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Grasp synthesis for unknown objects is a challenging problem as the algorithms are expected to cope
with missing object shape information. This missing information is a function of the vision sensor
viewpoint. The majority of the grasp synthesis algorithms in literature synthesize a grasp by using
one single image of the target object and making assumptions on the missing shape information. On
the contrary, this paper proposes the use of robot’s depth sensor actively: we propose an active vision
methodology that optimizes the viewpoint of the sensor for increasing the quality of the synthesized
grasp over time. By this way we aim to relax the assumptions on the sensor’s viewpoint and boost
the success rates of the grasp synthesis algorithms. A reinforcement learning technique is employed to
obtain a viewpoint optimization policy, and a training process and automated training data generation
procedure are presented. The methodology is applied to a simple force-moment balance-based grasp
synthesis algorithm, and a thousand simulations with five objects are conducted with random initial
poses in which the grasp synthesis algorithm was not able to obtain a good grasp with the initial
viewpoint. In 94% of these cases, the policy achieved to find a successful grasp.

Keywords: active vision, reinforcement learning, robotic grasping, viewpoint optimization

1. Introduction

Grasp synthesis for unknown objects aims to enable robotic grasping even when the shape
of the target object is not known by a robot a priori. To achieve this goal, an option is to
generate a full model of the target object first, and then apply a grasp synthesis algorithm for
known objects [1–3]. This approach is far from efficient since the robot should acquire images
from all the viewpoints that are necessary for a full shape reconstruction. Consequently, various
techniques are developed in the literature to solve the grasp synthesis problem with partial shape
information, and the majority of these methods use a single image of the target object and make
implicit or explicit assumptions on the missing part of the shape information: for example,
the feature-based methods in [4–9] aim to find visual features that correspond to good grasping
locations. These approaches assume that the sensor observes the object from a specific viewpoint
and train their system accordingly. The method in [10] assumes that the object is symmetric,
completes the shape model by calculating the symmetry axis and then synthesizes a grasp. The
method in [11] fits shape primitives to the partial shape information and uses predefined grasps
for the assigned shape. This approach assumes that the correct shape primitive can be fit from
the given viewpoint and that the assigned primitive represents the shape well enough for grasp
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synthesis. The knowledge base method in [12] uses a database of objects represented by oriented
bounding boxes together with corresponding grasps. As the partial shape of the target object
is acquired, the oriented bounding box model is generated and the best match is found from
the database. This method assumes that the oriented bounding box model that is fit from the
current viewpoint is sufficient to find a good match from the database.

The significance of the sensor viewpoint for grasp success can be observed by analyzing the
experimental results of the above-mentioned papers. In these works, the experiments are con-
ducted with several objects for various object poses (viewpoints), and 1) in none of the papers,
100% success rate is reported for all the objects, 2) for none of the objects, a 0% success rate
is reported. This shows that the assumptions on the missing information (which is a function of
the sensor viewpoint) do not always hold even for a limited set of objects, but if good viewpoints
are supplied, these algorithms can achieve successful results even for challenging objects.

This paper presents an active vision methodology for changing the viewpoint of a depth sensor
in order to aid grasp synthesis algorithms. For this purpose an exploration policy is obtained
using a reinforcement learning method that provides exploration directions to an eye-in-hand
system. In contrast to the majority of the active vision strategies in the robotic manipulation
literature (e.g. [13–16]), our policy does not aim to obtain a full model of the target object, but
focuses to find a sufficiently good grasp in an efficient way by brief camera motions. For each
visited viewpoint, the collected data about the object shape is fused with the previous ones in
order to benefit from all the data that is acquired during the process.

The viewpoint optimization policy is obtained by training the system with partial point cloud
data that are labeled with a direction for the robot’s sensor to follow in order to collect enough
data for synthesizing a good grasp. The output of the training process is one single policy that
provides an exploration direction for given partial point cloud data. The resulting policy is a
generalized viewpoint optimization strategy that is also applicable to the objects outside the
training data set. Since obtaining the training data with manual labelling is a cumbersome
process, an automated training data generation procedure is also presented.

The proposed viewpoint optimization method can be applied to various grasp synthesis tech-
niques in literature for increasing their success rate. Naturally, it can only be applied to systems
with movable sensors. The methodology also requires a quality value both for training the sys-
tem and terminating the viewpoint optimization process. This value can be the quality of the
synthesized grasp as well as the quality of the data, both of which can be supplied by the ma-
jority of the algorithms in literature as most algorithms already use a quality measure for their
internal grasp optimization process.

We applied the proposed methodology to an eye-in-hand system with a depth sensor, and
adopted a simple force-moment balance-based grasp synthesis strategy. Simulations are con-
ducted to evaluate the performance of our strategy and to compare it with random and heuristic-
based exploration techniques. Five objects are chosen with various shapes, and a thousand simu-
lations are conducted with each method for random poses of the objects. The results demonstrate
that the proposed viewpoint optimization enables a good grasp for the 94% of the cases in which
synthesizing a good grasp was not possible for the grasp synthesis algorithm from the initial view-
point. It is also seen that the proposed method is superior to the random and heuristic-based
exploration methods in terms of both success rate and efficiency.

This paper is organized as follows: we present the related work in Section 2. The viewpoint
optimization methodology is explained in Section 3. Following that the details of our implemen-
tation is given in Section 4. The simulation results are presented and discussed in Section 5. In
the last section, the paper is concluded with discussions and future work.
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2. Related Work

Active vision methods are utilized in many robotics applications, e.g. surveillance, inspection,
object recognition, tracking, path planning (a comprehensive list and a comparison of methods
can be found in [17] and [18] respectively). Among these application, the next best view planning
problem for object recognition (active object recognition) [19] has resemblance to the viewpoint
optimization for grasp synthesis. Active object recognition algorithms provide methods to alter
the viewpoint of the vision sensor in order to obtain a descriptive view of a 3D object for recog-
nizing it. One of the common solutions in literature is view selection by increasing the mutual
information [20–22]. By this approach, planning the next viewpoint is conducted by searching
the whole action space for the maximum object class and observation mutuality considering the
previous actions and observations. Another common approach is increasing the discriminative
information among the class predictions by entropy minimization [23, 24]. Learning techniques
are also utilized for active object recognition, in which a policy that maps states to actions is
learned for increasing the discriminative information. A very common way of learning this pol-
icy is via reinforcement learning algorithms [25–27]. While designing our viewpoint optimization
strategy for grasp synthesis, we applied a similar framework to [27] with the following differences:

(1) We train our system specifically for boosting grasp synthesis instead of object recognition
performance, which requires a completely different process.

(2) Our method is designed to generate brief and continuous motions; the policy does not
output discrete camera positions on the viewsphere for the next best view, but generates
local exploration directions in the camera coordinate frame.

(3) While the camera moves on the viewsphere, we continuously fuse the acquired point clouds
in order to benefit from all the available data. In this way, even brief motions can provide the
required information for a good grasp. This approach requires a different state description
than [27].

In the robotic manipulation literature, active vision is often utilized for known object models
[28, 29]. In this case, the role of viewpoint optimization is to localize the target object. In [13–
16], a complete 3D model of the object is generated prior to manipulation. In [30] a method
is proposed to obtain optimal estimates of the intrinsic and extrinsic camera parameters for
achieving higher quality 3D models of the target object. On the other hand, very few works
utilize active vision that use partial object data. In [31], active vision is used to refine the surface
reconstruction of the grasp location candidates, which results in a more reliable grasp execution.
[32] addresses the problem of grasping unknown objects in the presence of occlusion. In this case,
the active vision system aims to minimize occlusions on the grasp handles of the objects. In a
similar vein, [33] uses active vision to minimize occlusions in a bin-picking problem. [34] utilizes
active vision for recognizing the object in clutter, and estimating its pose. Different than these
approaches, our method aims to conduct active vision directly for the purpose of boosting grasp
success by obtaining a policy that searches for a successful grasp given the current state.

3. Viewpoint Optimization Methodology

The purpose of viewpoint optimization is to change the viewpoint of the sensor to increase the
quality of a synthesized grasp. The proposed exploration scheme is as follows.

3.1 The Viewpoint Optimization Scheme

In this section, an overview of the viewpoint optimization scheme is presented. The sensor is
constrained to move on a viewsphere around the object as in [35]. Therefore, the sensor is always
pointed to the target object and its position on the virtual sphere is altered by a viewpoint
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optimization strategy.
The proposed viewpoint optimization scheme can be seen in Figure 1. First, data are acquired

from the sensor and fused with the data collected from the other visited viewpoints during
the process (the fusion step is skipped in the first cycle since the system is still at the initial
viewpoint). Then, a grasp is synthesized using the fused data. If the quality of the grasp is good
enough (above a predefined grasp quality threshold), then the procedure is terminated and the
grasp is executed. If the grasp quality is not sufficient, then the fused data are converted to
a state representation and sent to the viewpoint optimization policy obtained by the training
procedure. The policy returns a direction to follow in order to lead the robot to a successful
grasp. This direction is defined with respect to the sensor’s coordinate frame. The sensor is
moved to this direction on the viewsphere for a certain distance, called a step in this paper.
From this new position (viewpoint) new data are acquired, and the procedure is run again until
a successful grasp is obtained.

This scheme can work with many grasp synthesis algorithms in literature; the only prerequisites
to apply the scheme are the provision of a quality value and a quality threshold that signifies good
grasps. As can be seen in Figure 1, the quality value and its threshold are used to terminate the
viewpoint optimization process. Moreover, these values are necessary while training the system
for obtaining the viewpoint optimization policy. Supplying a grasp quality is a common feature
of many grasp synthesis algorithms as they already use a quality measure for optimizing grasping
points and/or a grasp pose. Therefore, the quality of the best synthesized grasp can be used as
the quality of the viewpoint. With this interpretation, the whole procedure can be seen as two
cascaded optimizations: The first optimization stage is the grasp synthesis algorithm which aims
to find the best grasp for given data. The second optimization is the viewpoint optimization
that aims to supply better data to the grasp synthesis algorithm.

Even though the details of our implementation will be presented in Section 4, we would like
to give a brief overview here to provide a concrete example for the components of the scheme
in Figure 1. In our implementation, we used an eye-in-hand system: a manipulator with a depth
sensor attached next to its gripper. The sensor supplies point cloud data of the scene. In the
data fusion stage, we stitch the point clouds that are acquired during the process. As grasp
synthesis algorithm, we used a force-moment balance metric in 3D. As a state representation,
we utilized height accumulated features (HAF) [36] to model the stitched point cloud. We add
to this representation the position of the sensor relative to its initial position and a model of the
unexplored regions. The state is the input of the viewpoint optimization policy that is obtained
by a reinforement learning procedure. The policy generates a direction that is relative to the
depth sensor. We discretize the direction as north, northwest, west, southwest, south, southeast,
east and northeast, and the policy returns one of these values. The robot moves the depth
sensor for a step, so that the direction is followed while staying on the viewsphere. From the
new viewpoint of the sensor the procedure is run again until a successful grasp is obtained.

The viewpoint optimization policy aims to collect data for achieving a successful grasp with
the lowest number of iterations (steps) possible. The procedure of obtaining this policy by
reinforcement learning is explained next.

3.2 The Training Process

The aim of the training is to obtain an exploration policy that supplies an exploration direction
to the sensor for the current state (a representation of the partial shape data of the target object
combined with other state information i.e. the position of the robot and a representation of the
unexplored regions). For this purpose, we propose the use of approximate reinforcement learning
techniques. This method requires us to estimate the expected utility of moving in a certain
direction, starting from a given state. The optimal exploration direction, which maximizes the
expected utility, should make the sensor collect enough information for synthesizing a sufficiently
good grasp in the shortest amount of steps. As a result a policy is obtained, which returns an
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Figure 1.: The exploration scheme

exploration direction for a given state.
Formally speaking, the exploration policy is obtained by approximate Monte Carlo policy

evaluation as follows: Define a policy π as a mapping from states to actions (directions). Its
state-action value function Qπ(s, a) encodes, for every state s, the expected value (grasp quality)
of taking action a and following π afterwards. Let π0 be the random policy, taking uniformly
distributed random actions independent of the state. Then

π1(s) = arg max
a

Qπ0(s, a), (1)

which is greedy with respect to Qπ0 , can be used as a first approximation of the optimal policy
π∗, which always takes the action that leads to the highest expected value [37]. Because s is
continuous, we need to generalize over states. In order to reduce the required sample set, we do
not continue the iteration π0, π1, . . . , π

∗, but directly approximate π1 by supervised learning.
To create a sample set, we drive the system to a series of random states s, execute every action

and record the value of following π0. We then apply Eq. 1 and approximate the mapping

s→ π1(s) (2)

using a linear classifier. To reduce the dimensionality, principal component analysis and linear
discriminant analysis are first applied to the state features.

It is important to note that the exploration policy depends on the grasp synthesis algorithm;
since the best viewpoint can be different for different algorithms, the system should be trained

5



September 27, 2018 Advanced Robotics output

per algorithm. This means training data that is labeled according to the characteristics of the
algorithm is necessary. Generating labeled training data manually is a cumbersome and diffi-
cult process, since determining the best exploration direction for a given state considering the
characteristics of the algorithm may not be straightforward. For this purpose, an automated
training data generation procedure that can be implemented in a simulation environment is also
proposed in this paper. This procedure is explained next.

3.3 Automated Training Data Generation Procedure

The automated training data generation procedure aims to generate data for the policy approx-
imation. This data is made up of various states and corresponding exploration directions. Here,
we decouple direction determination and state representation stages; we assign the exploration
directions to fused raw data obtained by the vision sensor, and then generate the state repre-
sentation using the raw data. In this way, the learning performance with various representations
can be examined without rerunning the data generation procedure.

The automated training data generation procedure can be seen in Appendix A. The procedure
consists of the following main steps:

(1) Finding a random initial sensor position for which a good grasp cannot be generated,
(2) Finding the direction that leads to a good grasp with fewest number of steps,
(3) Assigning this direction to the raw data.

The procedure is run for all the objects in the training dataset for the requested data number.
The main steps are explained below.

3.3.1 Finding a random initial sensor position

In the beginning of the process, first the target object is spawned. Then the robot is moved
to a random initial position. Following that, an image is taken in that position and the best
grasp for the given data is synthesized. If the quality of this grasp is already above a certain
threshold, then the procedure is restarted since viewpoint optimization is not necessary. If the
grasp quality is not sufficient, then the image is recorded to the image arr array. Next, the best
exploration direction for that position is found with the following procedure.

3.3.2 Finding the best exploration direction

The procedure for determining the exploration direction that leads to a good grasp in the
fewest number of steps starts at line 13. The first step of this sub-procedure is to lead the robot
in a certain exploration direction k for a step. If a sufficiently good grasp can already be achieved
by this motion, then the grasp quality is recorded, and the step number necessary to achieve
this grasp is set to 1. In this case, the rest of the loop (random search for a good grasp) is
not necessary for this specific direction (k), since a good grasp is already obtained with the
fewest number of steps, and the sub-procedure continues for the other directions. If a good grasp
cannot be achieved by following this certain direction k for a step, a random search is started
(line 23) for finding the step number necessary for obtaining a good grasp from this position. The
random search is conducted no random search times and each search continues until a good
grasp is found or the step number exceeds max search step no. Within this random search,
the minimum step number that leads to a good grasp and the quality of that grasp is recorded
to the corresponding entries of arrays rec step no and rec grasp quality respectively. If a good
grasp cannot be achieved by this random search, then the quality of the highest quality grasp
is recorded, and as step number, rec step no[k] is assigned to max search step no. These steps
are applied to all directions.

3.3.3 Assigning direction to raw data

By the recorded values obtained from the previous sub-procedure, the direction that achieves
a good grasp with fewest number of steps is assigned to the recorded image (line 42). If there
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are directions with the same number of steps, then the one with higher grasp quality is chosen.
The outputs of the procedure are the arrays image arr and dir arr, which are the raw data
and assigned exploration directions respectively. For using these data for training, the raw data
should be converted into a state representation.

Here the variety of the object shapes used in the training is important: By the training, we
aim to obtain a policy that can work for objects with different shapes. As the shape variety
in the training data set increases, the possibility of getting an efficient viewpoint optimization
also increases. The other important point is the technique that is used to represent the states.
This representation should be descriptive enough, so that the policy can differentiate between
different states and make correct decisions.

An application of the proposed methodology is given in the following section.

4. An Implementation of the Viewpoint Optimization Methodology

As a grasp synthesis algorithm we used a force-moment balance-based method for antipodal
grasps. We preferred using this method since it is simple and its working principles are straight-
forward. In this way, we aim to keep the emphasis on the viewpoint optimization strategy and
make its results easier to analyze.

For a representation of a state we used a model of the object point cloud, the position of the
robot relative to its initial position and a model of the unexplored regions. For modeling the
point clouds we used Height Accumulated Features (HAF).

In this section the grasp synthesis algorithm and the formation of the state are explained in
detail.

4.1 Grasp Synthesis Algorithm

The force-moment balance-based algorithm uses a 3D version of the gradient-angle representation
proposed in [7]. This algorithm is efficient to compute and can be calculated as follows: Suppose
that there are two grasping point candidates on the object. The quality of the grasp using these
points can be calculated by the angles between force application vectors (the normals at those
points) and the line that passes through the grasping points (for a 2D visualization see Fig.
2). As the angles get closer to 0 and pi radians, the quality of the grasp increases. This metric
is utilized in the following way: The input to the algorithm is the latest stitched point cloud
of the scene. First, the points that belong to the object are extracted from the point cloud by
removing the major plane (points that belong to the table). The point cloud that belongs to
the major plane is saved and will be used shortly. Next, downsampling is applied to the object
point cloud in order to remove the sensor noise and provide efficiency to the following stages.
For each point of the downsampled data, local surface normals are calculated by fitting a plane
to a small patch around these points. Each possible pair of the normal vectors is considered as
a possible antipodal grasp candidate.

The normal pair that provides the highest quality grasp is found by a brute force search with
the following steps: For each normal pair, the force-moment balance-based grasp quality metric
is calculated. If none of the pairs can achieve a grasp above a predefined quality (set by the user),
the algorithm fails to synthesize a grasp. If there are pairs above the threshold, then starting
from the pair with the highest quality grasp, collision is checked between the possible poses of
the gripper and 1) the object point cloud, 2) the major plane point cloud and 3) a point cloud
that represents the unexplored regions (forming this point cloud is explained shortly). If a pose
of the gripper can be found for grasping the object from this pair without colliding any of these
point clouds, then a successful grasp is found. If not, the algorithm fails. If there are more than
one collision-free gripper pose, the one that is most perpendicular to the object major axis can
be chosen.
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(a) (b) (c)

Figure 2.: An illustration of the gradient angle features that are introduced by [7]. For a given set
of two grasping point locations, the gradient angle features can be calculated as angles between
force application directions (the red dashed lines) and the line that connects the two grasping
points (the yellow dashed line). These two angles are expected to be close to 0 and 180 degrees
for a good grasp. These features are simple and efficient to calculate and can distinguish between
good grasps (i.e. (a)) and bad grasps (i.e. (b) and (c)).

For obtaining a point cloud for unexplored regions, we first cast regularly distributed virtual
points around the object in the beginning of the viewpoint optimization process. For each point
in this point cloud, ray tracing is applied to check if the point is visible to the camera or obscured
by the object. If the point is obscured, it is kept in the point cloud, otherwise it is removed. The
point removal procedure is continuously run as the viewpoint of the sensor changes.

An important property of this grasp synthesis algorithm is that it does not make any assump-
tions on the missing shape: it only uses the data that is acquired during the process and avoids
interacting with the unexplored regions of the scene.

4.2 State Representation

In this application, our state representation is composed of three components: a model of the
partial object shape data, a model of the unexplored regions and the position of the robot relative
to its initial position in the viewpoint optimization process.

For modeling the partial object shape point cloud and unexplored region point cloud, we adopt
height accumulated features (HAF) explained in [36] as follows: We define a 2D five-by-five grid
on the table plane centered at the object. The scale of the grid is calculated so that it covers
the whole object point cloud with the smallest grid dimension possible (orientation of the grid is
kept the same). In this way, we maintained scale invariance of the model. The distance of each
point to the grid plane is calculated and recorded. The points are then projected to the planar
grid, and the ones that correspond to the same grid cell are grouped together. For each cell, the
largest distance value among the associated points is assigned as a feature value for that cell.
In this way, a 25x1 feature vector is formed for each point cloud. For modeling the unexplored
regions point cloud, we again use a five-by-five grid, but with a larger scale (1.5 times the scale
of the object grid) since the backside of the object is also populated by this point cloud.

The position of the robot is defined on the viewsphere with respect to its initial position using
two rotation parameters. Therefore, the overall state vector is the concatenation of the HAF
values of the object point cloud (25x1), the HAF values of the unexplored region point cloud
(25x1), and the robot position (2x1), in total 52x1 vector.

We conducted simulations to evaluate the performance of the viewpoint optimization strategy
with the explained grasp synthesis and state representation techniques. The results are presented
in the next section.
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Figure 3.: The objects models used in the training: A square prism and a bowl.

Figure 4.: The objects models used in the simulations: A square prism, a rectangular prism, a
driller, a glass and a bowl.

5. Simulation Results

The implementation presented in Section 4 is realized in simulation for analyzing the success
and efficiency of the proposed viewpoint optimization method. Both for the automated training
data generation and for obtaining simulation results, Robot Operating System (ROS) is used
together with the Gazebo simulation environment and the Point Cloud Library (PCL).

The system is trained by using two objects, a square prism and a bowl shown in Figure 3.
For the training, 200 data are collected for various poses of the square prism and 50 data points
for the bowl. For testing the resulting policy, 5 objects are chosen from the household objects
database package of ROS which supplies models of real household objects. The shapes and sizes
of the square prism-like object and bowl are different from the ones used in the training process.
These models can be seen in Figure 4. 200 simulations have been conducted for each object with
various poses, standing and lying on a table. However, only poses that are in principle successful
are considered. For example, for the rectangular prism, if the object lies on one of the largest
two edges, then the gripper opening is not sufficient enough to grasp the object successfully.
Therefore, this pose is not used while conducting simulations with this object.

In the simulations, the policy-based exploration is compared with a heuristic-based search
technique and a random search technique. As mentioned previously, the search directions are
discretized as north, northwest, west, southwest, south, southeast, east and northeast. The al-
gorithms return one of these values for each decision cycle, and the robot follows this direction
with respect to the sensor frame for a step. A step is set as 20 degrees on the view sphere. This
value is determined experimentally; we chose a value that allows collecting enough new data
that would trigger new possibilities for grasp synthesis. Selecting a smaller step size may end up
with actions without any/significant outcome, which would make the learning process harder.
The step size should be consistent with the one used in the training stage.

With some preliminary simulations that we led the camera manually by user input, we have
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DESCRIPTION SQ. PRISM REC. PRISM DRILLER GLASS BOWL TOTAL

Heuristic 44 36 85 90 100 71

Random 26 26 95 88 87 64

Policy 92 87 99 97 100 95
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Figure 5.: Success rates of the heuristic-based, random and policy-based exploration techniques
for each object after 5 steps (in total 1000 experiments).
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Figure 6.: The results of 200 simulation with each method when using the square prism as a
target object.

observed that even in the most difficult cases, five iterations are sufficient to lead to a successful
grasp. Therefore, we set the maximum number of iterations to five steps; if an algorithm can
achieve a successful grasp within five steps, then the exploration is considered as successful.
Otherwise, it is considered as failed. The heuristic based search always takes the steps west,
north, north, east, east in this order. With such a strategy, the object can be explored in west,
east and north directions of the initial position of the sensor. In the random search, random
steps are taken. If any of the algorithms violates the workspace constraints of the robot, then a
random step is taken which is forced to be different than the previous decision.

The success percentages for each method and object at the end of the viewpoint optimization
process (after 5 steps) are presented in Figure 5. The step number distributions for successful
cases are given in Figures 6, 7, 8, 9 and 10. For example, in Figure 6, around 18% success rate is
obtained by taking only one step provided by the exploration policy. The success rate increases
to around 48% as two steps are taken and so on. As we analyze the results in general we see
that the performance of the exploration policy is superior to the heuristic based search and the
random search in terms of both success rate and efficiency: For all objects, the policy exploration
is more successful and obtains a good grasp within considerably less amount of steps.

Considering each object separately, we see that the policy-based exploration brings a huge
advantage for the box shaped objects, square prism and rectangular prism. The sharp edges of
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Experiments with Rectangular Prism
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Figure 7.: The results of 200 simulation with each method when using the rectangular prism as
a target object.

Experiments with Driller
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Figure 8.: The results of 200 simulation with each method when using the driller as a target
object.

these objects make the job of the exploration algorithms harder than the smooth surfaces, as
the algorithm should give correct decisions consecutively for revealing a new object surface. The
exploration policy successfully does its job for the majority of the cases which brings 92% and
87% success rates for the square prism and the rectangular prism respectively, whereas the other
algorithms perform below reliable rates. For the failed cases, we analyzed the motion trajectories
and discovered that even though the algorithm leads the robot to a good viewpoint in the first
three steps, bad decisions are made in the last steps. This can be overcome by adding more
training data for the later stages of the process.

For simulations with the driller and the glass, the exploration policy obtain a success rate close
to 100%. In this case, the heuristic based search and the random search also bring high success
rates. This is due to the relatively smooth surfaces of these objects. This shows that using the
vision sensor actively in grasp synthesis process, in some cases by not even using an intelligent
algorithm, can bring a major benefit. For the bowl object, both the heuristic-based search and
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Experiments with Glass
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Figure 9.: The results of 200 simulation with each method when using the glass as a target
object.

Experiments with Bowl
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Figure 10.: The results of 200 simulation with each method when using the bowl as a target
object.

the exploration policy bring a 100% success rate. The random search becomes successful in 87%
of the cases.

Nevertheless, the exploration policy brings a major advantage when it comes to efficiency as
can be seen in the step number distribution plots. For example, the average success rate of the
exploration policy after two steps is 71.4%, whereas for random and heuristic-based methods,
they are 39.4% and 28.4% respectively. For the driller, even though the success rates of all the
methods are similar at the end of 5 steps, after only 2 steps the exploration policy performs
significantly better with 82% than the random and heuristic methods that achieve 60% and 42%
success rates. For the bowl, the exploration policy finds a good grasp in one step, whereas the
heuristic method takes three.

Considering the high performance of the exploration policy, one can conclude that using the
proposed state representation technique and the learning procedure, a good generalization is
obtained even by using two objects in the training process.
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6. Conclusions and Future Work

The novelty of this paper lies in the use of a robot’s sensor actively in the grasp synthesis process
and continuously fusing the gathered data. By the proposed viewpoint optimization methodology,
the performance of grasp synthesis algorithms in literature can be boosted considerably. Since
manual training data generation is a cumbersome and difficult process, we also presented an
automated training data generation procedure. The application of the methodology to a force-
moment balance-based grasp synthesis method is given. The simulation results with this method
show that the exploration policy obtained via reinforcement learning is superior to a heuristic-
based search and a random search in terms of both success rate and efficiency.

In the simulation results, it is shown that even with a limited training set a good generalization
can be obtained for objects with various shapes. However, the performance of the algorithm can
be improved even further by increasing the number of data and shape variety of the training data
set. Also, choosing a more descriptive state representation would help to increase the performance
of the algorithm, as with HAF models the concavities of the objects cannot be modelled for some
poses of the objects.
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Appendix A. Automated training data generation procedure

Require:
no of objects: number of object models for training,
no of data per object: number of data per object,
no search dir: number of discrete search directions,
no random search:number of random search for a direction,
max search step no: maximum number of steps within a random search,
quality threshold: threshold for the quality of a sufficiently good grasp.

1: initialize dir arr and image arr.
2: for i = 1 : no of objects do
3: for j = 1 : no of data per object do
4: % Find a random initial sensor pos. w/o good grasp
5: Spawn object model i with random pose.
6: Move sensor to a random pos., while fusing data.
7: Synthesize a grasp and get grasp quality.
8: if grasp quality ≥ quality threshold then
9: Decrease j by one, skip rest and continue the loop.

10: end if
11: Record the image to image arr[j].
12: % Find the best direction
13: for k = 1 : no search dir do
14: Move to direction k for a step.
15: Take an image from the current position.
16: Synthesize a grasp and get grasp quality.
17: if grasp quality ≥ quality threshold then
18: rec grasp quality[k] = grasp quality
19: rec step no[k] = 1
20: Skip the rest and continue the loop.
21: end if
22: % Find shortest path to grasp from this location
23: for m = 1 : no random search do
24: for n = 1 : max search step no do
25: if rec step no[k] < n then
26: Break the loop.
27: end if
28: Move to a random direction for a step.
29: Take an image from the current position.
30: Synthesize a grasp and get grasp quality.
31: if grasp quality ≥ quality threshold OR u == max search step no then
32: rec grasp quality[k] = grasp quality
33: rec step no[k] = u
34: Break the loop.
35: end if
36: end for
37: end for
38: end for
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39: % Update best direction and step limit
40: Initialize min step no to max search step no.
41: Initialize max grasp quality to 0.
42: for k = 1 : no search dir do
43: if (rec step no[k] < min step no) OR (rec step no[k] == min step no AND

rec grasp quality[k] > max grasp quality) then
44: min step no = rec step no[k]
45: max grasp quality = rec grasp quality[k]
46: exp dir = k
47: end if
48: end for
49: dir arr[j] = exp dir
50: end for
51: end for
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