ ∈ RQ×nM,
and α0 =α(0) ∈RnM.

1.3.2. CONSTRAINED OPTIMIZATION PROBLEM

As stated at the beginning of this section, using the ROM for the LTI system (1.44)-(1.46),
the constrained optimization problem used to find optimal bases for the goal functional
is expressed mathematically as

argΦ,αminG = 1

2

∫ t f

0
(g − ĝ )T (g − ĝ )d t + β

2

nM∑
i , j=1

(
δi j −φT

i φ j
)2

(1.47)

subject to

ΦT MΦα̇+ΦT KΦα=ΦT F (1.48)

ΦT MΦα0 =ΦT Mu0 (1.49)

ĝ =CΦα (1.50)

where δi j is the Kronecker delta function, i.e.

δi j =
{

1 i = j

0 i 6= j
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In the case of a linear relationship between the goal functional g and the state u as in
(1.41), the objective functional G can be written as

G = 1

2

∫ t f

0
(u − û)T H(u − û)d t + β

2

nM∑
i , j=1

(
δi j −φT

i φ j
)2

, (1.51)

where H =C T C can be interpreted as a weighting matrix that defines the states relevant
to the specified goal functional. The first term in the objective functional G (1.51) ex-
presses the error for a particular goal functional rather than for the general state vector,
as in the POD approach. Through the constraints (1.48)-(1.50), the FDF requires satis-
faction of the reduced-order governing equations to determine û. Thus, the error mini-
mized by the FDF is tied rigorously to the reduced-order model, in contrast to the POD
which is based purely on the reference data. The second term in (1.51) is a regularization
term that penalizes the deviation of the projection basis from an orthonormal set, with
β as a regularization parameter.

1.3.3. OPTIMALITY SYSTEM FOR THE CONSTRAINED OPTIMIZATION PROB-
LEM

The problem (1.47)-(1.50) is a constrained minimization problem, for which optimality
conditions can be derived through the Lagrangian functional L , defined as the objective
functional (1.51) plus the constraints (1.48) and (1.49) multiplied by Lagrange multipli-
ers, i.e.

L (Φ, α, λ, µ) =1

2

∫ t f

0
(u − û)T H(u − û)d t + β

2

nM∑
i , j=1

(
δi j −φT

i φ j
)2

+
∫ t f

0
λT (ΦT MΦα̇+ΦT KΦα−ΦT F )d t

+µT (ΦT MΦα0 −ΦT Mu0),

(1.52)

where λ = λ(t ) ∈ RnM and µ ∈ RnM are Lagrange multipliers (which can also be named
adjoint variables,) that enforce the reduced-order governing equations and initial con-
ditions, respectively. The optimality system can be derived by taking variations of the
Lagrangian functional with respect to state variables α(t ), adjoint variables λ(t ) and µ,
and the projection basis functions φ.

Setting the first variation of the Lagrangian functional with respect to µ and λ(t ) to
zero and arguing that the variation of λ(t ) is arbitrary in (0, t f ), simply recovers initial
condition constraint (1.49) and the ROM (1.48). From now on, (1.48) and (1.49) are re-
ferred to as the State Equations.

Setting the first variation of the Lagrangian functional with respect to α(t ) to zero,
and arguing the variation of α(t ) is arbitrary in (0, t f ), at t = 0 and at t = t f , yields the
so-called adjoint equation, final condition for λ, and definition of µ

−ΦT MΦλ̇+ΦT K TΦλ=ΦT H(u −Φα) (1.53)

λ(t f ) = 0 (1.54)

µ=λ(0) (1.55)
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Note that H = C T C is a symmetric matrix and it was assumed that M is a symmetric
matrix as well, otherwise M T would appear. Equations (1.53)-(1.55) are referred to as
Adjoint Equations.

Setting the first variation of the Lagrangian functional with respect to the projection
basisΦ to zero yields the following matrix equation, which is referred to as the Gradient
of the Lagrangian functional,

δLΦ =
∫ t f

0
H(Φα−u)αT d t +2βΦ(ΦTΦ− I )+

∫ t f

0

[
MΦ(λα̇T + α̇λT )

+K TΦλαT +KΦαλT −FλT ]
d t + [

MΦµαT
0 +M(Φα0 −u0)µT ]

=0

(1.56)

where I is the identity matrix. The combined system, (1.48)-(1.49), (1.53)-(1.55), and
(1.56), represents the first-order Karush-Kuhn-Tucker (KKT) optimality conditions for
the optimization problem (1.47)-(1.50).

1.4. RESEARCH OBJECTIVES
It has been previously mentioned that the FDF has advantages over the POD, BPOD and
DMD since it takes into account the reduced-order governing equations in the process
of determining an optimal basis set for a specific goal functional. However, the FDF has
several limitations in terms of its applicability:

1. To implement the FDF, we need to explicitly define the matrices M and K . How
these are to be constructed is not always obvious. If the reference data (u) is gen-
erated from a detailed numerical simulation of a linear partial differential equa-
tion, it is natural to use the corresponding matrices M and K which result from
the spatial discretization of the governing equation. If the reference data comes
from

• experiments, or

• commercial software

the definition of M and K is not readily available. In these cases, use of the FDF
requires the construction of the LTI system capable of reproducing the reference
data, which is a complex task. The problem is exacerbated if the reference dataset
is sparse, unstructured in space or time, or comes from a system which behaves
non-linearly, e.g. for which K = K (u).

2. Even if the problem of constructing M and K can be resolved, the FDF is unnec-
essarily restrictive. In the interests of creating a stable and robust reduced-order
model, for example, it can be advantageous to construct the ROM based on par-
tial differential equations different from these used to generate the reference data.
This would be the case when considering coarse reduced-order models for highly
multiscale problems, such as turbulent flow, for which additional unresolved scale
models [76] are required.
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3. In a similar vein, one may wish to use different boundary condition formulations
for the reduced-order model. For example, one may wish to employ weak formula-
tions for Dirichlet boundary conditions, which are known to reduce interpolation
errors when coarse solution interpolations are used [77].

4. Within the current formulation in the FDF, the treatment of nonlinear reduced-
order governing equations and goal functionals has not been addressed.

To address the above mentioned limitations, our research group including Steven J.
Hulshoff, Stefano Mattei [78], and Lei Cheng and so on has proposed an alternative, the
semi-continuous formulation (SCF), where the reduced-order model used as constraints
and optimization techniques are defined in the continuous setting. Thus, the objectives
of this thesis are:

1. Investigate the mathematical formulation of the SCF in which continuous reduced-
order models for general partial differential equations are used as constraints and
the goal functionals are defined as linear or nonlinear functionals of the ROM so-
lution.

2. Examine the behavior and expense of the optimization algorithm used to solve the
optimization problem.

3. Demonstrate the viability of the SCF through its applications to one-dimensional
and two-dimensional problems in which the governing equations are linear or
nonlinear and the goal functionals are linear or nonlinear functions of the con-
strained ROM’s solution.

4. Demonstrate that when the optimal basis obtained through the SCF provides im-
provements relative to the standard POD-based method.

1.5. THESIS OUTLINE
The content of this thesis is organized as follows:

1. Goal-Oriented ROMs: In Chapter 2, we will first illustrate the SCF proposed by
our research group where the reduced-order governing equations are in the con-
tinuous setting. Next, the algorithm used to solve the constrained optimization
problem, a Trust-Region Inexact-Newton Conjugate-Gradient algorithm, is intro-
duced. Lastly, the structure of the basis to be optimized is described.

2. Applications of the SCF approach: In Chapter 3, we investigate applications of
the SCF approach to one-dimensional problems: (1) the linear advection-diffu-
sion equation, (2) the Burgers equation, (3) a problem in which an approximate
governing equation is used. The application of SCF to two-dimensional Stokes
equations is investigated in Chapter 4. The goal functionals to be investigated in
both one-dimensional and two-dimentional applications include linear and non-
linear functions of the ROM’s solutions.

3. Discussion and conclusions: In the last chapter, the results are summarized and
the potential of the SCF is evaluated.



2
THE SEMI-CONTINUOUS

FORMULATION FRAMEWORK

To overcome the limitations of the FDF described in Chapter 1, an alternative, the semi-
continuous formulation (SCF), has been proposed by our research group. In this chapter,
we will illustrate the mathematical expressions of the SCF. Then, the optimization tech-
niques and the optimization algorithm used to solve the constrained optimization prob-
lem are presented. Lastly, the structure of projection basis is defined.
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2.1. SEMI-CONTINUOUS FORMULATION
In this section, we will describe the mathematical formulations in the SCF. We name our
method as SCF since the generation of the reduced-order model and the optimization
process are defined in the continuous setting, while the projection basis functions are
discrete.

2.1.1. A CONTINUOUS REDUCED-ORDER MODEL

Considering the general partial differential equation with initial condition

L(u) = f , (2.1)

u(0) = u0, (2.2)

where L represents a combination of differential operators in time and space. Defining
the goal functional as

g = g (u), (2.3)

which can be a linear or nonlinear function of the solution u of equation (2.1) with the
initial condition (2.2).

A continuous reduced-order model for (2.1)-(2.3) can be derived by assuming that
the state u(t ) is represented by a linear combination of nM projection basis functions:

û =
nM∑
j=1

α j (t )φ j (2.4)

Inserting (2.4) into (2.1)-(2.3) and making use of Galerkin projection framework yields
the continuous reduced-order model with the reduced-order goal functional ĝ :

∫
Ω
φi

[
L(

nM∑
j=1

α jφ j )− f

]
dΩ= 0 (2.5)

∫
Ω
φi

(
nM∑
j=1

α0
jφ j −u0

)
dΩ= 0 (2.6)

ĝ = g

(
nM∑
j=1

α jφ j

)
(2.7)

whereΩ represents the space of interest, i = 1, 2, · · · , nM and α0
j =α j (0).

2.1.2. CONSTRAINED OPTIMIZATION PROBLEM AND OPTIMALITY SYSTEM

The goal-oriented optimization problem solved in the SCF is analogous to that solved in
the FDF, that is, the problem is to minimize the error between the full-space goal func-
tional (g ) and reduced-order goal functional (ĝ ) over a space domain Ω and a time in-
terval (0, t f ), subject to satisfying the underlying continuous reduced-order governing
equations (2.5)-(2.7). The problem of determining an optimal projection basis, Φ, can
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be described as:

argΦ,αminG = 1

2

∫ t f

0

∫
Ω

(g − ĝ )2dΩd t + β

2

nM∑
i , j=1

(
δi j −

∫
Ω
φiφ j dΩ

)2

(2.8)

subject to ∫
Ω
φi

[
L(

nM∑
j=1

α jφ j )− f

]
dΩ= 0 (2.9)

∫
Ω
φi

(
nM∑
j=1

α0
jφ j −u0

)
dΩ= 0 (2.10)

ĝ = g

(
nM∑
j=1

α jφ j

)
(2.11)

Note that the formulation (2.8)-(2.11) is continuous with the exception of the evaluation
of the first term in (2.8), which must be evaluated discretely when the reference data is
provided in discrete form.

The problem (2.8)-(2.11) is a constrained minimization problem, with optimality
conditions derived by defining the Lagrangian functional L . To simplify the expression
of L , we define

E(Φ,α) = (g − ĝ )2, G1(Φ) =
nM∑

i , j=1

(
δi j −

∫
Ω
φiφ j dΩ

)2

,

G i
2(Φ,Φx ,α, α̇) =φi (L(û)− f ), G i

3(Φ,α0) =φi (û0 −u0).

In the definitions presented above, we have made some assumptions:

• The goal functional is not a function of u’s space or time derivative, for example,
ux , u̇, etc.

• The governing equation only includes the first-order time derivative of u and up
to the second-order space derivative of u, i.e. u̇, ux and uxx . This assumption
could be replaced if necessary. Note, however if the governing equation includes
the second-order space derivative, we could always reduce it into the first-order
space derivative when constructing L , i.e. G i

2(Φ,Φx ,α, α̇).

The Lagrangian functional then is written as:

L =
∫ t f

0

∫
Ω

1

2
E(Φ,α)dΩd t + β

2
G1(Φ)+

∫ t f

0

nM∑
i=1

λi

∫
Ω

G i
2(Φ,Φx ,α, α̇)dΩd t

+
nM∑
i=1

µi

∫
Ω

G i
3(Φ,α0)dΩ

(2.12)

Optimality conditions for problem (2.8)-(2.11) are derived by taking the first variations of
the Lagrangian functional (2.12) with respect to adjoint variablesλi andµi , state variable
α j , and projection basis functions φq (q = 1, 2, · · · , nM).
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Setting the first variation of the Lagrangian functional (2.12) with respect to λi to
zero, and arguing that the variation of λi is arbitrary in (0, t f ), recovers the ROM (2.9).
Setting the first variation of the Lagrangian functional with respect to µi to zero natu-
rally recovers the initial condition (2.10). Thus, equations (2.9) and (2.10) are the State
Equations.

Setting the first variation of the Lagrangian functional (2.12) with respect to α j to
zero yields

δLα j =
∫ t f

0

[∫
Ω

1

2

∂E

∂α j
+

nM∑
i=1

λi
∂G i

2

∂α j
− d

d t

(
nM∑
i=1

λi
∂G i

2

∂α̇ j

)
dΩ

]
δα j d t

+
∫
Ω

nM∑
i=1

λi
∂G i

2

∂α̇ j
δα j

∣∣∣t f

0
dΩ+

∫
Ω

nM∑
i=1

µi
∂G i

3

∂α j
δα j

∣∣∣0
dΩ

=0.

(2.13)

Arguing that the variations of α j , i.e. δα j , are arbitrary in the time interval (0, t f ), then
leads to ∫

Ω

[
1

2

∂E

∂α j
+

nM∑
i=1

λi
∂G i

2

∂α j
− d

d t

(
nM∑
i=1

λi
∂G i

2

∂α̇ j

)]
dΩ= 0. (2.14)

Arguing that the variations of α j at the boundary points, i.e. δα j (0) and δα j (t f ), are
arbitrary, implies that the following equations must be satisfied:

∫
Ω

nM∑
i=1

λi
∂G i

2

∂α̇ j

∣∣∣∣t f

dΩ= 0

∫
Ω

nM∑
i=1

(
µi
∂G i

3

∂α j
−λi

∂G i
2

∂α̇ j

)∣∣∣∣0

dΩ= 0

These lead to the so-called final condition and definition of µi :

λi (t f ) = 0 (2.15)∫
Ω

nM∑
i=1

(
µi
∂G i

3

∂α j
−λi

∂G i
2

∂α̇ j

)∣∣∣∣0

dΩ= 0 (2.16)

The Adjoint Equations then are equations (2.14), (2.15), and (2.16).
Setting the first variation of Lagrangian functional (2.12) with respect to φq to zero

yields

δLφq =
∫
Ω

[∫ t f

0

1

2

∂E

∂φq
+

nM∑
i=1

λi
∂G i

2

∂φq
− d

d x

(
nM∑
i=1

λi
∂G i

2

∂φqx

)
d t +

nM∑
i=1

µi
∂G i

3

∂φq

]
δφadΩ

+ β

2

δG1

δφq
+

∫ t f

0

nM∑
i=1

λi
∂G i

2

∂φqx
δφq

∣∣∣
∂Ω

d t

=0.

(2.17)
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Arguing that the variations ofφq are zero at boundaries of the space domain, i.e. δφq
∣∣
∂Ω =

0, leads to the Gradient:

δLφq =
∫
Ω

{∫ t f

0

[
1

2

∂E

∂φq
+

nM∑
i=1

λi
∂G i

2

∂φq
− d

d x

(
nM∑
i=1

λi
∂G i

2

∂φqx

)]
d t +

nM∑
i=1

µi
∂G i

3

∂φq

}
δφq dΩ

+2β
∫
Ω

nM∑
i=1

(∫
Ω
φiφq dΩ−δi q

)
φiδφq dΩ

=0
(2.18)

We continue to argue that the variations of φq are arbitrary in the space interval Ω. The
Gradient thus is rewritten as:

δLφq =
∫ t f

0

[
1

2

∂E

∂φq
+

nM∑
i=1

λi
∂G i

2

∂φq
− d

d x

(
nM∑
i=1

λi
∂G i

2

∂φqx

)]
d t +

nM∑
i=1

µi
∂G i

3

∂φq

+2β
nM∑
i=1

(∫
Ω
φiφq dΩ−δi q

)
φi

=0

(2.19)

2.1.3. COMMENTS
The SCF is a generalization of the FDF. It still has the same advantages as the FDF, but it
overcomes some drawbacks of the FDF. Using the SCF, we avoid the ambiguities in the
definition of matrices M and K at the beginning of the optimization process, and the
reference data can come from any source, such as experiments, commercial software, or
a combination. In addition,

• The SCF is not limited to the LTI system and clarifies the treatment of fully nonlin-
ear governing equations.

• The SCF disconnects the definition of the reduced-order governing equations from
the governing equations used to generate the reference data.

• The SCF generalizes the treatment of the goal functional. It thus allows the goal
functional to be defined as any linear or nonlinear function of the reference data
u. That is, the goal functional g can be taken any form, like g = u2, g = sin(u).

• The SCF allows us to freely define the boundary conditions that are used for the
reduced-order model.

2.2. OPTIMIZATION ALGORITHM
This section is devoted to the description of the optimization algorithm used to solve the
optimization problem for the determination of the projection basis functions φ. First,
the methodology for an unconstrained optimization problem will be presented. The
translation of our constrained optimization problem to an unconstrained one will be
illustrated afterwards.
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2.2.1. OPTIMIZATION TECHNIQUES
A general formulation for an unconstrained minimization problem is

min
x

f (x), (2.20)

where x ∈Rn is a real vector with n ≥ 1 components and the objective function f : Rn →R

is a function of x. Textbooks such as [79–81] provide an excellent introduction into
the algorithms which can be used to solve (2.20). Most are iterative in nature. That is,
beginning with an initial guess x0, they generate a sequence of iterates xk which ter-
minate when either no more progress can be made or when it seems that a solution
point has been approximated with sufficient accuracy. The algorithms use information
about the objective function f at xk , and possibly also information from earlier iterates
x0, x1, · · · , xk−1 to decide how to move from current iterate xk to the next. Usually, this
information is used to find a new iterate xk+1 with a smaller objective function value
than xk , i.e. f (xk+1) < f (xk ). However, non-monotone algorithms that don’t insist on
a decrease in f at every step (see [82, 83]) also exist, and they require f (xk+m) < f (xk )
where m is a prescribed number of iterations.

There are two fundamental strategies for moving from the current iterate xk to the
next iterate xk+1, the line search and trust region strategies. In the line search strategy,
the algorithm firstly chooses a direction pk , and searches along this direction from the
current iterate xk for a new iterate xk+1 with a smaller objective function value. Then, the
step length,α, to move along pk can be found by approximately solving the the following
minimization problem:

min
α>0

f (xk +αpk ) (2.21)

If we can solve (2.21) exactly, we will derive the maximum benefit from the direction
pk . However, obtaining an exact minimization solution is usually expensive and not
necessary. The line search algorithm generates a limited number of trial step lengths
until it finds one that loosely approximates the minimum of (2.21). At the new point, a
new search direction and step length need to be computed, then the process is repeated.

In the second strategy, trust region, the information gathered about f is used to con-
struct a model function mk whose behavior near the current point xk is similar to that of
the actual objective function f . We restrict the search for a minimizer of mk to a limited
region, the called trust region, around xk so that the model function mk is a good ap-
proximation of f . In other words, we find the candidate step p by approximately solving
the following subproblem:

min
p

mk (xk +p) where xk +p lies inside the trust region (2.22)

The trust region is usually a ball defined by ‖p‖2≤ ∆, where the scalar ∆ > 0 is the trust
region radius. The size of the trust region is of great importance. If it is too small, the
algorithm is inefficient since it does not get the chance to make substantial steps towards
the minimum. On the other hand, if it is too large, the model function mk will deviate
excessively from the objective function f .

Both line search and trust region methods can generate steps which minimize a quadratic
model function of the objective function:

mk (xk +pk ) = fk +pT
k ∇ fk +

1

2
pT

k Bk pk (2.23)
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where fk , ∇ fk and Bk are a scalar, vector and matrix, respectively. fk , ∇ fk are chosen
to be the objective function and its gradient at the iterate xk , so that mk and f are in
agreement to the first order at the current iterate xk . The matrix Bk can be either the
Hessian matrix ∇2 fk or one approximation of ∇2 fk . Line search methods use (2.23) to
generate a search direction and focus their efforts on finding a suitable step length α

along this direction [79, 81]. Trust region methods choose the direction and length of the
step simultaneously by minimizing the model function (2.23) subject to the trust region
constraint: ‖pk‖2≤∆.

Both line search and trust region methods can be effectively applied to complex op-
timization problems. But when the matrix Bk is nearly singular, line search algorithms
require many iterations and give only a small reduction in the objective function. While
in this condition, it can be very effective to use trust region methods. Therefore trust
region methods are more preferable.

To solve the optimization problem (1.47)-(1.50), Bui-Thanh et al. [69] adopted a
Trust-Region Inexact-Newton Conjugate-Gradient method, which combines the rapid
locally-quadratic convergence rate properties of Newton’s method, the effectiveness of
trust region globalization for treating ill-conditioned problems, and the Eisentat-Walker
idea of preventing oversolving [84]. Therefore, to solve the optimization problem (2.8)-
(2.11), we also employ the same optimization algorithm that will be illustrated in the
following section.

2.2.2. TRUST-REGION INEXACT-NEWTON CONJUGATE-GRADIENT
Trust region methods compute the next iterate by solving a much easier handled model
function, which represents with good approximation the objective function at the cur-
rent iterate. The objective function is approximated by a quadratic model mk , (2.23).
The candidate step pk is found by approximately solving the following subproblem:

min
pk

mk (pk ) = fk +pT
k ∇ fk +

1

2
pT

k ∇2 fk pk subject to ‖pk‖2≤∆ (2.24)

The necessary condition for stationarity of a function is that its first derivative vanishes
at the extrema, that is,

∂mk

∂pk
=∇ fk +∇2 fk pk = 0 =⇒

∇2 fk pk =−∇ fk (2.25)

which is a symmetric linear system due to the definition of Hessian matrix ∇2 fk . These
are known as "Newton’s equations", and can be solved directly, i.e.

pk =−(∇2 fk )−1∇ fk . (2.26)

The Newton method has the advantage of being rapidly convergent to the solution pro-
vided that we start with a sufficiently good initial guess x0. However, it can be expensive
to compute (2.26) directly when the system is large and the direct factorization of the
Hessian matrix ∇2 fk is intractable. Therefore we use an iterative method and solve (2.25)
only approximately, that is to say, we don’t directly compute the inverse of ∇2 fk . This



2

24 2. THE SEMI-CONTINUOUS FORMULATION FRAMEWORK

class of methods are generally referred to in the literature, e.g.[85], as Inexact-Newton
methods, which compute an approximate solution (pk ) to the Newton’s equations (2.25)
in some manner such that

‖rk‖ < εk ,

where εk is a specified tolerance, and rk is the residual, defined as

rk =−∇ fk −∇2 fk pk .

Here, we will solve (2.25) using the Conjugate-Gradient (CG) method with modifications
to handle negative curvature in the Hessian matrix ∇2 fk and globalize the algorithm us-
ing a trust-region scheme.

Trust-region algorithm
A key part of trust-region algorithms is the strategy for choosing the trust-region radius
∆k at each iteration. Since we want to make the model function to be a good approx-
imation of the objective function in the trust region, we determine ∆k based on the
agreement between the model function and the objective function at previous iterations.
Given a step pk , we define a ratio

ρk = f (xk )− f (xk +pk )

mk (0)−mk (pk )
, (2.27)

where the numerator is called the actual reduction and the denominator is called the
predicted reduction. The predicted reduction is always non-negative since mk (pk ) is the
minimum of mk over a trust region that includes pk = 0. Thus, if ρk is negative, the new
value of the objective function is larger than the current value, i.e. f (xk + pk ) > f (xk ),
then the step pk must be rejected. On the other hand, if ρk is non-negative, there are
three possible responses:

• If ρk is close to 1, there is good agreement between the model function and the ob-
jective function over this step. Thus we can take a larger step for the next iteration
by expanding the trust region.

• If ρk is close to 0, the size of the trust region should be reduced.

• If ρk is between 1 and 0, the size of the trust region is not changed.

In the literature [79], the trust region algorithm is described as:
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Trust Region Algorithm

Given ∆̂> 0, ∆0 ∈ (0, ∆̂), η ∈ [
0, 1

4

)
for k = 0, 1, 2, · · ·

Obtain pk by approximately solving (2.25)
Evaluate ρk from (2.27)

if ρk < 1
4

∆k+1 = 1
4∆k %reduce trust region radius

else
if ρk > 3

4 and ‖pk‖2 ≥∆k

∆k+1 = min
(
2∆k , ∆̂

)
%enlarge trust region radius

else
∆k+1 =∆k %keep trust region radius

end if
end if

if ρk > η
xk+1 = xk +pk %enough reduction made, advance step

else
xk+1 = xk %do not advance

end if

end for

Here, ∆̂ is the maximum bound on the step lengths. Note that the trust region radius is
increased only if ‖pk‖2 reaches the boundary of the trust region. If the step stays inside
the trust region, the current trust region radius ∆k is apparently not interfering with the
progress of the algorithm, so we keep it for the next iteration. Furthermore we accept the
step pk only if ρk is at least larger than a minimum threshold η.

To turn the trust region algorithm described above into a practical algorithm, we
need to focus on solving the linear system (2.25). When ∇2 fk is symmetric and posi-
tive definite, a very efficient way to solve large linear systems iteratively is to use the CG
method, described in Appendix B. Symmetry is not an issue since ∇2 fk is symmetric by
definition, but unfortunately the positive definiteness can not be guaranteed. Therefore
as mentioned earlier, we need to modify the conventional CG algorithm (see Appendix
B), which constructs the step iteratively as linear combination of search directions, to be
able to handle this situation.

Conjugate gradient algorithm with modifications
The modified conjugate gradient algorithm used is due to Steihaug [86]. This algorithm
is terminated when one of the following conditions is encountered:

• The residual at the current iteration is lower than a given tolerance, meaning that
the algorithm has reached the minimum of the the model function.

• A direction of negative curvature is found, i.e. the Hessian matrix ∇2 fk is not
positive-definite. In this case we move to the boundary since the minimum of
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the model function can not be found for such a upwardly convex function.

• The next iteration violates the trust region bound, ‖pk‖2 ≥ ∆k , in which case we
determine the minimum of the model function along the search direction such
that ‖pk‖2 =∆k .

The last two termination conditions are what differentiates this modified conjugate gra-
dient algorithm from the conventional CG algorithm described in Appendix B.

With the assistance of Fig.2.1, it is easy to understand the three termination condi-
tions. We denote the search directions by d j and the sequence of iterates produced by
the CG algorithm by z j . Fig.2.1(a) shows the first iteration, starting from xk , we con-
struct the step pk (initially pk = 0) by first moving in the direction d0 = −r0. This leads
to pk = z1. At this point, if the residual of mk (z1) is lower than a given tolerance εk , then
the CG procedure is stopped and the step pk = z1 is returned; otherwise, the iteration is
continued.
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(a) Case 1
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(b) Case 2

Figure 2.1: The contour lines of the objective function and the trust region of the model function together with
a sequence of CG iterates

In Fig.2.1(b), z2 lies outside the trust region. Since the trust region constraint is vio-
lated we compute the sub-step length τ > 0 such that we reach the trust region bound
along the direction d1, hence pk = z1 +τd1 satisfies ‖pk‖2 =∆k , and then we return pk .
The last possibility is a negative curvature is encountered. In this situation, similarly, we
move to the boundary of the trust region along d j and calculate pk = z j +τd j such that
‖pk‖2 =∆k , and mk (pk ) is the minimum of the model function along d j .

When encountering negative curvature or violating the trust region bound, i.e. en-
countering one of the last two termination conditions presented above, the evaluation
of τ is required. It can be calculated by taking the positive root of the following quadratic
equation:

‖pk‖2
2 =∆2

k ⇔ (z j +τd j )T (z j +τd j ) =∆2
k

⇔ τ2d T
j d j +2τd T

j z j =∆2
k − zT

j z j
(2.28)
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Here, we use trust region algorithm in combination of the Steihaug CG algorithm,
where Steihaug CG method solves the step pk used in the trust region algorithm by ap-
proximately solving (2.25). The Steihaug CG algorithm is given by

Steihaug CG Algorithm

Given tolerance εk > 0
Set z0 = 0 , r0 =−∇ fk −∇2 fk pk =−∇ fk −∇2 fk z0 =−∇ fk , d0 = r0

if ‖r0‖2 < εk

return pk = z0 = 0
end if

for j = 0, 1, 2, · · ·
if d T

j ∇2 fk d j ≤ 0

Compute τ> 0 such that ‖z j +τd j ‖2 =∆k

return pk = z j +τd j

end if
Compute α j = r T

j r j /d T
j ∇2 fk d j

Compute z j+1 = z j +α j d j

if ‖z j+1‖2 ≥∆k

Compute τ> 0 such that ‖z j +τd j ‖2 =∆k

return pk = z j +τd j

end if
Compute r j+1 = r j −α j∇2 fk d j

if ‖r j+1‖2 < εk

return pk = z j+1

end if
Compute β j+1 = r T

j+1r j+1/r T
j r j

Compute d j+1 = r j+1 +β j+1d j

end for

2.3. SOLVING THE CONSTRAINED OPTIMIZATION PROBLEM
The FDF and SCF lead to constrained optimization problems, while the algorithm in-
troduced in the previous section is for unconstrained optimization problems. The FDF
and SCF constrained optimization problems can be converged into equivalent uncon-
strained optimization problems in the projection basis Φ variables by eliminating the
state variables α and the State Equations. That is, we replace minΦ,αG (Φ,α) with
minΦG̃ (Φ,α(Φ)), where the dependence of α on Φ is implicit through the State Equa-
tions.

The gradient of the unconstrained function G̃ with respect to Φ, ∇G̃ (Φ), as required
by Inexact-Newton methods, can be computed efficiently by an adjoint method. The
gradient is given by the first variation of Lagrangian functional with respect to Φ, δLΦ,
when the α satisfy the State Equations and (λ, µ) satisfy the Adjoint Equations. The
procedure to compute the gradient is shown in Fig.2.2. First, determine α(t ) by solving
the State Equations with known Φ. Second, determine λ(t ) and µ by solving the Ad-
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joint Equations with known Φ and α(t ) obtained in the first step. Finally, calculate the
gradient through the computed variables (α(t ), λ(t ), µ) and known projection basisΦ.

(3)

Given Φ

α(t)

λ(t), µ

(2)

(1)

Adjoint Equations: (2.14)−(2.16)

 State Equations: (2.9), (2.10)

           Gradient: (2.18) or (2.19)α(t)

Figure 2.2: Procedure to compute the gradient, taking SCF as example

To practically implement the optimization algorithm presented in the above section,
one thing that needs to be addressed is the calculation of the (approximate) Hessian ma-
trix ∇2 fk . By looking into the Steihaug CG algorithm, we see that each iteration requires
us to supply the Hessian-vector product ∇2 fk d j instead of only the Hessian matrix ∇2 fk .
That is, we can compute an approximation of the Hessian-vector product ∇2 fk d j rather
than evaluate the exact Hessian matrix ∇2 fk . Considering a Taylor expansion of the gra-
dient ∇ fk :

∇ f (xk +θd j ) =∇ f (xk )+θ∇2 f (xk )d j +O (θ2) ⇒

∇2 f (xk )d j ≈
∇ f (xk +θd j )−∇ f (xk )

θ

The latter is a O (θ) accurate forward differencing formula, where θ is a small positive
number. The Hessian-vector product is then approximated by the directional derivative
of the gradient with respect to the search direction d j . In our case, the Hessian-vector
product is:

∇2 f (xk )d j =∇2G̃ (Φ)d j ≈
∇G̃ (Φ+θd j )−∇G̃ (Φ)

θ
(2.29)

As mentioned earlier in this section, to obtain the gradient ∇G̃ (Φ), we need to solve the
State Equations and Adjoint Equations where Φ is given or calculated in a previous it-
eration. Thus, to obtain ∇G̃ (Φ+θd j ), we need to solve another set of State Equations
and Adjoint Equations, where (α(t ), λ(t ), µ) are calculated using Φ+θd j instead of Φ.
Therefore, the optimization algorithm requires solutions of a pair of State Equations and
Adjoint Equations at each CG iteration.

One last thing to be noticed is that the optimization problem used to identify an
optimal projection basis has no guarantee of convexity, implying that there is also no
guarantee that a purely local optimum will converge to the global optimum since such
algorithms usually tend to be trapped at local minima/maxima. Accordingly, the choice
of initial guess for the projection basis Φ plays a crucial role in the final output of the
optimization algorithm.
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2.4. STRUCTURE OF PROJECTION BASIS Φ
The formulation defined by the constrained minimization problem (2.8)-(2.11) provides
a continuous mathematical definition of the desired optimal projection basis. However,
during implementation, the projection basis functions are defined in discrete forms.
Therefore, we will illustrate this in the following part.

Since the reference data are either produced by numerical simulations or experi-
ments, they always have a finite character. That is, the reference data is given in a discrete
form. It can thus be straightforward to define the projection basis functions in the same
discrete space. Thus, each projection basis function can be defined as a vector of which
the dimension is N (the number of discrete points in space), see Fig.2.3.

φ
j
(x)

x

−−−−−−→ φ j (x) =


φ j (x1)
φ j (x2)

...
φ j (xN )



Figure 2.3: First definition of each projection basis function

Using the vector φ, the number of optimization variables is equal to N ×nM the
number of discrete points in space multiplied by the desired number of projection basis
functions. However, in large-scale problems, N becomes very large, the optimization
problem then can not be tractable. Therefore, it is better to assume that each projection
basis function can be represented as a linear combination of pre-specified functions (see
Fig.2.4):

φ j =
nB∑
l=1

Coe j lψl (2.30)

where nB is the desired number of pre-specified functions and the coefficients Coe j l are
the optimization variables in the modified optimization problem. This representation
reduces the number of optimization variables from N×nM to nB×nM since nB is usually
much smaller than N (i.e. nB ¿ N ) when using appropriate pre-specified functions. As a
consequence, neither the gradient computation nor the optimization step computation
scale with the full system size N .
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Figure 2.4: Second definition of each projection basis function

For compactness, the following nomenclature is used from now on,

primary basis function-φ: projection basis function

primary basis: projection basis

secondary basis function-ψ: pre-specified function

secondary basis: basis consisting of pre-specified functions

P-type primary basis: projection basis where φ j is defined as a vector (Fig.2.3)

F-type primary basis: projection basis where φ j is represented as a linear combi-
nation of pre-specified functions ψl (Fig.2.4)

Note that the P-type primary basis functions are similar to F-type basis functions
when choosing the delta functions as the pre-specified functions. That is, the P-type pri-
mary basis functions can also be seen as linear combinations of delta functions, where
the coefficients for the delta function are the elements in vectors, i.e.

φ j (x) =
N∑

l=1
φ j (xl )δ(x) and δ(x) =

{
1 x = xl

0 x 6= xl

In addition, considering the above equation, the pre-specified basis functions used to
construct the F-type primary basis can also be chosen to be local functions rather than
global functions that are shown in Fig.2.4. For example, the pre-specified basis functions
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can be the local shape functions that are used in Finite Element Method. Thus, parallel
implementation of solving the optimization problem could be employed.

2.5. SUMMARY
Like the FDF, the SCF is a method that has advantages by targeting the primary basis
to a particular goal functional, and by incorporating the reduced-order governing equa-
tions as constraints in the primary basis derivation. Moreover, the SCF addresses the
limitations of the FDF in terms of applicability. Through the derivation for the SCF, it is
seen that the SCF clarified the treatments of nonlinear governing equations and nonlin-
ear goal functionals; the SCF disconnects the reduced-order governing equations from
the governing equations used to generate the reference data; more possibilities of treat-
ments of the boundary conditions are clarified using the SCF.

The constrained minimization problem is first transformed into an equivalent un-
constrained problem. Then a Trust-Region Inexact-Newton Conjugate-Gradient algo-
rithm is used to solve the unconstrained minimization problem. As there is no guarantee
of convexity, the choice of initial guess for the primary basis can be very important.

In terms of the number of the optimization variables, we introduced two types of
primary basis: P-type primary basis and F-type primary basis. In some sense, the P-
type primary basis can be seen as a special case of the F-type primary basis. When
the length of each primary basis function (i.e. the number of discrete points in space)
is large, the use of F-type primary basis makes the implementation of solving the opti-
mization problem tractable.





3
APPLICATION I: 1D PROBLEMS

In this chapter, we will investigate the behavior of the SCF using a set of one-dimensional
problems. These include ones where (1) The governing equation is a linear partial dif-
ferential equation the linear advection-diffusion equation. (2) The governing equation
is a nonlinear partial differential equation the Burgers equation. (3) A model equation
is used which only approximates governing equation and the dynamics of the reference
dataset. We also demonstrate how considering purely local goal functional in problems
with limited domains of dependence can introduce multiple extrema in the optimization
problem, and discuss how optimal basis functions can be found in such circumstances. In
the meantime, the computational costs of the POD and SCF are compared.

Results of this chapter has been published in Int. J. Numer. Meth. Engng 105, 464-480 (2016) [87].
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In this chapter, for the three applications of the SCF, a P-type primary basis is used un-
less mentioned otherwise. For clarity, in this chapter, we denote

• Φ⇐⇒ the set of primary basis functions

• POD modes ⇐⇒ primary basis functions obtained using the POD

• SCF modes ⇐⇒ primary basis functions obtained using the SCF

3.1. DEFINITION OF INITIAL GUESS FOR Φ
In Chapter 2, we have mentioned that the choice of the initial guess for Φ is very impor-
tant since the optimization problem might be non-convex. As in [69], two strategies are
considered,

• (S1): Choosing the first nM POD modes as an initial guess.

• (S2): The initial guess is chosen to be the solution of the optimization problem for
nM−1 primary basis functions plus the nMth POD mode.

In this chapter, we adopt strategy ‘S1’ except where noted.

3.2. LINEAR PARTIAL DIFFERENTIAL EQUATION EXAMPLE
We first consider the one-dimensional linear advection-diffusion equation. The initial-
boundary value problem is given by

ut +aux −kuxx = f in x ∈ [0, 1], (3.1a)

u = 0 at x = 0, x = 1, (3.1b)

u = u0 in x ∈ [0, 1] for t = 0, (3.1c)

where a is the advection speed, k is the diffusion coefficient, f represents the force term,
and u0 represents the initial condition for u. For the case to be investigated,

• a = 2, k = 0.1, f = 1.

• u0 = sin(2πx).

3.2.1. REFERENCE DATA
To implement the SCF approach, we need a reference dataset to calculate the goal func-
tional in a full space (i.e. g ) and the POD modes.

We provide the reference data by solving the equation (3.1) numerically, using the Fi-
nite Difference Method. We use a uniform grid with Nx nodes and here Nx = 51. The
spatial derivative is approximated by central finite difference formulas, and then the
semi-discretised equation of (3.1a) can be written as

dun
i

d t
+a

un
i+1 −un

i−1

2∆x
−k

un
i+1 −2un

i +un
i−1

(∆x)2 = f , (3.2)

where the superscript n indicates the time step, the subscript i indicates the spatial
position and i = 2, 3, · · · , Nx −1, and ∆x is the length of the subinterval of the grid.
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A third order Runge-Kutta explicit multistage method is used to advance the solu-
tions in time with ∆t = 0.001, where the new time level un+1 is computed as a linear
combination of solutions at intermediate stages. By writing ut = F (u(t )) the stages have
the form

u(1) = un ,

u(2) = un +∆tF (u(1)),

u(3) = un +∆t

[
1

4
F (u(1))+ 1

4
F (u(2))

]
,

un+1 = un +∆t

[
1

6
F (u(1))+ 1

6
F (u(2))+ 2

3
F (u(3))

]
.

(3.3)

Fig.3.1 shows solution profiles at different times. From t = 0.75 to t = 1.125 the solution
slowly changes, then we stop the Runge-Kutta procedure at t = 1.125.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

Figure 3.1: Solution of advection-diffusion equation at t = 0, 0.15, 0.45, 0.75 and 1.125s

3.2.2. POD ROM
The POD modes are extracted from Ns = 1126 snapshots using eigenvalue decompo-
sition. The percentage of energy captured by each of the POD modes appears in Fig.3.2
(left), over 99% of the energy is contained in the first six POD modes. Fig.3.2 (right) shows
the fist six POD modes.

We can construct a reduced-order model using a Galerkin projection framework.
Projecting the advection-diffusion equation (3.1a) into the subspace spanned by POD
modes (φi ) results in∫ 1

0
φi (ût +aûx −kûxx )d x =

∫ 1

0
φi f d x, i = 1,2, · · · , (3.4)

where û is expanded in a series of POD modes as shown in (2.4). Keeping the first nM
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Figure 3.2: Energy percentage and the first six POD modes

POD modes leads to a POD ROM

nM∑
j=1

α̇ j

∫ 1

0
φiφ j d x +

nM∑
j=1

α j

∫ 1

0

(
aφiφ j x −kφiφ j xx

)
d x =

∫ 1

0
φi f d x, i ∈ [1, nM]. (3.5)

This system determines the evolution of the amplitudes of POD modes, αi . The initial
value of α (i.e. the value of α at t = 0), α0, is calculated by solving the following system:

nM∑
j=1

α0
j

∫ 1

0
φiφ j d x =

∫ 1

0
φi u0d x (3.6)

3.2.3. SEMI-CONTINUOUS FORMULATION

CONSTRAINED MINIMIZATION PROBLEM

For this application of the SCF, the linear advection-diffusion equation is used in (2.8)-
(2.11) to arrive at the constrained minimization problem:

argΦ,αmin G = 1

2

∫ t f

0

∫ 1

0
(g − ĝ )2d xd t + β

2

nM∑
i , j=1

(
δi j −

∫ 1

0
φiφ j d x

)2

(3.7a)

subject to

nM∑
j=1

α̇ j

∫ 1

0
φiφ j d x +

nM∑
j=1

α j

∫ 1

0

(
aφiφ j x −kφiφ j xx

)
d x =

∫ 1

0
φi f d x (3.7b)

nM∑
j=1

α0
j

∫ 1

0
φiφ j d x =

∫ 1

0
φi u0d x (3.7c)

ĝ = g

(
nM∑
j=1

α jφ j

)
(3.7d)

The primary basis is assumed to satisfyΦ(0) =Φ(1) = 0 due to the homogeneous Dirich-
let boundary condition for u, (3.1b).
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OPTIMALITY SYSTEM

The optimality conditions of problem (3.7) can be obtained by defining the Lagrangian
functional. For this particular application, the Lagrangian functional is written as:

L =1

2

∫ t f

0

∫ 1

0
(g − ĝ )2d xd t + β

2

nM∑
i , j=1

(
δi j −

∫ 1

0
φiφ j d x

)2

+
∫ t f

0

nM∑
i=1

λi

[
nM∑
j=1

α̇ j

∫ 1

0
φiφ j d x +

nM∑
j=1

α j

∫ 1

0

(
aφiφ j x −kφiφ j xx

)
d x −

∫ 1

0
φi f d x

]
d t

+
nM∑
i=1

µi

(
nM∑
j=1

α0
j

∫ 1

0
φiφ j d x −

∫ 1

0
φi u0d x

)
(3.8)

The optimality system is then derived by taking the first variation of the Lagrangian func-
tional (3.8) with respect to λi , µi , α j , and φq .

State Equations As discussed in Section 2.1, the State Equations are the ROM (3.7b)
with initial condition (3.7c).

Adjoint Equations Section 2.1 shows that the Adjoint Equations are defined by (2.14)-
(2.16). To complete the Adjoint Equations for this problem, we need to derive these

terms: ∂E
∂α j

,
∂G i

2
∂α j

,
∂G i

2
∂α̇ j

and
∂G i

3
∂α j

.

Term 1:
∂E

∂α j
= ∂

∂α j

{
(g − ĝ )2

}
=−2(g − ĝ )

∂ĝ

∂α j

Term 21:
∂G i

2

∂α j
= ∂

∂α j

{
−

nM∑
j=1

α j
(
aφi xφ j −kφi xφ j x

)}
=−aφi xφ j +kφi xφ j x

Term 3:
∂G i

2

∂α̇ j
= ∂

∂α̇ j

{
nM∑
j=1

α̇ jφiφ j

}
=φiφ j

Term 4:

∂G i
3

∂α j
= ∂

∂α j

{
nM∑
j=1

α0
jφiφ j −φi u0

}
=φiφ j

1This derivation makes use of integration by parts, terms associated with boundary vanish becauseΦ|10 = 0.
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Inserting the above equations into (2.14)-(2.16) leads to the Adjoint Equations:

−
nM∑
i=1

λ̇i

∫ 1

0
φ jφi d x −

nM∑
i=1

λi

∫ 1

0

(
aφ jφi x −kφ j xφi x

)
d x =

∫ 1

0
(g − ĝ )

∂ĝ

∂α j
d x (3.9a)

λi (t f ) = 0 (3.9b)

µi =λi (0) (3.9c)

Gradient According to (2.19), the individual terms of ∂E
∂φq

,
∂G i

2
∂φq

,
∂G i

2
∂φqx

, and
∂G i

3
∂φq

for this

application are presented below,

Term 1:

∂E

∂φq
= ∂

∂φq

{
(g − ĝ )2

}
= 2(ĝ − g )

∂ĝ

∂φq

Term 2:

∂G i
2

∂φq
= ∂

∂φq

{
nM∑
j=1

α̇ jφiφ j +a
nM∑
j=1

α jφiφ j x −φi f

}

=
nM∑
j=1

α̇ jφ j + α̇qφi +a
nM∑
j=1

α jφ j x − f

Term 32:

∂G i
2

∂φqx
= ∂

∂φqx

{
nM∑
j=1

α j
(
aφiφ j x +kφi xφ j x

)}

= aαqφi +k
nM∑
j=1

α jφ j x +kαqφi x

Term 4:

∂G i
3

∂φq
= ∂

∂φq

{
nM∑
j=1

α0
jφiφ j −φi u0

}

=
nM∑
j=1

α0
jφ j +α0

qφi −u0

2Note that to avoid higher-order (higher than second-order) spatial derivatives appearing in the gradient,
firstly we reduce φ j xx to φ j x through integration by parts, and terms associated with boundary vanish be-

causeΦ|10 = 0.
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Putting all the above into (2.19) we have the formulation for the Gradient:

δLφq =
∫ t f

0
(ĝ − g )

∂ĝ

∂φq
d t +2β

nM∑
j=1

φ j

(∫ 1

0
φqφ j d x −δq j

)

+
∫ t f

0

(
λq

nM∑
j=1

α̇ jφ j + α̇q

nM∑
i=1

λiφi +aλq

nM∑
j=1

α jφ j x −aαq

nM∑
i=1

λiφi x

−kλq

nM∑
j=1

α jφ j xx −kαq

nM∑
i=1

λiφi xx −λq f

)
d t

+µq

nM∑
j=1

α0
jφ j +α0

q

nM∑
i=1

µiφi −µq u0

=0

(3.10)

DIRECT COMPARISON WITH FULLY-DISCRETE FORMULATION

In this application, the governing equation is the linear advection-diffusion equation,
implying that the State Equations and the Adjoint Equations can be written in a matrix
form similar to that in the FDF approach. In this case, the SCF can then be directly
compared with the FDF.

To rewrite (3.7b) and (3.9a) in a matrix form, we need to use matrices to represent the
evaluation of the spatial integral. As an example, we employ the trapezoidal rule. Given
two continuous functions c(x) and e(x) defined in [0, 1], using c(x)e(x) as the integrand,
the spatial integral can be approximated as:

∫ 1

0
c(x)e(x)d x ≈

Np−1∑
i=1

c̄i (x)ēi (x)h

where Np is the number of integration points, h is the length of the subinterval of in-
tegration, c̄i (x) and ēi (x) represent the average values of c(x) and e(x) on each subin-
terval, i.e. c̄i = c(xi )+c(xi+1)

2 , ēi = e(xi )+e(xi+1)
2 . By defining c̄ = [c̄1, c̄2, · · · , c̄Np−1]T , ē =

[ē1, ē2, · · · , ēNp−1]T and ∆ as a diagonal matrix with h on the diagonal, the spatial in-
tegral can be written in the following form:∫ 1

0
c(x)e(x)d x ≈ c̄T∆ē

This allows (3.7b) and (3.9a) to be expressed as:

M α̇+Kα= b (3.11)

−M T λ̇+Kλλ= bλ (3.12)

where M = Φ̄T∆Φ̄, K = aΦ̄T∆Φ̄x − kΦ̄T∆Φ̄xx , b = Φ̄T∆ f̄ , Kλ = −aΦ̄T∆Φ̄x + kΦ̄T
x∆Φ̄x ,

and bλ = Φ̄T∆(g − ĝ )ĝα. Here the matrices M , K and Kλ are only associated with the
physical constants of the partial differential equation and the process of integration and
differentiation. For a P-type primary basis, these have dimensions that are associated
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with the number of nodes used to represent the discrete POD modes but are not neces-
sarily associated with the dimension of the reference data. In contrast, the matrices M
and K in the FDF are defined using a discrete form of the partial differential equation
which reproduces the reference data. Specifically, in FDF M = ΦT MΦ and K = ΦT KΦ,
equation (1.48), where the M and K matrices represent components of a discrete partial
differential equation approximation with the dimension of the reference data.

3.2.4. COMPARING SCF ROM WITH POD ROM
In our P-type optimization code, we evaluate the integrals in space using the trapezoidal
rule mentioned earlier, and adopt central finite difference to represent spatial deriva-
tives. The State Eqautions are integrated in time with the third order Runge-Kutta ex-
plicit multistage method used to produce reference data. The Adjoint Equations are
integrated in time with backward Euler method3.

When the goal functional is set to be the solution over the entire domain, i.e. g =
u (0 É x É 1), the SCF seeks to minimize the same error norm as POD interpolation. In
this case, however, the error is measured using the solution of the ROM (û). Typical
results are shown in Fig.3.3. The SCF modes perform slightly better than POD modes,
due to the enforcement of the model constraint. As we add more and more modes, the
error for POD and SCF modes converge (Fig.3.3). This is due to the reduction in the
approximation error of the ROM as we use more modes.
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Figure 3.3: Error vs number of modes for g = u (x ∈ [0, 1])

Other goal functionals are more illustrative of the benefits of the SCF approach. In
Fig.3.4, the error for POD and SCF modes are shown when a goal functional, g = u, is only
considered in the region 0 É x É 0.5. Here the SCF modes provide a clear improvement
over the POD modes. For small nM, the error is reduced by almost an order of magnitude.

3Backward Euler method:
un+1 −un

∆t
= F (un , un+1) (3.13)
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Figure 3.4: Error vs number of modes for g = u (x ∈ [0, 0.5])

Another functional of interest might be g = ux |x=0. Fig. 3.5 gives the corresponding
results based on ‘S1’ and ‘S2’ initial guesses for Φ. In both cases, the SCF modes give a
substantial improvement over the POD modes. As mentioned previously, however, the
optimization algorithm used finds only local minima. Because of the ‘S1’ inappropri-
ate initial guess (nM = 2) we only found a local, not global, minimum. The appearance
of multiple solutions for the optimization problem is discussed further in the following
section.
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Figure 3.5: Error vs number of modes for g = ux (x = 0)

For the nonlinear goal functional, we set g = u2, where the region of interest is 0 É
x É 1 and 0 É t É 0.249. In this case, the SCF modes are only modestly better than POD
modes (Fig.3.6), as could be anticipated from the result for g = u (0 É x É 1).
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Figure 3.6: Error vs number of modes for g = u2

3.3. NONLINEAR PARTIAL DIFFERENTIAL EQUATION EXAMPLE

As an example of the application of the SCF to a nonlinear partial differential equation,
we choose one-dimensional Burgers equation with a forcing term as the governing equa-
tion. The nondimensionalized one-dimensional Burgers equation with initial-boundary
conditions is given by

ut +uux − 1

Re
uxx = f , (3.14a)

u(0, t ) = u(1, t ) = 0, (3.14b)

u0 = sin(2πx), (3.14c)

where f represents a constant force. For the results shown, f = 1.

3.3.1. REFERENCE DATA AND POD ROM

Reference data
To provide the reference data, the Finite Element Method (FEM) with linear basis func-
tions [88, 89] is used to solve the Burgers equation (3.14a), where the weighting func-
tions, w(x), are chosen to be the same as the trial functions used to approximate the
solution. Due to the homogeneous Dirichlet boundary condition, we require the trial
functions to satisfy w(0) = w(1) = 0. We discretize the Burgers equation using a fine
uniform grid, and the solution is advanced in time by a generalized-trapezoidal time-
integration scheme which is up to second-order accurate [90, 91]. The semi-discrete
variational formulation of the Burgers equation is then given by

1

∆t

(
w, [u]

)
x −

1

2

(
wx , 〈u〉2

av

)
x
+ 1

Re

(
wx , 〈ux〉av

)
x = (w, f )x , (3.15)
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where

(. , .)x =
∫

x
(.) · (.)d x,

∆t = t n+1 − t n ,

[u] = un+1 −un ,

〈u〉av = av un+1 + (1−av )un ,

(3.16)

i.e. [·] is a jump operator, 〈·〉av is a weighted average, and u(x, t ) is the numerical solution.
The superscript n represents the time level. We assume

w =
Nel∑
A=1

NA(x),

u =
Nel∑
B=1

NB (x)dB (t ),

(3.17)

where NA and NB are the standard Finite Element linear basis functions, Nel is the num-
ber of elements, dB are the unknown nodal amplitudes. We adopt the same definitions
used in [90, 91], i.e.

K∆t
AB = 1

∆t
(NA , NB )x ,

K Re
AB = 1

Re
(NAx , NB x )x ,

K u
AB =−(NAx , uNB )x ,

F f
A = (NA , f )x .

(3.18)

Then, after inserting Eq.(3.17) into Eq.(3.15) and grouping the linear, nonlinear and known
right-hand side terms, we obtain(

ALI N + AN L)
AB d n+1

B = FA , (3.19)

where
ALI N

AB =
{

K∆t +av K Re +av (1−av )K un
}

AB
,

AN L
AB = a2

v

2
K un+1

AB ,

FA =
{

K∆t − (1−av )K Re − 1

2
(1−av )2K un

}
AB

d n
B +F f

A .

(3.20)

The time discretization is second order accurate when av = 1/2 and the unconditionally
stable range of values is av ∈ (1/2, 1]. From [91], we know that if the numerical sim-
ulations performed are always run at av = 1/2+∆t then second order accuracy is still
preserved and stability is achieved. Therefore, to keep second order accuracy in our nu-
merical simulations, we set av = 1/2+∆t .

The assembly of (3.19) leads to a Nel ×Nel nonlinear system of equations and there-
fore it cannot be solved by means of standard linear algebra techniques. Instead we
adopt a Newton method, in which the residual is linearized through a Taylor expansion.
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Let D i denote the i th iterative approximation of Dn+1 = [
d n+1

1 d n+1
2 · · · d n+1

Nel

]T and de-

fine the i th iterative residual as

G i = (
ALI N + AN L)

D i −F, (3.21)

where ALI N and AN L are the Nel ×Nel matrices resulting from the assembly of ALI N
AB and

AN L
AB , F ∈ RNel is the vector resulting from the assembly of FA . When we get the exact

Dn+1, i.e. D i+1 = Dn+1, the residual G i+1 = 0, and according to the Taylor expansion, we
can write

G i+1 =G i + ∂G i

∂D i
∆D i = 0 ⇐⇒

∂G i

∂D i
∆D i =−G i . (3.22)

By examining (3.19) and (3.20), the Nel ×Nel Jacobian matrix ∂G i

∂D i can be found through
the assembly of

M = ∂G i

∂D i
=

(
ALI N +a2

v K ui
)

AB
. (3.23)

Now all the definitions are in place to formulate the Newton iteration algorithm,
which is expressed as,

Newton Iteration
D0 = Dn

i = 1
Er r = 1
while Er r > 1e −12

∆D i =−M−1G i

D i+1 = D i +∆D i

update M and G i

i = i +1

Er r =
√

(D i −D i−1)T (D i −D i−1)
end while

Dn+1 = D i+1

Three solutions of Burgers equation for Re = 10, 100 and 1000 are compared here.
Uniform meshes with 128 elements for Re = 10, 100 and 2048 elements for Re = 1000
were used. We adopted the above numerical method to solve the Burgers equation with
a constant ∆t = 0.001 for all cases. By terminating the time advance loop when the solu-
tion became almost unchanged, we created an ensemble of 3085, 1816 and 1605 snap-
shots for Re = 10, 100 and 1000 respectively by sampling the solution every∆t from t = 0.

Fig.3.7 shows initial and nearly steady solutions for the three Reynolds numbers, at
t f = 3.084, 1.185, 1.604 for Re = 10, 100 and 1000, respectively. From Fig.3.7, it is seen
that the gradient of the solution becomes steeper with increasing Reynolds number.
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Figure 3.7: Initial and nearly steady solutions

POD ROM
We extract POD modes from all the snapshots, that is, 3085, 1816 and 1605 snapshots
are used to calculate POD modes for Re = 10, 100 and 1000, respectively. Due to homo-
geneous Dirichlet boundary condition (u(0, t ) = u(1, t ) = 0) POD modes are zero at the
boundaries (i.e. Φ(0) =Φ(1) = 0).

Using Galerkin projection, we construct the POD ROM for the Burgers equation. Pro-
jecting (3.14a) onto the subspace spanned by POD modes yields

∫ 1

0
φi (ût + ûûx − 1

Re
ûxx )d x =

∫ 1

0
φi f d x, i = 1, 2, · · · ,

where û is expanded in a series of POD modes as shown in (2.4). Keeping the first nM
POD modes, the POD ROM is derived4,

nM∑
j=1

α̇ j

∫ 1

0
φiφ j d x − 1

2

∫ 1

0
φi x

(
nM∑
j=1

α jφ j

)2

d x − 1

Re

nM∑
j=1

α j

∫ 1

0
φiφ j xx d x =

∫ 1

0
φi f d x,

(3.24)
where i = 1, 2, · · · , nM. And α0 is calculated from

nM∑
j=1

α0
j

∫ 1

0
φiφ j d x =

∫ 1

0
φi u0d x. (3.25)

4∫ 1
0 φi ûûx d x = ∫ 1

0 φi
1
2
∂(û2)
∂x d x = 1

2

∫ 1
0 φi x (û2)d x
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3.3.2. SEMI-CONTINUOUS FORMULATION
For this application of the SCF, the governing equation is the Burgers equation. Thus,
according to (2.8)-(2.11), the constrained minimization problem is expressed as:

argΦ,αmin G = 1

2

∫ t f

0

∫ 1

0
(g − ĝ )2d xd t + β

2

nM∑
i , j=1

(
δi j −

∫ 1

0
φiφ j d x

)2

(3.26a)

subject to

nM∑
j=1

α̇ j

∫ 1

0
φiφ j d x − 1

2

∫ 1

0
φi x

(
nM∑
j=1

α jφ j

)2

d x − 1

Re

nM∑
j=1

α j

∫ 1

0
φiφ j xx d x

=
∫ 1

0
φi f d x (3.26b)

nM∑
j=1

α0
j

∫ 1

0
φiφ j d x =

∫ 1

0
φi u0d x (3.26c)

The primary basis functions are assumed to satisfy the boundary condition of u, i.e.
Φ(0) =Φ(1) = 0. The Lagrangian functional L is written as:

L =1

2

∫ t f

0

∫ 1

0
(g − ĝ )2d xd t + β

2

nM∑
i , j=1

(
δi j −

∫ 1

0
φiφ j d x

)2

+
∫ t f

0

nM∑
i=1

λi

[ nM∑
j=1

α̇ j

∫ 1

0
φiφ j d x − 1

2

∫ 1

0
φi x

(
nM∑
j=1

α jφ j

)2

d x − 1

Re

nM∑
j=1

α j

∫ 1

0
φiφ j xx d x

−
∫ 1

0
φi f d x

]
d t +

nM∑
i=1

µi

(
nM∑
j=1

α0
j

∫ 1

0
φiφ j d x −

∫ 1

0
φi u0d x

)
(3.27)

The optimality conditions are then derived by taking the first variation of the Lagrangian
functional (3.27) with respect to λi , µi , α j , and φq .

State Equations Setting the first variation of L with respect to λi to zero and arguing
δλi is arbitrary at t ∈ (0, t f ), and setting the first variation of L with respect to µi to zero
yields the State Equations (3.26b)-(3.26c).

Adjoint Equations Setting the first variation of L with respect to α j to zero and ar-
guing δα j is arbitrary in the time interval (0, t f ), t = 0 and t = t f , yields the Adjoint
Equations:

−
nM∑
i=1

λ̇i

∫ 1

0
φiφ j d x −

nM∑
i=1

λi

∫ 1

0
φi xφ j

(
nM∑
j=1

α jφ j

)
d x + 1

Re

nM∑
i=1

λi

∫ 1

0
φi xφ j x d x

=
∫ 1

0
(g − ĝ )

∂ĝ

∂α j
d x (3.28a)

λi (t f ) = 0 (3.28b)

µi =λi (0) (3.28c)
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Gradient Setting the first variation of L with respect to φq to zero, and arguing δφq is
zero at x = 0, x = 1 and arbitrary in the space interval (0, 1), yields the Gradient:

∇L =
∫ t f

0
(ĝ − g )

∂ĝ

∂φq
d t +2β

nM∑
j=1

φ j

(∫ 1

0
φqφ j d x −δ j q

)

+
∫ t f

0

[
λq

nM∑
j=1

α̇ jφ j + α̇q

nM∑
i=1

λiφi −αq

(
nM∑
i=1

λiφi x

)(
nM∑
j=1

α jφ j

)

+λq

(
nM∑
j=1

α jφ j x

)(
nM∑
j=1

α jφ j

)
− 1

Re
λq

nM∑
j=1

α jφ j xx − 1

Re
αq

nM∑
i=1

λiφi xx −λq f

]
d t

+µq

nM∑
j=1

α0
jφ j +α0

q

nM∑
i=1

µiφi −µq u0

=0
(3.29)

For the derivation of Adjoint Equations and Gradient in detail, you can look the deriva-
tion presented in Section 3.2.3, the only difference between them is the advection term.5

3.3.3. COMPARING SCF ROM WITH POD ROM
In the optimization code, the integrals in space are evaluated using the trapezoidal rule,
and central finite differences are used to approximate the spatial derivatives. To solve
the State Equations, a generalized-trapezoidal time-integration scheme (mentioned in
Section 3.3.1) is used. The backward Euler method (3.13) is used to advance the Adjoint
Equations in time.

Fig.3.8 shows the results for g = u (0 É x É 1). When Re = 10, the improvements over
POD modes are small. With increasing Reynolds number, the solution gradients become
sharper and the approximation error of the ROM is greater. The SCF ROM then provides
substantial benefits relative to the POD, except when nM = 1. These benefits increase as
the Reynolds number gets larger.

To clarify the lack of improvement for nM = 1, we focus on the results for Re = 10 (The
analysis for the other two Reynolds numbers is similar.). Fig.3.9 shows the evolution of u
in time and the first POD mode. The first POD mode is similar to the shape of the steady-
state solution, which a significant part of the reference data resembles. This allows for
little improvement via the SCF if only the first mode is used.

5

− 1

2

∂

∂α j

[
φi x

(
nM∑
j=1

α jφ j

)2]
=−φi xφ j

(
nM∑
j=1

α jφ j

)

− 1

2

∂

∂φq

[
φi x

(
nM∑
j=1

α jφ j

)2]
=−αqφi x

(
nM∑
j=1

α jφ j

)
, − 1

2

∂

∂φqx

[
φi x

(
nM∑
j=1

α jφ j

)2]
=−

(
nM∑
j=1

α jφ j

)2
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(c) Re = 1000

Figure 3.8: Error when g = u (x ∈ [0, 1])
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Figure 3.9: Reference data compared to the solutions from the POD ROM and SCF ROM for g = u when Re = 10,
and nM = 1
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Fig.3.10 shows the results for g = u (0 É x É 0.5). In this case, the error reduction is
substantial for Re = 10 and Re = 100. The improvement is smaller for low Re than that
for high Re. Multiple solutions occur once again in this case.
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Figure 3.10: Error when g = u (x ∈ [0, 0.5])

Fig.3.11 shows results for the nonlinear goal functional g = u2 (x ∈ [0, 1]) when Re =
100. Trends similar to the g = u (x ∈ [0, 1]) case are observed.
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Figure 3.11: Error when g = u2 and Re = 100

3.3.4. MULTIPLE EXTREMA IN THE OPTIMIZATION PROBLEM
In both the linear and nonlinear applications, multiple solutions were observed for some
goal functional (Fig.3.5 and Fig.3.10(b)). Here, we demonstrate that for certain goal func-
tional, multiple extrema can appear in this optimization problem. For clarity, we illus-
trate this problem using F-type primary basis defined by

nM = 2, φ1 =ψ1 +a1ψ2, φ2 =ψ2 +b1ψ3,
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where ψ1−3 are the first three POD modes and define response surfaces using

fer r = 1

2

∫ t f

0

∫ 1

0
(g − ĝ )2d xd t .

In Fig.3.12 and Fig.3.13, contours of fer r versus a1 and b1 are shown for the advection-
diffusion and Burgers problems with global and local functionals of u. For both the
advection-diffusion and Burgers problem, only one minimum appears for reasonable
values of a1 and b1 when g = u (0 É x É 1) (Fig.3.12(a) and Fig.3.13(a)). Choosing a goal
functional such as g = u on 0 É x É 0.5 or g = ux (0), however, results in ambiguity in the
definition of the minima. This might be anticipated when considering the hyperbolic
nature of both partial differential equations, for which information propagates from left
to right. One might deal with such a situation using algorithms which treat multiple
minima, but this does not guarantee that the part of the ROM solution which does not
influence the functional will resemble the physical solution. In situations where the do-
main of dependence is as limited as the one considered in these problems, a better ap-
proach would be to define a weighted global functional rather than a purely local one. In
Fig.3.14, contours of fer r versus a1 and b1 are shown for the advection-diffusion problem
with uxW (x) as the goal functional, where

W (x) =
{

0.6+0.4cos(4πx) x ≤ 0.25

0.2 x > 0.25

which heavily weighs the part of the domain near x = 0. Comparing Fig.3.12(b) with
Fig.3.14(a), the extraneous minima at a1 = −1, b1 = 2 is reduced significantly in magni-
tude, while not significantly affecting the desired minima near a1 = 0.3, b1 =−0.1.
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Figure 3.12: Contours of fer r for the advection-diffusion problem
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Figure 3.13: Contours of fer r for the Burgers problem
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3.4. COST OF DETERMINING GOAL-ORIENTED MODES
In this section, the computational cost of SCF and its scaling are described. For the small
problems considered here, SVD algorithms are efficient, so the costs of determining POD
modes are generally two to three orders of magnitude less than required for determin-
ing goal-oriented modes. This ratio depends on several factors, including such as initial
trust region radius, initial guesses ofΦ, the criterion coefficients for updating the modes
and radius, and the chosen goal functional. In general, the CPU required increases with
the number of modes, as shown in Fig.3.15. In general, the increase in cost is justified if
the ROM is to be used repeatedly after identification, or the modes are being found with
the objective of identifying the processes of most importance for a specific goal func-
tional. It is worth noting, however, for problems which require high spatial resolution
the costs of SVD rise rapidly, as shown in Fig.3.16(a). The costs of a single sweep in the
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SCF procedure, incorporating the adjoint, ROM (state) and gradient solves, scales close
to linearly (Fig.3.16(b)). Furthermore, each of these steps can be parallelised using stan-
dard techniques. This provides the possibility of computing very large problems with
SCF, provided reasonable initial conditions can be defined.
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Figure 3.15: CPU time of SCF versus number of modes when g = u(0 É x É 1)

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

Number of nodes (Nx)

C
P

U
 t

im
e

 (
s
)

(a) SVD

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

Number of nodes (Nx)

C
P

U
 t

im
e

 (
s
)

(b) SCF sweep with nM = 6

Figure 3.16: CPU time of SVD and a single SCF sweep versus the number of points used to represent the modes
(N x)

3.5. AN APPROXIMATE PARTIAL DIFFERENTIAL EQUATION EX-
AMPLE

Often it is desired to approximate experimental data with a relatively simple model par-
tial differential equation, introducing substantial model errors. The SCF can be effective
in such applications, for obtaining modes which improve the performance of the ROM
constructed by the simplified partial differential equation. As an example, we will con-
sider solutions to the one-dimensional Burgers equation as reference data, while con-
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structing a ROM using a simplified partial differential equation, the linear advection-
diffusion equation. Homogeneous boundary conditions and a constant source f = 1 are
used in both the generation of the reference data and the ROM. The viscosity factor k
and the advection speed a in the advection-diffusion equation are defined as

k = 1

Re
, a = 1

Nel +1

1

Ns

Nel+1∑
j=1

Ns∑
i=1

ui j .

where Re = 10 and u is the corresponding solution of the Burgers equation.
Fig.3.17 shows results when g = u over whole space domain. The optimal modes

are substantially more accurate. In this case, the effect of the model constraint is large,
allowing the optimal modes to partially compensate for the inaccuracy of the partial
differential equation approximation.
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Figure 3.17: Error vs number of modes for the approximate partial differential equation when g = u(0 É x É 1)

To clarify the behavior in Fig.3.17, we define a function

Err(t ) = 1

2

∫ 1

0
(ubur g er s −uother )2d x, (3.30)

where ubur g er s is the Burgers’ solution. In Fig.3.18, the label ‘POD’ refers to the case
where uother is the solution of ROM constructed by advection-diffusion equation using
POD modes as projection basis functions; ‘SCF’ is the case where uother is the solution
of ROM constructed by advection-diffusion equation using optimal modes as projection
basis functions; ‘AdvDiff’ is the case where uother is the solution of advection-diffusion
equation and obtained from a fully refined finite-difference method. When only one
mode is used, the SCF and POD ROMs are equally unable to reproduce the Burgers’ so-
lution because of the convective nature of the problem. Adding a second mode allows
both the SCF and POD ROMs to improve. Adding further modes, however, results in the
POD ROM converging to the advection-diffusion solution, while the SCF solution has a
lower error, because the output of the approximate partial differential equation is taken
into account during optimization.
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Figure 3.18: Error in approximating the Burgers solution using a refined advection-diffusion solution (AdvDiff),
POD ROM and SCF ROM approximations
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3.6. CONCLUSIONS
Results from both linear and nonlinear model problems confirm that the benefits of us-
ing a SCF goal-oriented approach for mode identification can be substantial, particularly
when only part of the domain is of interest. In all cases, substantial improvements in ab-
solute accuracy over POD modes were observed, except for global goal functional related
to the error norm already minimized by POD interpolation. For such cases the benefits
were only significant when the governing equation used to derive the ROM roughly ap-
proximates the dynamics of the reference data.

Finally, it was shown that the choice of goal functional can influence the number
of extrema appearing in the optimization problem. The resulting ambiguities can be
avoided by choosing weighted global rather than purely local goal functional.





4
APPLICATION II: 2D STOKES

PROBLEMS

In this chapter, we apply the SCF to the two-dimensional unsteady incompressible Stokes
equations. Optimal primary basis functions are found for both the velocity and pressure.
To verify our optimization code, we investigate a case where the exact primary basis func-
tion is one of the secondary basis functions. Then, a more general case is investigated
where the secondary basis does not include the exact primary basis function.
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4.1. GOVERNING EQUATION
For this application, we use the unsteady incompressible Stokes equations in the follow-
ing form:

∂V

∂t
−∇· (2ν∇sV )+∇p = f (4.1a)

∇·V = 0 (4.1b)

where V = [u, v, w]T represents the velocity, u, v and w are the x−, y− and z−direction
velocities, p represents the pressure, f represents the body force, and ν is the kinematic
coefficient of viscosity which is assumed to be constant. Furthermore, the symmetric
velocity gradient is defined as

∇sV = 1

2
(∇V +∇V T ). (4.2)

To arrive at a proper problem statement, a homogeneous Dirichlet boundary condition
for the velocity is used, i.e.

V = 0 on Γ, (4.3)

where Γ = ∂Ω is the boundary of the space domain Ω of interest, which is an open,
bounded subset of R3.

4.2. REDUCED-ORDER MODELS
In an incompressible flow, the important dynamical flow variable is the velocity, while
the pressure acts only to enforce the incompressibility constraint. Thus, we might ask
if we need to take into account the pressure when constructing ROMs for incompress-
ible flows? When the primary basis functions used for the velocity are divergence free,
the pressure can be eliminated completely from the construction of the ROM for incom-
pressible flows with periodic boundary conditions, which is done by integrating the pres-
sure gradient term in the corresponding Galerkin formulation by parts. For incompress-
ible flows, the POD modes extracted from only the velocity field can be chosen as the
divergence free primary basis functions since they are linear combinations of velocity
snapshots which are themselves divergence free; besides, there will be no pressure term
in the POD ROM when imposing homogeneous boundary conditions for the velocity or
periodic boundary conditions for both the velocity and pressure [23, 92–95]. That is, to
construct the ROM for incompressible flows, the primary basis functions for the pressure
are not necessary in these cases.

However, in many cases, the pressure integral does not vanish on the boundaries,
and the primary basis functions used for the velocity are not always divergence free.
The pressure then must be modeled in these cases. Noack et al. [96] made use of the
pressure-Poisson equation to model the pressure gradient term when constructing a
POD ROM for incompressible flows. While, in this chapter, we use a different method
to model the pressure, where the primary basis functions used for not only the veloc-
ity but also the pressure need to be determined previously. Thus, a ROM for the Stokes
equations (4.1) is generated by directly projecting the Stokes equations onto the sub-
space spanned by the given primary basis functions.
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Throughout this chapter, we use the following notation:

x : the three coordinates in the space, and x = (x, y, z);

j : primary basis functions index and j = 1, 2, · · · , nM;

φu
j (x): the j th primary basis function for the x-direction velocity u;

φv
j (x): the j th primary basis function for the y-direction velocity v ;

φw
j (x): the j th primary basis function for the z-direction velocity w ;

φ
p
j (x): the j th primary basis function for the pressure p;

φ j (x): the j th primary basis function for the velocity V , and

φ j (x) =

φ
u
j (x)

φv
j (x)

φw
j (x)

 ;

Φ j (x): the j th primary basis function for the velocity V and pressure p, and

Φ j (x) =
[
φ j (x)

φ
p
j (x)

]
=


φu

j (x)

φv
j (x)

φw
j (x)

φ
p
j (x)

 .

The primary basis functions for the velocity and pressure are chosen to satisfy the
following requirements:

1. The primary basis functions should satisfy the boundary conditions of the prob-
lem. That is, in our particular case, with V Γ = 0, the primary basis function for the
velocity,φ j , on the boundary is zero as well,

φ j = 0 on Γ. (4.4)

2. For the solution to be unique, the primary basis functions must be linearly inde-
pendent.

As the pressure is taken into account, there are four flow variables to be determined,
three-directional velocities and pressure (u, v, w, p). For the model expansion of them,
there are three options. First, they could all be expanded using their own bases, imply-
ing that the velocities and pressure are modeled separately. Alternatively, the velocities
could be expanded using a single vector basis (φ) and the pressure is expanded using
its own basis (φp ). Finally, both the velocities and pressure could be expanded using
a single vector basis (Φ), implying that the velocities and pressure are taken as a sin-
gle vector-valued variable (e.g.,U = [u, v, w, p]T ). We will consider the first and last of
these options, and refer to them as the scalar- and vector-valued primary basis function
options, respectively.
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4.2.1. SCALAR-VALUED PRIMARY BASIS FUNCTIONS

We first consider expanding the x−, y− and z−components of velocity as well as the
pressure in their own primary bases

û =
nM∑
j=1

αu
j (t )φu

j (x), (4.5a)

v̂ =
nM∑
j=1

αv
j (t )φv

j (x), (4.5b)

ŵ =
nM∑
j=1

αw
j (t )φw

j (x), (4.5c)

p̂ =
nM∑
j=1

α
p
j (t )φp

j (x), (4.5d)

where, e.g. αu
j (t ) is the amplitude for the primary basis function φu

j . For real scalar-

valued functions, we define

(φu
i , φu

j )Ω =
∫
Ω
φu

i φ
u
j dΩ.

The amplitudes are calculated using the Galerkin projection of the Stokes equations
(4.1), in which the momentum equations (4.1a) are rewritten as

ut −ν(2uxx +uy y +uzz + vx y +wxz )+px = f x , (4.6a)

vt −ν(2vxx + vy y + vzz +uy x +wy z )+py = f y , (4.6b)

wt −ν(2wxx +wy y +wzz +uzx + vz y )+pz = f z , (4.6c)

where f x , f y and f z are the body force in x−, y− and z−direction, respectively. Inserting
(4.5) into (4.1b) and (4.6) leads to

nM∑
j=1

α̇u
j φ

u
j −

nM∑
j=1

[
ναu

j

(
2φu

j xx +φu
j y y +φu

j zz

)
+ναv

j φ
v
j x y +ναw

j φ
w
j xz −α

p
j φ

p
j x

]
= f x , (4.7a)

nM∑
j=1

α̇v
j φ

v
j −

nM∑
j=1

[
ναv

j

(
2φv

j y y +φv
j xx +φv

j zz

)
+ναu

j φ
u
j y x +ναw

j φ
w
j y z −α

p
j φ

p
j y

]
= f y , (4.7b)

nM∑
j=1

α̇w
j φ

w
j −

nM∑
j=1

[
ναw

j

(
2φw

j zz +φw
j y y +φw

j xx

)
+ναu

j φ
u
j zx +ναv

j φ
v
j z y −α

p
j φ

p
j z

]
= f z , (4.7c)

nM∑
j=1

(
αu

j φ
u
j x +αv

j φ
v
j y +αw

j φ
w
j z

)
= 0. (4.7d)

Using Galerkin projection of (4.7a), (4.7b), (4.7c) and (4.7d) onto the subspace spanned
by the primary basis functionsφu

j , φv
j , φw

j andφp
j yields a system of ordinary differential
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equations

nM∑
j=1

mu
i j α̇

u
j =

nM∑
j=1

(
cu

i jα
u
j +d u

i jα
v
j +eu

i jα
w
j +hu

i jα
p
j

)
+bu

i , (4.8a)

nM∑
j=1

mv
i j α̇

v
j =

nM∑
j=1

(
cv

i jα
u
j +d v

i jα
v
j +ev

i jα
w
j +hv

i jα
p
j

)
+bv

i , (4.8b)

nM∑
j=1

mw
i j α̇

w
j =

nM∑
j=1

(
cw

i jα
u
j +d w

i jα
v
j +ew

i jα
w
j +hw

i jα
p
j

)
+bw

i , (4.8c)

0 =
nM∑
j=1

(
cp

i jα
u
j +d p

i jα
v
j +ep

i jα
w
j

)
, (4.8d)

where the coefficients are given by:

mu
i j = (φu

i , φu
j )Ω mv

i j = (φv
i , φv

j )Ω mw
i j = (φw

i , φw
j )Ω

cu
i j =−ν

[
2(φu

i x , φu
j x )Ω+ (φu

i y , φu
j y )Ω+ (φu

i z , φu
j z )Ω

]
cv

i j =−ν(φv
i x , φu

j y )Ω

cw
i j =−ν(φw

i x , φu
j z )Ω

cp
i j = (φp

i , φu
j x )Ω

d u
i j =−ν(φu

i y , φv
j x )Ω

d v
i j =−ν

[
2(φv

i x , φv
j x )Ω+ (φv

i y , φv
j y )Ω+ (φv

i z , φv
j z )Ω

]
d w

i j =−ν(φw
i y , φv

j z )Ω

d p
i j = (φp

i , φv
j y )Ω

eu
i j =−ν(φu

i z , φw
j x )Ω

ev
i j =−ν(φv

i z , φw
j y )Ω

ew
i j =−ν

[
2(φw

i x , φw
j x )Ω+ (φw

i y , φw
j y )Ω+ (φw

i z , φw
j z )Ω

]
ep

i j = (φp
i , φw

j z )Ω

hu
i j = (φu

i x , φp
j )Ω hv

i j = (φv
i y , φp

j )Ω hw
i j = (φw

i z , φp
j )Ω

bu
i = (φu

i , f x )Ω bv
i = (φv

i , f y )Ω bw
i = (φw

i , f z )Ω

The first terms on the right hand of (4.8a)-(4.8c) are obtained by integrating by parts
while employing φ j |Γ = 0. The equations (4.8) represent a reduced-order model for the
Stokes equations (4.1). The original Stokes equations which consist of four coupled par-
tial differential equations valid at an infinite number of points in the domain have been
transformed into a system of 4×nM coupled ordinary differential equations where nM
is relatively small.
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Note that for the scalar-valued primary basis we determine the primary basis func-
tions φu , φv , φw and φp separately and independently. Thus, φu , φv , φw and φp can
be the same, such as in the case where the Finite Element Method is used to solve fluid
mechanical problems; they also can be different from each other. Therefore, when we
use the ROM (4.8) as constraints in the SCF, there is much more freedom to choose the
primary basis for P-type primary basis (the secondary basis for F-type primary basis).

4.2.2. VECTOR-VALUED PRIMARY BASIS FUNCTIONS
The velocity and pressure can also be expanded using a vector-valued primary basis
functions

Û =


û
v̂
ŵ
p̂

=
nM∑
j=1

α j (t )Φ j (x) =
nM∑
j=1

α j (t )


φu

j (x)

φv
j (x)

φw
j (x)

φ
p
j (x)

 . (4.9)

For real vector-valued functions, we define

(U , U )Ω =
∫
Ω

(
u2 + v2 +w2 +p2)dΩ.

Then, inserting (4.9) into the Stokes equations (4.1) and projecting (4.1) onto the pri-
mary basisΦ yields(

φi ,
nM∑
j=1

α̇ jφi −
nM∑
j=1

α j∇· (2ν∇sφ j )+
nM∑
j=1

α jφ
p
j − f

)
Ω

+
(
φ

p
i ,

nM∑
j=1

α j∇·φ j

)
Ω

= 0. (4.10)

Considering thatφ j |Γ = 0, and integrating the second and third terms in the left hand of
(4.10) by parts, the reduced-order model is then

nM∑
j=1

Li j α̇ j =
nM∑
j=1

(Bν
i j +B p

i j +B c
i j )α j +bm

i , (4.11)

where the coefficients Li j , Bν
i j , B p

i j , B c
i j and bm

i are given by

Li j =
(
φi , φ j

)
Ω

,

Bν
i j =−

(
∇φi , 2ν∇sφ j

)
Ω

,

B p
i j =

(
∇·φi , φp

j

)
Ω

,

B c
i j =−

(
φ

p
i , ∇·φ j

)
Ω

,

bm
i = (

φi , f
)
Ω .

The equations (4.11) represents the reduced-order model for the Stokes equations (4.1)
when vector-valued primary basis functions are used. The ROM (4.11) is a system of
nM ordinary differential equations, while (4.8) is a system of 4×nM ordinary differential
equations.
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Note that when we use this ROM the determination of the primary basis functions
for velocity and pressure must be done with care. We choose to follow ideas from ap-
plications of the POD to compressible flows [97–101], where POD modes are extracted
from velocity field combined with other flow variables fields (e.g. pressure, entropy) and
then a reduced-order model is constructed by projecting the governing equations onto
a single vector-valued set of these POD modes.

4.3. CONSTRUCTION OF PRIMARY BASIS FUNCTIONS
For applications of the SCF into two/three-dimensional problems, the P-type primary
basis defined in Chapter 2, which is used for applications of the SCF into 1D problems
(Chapter 3), can lead to a very large number of optimized variables associated with a
given primary basis function. Since we are considering smooth solutions, one can expect
that a F-type basis will provide good approximations for primary basis functions with a
relatively small number of optimized variables (Coe). Therefore, for the application of
the SCF into 2D Stokes equations, we adopt a F-type primary basis. In other words,
the primary basis,Φ, is a linear combination of linearly independent pre-specified basis
functions ψl . As the symbol Φ is used for the primary basis, we denote the secondary
basis functions as:

Ψl =


ψu

l
ψv

l
ψw

l
ψ

p
l

 l = 1, 2, · · · , nB

where, e.g. ψu
l represents the l th secondary basis function for velocity u. Now a ques-

tion is introduced How can we construct the primary basis functions Φ j with these
pre-specified secondary basis functionsΨl ? Following ideas from the two definitions of
primary basis functions presented above, we consider two options as described below.

1. Scalar-valued secondary basis functions In this option, we consider each secondary
basis function separately and expand each primary basis function in its own set of
secondary basis functions

φu
j =

nB∑
l=1

Coeu
j lψ

u
l , (4.12a)

φv
j =

nB∑
l=1

Coev
j lψ

v
l , (4.12b)

φw
j =

nB∑
l=1

Coew
j lψ

w
l , (4.12c)

φ
p
j =

nB∑
l=1

Coep
j lψ

p
l , (4.12d)

where the coefficients Coeu
j l , Coev

j l , Coew
j l and Coep

j l are the optimized variables.

The number of optimized variables is thus 4×nM×nB for the construction of nM
optimal primary basis functions.
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2. Vector-valued secondary basis functions In this option, the secondary basis func-
tions for each variable (e.g. u, v , w and p) are considered as a big single vector,
and then the primary basis functions are constructed as:

φu
j

φv
j

φw
j

φ
p
j


=

nB∑
l=1

Coe j lΨl =
nB∑
l=1

Coe j l


ψu

l

ψv
l

ψw
l

ψ
p
l

 (4.13)

where the coefficients Coe j l are the optimized variables. Using (4.13) to construct
primary basis functions results in nM×nB optimized variables.

4.4. SEMI-CONTINUOUS FORMULATIONS
In this section, we will present mathematical formulations of the optimization problem
for our particular case the Stokes equations and their corresponding optimality system.

4.4.1. CONSTRAINED OPTIMIZATION PROBLEM
In section 4.2, we have introduced two forms of the reduced-order model for the Stokes
equations, (4.8) and (4.11); and in section 4.3, two alternatives were used to construct
primary basis functions from secondary basis functions, (4.12) and (4.13). Thus, in the-
ory, there will be four alternatives for the constrained optimization problem:

(a) Using ROM (4.8) as constraints and constructing the primary basis functions using
(4.12), i.e. employing scalar-valued primary basis functions which are constructed
of scalar-valued secondary basis functions.

(b) Using ROM (4.8) as constraints and constructing the primary basis functions using
(4.13), i.e. employing scalar-valued primary basis functions which are constructed
of vector-valued secondary basis functions.

(c) Using ROM (4.11) as constraints and constructing the primary basis functions us-
ing (4.12), i.e. employing vector-valued primary basis functions which are con-
structed of scalar-valued secondary basis functions.

(d) Using ROM (4.11) as constraints and constructing the primary basis functions us-
ing (4.13), i.e. employing vector-valued primary basis functions which are con-
structed of vector-valued secondary basis functions.

Note that with alternative (a), there is no limitation on the secondary basis functions,
that is, even though the secondary basis functions do not provide compatible values of
velocity and pressure, we might still obtain good primary basis functions for the goal
functional; with alternative (b), it is not likely for a ROM with separate primary basis
functions expanded in terms of a combined secondary basis to provide a good approx-
imation of the original system (4.1); with alternatives (c) and (d), because we construct
the ROM in terms of vector-valued primary basis functions, we might need to carefully
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choose the secondary basis functions to ensure that an optimal primary basis is finally
obtained through the SCF.

Thus there are three practical alternatives, (a), (c), and (d), for describing the con-
strained optimization problem. The dimensions of the ROM (the number of variables to
be solved) and the number of optimized variables, are shown for each alternative in table
4.1. The dimension of the Adjoint Equations is the same as that of the ROM, and the size
of the Gradient equals to the number of optimized variables. From table 4.1, we can see
that it is reasonable to expect that a smaller size of constrained optimization problem
will be possible with (d) than with (a) and (c). For applications of the SCF into the Stokes
equations, we will thus investigate the constrained optimization problem described by
(d).

Alternative Dimension of ROM Number of optimized variables
(a) 4×nM 4×nM×nB
(c) nM 4×nM×nB
(d) nM nM×nB

Table 4.1: Dimensions for the three alternatives of the constrained optimization problem

To make the optimal primary basis an orthonormal basis, we need to include a reg-
ularization term. Corresponding to the two alternatives for primary basis functions,
scalar-valued and vector-valued, we can define the regularization term in two forms.

(I) A regularization term suitable for the scalar-valued primary basis functions is:

β

2

nM∑
i , j=1

{[
δi j −

(
φu

i , φu
j

)
Ω

]2 +
[
δi j −

(
φv

i , φv
j

)
Ω

]2 +
[
δi j −

(
φw

i , φw
j

)
Ω

]2

+
[
δi j −

(
φ

p
i , φp

j

)
Ω

]2
} (4.14)

where the first three terms make the matrices (mu , mv , mp ) appearing in (4.8)
identity matrices, and the last term is added to make the primary basis functions
for the pressure (φp ) to be orthonormal to each other.

(II) A regularization term suitable for the vector-valued primary basis functions is:

β

2

nM∑
i , j=1

[
δi j −

(
Φi , Φ j

)
Ω

]2 (4.15)

To give an explicit expression for the constrained optimization problem, we still need
to address the definition of the goal functional. There are potentially many goal func-
tionals of interest, as an example, we consider the following class of goal functional de-
fined by:

g =
[

f (u), f (v), f (w), f (p)
]T

(4.16)

where, e.g. f (u) represents a continuous or discrete function of only u.
In summary, in case of an unsteady incompressible Stokes problem, the constrained

optimization problem which is investigated here can be expressed as:
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argCoe,αmin G = 1

2

∫ t f

0

(
g − ĝ , g − ĝ

)
Ωd t + β

2

nM∑
i , j=1

[
δi j −

(
Φi , Φ j

)
Ω

]2 (4.17a)

subject to

nM∑
j=1

Li j α̇ j =
nM∑
j=1

(
Bν

i j +B p
i j +B c

i j

)
α j +bm

i (4.17b)

nM∑
j=1

α0
j

(
Φi , Φ j

)
Ω
= (Φi , U 0)Ω (4.17c)

ĝ =
[

f
( nM∑

j=1
α jφ

u
j

)
, f

( nM∑
j=1

α jφ
v
j

)
, f

( nM∑
j=1

α jφ
w
j

)
, f

( nM∑
j=1

α jφ
p
j

)]T

(4.17d)

and

Φ j =
nB∑
l=1

Coe j lΨl (4.17e)

where the definition of Li j , Bν
i j , B p

i j , B c
i j , and bm

i are presented in Section 4.2.2, and U 0

represents the initial conditions for the velocity and pressure, i.e. U 0 =
[
u0, v0, w0, p0

]T .

4.4.2. OPTIMALITY SYSTEM

To obtain the optimality conditions for the problem (4.17), we will define the Lagrangian
functional as:

L =1

2

∫ t f

0

(
g − ĝ , g − ĝ

)
Ωd t + β

2

nM∑
i , j=1

[
δi j −

(
Φi , Φ j

)
Ω

]2

+
∫ t f

0

nM∑
i=1

λi

[
nM∑
j=1

Li j α̇ j −
nM∑
j=1

(
Bν

i j +B p
i j +B c

i j

)
α j −bm

i

]
d t

+
nM∑
i=1

µi

[
nM∑
j=1

α0
j

(
Φi , Φ j

)
Ω
− (Φi , U 0)Ω

] (4.18)

whereλi =λi (t ) is a function of time, which enforces the reduced-order governing equa-
tions, and µ enforces the initial conditions. The optimality system can be obtained by
taking first variation of the Lagrangian functional with respect to the state variables α,
adjoint variables λ and µ, and optimization variables Coe.

Setting the first variation of the Lagrangian L with respect to λi to zero and arguing
that the variations δλi is arbitrary in (0, t f ), and setting the first variation of L with
respect to µi to zero, simply recovers the State Equations, i.e. the ROM (4.17b) with
initial conditions (4.17c).

Setting the first variation of the Lagrangian L with respect toα j to zero, the following
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equation is obtained

δLα j =
∫ t f

0

{
1

2

∂

∂α j

[(
g − ĝ , g − ĝ

)
Ω

]
−

nM∑
i=1

λi

(
Bν

i j +B p
i j +B c

i j

)
− d

d t

(
nM∑
i=1

λi Li j

)}
δα j d t

+
nM∑
i=1

λi Li jδα j

∣∣∣t f

0
+

nM∑
i=1

µi
(
Φi , Φ j

)
Ω
α j

∣∣∣0

=0.

Then, arguing that the variations δα j are arbitrary in (0, t f ), at t = 0, and at t = t f , leads
to the Adjoint Equations:

−
nM∑
i=1

Li j λ̇i −
nM∑
i=1

(
Bν

i j +B p
i j +B c

i j

)
λi =

(
g − ĝ ,

∂ĝ

∂α j

)
Ω

(4.19a)

λi (t f ) = 0 (4.19b)

nM∑
i=1

(
Φi , Φ j

)
Ω
µi =

M∑
i=1

Li jλi (0) (4.19c)

For clarity, we split the Lagrangian L , where each term is denoted as Li . Setting the
first variation of the Lagrangian L with respect to optimization variables Coeqs to zero
yields the Gradient:

δLCoeqs =
δL1

δCoeqs
+ δL2

δCoeqs
+ δL3

δCoeqs
+ δL4

δCoeqs
+ δL5

δCoeqs
+ δL6

δCoeqs
+ δL7

δCoeqs

=0

(4.20)

where each term is given by

δL1

δCoeqs
= δ

δCoeqs

{
1

2

∫ t f

0

(
g − ĝ , g − ĝ

)
Ωd t

}
=

∫ t f

0

(
g − ĝ ,

∂ĝ

∂Coeqs

)
Ω

d t ,

(4.21a)

δL2

δCoeqs
= δ

δCoeqs

{
β

2

nM∑
i , j=1

[
δi j −

(
Φi , Φ j

)
Ω

]2

}

= 2β
nM∑
j=1

[(
Φq , Φ j

)
Ω
−δq j

](
Φ j , Ψs

)
Ω

,

(4.21b)

δL3

δCoeqs
= δ

δCoeqs

{∫ t f

0

nM∑
i=1

λi

nM∑
j=1

Li j α̇ j d t

}

=
∫ t f

0

[
λq

nM∑
j=1

α̇ j

(
ψs , φ j

)
Ω
+ α̇q

nM∑
i=1

λi
(
φi , ψs

)
Ω

]
d t ,

(4.21c)
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δL4

δCoeqs
= δ

δCoeqs

{
−

∫ t f

0

nM∑
i=1

λi

nM∑
j=1

(
Bν

i j +B p
i j +B c

i j

)
α j d t

}

=
∫ t f

0

{
2ν

[
λq

nM∑
j=1

α j

(
∇ψs , ∇sφ j

)
Ω
+αq

nM∑
i=1

λi
(∇φi , ∇sψs

)
Ω

]
−

[
λq

nM∑
j=1

α j

(
∇·ψs , φp

j

)
Ω
+αq

nM∑
i=1

λi
(∇·φi , ψp

s
)
Ω

]
+

[
λq

nM∑
j=1

α j

(
ψ

p
s , ∇·φ j

)
Ω
+αq

nM∑
i=1

λi
(
φ

p
i , ∇·ψs

)
Ω

]}
d t ,

(4.21d)

δL5

δCoeqs
= δ

δCoeqs

{
−

∫ t f

0

nM∑
i=1

λi bm
i d t

}

=−
∫ t f

0
λq

(
ψs , f

)
Ωd t ,

(4.21e)

δL6

δCoeqs
= δ

δCoeqs

{
nM∑
i=1

µi

nM∑
j=1

α0
j

(
Φi , Φ j

)
Ω

}

=µq

nM∑
j=1

α0
j

(
Ψs , Φ j

)
Ω+α0

q

nM∑
i=1

µi (Φi , Ψs )Ω ,

(4.21f)

δL7

δCoeqs
= δ

δCoeqs

{
−

nM∑
i=1

µi (Φi , U 0)Ω

}
=−µq (Ψs , U 0)Ω ,

(4.21g)

Here,ψ is used to represent the secondary basis functions for the velocity, and

ψ= [ψu , ψv , ψw ]T .

The combined system (4.17b)-(4.17d), (4.19), and (4.20) are the first-order KKT optimal-
ity conditions for the optimization problem (4.17).

4.5. PRACTICAL NUMERICAL TECHNIQUES
Definitions of some useful parameters
One important free parameter in the Steihaug CG algorithm is the tolerance εk , which is a
critical condition for the residual and has an influence on the accuracy and convergence
rate of the algorithm. In the Inexact-Newton method, the forcing sequence ηk is defined
as the residual over its relative gradient, i.e.

ηk = ‖rk‖
‖∇ f (xk )‖ .

There are many references which give guidelines for how to choose the forcing sequence
ηk , see [79, 84, 85, 102]. A good option is to set

εk = ηk‖∇ f (xk )‖. (4.22)
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In this study the tolerance εk is determined by

εk = min
(
0.5, ‖∇L (Coek )‖2

)
‖∇L (Coek )‖2. (4.23)

A finite difference formula, (2.29), is used to represent the Hessian-vector product
(∇2 f (x)d). For this θ needs to be determined. According to [102], we define the finite
difference stepsize (θ) as

θ = 10−8

‖d‖2
. (4.24)

Integration in space and time
To calculate the Gradient (4.20) and the objective functional (G ) we use discrete oper-
ators for integration in space and time. For the calculation of the integration in space,
a Gaussian quadrature rule is applied; for the calculation of the integration in time, the
trapezoidal rule is used.

Temporal integration method
Both the State Equations (4.17b)-(4.17c) and the Adjoint Equations (4.19) are systems of
ordinary differential equations, for which we use the same temporal integration method

a generalized-α method.
The generalized-α method was first developed for computational solid dynamics as

chronicled by Chung and Hulbert [103]. Then Jansen el at.[104] extended it to the appli-
cation of the Navier-Stokes equations within the context of the finite element method.
The method is formulated to obtain a second-order accurate family of time integrators
whose high frequency amplification factor is the sole free parameter. Such an approach
allows the replication of midpoint rule (zero damping), Gear’s method (maximal damp-
ing), or anything in between.

Applying the finite element method in space to the Navier-Stokes equations yields a
system of nonlinear ordinary differential equations which can be written as

MẎ = N (Y ), (4.25)

where Y is the vector of solution at discrete points (spatially interpolated with the finite
element shape functions), Ẏ represents the time derivative of Y .

Integrating (4.25) from tn to tn+1 by the generalized-α method yields

G(Ẏ n+αm ,Y n+α f ) = M n+αm Ẏ n+αm −N (Y n+α f ) = 0, (4.26a)

Y n+1 = Y n +∆t Ẏ n +γ∆t (Ẏ n+1 − Ẏ n), (4.26b)

Ẏ n+αm = Ẏ n +αm(Ẏ n+1 − Ẏ n), (4.26c)

Y n+α f = Y n +α f (Y n+1 −Y n), (4.26d)

where G is the vector of nodal values of the nonlinear residual. A predictor-multicorrector
algorithm is used to treat the nonlinearities. We start the algorithm by making a predic-
tion of the solution and its time derivative at time tn+1. Because multiple corrections are
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used in the algorithm, a superscript (inside parentheses) is introduced to represent the
iteration number. The predictor is given an iteration count of zero and is given by

Y (0)
n+1 = Y n , (4.27a)

Ẏ (0)
n+1 =

γ−1

γ
Ẏ n , (4.27b)

where (4.27a) predicts that the solution will be the same as it was at the previous time
step and (4.27b) is the time derivative at tn+1 that is consistent with (4.26b) (i.e. the
predictor that preserves second order accuracy).

After making the prediction, the algorithm enters a loop of multi-corrector passes
with i initialized to zero. The first step within the loop is to calculate the solution at
tn+α f and the time derivative of the solution at tn+αm

Y (i )
n+α f

= Y n +α f (Y (i )
n+1 −Y n), (4.28a)

Ẏ (i )
n+αm

= Ẏ n +αm(Ẏ (i )
n+1 − Ẏ n). (4.28b)

These quantities enable the evaluation of G (i )(Ẏ (i )
n+αm

,Y (i )
n+α f

) which, for small i can be

expected to be far from its desired value of 0. To find an improvement to the current
values of (4.28a) and (4.28b), a Newton’s linearization of G (i ) with respect to the solution
variable is utilised, viz.,

G (i )
(
Ẏ (i )

n+αm
,Y (i )

n+α f

)
+
∂G (i )

(
Ẏ (i )

n+αm
,Y (i )

n+α f

)
∂Y (i )

n+α f

∆Y (i )
n+α f

= 0. (4.29)

The first term of (4.29) is the nonlinear residual, the second term of (4.29) is the tangent
matrix multiplying the increment of the solution. This yields a linear matrix problem to
be solved for each corrector step

K (i )∆Y (i )
n+α f

=−G (i ), (4.30)

where K (i ) is the tangent matrix. Once this system is solved for ∆Y (i )
n+α f

, the solution is

updated

Y (i+1)
n+α f

= Y (i )
n+α f

+∆Y (i )
n+α f

, (4.31)

Ẏ (i+1)
n+αm

=
(
1− αm

γ

)
Ẏ n + αm

γ∆tα f

(
Y (i+1)

n+α f
−Y n

)
, (4.32)

and i is incremented. If i < imax , the algorithm returns to solve (4.29), then initiating
the next corrector pass. Otherwise, the solution and its time derivative at the time tn+1

is determined as follows

Y n+1 = Y n +
Y (imax )

n+α f
−Y n

α f
, (4.33)

Ẏ n+1 = Ẏ n + Ẏ (imax )
n+αm

− Ẏ n

αm
. (4.34)



4.6. VERIFICATION STUDY

4

71

This completes the step from tn −→ tn+1.
To define a second-order accurate family of methods with a specified high-frequency

damping, the parameters αm , α f , and γ are defined as

αm = 1

2

(
3−ρ∞
1+ρ∞

)
, (4.35)

α f =
1

1+ρ∞
, (4.36)

γ= 1

2
+αm −α f . (4.37)

In this generalize-α algorithm, we set ρ∞ = 1
2 .

In summary, the Generalized-α Algorithm is given by

Generalized-α Algorithm

Given εG A (a very small number)

Set ρ∞ = 1
2

Compute αm , α f , and γ through (4.35), (4.36) and (4.37)

% Predictor step

Initialize Y (0)
n+1 and Ẏ (0)

n+1 by (4.27a), (4.27b)

Compute Y (0)
n+α f

and Ẏ (0)
n+αm

by (4.28a), (4.28b)

% Multi-corrector loop
Initialize i = 0, ‖∆Y ‖2 = 1
while i < imax and ‖∆Y ‖2 > εG A

Compute G (i )(Ẏ (i )
n+αm

, Y (i )
n+α f

) according with (4.26a);

Compute the tangent matrix K (i );

Compute ∆Y (i )
n+α f

according with (4.30);

Compute Y (i+1)
n+α f

and Ẏ (i+1)
n+αm

according with (4.31), (4.32);

i++;

do

Update Y n+1 and Ẏ n+1 according with (4.33) and (4.34)

4.6. VERIFICATION STUDY
Our optimization code is verified through studying a very simple case, where the velocity
and pressure are assumed to be the following sinusoidal function of space (x and y) and
time (t),
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Exact velocity and pressure:

u, v, p = sin(πx)sin(πy)sin2(πt ) (4.38)

where x, y ∈ [0, 1] and t ∈ [0, 0.5] (a half period for the velocity and pressure).

From (4.38), we can see that only one primary basis function in space is needed to
approximate the velocity and pressure exactly:

φ
u, v, p
exact = c sin(πx)sin(πy) (4.39)

where c is a nonzero constant. We will orthonormalize the exact primary basis func-
tion (4.39) so that we can compare it with the optimal primary basis function obtained
through the SCF. Considering the orthonormal constraint (see Section 4.4), c is chosen
to satisfy ∫ 1

0

∫ 1

0

(
φu

exactφ
u
exact +φv

exactφ
v
exact +φp

exactφ
p
exact

)
d xd y = 1

to obtain the exact orthonormal primary basis function:

φ
u, v, p
orth = 2p

3
sin(πx)sin(πy) (4.40)

In order to unambiguously verify the method, the secondary basis functions Ψl are
chosen to be sine functions of space with same frequency in x− and y−direction,

Secondary basis functions:

Ψl =

ψ
u
l

ψv
l

ψ
p
l

= sin(lπx)sin(lπy) l = 1, 2, · · · , nB (4.41)

As (4.13), the primary basis functions are constructed of the secondary basis func-
tions, so that for this case, there is only one primary basis function which needs to be
optimized (that is nM = 1). The optimized primary basis function is

Optimized primary basis function:

Φ=

φ
u
1

φv
1

φ
p
1

=
nB∑
l=1

Coe1lψl =
nB∑
l=1

Coe1l sin(lπx)sin(lπy) (4.42)

Comparing the optimized primary basis function (4.42) with the exact primary basis
function (4.40), we see that in theory the optimal coefficients Coe1l should be
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Theoretical optimal coefficients:

Coe1l =
{

2p
3

l = 1

0 l = 2, · · · , nB
(4.43)

That is, the optimization coefficients (Coe1l ) are expected to satisfy (4.43) to verify the
code.

Now we will discuss the choice of ∆0 initial trust region radius. Since the choice
of ∆0 can affect the efficiency of the trust region method [105–108], ∆0 selection may be
considered as important. In [105], Sartenaer provided a new strategy for determining ∆0

which prevented the algorithm from decreasing the efficiency of the trust region method
since in Sartenaer’s strategy ∆0 is set to be dependent on the information from gradient
and Hessian-matrix. We will investigate the following choices of ∆0

In this case, choices of∆0: (referring to [86, 105])

(a) ∆0 = ‖∇L (Coe0)‖2;

(b) ∆0 = 0.1‖∇L (Coe0)‖2;

(c) ∆0 = ‖∇L (Coe0)‖2
2

∇L T (Coe0)∇2L (Coe0)∇L (Coe0)
‖∇L (Coe0)‖2.

The remaining parameters which should be determined for our optimization prob-
lem are the regularization parameter β and the kinematic coefficient of viscosity ν. Here
we use

β= 2, ν= 0.1.

4.6.1. RESULTS FOR TWO SECONDARY BASIS FUNCTIONS
In this section, the primary basis function which needs to be found is constructed of two
secondary basis functions, i.e.

Φ=

φ
u
1

φv
1

φ
p
1

= Coe11 sin(πx)sin(πy)+Coe12 sin(2πx)sin(2πy),

and three goal functionals are chosen to be tested. Besides, to see the influence of initial
coefficients on the results, we have tested three initial guesses for the coefficients (Coe1l )
which are:

• Coe0 = (1, 1)

• Coe0 = (0.5, 0.5)

• Coe0 = (1, 0.5)

where Coe0 = (
Coe0

11, Coe0
12

)
.
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(1) Global linear: g = [u, v, p]T (x, y ∈ [0, 1])
This goal functional is chosen since we want to investigate the effect of the reduced-
order underlying governing equations on the determination of primary basis functions.
Fig.4.1(a), Fig.4.1(c) and Fig.4.1(e) show the trajectory of the two coefficients, Coe11 and
Coe12, during the optimization procedure. Starting from different initial coefficients and
different initial trust region radius, in all tests, the first coefficient Coe11 converges to
1.1547, and the find value of the second coefficient |Coe12| is usually smaller than 1e −6.
That is, the theoretical optimal coefficients, Coe11 = 2p

3
≈ 1.154700538 and Coe12 = 0,

are obtained by implementing our optimization code in the allowable range of com-
putational error. The objective functional value G < 4e − 13 (see Fig.4.1(b), Fig.4.1(d),
Fig.4.1(f)), which means that we can reproduce the exact goal functional with the opti-
mal primary basis function obtained by the SCF. We also see that the chosen initial trust
region radius has a small influence on the results. One reason might be the initial coef-
ficients are all close to the theoretically optimal ones and that all of the three ∆0 are in a
reasonable range.

(2) Local linear: g = [u, v, p]T (x, y ∈ [0, 0.5])
Sometimes we may be interested in the velocity and pressure in part of the space do-
main. Here the velocity and pressure in x, y ∈ [0, 0.5] are of interest. From Fig.4.2, we
can see that in all tests the theoretically optimal coefficients are still obtained within the
specified iteration tolerance (Coe11 → 1.15470051 and |Coe12| < 6e −7). The difference
between the exact goal functional (g ) and the reduced-order goal functional (ĝ ) is neg-
ligible. For this goal functional, we still could not see an obvious influence of the chosen
initial trust region radius on the results, since the exact solution was in the secondary
basisΨ.

(3) Global nonlinear: g = [u2, v2, p2]T (x, y ∈ [0, 1])
This nonlinear goal functional: g = [u2, v2, p2]T (x, y ∈ [0, 1]) is tested to continue ver-
ifying our optimization code. As in the last two test cases, from Fig.4.3, it is seen that
the theoretical optimal coefficients are still obtained within its specified iteration toler-
ance (the SCF coefficients are Coe11 ≈ 1.1547003 and |Coe12| < 2e−6) and that the initial
radius (∆0) has a small influence on the convergence behavior of the optimized coeffi-
cients.
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Figure 4.1: Trajectory of Coe and error versus iterations when g = [u, v, p]T (x, y ∈ [0, 1]) and nB = 2
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Figure 4.2: Trajectory of Coe and error versus iterations when g = [u, v, p]T (x, y ∈ [0, 0.5]) and nB = 2
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Figure 4.3: Trajectory of Coe and error versus iterations when g = [u2, v2, p2]T (x, y ∈ [0, 1]) and nB = 2
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4.6.2. RESULTS FOR FIVE SECONDARY BASIS FUNCTIONS
If more secondary basis functions are used to construct the primary basis function, are
the theoretical coefficients still be obtained through our optimization code? Hence, we
increase the number of secondary basis functions to five, i.e. nB = 5. Here results are
presented when we set the initial guess for the coefficients to be:

Coe0 = (
Coe0

11, Coe0
12, Coe0

13, Coe0
14, Coe0

15

)= (1, 1, 1, 1, 1)

From Fig.4.4-4.6, we see that starting from the different initial trust region radius, the
SCF coefficients are:

• Coe = (
1.15470042, |Coe1l | < 1e −6

)
when g = [u, v, p]T (x, y ∈ [0, 1]).

• Coe = (
1.15470051, |Coe1l | < 1e −6

)
when g = [u, v, p]T (x, y ∈ [0, 0.5]).

• Coe = (
1.15470043, |Coe1l | < 2e −6

)
when g = [u2, v2, p2]T (x, y ∈ [0, 1]).

Here, l = 2, · · · , 5. That is, if only the secondary basis includes the exact solution, what-
ever the goal functional is, with a specified iteration tolerance, we can obtain the theoret-
ical optimal coefficients (4.43) using the SCF, and then the exact solution is reproduced.

Seeing Fig.4.4 and Fig.4.5, the initial trust region radius still has little influence on the
convergence behavior. While, in Fig.4.6, we see that when ∆0 = 18.524 the convergence
behavior is different from that when∆0 = 1.852 and∆0 = 0.6 and the convergence rate of
the coefficients is slower.
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Figure 4.4: Coe and error versus iterations when g = [u, v, p]T (x, y ∈ [0, 1]) and nB = 5
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Figure 4.5: Coe and error versus iterations when g = [u, v, p]T (x, y ∈ [0, 0.5]) and nB = 5
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Figure 4.6: Coe and error versus iterations when g = [u2, v2, p2]T (x, y ∈ [0, 1]) and nB = 5
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4.7. APPROXIMATE CASE STUDY
With the algorithm verified, we now consider an approximate case more representative
of realistic applications. Thus, we assume that the secondary basis does not include
functions present in the reference velocity and pressure.

4.7.1. PROBLEM DESCRIPTION
As in the verification case, it is assumed that the velocity and pressure can be modeled
adequately using only one primary basis function. Here the exact velocity and pressure
are chosen to be:

Exact velocity and pressure:

u, v, p = 9000x3(1−x)3(1−2x)2 y2(1− y)2 sin2(πt ) (4.44)

where x, y ∈ [0, 1] and t ∈ [0, 0.5] (a half period for the velocity and pressure).

The magnitude of the exact velocity and pressure increases in time. Fig.4.7 shows the
exact velocity and pressure at t = 0.5.
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Figure 4.7: The velocity/pressure at t = 0.5

In this case, we will use a sinusoidal secondary basis, meaning that the exact solution
can not be reproduced exactly using a finite number of sine/cosine functions. Taking
into account the homogeneous Dirichlet boundary conditions, we define the secondary
basis functions as:
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Secondary basis functions:

Ψl =

ψ
u
l

ψv
l

ψ
p
l

= sin(kxπx)sin(kyπy) l = 1, 2, · · · , nB (4.45)

where
kx , ky ∈

[
1,

p
nB

]
and

l =
p

nB(kx −1)+ky (4.46)

which defines the index of the secondary basis functions.

For example, when nB = 4, the secondary basis functions are:
ψ1

ψ2

ψ3

ψ4


u, v, p

=


sin(πx)sin(πy)

sin(πx)sin(2πy)
sin(2πx)sin(πy)

sin(2πx)sin(2πy)


From (4.44), it is seen that the velocity and pressure could be modeled by using only

one primary basis function. Moreover, the primary basis functions are constructed of
vector-valued secondary basis functions, (4.13). Hence, in this test case, the primary
basis function to be optimized is defined as:

Primary basis function to be optimized:

Φ=

φ
u
1

φv
1

φ
p
1

=
nB∑
l=1

Coe1lΨl =
nB∑
l=1

Coe1l sin(kxπx)sin(kyπy) (4.47)

As before, we will investigate three different goal functionals two linear and one
nonlinear:

g =


[u, v, p]T where x, y ∈ [0, 1])

[u, v, p]T where x, y ∈ [0, 0.5]

[u2, v2, p2]T where x, y ∈ [0, 1]

and use
β= 2, ν= 0.1.

4.7.2. RESULTS
For all of the three goal functionals, the optimization procedure is started with the same
initial guess for the coefficients:

Coe0
1l =

{
1 l = 1

0 l = 2, · · · , nB
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(1) Global linear: g = [u, v, p]T (x, y ∈ [0, 1])
Here, we choose the solution in the whole space domain to be the goal functional. Fig.4.8
shows changes of the objective functional value with the number of secondary basis
functions. It is seen that the value of the objective functional, i.e. the error between
the exact solution and the solution obtained by solving the ROM, is reduced with the
increasing number of secondary basis functions. When increasing the number of sec-
ondary basis functions from 1, 9, 25 to 4, 16, 36, respectively, the difference of the er-
ror has an order of 10−6. Thus when at least one of kx and ky is an even number (e.g.
kx , ky = 2, 4, · · · ), the contribution of the additional basis functions is negligible.
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Figure 4.8: Error versus the number of secondary basis functions when g = [u, v, p]T (x, y ∈ [0, 1])

From Fig.4.9, we see that the optimal primary basis function consisting of 4, 16 and
36 secondary basis functions does not deviate from that consisting of 1, 9 and 25 sec-
ondary basis functions, respectively. It is to be expected due to the symmetry existing in
the exact solution and explains why there is no improvement when the number of sec-
ondary basis functions is increased from 1 to 4, from 9 to 16, and from 25 to 36. Therefore,
if you are aware of symmetries that exist in the reference data, then you should exploit it
in your choice of secondary basis to reduce the size of the optimization problem.
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Figure 4.9: Optimal primary basis function constructed of a different number of secondary basis functions
when g = [u, v, p]T (x, y ∈ [0, 1])
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(2) Local linear: g = [u, v, p]T (x, y ∈ [0, 0.5])
When the velocity and pressure in a quarter of space domain are of interest, Fig.4.10
shows that the error is gradually reduced from 10−3 to 10−6 when we increase the num-
ber of secondary basis functions from nB = 1 to nB = 49. Whenever increasing the num-
ber of second basis functions from an odd number to an even number or from an even
number to an odd number, such as from nB = 1 to nB = 4 and from nB = 4 to nB = 9, the
error always decreases.
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Figure 4.10: Error versus the number of secondary basis functions when g = [u, v, p]T (x, y ∈ [0, 0.5])

Fig.4.11 shows the development of the optimal primary basis function with the in-
creasing number of secondary basis functions. The optimal primary basis function in
x, y ∈ [0, 0.5] becomes close to the exact solution as the number of secondary basis func-
tions is increased; however, outside of this region (i.e. x ≥ 0.5 or y ≥ 0.5), it sometimes
is very different from the exact solution. This result indicates the effectiveness of the
goal-oriented approach, but also implies that the weighted functional approach intro-
duced in Chapter 3 should be used if a realistic solution outside of the region of interest
is desired as well.
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Figure 4.11: Optimal primary basis function constructed of a different number of secondary basis functions
when g = [u, v, p]T (x, y ∈ [0, 0.5])
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(3) Global nonlinear: g = [u2, v2, p2]T (x, y ∈ [0, 1])
When square of the solution is of interest g = [u2, v2, p2]T (x, y ∈ [0, 1]), trends simi-
lar to g = [u, v, p]T (x, y ∈ [0, 1]) are observed (Fig.4.12 versus Fig.4.8 and Fig.4.13 versus
Fig.4.9), e.g.,

• Fig.4.12 shows that the error is reduced with the increasing number of secondary
basis functions, and it almost does not change when we increase the number of
secondary basis functions from nB = 1, 9, 25 to nB = 4, 16, 36, respectively;

• Fig.4.13 shows that the difference between the optimal primary basis function
consisting of 1 (9 or 25) secondary basis functions and that consisting of 4 (16 or
36) secondary basis functions is negligible, and the optimal primary basis function
becomes close to the exact primary basis function when increasing the number of
secondary basis functions (comparing Fig.4.12 with Fig.4.7).
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Figure 4.12: Error versus the number of secondary basis functions when g = [u2, v2, p2]T (x, y ∈ [0, 1])
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Figure 4.13: Optimal primary basis function constructed of a different number of secondary basis functions
when g = [u2, v2, p2]T (x, y ∈ [0, 1])
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4.8. SUMMARY
In this chapter, the construction of ROMs was illustrated for the two-dimensional Stokes
equations which include multiple partial differential equations and multiple variables
(i.e. u, v, p), as was the construction of the primary/secondary basis functions for the
multiple variables.

The optimization algorithm was first verified. The results confirm that if the space
function of the exact velocity and pressure is one of the secondary basis functions, then
the exact orthonormal primary basis function will be obtained, independent of the choice
of goal functional, the number of the secondary basis functions, initial trust region ra-
dius and initial guesses for the coefficients. As mentioned previously, the choice of the
initial trust region radius will affect the convergence behavior.

Then, the SCF was applied to an approximate case. The results show that when in-
creasing the number of the secondary basis functions the estimation of the goal func-
tional is rapidly improved. This demonstrates the viability of the SCF for determining an
optimal primary basis for a particular goal functional in two-dimensional Stokes prob-
lems. It is noted that if symmetries are present in the reference data, we should choose
an appropriate secondary basis in order to minimize the size of the optimization prob-
lem. However, even if this is not done, then the correct optimum will still be obtained by
the SCF algorithm at an increased cost.



5
CONCLUSIONS & OUTLOOK

In this chapter, we give a summary for this thesis. It also presents the outlook based on our
current researches.
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5.1. CONCLUSIONS
This thesis presents a semi-continuous formulation (SCF) to determine bases for reduced-
order models which optimally represent a specific goal functional. In the SCF, we pose
the problem of determining an optimal primary basis as a goal-oriented minimization
problem that seeks to minimize the difference between the full-space goal functional
and reduced-order goal functional over a time interval, with the reduced-order model
for the underlying governing equations imposed as a constraint. In contrast with the
previously developed FDF (introduced in [69]), the SCF separates the governing equa-
tion used for the constrained ROM and the discrete reference dataset. It thus allows
a straightforward application to problems where the algebraic system which can re-
produce the reference data is undefined or unknown, such as when the data comes
from experiments, or from simulations with commercial software. The SCF also allows
the choice of governing equations and boundary conditions for the constrained ROM
which are different from those used to generate the reference data. Furthermore, the
SCF makes the treatment of nonlinear partial differential equations and nonlinear goal
functionals straightforward. For the implementation of the SCF, this thesis considers
two kinds of structure for the primary basis functions: P-type primary basis functions
and F-type primary basis functions. They are used in applications of the SCF to one-
dimensional problems and the Stokes problems, respectively.

We applied the SCF to one-dimensional problems, and the results confirm that the
primary basis functions obtained with the SCF are superior to POD modes. In particular,
the improvements are substantial when the goal functional is a local function in space.
For the nonlinear example, i.e. the application of the SCF to the Burgers equation, we
have observed that the improvements become significant as the solution becomes less
smooth. In applications of the SCF to the linear advection-diffusion equation and the
Burgers equation, we have observed that the choice of goal functional can influence the
number of extrema appearing in the optimization problem. The use of a weighted global
goal functional rather than a purely local goal functional is suggested to avoid ambigui-
ties. Results from the application of the SCF using an approximate partial diffusion equa-
tion show that an optimal primary basis can partially compensate for the model error of
an approximate partial diffusion equation.

In the application of the SCF to two-dimensional Stokes equations, we take into ac-
count the pressure when constructing the ROM. We describe two options for the struc-
ture of the primary basis. The first is a scalar-valued basis where the primary basis func-
tions for the three-directional velocities and pressure are independent. The second is a
vector-valued basis where the primary basis functions for the velocities and pressure are
seen as a whole. Similar choices are made for the secondary basis used in F-type pri-
mary bases. We argue that the second structure is superior for both bases because the
size of the optimization problem can be reduced. We then provide numerical results for
the cases where both primary and secondary basis are a vector-valued basis. The pro-
cedure is found to be robust and insensitive to the inclusion of superfluous secondary
basis functions. It is noted, however, that if symmetries are present in the reference data,
then we should choose appropriate secondary basis functions in order to minimize the
size of the optimization problem. In general, the results demonstrate the viability of the
SCF for seeking an optimal primary basis for a specific goal functional of interest in two-
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dimensional, multi-variable problems.

5.2. OUTLOOK
In the optimization code used for the application of the SCF to the 2D Stokes equations,
the integration of the primary and secondary basis functions over the space domain of
interest is expensive and is one of the largest factors in the computational cost. Con-
sequently, our group is developing an approach where spatial integrations of the sec-
ondary basis functions are pre-computed. Thus, the linear terms in the State Equations,
Adjoint Equations, Gradient and the goal functional are evaluated as a matrix product
of these precomputed terms. In this condition, the cost to determine an optimal primary
basis for a specific goal functional then can be significantly reduced.

This thesis has applied the SCF to 2D Stokes equations. In this application, vector-
valued secondary basis functions are used to construct the primary basis functions (i.e.,
the optimized basis functions) and vector-valued primary basis functions are used to
construct the constrained ROM. In such case, we must be careful to choose the sec-
ondary basis to obtain a ROM which best represents a specific goal functional. Hence,
other optional choices mentioned in Section 4.4.1, such as the combination of scalar-
valued secondary basis functions and scalar-valued primary basis functions, need to be
investigated.

We have seen that the SCF is an effective method that can find an optimal primary
basis for a specific goal functional. Thus, the SCF can be used in problems of optimal
design and optimal control. The next step then can be that applying the SCF to the three-
dimensional incompressible Navier-Stokes equations.





A
DISCRETE PROPER ORTHOGONAL

DECOMPOSITION

In this section, we will follow the view in [26, 70] to introduce the two different practical
ways to calculate POD modes. Which method requires less computational effort relies
on the number of grid points (nx ) and the number of ensemble members (Nt ). Usually,
ensemble members are referred to as snapshots in the reference data ensemble.

A.1. DIRECT METHOD
Here, the ensemble average is defined as a time average of Nt snapshots, i.e.

〈u(x)u(x ′)〉 = 1

Nt

Nt∑
n=1

un(x)un(x ′), (A.1)

where un(x) = u(x, tn). Interchanging the sum and integral, we can rewrite the eigen-
value problem (1.7) as

1

Nt

Nt∑
n=1

un(x)
∫

x′
un(x ′)φ(x ′)d x ′ =λφ(x). (A.2)

Now we can approximate the integral over x ′ using a quadrature method, for example,
the trapezoidal rule. Then, the integral can be expressed as∫

x′
un(x ′)φ(x ′)d x ′ =

nx∑
i=1

ωi un(xi )φ(xi ) = (ûn)T φ̂, (A.3)

where

ûn =



p
ω1un(x1)p
ω2un(x2)

...p
ωnx−1un(xnx−1)p
ωnx un(xnx )

 , φ̂=



p
ω1φ(x1)p
ω2φ(x2)

...p
ωnx−1φ(xnx−1)p
ωnxφ(xnx )

 , (A.4)
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and ωi are the weight functions for the chosen quadrature method. With these defini-
tions we could write (A.2) as

1

Nt

Nt∑
n=1

un(x)(ûn)T φ̂=λφ(x). (A.5)

At each of the nx grid points x j , the equation (A.5) is satisfied, i.e.

1

Nt

Nt∑
n=1

un(x j )(ûn)T φ̂=λφ(x j ) for j = 1, · · · ,nx . (A.6)

Multiplying (A.6) byω j for every j = 1, · · · ,nx , we write the resulting set of equations as a
single matrix-vector equation

1

Nt

Nt∑
n=1

ûn(ûn)T φ̂
def= Aφ̂=λφ̂, (A.7)

implying that the integral equation (1.7) becomes a symmetric eigenvalue problem for
the nx ×nx matrix A. To ensure that the POD modes are orthonormal, remembering to
multiply the components of the eigenfunctions for the eigenvalue problem (A.7) by 1p

ω j

to get the POD modes φ, that is, the POD modes are

φ(x j ) = 1p
ω j
φ̂(x j ) for j = 1, · · · ,nx . (A.8)

A.2. SNAPSHOT POD
The Snapshot POD method was proposed by Sirovich [109]. This method can change an
eigenvalue problem from the size of nx×nx into Nt ×Nt . When nx À Nt , it can save time
in solving the eigenvalue problem .

Suppose that φ has a special form in terms of the reference data:

φ(x) =
Nt∑

k=1
α(tk )u(x, tk ) (A.9)

where the coefficients α(tk ) remain to be determined so that φ given by (A.9) provides a
maximum for (1.4). The eigenvalue problem (1.7) can be written as∫

x′
R(x, x ′)

Nt∑
k=1

α(tk )u(x ′, tk )d x ′ =λ
Nt∑

k=1
α(tk )u(x, tk ), (A.10)

where the two-point space correlation tensor R(x, x ′) is estimated by

R(x, x ′) = 1

T

∫
T

u(x, t )u(x ′, t )d t = 1

Nt

Nt∑
n=1

u(x, tn)u(x ′, tn). (A.11)

Substituting (A.11) into the equation (A.10) yields

Nt∑
n=1

[
Nt∑

k=1

1

Nt

(∫
x′

u(x ′, tn)u(x ′, tk )d x ′
)
α(tk )

]
u(x, tn) =λ

Nt∑
k=1

α(tk )u(x, tk ),
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and we conclude that a sufficient condition for the solution of (A.10) is to find coeffi-
cients α(tk ) such that

Nt∑
k=1

1

Nt

(∫
x′

u(x ′, tn)u(x ′, tk )d x ′
)
α(tk ) =λα(tn) n = 1, · · · , Nt . (A.12)

This is now an Nt ×Nt eigenvalue problem

Cα=λα, (A.13)

where

Cnk = 1

Nt

∫
x′

u(x ′, tn)u(x ′, tk )d x ′ and α=


α(t1)
α(t2)

...
α(tNt )

 . (A.14)

Note that in order for (A.12) to be a necessary condition, one needs to assume that the
observations u(x, tk ), k = 1, · · · , Nt are linearly independent.

It is easy to verify that if the POD modes are not evaluated through (A.9) but as

φi (x) = 1√
Ntλi

Nt∑
k=1

αi (tk )u(x, tk ), (A.15)

then the POD modes are orthonormal.





B
THE CONJUGATE GRADIENT

METHOD

The Conjugate Gradient Method (CG) is the most popular iterative method to solve large
systems of linear equations in the form

Ax = b, (B.1)

where x is an unknown vector, b is a known vector, and A is a known, square, positive
definite matrix (xT Ax > 0 for every nonzero vector x). If A is symmetric, the problem
(B.1) can also be seen equivalently as the following minimization problem

min f (x) = 1

2
xT Ax −bT x + c, (B.2)

where c is a scalar constant. The solution of (B.2) is given by

f ′(x) = 1

2

(
AT + A

)
x −b = Ax −b = 0 ⇔ Ax = b, (B.3)

since A is symmetric. This allows us to see the CG method either as an algorithm to
solve linear systems or as a technique to minimize convex quadratic functions. It is more
easily understood in terms of minimization, we pose the problem as the determination
of the minima of the quadratic function f (x), (B.2). Before illustrating the CG method,
we introduce some notations

1. The new point: xk+1 = xk +αk dk with αk the step length and dk the search direc-
tion for the current iterate.

2. Error: ek = xk −x, a vector that indicates how far we are from the solution x.

3. Residual: rk = b − Axk , which describes how well the current iterate approximates
the solution. Note that the residual can also be written as rk =− f ′(xk ) =−Aek .

Further, two vectors di and d j are A-orthogonal or conjugate, if

d T
i Ad j = 0 for i 6= j . (B.4)
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B.1. THE METHOD OF CONJUGATE DIRECTIONS
Methods such as the method of Steepest Decent often take steps in the same direction as
earlier iterates and can be slow to converge [110]. The idea behind the method of conju-
gate directions (and conjugate gradient) is to take a set of A-orthogonal search directions
{d0, d1, · · · , dn−1}, and to take one step in each direction with just the right step length
such that after n steps we line up with the solution x. In order to achieve this, the error
ek+1 must be A-orthogonal to the previous search direction dk

d T
k Aek+1 = 0, (B.5)

which is equivalent to finding a minimum of f (x) along the current search direction dk .
To see this, setting the directional derivative of f (xk +1) with respect to αk to zero:

d

dαk
f (xk+1) = 0 ⇒ f ′T (xk+1)

d

dαk
xk+1 = 0 ⇒−r T

k+1dk = 0

⇒ d T
k Aek+1 = 0 (B.6)

Using (B.5) we can calculate the required step length αk

d T
k Aek+1 = 0 ⇔ d T

k A (ek +αk dk ) = 0

⇒αk =− d T
k Aek

d T
k Adk

= d T
k rk

d T
k Adk

(B.7)

where the relation ek+1 = ek +αk dk was found by subtracting ek+1 from ek . To prove that
this procedure really does compute the solution x in n steps, express the initial error e0

as a linear combination of search directions (Fig.B.1), i.e.

e0 =
n−1∑
j=0

δ j d j . (B.8)

In view of (B.4), we can eliminate all the δ j values but one from (B.8) by premultiplying
this expression with d T

k A

d T
k Ae0 =

n−1∑
j=0

δ j d T
k Ad j

(B.4)===⇒ d T
k Ae0 = δk d T

k Adk

⇒ δk = d T
k Ae0

d T
k Adk

(B.4)===== d T
k A

(
e0 +∑k−1

i=0 αi di
)

d T
k Adk

⇒ δk = d T
k Aek

d T
k Adk

. (B.9)

Comparing (B.9) with (B.7), we see that δk =−αk , so

ei = e0 +
i−1∑
j=0

α j d j =
n−1∑
j=0

δ j d j −
i−1∑
j=0

δ j d j

=
n−1∑
j=i

δ j d j . (B.10)
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That is, after n steps every component of the error has been cut away and en = 0, which
proves the effectiveness of this procedure.
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Figure B.1: The initial error e0 can be expressed as a sum of A-orthogonal components (d0, d1 and d2)

All that is now needed is a set of A-orthogonal search directions, which we can con-
struct with the conjugate Gram-Schmidt process from a set of linearly independent vec-
tors {u0, · · · ,un−1}. To construct di , take ui and subtract out any components that are
not A-orthogonal to the previous search directions d0, d1, · · · , di−1. The procedure can
be illustrated by Fig.B.2, given two linearly independent vectors u0 and u1, set d0 = u0,
the vector u1 is composed of two components: u∗ that is A-orthogonal to d0, u+ that is
parallel (not A-orthogonal) to d0, then d1 = u1 −u+ = u1 +d0 = u∗ which only includes
the A-orthogonal portion. Generally, for i > 0, the i th search direction is given by

di = ui +
i−1∑
k=0

βi k dk , (B.11)

where βi k are defined for i > k, and we always set d0 = u0. To find the values of βi k , we
take the transpose of (B.11) and multiply by Ad j (i > j )

d T
i Ad j = uT

i Ad j +
i−1∑
k=0

βi k d T
k Ad j

(B.4)===⇒ 0 = uT
i Ad j +βi j d T

j Ad j ,

=⇒βi j =−uT
i Ad j

d T
j Ad j

. (B.12)
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u0

u1

d0 = u0

u1

u+

u∗

d0

d1 = u∗

Figure B.2: Gram-Schmidt conjugation of two vectors

Next, some important properties of this method will be presented.

1. The new residual ri is orthogonal to all previous search directions dk (i > k). To
show this, premultiply (B.10) by −d T

k A,

−d T
k Aei =−

n−1∑
j=i

δ j d T
k Ad j

k<i≤ j====⇒
(B.4)

d T
k ri = 0. (B.13)

2. The new residual r j is also orthogonal to all previous ui ( j > i ). This is proven by
taking the inner product of (B.11) and r j ,

d T
i r j = uT

i r j +
i−1∑
k=0

βi k d T
k r j (B.14)

k<i< j====⇒
(B.13)

uT
i r j = 0. (B.15)

There is one more relation between the current residual ri and search direction di . In
(B.14), setting i = j , since d T

k r j = 0 when k < j , then we get

d T
i ri = uT

i ri . (B.16)

B.2. CONJUGATE GRADIENT METHOD
The Conjugate Gradient Method can be seen as the method of Conjugate Directions
where the search directions are constructed by conjugation of the residuals ri , that is,
setting ui = ri . Therefore, according to (B.11), we can calculate the search directions
through

di = ri +
i−1∑
k=1

βi k dk . (B.17)

And (B.15) becomes
r T

i r j = 0 i < j (B.18)

which means that the new residual is orthogonal to all previous residuals, and it is also
orthogonal to all previous search directions (B.13).
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In the method of conjugate directions the Gram-Schmidt constants βi j was given by

βi j =−uT
i Ad j

d T
j Ad j

,

and now that we use the residual ri instead of ui , it becomes

βi j =− r T
i Ad j

d T
j Ad j

.

A big advantage of the CG method over the method of conjugate directions is that it is
no longer necessary to store old search directions to ensure the A-orthogonality of the
new search directions. To achieve this, the above expression of βi j should be simplified,
which can be realized through relations existing among the residuals. Firstly, the residual
r j+1 is given by

r j+1 =−Ae j+1 =−A(e j +α j d j ) = r j −α j Ad j . (B.19)

Then, taking the inner product of (B.19) and ri

r T
i r j+1 = r T

i r j −α j r T
i Ad j

⇒ r T
i Ad j = 1

α j

(
r T

i r j − r T
i r j+1

)

⇒ r T
i Ad j =


1
αi

r T
i ri j = i

− 1
αi−1

r T
i ri j = i −1

0 otherwise

By (B.18)

Lastly, βi j is calculated as

βi j =


r T
i ri

αi−1d T
i−1 Adi−1

j = i −1

0 j < i −1
(B.20)

As we expect that most of the βi j terms have disappeared except one. Using βi = βi ,i−1

and αi−1 = d T
i−1ri−1

d T
i−1 Adi−1

, we get

βi =
r T

i ri

d T
i−1ri−1

. (B.21)

We can simplify this further by using relation (B.16) and noting that ui is now replaced
by ri

βi =
r T

i ri

r T
i−1ri−1

. (B.22)

Now, let’s put it all together into one piece. The Conjugate Gradient Algorithm is
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Conjugate Gradient Algorithm

Given x0

Set initial residual and search direction: r0 = b − Ax0, d0 = r0

i = 0
while ‖ri‖ > ε do

αi = r T
i ri

d T
i Adi

xi+1 = xi +αi di

ri+1 = ri −αi Adi

βi+1 = r T
i+1ri+1

r T
i ri

di+1 = ri+1 +βi+1di

i = i+1
end while
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